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ABSTRACT

There is little causal evidence on factors that can protect individuals against Alzheimer’s Disease 
and Related Dementias (ADRD) risk. We study the causal effect of education on ADRD, exploiting 
a regression discontinuity generated by a compulsory schooling reform. ADRD was ascertained 
based on medical history, hospital records, and death registries, addressing concerns about 
selective sample attrition. We find that education reduces incidence of ADRD and may delay its 
onset. Using molecular genetic data, we show that the reform weakened the relationship between 
genetics and ADRD incidence, implying this genetic risk is not immutable and can be modified by 
social policy.
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1. Introduction 

Gains in life expectancy and population aging are driving a sharp rise in Alzheimer’s 

Disease and Related Dementias (ADRD), with predicted global cases of 131.5 million people by 

2050 (Prince et al. 2015; Livingston et al. 2017). In addition to imposing health and emotional 

costs on ADRD patients and their families, the severe cognitive and functional impairment that 

characterizes ADRD has a large economic cost. In the U.S. alone, ADRD’s cost is estimated at 

$305 billion (Wong 2020). Without effective interventions to prevent or delay its onset, the 

economic burden of dementia could grow by as much as three-fold in the next 35 years (Livingston 

et al. 2017). For these reasons, it is crucial to understand what factors can decrease ADRD 

incidence and delay cognitive and functional decline in older ages. 

Lower educational attainment has been identified as a major risk factor for ADRD, as 

education is strongly associated with better later-life cognition and lower ADRD risk (Sharp & 

Gatz 2011; Maccora et al. 2020; Seblova et al. 2023; Soh et al. 2023; Crimmins et al. 2010). 

However, little is known about whether and how much of this association reflects a causal effect 

from education to ADRD (Leslie 2021; Walters et al. 2024). Part of the challenge in distinguishing 

correlation from causation is that third factors, such as childhood circumstances, socioeconomic 

background, and genetics, may confound the relationship between education and ADRD. Also, 

there may be individual characteristics, such as self-control, that drive both behavioral risk factors 

and educational attainment.  

Another obstacle to studying the education-ADRD relationship is that dementia is difficult 

to diagnose and measure. Cognitive decline often progresses slowly, and the threshold of disability 

that defines ADRD can be hard to identify reliably. Moreover, while brain pathology and cognition 

are correlated, there is not a one-to-one correspondence between them (Aron et al. 2014; Buchman 
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et al. 2014). Selective sample attrition is also a concern for most survey-based measures of ADRD 

(Weir et al. 2011). Survey participants who develop dementia are more likely to drop out, either 

because of survival bias or because they can no longer answer survey questions reliably. 

We overcome these challenges by combining a natural experiment with dementia data 

constructed from administrative health records for a large cohort. In 1972, England, Scotland, and 

Wales increased the minimum age at which students could drop out of school from 15 to 16 years 

of age. The reform affected only students born after September 1, 1957, generating a discontinuity 

in the relationship between education and date of birth. We exploit this discontinuity using a 

regression discontinuity design to estimate the causal effect of education on dementia incidence. 

We use data from the UK Biobank (UKB). The UKB’s Outcome Adjudication Group 

identified dementia outcomes using hospital records, mortality data, and (self-reported) medical 

history. Date of first dementia diagnosis is also recorded, allowing us to study effects on age at 

onset. Crucially, these data are not biased by selective attrition; the study continues to follow its 

participants through linkages to administrative health and death registries. 

Our findings indicate that education has a negative causal effect on ADRD incidence. We 

find that individuals born right after September 1, 1957 stayed on average 0.14 years longer in 

school. They were also 0.2 percentage points less likely to have been diagnosed with ADRD. Our 

preferred 2SLS specification estimates that staying in school one year longer reduced ADRD 

cumulative incidence by approximately 1 percentage point (p-value 0.01). While this estimate is 

implausibly large, our 95% confidence interval rules out reductions of incidence smaller than 0.23 

percentage points – in other words, staying in school one year longer reduced ADRD cumulative 

incidence by at least 0.23 percentage points. 
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The UKB also genotyped its participants, allowing us to investigate whether education can 

mitigate the genetic risk for ADRD (Cook & Fletcher 2015). ADRD has a strong genetic basis, 

with an estimated twin-based heritability as high as 80% (Gatz et al. 2006; Bird 2005; Breteler 

2000) and a SNP-heritability of 33% (Ridge et al. 2013). However, knowing that something is 

influenced by genes does not have clear implications for how society should respond (Jencks 1980) 

since it is an open question whether these genetic risks can be mitigated by behavioral changes, 

clinical interventions, or social policies. 

Using molecular genetic data, we constructed a “polygenic index” (PGI) that measures 

one’s genetic risk of developing ADRD. Importantly, the samples used to construct this measure 

exclude our working sample. The PGI is “fixed at conception” and therefore cannot be affected by 

the school reform.1    

Our evidence indicates that the school reform mitigated the genetic risk of developing 

ADRD. For those individuals born right before September 1, 1957, a one standard deviation 

increase in the PGI increased the ADRD cumulative incidence by 0.24 percentage points. In 

contrast, for those born right after this cutoff birthdate, a one standard deviation increase in the 

PGI increased the ADRD cumulative incidence by 0.06 percentage points—a reduction of 0.18 

percentage points (p-value 0.004). Our 95% confidence interval indicates that the school reform 

reduced the effect of the PGI on ADRD by at least 0.06 percentage points.  These are encouraging 

results, suggesting that ADRD incidence from genetic factors can be mitigated, and that changes 

in environmental circumstances, such as education, can reduce ADRD incidence even in a 

population with high incidence due to their genes. 

 
1 Meaning that an individual’s genetic makeup is drawn from their parents’ gene pool at conception; therefore this 
makeup, or the PGI calculated based on it, is also fixed at conception and does not vary during one’s lifetime.  
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 The main contribution of this paper is to provide rigorous evidence that education can 

reduce ADRD incidence and delay its onset. While previous studies found evidence that education 

causally improves cognition and slows cognitive decline (Banks & Mazzonna 2012; Nguyen et al. 

2016; Brenowitz et al. 2020; Fletcher et al. 2021), we are aware of only one other study that has 

examined the causal relationship of education and ADRD (Seblova et al. 2021). It exploited 

temporal variation in when school districts in Sweden implemented a compulsory schooling age 

reform; early-adopters implemented the reform as early as 1936 while late-adopters implemented 

it as late as 1953. One concern is that, because of the reform’s staggered rollout over 17 years, 

students in early-adopter and late-adopter school districts may have had different ADRD risks even 

in the absence of the reform. Seblova et al. (2021) finds no effect of education on ADRD risk; it 

also finds limited effects on socioeconomic outcomes such as income.  

In contrast, we study a compulsory schooling age reform that lends itself to a credible 

regression discontinuity design. Multiple studies have used this reform before, speaking to the 

widely accepted credibility of this natural experiment (Clark & Royer 2013; Davies et al. 2018; 

Barcellos et al. 2018; Barcellos et al. 2023). Importantly, this reform did affect socioeconomic 

status, including income.  

The rest of the paper is structured as follow. Section 2 presents the data. Section 3 describes 

the school reform. The main results are presented in Section 4. Section 5 investigates whether the 

school reform mitigated the genetic risk for ADRD. Section 6 examines some potential 

mechanisms for the main results. Section 7 concludes.  

2. Data 

We use data from the UK Biobank (UKB), a large, population-based study initiated by the 

UK National Health Service (NHS) (Sudlow et al. 2015). Between 2006 and 2010, invitations were 
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mailed to 9.2 million people between the ages of 40 and 69 who were registered with the NHS and 

lived up to about 25 miles from one of 22 study assessment centers distributed throughout the UK 

(Allen et al. 2012).The UKB sample is formed by 502,363 individuals who agreed to participate.  

The UKB’s Outcome Adjudication Group identified dementia outcomes using hospital 

records, mortality data, and (self-reported) medical history. A validation study has shown that at 

least 84.5% of the diagnoses coded based on this algorithm are true positives (Wilkinson et al. 

2019). These diagnoses are also associated with plasma proteins that have been implicated in 

ADRD (Guo et al. 2024) – see Appendix Figure 2. Our main dementia outcome is equal to 1 if a 

participant had been diagnosed by December 2022 (and 0 otherwise)2; at the cohort level this 

measure translates into cumulative incidence in December 2022. Date of first dementia diagnosis 

was also recorded, allowing us to study effects on age at onset.  

Our working sample consists of between 45,715 to 107,200 of UKB participants, 

depending on our sample restrictions. We will first discuss the natural experiment before detailing 

the criteria used to define this sample. A better understanding of the natural experiment is 

necessary to comprehend the sample restrictions. The Online Appendix provides details about the 

construction of the working samples (Appendix Figure 1) and of the variables used in the analysis 

(Appendix Table 1, Appendix Table 2, and Appendix Table 3).  

3. The Natural Experiment 

In 1972, England, Scotland, and Wales increased the minimum age at which students could 

drop out of school from 15 to 16 years of age. The reform (The 1972 Raising of School-Leaving 

 
2 If the individual had died before December 2022 from non-ADRD related causes, we coded this observation as a 0. 
We show in Appendix Table 4 that this coding choice does not drive our results. First, we estimate a multinomial 
logit model that distinguishes between developing ADRD; dying from a non-ADRD related cause; or being alive 
without ADRD. We then estimate a logit model that does not distinguish between the last two. The two 
specifications yield identical estimates, which lead us to conclude that our main findings are not driven by effects of 
the school reform on mortality.  
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Age Act or ROSLA) affected only students born on or after September 1, 1957, who had to stay 

in school until at least age 16 (“treated”). Students born on August 31, 1957 or before were still 

allowed to drop out at age 15 (“control”).  

Figure 1A shows that the ROSLA introduced a sharp discontinuity in the relationship 

between education and date of birth. The markers show the fraction who stayed in school until (at 

least) age 16  (y-axis), separately by year of birth (x-axis). Year of birth runs from September 1 of 

a given year to August 31 of the following year. The lines correspond to linear trends (in exact 

date of birth), with different trends for those born before and after September 1, 1957, the birthdate 

cutoff. The graph includes individuals born within 4 years of this cutoff. The sample is further 

restricted to UKB participants born in England, Scotland, or Wales or who immigrated to the UK 

when they were 14 years of age or younger (N = 107,200).3 

There is a large jump for the cohort born between September 1957 and August 1958, which 

was the first cohort required to stay in school until age 16. They were 14 percentage points more 

likely to stay in school until age 16 than those born right before the birthdate cutoff.  

This setting provided a unique opportunity to study the causal effects of education on 

ADRD incidence. If, as hypothesized, there is a causal relationship between education and ADRD, 

then one would expect to observe a corresponding discontinuity in the relationship between ADRD 

and date of birth at September 1, 1957. Because individuals born right before and right after this 

date would have had similar ADRD incidence in the absence of the policy, any observed 

discontinuity could be attributed to the difference in schooling engendered by the policy.  

 
3 We excluded from the sample participants for whom data on the age at which they left full-time education were 
missing. 
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We exploit this natural experiment using a regression discontinuity design (RDD). The 

RDD identifying assumption is that, in the absence of the reform, our outcome of interest would 

have been smooth across the September 1, 1957 threshold. Figure 1B provides evidence that 

supports this assumption. It shows the fraction of UKB participants whose parents had been 

diagnosed with ADRD, separately by date of birth. Parents of those born right after September 1, 

1957 were as likely to suffer from ADRD as the parents of those born right before September 1, 

1957. Appendix Figure 4 shows that other pre-reform characteristics are smooth across the 

birthdate cutoff, including individuals’ genetic risks for ADRD.4 These results strengthen our 

confidence that the RDD results provide unbiased estimates of the causal effects of education on 

the ADRD of UKB participants. 

4. Main Results 

Our findings indicate that education has a negative causal effect on ADRD incidence. 

Figure 2A shows the relationship between ADRD and date of birth. There is a sharp decline in 

ADRD cumulative incidence among those born after September 1, 1957. Appendix Figure 5 shows 

that there were similar declines for men and women. 

Table 1 presents regressions estimates. Column (1) in the top panel estimates the first-

stage: 

𝑆𝐿𝐴! = 𝛼" + 𝛼#𝑃𝑜𝑠𝑡! + 𝛼$𝐷𝑜𝐵! + 𝛼%(𝑃𝑜𝑠𝑡! 	× 	𝐷𝑜𝐵!) + 𝑢!.  (1) 

where 𝑆𝐿𝐴! is individual 𝑖’s school-leaving age; 𝑃𝑜𝑠𝑡! is an indicator for whether individual 𝑖 was 

born on or after September 1, 1957; and 𝐷𝑜𝐵! is individual 𝑖’s date of birth. Date of birth is 

measured in days relative to the cutoff, such that 𝐷𝑜𝐵 = 0 for someone born on September 1, 

 
4 Appendix Figure 3 shows the results from a McCrary Test. 
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1957. The term 𝐷𝑜𝐵! captures linear birth cohort trends in education. The term (𝑃𝑜𝑠𝑡! 	× 	𝐷𝑜𝐵!) 

allows these trends to be different for those born before and after September 1, 1957. Column (1) 

of Table 1 confirms the graphic results shown in Figure 1: The ROSLA led students to stay 

approximately 0.14 years longer in school.  

 The reduced-form is estimated in column (2) of the top panel: 

𝐴𝐷𝑅𝐷! = 𝛽" + 𝛽#𝑃𝑜𝑠𝑡! + 𝛽$𝐷𝑜𝐵! + 𝛽%(𝑃𝑜𝑠𝑡! 	× 	𝐷𝑜𝐵!) + 𝑣!.  (2) 

where 𝐴𝐷𝑅𝐷! is an indicator for whether individual 𝑖 had been diagnosed with dementia by 

December of 2022. Column (3) in the top panel estimates a two-stage least squares model: 

𝐴𝐷𝑅𝐷! = 𝛾" + 𝛾#𝑆𝐿𝐴! + 𝛾$𝐷𝑜𝐵! + 𝛾%(𝑃𝑜𝑠𝑡! 	× 	𝐷𝑜𝐵!) + 𝜀!.  (3) 

where 𝑃𝑜𝑠𝑡! is used to instrument for 𝑆𝐿𝐴!.  

The sample is restricted to those born within 1,217 days of September 1, 1957 (or 

approximately 3⅓ years), which is the optimal bandwidth determined by Calonico et al. (2014)’s 

optimal bandwidth selection procedure. Appendix Figure 6 shows that our results are robust to 

alternative bandwidth choices. We estimate robust standard errors. While common to cluster 

standard errors on the running variable, recent research advises against it (Kolesár & Rothe 2018). 

Nevertheless, because the running variable is measured very finely (exact date of birth), clustering 

on the running variable produces nearly identical standard errors. 

Column (2) of Table 1 estimates that those born after September 1, 1957 were 0.2 

percentage points less likely to have been diagnosed with ADRD. This is a large decline 

considering that the cumulative incidence among those born before this date was approximately 

0.46% – prevalence is relatively low because of the age of the sample (the cumulative incidence 

for the first cohort affected by the reform was measured when they were 65 years old). Column 
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(3) estimates that staying in school one year longer reduced ADRD cumulative incidence by 1.4 

percentage points (p-value 0.036). While this point estimate is implausibly large, our 95% 

confidence interval allows us to rule out reductions in cumulative incidence smaller than 0.09 

percentage points – in other words, staying in school one year longer reduced ADRD cumulative 

incidence by at least 0.09 percentage points. 

Columns (4) to (6) re-estimate these same equations using a different sample, namely those 

who left school at age 18 or younger. This sample restriction yields tighter confidence intervals 

because of the stronger first-stage. It yields unbiased estimates under the assumption that the 

school reform did not affect the fraction who stayed in school until at least age 19 – Appendix 

Figure 7 shows that this was the case.  

Column (6) estimates that, for those who left school at age 18 or younger, staying in school 

one year longer reduced ADRD cumulative incidence by approximately 1 percentage point (p-

value 0.01). The upper bound of the 95% confidence interval implies a reduction of at least 0.23 

percentage points. 

Survival Analysis 

 Figure 2A and Table 1 showed the effect on ADRD cumulative incidence as of December 

of 2022, when individuals born on September 1, 1957 were 65 years old. Figure 2B shows a 

survival analysis that examines the dynamics of these effects over time as study participants aged. 

In particular, we ran a series of regressions of the following form: 

𝐴𝐷𝑅𝐷!
&'( 	= 𝜃"

&'( + 𝜃#
&'(𝑃𝑜𝑠𝑡! + 𝜃$

&'(𝐷𝑜𝐵! + 𝜃%
&'((𝑃𝑜𝑠𝑡! 	× 	𝐷𝑜𝐵!) + 𝜉!

&'(          (4) 

where 𝐴𝐷𝑅𝐷!
&'( is an indicator for whether individual 𝑖 had been diagnosed with ADRD by 

September 1st of year 1957 +	𝑎𝑔𝑒. For example, 𝐴𝐷𝑅𝐷!)" is an indicator for whether individual 𝑖 
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had been diagnosed with ADRD by September 1, 2007. Notice that equation (4) is similar to 

equation (2). One difference is that we estimate equation (4) multiple times, one for each age 

between 50 and 65. Appendix Figure 8 shows regression discontinuity scatterplots at these 

different ages. 

Figure 2B plots the hazard rates, separately for those born right before September 1, 1957 

(solid black line) and for those born right after (red dashed line). More specifically, the solid black 

line plots the estimates of 𝜃"
&'( against 𝑎𝑔𝑒 while the red dashed line plots the estimates of 𝜃"

&'( +

𝜃#
&'( against 𝑎𝑔𝑒. Intuitively, the vertical distance between the red and black lines at a given age 

corresponds to the effect of the policy on ADRD cumulative incidence at the given age. The shaded 

area shows 95% confidence intervals for the difference between the two hazards—the difference 

is statistically significant at the 5% level for a given age when the solid black line is outside the 

shaded area.  

The figure suggests that the additional schooling induced by the school reform delayed 

ADRD onset. We formally test this hypothesis using a Cox proportional hazard model (Appendix 

Figure 9), and we can reject the hypothesis that the two groups share the same hazard rate (p-value 

0.025). Given these results, we anticipate that the gap between the two groups will widen over 

time as they age further. 

5. Genetics and Heterogenous Effects 

A common misperception is that the influence of genetics on a disease such as ADRD 

cannot be altered by environmental interventions – presumably because it is assumed that this 

influence reflects a biological, immutable relationship. However, because genetic effects can 

operate through environmental channels, intervening on those channels could in principle 

influence genetic effects (Goldberger 1979; Benjamin et al. 2024). In this section, we investigate 
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whether education can mitigate the genetic risk for ADRD (Cook & Fletcher 2015). We begin by 

discussing how we measure this risk. 

Measuring Genetic Risk of Developing ADRD 

As a measure of one’s genetic risk factor for developing ADRD, we constructed an ADRD 

polygenic index (PGI). Our PGI was constructed using two different types of genetic variation. 

The first type are Single Nucleotide Polymorphisms (SNPs). SNPs are locations in the human 

genome where individuals differ by a single genetic marker. At most SNPs, people can have one 

of two possible genetic variants. In genetic data, one of these two possible genetic variants is 

arbitrarily chosen as the “reference allele”. Because a person has two copies of each chromosome, 

they will either have 0, 1, or 2 copies of the reference allele. The number of reference alleles an 

individual has at a SNP is called their genotype for that SNP. 

The second type of variation are the APOE variants. APOE is a gene on chromosome 19 

that can be classified into four different variants, numbered APOE1 to APOE4. Each person has 

two copies of the APOE gene, one for each of their copies of chromosome 19. Individuals with 

some APOE variants are at much greater risk of developing ADRD—e.g., having two copies of 

APOE4 is associated with a 10-fold higher risk. We quantify a person’s APOE genotype with a 

set of indicator variables corresponding to each possible pair of APOE variants a person may have 

(e.g., an indicator for having one copy of APOE3 and one copy of APOE4). 

Our PGI is a weighted sum of millions of an individual’s genotypes: 

>𝑔!*𝑤*
*

+>𝐴𝑃𝑂𝐸!+𝜆+
+

 

where 𝑖 indexes the individual, 𝑗 indexes a SNP, and 𝑘 indexes the different possible pairs of APOE 

variants a person may have. The variable 𝑔!* is individual 𝑖’s genotype at SNP 𝑗 while 𝐴𝑃𝑂𝐸!+ is 
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an indicator for whether individual 𝑖 has the 𝑘-th pair of APOE variants. The weights assigned to 

the different SNPs, 𝑤*, are constructed to maximize the power of the variation across SNPs to 

predict the outcome of interest – in our case, ADRD. The weights for the SNP genotypes are based 

on the largest Genome Wide Association Study (GWAS)5 for Alzheimer’s disease that omits the 

UK Biobank (Kunkle et al. 2019).6 We use a simple model to estimate the weights for the pair of 

APOE variants, 𝜆+ (see Appendix Table 5 for more details).7,8 Because APOE has such a large 

effect on ADRD incidence, much of the variation in our PGI was driven by APOE (58% of those 

in the top half had at least one E4 allele, while only 0.02% of those in the bottom half did). 

Importantly, our PGI is fixed at conception and therefore cannot be affected by the school reform. 

Graphical Results 

Figure 3 investigates how two groups – those in the bottom and top halves of the 

distribution of this PGI – were affected by the school reform. The black markers and black line 

show effects on those in the bottom half, who have a lower genetic risk of developing ADRD. The 

 
5 A GWAS scans the entire genome and estimates associations between individual genotypes and an outcome of 
interest. Specifically, a GWAS is a series of regressions of some outcome onto the genotype of each SNP, one at a 
time, and a set of covariates which normally include sex, age, and the first several principal components of the 
genetic data. 
6 There are several methods for producing PGI weights from GWAS coefficients, but each of them transforms the 
GWAS coefficients in a way that is meant to account for the correlation structure that exists in the genome. The GWAS 
associations corresponding to the HapMap3 SNPs were transformed to account for linkage disequilbrium (LD) using 
the SBayesR method (Lloyd-Jones et al. 2019), and the EUR subsample of the 1000 Genomes Project data as a 
reference panel (Clarke et al. 2012). Due to the outsized effect of the APOE region of ADRD risk, we omitted the 
region on chromosome 19 from basepair position 44.4-46.5Mb (Baker & Escott-Price 2020). 
7 To avoid overfitting, these weights were estimated using a set of UK Biobank participants outside our optimal 
bandwidth. 
8 Following the standard practice, we restrict the sample to individuals whose genetic principal components cluster 
with the EUR subsample of a genomics reference panel, the 1000 Genomes Project. Due to Euro-centric bias in data 
collection, most currently published GWASs, including Kunkle et al. (2019), are based on samples with “European” 
ancestries. As a result, PGIs based on currently available GWAS coefficients are substantially more predictive in 
European-ancestry samples (Martin et al. 2019) and may not generalize to groups with African, Asian, Hispanic, or 
other non-European ancestries. This sample restriction reduces the correlation between a person’s genotypes and 
their environment—such a correlation could produce omitted variable bias in estimates of the effect of genetic 
variables, such as PGIs, on various outcomes.  
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red markers and red line show effects on those in the top half, who have a higher genetic risk of 

developing ADRD. 

Figure 3A shows that the policy affected the education of the two groups similarly. In both 

cases, those born right after September 1, 1957 were 14 percentage points more likely to stay in 

school until age 16 than those born right before. Thus, any differences in the effect of the policy 

on ADRD across the two groups cannot be explained by differences in how much the policy 

impacted the education of these two groups.   

Figure 3B shows the ADRD cumulative incidence for the two groups, separately by year 

of birth. For the cohorts born before September 1, 1957, there is a gap between the red and black 

lines, reflecting the larger ADRD incidence among those in the top half of the distribution of the 

PGI. If risk due to genetic factors were immutable, the gap between the red and black lines would 

remain for those born after September 1, 1957. 

The reform caused, however, a greater reduction in the cumulative incidence of ADRD of 

those in the top half, virtually closing the gap between the two groups. It reduced the difference in 

the cumulative incidence between the two groups from 0.18 percentage points to 0.02 percentage 

points. 

Regression Estimates 

We further investigate these results in the bottom panel of Table 1. We re-estimate the 

same specifications as in the table’s top panel, allowing the effects now to vary with one’s 

continuous genetic risk factor. Columns (1) and (2) estimate: 

𝑌! = 𝛿" + 𝛿#(𝑃𝑜𝑠𝑡! 	× 	𝐺!) + 𝛿$𝑃𝑜𝑠𝑡! + 𝛿%𝐺! + 𝛿,𝐷𝑜𝐵! + 𝛿)(𝑃𝑜𝑠𝑡! 	× 	𝐷𝑜𝐵!) + 𝜖! (5) 

where 𝑌! is 𝑆𝐿𝐴! in column (1) and 𝐴𝐷𝑅𝐷! in column (2); and	𝐺! is individual 𝑖’s PGI. Column 

(3) in the bottom panel estimates a two-stage least squares model: 
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𝑌! = 𝜂" + 𝜂#(𝑆𝐿𝐴! 	× 	𝐺!) + 𝜂$𝑆𝐿𝐴! + 𝜂%𝐺! + 𝜂,𝐷𝑜𝐵! + 𝜂)(𝑃𝑜𝑠𝑡! 	× 	𝐷𝑜𝐵!) + 𝜁! (6) 

where again 𝑃𝑜𝑠𝑡! is used to instrument for 𝑆𝐿𝐴! and (𝑃𝑜𝑠𝑡! 	× 	𝐺!) is used to instrument for 

(𝑆𝐿𝐴! 	× 	𝐺!). Columns (4) to (6) re-estimate columns (1) to (3), restricting the sample to those 

who dropped out at age 18 or younger. 

Column (2), which is consistent with Figure 3B, shows that the reform mitigated the 

genetic risks of developing ADRD. For those born right before September 1, 1957, a one standard 

deviation increase in the PGI increased the ADRD cumulative incidence by 0.24 percentage points. 

In contrast, for those born right after the cutoff birthdate, a one standard deviation increase in the 

PGI increased the ADRD cumulative incidence by 0.06 percentage points—a reduction of 0.18 

percentage points (p-value 0.004). Our 95% confidence interval indicates that the school reform 

reduced the effect of the PGI on ADRD by at least 0.06 percentage points. Column (6), which 

restricts the sample to those who left school at age 18 or younger, estimates that staying in school 

a year longer reduced the effect of the PGI on ADRD by 0.7 percentage points, with the lower 

bound of the 95% confidence implying a reduction of at least 0.08 percentage points. These are 

encouraging results, suggesting that ADRD incidence from genetic factors can be mitigated, and 

that changes in environmental circumstances, such as education, can reduce ADRD incidence even 

in a population with high incidence due to their genes. 

In principle, the relationship between dementia and the PGI, as captured by 𝛿% and 𝜂% in 

equations (5) and (6),  could be confounded by environmental factors. More specifically, imagine 

we ran the following regression:  

𝐴𝐷𝑅𝐷! = 𝜅" + 𝜅#𝐺! + 𝜒!.     (7) 
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It would yield a biased estimate of the causal effect of the PGI on ADRD if the PGI was correlated 

for example with the socioeconomic circumstances into which one was born. However, due to the 

properties of Mendelian inheritance, the genes that one inherits are randomly assigned conditional 

on the genes of the one’s parents (Spielman et al. 1993; Allison 1997; Young et al. 2022). 

Therefore, one could obtain an unbiased estimate of this causal effect by estimating the following 

alternative specification: 

𝐴𝐷𝑅𝐷! = 𝜋" + 𝜋#𝐺! + 𝜇! + 𝜑!.     (8) 

where 𝜇! is a fixed effect specific to individual 𝑖 and individual 𝑖’s full siblings. In equation (8), 

this fixed effect controls for the common parental genotypes for the siblings.  

We leveraged this approach in Appendix Table 6 to investigate wether there is empricial 

support for the hypothesis that the relationship between dementia and the PGI that we have 

estimated was confounded by environmental factors. In particular, we estimated equation (7) and 

(8) using a subsample of UKB participants who are siblings. We find that the coefficients on the 

PGI are similar in the two specifications. We cannot reject the hypothesis that they are the same 

(p-value 0.402). We interpret this finding as suggestive evidence that the effects of the PGI shown 

in Figure 3 and in the bottom panel of Table 1 reflect causal genetic effects.  

6. Potential Mechanisms 

Because we have just one source of exogenous variation, we cannot quantify the relative 

importance of different mechanisms. Nevertheless, we can still investigate whether a proxy for a 

given channel was impacted by the school reform – a necessary condition for the potential 

mechanism to mediate the relationship between education and ADRD. 

The UK Biobank contains rich data on health conditions considered risk factors for ADRD, 

including objective measures of obesity, hypertension, and diabetes (a HbA1c Test). Stroke, 
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infarction, and chronic obstructive pulmonary disease (COPD) were identified from a combination 

of self-reports, hospitalization data, and death records and are measured as of December of 2022. 

All the other outcomes were measured at baseline when the analyzing sample was between 45 and 

56 years of age. 

Figure 4A shows intent-to-treat estimates of the effect of the policy on household income and 

on ADRD risk factors. Each row corresponds to a separate outcome (all effects are measured in 

percentage points). The markers show point estimates while the brackets show 95% confidence 

intervals. 

Those affected by the school reform were 2.2 percentage points more likely to have an income 

of £31,000 or more (p-value 0.001); 0.45 percentage points less likely to have diabetes (p-value 

0.045); and 0.59 percentage points less likely to have had a stroke or myocardial infarction (p-

value 0.045). These results are consistent with other papers using the UKB data that show that the 

ROSLA had positive effects on health and SES (Davies et al. 2018; Barcellos et al. 2018).9 

Figure 4B re-estimates the effects on these risk factors, separately for those in the bottom and 

top halves of the distribution of the ADRD genetic risk factor. Interestingly, the effects on diabetes 

and obesity are driven almost exclusively by the high-genetic-risk group. The school reform 

reduced the obesity rate and the diabetes prevalence of the group with high genetic risk by 1.64 

(p-value 0.049) and 0.65 (p-value 0.035) percentage points, respectively. In contrast, the obesity 

rate and the diabetes prevalence for the group with low genetic risk reduced by 0.47 (p-value 0.584) 

and 0.1 (p-value 0.766) percentage points. The previous section showed that the reduction in 

ADRD incidence was larger for the high-genetic-risk group. The effects of the school reform on 

 
9 Nevertheless, it is important to note that there is currently no consensus on whether education has a causal effect in 
health in general (Grossman 2015). 
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some of these mechanism-proxies was also larger for the high-genetic-risk group, providing 

additional suggestive evidence that these mechanisms are at play. 

7. Conclusion 

We found that the additional schooling induced by a natural experiment in the UK in the early 

1970s subsequently reduced the cumulative incidence of ADRD and delayed ADRD onset. These 

results suggest that ADRD incidence can be modified by social policy, a welcome finding given 

the expected exponential growth in cases of dementia and their large costs. Encouragingly, we 

found that the school reform mitigated the genetic risk of developing ADRD – rejecting the 

common perception that the influence of genetics on diseases such as ADRD cannot be altered by 

environmental interventions. 

Scholars have noted the need for high-quality evidence on which factors can reduce ADRD 

and delay its onset (Leshner et al. 2017; Leslie 2021). Such evidence is paramount for designing 

policies that can prevent and effectively treat dementia. Characteristics that are highly associated 

with ADRD risk have been deemed as risk factors for dementia, but there is limited evidence as to 

whether these characteristics causally affect ADRD (Leshner et al 2017; Østergaard et al. 2015).  

Education is a case in point. While lower education has been singled out as a major risk factor 

for ADRD, there is limited evidence on the causal effect of education on dementia. While previous 

studies found evidence that education causally improves cognition and slows cognitive decline 

(Banks & Mazzonna 2012; Nguyen et al. 2016; Brenowitz et al. 2020; Fletcher et al. 2021), we 

are aware of only one other paper that studied the causal relationship between education and 

ADRD diagnosis using a natural experiment combined with dementia measures derived from 

administrative health records. Seblova et al. (2021) studied the effects of a compulsory schooling 

age reform in Sweden, exploiting temporal variation in when school districts implemented the 
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policy: early-adopters implemented the reform as early as 1936 while late-adopters implemented 

it as late as 1953. Inpatient and death registries were used to measure dementia diagnosis for over 

1.3 million individuals. The study found no effect of the reform on ADRD diagnosis. It also found 

limited effects on socioeconomic outcomes such as income. One concern is that, because of the 

reform’s staggered rollout over 17 years, students in early-adopter and late-adopter school districts 

may have had different ADRD risks even in the absence of the reform.  

In contrast, this paper studied a natural experiment that lends itself to a compelling regression 

discontinuity design. Multiple studies have used this reform before, speaking to the widely 

accepted credibility of this natural experiment (Davies et al. 2018; Barcellos et al. 2018). To our 

knowledge, this is the first paper to document a causal relationship between education and ADRD 

diagnosis. 

To translate this evidence into policy-relevant interventions, it is important to understand the 

channels through which education affects ADRD incidence. While the reform in Sweden studied 

by Seblova et al. (2021) seems to have had limited, if any, effects on socioeconomic outcomes, it 

is clear that the 1972 ROSLA improved socioeconomic status – suggesting that this may be one 

of the mechanisms through which education reduces ADRD incidence. The ROSLA may have 

also improved some health outcomes, reducing diabetes, obesity, stroke, and infarction, but much 

remains to be understood. 

This study has several potential limitations. First, our results are specific to the natural 

experiment we studied and to the lower-education population affected by the ROSLA. Admittedly, 

the effects of education on ADRD may vary with the level of education and across contexts. 

Second, our results are specific to UKB participants, who tend to have higher socioeconomic status 

and better health than the general population (Fry et al. 2017). Moreover, the great majority of 
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them are of European ancestries and results might not apply to more diverse populations. Third, 

dementia outcomes identified using hospital admission records and death registries may 

misclassify some individuals with dementia as not having it. We note, however, that false positives 

are likely to bias our estimates towards zero, since the evidence suggests that they are inversely 

related with education (Rizzuto et al. 2018). Finally, the cohort studied in this paper is relatively 

young; those born on September 1, 1957 were 65 years old in 2022. Although the ADRD 

prevalence in our sample was lower than 1%, we were still able to identify a clear reduction in 

ADRD incidence due to education. Follow-up with this cohort as ADRD prevalence increases will 

be important.  
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Figure 1: The Natural Experiment 

A B 

  
Notes: The figures plot (A) the fraction of each birth cohort who stayed in school until age 16 and (B) the fraction of 
each birth cohort whose parents developed ADRD. The cohort born between September 1, 1957 and August 31, 
1958 was the first affected by the reform. The lines show linear trends in date of birth, which are allowed to be 
different for those born before and after September 1, 1957. Figure (A) shows that the reform generated a 
discontinuity in the relationship between education and date of birth. Figure (B) shows that the parents of those born 
right after September 1, 1957 are as likely to have ADRD as the parents of those born right before September 1, 
1957. This illustrates that the latter provides a valid counterfactual of what would have happened to the former had 
they not been forced to stay in school until age 16. N = 107,200 (A) and 96,738 (B). 

Figure 2. Education Reduces Cumulative Incidence of ADRD and Delays Onset 
A B 

 
Notes: Figure (A) plots the fraction of each birth cohort diagnosed with dementia. The cohort born between 
September 1, 1957 and August 31, 1958 was the first affected by the reform. The lines show linear trends in date of 
birth, which are allowed to be different for those born before and after September 1, 1957. Figure (A) shows a sharp 
decline in the cumulative incidence of ADRD for those born after September 1, 1957, illustrating the causal effects 
of education on ADRD. Figure (A) shows the effect on cumulative incidence as of December of 2022, when 
individuals born on September 1, 1957 were 65 years old. Figure (B) shows the effect on cumulative incidence for 
other ages. It plots hazard rates of dementia diagnosis, separately for those born right before September 1, 1957 
(solid black line) and for those born right after September 1, 1957 (red dashed line). The shaded area shows 95% 
confidence intervals for the difference between the two hazards; the difference is statistically significant at the 5% 
level when the solid black line is outside the shaded area. The figure suggests that education may delay the onset of 
ADRD. N = 107,200 (A) and 89,259 (B). 
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Table 1. Regression Estimates of the Effect of the Reform and the Effect of Education. 

 
Notes: The dependent variables label each column. ADRD cumulative incidence is measured in percentage points. “Born after” is an 
indicator for being born on or after September 1, 1957. All regressions include linear trends in date of birth; those born before and after 
September 1, 1957 are allowed to have different trends. Columns (1), (2), (4), and (5) are OLS estimates. Columns (3) and (6) are 
estimated through two-stage least squares, where “Born after” is used to instrument for school-leaving age. In columns (4) to (6), the 
sample is restricted to individuals who dropped out at age 18 or younger. Regressions in Panel B include either an interaction of the 
genetic risk index with “Born after” (in columns (1), (2), (4), and (5)) or an interaction of the index with school-leaving age (in columns 
(3) and (6)); these regressions also control for the index. The ADRD genetic risk is standardized to have a standard deviation of one. 
The last row in each panel shows the mean of the dependent variable among those who were born before September 1, 1957. In Panel 
A, the number of observations is 89,259 for columns (1) to (3) and 49,457 for columns (4) to (6). In Panel B, the number of 
observations is 82,250 for columns (1) to (3) and 45,715 for columns (4) to (6). The number of observations is smaller in Panel B 
because the genetic risk index is not available for some participants. Robust standard errors between parentheses. While common to 
cluster standard errors on the running variable, we do not need to because our running variable is exact date of birth. Nevertheless, 
because the running variable is measured very finely, clustering on the running variable produces nearly identical standard errors. 

  

   

School- ADRD ADRD School- ADRD ADRD
Leaving Age (in p.p.) (in p.p.) Leaving Age (in p.p.) (in p.p.)

(1) (2) (3) (4) (5) (6) 

Top Panel
Born after 0.14 -0.20 0.32 -0.31

(0.04) (0.08) (0.02) (0.12)

School-Leaving Age -1.44 -0.96
(0.69) (0.37)

Mean of Y among Those Born before 18.71 0.48 0.48 16.17 0.60 0.60

Bottom Panel
Born after × Genetic Risk 0.004 -0.18 -0.01 -0.19

(0.02) (0.06) (0.01) (0.08)

School-Leaving Age × Genetic Risk -1.38 -0.70
(1.13) (0.31)

Born after 0.14 -0.19 0.32 -0.29
(0.04) (0.08) (0.02) (0.12)

School-Leaving Age -1.68 -0.97
(0.94) (0.38)

Genetic Risk 0.01 0.24 5.39 0.01 0.24 1.08
(0.01) (0.05) (4.28) (0.01) (0.07) (0.44)

Mean of Y among Those Born before 18.69 0.47 0.47 16.16 0.58 0.58

Dropped Out at Age 18 or YoungerAll
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Figure 3. Reduction in ADRD Cumulative Incidence Is Larger  
for Those with Greater ADRD Genetic Risk. 

A B 

  
Notes: We measured one’s genetic risk of developing ADRD by constructing an ADRD polygenic index that 
includes both a polygenic component and a person’s APOE genotype. Separate results are shown for those in the 
bottom half (black) and in the top half (red) of the distribution of this index. The figures plot (A) the fraction of each 
birth cohort who stayed in school until age 16 and (B) the fraction of each birth cohort diagnosed with ADRD. The 
cohort born between September 1, 1957 and August 31, 1958 was the first affected by the reform. The lines show 
linear trends in date of birth, which are allowed to be different for those born before and after September 1, 1957. 
Figure (A) shows that the reform affected the education of the two groups similarly. Figure (B) shows that it had a 
larger effect on the prevalence rate of those in the top half.  N = 98,778. 
 

Figure 4. Potential Mediators: Income and Risk Factors. 
A B 

 
 

Notes: The figure examines some potential channels through which the additional schooling may have affected 
ADRD incidence. It shows intent-to-treat estimates of the effect of the policy on the outcomes listed in the rows. 
Estimates are in percentage point units. The top panel of each figure estimates the effects on annual household 
income. The bottom panel estimates effects on various risk factors for ADRD. While (A) shows estimates for the 
entire sample, (B) estimates separate effects on those in the bottom half (black) and on those in the top half (red) of 
the distribution of the ADRD genetic risk index. The brackets show 95% confidence intervals. Robust standard 
errors. Depending on the variable, the number of observations varies from 80,259 to 89,259 in Figure 4A and from 
74,493 to 82,250 in Figure 4B. 
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Appendix Figure 1. Sample. The figure shows the different sample restrictions, the size of the resulting samples, and 
the analyses in which these samples were used. The UK Biobank (UKB) sample is formed by 502,363 individuals. 
We made the following sample restrictions. First, we restricted the sample to UKB participants born in England, 
Scotland, or Wales or who immigrated to the UK when they were 14 years of age or younger. Second, we excluded 
from the sample participants for whom data on the age at which they left full-time education were missing. Third, we 
restricted the sample according to date of birth. In some analyses, we restricted to individuals who were born between 
September 1, 1953 and August 1, 1962 (i.e., within 4 years of September 1, 1957). In others, we restricted to 
participants born within  1,217 days of September 1, 1957, which is the optimal bandwidth determined by Calonico 
et al. (2014)’s optimal bandwidth selection procedure. Appendix Figure 6 shows that our results are robust to 
alternative bandwidth choices. In columns (4) to (6) of Table 1, we further restricted the sample to UKB participants 
who dropped out at age 18 or younger. In the analyses using genetic data, the sample was restricted to individuals who 
had been genotyped and who were of European genetic ancestries.  
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Appendix Table 1 gives details about the data. Appendix Table 2 gives specific details about the main outcome of 
interest, dementia status. Appendix Table 3 shows summary statistics.   
 
 
 
Appendix Table 1. Data. The table shows the UK Biobank fields used to construct the data used in the main analyses. 
The UK Biobank Showcase gives more information about each field (see tab Notes and tab Resources). For survey 
questions, the table also shows the wording of the questions. Participants who answered that they had a college degree 
were not asked about their school-leaving ages. We assigned a school-leaving age of 22 to college graduates. 
 

 
 
 
  

UKB Field Notes and Survey Questions

Registry Data
Gender 31 Updated by participant if needed

Date of Birth 33 Updated by participant if needed

Survey Questions
Educational Qualifications 6138 Which of the following qualifications do you have?

School-Leaving Age 845 At what age did you complete your continuous full time education?
Parents Developed ADRD 20107, 20110 Has/did your father/mother ever suffer from Alzheimer's disease/dementia?

Income Greater than £18,000 738 What is the average total income before tax received by your HOUSEHOLD?
Income Greater than £31,000 738 What is the average total income before tax received by your HOUSEHOLD?
Income Greater than £52,000 738 What is the average total income before tax received by your HOUSEHOLD?
Income Greater than £100,000 738 What is the average total income before tax received by your HOUSEHOLD?

Diabetes (Ever Diagnosed) 2443 Has a doctor ever told you that you have diabetes?
Current Smoker 1239 Do you smoke tobacco now?

Algorithmically-Defined Outcomes
ADRD 42018 See UK Biobank 2022 Algorithmically-Defined Outcomes

Myocardian Infarction 42000 https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/alg_outcome_main.pdf
Stroke 42006
COPD 42016

Physical Measures
Obesity 21001, 23104 Average BMI from anthropometrics and BMI from impedance measurement

Stage 1 Hypertension 93, 94, 4079, 4080 Systolic ≥ 130 or Diastolic ≥ 80
Stage 2 Hypertension 93, 94, 4079, 4080 Systolic ≥ 140 or Diastolic ≥ 90

Biomarker
Diabetes (HbA1c Test) 30750 HbA1c ≥ 6.5

https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/serum_hb1ac.pdf
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The UK Biobank Outcome Adjudication Group, in conjuction with clinical experts, developed algorithms that 
ascertain a given health outcome – e.g., ADRD – based on a list of clinical codes. For each individual, the algorithm 
takes the earliest recorded date in which one of these predefined codes show up in either hospital admission records 
or in death certificate records. Appendix Table 2 shows the ICD-9 and ICD-10 codes used to ascertain ADRD. In 
some cases, ADRD was ascertained from the participant’s self-report of an ADRD diagnosis, in which case field 
20008 is used to identify the date of diagnosis. Less than 2% of the dementia diagnoses in our data are ascertained 
from self-reports. Approximately 94% of the dementia diagnoses in our data come from hospital admission records. 
The reader is referred to the document “Algorithmically-defined outcomes” put out by the UK Biobank in January of 
2022 (Version 2.0).  
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Appendix Table 2. Clinical Codes Used to Ascertain ADRD. The table shows the ICD 9 and ICD 10 codes used to 
ascertain ADRD status of UK Biobank participants. 

 
 
 

ICD 10 Code ICD 10 Text

A81.0 Sporadic Creutzfeldt-Jakob disease
F00 Dementia in Alzheimer's disease

F00.0 Dementia in Alzheimer's disease with early onset
F00.1 Dementia in Alzheimer's disease with late onset
F00.2 Dementia in Alzheimer's disease, atypical or mixed type
F00.9 Dementia in Alzheimer's disease, unspecified
F01 Vascular dementia

F01.0 Vascular dementia of acute onset
F01.1 Multi-infarct dementia
F01.2 Subcortical vascular dementia
F01.3 Mixed cortical and sub-cortical vascular dementia
F01.8 Other vascular dementia
F01.9 Vascular dementia, unspecified
F02 Dementia in other diseases classified elsewhere

F02.0 Dementia in Picks disease
F02.1 Dementia in Creutzfeldt-Jacob disease
F02.2 Dementia in Huntington’s disease
F02.3 Dementia in Parkinson’s disease
F02.4 Dementia in HIV disease
F02.8 Dementia in other specified diseases classified elsewhere
F03 Unspecified dementia

F05.1 Delirium superimposed on dementia
F10.6 Mental and behavioural disorders due to use of alcohol - amnesic syndrome
G30 Alzheimer’s disease

G30.0 Alzheimer’s disease with early onset
G30.1 Alzheimer’s disease with late onset
G30.8 Other Alzheimer's disease
G30.9 Alzheimer's disease unspecified
G31.0 Circumscribed brain atrophy
G31.1 Senile degeneration of brain
G31.8 Other specified degenerative diseases of nervous system
I67.3 Binswanger’s disease

ICD 9 Code ICD 9 Text
290.2 Senile dementia, depressed or paranoid type
290.3 Senile dementia with acute confusional state
290.4 Arteriosclerotic dementia
291.2 Other alcoholic dementia
294.1 Dementia in other conditions classified elsewhere
331 Alzheimer's disease

331.1 Pick's disease
331.2 Senile degeneration of brain
331.5 Creutzfeldt-Jakob disease
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Appendix Table 3. Summary Statistics. This table shows summary statistics of the variables used to produce the 
results shown in the paper. The sample includes those born between September 1, 1953 and August 1, 1962 (i.e., 
within 4 years of September 1, 1957). 
 

 
 
  

   

N Mean SD N Mean SD
(1) (2) (3) (4) (5) (6) 

Male 107,200 0.44 0.50 59,342 0.43 0.50
Year of Birth 107,200 1957 2.33 59,342 1957 2.33

Born after September 1, 1957 107,200 0.47 0.50 59,342 0.47 0.50
Stayed in School until Age 16 107,200 0.90 0.30 59,342 0.82 0.39

School-Leaving Age 107,200 18.79 2.97 59,342 16.32 1.05
Parents Developed ADRD 96,738 0.11 0.31 52,316 0.10 0.30

Diagnosed with ADRD 107,200 0.004 0.06 59,342 0.004 0.06
Age at Time of ADRD Diagnosis 375 61.32 5.17 251 61.21 5.38

Genetic Risk for ADRD 98,778 0.00 1.00 54,843 0.00 1.00
High Genetic Risk for ADRD 98,778 0.50 0.50 54,843 0.50 0.50
Income Greater than £18,000 96,292 0.87 0.34 51,504 0.82 0.39
Income Greater than £31,000 96,292 0.68 0.47 51,504 0.57 0.50
Income Greater than £52,000 96,292 0.38 0.48 51,504 0.25 0.43

Income Greater than £100,000 96,292 0.08 0.27 51,504 0.03 0.17
Diabetes (HbA1c Test) 100,116 0.03 0.16 55,265 0.03 0.18

Diabetes (Ever Diagnosed) 106,958 0.03 0.18 59,167 0.04 0.19
Obesity 106,763 0.25 0.43 59,080 0.29 0.45

Stage 1 Hypertension 107,034 0.68 0.47 59,237 0.70 0.46
Stage 2 Hypertension 107,034 0.37 0.48 59,237 0.40 0.49

Stroke or Myocardian Infarction 107,200 0.05 0.23 59,342 0.06 0.24
Current Smoker 107,136 0.12 0.33 59,302 0.15 0.36

COPD 107,200 0.03 0.18 59,342 0.05 0.21

Dropped Out at Age 18 or YoungerAll
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Appendix Figure 2. Dementia Outcome is Associated with Plasma Proteins. The figure shows cumulative 
distribution functions (CDFs) of five plasma proteins – GFAP (A), NEFL (B), GDF15 (C), LTBP2 (D), and BCAN 
(E) – that have been implicated in ADRD (Guo et al. 2024). Separate CDFs are shown for those who had been 
diagnosed with dementia by December of 2022 (solid black) and for those who had not been diagnosed (dashed red). 
The plasma proteins were measured at baseline between 2006 and 2010. Contrary to the other four plasma proteins, 
BCAN is protective against ADRD. The UK Biobank chose a random sample of its participants and made the 
proteomic data available for this random sample. That is the sample we use in these analyses. It includes people born 
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outside our optimal bandwidth and people born outside England, Scotland, and Wales who immigrated after age 14.  
After being adjusted for age, the outcomes were standardized to have a mean of 0 and a standard deviation of 1.
 

 
Appendix Figure 3. McCrary Test. The figure shows that we pass the McCrary Test. It shows the number of study 
participants by year of birth. Year of birth runs from September 1 of a given year to August 31 of the following year. 
Cohorts born before Year 0 had to stay in school until age 16 while cohorts born before could leave at age 15. The 
estimated discontinuity of the density is -0.04 with a standard error of 0.024. N = 107,200.   
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Appendix Figure 4. Balance Test. This figure provides evidence indicating that individuals born right before and right 
after September 1, 1957 are comparable in terms of pre-reform characteristics. Each row corresponds to a separate 
regression of the dependent variable listed in the row on an indicator for being born on or after September 1, 1957.  All 
regressions also include exact date of birth to control for birth cohort trends. Separate birth cohort trends are estimated for 
those born before and those born after September 1, 1957. The markers show point estimates, that is, the coefficient on the 
indicator for being born on or after September 1, 1957. The brackets show 95% confidence intervals. The sample is restricted 
to those born within 1,217 days of September 1, 1957 – that is the optimal bandwidth determined by Calonico et al. (2014)’s 
optimal bandwidth selection procedure. Sample sizes vary between 81,167 and 89,259 depending on the specific dependent 
variable. The polygenic index for AD, which is the only continuous variable, is normalized to have a standard deviation of 
one. These results are obtained by estimating a specification akin to the one in equations (1) and (2) above. 
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A B 

 
Appendix Figure 5. Similar Reduction in ADRD Risk for Men and Women. Separate results are shown for women 
(pink) and men (blue). The figures plot (A) the fraction of each birth cohort who stayed in school until age 16 and (B) 
the fraction of each birth cohort who was diagnosed with ADRD. The cohort born between September 1, 1957 and 
August 31, 1958 was the first affected by the reform. The lines show linear trends in date of birth, which are allowed 
to be different for those born before and after September 1, 1957. Figure (A) shows that the reform affected the 
education of the two groups similarly. Figure (B) shows that the effect on prevalence was similar for men and women.   
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A 

 

B 

 
 
Appendix Figure 6. Bandwidth Sensitivity. The figure investigates whether the effects of the reform on ADRD risk 
vary with the bandwidth size (in months). These estimates correspond to equation (2) above and to the model estimated 
in column (2), top panel of Table 1. The markers show the coefficient on the indicator for being born on or after 
September 1, 1957. The brackets show 95% confidence intervals. Appendix Figure 6A shows estimates from a model 
with linear trends, as in equation (2). The blue square shows the estimate with the optimal bandwidth. Appendix Figure 
6B shows estimates from a model with quadratic trends in exact date of birth. N varies from 40,519 (18-month 
bandwidth) to 280,463 (120-month bandwidth).  
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Appendix Figure 7. Reform Had No Effect on Fraction Staying in School Past Age 18. The figure shows that the 
reform had no effect on the fraction of students staying in school past age 18, which justifies the sample restriction in 
columns (4) to (6) of Table 1. It shows the fraction of study participants who stayed in school until at least age 19 by 
year of birth. Year of birth runs from September 1 of a given year to August 31 of the following year. Those born in 
Year 0 were born between September 1, 1957 and August 31, 1958. Cohorts born after Year 0 had to stay in school 
until age 16 while cohorts born before could leave at age 15. The lines show linear trends in date of birth, which are 
allowed to be different for those born before and after September 1, 1957. The point estimate is -0.0024 with a standard 
error of 0.0066 and a p-value of 0.714. The number of observations is 89,259. 
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Appendix Figure 8. Hazard Estimates. The fraction diagnosed by 9/1 of year 1957 + “age” is shown, separately by 
date of birth. The graph title is the age those born on 9/1/1957 were at the time. The lines show estimates of equation 
(6), which are used in turn to construct Fig. 2B. In particular, the solid black line in Fig. 2B corresponds to 𝜃!

"#$ while 
the dashed black line corresponds to 𝜃!

"#$ + 𝜃%
"#$. The shaded area in Fig. 2B showing 95% confidence intervals 

corresponds to 𝜃!
"#$ + 𝜃%

"#$ ± [1.96 × SE(𝜃%
"#$)]. The sample is restricted to those born within 4 years of Sep 1, 1957. 

N = 107,200. 
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Appendix Figure 8. Hazard Estimates. The fraction diagnosed by 9/1 of year 1957 + “age” is shown, separately by 
date of birth. The graph title is the age those born on 9/1/1957 were at the time. The lines show estimates of equation 
(6), which are used in turn to construct Fig. 2B. In particular, the solid black line in Fig. 2B corresponds to 𝜃!

"#$ while 
the dashed black line corresponds to 𝜃!

"#$ + 𝜃%
"#$. The shaded area in Fig. 2B showing 95% confidence intervals 

corresponds to 𝜃!
"#$ + 𝜃%

"#$ ± [1.96 × SE(𝜃%
"#$)]. The sample is restricted to those born within 4 years of Sep 1, 1957. 

N = 107,200. 
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A. Born before September 1, 1957 B. Born after September 1, 1957 

  

Appendix Figure 9. Survival Analysis. The figures compare the survival curves implied by the Cox Proportional 
model (solid blue line) to the survival curves originating from the nonparametric model (solid red line) described in 
equation (6) above. The left panel compares the curves for those born before September 1, 1957.  The right panel 
compares the curves for those born after September 1, 1957. The results of the nonparametric model are shown in 
Figure 2B of the paper. The Cox Proportional model includes three independent variables: the indicator for being born 
after September 1, 1957; date of birth in days; and the interaction of these two variables. Our estimate of interest in 
the coefficient on the first variable. Its point estimate is 0.582 with a standard error of 0.141 and a p-value of 0.025. 
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Appendix Table 4. Mortality and Selection. This table shows that selective mortality does not drive our results. The 
1972 ROSLA may have affected the likelihood of death, which is a potential concern because individuals who live 
longer are more likely to be diagnosed with ADRD. To investigate this issue, columns (1) and (2) estimate a 
multinomial logit that distinguishes between three possible outcomes: (a) being alive and having not been diagnosed 
with ADRD; (b) having died with no ADRD diagnosis; and (c) having been diagnosed with ADRD (the participant 
may have been alive or not as of December of 2022). Column (1) shows that we still find evidence that those born 
after September 1, 1957 are less likely to be diagnosed with ADRD. The point estimate in column (2) suggests that 
those individuals are less likely to have died, but this effect is not statistically significant. Column (3) estimates a 
regular logit where the omitted group includes both (a) and (b). The comparison of column (3) to column (1) shows 
that taking selective mortality into account does not affect our main estimate of interest. Columns (1) and (3) show 
the effects on ADRD risk. Column (2) shows the effect on likelihood of death. “Born after” is an indicator for being 
born on or after September 1, 1957. All regressions control for date of birth in days and its interaction with the “Born 
after” indicator variable. Robust standard errors between parentheses. N = 89,259. 
 

 
 

  

 

Logit
ADRD Dead ADRD

(1) (2) (3) 

Born after -0.55 -0.05 -0.55
(0.24) (0.07) (0.24)
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Appendix Table 5. ADRD Risk from Genetic Factors. The table shows the association of different genetic measures 
with ADRD risk. The genetic measures are a polygenic index for AD, indicators for having different APOE genetic 
markers, and the composite measure that includes both this polygenic component and the APOE genetic markers. This 
composite measure was constructed based on the results shown in column (3). The AD PGI and the composite measure 
are standardized to have a standard deviation of one. Columns (1) to (4) show results for study participants born more 
than 1,217 days before September 1, 1957 (N = 273,712). Columns (5) to (8) show results for our analyzing sample, 
who were born within 1,217 days of September 1, 1957 (N = 82,250). To construct our composite PGI which also 
incorporates the effect of the the APOE region of the genome, we first follow the approach of Lumsden et al. (2020) 
to call the APOE variant for each person in the full UKB sample. We then regress our measure of ADRD onto the 
PGI and indicator variables for each person’s APOE variant (e.g., e3e3, e3e4, e2e4, etc.) for the individuals in the 
UKB that are not in the UKB analysis sample. The coefficients from this regression along with the PGI and APOE 
variant calls are then used to produce the composite PGI in the analysis sample.  
 

 

  

     

(1) (2) (3) (4) (5) (6) (7) (8) 

AD PGI 1.55 0.49 0.09 0.009
(0.04) (0.04) (0.02) (0.03)

Composite Measure 2.16 0.15
(0.06) (0.03)

ε1ε2 -1.98 -2.21 -0.29 -0.30
(0.04) (0.04) (0.03) (0.04)

ε1ε4 -1.98 -3.25 -0.29 -0.31
(0.04) (0.20) (0.03) (0.07)

ε2ε2 -0.53 -0.34 0.11 0.12
(0.29) (0.29) (0.28) (0.29)

ε2ε3 -0.35 -0.25 -0.08 -0.08
(0.08) (0.08) (0.05) (0.05)

ε2ε4 1.33 0.83 0.10 0.09
(0.22) (0.22) (0.14) (0.14)

ε3ε4 3.10 2.50 0.15 0.13
(0.09) (0.10) (0.05) (0.06)

ε4ε4 11.41 10.22 0.97 0.94
(0.42) (0.43) (0.25) (0.26)

R 2 0.0080 0.0150 0.0160 0.0160 0.0002 0.0010 0.0010 0.0010

Born within Optimal BandwidthBorn Earlier than Optimal Bandwidth

ADRD (in p.p.) ADRD (in p.p.)
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Appendix Table 6. Causal Genetic Effects. This table shows that the associations between dementia and genetic risk 
shown in Figure 3 and in the bottom panel of Table 1 can be given a causal interpretation. In principle, the association 
between dementia and genetic risk could be confounded by omitted environmental factors associated with both. 
However, one can exploit that the genetic variation across (full) siblings is random to isolate causal genetic effects. In 
order to exploit this variation, this exercise is conducted with UK Biobank participants whose siblings also participated 
in the study (to maximize statistical power, we include participants born outside our optimal bandwidth). Column (1) 
estimates the association between dementia (measured in percentage points) and our measure of one’s genetic risk 
factor for developing ADRD, the AD polygenic index (PGI). Column (2), which includes family fixed effects, 
estimates the causal effect of the AD PGI (also known as “direct genetic effects”) on dementia. The last column of the 
table formally tests whether the coefficient on the genetic risk in column (2) is statistically different from the 
coefficient on the genetic risk estimated in column (1). We cannot reject the hypothesis of equality, which leads us to 
conclude that the associations between dementia and genetic risk shown in Figure 3 and in the bottom panel of Table 
1 can be given a causal interpretation. Robust standard errors in column (1). In column (2), standard errors clustered 
at the family level. 
 

 
  

 

P-Value Test
(1) (2) (1) = (2) 

Genetic Risk 1.13 0.99 0.402
(0.10) (0.16)

Constant 1.86 1.85
(0.07) (2.2E-3)

Family Fixed Effects? No Yes

Mean of Dependent Variable 1.84 1.84
Number of Individuals 38,518 38,518

Number of Families - 19,029

ADRD (in p.p.)

-
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