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losses from regret and missed opportunities, but a lack of post-purchase usage data has prevented 
their exploration. Using novel data on individual ownership and post-purchase usage of video 
games, we explore both the potential welfare benefits of full information prior to purchase and the 
ability of contemporary prediction technology to produce these gains. We find large potential 
gains: Among currently owned games, fully informed consumers could achieve 90 percent of their 
status quo playtime with 40 percent of current expenditure; and current expenditure reallocated 
among all available games could double status quo playtime. We develop a tractable model of 
consumer choice among bundles based on hours of playtime relative to overall spending, which we 
implement using both a Cobb Douglas calibration and a logit model of bundle choice. Full 
information would raise consumer surplus by more than the value of status quo expenditure; and it 
would reduce expenditure by half. Consumers heeding sophisticated, personalized predictions 
would obtain roughly 40 percent of these welfare benefits with a fifth less spending.
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1 Introduction

The availability of a wide variety of differentiated products delivers substantial benefits to

diverse consumers. Yet, the varied features of products – and varied tastes of consumers – can

make it hard for consumers to know which products they might like. Some current purchases

may disappoint their buyers, and some worthwhile options may be missed. If consumers had

full information about all products prior to purchase, then differentiated product purchases

might deliver substantially more utility. These problems of regret and missed opportunities

can arise in a wide swath of the economy, including markets for information goods and

apparel, and even in labor, healthcare, education, and housing markets.1

New prediction technologies and better data have enabled personalized recommendations

that may improve consumers’ pre-purchase information, allowing some of the gains. These

considerations raise two questions. First, how much welfare is forgone in status quo differ-

entiated product consumption choices, relative to full information? Second, how large an

improvement over status quo welfare could sophisticated, personalized predictions deliver, if

consumers heeded them?

Assessing the extent of regret and missed opportunities in current consumption deci-

sions has traditionally been difficult, for three reasons. First, we do not normally observe

post-purchase usage. Hence, there is little empirical basis for evaluating the ex post welfare

delivered by current consumption choices. Second, data on post-purchase usage of the prod-

ucts people have purchased is not sufficient. A complete answer also requires information on

how much people would have used the products they did not purchase. Third, beyond these

1Relevant contexts include markets for “experience” goods, as in Nelson (1970). Skelton and Allwood
(2017) provide systematic evidence that clothing, takeout food, sports & exercise equipment, and kitchen
gadgets are among the most regretted purchase categories. Einav et al. (2023) show evidence consistent
with regret in markets for subscription services. There is evidence of regret in other contexts as well.
See https://stradaeducation.org/value/do-you-regret-your-college-choices/ on education,
https://realestate.usnews.com/real-estate/articles/have-buyers-remorse-with-your-home-h

eres-what-to-do on housing, and https://www.forbes.com/sites/bryanrobinson/2022/12/01/5-rea

sons-for-boomerang-employees-and-the-great-regret-in-employment/ on labor markets.
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challenging data requirements, we also need a tractable way to model consumer choice and

welfare in an environment with many possible bundles and imperfect pre-purchase informa-

tion.

We surmount the data challenge with unusual individual-level data on product usage. Not

only do we observe which consumers purchased each of the products, we also see the amount

of time they spent using them. Our data, from the video game platform Steam, include

information on 50,000 consumers’ cumulative usage of 100 games. Using only data on owned

games, we document that consumers commonly make seemingly regrettable choices, i.e., they

purchase products they use very little and which they recommend that others not purchase.

Still more gains would be possible if consumers were aware of products they did not

purchase but would have enjoyed. Quantifying the potential benefits from games that users

do not currently own – addressing the second challenge – requires additional steps. First,

we need a plausible characterization of the truth, i.e., the realized playtime that each po-

tential purchase would deliver. Second, to estimate the efficacy of contemporary prediction

technology, we also need personalized predictions resembling those used in practice. We

observe the true realized playtimes directly for the owned games, and we use these to create

predictions of playtime for each user and game using matrix factorization. Then, armed

with both predictions and information on the distribution of the associated prediction errors

for owned games, we simulate the “truth” for unowned games as their predicted playtime

plus an error that reproduces the correlation between the predicted and realized playtime

for owned games.2

We show in descriptive analyses that consumers could experience large savings by avoid-

ing disappointing status quo purchases. Among currently owned games, fully informed

consumers could achieve the vast majority (90 percent) of their status quo playtime with

less than half (40 percent) of status quo expenditure. The full effect of better information

2Our results are robust to various alternative ways of modeling true playtime for unowned games.
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includes the benefits of both avoiding regret and discovering previously-missed opportu-

nities. Allowing for both mechanisms, we find that, on average, fully informed consumers

could achieve a 94 percent increase in realized playtime with current expenditure; they could

conversely purchase current playtime with one fifth of current expenditure. Contemporary

predictions, if heeded, would allow a 36 percent increase over the status quo playtime with

current expenditure, or the achievement of current playtime with 38 percent less expenditure.

These estimates, which hold current expenditure constant, are robust to various assumptions

about true playtimes, prices, and returns. They suggest large welfare gains but do not enable

direct calculation of their value.

Addressing the third challenge – how to model consumer preferences and welfare – re-

quires an implementable economic framework relating pre-purchase information to consumer

choice over bundles of games. We simplify the multidimensional problem by modeling con-

sumers’ utility as depending on cumulative hours of game playtime, less the expenditure on

the games.3 Our approach makes the strong assumption that hours of different games deliver

the same marginal utility, and we provide empirical justification for this approach, as well

as robustness checks, below.

The quality of pre-purchase information available to consumers affects the consumers’

ex ante choice problem through a budget constraint running from all other goods on the

y-axis to hours of playtime on the x-axis. If consumers were ignorant – they knew the

average price of playtime but nothing about the playtime delivered by each game – their

expected budget constraints would be linear (based on the average hourly price of playtime).

A fully informed consumer, by contrast, has a “bowed-out” budget constraint reflecting

the purchase of the lowest price-per-hour games first. Intermediate levels of information –

such as the status quo, or the availability of sophisticated predictions – deliver intermediate

3Our simplification recalls Chu et al. (2011)’s recasting of mixed bundling as a problem involving the
number of products purchased.
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budget constraints. Given their utility functions and the budget set associated with their

pre-purchase information, consumers choose a level of expenditure to maximize attainable

utility; and true playtime ensues.

This framework allows us to address our two main questions, measuring the welfare ben-

efits from full information and the extent of the possible effect delivered by sophisticated

predictions. We use the framework both to calibrate a Cobb Douglas model of demand for

time spent playing, and to estimate conditional logit models in which the consumer prefers

their chosen bundle of games (and hours) and expenditure to non-chosen alternative bundles.

Our results from these models echo the descriptive results. Relative to the status quo, full

information raises average consumer surplus (CS) by about 130 percent of status quo expen-

diture while reducing expenditure by a half. Nearly 40 percent of full information’s effect

comes from avoiding regrettable purchases; the remainder arises from taking advantage of

otherwise-missed opportunities. Heeding personalized, sophisticated predictions also allows

around 40 percent of the overall benefit of full information while reducing expenditure by

two fifths. The sophisticated predictions are better than status quo choices for 88 percent

of the users in our data, while 12 percent are better off in the status quo.

The paper proceeds in five sections. Section 2 discusses the relevant academic litera-

tures and the product-market context; we also provide contextual evidence of ex-post regret.

Section 3 introduces our tractable model of the effect of pre-purchase information on a con-

sumer’s choice among product bundles. Section 4 describes the data used in this study as

well as both predictions of playtime and our main and alternative measures of true realized

playtime. Section 5 presents descriptive evidence suggestive of large welfare gains from bet-

ter pre-purchase information. We begin with exercises that do not rely on predictions, and

we show that observed purchases include many apparently-disappointing choices. We then

use our predictions and measures of true playtime to document the additional playtime –

and, conversely, reduced expenditure – that full information and sophisticated predictions
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could enable. Section 5 also shows that our descriptive findings are robust to alternative

measurement assumptions and presents evidence supporting the use of aggregate hours in

the utility function. Section 6 presents our empirical structural model of the budget con-

straint and our model of utility, in which consumers choose bundles of games to maximize

their utility from playtime, and Section 7 shows welfare effects of full information and sophis-

ticated predictions, as well as the components of these effects arising from reduced regret.

In addition, Section 7 discusses the heterogeneous effects of information across users and

games, shows that similar results obtain when we allow demand parameters to differ by user

and game type, and provides measures of the welfare benefit from a sequence of increasingly

sophisticated predictions. We conclude in Section 8.

2 Background

2.1 Relevant literatures

Our broad question – about the effect of pre-purchase information on the welfare conse-

quences of differentiated products markets – is related to five literatures. First, our work is

related to studies of inefficiencies arising in differentiated products markets (Spence, 1976;

Dixit and Stiglitz, 1977; Mankiw and Whinston, 1986; Anderson et al., 1995). The literature

has traditionally focused on supply-side challenges associated with the number of entering

products; we are instead concerned with the demand-side efficiency consequences of infor-

mation, given the available products.

Second, our study is relevant to work on the welfare benefit from large numbers of new

products, including those associated with “the long tail.” See Anderson (2007), Brynjolfsson

et al. (2003), Quan and Williams (2018) and Aguiar and Waldfogel (2018) on the welfare

benefits of product variety and Waldfogel (2007) for evidence on differentiated product mar-

kets and diverse consumers. Like Chu et al. (2011) and Crawford and Yurukoglu (2012), we
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estimate welfare consequences of bundle choices.

Third, the part of our paper documenting the efficacy of prediction is related to research

on the effect of pre-purchase information on purchase decisions. One strand of existing re-

search documents effects of non-personalized information, which have been shown to affect

purchase decisions and to improve welfare (Reinstein and Snyder, 2005; Chevalier and May-

zlin, 2006; Reimers and Waldfogel, 2021). Some papers document apparent ex post mistakes

(Allcott, 2013; Miravete, 2003). More recent papers show the effects of specific examples of

personalized recommendations on purchase behavior and welfare (Sun et al., 2024; Donnelly

et al., 2023; Kaye, 2023; Wu et al., 2023). It is clear from prior work that pre-purchase

information can affect purchase decisions and welfare; what we contribute is quantification

of both inefficiencies of current consumption and the share of the potential benefits from full

information put in reach by contemporary predictions.

Fourth, we draw on the literature on recommender systems (Koren et al., 2009; Bobadilla

et al., 2013; Lee and Hosanagar, 2021; Koren et al., 2021). Specifically, we use collabora-

tive filtering which leverages past consumer behavior such as purchases or product ratings

for observed consumer-product pairs to estimate usage of consumer-product pairs that are

not observed. The matrix factorization approach we use is representative of prediction

approaches used in practice (Koren et al., 2021); and it has outperformed more complex

functions such as neural networks (Rendle et al., 2020). For example, matrix factorization

predictions were used to win the Netflix Prize (Koren et al., 2009).

Finally, there are substantial literatures on various aspects of video games, including the

complementarity between consoles and games (Lee, 2013), the potential impacts of video

games on social outcomes (Ward, 2010), and the relationship between work hours and video

games (Aguiar et al., 2021).
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2.2 Industry context

Video games attract substantial amounts of entertainment spending, as well as time use.

The video game industry generated $347 billion in worldwide revenue in 2022, making it

substantially larger than the movie and music industries combined.4 The US Bureau of Labor

Statistics reports that Americans spent an average of 34.2 minutes per day playing video

games during 2022.5 Between 2014 and 2017, US men between the ages of 21 and 30 spent

an average of 3.9 hours per week playing video games (Aguiar et al., 2021). US consumers

spent $47.5 billion on video game content during 2022 while consumer spending overall was

$9.8 trillion.6 Hence, video games accounted for 0.49 percent of household spending, which

we use to inform our expenditure share estimate in the Cobb Douglas analyses.

Video games are played on game consoles (such as the Nintendo Switch or Sony PlaySta-

tion), on phones, or on computers, where games are downloaded from digital video game

distribution platforms. One of the largest such platforms, Steam, provides the setting for

our analysis. Operated by Valve Corporation and founded in 2003, Steam had 33 million

concurrent peak users during 2023.7 Steam offers over 73,000 games, and revenue from game

sales on Steam was $8.8 billion in 2022, about 20 percent of total US spending on video

games.8

4See https://www.statista.com/topics/868/video-games/topicOverview. Global recorded
music revenue was $31.2 billion in 2022. See https://www.statista.com/statistics/272305/globa

l-revenue-of-the-music-industry/, while global movie revenue was estimated at $93.4 billion. See
https://www.ibisworld.com/global/market-size/global-movie-production-distribution/. Global
movie box office alone was $26 billion. See https://www.imdb.com/news/ni63899899/.

5See https://www.statista.com/statistics/502149/average-daily-time-playing-games-and-u

sing-computer-us-by-age/.
6See https://www.statista.com/statistics/252457/consumer-spending-on-video-games-in-the

-us/ and https://www.bls.gov/opub/reports/consumer-expenditures/2022/home.htm.
7See https://www.statista.com/topics/4282/steam/topicOverview.
8See https://www.statista.com/statistics/547025/steam-game-sales-revenue/.
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2.3 Evidence of ex-post regret

The large number of games available on the Steam platform makes it difficult for consumers

to know which products they might find appealing. It is not surprising, therefore, that

expressions of regret are common from video game users.

Numerous social media sites feature discussions of games that consumers regret buying.

A Reddit thread entitled “What’s one game you regret buying?” elicited 1,700 comments.

The top (most upvoted) reply was, “Probably 70% of my steam library.”9 Similar comments

are shared at Quora; and a substantial genre of YouTube videos describes games that users

regret buying.10 Together, those comments suggest that purchase errors are not only possible

but common in this context.

User recommendations provide additional, and more systematic, evidence of varying post-

purchase reactions to games. Steam users leaving feedback can “recommend” or “not rec-

ommend” a game. Among the 50,000 users in our sample, 40,370 leave reviews; and 18.6

percent of the reviews do “not recommend” games to other users. The prevalence of re-

gretted purchases suggests that consumers lack full information prior to purchase and, by

extension, that better pre-purchase information could raise welfare.11

3 Theory

We are interested in analyzing how better pre-purchase information would affect consumers’

choices among high-dimensional bundles of products. In our context, consumers are choosing

which bundles, from among 100 games, to own. These decisions depend on their utility

functions and their information about games. We discuss each in turn below.

9See https://www.reddit.com/r/gaming/comments/12frdsr/whats_one_game_you_regret_buying/
10See, for example, “Video Games I Regret Buying” (https://www.youtube.com/watch?v=l4f8CmcLJPk)

or identically titled video (https://www.youtube.com/watch?v=WoB80aEQsnE&t=16s).
11We collected these data from https://steamcommunity.com/profiles/[steamid]/recommended

during June of 2024.
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3.1 Consumer utility

In general, consumers would have some utility over the bundle of games, less the utility of

money paid for the games:

uij = U(1i1, . . . ,1iJ)−
∑
j∈J

pj1ij,

where 1ij is an indicator that is 1 if individual i owns game j, J is the full set of available

games, and Pi =
∑

j∈J pj1ij is the spending required to purchase the bundle of owned games.

Ideally, the utility function U() would allow for both varying marginal utilities across games,

as well as substitutability among games. With 100 games in the choice set, there are 2100

possible bundles, so to make progress, we need some simplification. The simplification we

employ is to assume that users derive utility from games according to the hours of playtime

that the games deliver, or

uij = U

(∑
j∈J

hij1ij

)
−
∑
j∈J

pj1ij, (1)

where hij denotes the amount of time that consumer i would use product j. This approach

entails different marginal utilities of ownership across games in the sense that they are

proportional to how many hours of playtime the respective games deliver. Depending on the

functional form of U , the approach can also allow for game substitutability via diminishing

marginal utility of the amount of playtime that user i’s chosen bundle would deliver, Hi =∑
j∈J hij1ij. Perhaps the strongest implicit assumption embodied in this approach is that

utility of games depends on hours in way that is identical across games. We provide empirical

support for reducing the bundle choice to an hours choice in Section 5.4 below.
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3.2 Pre-purchase information and the opportunity set

Given what a consumer knows about products prior to purchase, the consumer faces a budget

constraint describing how expenditure delivers playtime. To derive the budget constraints, it

is helpful to begin with two extreme cases, one in which consumers have no information about

individual games and another in which they have full information. In the “no information”

case, consumers know the average amount of playtime they obtain per dollar spent, which

we term ρi, but not the particular realized value for each game. Then a consumer spending

a total of Pi would expect to receive Hi = ρiPi hours of playtime. We illustrate a budget

constraint resulting from random rankings (which we term rϵ) in the dashed line in Figure

1, which plots the cumulative amount of playtime (x-axis) against money available for all

other goods (y-axis). The consumer would face a linear expected budget constraint, with the

same expected amount of money per hour 1/ρi for each purchased game. While each budget

constraint realization depends on the random rank order draw (rϵ), the budget constraints

will be linear in expectation across draws.

At the other extreme, consumers have full information on the hours they would play each

game (hT
ij). When armed with full information, consumer i knows that game j would deliver

hT
ij of playtime at a price of pj. Ordering products by ascending values of pj/hT

ij, a ranking

we term rT , delivers the maximally expansive budget constraint for the consumer. The

outer budget constraint in Figure 1, drawn curved to reflect a continuous approximation,

represents this full-information case.

The shape of the consumer’s full information budget constraint depends on the variability

of their price per hour of playtime across games, pj/hT
ij. If all games delivered the same hours

of playtime per dollar spent, then the full information budget constraint would be linear and

indistinguishable from the no-information budget constraints. The greater the variance in a

user’s price per hour, the more bowed out is their full information budget constraint.

Any ranking of products based on something other than the true pj/hT
ij shrinks the op-
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portunity set relative to the full information case. For example, if consumers had access

to sophisticated pre-purchase predictions, they would not know hT
ij in advance but rather a

prediction hP
ij containing error. A consumer heeding the personalized prediction would rank-

order games by price per predicted hour of use, or pj/hP
ij, producing a sophisticated-prediction

budget constraint. Provided that the prediction is better than random, this delivers a real-

ized budget constraint that lies somewhere between the two extremes of ignorance and full

information; and the inner, curved budget constraint in Figure 1 illustrates such a scenario.

The deviation of the prediction-based budget constraint from the full information budget

constraint is larger, the less accurate the prediction.

We need a way to characterize consumers’ status quo budget constraints. Consumers

in the status quo could have a range of possible budget constraints that would generally

fall short of full information. A ranking according to rT maximizes the playtime that each

expenditure delivers, whereas a random ranking (rϵ) produces a linear budget constraint in

expectation; and the linear budget constraint is not the most extreme possibility. Instead, a

consumer’s information could be “worse than random” in the sense that their ranking could

be negatively correlated with rT . At an extreme, a consumer who ranked products according

to −rT would attain minimum playtime with any level of expenditure. To accommodate the

possibility that information might vary from full information to worse than random, we

create an index that weights the random and full information rankings via

I(κi) = κir
T + (1− |κi|)rϵ, (2)

where κ ∈ [−1, 1], and the consumer’s resulting ranking rI is in order of I(κi).

The shape of a consumer’s budget constraint depends on the size and sign of κi. If the

consumer possessed full information in the status quo, then κi = 1; and the consumer’s

status quo budget constraint would lie on the full information budget constraint. If the
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status quo consumer has better-than-random but less-than-full information, then 0 < κi < 1

and the average status quo budget constraint is less bowed out. If κi = 0, the consumer’s

budget constraint is linear with a slope based on the average price per hour across games,

as depicted by thedashed linear budget constraint in Figure 1. Finally, if −1 ≤ κi < 0, then

the consumer’s knowledge gives rise to a budget constraint that is “bowed in” toward the

origin.

Depending on the consumer’s information (κi) relative to the accuracy of the personalized

predictions, a consumer’s status quo budget constraint could lie inside, or outside, of the

budget constraint based on these predictions. Indeed, it is an empirical question whether

– and for what share of users – contemporary predictions contain better information than

consumers possess in the status quo.

Given the budget constraint associated with their pre-purchase information, the con-

sumer chooses a point such that their marginal rate of substitution (MRS) equals the slope

of the expected budget constraint. Figure 1 illustrates the utility-maximizing hours choices

with a full information and a less informed budget constraint. In what follows, we develop

empirical characterizations of the status quo, full information, and prediction-informed bud-

get constraints, along with models of utility that deliver both status quo and counterfactual

choices and their welfare effects.

4 Data and playtime measures

4.1 Data

The main data for this study include information on 50,000 Steam users and 100 popular

Steam games. For each user, we observe which of these games they own, as well as the

cumulative number of hours they have spent playing each of the games, as of data collection
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between May 9 and 16 of 2021.12 The underlying data include 192,137 users, who collectively

owned 33,844 distinct games. From these, we chose the 100 most popular games (by number

of users who bought the game) with positive prices. To ensure sufficient usage history

data, we restrict attention to users who purchased at least 20 of those popular games;

and we randomly selected 50,000. We collected price data for each game from https:

//steampricehistory.com on November 15, 2023. We obtain a single price for each game

by averaging prices over time between January 2015 and May 2021.

Our users spend an average of $508.10 in total and own an average of 33.64 games. These

games provide them with 2,166.4 hours of cumulative playtime; and users play each game

an average of 64.4 hours. These averages take into account two features of the environment.

First, our main analysis assumes that all users paid the average price for each game, even

though games on Steam are sometimes discounted. In Section 5.3 we explore the sensitivity

of our results to the possibility that users obtained varying shares of their games at no charge.

Second, Steam allows users a two-week window to return games played less than 120

cumulative minutes. The playtime data thus include times spent briefly playing games that

the users ultimately neither purchase nor continue playing. Leaving these in the sample

would lead us to overstate welfare effects of better information, as the status quo holdings

would appear to include bad games that the users did not actually purchase. We deal with

this by eliminating potentially returned games from the sample in a way that is informed

by aggregate return tendencies: Industry sources indicate that between 5 and 8 percent

of purchased games are returned under Steam’s policy.13 In our data, 6.5 (the midpoint

between 5 and 8) percent of game purchases with nonzero playtimes are played less than

23 minutes. We mimic the true return process by excluding the game purchase instances in

which the games were played less than 23 minutes. We explore the consequences of other

12See https://developer.valvesoftware.com/wiki/Steam_Web_API, which we used to obtain lists of
owned games and their playtime for players with publicly visible profiles.

13See https://newsletter.gamediscover.co/p/game-refunds-and-the-hidden-costs.
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time cutoffs (between 0 and 120 minutes) in Section 5.3 below.

We have two kinds of additional data, which we use for some prediction models and

for extensions to our logit demand estimations. First, we have game characteristics. In

addition to price, we observe each game’s genre. Games in the “action” genre are by far the

most common (71 percent). Second, we know when 86.8 percent of users joined the Steam

platform. Join years vary from 2003 to 2020, with a median of 2010 and an inter-quartile

range from 2007 to 2013. We show in Section 7.2 that our results remain when we allow

different game types to enter the utility function separately, as well as when we restrict

the sample to users who joined during particular years and who therefore have had similar

amounts of time to accumulate playtime.

4.2 Modeling true playtime and realistic predictions

Answering our research questions requires two kinds of playtime measures. First, we need

sophisticated predictions of playtime hP
ij for each player i and game j that are consistent with

the kinds of predictions employed in practice. Second, we need measures of true, realized

playtime hT
ij for each user and game, including those not currently owned. This section

discusses how we use matrix factorization to obtain playtime predictions, and how we create

measures of true playtime by adding realization errors to the predictions for unowned games.

4.2.1 Predictions of playtime from matrix factorization (hP
ij)

Our users own a third of the 100 games on average, so the data matrix for generating

predictions is sparse.14 One can imagine a variety of approaches to filling in the prediction

matrix. Our preferred prediction approach is to create a collaborative filter using matrix

factorization, and we show below that our approach outperforms other prediction techniques.

14This has been formulated as a matrix completion problem, in which missing elements of the user-item
matrix have to be predicted from limited historical data as not every user has interacted with every item
(Jannach et al., 2016).
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Our implementation of the collaborative filter follows the approach of Koren et al. (2009).

We employ a matrix factorization model that maps both users and products to a joint latent

factor space with k = 100 dimensions. Each product j is associated with a vector mj ∈ Rk,

and each user i is associated with a vector ni ∈ Rk. The elements in mj (ni) capture the

extent to which a product (user) possesses those latent factors. We estimate the fitted values

of the log playtime that a user would derive from a given game from the inner products in

that latent space, ĥij = mT
j ni.

Estimation of the predicted playtime values proceeds in two steps. First, we tune the

hyperparameters of our prediction model to minimize the regularized squared error between

observed hours and the product mT
j ni on the set of owned games, without overfitting. These

hyperparameters are the number of iterative model fitting steps, the step size by which

parameters change, and the penalty for parameters that are very large or very small.15 We

tune the hyperparameters on a training set that includes all but one owned game per user,

which we save for the test set.16 From the test set, we retain 10 percent as a final validation

data set that does not inform the chosen hyperparameters.

In the second step, we refit the model using the hyperparameters with the lowest validation-

set error from above. We do this ten times, holding out a different tenth of the sample each

time. This gives us out-of-sample playtime predictions for every owned and unowned user-

game combination.

Our latent factor estimation uses stochastic gradient descent optimization (Funk, 2006).

Although the modeling approach includes no observable characteristics of games nor users,

the large number of latent factors implicitly captures these types of variation. In the video

game context, the 100 latent factors we estimate might capture obvious dimensions such as

15We fine-tune the model’s hyperparameters by independent uniform random sampling of parameter values
(Bergstra and Bengio, 2012).

16As is typical in the recommender literature, we perform leave-one-out cross validation. Because there
is no natural order to individuals’ interactions with products, we selected one game at random for each
individual as test data.
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adventure games, role playing games, and first-person shooter games. They may also capture

less well-defined dimensions such as pace of game play (real time vs. round based), the visual

style of the game (realistic vs. cartoon), or dimensions that cannot be interpreted at all.

How well do our out-of-sample predictions perform? Table 2 shows the root mean squared

errors (RMSE) from a sequence of prediction approaches, from the global average (using the

average value of playtime across users and games as the common prediction) to matrix

factorization with 100 factors.17 The RMSE measures for the out-of-sample validation sets

run from 0.722 with the global average to 0.607 with our preferred, “sophisticated” prediction

approach.18 Adding simple user characteristics, as well as country indicators, improves

only slightly on the global average, to 0.720. Using simple game attributes but no user

characteristics improves RMSE to 0.701; adding game fixed effects improves RMSE to 0.648,

while using all user and game observables in a random forest brings the RMSE to 0.640.

Collaborative filtering approaches using matrix factorization improve substantially on most

of these. Using only 5 factors delivers RMSE of 0.647, 10 factors give an RMSE of 0.639,

and 50 and 100 factors deliver 0.611 and 0.607, respectively.

Our preferred approach substantially outperforms the alternative techniques. Section 7.4

compares the welfare gains delivered by progressively more accurate prediction approaches.

4.2.2 Measures of true playtime

In addition to playtime predictions hP
ij, we also need measures of true playtime hT

ij. We

directly observe realized playtime for the owned games; the additional task is to create

realistic measures of truth for the game-user cells where playtime is not observed. One might

17We discuss all prediction approaches in more detail in Appendix Section A.
18Achievable RMSE values are often quite compressed (Koren, 2009) but there is evidence that even

small improvements in RMSE terms can have a significant impact on the quality recommendations. To
put this number in perspective: The equivalent improvement of personalized recommendations via matrix
factorization (k = 50) over product-level averages on the Movielens 100K dataset – a common benchmark
dataset used in the recommender literature – and predicting star ratings on a 1-5 scale is 8.1 percent
(Adomavicius and Zhang, 2012).
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be tempted to use the sophisticated predictions as estimates of true playtime, but doing so

would make predictions artificially appear to deliver the benefits of full information. Instead,

we need to realistically model the errors in the predictions.

Our main approach estimates hT
ij for the unowned games as the prediction plus an error.

We choose the errors from the empirical distribution for owned games as follows. First, we

sort all observations by the prediction hP
ij. Then, for unowned games, we use the realized

error associated with the owned observation with the next-highest value of hP
ij. This approach

retains the true realized values for owned games. Because of the way that the errors are

assigned to predicted playtimes hP
ij, we reproduce the same correlation of predicted playtime

and the error for both owned an unowned games.19 In addition to the main approach, we

also explore four alternative approaches using empirical and parametric error distributions

in Section 5.3.

We report summary statistics for prices as well as realized and predicted playtimes in

Table 1, which reports averages of user-by-game observations for owned games, unowned

games, and total games. Prices average $15.22 per game, with little difference between

owned and unowned games. By contrast, owned games deliver both more predicted and

realized playtime than unowned games. Using the true measure, owned games deliver an

average of 6.65 log minutes, while unowned games deliver an average of 5.80, or 64.4 and 39.9

hours, respectively. Predicted playtimes are similarly different between owned and unowned

games. This suggests that status quo consumers on average have some information.

5 Descriptive welfare evidence

Using our measures of true and predicted playtime, we document the additional hours of

playtime that status quo expenditures could buy if users had better information. We do this

19Unlike linear regressions, which produce errors that are orthogonal to predictions, the deviations of
realized playtime from the matrix factorization predictions can be correlated.
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in four parts. First, Section 5.1 analyzes owned games, for which we observe true realized

playtime directly; and we calculate measures suggestive of regrettable choices. Second,

Section 5.2 uses both owned and unowned games to calculate the additional playtime – or

reduced expenditure – that better pre-purchase information would allow. Third, Section 5.3

shows that the descriptive results are robust to different measurement assumptions about

game usage and prices. Finally, Section 5.4 shows that our results are robust to allowing

users to value playtime differently across games.

5.1 Analysis of owned games

The data on games that users currently own provide a useful first glimpse into the regrettable

nature of status quo consumption. The analysis of owned games has the additional feature

that it can proceed without reliance on our estimates of truth for unowned games.

Consumers in our sample spend an average of $508.1 to purchase games delivering 2,166.4

hours of playtime. Here, we calculate the maximum hours potentially available to a user at

any level of expenditure by ordering the games they had purchased by pj/hT
ij, then summing

the realized cumulative playtime. The solid line in Figure 2 shows the ensuing average

realized playtimes for consumers if they had full information. On average, users in our

sample could have achieved half of their status quo playtime with a very small share – 7.4

percent – of status quo expenditure. As the first vertical line indicates, users could have

achieved the vast majority (90 percent) of status quo playtime with 40.3 percent of initial

expenditure, or at a 59.7 percent discount. Hence, the last 10 percent of playtime costs

consumers an average of roughly 12 times more, per hour, than the first 90 percent.

How close to full-information savings can users achieve by following sophisticated predic-

tions? A consumer relying on sophisticated predictions hP
ij could maximize expected playtime

by purchasing games in ascending order of price per predicted hour, or pj/hP
ij. The dashed

line in Figure 2 shows the maximum realized playtime (hT
ij) achieved from reliance on these
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predictions. Sophisticated predictions achieve 90 percent of status quo playtime with a 24.8

percent discount, about 40 percent of the discount allowed by full information. It is of course

conceivable that consumers value the time spent playing marginal games more highly than

their prices per hour, so Figure 2 is merely suggestive of regret at this point.

5.2 Pre-purchase information, expenditure, and hours

The full effect of information depends not only on the regrettable purchases avoided but also

on the beneficial purchase opportunities surfaced by better information. We calculate the

overall effect of information, relative to the status quo, by comparing average hours of realized

playtime delivered by status quo choices against three relevant alternatives that status quo

expenditure could produce: random game choices, choices made with full information, and

choices that follow sophisticated predictions.

Panel A of Figure 3 summarizes the resulting calculations using both owned and unowned

games. First, randomly chosen bundles exhausting status quo budgets deliver on average

27.6 percent fewer hours of playtime than status quo choices, which implies that, on average,

consumers have some useful information in the status quo. Second, a consumer armed with

full information prior to purchase could on average nearly double status quo playtime (a 94.2

percent increase). Third, a consumer heeding a sophisticated predictions would on average

achieve a 36.0 percent increase over status quo playtime, a little over a third of the effect of

full information.

Panel B of Figure 3 depicts the descriptive results in expenditure rather than hours terms.

The better the information the consumer has, the less costly is the achievement of status quo

hours. The figure points to large welfare benefits of better information relative to the status

quo. Full information allows just 19 percent of status quo expenditure – a $400 reduction

in spending relative to the status quo. Hence, the average welfare benefit of full information

to consumers is at least $400. Sophisticated prediction, analogously, allows users to benefit
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by at least $175, on average. Of course, the actual welfare effect of better information arises

not only from a cost reduction for the achievement of status quo hours but also from users’

informed choice of how many hours to purchase.

5.3 Measurement assumptions and playtime

We have made various measurement assumptions above that may drive the large estimated

impacts of full information. These include assumptions about 1) the realized playtimes for

both owned and unowned games, and 2) the measurement of prices and therefore status quo

expenditure. We address each of these in turn below.

Playtime assumptions First, our main approach to measuring true playtime adds errors

to predictions for unowned games that are sized to match the realized prediction errors for

owned games. It is possible, however, that users’ decisions not to purchase certain games

reflect their knowledge that those games would deliver lower playtime. Then, our main

approach would overstate the realization errors, and playtime, for unowned games. We

explore this possibility by subtracting a sequence of differentials from our measures of true

hours for non-owned games, in Panel A of Figure 4. The leftmost dots show the baseline

results. The horizontal axis shows the proportionate reduction in the realized playtime

values for unowned games. The larger the reduction, the smaller the effect of information

on realized playtime. It is difficult to know what is a plausible upper bound, but if we

shaded playtime for unowned games by 50 percent, full information would still allow status

quo expenditure to produce a 45 percent increase over status quo playtime. At that level of

shading, the playtime made feasible by sophisticated predictions would fall just six percent

above status quo levels.

Second, we verify that we obtain similar estimates of the effect of additional information

using four alternative ways of estimating true playtime for both owned and unowned games.
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We obtain errors in two ways: We obtain random errors from the empirical distribution of

deviations between true and predicted playtime; we also add parametric errors from a normal

approximation to the error distribution. We use these two errors in two ways: We add these

respective errors randomly to predictions only for unowned games; and we also estimate our

true hours measures for the entire sample as the predictions (hP
ij) plus these errors.

Using all four approaches, full information on average raises hours by between 92 and 128

percent, while sophisticated prediction raises average hours by between 45 and 61 percent.

As when using the main measures of true playtime, full information nearly doubles realized

playtime, while sophisticated prediction achieves just under half of the full information gains.

Pricing and ownership assumptions First, our main analysis treats sample games

as though they were purchased at their average prevailing prices, but Steam sometimes

makes games available at a discount or even free of charge. If users obtained games without

payment, then our main analysis would overstate both users’ status quo expenditure and

the benefit that full information expenditure reallocation could deliver. We explore the

robustness of our result to discounted games by recalculating the playtime gains available

with full information and sophisticated predictions when we assume that a share T of each

consumer’s least-played games was obtained for free rather than at their average price.

Reclassifying a purchased game as free reduces both our measured status quo expenditure

and the scope for reallocation to raise possible playtime. Treating the least-played games as

free, rather than as regrettable purchases, gives a lower bound of information effects at any

share T and makes our robustness check conservative.

Panel B of Figure 4 illustrates playtime achieved when varying shares of owned games are

assumed to have been free. At one extreme – the baseline case – no games are assumed to

be free. Then full information reallocation of status quo expenditure raises playtime by the

baseline 94 percent (the left dot on the solid line). At the other extreme, if all games were
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free, then there would be no status quo expenditure and therefore no additional playtime

with full information. The ratio would be one, reflecting a zero percent increase in hours.

The increase falls between the extremes for intermediate values of T . If 20 percent of users’

games had been free, then full information would raise playtime by 80 percent. As the

share of games obtained without charge rises, the full information benefit falls; but the full

information increase in playtime remains above 50 percent with up to 80 percent of games

obtained without charge. The same exercise shows that sophisticated predictions also raise

playtime at status quo expenditure with up to 70 percent of games obtained free of charge.

We conclude that free games are not likely to explain our basic results.

Second, users are eligible to return games they played less than two hours, and we know

that 5 to 8 percent of games are returned. We rationalize this fact in our main analysis by

assuming that games played less than 23 minutes are returned. To verify that this cutoff is

not driving our results, we recalculate the additional playtime that additional information

can deliver for a range of thresholds from 0 to 120 minutes. The proportionate effect of full

information on the playtime that status quo expenditure buys runs from 1.96 to 1.90 as the

threshold rises from 0 to 120 minutes. The proportionate playtime effect of sophisticated

predictions runs from 1.39 to 1.29. Results are essentially unchanged relative to the main

analysis.

5.4 Modeling bundles with aggregate hours

Our basic modeling approach assumes that consumers value bundles according to the ag-

gregate hours they deliver. This, in turn, implies that the marginal utility of hours is equal

across games. The data on game purchases can be used to explore the reasonableness of this

assumption. The idea is simple: if people value an hour of play similarly across games, then

they will be more willing to buy games delivering more hours, all things equal. To explore

this, we aggregate the data to the game level. Define sj as the share of our users owning
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game j and Hj as a measure of the average hours delivered by game j.20 We postulate that

consumer i’s utility for game j depends on a function of the average hours the game delivers,

its price, a game-specific unobservable ξj, and an extreme value error; and we estimate this

model as a simple logit, using levels and logs of both hours measures, via

ln(sj/1−sj) = β0 + βjf(Hj) + αpj + ξj. (3)

For all four regressions, the estimates yield positive and significant coefficients on hours and

negative and significant price coefficients. The left panel of Figure 5 depicts the relationship

between sj and ln(Hj) using observed hours of playtime, and a positive relationship is clearly

evident. This supports the idea that users purchase games for the hours that they deliver,

which itself lends support to aggregation of hours across games.

Yet, the points in the left panel of Figure 5 are not precisely on a line. Although this is

partly because the figure does not account for prices, unobserved game ownership tendencies

(ξj) differ additionally for a variety of possible reasons, including different marginal utilities

of hours across games. We explore this by loading all of the variation in ξj into game-

specific hours coefficients in Equation (3). This gives game-specific weights ωj which solve

β ln(Hj) + ξj = β ln(ωjHj), so ωj =
(
eξj
)(1/β)

. We use degrees of these weights to create a

range of adjusted hours measures. User i’s weighted hours measure is then:

H∗
i =

∑
j∈J

(λωj + (1− λ)× 1)hij1ij,

where λ ranges from 0 (unweighted estimates) to 1 (full weighting).

The right panel of Figure 5 shows weighted estimates of the proportional gains in playtime

at status quo expenditure, for full information and prediction, and various values of λ. The

20We use two measures, the average of observed hours among owners and the average measure of true
hours across all owners.
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leftmost dots (at λ = 0) reproduce the baseline results from Figure 3 Panel A. Two things

are clear. First, even when we attribute all cross-game variance in ownership to different

marginal utilities (when λ = 1), the gain from full information remains at 60 percent.

Second, sophisticated predictions achieve about 40 percent of the full information gains for

all values of λ. We conclude, first, that modeling the bundle through the hours it delivers

is reasonable and, second, that the assumption implicit in our use of aggregate hours in the

utility function does not drive our main finding of substantial opportunities forgone in status

quo consumption.

6 Structural model

The descriptive results suggest substantial welfare forgone in status quo consumption, rela-

tive to full information, and that sophisticated predictions could allow consumers to attain

an appreciable share of the full information benefit. Yet, the calculations are rough in that

they neither allow endogenous selection of playtime, nor do they quantify the welfare benefit

of information in dollar terms. To analyze the welfare effects of predictions in a theory-

consistent way, we need two major ingredients. First, we need to calculate status quo, full

information, and prediction-informed budget sets, which we obtain using the framework

from Section 3. We do this in Section 6.1. Second, we need an estimated utility function

for selecting the utility-maximizing points on the respective budget constraints; and Section

6.2 discusses Cobb Douglas and logit utility function implementations based on aggregate

hours.

6.1 Information and the expected budget constraint

The budget constraint that each consumer faces depends on their information, which is em-

bodied in the model through the parameter κi in Equation (2). In particular, we model each
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consumer’s rank ordering of games as depending on an index which is a convex combination

of the random and full information ranks, I(κi) = κir
T + (1− |κi|)rϵ, where κ ∈ [−1, 1].

We simulate the index based on 50 draws of the random ranking rϵ for each user and

each value of κ ∈ [−1,−0.9, . . . , 0.9, 1]. For each user and κ, we compute the average hours

of playtime that each user’s status quo expenditure would deliver, Hi(Pi;κ), and we choose

the κi that minimizes the distance between the average simulated playtime Hi(Pi;κ) and

the status quo playtime Hi.

Each draw gives a user’s budget constraint. We calculate the slope of the status quo

budget constraint for each user as the average game price over the average hours delivered

for the game purchase where simulated cumulative expenditure is closest to status quo ex-

penditure. The resulting user-specific slopes of the status quo budget constraints (pH(κ))

imply that an additional hour costs an average of $0.56 (median of $0.42) at users’ status

quo bundles. This varies between $0.26 at the 25th percentile and $0.69 at the 75th.

6.2 Cobb Douglas and logit utility functions

We first estimate welfare effects using a Cobb-Douglas calibration. We observe an initial

hours choice for each user, which (suppressing i subscripts) we now denote by H0; and the

κ derivation above delivers the status quo budget constraint slope at H0. This allows us to

infer the initial levels of “all other goods,” or AOG level A0 and therefore to calculate initial

utility. Given the hours expenditure share a (which is informed by expenditure data), we

have the utility function U = HaA1−a; and user utility maximization arises where their MRS

equals the slope of the budget constraint, pH(κ). Rearranging terms, we solve

A0 =
1− a

a
H0pH(κ)

for each user. Status quo utility is then U0 = Ha
0A

1−a
0 .
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In order to generate the prediction-informed and full information budget constraints,

we need the point where the status quo, full information, and prediction-informed budget

constraints meet the AOG axis (the user’s income level). We calculate this as I = A0 +

P0. Given I, we create the full information and prediction-informed budget constraints

and calculate the choices for each user as the utility-maximizing points along these budget

constraints. The value of information, relative to status quo choices, is the amount of money

the user would need to forgo from an informed state to bring their utility to the status quo

level.

While the Cobb Douglas setup allows for utility maximization and – by construction

– fits status quo decisions perfectly, these estimates have the shortcoming of imposing the

utility function parameters based on aggregate spending shares, rather than using the data

to estimate the way in which consumers trade off hours for dollars. We do this with a logit

framework. Like Crawford and Yurukoglu (2012), we model the utility of each bundle as a

function of bundle characteristics and an extreme value error. Specifically, the utility that

user i derives from their chosen bundle with playtime Hi and expenditure Pi is given by

uib = β ln(Hi)− αPi + µi + ϵib, (4)

where ϵib is an extreme value error, and b refers to a game bundle available to user i. We

employ the log specification to reflect the diminishing marginal utility of game playtime, and

we include user fixed effects (µi) to account for variation in overall utility of hours played.

We estimate the parameters of the utility function in Equation (4) by noting that con-

sumer i chose their owned bundle and not other bundles. But what other bundles should

we understand them to have rejected? Define h̄ as the average hours delivered by a game.

Then we model the user as preferring the status quo choice to either h̄ additional, or fewer,

hours of playtime at the user’s status quo price per hour pH(κ). That is, the user chose
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the observed bundle (Hi, Pi) over two alternative bundles described by the hours and price

tuples (Hi + h̄, Pi + pH(κ)h̄) and (Hi − h̄, Pi − pH(κ)h̄).

The top panel of Table 3 (Model 1) reports estimation results from this specification,

which are our main estimates. The coefficients indicate that consumers value both additional

hours and money. Given that the mean cumulative playtime is 2,166.4 hours, the implied

average value of an additional hour of play is $0.60, which is similar to the average cost per

hour above from the budget constraints ($0.56).21

In the logit welfare simulations below, we use the estimated coefficients to find the utility-

maximizing bundles under full information and sophisticated predictions. Both the coeffi-

cients and the chosen bundles also inform the CS effects of information. For example, the

effect of full information on a particular user’s consumer surplus is given by

∆CSi =
1

α
ln
(
1 + eβ ln(HFI

i )−αPFI
i

)
− 1

α
ln
(
1 + eβ ln(HSQ

i )−αPSQ
i

)
, (5)

where the superscripts FIi and SQi denote the hours and expenditures from the bundles

chosen with full information and in the status quo, respectively.

6.3 Utility function extensions

Before turning to welfare estimates, we explore two extensions of the baseline (Model 1) logit

specification, involving users of differing tenure on the platform, as well as separate terms

for the cumulative hours of different game types.

First, our baseline approach embodies diminishing marginal utility of hours of playtime

during the same time interval, but users in our sample have been on the platform for different

amounts of time, and this could distort our utility function parameter estimation. To address

this, we re-estimate the model separately for groups of users who joined in each year, from

21We obtain 0.60 from (β̂/H̄)/α̂.
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2003 to 2016. As the middle panel of Table 3 (Model 2) shows, we find positive log hours

parameters and negative price parameters for all cohorts; and we cannot reject the joint

hypotheses that all price, and log hours, parameters are equal across user join years. We

conclude that our sample’s inclusion of users with different tenures on the platform does not

distort the baseline parameter estimates. We also report welfare estimates from this flexible

specification below.

Second, in the foregoing exercises, utility depends on the sum of hours from all games. To

allow for the possibility that different games types enter the utility function separately, we

divide games into two types: action games and others. Among the 100 games in our dataset,

71 include an “action” tag in their description and 29 do not. We adjust the estimation

equation in (4) to allow hours of different game types to affect utility differently:

uib = βA ln(HA
i ) + βNA ln(HNA

i )− αPi + µi + ϵib, (6)

where the A superscript refers to action games, NA refers to non-action games, and b refers

to the bundle of games chosen by user i. As above, we estimate the equation as a fixed

effects logit. Here, the observed choice is modeled as preferred to four non-chosen bundles

with one more, or one fewer, action or non-action game.

The bottom panel of Table 3 (Model 3) reports the estimated parameters. While the

(common across game types) consumer disutility of expenditure is roughly similar to that

in the one-type case, consumer utility of hours played varies significantly across game types:

Users value additional playtime for action games more than for non-action games. Despite

these differences, the marginal utilities of additional hours – at the means of action and

non-action games played – are similar.22 We show below that the welfare effects from this

model are similar to the baseline effects.

22We exclude one user, for whom measured non-action playtime is under 5 minutes, from this calculation.
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7 Welfare effects of information

Given the model estimates, we compare status quo choices to alternatives with different

information to measure the welfare effect of information. Sections 7.1 presents estimates of

the benefits from avoiding regrettable purchases, relying only on owned games. Section 7.2

presents estimates of the overall welfare effects, including the effects of being made aware

of otherwise-unknown products. We explore the variation in these effects across users and

games in Section 7.3. Finally, Section 7.4 compares the dollar values of the benefits achievable

with progressively more sophisticated predictions.

7.1 Gains from avoiding regret

While the full welfare gains we calculate arise from better information about both purchased

and non-purchased games, we begin with a simpler calculation of the gains from avoiding

purchases that users regretted. We solve the utility models against budget constraints that

include only the games purchased in the status quo.

Table 4 presents the no-regret results using both the logit and Cobb Douglas approaches.

The top panel shows effects from full information. By construction, expenditure, games

purchased, and hours decrease. With full information about already-owned games, users

would buy an average of 11.0 (11.9 for Cobb Douglas) of the 33.6 games they had purchased

in the status quo, reducing their expenditure by $354.9 ($339.1), or by about two thirds.23

Because they are just eliminating games, playtime must fall; but the average hours reduction

is only about 11.5 (13.8) percent. Given the large expenditure reductions and relatively small

playtime reductions, consumer surplus rises by an average of $261.2 ($245.3), or by nearly

half of status quo expenditure.

The bottom panel of Table 4 shows the effects of heeded sophisticated predictions on

23We report Cobb Douglas estimates based on a = 0.05. Results are nearly identical with a = 0.01 or
a = 0.005.
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regrettable status quo purchases. Game purchases fall from 33.6 to 17.7 (19.5), and expen-

diture falls from $508.1 to $240.6 ($272.6). Playtime falls proportionately more than with

full information, however, by 25.6 (21.1) percent, suggesting that games eliminated under

sophisticated predictions are better than those eliminated under full information. Still, av-

erage CS rises by $73.7 ($53.9), or by about a tenth of status quo expenditure. CS rises for

76.4 percent of users.

7.2 Overall welfare effects of information

The overall effect of better pre-purchase information arises not only from avoiding regret

but also from being alerted to previously-unknown opportunities. The top panel of Table

5 reports overall welfare effects of full information. While avoiding regret by itself reduces

both purchases and hours played, full information about all games raises hours played sub-

stantially. Hours rise by roughly three fifths above the status quo level. At the same time,

expenditures (and games purchased) decline by about a half. Full information raises con-

sumer surplus by an average of $682.4 ($626.4), or by 134.3 (123.2) percent of the $508.1 in

status quo expenditures. These estimates of the change in CS are roughly 2.5 times the ef-

fects from eliminating regret alone. Hence, full information would allow substantially higher

utility with much less expenditure, relative to the status quo; and much of the overall gain

stems from the purchase of otherwise-unknown games.

The second panel of Table 5 shows the overall effects of sophisticated prediction, if heeded.

Relative to the status quo, consumers would reduce their game expenditures by 38 (30) per-

cent – and their numbers of games by 28 (19) percent – while increasing average playtime by

about ten percent, relative to the status quo. Access to the formerly-unknown opportunities

revealed by the predictions allows average CS to rise by $292.5 (242.9), roughly half of status

quo expenditure. Hence, sophisticated predictions produce between a third and two fifths of

full information benefits.
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Despite our failure to reject constant parameters across users with different Steam plat-

form tenure, we also estimate the average changes in CS from both full information and

sophisticated predictions, by join year, using the separate parameters by year. Figure 6

reports these results, and the average full information change in CS is roughly $660 across

join years, which is similar to the baseline estimate of $682.4. The average change from

sophisticated predictions is about $290, nearly the same as the baseline estimate of $292.5.

The welfare effects of full information using the two game types are also very similar to

the estimates above. Hours played rise to about 3,205.5 rather the 3,461.8 in the baseline

logit. The number of games owned falls to 12.7 rather than 14.4, and the change in CS is

$554.7 rather than $682.4.

7.3 Distributional effects of information on users and game sellers

Users. Not only does full information deliver changes in CS and expenditure, but these

outcomes also vary substantially across users. The inter-quartile range in ∆CS runs from

$489.4 to $811.6, and the inter-quartile range for expenditure reduction runs from $153.4

to $429.1. The value of sophisticated predictions also varies substantially across users: the

inter-quartile range in ∆CS runs from $123.4 to $447.5. The predictions are not guaranteed

to improve on status quo information, but sophisticated predictions raise CS for 88.5 percent

of users.

Which sorts of users experience larger changes in CS or expenditure? In our modeling

framework, changes in expenditure and CS depend on two factors. First, consumers can be

differently informed in the status quo. Users with poor information – low or negative κi and

therefore less bowed-out budget constraints – get larger benefits from additional information,

all else constant. Second, users for whom the price of hours varies substantially across games

(i.e., with a higher variance of hT
ij/pj) have more to gain from additional information.

Empirically, both matter; but the variation in κ gives rise to much more of the variation
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in ∆CS and changed expenditure. We run the regression ∆CSi = ν0+ν1κi+ν2σi (h
T
ij/pj)+εi,

where the σ term is the user-specific standard error of h/p. We estimate ν̂1 = -1053.0 (se =

2.53) and ν̂2 = 0.34 (0.01). These coefficients imply that a one-standard deviation increase

in κ changes ∆CS by 6.6 times the change for a one-standard deviation increase in our

measure of the variation in h/p.

The source of the welfare gain from better information varies across users with their

changes in expenditure. Users who decrease expenditure when fully informed benefit from

avoiding regrettable purchases, while those who spend more when fully informed benefit

from being alerted to enjoyable games. This gives rise to “U-shaped” relationships between

changes in expenditure and CS in Figure 7. The left panel shows full information ∆CS against

expenditure, while the right panel shows prediction-informed ∆CS. The blue smoothed lines

show the changes in ∆CS arising only from the elimination of regrettable purchases. A

comparison of the black and blue lines shows that predictions mainly allow avoidance of

regret, while full information alerts users to games they otherwise would not have bought.

Sellers. While consumers unambiguously gain from full information, this comes at sellers’

expense. Full information reduces expenditure substantially – by 26 percent – overall, so

games sales fall. Figure 8 plots game sales quantities in the informed state (y-axis) against

status quo sales (x-axis), and full information reduces quantities sold for over 90 percent of

sample games. Sales fall for both popular and less popular sample games, so information

does not appear to change the concentration of sales. Overall, better information would

bring about a large transfer from sellers to buyers. Because the full information ∆CS is

more than twice as large as the reduction in expenditure, total surplus would increase under

full information. Of course, revenue effects would differ if prices were not held constant

across information environments; and patterns of demand changed by better pre-purchase

information could affect prices and revenue.
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7.4 The value of better prediction technology

The effects of personalized predictions calculated above depend on the predictive accuracy

of the chosen model. How do the welfare effects of our preferred prediction model – with

100-factor predictions – compare with alternatives? RMSE is a natural statistical way to

evaluate prediction approaches, but RMSE does not attach a dollar value to accuracy. We

explore this in Figure 9, which reports the changes in CS relative to the status quo arising

from a sequence of predictions. Predictions based on user averages deliver $21.4 less in

average CS than the status quo, while matrix factorization with 10 latent factors raises CS

by $203.7 above status quo levels. Predictions based on game averages raise CS by $240.5

above the status quo, and our 100 latent factor model using half of the data raises per capita

CS similarly, by $247.8. Matrix factorization with 50 latent factors, and using all of the

data, raises CS by $267.1 above the status quo, similar to the effect of the random forest

prediction. Finally, our preferred prediction approach raises CS by $292.5 relative to the

status quo, delivering 43 percent of the advantage of full information. Quantification of the

value of better prediction may be useful both for guiding social investment in prediction

technology and for understanding the costs of privacy.

8 Conclusion

Differentiated products can deliver substantial value to heterogeneous consumers, but only

if people know which products to purchase. Lack of post-purchase usage data has diverted

attention from the possible problems of regret and missed opportunities in differentiated

product choices. Using novel data on post-purchase usage of video games, we document

that status quo purchases deliver benefits that fall far short of what full information would

allow. Descriptive analysis shows that full information would allow consumers to purchase

nearly double the hours of playtime with status quo expenditures. Consumers following
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sophisticated, personalized predictions could achieve roughly 40 percent of this additional

usage time.

To measure the welfare effects, we develop an explicit measurement framework in two

parts. First, we develop a model of how information affects choice sets; and second, we create

a tractable model of consumer choices of product bundles. Using a Cobb Douglas calibration

and logit estimates, we draw two major conclusions. First, status quo consumption forgoes

a great deal of potential benefit. In our setting, full information could raise CS by about 130

percent of status quo expenditure while cutting expenditure in half. Second, sophisticated

prediction approaches, if heeded, allow recovery of about 40 percent of this untapped poten-

tial welfare benefit. We also document that more information – about either consumers or

products – can allow for predictions that yield more of the welfare benefit.

The problems we study might arise in a variety of contexts in which heterogeneous con-

sumers choose among differentiated products. Given suitable data, documenting the short-

comings of status quo consumption for other contexts is a fruitful area for further study.
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9 Tables and figures

Table 1: Summary statistics

by ownership status total

owned games non-owned all games

Price 15.10 15.28 15.22
(9.36) (9.78) (9.64)

True ln(minutes) 6.65 5.80 6.08
(1.75) (2.19) (2.09)

Predicted ln(minutes) 6.40 5.93 6.09
(1.12) (1.13) (1.15)

N 1,682,214 3,317,786 5,000,000

Note: Averages and standard deviations for expenditure and playtime for owned and unowned
games (columns 1 and 2), as well as for all games in the dataset (column 3). All summary
statistics are at the user-game level, and playtime measures are in natural logs of minutes. We
treat games played less than 23 minutes as unowned.
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Table 2: RMSE for different prediction models

RMSE
Approach Train Test Validation Details

Collab. Filtering 0.286 0.589 0.607 Our model, k = 100

0.314 0.596 0.611 k = 50

0.467 0.621 0.639 k = 10

0.524 0.622 0.647 k = 5

Game & user FEs 0.589 0.611 0.627

Game & user char’s 0.616 0.623 0.640 Random Forest (nonlin.+interactions)

Game & user char’s 0.625 0.630 0.645 All characteristics from below

Game FEs 0.629 0.634 0.648

Game char’s 0.629 0.634 0.648 6 attributes & 95 tag dummies

Game char’s 0.684 0.688 0.701 6 attributes

User char’s 0.703 0.708 0.720 7 attributes & 117 country dummies

User char’s 0.704 0.708 0.721 7 attributes

Global average 0.706 0.711 0.722

Note: Prediction error (RMSE) for training, test, and validation sets for a data subset of
39,130 users for whom user-level characteristics are available and 100 games with at least
partial game-level level data. The models are estimated with OLS unless stated otherwise.
Game and user attributes used in the models are described in detail in Appendix Section A,
and missing observations were imputed with means.

39



Table 3: Logit estimates

ln(H) Price

coef. std. err. coef. std. err.

Model 1:

baseline 1.266*** (0.104) –0.0020*** (0.0002)

Model 2:

2003 1.181* (0.617) –0.0017 (0.0011)

2004 1.309*** (0.403) –0.0021*** (0.0007)

2005 1.054* (0.581) –0.0016 (0.0010)

2006 1.433** (0.597) –0.0021** (0.0010)

2007 1.349** (0.542) –0.0021** (0.0009)

2008 1.334** (0.571) –0.0020** (0.0010)

2009 1.09*** (0.413) –0.0016** (0.0007)

2010 1.059*** (0.397) –0.0015** (0.0007)

2011 1.297*** (0.477) –0.0018** (0.0008)

2012 1.396*** (0.418) –0.0021*** (0.0007)

2013 1.528*** (0.405) –0.0025*** (0.0008)

2014 1.428*** (0.497) –0.0022** (0.0009)

2015 1.416*** (0.46) –0.0025** (0.0010)

2016 1.584*** (0.488) –0.0030*** (0.0011)

other 1.189*** (0.183) –0.0019*** (0.0004)

Model 3:

action 1.169*** (0.056) –0.0035*** (0.0001)

non-action 0.353*** (0.021) –0.0035*** (0.0001)

Note: Conditional logit estimates of game demand at the user level. For each individual i
we construct hours (Hi) and associated expenditure (Pi) for the owned bundle as well as non-
chosen alternative bundles as described in the text. The first row (Model 1) reports coefficients
for the baseline logit model, imposing the same utility of playtime across games. The middle
panel (Model 2) reports coefficients for models estimated separately for users with different
Steam join years. The bottom panel (Model 3) allows different coefficients for action and non-
action games, with a common expenditure coefficient. The models are estimated on all 50,000
users. We treat games played less than 23 minutes as not owned.
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Table 4: Welfare results – avoiding regret

hours # games
game

expenditure
∆CS

actual 2166.44 33.64 508.10

Full information
Logit 1867.94 10.95 153.18 261.15
Cobb Douglas 1917.95 11.91 169.00 245.34

Predictions
Logit 1611.95 17.69 240.61 73.71
Cobb Douglas 1711.17 19.48 272.62 53.90

Note: Simulations of the effects of full information, and sophisticated, personalized prediction,
on purchase and usage of, as well as consumer surplus from, games bought in the status quo.
These simulations quantify the value of avoiding regrettable status quo purchases. The first
row shows status quo values of hours, the number of games purchased, and game expenditure;
and the remaining rows show these measures, as well as the change in consumer surplus, from
various simulations. The next two rows show effects of full information using logit and Cobb
Douglas models, respectively. The last two rows show logit and Cobb Douglas-based measures
of the effects of heeding sophisticated predictions. All figures are per-person averages.
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Table 5: Welfare results – overall effects

hours # games
game

expenditure
∆CS

actual 2166.44 33.64 508.10

Full information
Logit 3461.80 14.39 201.52 682.40
Cobb Douglas 3472.12 15.95 224.70 626.43

Predictions
Logit 2360.99 24.35 312.53 292.49
Cobb Douglas 2433.40 27.28 360.47 242.86

Note: Simulations of the effects of full information, and sophisticated, personalized prediction,
on purchase and usage of, as well as consumer surplus from, all games in the dataset. These
simulations quantify the combined value of both avoiding regrettable status quo purchases and
finding otherwise-unknown games. The first row shows status quo values of hours, the number
of games purchased, and game expenditure; and the remaining rows show these measures, as
well as the change in consumer surplus, from various simulations. The middle two rows show
effects of full information using logit and Cobb Douglas models, respectively. The last two rows
show logit and Cobb Douglas-based measures of the effects of heeding sophisticated predictions.
All figures are per-person averages.
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Figure 1: Pre-purchase information, hours of playtime, and expenditure on games
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Notes: The figure depicts two budget constraints for hours of playtime (x-axis) vs all other

goods (y-axis). The outer budget constraint reflects full information about games’ playtime

and prices, while the inner curved budget constraint reflects imperfect but better-than-random

information on games’ playtime in relation to their prices. A fully informed consumer maximizes

utility by choosing point B, while the imperfectly informed consumer maximizes utility by

choosing A. The less accurate the information the consumer has, the less “bowed out” the

budget constraint. A consumer with no information about games would face the (dashed)

straight-line budget constraint.
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Figure 2: Potential for regret
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Notes: This figure plots the share of status quo playtime delivered by shares of status quo

expenditure on owned games. The solid line reflects full information: games are ordered by

realized playtime per dollar spent. It shows that users could on average attain 90 percent of

status quo playtime with just over 40 percent of status quo expenditure. The dashed line shows

the effects of heeding sophisticated predictions: A user heeding such predictions could achieve

90 percent of status quo playtime with roughly 75 percent of status quo expenditure. The two

vertical line illustrate these shares.
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Figure 3: Potential for welfare gains
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Panel B: expenditure at s.q. playtime
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Notes: The bars in Panel A show the average cumulative playtime, relative to the status quo, that status

quo expenditure could purchase under different information assumptions. For example, the leftmost bar

indicates that random selection of games would deliver 72.4 percent of status quo playtime, while full

information would allow the achievement of 94.2 percent more playtime. Panel B shows the results in terms

of expenditure needed to achieve status quo playtime. For example, users buying random games would need

to spend 33.4 percent more than status quo consumers for the same playtime, while fully informed users

could attain status quo playtime with 19 percent of status quo expenditure.
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Figure 4: Playtime at status quo expenditure for varying measurement assumptions

Panel A: Playtime

.5

1

1.5

2

pl
ay

tim
e 

re
l t

o 
st

at
us

 q
uo

0 .2 .4 .6 .8 1
% reduction in playtime for unowned games (vs baseline)

full info predictions baseline results

Panel B: Prices

.5

1

1.5

2

pl
ay

tim
e 

re
l t

o 
st

at
us

 q
uo

0 .2 .4 .6 .8 1
share of owned games obtained free of charge

full info predictions

Notes: This figure plots the playtime that can be achieved at status quo expenditure, relative to status quo

playtime, for varying assumptions about realized playtime for unowned games (panel A), and for varying

assumptions about prices paid for owned games (panel B). The solid line in Panel A shows the playtime

attainable with full information, relative to status quo playtime, for various degrees of shading of unowned

games’ playtime. For example, if unowned games delivered 40 percent less usage than owned games, then

full information would allow 45 percent, rather than 94 percent, more playtime. The dashed line does the

analogous calculation for prediction-informed choices. Panel B performs similar calculations based on the

shares of owned games assumed to be obtained free rather than at their average prices. For example, if 80

percent of games had been free, then full information would allow 50 percent, rather than 94 percent, more

playtime.
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Figure 5: Robustness to varying utility weights across games
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Notes: This figure shows the robustness of our descriptive results to varying utilities per hour of playtime

across games. Panel A plots the share of users owning a game against the natural log of the average

realized playtimes among those who own the game, for all 100 games in the sample. Panel B shows how the

additional playtime that full information (or, in the dashed line, sophisticated prediction) allows status quo

expenditure to achieve varies with the weight given to game-specific coefficients implied by the deviations in

Panel A. Using game-specific weights that fully explain cross-game-purchase propensities, full information

raises the playtime delivered by status quo expenditure by just over 60 percent, rather than the main 94

percent estimate. Full weighting reduces the effect of sophisticated prediction from 38 percent to about 25.
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Figure 6: Welfare effects with varying preferences by user experience
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Notes: The figure shows average changes in consumer surplus from full information (hollow

circles) and sophisticated predictions (solid circles), based on logit demand parameters that

are allowed to vary across user join year cohorts. That is, we calculate average ∆CS from full

information and prediction, separately for each user join year.
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Figure 7: Changes in consumer surplus and regret
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Notes: Panel A plots the smoothed relationship between individuals’ changes in expenditure (on the

x-axis) and their change in CS (on the y-axis) arising from full information. The blue lines show the

component arising from reduced regret, while the black line shows the total change in CS. Panel B repeats

the exercise for the effects of sophisticated predictions.
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Figure 8: Full information vs status quo quantities by game
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Notes: The figure plots status quo quantities sold (x-axis) and full-information counterfactual

quantities sold (y-axis) for all 100 games in the dataset. Points below the 45-degree line

indicate games selling fewer units under full information, and points above the line represent

games selling more under full information.
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Figure 9: Welfare effects for a progression of playtime predictions
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Notes: This figure presents mean ∆CS estimates, relative to the status quo. The estimates

show the increase in CS that would ensue from heeding personalized playtime predictions

arising from various kinds of prediction models. The rightmost point (“k = 100”) is the

baseline estimate of the average welfare effect of our preferred prediction approach, matrix

factorization with 100 latent factors.
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Appendix

A Prediction approach details

In Section 4.2 we use a number of prediction approaches. Here we provide additional details

about the models.

1. A common mean across users and games (an OLS regression model with just an inter-

cept).

2. A regression model with user characteristics (these include the number of Steam

“friends” a user has (ln(friends+1)), the user’s average game completion rate (“average

percentage of achievements earned per game”), the number of perfect games (“number

of games where this player has gotten every achievement”), the time since the user

joined the Steam platform, and whether the user’s name is characteristically male,

female, or of an unknown gender).24

3. A regression model with more user characteristics (the variables above plus indicators

for 117 user countries of origin).

4. A regression model with a small number of game attributes: the game’s price and its

square, indicators for whether the game includes the indie genre tag and the action

genre tag, recent and cumulative review categories (overwhelmingly positive, mostly

positive, mixed, very positive, unknown), and the average review score (out of 100) for

recent and cumulative reviews.

5. A regression model with a larger number game attributes. The full set of attributes

consists of the above plus indicators for 77 game tags, including features such as mul-

tiplayer, strategy, sports, classic, etc.

6. Game-level average playtimes, estimated as an OLS with game fixed effects.

7. A regression model with all user and game attributes above.

8. A random forest-based prediction using all of the variables, as well as their squares

and interactions (Breiman, 2001).

24See url’s of the form https://steamcommunity.com/id/[steamuserid].
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9. Game and user average playtimes, estimated as an OLS with both game and user fixed

effects.

10. Our collaborative filter approach, using 5, 10, 50, and 100 factors.
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