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1 Introduction
The electrification of passenger transportation through the widespread adoption of electric vehicles

(EVs) and the simultaneous transition to a cleaner electricity grid is a crucial strategy to mitigate

climate change. To achieve these goals, many countries have set ambitious targets for transportation

electrification and implemented policies to promote EV adoption. Historically, the high upfront

cost of EVs, primarily driven by expensive lithium-ion EV batteries, constituted a major barrier to

widespread adoption. Over the past decade, however, EV battery costs have decreased by almost

90% between 2010 and 2020 (Bloomberg NEF, 2023). Industry experts attributed this substantial

cost reduction largely to learning-by-doing (LBD), where production experience leads to lower unit

production costs through reductions in scrap rates and improvements in production efficiency.1 In

addition, factors such as technological progress and increasing production scale might also have

contributed to this dramatic decline in costs.

Despite the importance of battery costs in the diffusion of EV technology, there is a lack of

credible causal evidence on the size and nature of LBD and a limited understanding of how LBD

interacts with various government policies in the EV industry. This paper aims to address these

gaps by: a) quantifying LBD and its contribution to the observed reduction in EV battery costs over

time, and b) assessing how LBD interacts with the two prominent classes of government policies –

consumer subsidies and local content requirements – on domestic and global EV diffusion, market

share dynamics, and social welfare.

Quantifying LBD is crucial for understanding the broad impacts of these policies. First, con-

sumer subsidies have been widely adopted worldwide and amounted to $43 billion in 2022 (In-

ternational Energy Agency, 2023). For example, the U.S. Inflation Reduction Act (IRA) of 2022

offers subsidies of up to $7,500 per EV for eligible purchases, while China provided generous sub-

sidies to EV buyers between 2010 and 2022. LBD generates a positive “feedback loop”: subsidies

drive higher EV adoption, which increases experience in battery production. LBD associated with

the enhanced production experience reduces battery costs and EV prices. These cost reductions and

lower EV prices, in turn, further accelerate EV adoption, amplifying the direct effects of consumer

subsidies and other supportive policies.

Second, the preferential treatment of domestic battery producers has become part of a growing

spectrum of industrial policies in recent years. During 2016-2019, China implemented a whitelist

policy that restricted EV subsidies to vehicles using batteries from government-approved (domes-

1Theodore Wright, an aeronautical engineer, was among the first to attribute the observed decline in the labor require-
ment for airplane manufacturing to “learning by doing” (Wright, 1936). Wright’s Law has since been commonly used
to describe the reduction in unit production cost as a function of cumulative experience in manufacturing industries.
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tic) producers. Similarly, to qualify for consumer subsidies, the U.S. IRA mandates EV models

to source a certain fraction (in terms of value) of critical minerals and battery components from

firms in North America or free-trade agreement partner countries. The broad implications of local

content requirements hinge crucially on the size and scope of LBD. If LBD predominantly occurs

within firms (i.e., internal LBD) and concentrates among industry leaders, these policies could ac-

celerate LBD by consolidating production to a smaller set of firms. This would result in reduced EV

battery prices but may come at the cost of increased market concentration. Conversely, if policies

across countries erect regional barriers and redirect production toward domestic (and potentially

less efficient) producers, they might slow down global LBD and hinder the further penetration of

EVs. The overall impact on both domestic and global EV adoption is ambiguous and necessitates

empirical investigation.

Third, the battery supply network is global, with EV producers worldwide sourcing from battery

suppliers concentrated in three countries: China, Japan, and South Korea. The global nature of the

battery supply network, an increasingly common phenomenon in many industries, implies that

policies implemented in one country can create cross-border spillovers and generate repercussions

extending well beyond country borders. Consequently, a global analysis is essential to accurately

evaluate policy implications.

This paper takes advantage of a comprehensive database on the global EV and battery industries

that have three key components. The first dataset consists of annual EV sales from 2013 to 2020

in thirteen countries, which collectively accounted for over 95% of global EV sales. The data

report sales and vehicle and battery attributes by model by country for both battery EVs (BEVs)

and plug-in hybrid EVs (PHEVs). The second data set contains information on battery suppliers,

including plant location and, crucially, the list of EV models supplied. The third dataset contains

financial incentives for EV purchases in each country over time. In addition, we have also collected

socioeconomic variables and household surveys on vehicle ownership across countries.

Estimating the extent of LBD entails addressing two key challenges. First, we do not observe

systematic data on battery costs at the vehicle-model level, which are proprietary in nature. To

address this challenge, we develop a framework of price-setting behaviors of battery suppliers and

EV producers to infer upstream and downstream markups. This allows us to recover battery costs

based on observed vehicle prices and estimated demand elasticity. We investigate and estimate

a variety of supply-side models, including Nash-Bargaining (simultaneous vs. sequential) and

linear pricing, with and without incorporating battery suppliers’ forward-looking behavior. We

also validate our battery cost estimates using industry reports and trade data.

Second, firm experience (i.e., cumulative production) that underlies LBD is potentially endoge-
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nous and correlated with unobserved marginal cost shocks in battery production. For example,

efficient firms with favorable cost shocks are more likely to sell a large quantity and accumulate

more experience. We construct an IV for battery supplier experience by leveraging demand shifters.

Specifically, we exploit differences in suppliers’ exposure to downstream EV subsidies, which vary

over time and across vehicle models sold in different countries. The intuition is that suppliers

selling batteries to countries with more generous EV subsidies will accumulate experience faster

than those selling in markets with lower subsidies. If LBD effects are present, battery costs for

the former suppliers will decline more rapidly than for the latter group, ceteris paribus. Our IV

also exploits the shock of China’s whitelist policy, which generated exogenous variation in produc-

tion experience across battery suppliers. In addition, we control for a range of other confounding

factors, including industry-wide technological progress.

Our empirical analysis delivers five key findings. First, the learning rate is estimated to be

7.5% after controlling for technological advancements, experience in EV assembly, input costs,

and economies of scale. This implies that doubling battery production experience would reduce

unit production costs by 7.5%. Although this learning rate is on the lower end of estimates reported

for EV batteries and other technologies (e.g., Argote and Epple, 1990; Irwin and Klenow, 1994;

Ziegler and Trancik, 2021; Covert and Sweeney, 2022), LBD alone accounted for a sizable 35.5%

of the overall decline in battery costs from 2013 to 2020. Industry-wide technological progress was

responsible for an additional 39.9% of the cost reduction, with the remainder explained by LBD in

EV assembly, changes in battery chemistry, input cost fluctuations, and economies of scale. These

results are robust across all supply-side models we estimated and remain robust after controlling

for firm innovation.

Second, LBD greatly amplifies the sales impact of EV subsidies through positive feedback

loops. In the absence of LBD, subsidies across different countries are estimated to increase cu-

mulative global EV sales by 29.9% during the sample period, consistent with findings in existing

studies (Springel, 2019; Li et al., 2021) that focus on the short-term effects of EV purchase sub-

sidies. When both consumer subsidies and LBD were in effect, global EV sales surged by 170%

relative to the baseline with neither subsidies nor LBD. This combined effect is 60% greater than

the sum of the effects from subsidies and LBD individually, highlighting their complementarity. As

we discuss below, the welfare benefits of subsidies are also dramatically enhanced by LBD. These

findings underscore the critical importance of accounting for LBD when evaluating the efficacy and

cost-effectiveness of government policies designed to promote EV adoption. Ignoring LBD would

lead to a substantial underestimation of the long-term benefits of such policies.

Third, consumer subsidies in one country generate global spillovers through LBD in battery
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production, but the magnitude of spillovers hinges critically on the nature of the supply chain

network and trade patterns. For example, the estimated $13.10 billion in U.S. subsidies generated

$16.47 billion in global welfare gains, measured as the sum of consumer surplus and firm profit on

a global scale, net of subsidy expenditure. The U.S. (and Canada) captured 49% of these welfare

gains, as the interaction between subsidies and LBD significantly reduced input costs (batteries)

for domestic EV producers and lowered vehicle prices for domestic consumers. U.S. subsidies also

benefited battery suppliers in Japan and South Korea, which captured 28% of the global welfare

gains. Europe also benefited significantly from U.S. subsidies; in contrast, China captured only 3%

of the global gains. This modest share reflects China’s limited trade in EVs and EV batteries with

foreign countries during our sample period.

In a similar manner, European governments invested $16.44 billion in EV purchase subsidies,

resulting in $11.60 billion in global welfare gains, of which only 26% were captured by the EU.

This relatively low capture rate is driven by Europe’s higher import share of EVs and the widespread

use of uniform subsidies, the latter of which are less effective in generating consumer surplus

compared to the battery capacity-based subsidies in the U.S. (Barwick, Kwon, and Li, 2024). In

contrast, China captured 92.6% of the global welfare gains from its subsidies due to China’s limited

EV imports and the fact that the majority of its EV producers source batteries domestically.

Fourth, upstream LBD creates significant externalities through the supply chain, with upstream

firms capturing only a small fraction of the associated economic benefits due to the oligopolistic

nature of the supply chain. Our simulations indicate that CATL, the leading battery supplier in

China, captures 22.0% of the total surplus generated by its increased LBD, while Panasonic, the

largest battery supplier in Japan, captures 21.7%. These findings suggest that the privately cho-

sen experience level (and the degree of LBD) is unlikely to be socially optimal, and government

subsidies have the potential to address the under-provision of LBD.

Lastly, China’s whitelist policy benefited domestic battery suppliers at a cost to other countries.

The EU, Japan and South Korea, and the U.S. and Canada collectively incurred $5.88 billion in

welfare losses. This was driven by a shift in global battery production from more efficient Japanese

and South Korean battery suppliers to (at the time) higher-cost Chinese suppliers. Within China,

while battery suppliers reaped gains, consumers bore the burden of higher EV prices, and EV firms

initially suffered but eventually gained from faster domestic LBD as the whitelist policy facilitated

sales concentration in top domestic suppliers. China’s whitelist was introduced at a strategically

favorable time when the learning curve for battery production was steep. Had the whitelist policy

been delayed to 2021-2024, China would have faced net losses, as consumer welfare losses would

have outweighed the gains to battery suppliers. The negative impact on other countries would have
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been smaller. These results highlight the important trade-offs inherent in protective policies that

distort market forces. We believe that our analyses also offer valuable insights into the implications

of the U.S. IRA and local content requirements considered in other countries.

Our study is related to several strands of literature. First, it adds to the growing economics lit-

erature on the adoption of EVs (Li et al., 2017; Li, 2023; Springel, 2019; Muehlegger and Rapson,

2022; Remmy, 2022; Barwick, Kwon, and Li, 2024). While these studies focus on understanding

demand responses to consumer subsidies and the role of charging infrastructure, they do not ac-

count for LBD in the EV battery industry or the resulting feedback loop between reduced battery

production costs and increased EV demand. Consequently, these studies may underestimate the

impacts and cost-effectiveness of consumer subsidies and other supportive policies on EV adop-

tion. Our study is the first in the literature to quantify LBD in the global EV battery industry and

take it into account when assessing the broad impacts of EV policies. The results highlight that

ignoring even moderate levels of LBD would significantly underestimate the impact of supportive

government policies on EV adoption.

Second, this study contributes to the empirical literature on LBD that has been documented in

a variety of industries (Argote and Epple, 1990; Head, 1994; Irwin and Klenow, 1994; Benkard,

2000; Thompson, 2001; Thornton and Thompson, 2001; Benkard, 2004; Ohashi, 2005; Covert and

Sweeney, 2022). Except for Covert and Sweeney (2022), all the studies cited above relied on data

on input requirements or costs associated with producing a product, but these data are often hard to

obtain due to their proprietary nature. Our study develops a new methodology for estimating LBD

without data on inputs and production costs. It exploits variations in prices and quantities of the

final products (i.e., EVs) and information on the vertical links between final good producers and

intermediate input suppliers. Our methodology could be applied to estimate LBD in the production

of intermediate inputs in other contexts.

Third, this paper contributes to the emerging literature that highlights the significant role of

recent industrial and trade policies in the development and diffusion of new energy technologies

such as EVs and solar panels (Allcott et al., 2024; Bollinger et al., 2024; Banares-Sanchez et al.,

2024; Gerarden, 2023; Head et al., 2024; Wang and Xing, 2024). Our work is also related to

Goldberg et al. (2024), which examines the role of industrial policies in the presence of LBD in

the global semiconductor industry. We add to this literature by quantifying the size and scope of

LBD in the upstream sector and evaluating its interactions with prominent industrial policies in the

downstream sector. More importantly, our findings underscore that learning in the upstream sector

not only provides a rationale for supportive policies, such as subsidies in the downstream sector,

but also amplifies the impact of these policies on technology adoption and social welfare.
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Lastly, this paper is related to studies that analyze vertical relationships between upstream (in-

put) suppliers and downstream producers (Horn and Wolinsky, 1988; Chipty and Snyder, 1999;

Crawford and Yurukoglu, 2012; Grennan, 2013; Gowrisankaran, Nevo, and Town, 2015; Ho and

Lee, 2017; Fan and Yang, 2020). Our analysis builds on the methodology in these papers and

develops a framework that leverages the vertical relationships to study LBD among the upstream

suppliers. We explore and estimate a variety of vertical models and verify the robustness of our

LBD estimate across different modeling assumptions. We also extend the existing vertical litera-

ture by considering firm forward-looking behavior in a dynamic bargaining model.

2 Data and Descriptive Evidence

2.1 Battery Primer and Sources of LBD
We provide a primer on EV batteries and discuss how LBD arises in the battery production process.

BEVs and PHEVs use lithium-ion batteries, which feature lithium as one of the key minerals in

cathodes and graphite as the primary material in anodes. The chemical composition of the cathode

is a major determinant of battery performance. There are three main types of lithium-ion batteries

based on cathode chemistries: NMC (Nickel Manganese Cobalt), NCA (Nickel Cobalt Aluminum),

and LFP (Lithium Iron Phosphate).2

Battery packs used in EVs consist of multiple interconnected modules, each made up of tens

to hundreds of interconnected battery cells, which account for 70-80% of the battery pack’s cost

(Bloomberg NEF, 2023). Battery cell production has at least three key features that could contribute

to LBD. First, the production process is highly complex and governed by hundreds of tuning pa-

rameters. The interconnected system needs to be constantly fine-tuned and optimized to achieve

efficiency. Second, the production process is very sensitive to material purity and requires stringent

clean-room standards. Tiny amounts of impurities can cause high scrap and low yield rates.3 Third,

the industry has been undergoing continuous technological advances in new chemistry composi-

tion and production techniques, which have important implications for production costs. All these

features suggest that production know-how by managers and engineers gained through experience

2NMC batteries, favored by American and European automakers, offer higher energy density but are more expensive
due to costly manganese and cobalt. NCA batteries are mainly used by Tesla and sourced from Panasonic. Chinese
automakers, like BYD, prefer LFP batteries for their lower cost and thermal stability. In 2020, NMC, NCA, and LFP
batteries held 71%, 21%, and 6% of the global market share, respectively (International Energy Agency, 2021). By
2023, LFP’s share surged to 40% globally due to its cost advantage, while NCA’s share fell to 8%.

3Even industry leaders face challenges with high scrap rates. Tesla and Panasonic’s Nevada Gigafactory, launched
in 2017, initially had a scrap rate of 80–90%, which took years to reduce to 15%. Source: https://www.
autoweek.com/news/a46628833/early-production-battery-plant-scrap-rates/#.
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could help improve production efficiency and reduce scrap rates, both leading to lower costs.4

The empirical literature on LBD has examined a variety of industries. In labor-intensive in-

dustries such as aircraft manufacturing and shipbuilding, learning is shown to occur as production

workers become more efficient at performing tasks through repetition (Benkard, 2000; Thompson,

2001). In contrast, similar to semiconductors (Irwin and Klenow, 1994), battery production is more

capital-intensive, where a key channel for learning involves the fine-tuning of production processes

and techniques by engineers and managers.

2.2 Data Description
The empirical analysis relies on several rich data sets on global EV and EV battery industries.

EV Sales and Attributes The first dataset, sourced from EV Volumes and IHS Markit, contains

annual EV sales and vehicle prices and attributes by model for each of the 13 countries that reported

the largest EV sales from 2013 to 2020. These countries collectively accounted for 95% of global

EV sales during the sample period.5 Appendix Figure A1 shows the trend in EV sales by coun-

try/region in Panel (a) and the market share of EVs in the new vehicle market as well as the target

for zero-emission-vehicles (ZEVs, which are primarily EVs) by country-year in Panel (b). Since

the introduction of mass-market EV models in 2010, worldwide passenger EV sales have grown to

14.2 million units or 18.5% of the passenger vehicle market in 2023. There is high variation in EV

penetration across countries. China became the largest EV market in 2015 and accounted for 59%

of global new EV sales in 2023. In terms of EV’s market share in the new vehicle market, Norway

has by far the highest share of 90.4% in 2023, while it was 34% in China, 21.4% in Europe, and

9.4% in the US, respectively.

Battery Suppliers The second dataset from EV Volumes contains information on battery char-

acteristics for each EV model (e.g., battery capacity and battery chemistry) and, crucially, the

identity of battery suppliers. This data set allows us to establish vertical relationships between

upstream battery suppliers and downstream EV producers. We construct the experience variable

(i.e., cumulative past production) for each battery supplier in each year based on the vertical supply

relationships and data on EV sales. We also collected data on the production plants owned by each

battery supplier, including production capacity, start-up year, and plant location (see Appendix A).

4A 2018 report by Boston Consulting Group indicates that the most common challenges in battery production have
to do with yield rate/scrap and efficiency/process time. Engineers need to rely on experience, rather than physical
correlations, to adjust parameters in order to optimize the production process (Küpper et al., 2018).

5The 13 countries are Austria, Canada, China, France, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzer-
land, the UK, and the US.
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Panels (a) and (b) of Figure A2 present the supply network in 2013 and 2020, respectively.

The left side of the figure displays the top six battery producers, while the right side reports the

eight largest EV producers. The thickness of the lines represents the battery sales volume in units.

Both battery production and EV manufacturing are concentrated, illustrating a bilateral oligopoly

market structure. In addition, EV producers often source from multiple battery suppliers, and

battery suppliers sell to multiple EV producers. The only exceptions are BYD and AESC, which

are vertically integrated firms in our sample period.6 However, for any given EV model sold in a

particular country, once a battery supplier has been chosen, it is rare for the EV producer to switch

to a different battery supplier: only 4.3% of EV models switch battery suppliers. These features

inform our use of a bargaining model to characterize the vertical relationship.

EV Incentives The third data set contains financial incentives for EV buyers at the country, year,

and model levels as discussed in Barwick et al. (2023). There are a variety of financial incentives,

including direct consumer subsidies, acquisition tax credits, and ownership tax credits. For consis-

tency across countries, we focus on EV incentives offered by the central government.7 Subsidies

for EV purchases vary across countries and over time. In addition, there is considerable cross-

model variation within a given country and year due to the fact that the subsidy amount is often

based on vehicle attributes. For example, subsidies in the U.S. are based on an EV’s battery ca-

pacity, with a minimum capacity of four kWh and a maximum subsidy of $7500.8 EV subsidies in

China are based on vehicle driving range with a notched design (Barwick, Kwon, and Li, 2024).

These wedges in EV subsidies serve as a crucial source of exogenous variation in the experience

of different battery suppliers: those supplying to EV models eligible for more generous subsidies

would sell more units and gain experience faster.

Figure A3 reports the average EV subsidy (from the central government) by country during

2013-2020 in Panel (a) and the subsidy schedule over time in China in Panel (b). Norway has

the most generous subsidies, consistent with its high penetration of EVs. China’s attribute-based

subsidy from the central government was reduced over time and eventually phased out in 2022.

Auxiliary Data There are several pieces of auxiliary data. First, we collect socioeconomic vari-

ables and annual gasoline prices by country from the World Bank and annual income statistics

6BYD produced batteries for its own EVs and AESC only produced batteries for the Renault-Nissan-Mitsubishi al-
liance. These vertically integrated firms accounted for 14.5% of sales in our sample.

7EV subsidies were not offered at the central level in Canada and Switzerland. For Canada, we construct a population-
weighted average based on subsidies offered by British Columbia, Quebec, and Ontario. For Switzerland, we construct
a population-weighted average based on tax credits offered by the cantons of Zurich, Lausanne, Basel, Bern, and
Geneva.

8The subsidy amount was $2500+$415*(capacity-4) but phased out following a pre-set schedule when an EV model
hit a cap of 200,000 (Lohawala, 2023). The subsidy policy was extended by the U.S. Inflation Reduction Act in 2023.
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by country from the World Inequality Database (https://wid.world/). Second, to facilitate

demand estimation, we leverage household surveys on new vehicle buyers for China during 2016-

2020 in China and for the U.S. in 2018 (Liang and Xiao, 2024; Leard, Linn, and Springel, 2024).

Third, we obtain export data of Lithium-ion batteries from the UN Comtrade database, annual im-

port prices of key minerals for battery production by country, including lithium carbonates, lithium

oxides, manganese oxides, cobalt oxides, and nickel oxides from the UN Comtrade database, as

well as mineral prices from the annual Mineral Commodity Summaries published by the U.S. Ge-

ological Survey. Finally, to capture firm-level innovation, we compile information on the number

of patents filed by battery suppliers during 2008-2020 from the European Patent Office (EPO)’s

PATSTAT database (see Barwick et al. (2024) for detailed data construction procedure).

2.3 Descriptive Evidence
Table 1 presents summary statistics for key variables used in the analysis. During the sample period,

the average price of a BEV model was $45,000, supported by an average subsidy of $4,700 per unit.

PHEV models had a higher average price of $72,000 and a lower average subsidy of $1,900. The

average driving range of BEVs increased significantly from 105 km in 2013 to 206 km in 2020,

with an overall average of 171 km, alongside an increase in average battery capacity from 30 kWh

to 50 kWh (with an average of 42 kWh). In contrast, PHEVs had a much shorter average driving

range of 31 km and an average battery capacity of 11.5 kWh, showing only modest improvements

over the same period.

The estimation of LBD is fundamentally informed by the relationship between production ex-

perience and battery costs. In the absence of detailed micro-level transaction data between battery

suppliers and EV firms (which are commercial secrets), we examine the correlation between vehi-

cle prices – of which battery costs constitute a significant share – and the production experience of

battery suppliers in Figure 1. We first use vehicle prices to construct a proxy for battery costs by

partialling out vehicle attributes such as horsepower, size, and the PHEV dummy, along with a rich

set of country, brand, and year fixed effects. Panel (a) illustrates changes in these price residuals

divided by battery capacity over time. The blue dots represent the sales-weighted average annual

price residuals per kWh, a proxy for unit battery costs. These residuals per kWh exhibit a substan-

tial decline from 2014 to 2020 (after controlling for year fixed effects in vehicle prices), closely

matching the trend in battery costs reported by Bloomberg NEF (2023), shown as red diamonds.9

Panel (b) of Figure 1 presents a binned scatter plot of price residuals, where each observation

9The Bloomberg costs are based on 303 survey data points on battery prices for passenger cars, buses, commercial
vehicles, and stationary storage. While the overall trend from Bloomberg NEF (2023) is informative, our analysis
focuses on lithium-ion batteries for passenger EVs.
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corresponds to a country-year-model. The figure reveals a strong and precisely estimated negative

relationship between price residuals and supplier experience, indicating that EV models supplied

by more experienced battery suppliers tend to have lower prices. Moreover, the figure highlights

that production experience increases with cumulative subsidies received by the battery supplier (as

reflected by the size of the dots), motivating a key IV strategy to identify LBD.

From January 2016 to June 2019, China implemented a whitelist policy requiring EV models to

use batteries from government-approved “whitelist” producers – all of which were Chinese firms –

to qualify for subsidies.10 Figure A4 provides suggestive evidence of this policy’s impacts. Panel

(a) of Figure A4 depicts the share of EV models sourcing batteries from Chinese suppliers, distin-

guishing between those sold in China (solid red line, left y-axis) and outside China (dashed blue

line, right y-axis). As intended by the policy, the share of EV models sold in China that sourced

batteries from Chinese suppliers rose from below 70% in 2016 to nearly 90% in 2019, then declined

after the policy was scrapped.

During the data period of 2013-2020, six major battery suppliers dominated the market: two

Chinese firms (BYD and CATL), two Japanese firms (AESC and Panasonic), and two South Korean

firms (LG and Samsung). Panel (b) shows that, during the whitelist period, the sales of BYD and

CATL – China’s largest battery suppliers on the whitelist – grew significantly faster than those

of the top four non-Chinese suppliers. As BYD and CATL accumulated production experience,

EV models using their batteries experienced a more rapid decline in residualized vehicle prices

compared to EV models using batteries from non-Chinese firms, as depicted in Panel (c). The

impact of this growth in experience among Chinese suppliers is also evident in Panel (a): for EV

models sold outside China, the share of models that sourced batteries from Chinese firms was near

zero in 2016, increased to 4% by 2019, and rose sharply to 11% by 2020. This significant increase

reflects the rapid cost reductions achieved by Chinese battery producers, consistent with the rapid

battery export price reduction as shown in the UN Comtrade data in Panel (d).

While the descriptive evidence presented above aligns with learning-by-doing (LBD) as a driv-

ing force behind cost reductions, other confounding factors, such as technological advancements,

changes in battery chemistry and input costs, and experience in EV assembly, may also play a role.

The next section introduces a structural model designed to quantify the extent and scope of LBD

while accounting for these potential confounding factors.

10This policy raised significant concerns about its compliance with WTO rules, particularly under the Agreement on
Subsidies and Countervailing Measures (SCM Agreement). Although no formal WTO case was filed, China removed
the policy in 2019 under widespread criticism from foreign firms and governments (USTR, 2019).
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3 Model
We develop a structural model that allows us to infer battery costs based on observed EV prices,

sales, and the time-varying vertical relationships between EV producers and battery suppliers. The

model features EV purchase decisions by heterogeneous consumers and price-setting behaviors of

EV producers and battery suppliers. We use the following notation throughout: 1) EV producer v,

producing a set of vehicles denoted by Ωv; 2) battery supplier b, supplying batteries for a set of

vehicles Ωb; 3) consumer i, considering whether to buy vehicle model j in country c at time (year)

t; 4) vehicle retail price p jct before subsidies, unit sales q jct , consumer subsidy φ jct , and battery

price τ jct . Bold terms denote vectors (or matrices).

To set the stage for the structural model, we write the retail price of an EV as:

p jct = mcb
jct︸ ︷︷ ︸

Battery cost

+ mcv
jct︸ ︷︷ ︸

Non-battery EV cost

+ mkb
jct︸ ︷︷ ︸

Battery markup

+ mkv
jct︸ ︷︷ ︸

EV markup

, (1)

where mcb
jct is the cost of battery and mcv

jct denotes the non-battery portion of the EV’s production

cost. Battery supplier b’s markup is denoted by mkb
jct and EV producer v’s markup is mkv

jct . The

goal of the empirical model is to first quantify the upstream and downstream markups by charac-

terizing the price-setting behaviors of battery suppliers and EV producers. This then allows us to

recover the cost of producing batteries and EVs and estimate LBD based on cost estimates. We

outline the key model elements below and discuss the estimation strategy in Section 4.

3.1 EV Demand and Downstream Markups
Consumer Demand EV demand is characterized by a random coefficients discrete choice model

following Berry, Levinsohn, and Pakes (1995). In each period t, consumer i in county c chooses

among the available EV models, as well as an outside option. Consumer i’s utility from buying

vehicle j is:
Ui jct = αi(p jct −φ jct)+X jctβi +ξ jct + εi jct . (2)

Consumers pay the post-subsidy price, which is the retail price p jct net of the consumer subsidy

φ jct offered by the central government. The vector X jct includes observed vehicle attributes, such

as vehicle size, driving range, horsepower, and a PHEV dummy, as well as a rich set of fixed effects,

including market (country-by-year), automaker (e.g., GM or Hyundai), and body type (i.e., sedan,

SUV, and van) fixed effects. We allow preference parameters on price and other vehicle attributes,

αi and βββ i, to vary across consumers. ξ jct represents unobserved product characteristics and demand

shocks, which renders the price variable endogenous. εi jct denotes i.i.d. preference shocks with the

Type-I Extreme Value distribution.
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Downstream Markups The downstream markup mkv
jct is determined through Bertrand-Nash

competition and is recovered after estimating demand following the standard practice in the lit-

erature. Specifically, EV producer v (or Original Equipment Manufacturer, OEM) chooses EV

prices to maximize variable profits from selling different vehicles in a country-year (suppressing

country and time indices):11

π
v(p) = ∑

j∈Ωv

(p j − τ j −mcv
j)q j(p,φ),

where τ j is the battery price for vehicle j (paid by firm v to its supplier), mcv
j is firm v’s marginal

cost of producing non-battery components, and p j − τ j −mcv
j is the per-unit markup. The vector

p denotes prices for all EVs in the market. The first order condition (FOC) with respect to vehicle

price p j is given by:
q j + ∑

k∈Ωv

(pk − τk −mcv
k)︸ ︷︷ ︸

Vehicle markup, mkv
k

∂qk

∂ p j
= 0. (3)

Note that ∂qk
∂ p j

is known after demand estimation. Inverting the system of FOCs in Equation (3)

yields a vector of markups for all EV producers mkmkmkv = {mkv
j} j=1,...,|Ωv|;v=1,...,V (where |Ωv| is the

number of products by firm v and V is the total number of EV producers).

3.2 Upstream Markups
We explore a variety of supply-side models to recover upstream markups, including two variations

of the Nash-in-Nash bargaining model (Horn and Wolinsky, 1988), the linear pricing model, and

a dynamic model that extends the static framework to incorporate forward-looking behaviors.12

Our preferred approach is the bargaining model because it is well-suited to the market structure

of the EV supply chain with a small number of downstream firms and upstream suppliers. This

approach is more flexible than the linear pricing model and uses data variation to infer which party

has greater bargaining power. We discuss these models in turn.

Nash-in-Nash Bargaining Our first approach uses a bargaining model, where EV producers and

battery suppliers engage in bilateral negotiations to determine battery prices (with the exception

of BYD and AESC, which were vertically integrated with downstream EV producers). Each EV

producer-battery supplier pair {v,b} chooses battery price for vehicle j ∈ Ωv ∩Ωb (i.e., a vehicle

that is produced by v and sources from supplier b) to maximize the Nash product of their net gains

11Joint ventures (JVs) are common in China. We assume JVs are separate OEMs from local partners that produce
their own indigenous brands. For example, SAIC-GM, the joint venture between Shanghai Automotive Industry
Corporation (SAIC) and GM, is recorded as an OEM in our analysis and sells Chevrolet, Buick, and Cadillac brands.
SAIC, which owns indigenous brands such as Roewe and Maxus, is considered a separate profit maximizer.

12We restrict attention to models of short-term contracts with linear prices, consistent with publicly released informa-
tion on a few battery supply agreements (see Appendix A.4).
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from trade, taking as given the battery prices chosen for other vehicles:

NPj(τ j,τ− j) = (πv − dv)︸ ︷︷ ︸
v’ gains from trade

(1−λ b) (πb − db)︸ ︷︷ ︸
b’ gains from trade

λ b
,

where λ b ∈ (0,1) is the bargaining weight of battery supplier b.13 We use πv and πb to denote the

variable profit of EV producer v and battery supplier b, respectively, and dv and db to denote the

disagreement payoff if the negotiation fails. The battery supplier’s profit is similar to that for the

EV producer: πb(τ) = ∑ j∈Ωb
(τ j −mcb

j)q j(p,φ), where mcb
j denotes supplier b’s cost of producing

the battery used in vehicle j, and τ j −mcb
j = mkb

j is battery supplier b’s per-unit markup.

We assume that if v and b disagree over τ j, then vehicle j is not produced, and consumers shift

to other EV models or the outside good.14 The FOC for battery price τ j is:

(1−λ
b)(πb −db)

∂πv

∂τ j
+λ

b(πv −dv)
∂πb

∂τ j
= 0. (4)

Simultaneous Contracting and Pricing In a vertical setting like ours with upstream suppliers

and downstream firms, there are two commonly used timing assumptions for modeling negotia-

tions: simultaneous contracting and pricing, and sequential contracting and pricing. In the former

case (Draganska, Klapper, and Villas-Boas, 2010; Ho and Lee, 2017; Crawford et al., 2018; Sheu

and Taragin, 2021), battery price negotiation and vehicle price setting happen simultaneously. Con-

sequently, EV prices remain unchanged in the event of a bargaining breakdown. This is likely a

reasonable approximation in our setting, as EV prices are typically adjusted annually rather than

immediately following changes in battery prices. This timing assumption is also computationally

and conceptually much simpler than the sequential assumption and has been adopted by many

recent studies.

With this timing assumption, EV producer v’s disagreement payoff is:

dv,Simult(p) = ∑
k∈Ωv,k ̸= j

(pk − τk −mcv
k)q̃k(p,φ),

where q̃k(p,φ) is the sales of vehicle k in the scenario where vehicle j is not produced due to

a disagreement. The formulation of battery supplier b’s disagreement payoff is analogous. By

combining the FOCs defined in Equations (3) and (4) following Draganska, Klapper, and Villas-

Boas (2010), we can express the vector of battery suppliers’ markups as a function of vehicle

13We examine the boundary cases below, where λ b = 0 implies EV producers make take-it-or-leave-it (TIOLI) offers
to battery suppliers. When λ b = 1, battery suppliers make TIOLI offers to EV producers, which (with sequential
contracting and pricing, see below) is equivalent to linear pricing.

14On average, a v and b pair only bargains over 2.3 distinct EV models within a market. Our results are likely similar
if we assume instead the entire portfolio that the pair is bargaining over is withdrawn when v and b disagree over j.
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producers’ markups (see Appendix B.1 for the derivation):

mkmkmkb︸︷︷︸
Battery markup

=
λ b

1−λ b [TTT
b ⊗SSS]−1[TTT v ⊗SSS] mkmkmkv︸︷︷︸

Vehicle markup

≡ λ b

1−λ b mk
bmk
b

mk
b︸︷︷︸

Battery markup when λ b = 0.5

, (5)

where ⊗ denotes element-by-element multiplication, and Tv and Tb are ownership matrices for EV

producers and battery suppliers, respectively. Matrix SSS denotes how market shares of all products

change upon disagreement: the { j,k} term of SSS captures changes in sales of product k when v and

b disagree over the battery price for vehicle j. Ownership matrices are observed from data, and SSS

can be derived from the demand model after estimating consumer preferences. The vector of EV

producers’ markups, mkmkmkv, is backed out from Equation (3). Intuitively, upstream markups depend

on both the bargaining parameter and responsiveness of the battery supplier’s sales to changes in

the battery price. For example, if a small increase in the battery price leads to a large reduction in

battery sales, then equilibrium upstream markups will tend to be modest. Equation (5) suggests that

battery markups can be recovered up to the bargaining parameter λ b after the demand estimation.

Sequential Contracting and Pricing The second bargaining model we consider assumes sequen-

tial contracting and pricing (Crawford and Yurukoglu, 2012), where negotiations over battery prices

occur first, followed by price competition among EV producers. This model allows vehicle pro-

ducers to change EV prices after a bargaining breakdown, which differs from the simultaneous

bargaining model. For example, if Tesla and Panasonic fail to reach an agreement, prices of other

vehicles would likely increase given the reduced competition in the market.

EV producer v’s disagreement payoff is:

dv,Sequential(p) = ∑
k∈Ωv,k ̸= j

(p̃k − τk −mcv
k)q̃k(p̃,φ),

where p̃k and p̃ are the new equilibrium prices under negotiation disagreement (when vehicle j

would not be produced). The disagreement payoff for battery supplier b is analogously defined.

The components of the FOC Equation (4) are more complex in this model for two reasons. First,

calculating the disagreement payoff is more challenging and requires solving for new equilibrium

prices for all downstream products for each bargaining pair that may disagree. Second, the deriva-

tives of both firms’ profits with respect to battery prices are more complex because both parties

internalize the impact of changing battery prices on EV prices and sales. We present the upstream

markups in vector form in Equation (A2), with the derivation provided in Appendix Section B.2.

Linear Pricing Another common approach to recovering upstream markups is to assume linear

pricing, also called double-marginalization or a “take-or-leave-it offer” game. Battery suppliers
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post battery prices, and EV producers purchase batteries at these posted prices and set EV prices

that include a markup over production costs. In our setting, linear pricing is a special case of

sequential contracting and pricing where battery suppliers have full bargaining power λ b = 1. The

upstream markup is:
mkmkmkb =−(Tb ⊗∆∆∆

q
τ)

−1qqq, (6)

where Tb is the ownership matrix, ⊗ denotes element-by-element multiplication, ∆∆∆
q
τ is a matrix

that collects the derivatives of vehicle sales q with respect to battery prices τ , and qqq is a vector of

all vehicles’ sales (see Appendix B.3).

Dynamic Bargaining The presence of LBD can induce forward-looking behavior, where a bat-

tery supplier reduces prices in the current period to accelerate experience accumulation and lower

cost more rapidly in future periods (Irwin and Klenow, 1994; Benkard, 2004); such incentives may

be especially strong during the early stages of learning. The models discussed above assume static

price-setting (and use time and battery supplier fixed effects to proxy the dynamic incentives). We

now extend the static framework to incorporate dynamic considerations (see Appendix B.4).

The empirical literature on dynamic bargaining models is in its early stages (Lee and Fong,

2013; Deng et al., 2024; Dorn, 2024), partly due to the complexities of formulating disagreement

payoffs and the impact of bargaining outcomes on future profits. To make progress, we make two

assumptions: a) battery suppliers and EV producers negotiate over battery prices while EV pro-

ducers set downstream markups; and b) they expect future markups (and future supply network) to

remain at current levels.15 Our approach captures the essence of LBD dynamic considerations in

which upstream suppliers use low prices to stimulate downstream demand, while abstracting from

modeling complications that would make the problem intractable (including downstream firms’ in-

centives to manipulate prices). With dynamics, the gains from trade in the Nash product incorporate

future payoffs:
NPj(τ j,τ− j) = (πv − dv)︸ ︷︷ ︸

v’ gains from trade

(1−λ b) (V b − Db)︸ ︷︷ ︸
b’ gains from trade

λ b
,

where battery suppliers are forward-looking due to the LBD incentives, V b represents the sum of

today’s profit and discounted future profits under agreement, and Db captures the sum of today’s

profit and discounted future profits in the event that today’s negotiation breaks down (we assume

disagreement lasts for one period, following which the parties return to the negotiating table). With

forward-looking battery suppliers, the upstream markups are defined by Equation (A8) in Appendix

B.4.

15The assumption that EV producers choose markups implies full pass-through: reductions in battery prices are 100%
reflected in EV prices, achieving the largest demand expansion associated with battery price cuts. This assumption
maximizes battery suppliers’ dynamic incentives.
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4 Estimation
Estimation closely follows Section 3 and proceeds in two steps. The first step estimates the demand

model and recovers consumer preference parameters. The second step estimates the supply side and

recovers the parameters that govern LBD as well as the bargaining weight.

4.1 Demand Estimation
Price Coefficient The price coefficient αi in Equation (2) is specified as

αi = α1 +
αc(i)

yi
+σpν

p
i ,

where price sensitivity is inversely related to individuals’ income yi. We divide countries into four

groups based on income per capita and allow the coefficient on income αc(i) to vary by country

groups.16 If αc(i) is positive, low-income households are more price sensitive than high-income

households. The dispersion of price sensitivity across consumers is captured by σp and individual

unobserved heterogeneous preference ν
p
i is assumed to follow the standard log-normal distribution.

We fit the country-year income distribution using a log-normal distribution with parameters µct and

σct , and estimate these parameters using the average household income, the top 10% income share,

and the bottom 50% income share for each country-year from the World Inequality Database.

Aggregate Moments To address price endogeneity due to unobserved product attributes ξ jct , we

use two sets of instruments. The first set includes the interaction terms of battery capacity with

a dummy variable for each of the top six battery suppliers. They capture the fact that batteries

with higher capacity are more costly to produce, and these costs vary across suppliers (Li et al.,

2021). The second set is the absolute difference between own attributes and average attributes of

rival vehicles (within the same car type and market-year) in terms of vehicle size, horsepower, and

driving range, following Gandhi and Houde (2019). In total, we use nine excluded instruments Z jct

in addition to the exogenous attributes X jct to construct the aggregate (macro) moment conditions:

E[ξ jct |X jct ,Z jct ] = 0.

Micro-Moments We construct two types of micro-moments to facilitate the identification of pref-

erence parameters, particularly the price coefficients. The first type of micro-moments matches the

observed average income of households purchasing a specific EV model with the income predicted

by the demand model. The household surveys in China and the U.S. provide us with the average

16The first group includes only China, which has the lowest income level. France, Germany, Japan, and Spain are in
the second group. The third group has Austria, Netherlands, Sweden, and the UK. The highest income group consists
of Canada, Norway, Switzerland, and the U.S.
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household income for 50 popular EV models in China from 2016 to 2020 and 33 popular EV mod-

els in the U.S. in 2018, giving us a total of 83 micro-moments for Chinese and U.S. EV buyers.

The second type of micro-moments matches the observed share of EV buyers within specific in-

come brackets to the corresponding model-predicted share. We have data for five income groups in

Canada (2013), four in Germany (2013), six in Norway (2014), five in Japan (2015), three in Swe-

den (2015), and four in the Netherlands (2019). Since these income groups are mutually exclusive,

we drop one group per country, resulting in a total of 21 micro-moments for the second type. We

use two-step GMM and follow Conlon and Gortmaker (2023) to construct the variance-covariance

matrix and gradients of the aggregate moments and micro-moments.17

4.2 Battery Cost and LBD
Recall that vehicle prices are decomposed into four terms that consist of the marginal costs and

markups for both battery suppliers and EV producers, as defined in Equation (1) (bringing back the

country and time subscripts for clarity):

p jct = mkv
jct︸ ︷︷ ︸

EV markup

+ mkb
jct︸ ︷︷ ︸

Battery markup

+ mcv
jct︸ ︷︷ ︸

Non-battery EV cost

+ mcb
jct︸ ︷︷ ︸

Battery cost

.

The vehicle markup mkv
jct is known after demand estimation, and the battery markup mkb

jct =
λ b

1−λ b mk
b
jct is known up to bargaining weight λ b following the discussions in Section 3.2. We now

describe how we separate out the battery cost mcb
jct from the non-battery cost mcc

jct and estimate

the cost parameters and λ b.

The marginal cost for non-battery components is specified as a function of vehicle attributes,

such as vehicle size and horsepower, and a rich set of fixed effects. We also include EV producers’

past experience to capture reductions in EV costs as a result of LBD in vehicle assembly.

The marginal cost of producing batteries – the heart of this exercise – is specified as the product

of battery capacity in kWh (denoted as BKb jct) and the cost associated with producing each kWh:18

mcb
jct = BKb jct

(
γ0Ebt

γE +CHb jctγ1 +PKbtγ2 +η ∗ t︸ ︷︷ ︸
cost per kWh

)
. (7)

Battery supplier’s experience Ebt is defined as the past cumulative production and measured in units

of all vehicle models sold that source batteries from supplier b:

Ebt = ∑
s<t

∑
c

∑
j∈I {Ibcs=1}

q jcs,

17These micro-moments are obtained from the following studies: Canada from Axsen, Bailey, and Castro (2015);
Germany from Plötz et al. (2017); Norway from Bjerkan, Nørbech, and Nordtømme (2016); Sweden from Vassileva
and Campillo (2017); Netherlands from Meijssen (2019); and Japan from Okada, Tamaki, and Managi (2019).

18We follow the industry convention that reports battery costs in unit of kWh (Bloomberg NEF, 2023).
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where q jcs is the sales of vehicle j in country c and year s, and I {Ibcs = 1} denotes the set of

vehicle models in country c and year s that source batteries from supplier b. The key parameter

of interest is the learning coefficient γE , which determines the rate at which the unit cost (i.e., per

kWh) of battery manufacturing decreases when production experience doubles.19 The baseline cost

without learning, or the initial production cost, is captured by γ0.

In addition to supplier experience, we also control for battery chemical type CHb jct (e.g., NMC

or LFP), the battery plant’s capacity PKbt in GWh that reflects economies of scale,20 and input

costs. Given the significant changes in production technology over the past decade (advancements

in battery size and efficiency), we use a time trend η ∗ t to control for industry-wide technological

progress over time. As pointed out by Thompson (2001), failure to control for factors that influence

unit production costs could inflate LBD estimates. We demonstrate in Section 5 that the LBD

estimate reduces by half once we account for technological advancements, changes in chemistry

type, economies of scale, and accumulated experience in EV assembly (a shifter in EV producer’s

marginal cost).

Combining Equations (1), (5) (or (A2), (6), and (A8) for alternative supply-side models), and

(7), the LBD estimating equation is defined as follows:

p jct −mkv
jct =

λ b

1−λ b mk
b
jct +BKb jct

(
γ0Ebt

γE +CHb jctγ1 +PKbtγ2 +η ∗ t︸ ︷︷ ︸
Battery cost per kWh

)
+xv jctγγγv +fixed effects+ω jct , (8)

where xv jct reflects marginal costs of producing a vehicle’s non-battery components (e.g., those

depending on vehicle size and horsepower, as well as EV producer experience). The set of fixed

effects includes country, EV brand (e.g. Tesla), battery supplier (e.g. LG), and year fixed ef-

fects, capturing unobserved cost shocks in different dimensions. For example, country fixed effects

control for unobserved cost differentials at the country level, such as supply chain advantages in

China vs. other countries. The battery supplier and year fixed effects capture supplier reputation

and other industry-level dynamics. The residual ω jct captures the remainder of unobserved cost

shocks. Different from the standard supply-side analyses (Berry, Levinsohn, and Pakes, 1995),

ω jct includes unobserved cost shocks to both EV production and battery production, the latter of

which is included as part of the battery prices that EV producers pay to battery suppliers.

19The learning rate, or the Spence coefficient, is 1−2γE , which can be interpreted as the percentage cost reduction as
a result of doubling experience.

20As plant size grows, the marginal cost of producing a battery may decrease due to the economies of scale. For multi-
plant firms, we use the median capacity across all plants. The LBD estimates are similar whether we use the median,
mean, maximum capacity, or the sum of capacity across all plants.
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4.3 Empirical Challenges
There are three challenges in estimating Equation (8). First, battery firms’ cumulative experience

is likely to be endogenous. For example, past sales q jcs could be correlated with serially correlated

cost shocks ω jct that capture the unobserved production efficiency of battery supplier b. Addition-

ally, the supply network that partially determines past sales could be endogenous in that productive

and low-cost battery suppliers might supply more EV models.

To address the endogeneity of experience, we use predicted experience driven by exogenous

variation in the spirit of Gowrisankaran, Ho, and Town (2006) and Covert and Sweeney (2022):

IVbt = ∑
s<t

∑
c

∑
j

P̂r jbcs(zzz jbcs)q̂ jcs(Xcs,φcs), (9)

where IVbt , the instrument for past cumulative experience Ebt , is the sum of predicted past sales

and consists of two sets of predicted outcomes. To address the concern that the observed supplier

network is potentially endogenous, we use a discrete choice model of supplier choices to predict the

probability that vehicle model j in country c and year s sources batteries from supplier b, P̂r jbcs.

The exogenous shifters zzz jbcs include home bias (to capture the fact that EV producers are more

likely to source from domestic battery suppliers), China’s White List policy, EV attributes, battery

supplier characteristics that are predetermined in the initial year that we observe them (firm age,

average battery size, initial battery chemistry etc.), and the EV producer - battery supplier network

in the initial year. These exogenous variables are unlikely to be correlated with unobserved cost

shocks ω jct in Equation (8). Appendix A.3 provides more details.

To address the endogeneity of past sales, we use q̂ jcs(Xcs,φcs), the predicted sales based on

the demand model in Equation (2). It depends on vehicle attributes Xcs = {X jcs}Jcs
j=1 and EV

subsidies φcs = {φ jcs}Jcs
j=1 (where Jcs is the number of EV models sold in country c at time s), the

latter of which exhibits rich variation across countries, models, and time. The subsidies serve as

powerful instruments because they greatly affect demand for EVs and, hence, the sales of batteries

by different suppliers. For example, a battery supplier that sells batteries to EV models eligible for

more generous subsidies will gain experience more quickly.

The key identification assumption is that China’s whitelist policy and variation in EV subsidies

across countries are uncorrelated with vehicle and battery costs shocks ω jct . This is likely to hold

in our setting. For example, the notched subsidy design based on the driving range in China lends

to an RD-type variation in that the amount of subsidy changes discretely at the range cutoffs, but

unobserved vehicle and battery costs are unlikely to change discretely at these cutoffs (Figure A3).

The second challenge in estimating Equation (8) is that the battery firm’s markup mk
b
jct could

be correlated with cost shocks ω jct that capture the unobserved production efficiency of battery
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supplier b. This is because firms’ optimal pricing strategies and equilibrium markups depend on

their costs. We follow the same strategy as above and construct an IV of predicted markups using

only exogenous variation in subsidies, whitelist policy, and vehicle attributes. We first regress EV

prices on observed attributes, subsidies, and fixed effects to obtain predicted prices for each vehicle

model. We then use predicted prices to re-calculate market shares, vehicle markups, and battery

markups. By construction, the predicted battery markups are exogenous to cost shocks ω jct and

serve as a valid IV. The bargaining parameter λ b is identified from changes in vehicle prices due to

exogenous shifts to battery suppliers’ markups as a result of changes in their bargaining leverage.

For example, China’s whitelist policy enhanced the bargaining position of Chinese battery suppliers

relative to EV makers. The degree to which this change affects vehicle prices is informative of λ b.

If λ b = 0 (i.e., EV producers make take-it-or-leave-it offers), batteries are supplied at cost, and

changes in upstream bargaining leverage would have no effect on EV prices.

The third challenge is that EV producer’s past experience, a control in xv jct in Equation (8),

is also endogenous and correlated with ω jct . We generate predicted EV producer experience in a

similar fashion to how we generate predicted battery supplier experience, and use it as an IV for

EV experience.

5 Estimation Results

5.1 Demand Results
Table 2 reports parameter estimates for EV demand. There are a total of 4,556 observations. All

columns include country, brand, and year fixed effects. The first column shows results from a

simple multinomial logit model using OLS (i.e., Berry-logit). The second column instruments for

vehicle price using the two sets of IVs discussed earlier: the interactions between battery supplier

dummies and battery capacity to capture the cost variation in battery production and IVs based

on observed vehicle attributes. As common in the demand literature, the OLS estimate on vehicle

prices in Column (1) is much smaller in magnitude than the 2SLS estimate in Column (2) due to

the positive correlation between unobserved product attributes and prices. The OLS estimate on

vehicle volume (i.e., length by width by height) is counter-intuitive. All coefficient estimates from

2SLS are intuitively signed: consumers dislike higher prices but prefer larger sizes and horsepower.

Consumers prefer a longer driving range, but the range preference is much weaker for PHEVs.

Column (3) reports results from our preferred specification, the random coefficients model with

heterogeneous preferences. As in Column (2), all parameter estimates have the expected sign.

High-income households are less price sensitive and there is significant heterogeneity in how in-

come correlates with price sensitivity across country groups. We allow random coefficients on the
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constant term, vehicle attributes, and price to capture preference heterogeneity, all of which are es-

timated precisely. There is significant variation in price sensitivity even after controlling for income

(the random coefficient on price is sizeable).

Panel (a) of Figure 2 presents the histogram of price elasticities for all EV models in our sam-

ple.21 The average price elasticity is -3.51, with a standard deviation of 1.53. These estimates

are consistent with findings from the existing literature on EV demand (Li et al., 2017; Li, 2018;

Springel, 2019; Xing, Leard, and Li, 2021; Muehlegger and Rapson, 2022). Panel (b) depicts the

semi-elasticities against post-subsidy vehicle prices by country group, where the semi-elasticity is

the percentage change in sales for a $1,000 reduction in a vehicle’s post-subsidy price. The percent-

age increase in sales is greater for cheaper vehicles, indicating higher demand elasticity for these

models. This is consistent with the observation that their buyers typically have lower incomes.

China has a greater number of EVs with post-subsidy prices below $40,000 than all other country

groups. It also exhibits the highest sales-weighted semi-elasticity (in absolute value) at 10.5%, con-

sistent with Chinese consumers having the lowest average income among the 13 countries studied.

The sales-weighted semi-elasticity for the other three country groups ranges from 6.5% to 7.4%.

5.2 Supply Side Results
IVs for Experience and Markups As explained in Section 4.3, we use exogenous variables,

such as changes in EV subsidies and China’s whitelist policy, along with the demand model and a

supplier choice model, to construct predicted experience for each battery supplier and year. Sim-

ilarly, we exploit exogenous variations in prices and government policies to generate predicted

markups for battery suppliers, and predicted EV producer experience. Figure A5 presents evidence

that these predicted variables are strong IVs: there is a strong positive correlation between these

instruments and their endogenous counterparts after partialling out vehicle attributes and a rich set

of country, brand, and year fixed effects.

Cost Estimates with Simultaneous Contracting and Pricing We first present cost estimates and

magnitude of LBD for our preferred supply-side model (bargaining with simultaneous contracting

and pricing), followed by results from alternative supply-side models.

Table 3 presents the GMM estimates for Equation (8). We categorize the parameters into four

groups: (1) those linking battery production costs to a function of LBD and battery attributes, (2)

those that relate vehicle production costs (excluding batteries) as a function of vehicle attributes,

(3) the bargaining weight, and (4) fixed effects to control for unobserved cost shocks in both battery

21The demand elasticity is less than one (in absolute value) for 70 out of 4,556 observations. Given the multi-product
nature of auto firms, only nine observations exhibit negative marginal costs, which we keep in the estimation sample.
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and vehicle production.22 The experience and markups of battery suppliers and the experience of

EV producers are instrumented in all columns as discussed above.

Column (1) controls for only the experience of battery suppliers, vehicle attributes, and fixed

effects. The learning parameter γE is estimated to be -0.203, suggesting a learning rate of 1−
2−0.203 = 13%. The coefficient γ0 represents the baseline cost, which is the battery production

cost when a firm begins production (with experience set to 1). The γ0 estimate suggests a baseline

cost of $1,095 per kWh in 2013. Column (2) incorporates industry-wide technological progress in

battery production. The estimate on time trend indicates a $24 reduction in battery cost per kWh

each year. At the same time, the learning parameter reduces from -0.203 to -0.135, suggesting that

industry-wide technology progress could confound LBD estimates. Column (3) further controls for

economies of scale by including plant capacity and Column (4) adds the experience of EV produc-

ers to account for potential learning in EV assembly. Column (4) is our preferred specification with

all the relevant controls and is used for subsequent counterfactual analyses in Section 6. Including

these additional controls in Column (4) results in several notable changes in the estimation results.

First, the learning coefficient decreases from 0.203 in Column (1) to 0.113 in Column (4),

implying a learning rate (the Spence coefficient) of 1− 2−0.113 = 7.5%. That is, when produc-

tion experience doubles, the marginal cost of producing batteries is expected to decrease by 7.5%

on average. Our preferred estimate in Column (4) is much lower than the 20-28% estimates re-

ported in industry studies using aggregate data (Ziegler and Trancik, 2021), which often do not

adequately control for industry-wide technological progress and other cost shocks. The learning

rate in well-known economic studies varies between 8-30%. For example, it is estimated at 20%

in the semiconductor industry from 1974-1992 (Irwin and Klenow, 1994) as well as in the con-

struction of Liberty ships during World War II (Thompson, 2001), at approximately 30% in aircraft

manufacturing from 1970-1984 (Benkard, 2000), between 14-29% in wind turbine production from

2000-2019 (Covert and Sweeney, 2022), and around 5-8% in the global semiconductor sector from

2004-2015 (Goldberg et al., 2024). There is considerable variation in learning rate estimates across

the studies, driven by multiple factors such as the nature of the industry (capital-intensive ver-

sus labor-intensive), knowledge stock depreciation (or organizational forgetting due to employee

turnover), as well as whether other important factors are controlled when estimating the learn-

ing curves, such as industry-wide technology progress and economies of scale (Argote and Epple,

1990; Thompson, 2012).

Second, the time trend estimates indicate that battery costs decrease by $32 per kWh annually,

or approximately 4% of the baseline cost ($858 per kWh in Column (4)). This implies substantial

22We cannot separately identify the level of battery cost from that of vehicle cost because some fixed effects could
affect both cost measures.
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technological progress in EV battery production during our data period. Indeed, as we demonstrate

below, technological progress accounts for 39.9% of the observed reductions in battery costs. In

addition, the γ0 estimate falls from $1,095 per kWh to $858 per kWh, closer to the reported industry

average. The coefficient estimate on plant capacity in Column (4) is intuitively signed and precisely

estimated, suggesting that doubling capacity lowers costs by about $54/kWh (=0.078 in Column

(4) × ln(2)×1000).

Third, the coefficient estimate for EV experience suggests that, every time EV manufacturing

experience doubles, the unit cost of EV production decreases by $1000× ln(2)×(−0.997) = $691.

At this rate, the cumulative experience of EV manufacturers contributed to a reduction of about

$3,000 (or 5%) in EV prices.

Lastly, the estimate for battery suppliers’ bargaining weight drops from 0.503 in Column (1)

to 0.275 in Column (4). Equal bargaining weight between battery suppliers and EV producers is

unlikely, given that batteries only account for a third of the total cost of EV production; it would

imply upstream markups of $180 per kWh, which is implausibly high relative to Bloomberg’s

battery pack prices of $200 per kWh toward the end of the sample period. In contrast, a bargaining

weight of 0.275 in Column (4) suggests upstream markups of approximately $117/kWh, a plausible

estimate relative to the battery pack prices. The magnitude is also consistent with the markups

reported by CATL.23

Magnitude of LBD To better understand the magnitude of LBD and its contribution to the overall

reduction in battery prices over the past decade, we simulate sales-weighted predicted battery prices

from 2014 to 2020 under different scenarios, as shown in Figure 3. The green line with circles

represents the battery price index from Bloomberg NEF (2023). The black line with triangles shows

the predicted prices based solely on the time trend (an annual reduction of $32 per kWh), which

captures the industry-wide technological advancements. Overall, technological progress accounted

for 39.9% of the battery price reduction. The blue line with diamonds (the second line from the top)

reflects the combined price reductions due to both LBD and the time trend. The difference between

these two lines indicates that LBD contributed to 35.5% of the reduction in battery price from 2014

to 2020. The red line with diamonds (the third line from the top) represents the model-predicted

battery prices, which also include the effects of growing economies of scale and changes in battery

chemistry and input costs.24

23CATL’s average reported markup (between 2015 and 2020) was $83 per kWh (CATL’s Annual Reports).
24Since we cannot separately identify the level of battery price and vehicle cost, we calibrate the battery price in the

base year (2014) to match the Bloomberg price index for that year. Our model’s prediction aligns well with the
overall observed price decline reported by Bloomberg. The discrepancies are partly driven by coverage difference:
we focus on passenger EVs, whereas Bloomberg’s index is based on survey data that also covers commercial vehicles
and storage batteries alongside passenger EVs.
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To illustrate how LBD has contributed to changes in battery prices across the three major pro-

duction countries, Panel (b) of Figure 3 reports price reductions driven by cumulative production

experience for the leading battery suppliers: BYD and CATL in China, Panasonic and AESC in

Japan, and LG and Samsung in South Korea. In 2014, the average battery cost was $750 per kWh

among top Chinese suppliers (γ0Ebt,China
γE ), compared to $650 per kWh among the leading South

Korean suppliers and $550 per kWh among the top Japanese suppliers. By 2018, Chinese suppliers

had caught up with their South Korean counterparts, and by 2020, they had also closed the gap

with Japanese suppliers. These cost estimates align closely with the free-on-board battery price

by country-of-origin reported in UN Comtrade, as shown in Panel (d) of Appendix Figure A4. By

2020, Chinese battery exports were the least expensive among all major exporting countries.

5.3 Alternative Specifications
Cost Estimates from Alternative Bargaining Models We begin by examining whether the

learning rate estimate is sensitive to the bargaining parameter. Table 4 reports cost estimates when

the battery supplier’s bargaining weight λ varies from 0 to 0.5, using the same supply-side model

as in Table 3. Values greater than 0.5 are excluded because they would imply negative marginal

costs for battery production. The LBD estimates remain similar across different λ values. In-

tuitively, while bargaining weights affect the level of predicted battery prices (higher λ leads to

greater markups for suppliers and higher battery prices), LBD is determined by the relationship

between changes in battery prices and cumulative experience. Although the battery price level is

affected by bargaining parameters (and supply-side assumptions in general), its slope with respect

to production experience remains robust and stable across different specifications.

As an alternative to the simultaneous contracting and pricing model, we also estimate cost

parameters under the assumption of sequential contracting and pricing: EV makers and battery

suppliers first negotiate battery prices, then EV makers set downstream prices, taking as given

the negotiated battery prices. If there is disagreement in upstream negotiations, downstream EV

suppliers re-adjust their prices for all EV models. Appendix Table A3 presents cost estimates while

varying the bargaining weight λ b. The linear pricing model (double-marginalization) is a special

case of sequential contracting and pricing with λ b = 1 and is presented in the last column. The

LBD estimates are similar to our baseline estimates and remain robust to different values of λ .25

Cost Estimates from Dynamic Bargaining Table A4 presents the learning estimates γE when

battery suppliers are forward-looking at different values of λ . At one extreme, when λ = 0 (Column

(1)), battery suppliers earn zero markups and thus no dynamic markdown incentive exists. At the

25The specifications in Columns (4) and (5) of Tables A3 and A4 lead to negative marginal costs. We present these
results mainly to illustrate the robustness of LBD estimates to changes in bargaining weights.
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other extreme, when λ = 1 (Column (5)), battery suppliers capture the maximum surplus possible

in negotiations, providing the strongest incentives to lower current battery prices to accelerate LBD.

The estimates across columns align with this intuition: γE is lowest (in absolute value) with λ = 0

and highest when dynamic incentives are strongest. Nonetheless, the differences are modest and

γE varies from -0.099 when λ = 0 to -0.120 when λ = 1, compared to -0.113 in our baseline

specification in Column (4) of Table 3.

These results suggest that while LBD in battery production could theoretically generate forward-

looking behavior, ignoring dynamics does not introduce a significant bias into the learning rate

estimates in our setting. There are at least several reasons. First, all of our empirical specifications

include time fixed effects, which capture dynamic incentives at the industry level. Second, due

to the oligopolistic market structure in both upstream and downstream sectors (and the fact that

upstream firms’ bargaining weight is much less than one), upstream battery suppliers only capture

a small fraction of the economic benefits created by LBD as shown in Section 6.1, thus dampening

the dynamic incentive of battery suppliers. Third, for the range of learning rates we have obtained,

dynamic incentives dissipate rapidly after a few years.26

Scope of LBD Our analysis thus far has focused on internal LBD, i.e., learning that occurs within

a firm. Historically, many policies that target “infant industries” (to which the EV and EV battery

sectors belong) have been motivated by the potential for external learning: experience accumulated

by local suppliers could generate spillover benefits for other suppliers within the same industry and

country (Melitz, 2005). The effects of many current policies, such as the local content requirements

for EV subsidies under the IRA, critically hinge on the scope of learning. Therefore, understanding

the extent of these learning spillovers has significant policy implications. However, identifying the

full scope of such spillovers poses additional empirical challenges and requires additional variation

and exogenous shocks to assess their impact properly.

We first explore learning spillovers across firms within the same country. We assume that the

effective experience of a battery supplier is the sum of its own experience and a fraction of the

experience of rival firms in the same country. The parameter θ measures the completeness of

spillover. If θ = 1, the spillover is complete and learning from rivals’ experience is as effective as

learning from one’s own experience, whereas θ = 0 implies that there is no learning spillover from

26Consider a hypothetical scenario where supplier b reduces battery prices by 30% in year t. This translates to a 10%
reduction in prices of EV models (battery is 30% of the EV price) that source from firm b and a 35% increase in
their sales in year t at our estimated demand elasticity. Assuming supplier b has no prior production experience (so
the effect of LBD is strongest), the 35% increase in sales translates to a 35% increase in cumulative experience. At a
learning rate of 7.5%, battery costs in year t +1 would drop by 2.3%. Supposing all cost savings are passed through
to battery prices and fully reflected in EV prices, this would lead to a 1% reduction in EV prices and a 3.5% sales
increase in year t +1. However, this smaller sales increase results in a marginal gain in experience in year t +2 and
a negligible cost reduction in future years.
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rival firms. We instrument the effective experience variable using the predicted own experience and

predicted rival experience based on exogenous variations as shown in Equation (9).

Appendix Table A5 presents the estimation results for learning spillovers across firms. The

θ estimate is 0.044, indicating that learning from one unit of rival experience is equivalent to

only 4.4% of the learning derived from own experience. The estimate is imprecise due to limited

variation in rival experience across firms, especially for small battery suppliers. At θ = 0.044,

learning from rivals constitutes a small share of overall learning for the top six battery suppliers,

but it accounts for 56% of the overall learning for other firms by the end of the sample period.

We also investigate differential learning across chemistry types within the same firm. We mea-

sure the experience variable by chemistry type and define effective experience as the sum of a firm’s

own experience in the production of batteries of a given chemistry type and a fraction (θ ) of its ex-

perience in the production of batteries of other chemistry types. The θ parameter is imprecisely

estimated, as more than 80% of the battery suppliers produce only one chemistry type, leading to

limited variation across firms. Similarly, we explore learning spillover across countries. However,

the global LBD is highly correlated with the time trend and cannot be reliably estimated.

Patents and Innovation While our baseline specification includes a time trend in battery costs to

account for industry-wide technological progress, one might worry that firm-level innovation could

confound LBD. To address this, we include the cumulative number of patents filed by each battery

supplier since 2008 sourced from the PATSTAT Global database. Because patenting activity could

be correlated with cost shocks, we instrument for it using the battery firm’s exposure to industrial

policies that target the EV sector across countries. EV industrial policies are compiled from the

Global Trade Alert database and classified using Natural Language Processing following Juhász

et al. (2023). The policy exposure is a sales-weighted sum of policy counts where the weights are

the predicted sales of EV models that source batteries from a give battery supplier. The predicted

sales are from our EV demand model that relies on exogenous demand shifters (which are also

used to construct the IV for battery supplier experience). The details about data construction on

both patents and industrial policies is provided in Barwick et al. (2024), which also documents a

positive relationship between the EV industrial policies and patenting, motivating our IV strategy.

The results in Table A6 show a negative coefficient estimate on the patent variable, consistent

with firm innovation reducing costs. The coefficient estimate on the time trend becomes smaller,

reflecting the fact that industry-wide technological progress is partly driven by innovation at in-

dividual firms. Nevertheless, the LBD estimate remains nearly identical to the baseline estimate,

suggesting that LBD on the production floor and innovation through patenting activities are distinct

sources of cost reduction.
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6 Counterfactual Analyses
We now evaluate the role of LBD in promoting EV demand and the externalities it generates. We

then quantify the welfare effects of prominent EV policies with and without LBD incorporated.

Given the stability of the LBD estimate across supply-side assumptions, all counterfactual simula-

tions are conducted based on our preferred specification in Column (4) of Table 3.

6.1 The Effect of LBD and Externalities
Effect of LBD To investigate the role of LBD and its impact on EV adoption, we simulate ag-

gregate EV sales for the top 13 EV countries from 2013-2020 under four scenarios, as illustrated

in Figure 4. These scenarios, represented by the four lines from bottom to top, are: (1) a baseline

with neither consumer subsidies nor LBD; (2) consumer subsidies without LBD; (3) LBD without

consumer subsidies; and (4) both consumer subsidies and LBD.

LBD creates a positive “feedback loop”: subsidies boost EV sales, which enhances battery

production experience, leading to lower battery costs and EV prices. These price reductions, in

turn, further accelerate EV adoption, amplifying the direct effects of consumer subsidies and other

supportive policies. Specifically, compared to the baseline scenario, consumer subsidies alone

increased cumulative sales by 29.9% (1.01 million units) during 2013-2020. Absent any subsidies,

cost reductions driven by LBD alone resulted in a 78.3% increase in global EV sales (2.65 million

units) during the same period. When both consumer subsidies and LBD were in effect, global

EV sales surged by 170% (5.75 million units) relative to the baseline. This combined “snowball”

effect is nearly 60% larger than the sum of their individual contributions, underscoring the strong

complementarity between LBD and consumer subsidies.

Externalities Our analysis in Section 5.3 indicates that while the spillovers to other firms in the

same country are positive, the estimates are statistically insignificant. If LBD is entirely internal

to a firm, can government interventions be justified, apart from environmental benefits and tech-

nological spillover to other sectors?27 To evaluate this empirically, we conduct counterfactuals in

which we individually increase battery suppliers’ experience (and hence LBD) and examine what

happens to downstream firms and consumers, both domestically and globally.

Table A7 presents welfare changes resulting from a one-time increase in the experience of

CATL and Panasonic in 2013. This shock reduces upstream firms’ (CATL and Panasonic) future

production costs, leading to lower input costs and higher profits for downstream firms, ultimately

27LBD without spillovers is a special case of the model considered in Dasgupta and Stiglitz (1988), which argues that
a) LBD often leads to significant market power and high concentration, and b) import subsidies might be desirable
when domestic demand for foreign goods is high and domestic production is too costly.
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benefiting end-users (consumers) when some of the cost savings are passed through. We simulate

the industry equilibrium from 2013 to 2020 using the model outlined in Section 3. For ease of com-

parison, we normalize the increase in the battery supplier’s own profit to one (so that all numbers

are relative to this benchmark). The first three columns report welfare changes for the home country

(China for CATL), the rest of the world, and globally when CATL’s experience increases. The next

three columns present welfare changes associated with Panasonic’s increased experience. Notably,

CATL captures only 22.0% of the global surplus generated by its increased LBD, while Panasonic

captures 21.7%. In addition, the distribution of welfare gains varies significantly with the degree

of localization of the supply chain. China captures the entirety of the global welfare gains with

its largely localized EV supply chain. In contrast, Japan captures only 22% of the global welfare

gains resulting from Panasonic’s cost reductions, with a significant portion of the surplus accruing

to downstream firms and consumers in other countries. These results highlight that upstream LBD

generates substantial externalities for downstream firms and consumers, with the benefits cross-

ing country borders through global supply chains. Such externalities underpin the large welfare

impacts of government interventions, as documented below.28

6.2 Algorithm for Counterfactual Policy Analyses
Next, we conduct counterfactual simulations to examine two types of prominent government poli-

cies: (1) consumer subsidies and (2) domestic content requirements, such as China’s whitelist

policy. As the latter policy is likely to shift battery sales from foreign to domestic suppliers, we

develop a network formation model in Appendix C. The model features the whitelist policy and ac-

counts for the higher likelihood of more experienced battery firms supplying a given EV model.29

For each counterfactual analysis, we perform 100 simulations and report the average outcomes.

In each simulation, we (1) construct a supply network based on the network formation model in

Appendix C, (2) solve for battery prices, vehicle prices, and EV sales, (3) update battery supplier

experience and production costs, and (4) repeat steps (1)-(3) for all subsequent years in the sample.

6.3 Consumer Subsidies
We examine the impact of consumer subsidies in China, Europe, and the U.S. (including Canada)

on EV adoption and social welfare from 2013 to 2020. We do not study Japanese and South Korean

28While not the focus of this paper, LBD also creates (intertemporal) complementarities among downstream products
that share a common supplier. Positive demand shocks for one product increase the upstream supplier’s LBD, leading
to lower future prices for rival products with the same supplier and boosting demand for those rival products.

29Key controls of this discrete-choice model include: a dummy for China’s whitelist policy, battery suppliers’ experi-
ence, a home bias dummy, dummies for vertically integrated supplier-OEM pairs, the subsidy rate offered by country
c at time t for a given EV model, initial attributes of EV suppliers, and the lagged network structure.
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subsidies due to the small size of their EV markets. The results are presented in Table 5. The top

row in each panel reports welfare changes by region, measured as the sum of consumer surplus and

firm profits minus subsidy expenditures when relevant. The first four columns present the welfare

effects for China, Europe, Japan and South Korea, and the U.S., respectively, while the last column,

titled “Global”, aggregates welfare changes across all regions.30

Panel (a) of Table 5 highlights the impact of U.S. subsidies while holding fixed subsidies in

other regions (as well as the whitelist policy in China). The U.S. spent $13.10 billion in subsi-

dies, generated $16.47 billion in global welfare gains, and captured 49% of the global gains. The

interaction of subsidies with LBD significantly lowered battery costs for U.S. (and Canadian) EV

producers and reduced vehicle prices for domestic consumers. This led to an increase of 0.75

million EV sales in these countries.

Interestingly, Japan and South Korea benefited most outside North America, as U.S. EV pro-

duction heavily relies on batteries supplied by these countries. Similar to their counterparts in the

U.S., EV producers and consumers in these countries also benefited from lower battery costs driven

by accelerated learning and cost reductions. Altogether, battery suppliers in Japan and South Korea

captured 28% of global welfare gains, while EV producers and consumers in these countries cap-

tured another 6%, resulting in these two countries capturing 34% of global welfare gains. Europe

also experienced significant gains; in contrast, China accounted for only 3% of the global total.

This modest share reflects China’s limited EV trade, minimal battery exports (in contrast to Japan

and South Korea), and limited battery imports during the sample period. The only group of players

that were hurt by U.S. subsidies are Chinese battery suppliers because their rivals in Japan and Ko-

rea became more competitive through enhanced experience and stole their market share, especially

in the Chinese EV battery market.31

Panel (b) shows that the effects of European subsidies are broadly similar to those of U.S.

subsidies, generating substantial welfare gains for consumers and EV producers. Japan and South

Korea benefited the most because EVs sold in Europe primarily sourced batteries from these two

countries. However, there are notable differences: European governments invested $16.44 billion

in subsidies but achieved only $11.60 billion in global welfare gains, of which the EU captured

just 26%. This lower capture rate reflects Europe’s higher import share of EVs. Additionally, the

global return on EU subsidies (measured as net welfare gains per dollar spent) was lower than

that of the U.S. subsidies. This was partly due to the common use of uniform subsidies in Europe

30Profits for battery suppliers and EV producers are allocated to the country of their headquarters. Results are qualita-
tively similar if we allocate EV producers’ profits to the EV production country.

31Table A9 reports the welfare impacts including the environmental impacts of EV adoption as described in Appendix
C.3. The environmental benefits are of the same magnitude as non-environmental benefits from the subsidies.
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which proved less effective in generating consumer surplus compared to the battery-capacity-based

subsidies employed in the U.S. (Barwick, Kwon, and Li, 2024).

Panel (c) examines the impact of Chinese subsidies, totaling $22.27 billion. These subsidies

generated $32.27 billion in global welfare gains, with 92.6% captured domestically. Although

the subsidies produced some spillovers to other regions, these were small relative to those from

U.S. and European subsidies due to China’s limited EV imports and its domestic sourcing of EV

batteries. EV sales in China increased by over 2.7 million units during 2013–2020, driven by

generous subsidies and the more elastic demand among Chinese consumers.

Summary Table 5 highlights several important findings. First, consumer subsidies generate wel-

fare gains that are magnified by LBD and spillovers to other countries through the linkage in battery

supply networks.32 Table A10 confirms that both the welfare gains and the cross-country spillovers

are several factors smaller in the absence of LBD. Second, the extent of cross-country spillovers

crucially hinges on the overlap of the battery supply networks. Consumer subsidies in China gen-

erated much smaller spillovers in other regions because EVs sold in China mainly rely on domestic

battery producers. The strong spillovers between the US and the EU arise because EVs sold in these

two regions use the same battery suppliers from Japan and South Korea. In contrast, the spillovers

from the US or European subsidies to China are nearly nonexistent because of the limited overlap

in battery suppliers between EV producers in the US and Europe and those in China. Third, results

in Table 5 echo findings in Section 6.1 and illustrate that the privately chosen experience level (and

the degree of LBD) is unlikely to be socially optimal. Government subsidies have the potential to

address the under-provision of LBD.

6.4 Domestic Content Requirements
Whitelist To explore the impact of domestic content requirements, we begin by analyzing China’s

whitelist policy, introduced midway through our sample period. We compare outcomes with and

without the whitelist to assess: (1) the extent to which the policy propelled top Chinese battery

suppliers to global industry leadership, and (2) the welfare implications for domestic and foreign

firms and consumers, which depend on cost differentials between approved suppliers and the others.

Panel (a) of Figure A6 shows that the Whitelist policy significantly benefited Chinese battery

suppliers, with their sales increasing by 24% between 2016 and 2020. The policy successfully

accelerated experience accumulation for Chinese battery suppliers, particularly CATL and BYD,

32Subsidies generate welfare gains through at least two channels. First, LBD reduces production costs and generates
economic benefits that are not fully captured by upstream suppliers, as discussed in Section 6.1. Subsidies correct for
the underprovision of LBD. Second, subsidies mitigate deadweight losses from market power distortions as shown
in Barwick, Kwon, and Li 2024.
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enhancing their global competitiveness. This drove their market share growth even after the policy

ended (Figure A4). However, these gains came at the expense of non-Chinese battery suppliers,

whose sales were 14% lower relative to a no-whitelist scenario as shown in Panel (b).

Panel (a) of Table 6 presents the impact of the whitelist policy while holding the subsidies fixed.

The policy increased the profits of Chinese battery suppliers by over $3.17 billion but hurt domestic

consumers by $0.80 billion. While the overall welfare impact in China was positive, the policy had

negative spillovers abroad. Japanese and South Korean battery suppliers faced reduced demand

and profit losses, which slowed down their LBD. This slowdown in LBD negatively affected down-

stream EV producers in Europe and the U.S. that rely on these suppliers, leading to slower EV

adoption in those regions. Collectively, the EU, Japan and South Korea, and the U.S. and Canada

experienced a $5.88 billion welfare loss.

The effect on Chinese domestic EV producers was nuanced. In the early years of the whitelist

policy, some Chinese EV producers were forced to switch from initially lower-cost foreign sup-

pliers to higher-cost domestic ones, leading to profit declines in 2016 and 2017 relative to the

no-whitelist scenario. However, the policy facilitated sales concentration among two dominant do-

mestic suppliers, enabling faster LBD accumulation. As shown in Panel (b) of Figure 3, China’s

top suppliers closed the cost gap with South Korean suppliers by 2018 and matched their Japanese

counterparts by 2020. These significant cost reductions ultimately benefited Chinese EV producers,

whose profits increased in 2018, 2019, and 2020 relative to the no-whitelist scenario. Over time,

the policy’s impact shifted from negative to positive.

Panel (b) of Table 6 presents the combined effect of the whitelist policy and consumer subsi-

dies in China. While the whitelist slightly increased China’s overall welfare gains from consumer

subsidies, it reduced and even reversed the positive cross-country spillovers of these subsidies,

particularly for Japan, South Korea, the U.S., and Canada.

These results indicate that Chinese battery suppliers were the primary beneficiaries of the

whitelist policy. While Chinese EV producers eventually gained (with a modest profit increase

over the entire period), the policy had adverse effects on all other stakeholders. This highlights

the tradeoffs created by protective policies that distort market forces. Consistent with our simula-

tion results, the policy was discontinued in late 2019 following opposition from EV producers and

non-Chinese battery producers.

Timing of Protective Policies China’s whitelist was introduced at a crucial (and opportune) mo-

ment: the learning curve for battery production was steep, and China became the largest EV and EV

battery market in 2015. We examine the effect of implementing the whitelist five years later (i.e.,

shifting the policy from 2016-2019 to 2021-2024) when most battery cost reductions had already
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taken place. We assumed the global market structure and subsidy rates in future years stayed as

they were in 2020, as discussed in Appendix C. Panels (c) and (d) in Figure A6 shows the impacts

on sales and Table 7 summarizes the welfare results. As expected, the negative impact on other

countries becomes much smaller. By 2021, the gap in production experience between (foreign)

leaders and (Chinese) followers would have been much wider than that in 2016. The economic

benefits from LBD are also smaller, as battery costs had fallen below $200 per kWh compared to

$600-$800 in 2014. While Chinese battery suppliers would still have gained, their profit increases

would be an order of magnitude smaller, given the large cost advantages held by suppliers from

Japan and South Korea.33 Chinese consumers and EV firms experienced greater losses. As a result,

the counterfactual whitelist policy is also detrimental to China.

The IRA of the Biden administration put into place local content requirements for EV batteries

as part of the eligibility criteria for consumer subsidies. A policy simulation of the local content

requirements under IRA is beyond the scope of our study, as it requires modeling changes in bat-

tery and EV production locations amid the currently limited battery production capacity in North

America. Nevertheless, our analysis indicates that in the short run, the policy will likely gener-

ate welfare impacts across consumers, battery suppliers, and EV producers that are qualitatively

similar to those under China’s delayed whitelist policy (2021-2024).

Accounting for LBD in Policy Analysis To illustrate the importance of accounting for LBD

in policy analysis, we simulate the impacts of Chinese consumer subsidies and the whitelist policy

without LBD. Table 8 shows that welfare gains and positive cross-country spillovers from subsidies

drop to about 20% of those with LBD, while negative spillovers from the whitelist policy are

also significantly reduced. These results underscore the importance of accounting for LBD in the

evaluation of the cost-effectiveness and broad impacts of EV policies.

7 Conclusion
This paper, to our knowledge, represents the first attempt to causally quantify learning-by-doing

(LBD) in the global EV battery market and to examine the implications of LBD for EV purchase

subsidies and local content requirements on batteries. The learning rate is estimated to be 7.5%

after controlling for industry-wide technological progress, economies of scale, input costs, and

LBD in EV assembly. LBD in battery production accounts for 35.5% of the overall battery cost

reduction during 2014–2020. The feedback loop from LBD amplified the effects of EV subsidies

and local content requirements on EV adoption and social welfare by severalfold. Upstream battery

33Another contributing factor is that global subsidy rates in 2020 were different from those in 2016. Results are
qualitatively similar if we used 2016 subsidy rates instead.
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suppliers capture a small fraction of the benefits generated by LBD to downstream producers and

consumers, highlighting the potential role of government interventions.

In terms of policy implications, EV subsidies in one country generate spillover benefits for other

countries, with the extent of these spillovers critically depending on the nature of the supply net-

work and the degree of supplier overlap. By shifting demand, China’s whitelist policy accelerated

learning among Chinese suppliers at the expense of others. The timing of policy implementation is

crucial: if China had delayed the policy by five years, its effectiveness in helping Chinese suppliers

gain a global competitive advantage would have diminished significantly, and its welfare impact on

China would have shifted from positive to negative.

We conclude by highlighting two directions for future research. First, our analysis abstracts

from market entry and production location decisions of automakers and battery suppliers, which

are critical for understanding the impacts of local content requirements recently implemented in

the U.S. and Europe, especially given Asia’s dominance in battery production. Head et al. (2024)

makes important headway in that direction by developing a multi-stage production model, albeit

without incorporating LBD. Second, we do not explicitly account for the impacts on the gasoline

vehicle segment. How the EV policies affect this segment through substitution and product line

choices remains an open question.
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Figures & Tables

Figure 1: Vehicle Price vs. Battery Supplier Experience

(a) Residualized Prices Over Time (b) Residualized Prices vs. Supplier Experience

Notes: The residualized vehicle prices in these graphs are EV prices partialling out vehicle attributes (horsepower,
size, and the PHEV dummy), and country, brand, and year fixed effects. In Panel (a), the price residuals are divided
by battery capacity as a proxy for battery costs per kWh, and the purple dots depict the sales-weighted average annual
price residuals per kWh (in $1000). The red diamonds are the average battery pack price from Bloomberg NEF (2023)
(BNEF). The marker size is proportional to the total EV sales in a given year. The residualized price is scaled so that it
coincides with the BNEF battery pack price in 2014. The binned scatter plot in Panel (b) shows the residualized prices
(in $1000) against the cumulative experience of battery suppliers. The size of the dots is proportional to the cumulative
subsidy received by battery suppliers.

Figure 2: Demand Elasticities

(a) Price Elasticity (b) Semi-elasticity When Price Drops by $1000)

Notes: Panel (a) shows the histogram of price elasticities. The average is 3.51. The demand elasticity is less than
one (in absolute value) for 70 out of 4,556 observations. Given the multi-product nature of auto firms, only nine of
the 70 observations exhibit negative marginal costs. Panel (b) depicts the binned scatter plot for semi-elasticities (the
percentage change in sales for a $1,000 reduction in own prices) by country group. The sales-weighted average semi-
elasticity is 10.5% for China and varies from 6.5% to 7.4% for other country groups. The increase in the percentage of
sales is more pronounced for cheaper vehicles, implying more elastic demand.
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Figure 3: LBD and Battery Price Reduction

(a) Global
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Notes: in Panel (a), the black line with triangles shows prices based on the time trend (technological progress), and the
blue line with diamonds (the second line from the top) reflects the combined price reductions due to both LBD and the
time trend. The red line with diamonds (the third line from the top) is model-predicted battery prices, and the green line
with circles shows the Bloomberg New Energy Finance (BNEF) battery price index. The differences are partly driven
by coverage: we focus on passenger EVs, whereas BNEF index is based on survey data that also covers commercial
vehicles and storage batteries. Panel (b) shows the reduction in sales-weighted average battery prices that correspond
to the learning component γ0Ebt

γE . The line with red triangles represents battery costs for BYD & CATL in China, the
line with black circles stands for LG & Samsung in South Korea, and the line with blue squares stands for Panasonic
& AESC in Japan. Chinese battery suppliers had higher costs initially but experienced a faster reduction over time and
closed the gap with their rivals by 2020.

Figure 4: Effect of Subsidies and LBD on Global EV Sales

Notes: This figure illustrates total EV sales across the top 13 EV countries under various scenarios. The solid black
line at the top represents observed EV sales with both LBD and consumer subsidies in effect. The second dashed green
line shows EV sales with LBD but no subsidies, while the third dash-dot orange line represents EV sales with subsidies
but no LBD. The dotted blue line at the bottom shows EV sales with neither LBD nor subsidies. LBD greatly amplifies
the sales-expansion effect of subsidies.
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Table 1: Summary Statistics

BEVs PHEVs
# of Obs. Mean Std. Dev. # of Obs. Mean Std. Dev.

Panel A: Vehicle Information

Sales 2,325 2886.7 9861.9 2,231 1343.8 3803.6
MSRP ($1,000) 2,325 45.12 28.26 2,231 71.93 33.68
Subsidy ($1,000) 2,325 4.72 4.57 2,231 1.94 2.09
Volume (m3) 2,325 12.49 3.63 2,231 13.80 1.95
Horsepower 2,325 156.84 116.33 2,231 212.25 82.60
Driving Range (km) 2,325 171.19 79.95 2,231 31.46 24.61

Panel B: Battery Information

Battery Capacity (kWh) 2,325 41.95 22.11 2,231 11.53 3.59
Chemistry: NMC 2,325 0.629 0.483 2,231 0.949 0.219
Chemistry: LFP 2,325 0.045 0.208 2,231 0.006 0.076
Chemistry: NCA 2,325 0.100 0.300 2,231 0.002 0.042

Panel C: Battery Supplier Information

Production Experience (# EV supplied) 204 86,672 199,272
Median Plant Capacity (GWh) 204 1.03 3.05
Cumulative Patents 204 542.6 1,437.0

Panel D: Market-level Information

Lithium Price Index (100 in 2011) 104 190.09 75.24

Notes: The sample covers 13 countries with the largest EV sales in the world from 2013 to 2020: Austria, Canada,
China, France, Germany, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, the UK, and the U.S. All prices
are in nominal U.S. dollars ($). The three major battery chemistry types are: NMC, Nickel Manganese Cobalt; LFP,
Lithium Iron Phosphate; and NCA, Nickel Cobalt Aluminum Oxide. The production capacity is the median capacity
across all plants operated by a battery supplier (a supplier has three plants on average). The lithium price is an index
normalized to 100 in 2011 and is collected from COMTRADE for China and Europe, USGS for the U.S., and from
Benchmark Mineral Intelligence for other countries.
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Table 2: Demand Estimation Results

(1) (2) (3)
OLS logit IV logit Full model

Coef. S.E. Coef. S.E. Coef. S.E.

Linear Parameters
Consumer Price (α1) -0.016 0.002 -0.057 0.010 -0.017 0.009
PHEV 4.763 0.898 4.787 0.911 4.402 0.958
log(volume) -0.744 0.245 0.749 0.417 1.346 0.413
log(HP) 0.285 0.154 1.217 0.277 1.191 0.274
log(range) 1.229 0.163 0.918 0.184 1.025 0.192
log(range) x PHEV -0.780 0.209 -0.868 0.214 -0.638 0.219

Non-linear Price Coefficients (αc/yi)
α2 for China - - - - 0.318 0.013
α2 for JP/SP/FR/DE - - - - 0.220 0.020
α2 for UK/NL/AT/SE - - - - 1.221 0.111
α2 for CA/NO/US/CH - - - - 0.616 0.026

Random Coefficients (σ )
Constant - - - - 0.330 0.038
log(volume) - - - - 0.077 0.013
log(HP) - - - - 0.032 0.004
Consumer Price - - - - 0.123 0.009

Fixed Effects
Country ✓ ✓ ✓ ✓ ✓ ✓
EV Brand ✓ ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓ ✓

Notes: The demand estimation is based on annual sales by vehicle model by country in the top 13 EV countries from
2013 to 2020. The number of observations is 4,556. Columns (1) and (2) report results for the OLS and 2SLS-logit
regressions, respectively. Price instruments include battery supplier dummies interacted with battery capacity, as well
as three IVs based on vehicle attributes. Column (3) is the random coefficient multinomial logit model and is estimated
using simulated GMM with IVs and micro-moments. The price coefficient αi is specified as α1 +

αc(i)
yi

+σpν
p
i , where

yi is consumer income and ν
p
i is the unobserved preference shock (i.i.d. log-normal draws). All regressions include

country, brand, and year fixed effects. The standard errors are clustered at the country by brand level.
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Table 3: Supply-side Estimation Results

(1) (2) (3) (4)

Battery Cost Parameters
Learning Parameter γE -0.203 -0.135 -0.137 -0.113

(0.048) (0.044) (0.045) (0.052)
γ0(1000$/kWh) 1.095 1.071 1.082 0.858

(0.218) (0.169) (0.17) (0.164)
BK * Time Trend -0.024 -0.024 -0.032

(0.007) (0.007) (0.006)
BK * log(Plant Capacity) 0.024 -0.078

(0.043) (0.035)
BK * Battery Chemistry Dummies ✓ ✓ ✓ ✓
BK * Lithium Prices ✓ ✓ ✓ ✓

Vehicle Cost Parameters
EV Experience -0.997

(0.421)
PHEV 11.741 10.998 11.223 2.172

(2.017) (2.098) (2.164) (1.104)
Horsepower 0.273 0.274 0.275 0.244

(0.011) (0.011) (0.011) (0.007)
Volume -2.796 -2.524 -2.597 0.807

(0.647) (0.657) (0.678) (0.232)

Bargaining Parameter
Bargaining Weight λ b 0.503 0.484 0.488 0.275

(0.074) (0.08) (0.08) (0.132)

Fixed Effects
Country ✓ ✓ ✓ ✓
EV Brand ✓ ✓ ✓ ✓
Battery Supplier ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓

Notes: This table reports parameter estimates for Equation (8). The dependent variable (EV price minus EV markups) is
in $1,000. The number of observations is 4,556. All specifications use 2-step GMM estimation that instruments battery
supplier experience, battery markup (the variable corresponding to bargaining weight), and EV producer experience.
The marginal cost of battery pack is specified as: BKb jct

(
γ0EγE

bt +CHb jctγ1+PKbtγ2+ηt
)
, where BK is battery capacity,

γE is the learning parameter, and γ0 captures the baseline cost with Ebt = 1. The regression has four sets of controls.
The first set includes variables relevant to batteries’ marginal cost: battery capacity interacted with battery chemistry
(NMC, NCA, LFP) and lithium prices (with the coefficient different for Chinese and non-Chinese EV models), battery
capacity interacted with the time trend (to capture industry-wise technological progress) and with production capacity
(to capture economies of scale). The second set includes vehicle attributes such as vehicle fuel type (BEV or PHEV),
vehicle size, horsepower, and EV producer experience (i.e., the logarithm of cumulative EV production by each EV
producer) to capture LBD in EV manufacturing. The third set of controls is battery suppliers’ markups (with equal
bargain weights). The last set of controls includes country, EV brand, battery supplier, and year fixed effects.
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Table 4: Supply-side Estimation Results: Robustness to Bargaining Parameter

Bargaining Parameter Estimated λ b = 0 λ b = 0.25 λ b = 0.5
(1) (2) (3) (4)

Battery Cost Parameters
Learning Parameter γE -0.113 -0.100 -0.128 -0.132

(0.052) (0.05) (0.059) (0.055)
γ0(1000$/kWh) 0.858 0.877 0.781 0.829

(0.164) (0.166) (0.145) (0.159)
BK * Time Trend -0.032 -0.035 -0.032 -0.029

(0.006) (0.007) (0.007) (0.006)
BK * log(Plant Capacity) -0.078 -0.082 -0.078 -0.070

(0.035) (0.037) (0.036) (0.034)
BK * Battery Chemistry Dummies ✓ ✓ ✓ ✓
BK * Lithium Prices ✓ ✓ ✓ ✓

Vehicle Cost Parameters
EV Experience -0.997 -1.011 -0.998 -0.964

(0.421) (0.431) (0.422) (0.407)
PHEV 2.172 2.819 2.250 1.134

(1.104) (1.133) (1.109) (1.064)
Horsepower 0.244 0.252 0.245 0.232

(0.007) (0.007) (0.007) (0.007)
Volume 0.807 0.893 0.817 0.665

(0.232) (0.24) (0.234) (0.222)

Bargaining Parameter
Bargaining Weight λ b 0.275 0.00 0.25 0.50

(0.132)

Fixed Effects
Country ✓ ✓ ✓ ✓
EV Brand ✓ ✓ ✓ ✓
Battery Supplier ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓

Notes: This table reports parameter estimates for Equation (8). The dependent variable (EV price minus EV markups)
is in $1,000. Column (1) is identical to Column (1) in Table 3. Columns (2)-(4) fix the bargaining parameter λ and es-
timate the remaining parameters by GMM with battery supplier experience and EV producer experience instrumented.
See Table 3 for variable definitions.
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Table 5: Impact of Consumer Subsidies

China Europe JP & KR US & CA Global

Panel (a): Impact of US Subsidies

∆ Welfare ($ bn.) 0.49 2.24 5.65 8.09 16.47

∆ Consumer Surplus (+) 0.14 0.96 0.04 13.35 14.48
∆ Battery Variable Profit (+) -0.21 - 4.59 - 4.38
∆ EV Variable Profit (+) 0.51 1.67 1.03 7.85 11.06
∆ Gov’t Expenditure (-) -0.05 0.39 0.01 13.10 13.45

∆ EV Sales 6,646 50,224 2,266 754,788 813,925

Panel (b): Impact of European Subsidies

∆ Welfare ($ bn.) 0.75 3.03 5.49 2.32 11.60

∆ Consumer Surplus (+) 0.15 14.63 0.04 0.89 15.71
∆ Battery Variable Profit (+) -0.11 - 3.97 - 3.87
∆ EV Variable Profit (+) 0.68 4.82 1.49 1.80 8.79
∆ Gov’t Expenditure (-) -0.04 16.44 0.01 0.36 16.77

∆ EV Sales 8,650 751,021 2,766 50,749 813,185

Panel (c): Impact of Chinese Subsidies

∆ Welfare ($ bn.) 29.89 1.05 0.11 1.22 32.27

∆ Consumer Surplus (+) 27.04 0.67 0.01 0.33 28.05
∆ Battery Variable Profit (+) 7.52 - -0.11 - 7.41
∆ EV Variable Profit (+) 17.60 0.62 0.21 1.02 19.45
∆ Gov’t Expenditure (-) 22.27 0.24 0.00 0.13 22.65

∆ EV Sales 2,696,916 30,267 732 18,780 2,746,696

Notes: This table shows the impact (aggregated during 2013-2020) of consumer subsidies on social welfare and EV
adoption separately for China, Europe, Japan & South Korea, and US & Canada. Panel (a) estimates the impact of US
subsidies by comparing scenarios with and without US subsidies but holding consumer subsidies in China and Europe
fixed. Panels (b) and (c) are obtained similarly.
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Table 6: Impact of China’s Whitelist Policy

China Europe JP & KR US & CA Global

Panel (a): Impact of China’s Whitelist Policy in the Presence of Subsidies

∆ Welfare ($ bn.) 3.65 -0.59 -3.88 -1.41 -2.23

∆ Consumer Surplus (+) -0.80 -0.48 -0.01 -0.58 -1.87
∆ Battery Variable Profit (+) 3.17 - -3.73 - -0.56
∆ EV Variable Profit (+) 0.19 -0.32 -0.13 -1.07 -1.33
∆ Gov’t Expenditure (-) -1.08 -0.21 0.00 -0.24 -1.53

∆ EV Sales -61,375 -26,162 -742 -33,196 -121,475

Panel (b): Impact of China’s Whitelist Policy and Subsidies

∆ Welfare ($ bn.) 33.54 0.46 -3.77 -0.19 30.04

∆ Consumer Surplus (+) 26.24 0.19 0.00 -0.25 26.18
∆ Battery Variable Profit (+) 10.69 - -3.85 - 6.85
∆ EV Variable Profit (+) 17.79 0.30 0.08 -0.05 18.13
∆ Gov’t Expenditure (+) 21.19 0.04 0.00 -0.11 21.11

∆ EV Sales 2,635,542 4,105 -10 -14,416 2,625,221

Notes: This table shows the impact (aggregated during 2013-2020) of China’s policies on social welfare and EV
adoption separately for China, Europe, Japan & South Korea, and US & Canada. Panel (a) presents the impact of
China’s 2016-2019 whitelist policy by comparing scenarios with and without the whitelist policy but holding consumer
subsidies in place. Panel (b) shows the impact of the policy combination (whitelist and consumer subsidies together)
by comparing scenarios with and without the policy combination.
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Table 7: Impact of China’s Counterfactual (Delayed) Whitelist Policy

China Europe JP & KR US & CA Global

∆ Welfare ($ bn.) -1.65 -0.47 -0.98 -0.42 -3.51

∆ Consumer Surplus (+) -3.39 -0.18 0.00 -0.10 -3.68
∆ Battery Variable Profit (+) 0.29 - -0.80 - -0.51
∆ EV Variable Profit (+) -1.40 -0.37 -0.17 -0.36 -2.31
∆ Gov’t Expenditure (-) -2.85 -0.09 0.00 -0.04 -2.98

∆ EV Sales -303,293 -10,817 -245 -6,178 -320,533

Notes: This analysis examines the role of the timing of China’s whitelist policy. The table shows the impacts (aggre-
gated during 2013-2025) of a counterfactual whitelist policy on social welfare and EV adoption across regions. This
counterfactual policy is assumed to be implemented five years later, during 2021-2024 instead of 2016-2019 (as in the
data). The table reports the difference between the two scenarios with and without the counterfactual whitelist policy
but holding consumer subsidies in place.

Table 8: LBD and Policy Interactions

($ bn.) World China Rest of World

With LBD
∆ Welfare, Chinese Subsidies 32.27 29.89 2.38
∆ Welfare, Whitelist -2.23 3.65 -5.88

Without LBD
∆ Welfare, Chinese Subsidies 6.71 6.00 0.71
∆ Welfare, Whitelist -0.19 0.67 -0.86

Notes: This table shows the welfare impact (aggregated during 2013-2020) of China’s consumer subsidies and the
whitelist policy with and without LBD incorporated in the simulations. In the scenario without LBD, we set firms’
experience as the initial experience in the sample.
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Online Appendix

Drive Down the Cost: Learning by Doing and Government

Policies in the Global EV Battery Industry

Panle Jia Barwick Hyuk-soo Kwon Shanjun Li Nahim Bin Zahur

A Data Construction and Industry Details

A.1 Battery Plant Capacity
Data on battery suppliers’ plants are compiled from the 2022 lithium-ion battery gigafactory database

by Automotive Logistics (AL) and market reports from Marklines1. The AL dataset provides de-

tailed plant characteristics by year and region, including manufacturing start year, capacity in 2022,

predicted capacity from 2023-2030, and city-level location. As of 2022, there are 204 battery cell

plants in Asia Pacific with a total capacity of 703 GWh, 73 cell plants in Europe with a total ca-

pacity of 160 GWh, and 48 cell plants in North America with a total capacity of 95 GWh. The

Marklines reports offer production capacity data from 2018-2021 for the top ten Chinese cell sup-

pliers (CATL, LG Energy, Panasonic, Findreams/BYD, EVE, CALB, Gotion High-tech, Farasis

Energy, SVOLT, and Sunwoda). We manually merged these two data sources. For plants with

missing capacity information, we supplemented the data by searching online news reports. The

following table illustrates the data collection process: The completed battery capacity dataset con-

Table A1: Examples of Battery Plant Capacity Collection

Plant Name Cell Supplier News Report Start Year Capacity
2022 (GWh)

Address

CATL Yibin
manufacturing
site (1st and
2nd phase)

CATL CATL has completed the first expansion stage of its battery cell plant in the city of Yibin in
southwest China’s Sichuan Province, for which it has already commissioned the equipment.
The company puts the annual capacity of the completed section at 15 GWh. After completing
the second construction phase in two years as planned, the annual production capacity is ex-
pected to total 30 GWh. CATL indicates that a total of six phases of the project are planned...

2021 30 Yibin,
Sichuan

Panasonic-
Tesla

Panasonic Today a portion of Tesla’s vision became reality, with Panasonic and Tesla beginning produc-
tion of their “2170” cylindrical lithium-ion batteries at their “Gigafactory” in Reno, Nevada.
These cells will be used in Tesla’s Powerwall 2 and Powerpack 2 battery products, as well as
its Model 3 EVs. Tesla notes that production for qualification began in December at the Gi-
gafactory, which when complete will be the largest factory on earth. The mammoth building
is being completed in phases so that production can being inside finished sections and expand
later, and by 2018 the company expects the facility to be making 35 gigawatt-hours per year
of battery cells...

2016 35 Reno, Nevada

tains 263 plants of 99 cell suppliers ranging from 1992 to 2023. The top 10 cell suppliers by total

capacity are CATL, BYD, SVOLT, LG Energy, CALB, EVE Energy, Panasonic, AESC, Gotion

High-tech, Farasis, which account for 83.04% of global battery capacity.

1See: Automotive Logistic and Markline Analysis Report.
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A.2 Income Distribution
The World Inequality Database (WID) provides annual data on three key metrics for most coun-

tries: (1) average income, (2) the income share of the bottom 50% (p0-p50), and (3) the income

share of the top 10% (p90-p100). Using these statistics, we calibrate the location and dispersion

parameters of the Lognormal distribution, Lognormal(µm,σm) for each market m (a country-year

pair). First, we express µm as a function of σm by matching the mean of the Lognormal distribution,

exp(µm +σ2
m/2), to the average income reported by WID for the market. We then determine σm

(and consequently µm(σm)) by minimizing the following objective function:

(predicted p0-p50−observed p0-p50)2 +(predicted p90-p100−observed p90-p100)2.

A.3 IV Construction for Battery Experience
We construct the battery experience IV with Equation (9): IVbt =∑s<t ∑ j P̂r jbcs(zzz jbcs)q̂ jcs(X jcs,φ jcs).

This has two components: (1) the probability that EV model j sold in country c at time s chooses

battery supplier b and (2) predicted sales of model j. We use the demand model in Section 3 to

generate predicted sales q̂ jcs, as explained in the main text. Here we discuss how we predict the

probability that model j chooses supplier b: P̂r jbcs.

EV models rarely switch battery suppliers during our sample. We assume that an EV maker

selects a battery supplier (from a choice set that includes all battery suppliers active in that country)

during the year when an EV model is first released in a given country. The unit of analysis is an EV

model and battery supplier pair by country and model-release-year. We allow EV makers to choose

different battery suppliers for the same EV model sold in different countries.2 This is because

batteries are expensive to transport and it may be cost-efficient to source from nearby production

facilities. In addition, EV makers may choose domestic battery suppliers to satisfy domestic content

requirements.

We use a logit model where the outcome variable is one if an EV model chooses a supplier

and zero otherwise. We only use variables that are likely uncorrelated with cost shocks ω jct as

controls. They include a dummy variable for China’s whitelist policy (that equals one for EVs in

China and if the supplier is Chinese from 2016-2019, and 0 otherwise), a home bias dummy (that

equals one if the supplier-OEM pair has the same country of origin), dummies for supplier-OEM

pairs that are vertically integrated (BYD - BYD and AESC - RNM), the initial supply network

(a dummy that equals one if the supplier-OEM pair had a supply relationship at the beginning of

the sample period), a dummy for whether the initial supply relationship was in the same country

2For example, Hyundai’s Kia K5 model in 2018 used CATL batteries for the model sold in China but batteries from
LG for the model sold in other countries.

A-2



as the one where the EV is produced and age of each supplier. We also control for a supplier’s

characteristics in the initial year: average battery capacity, the most common chemistry of batteries

produced, and the average number of models for which the firm was a battery supplier. Finally,

we include interaction terms between initial supply-network links, supplier characteristics, and EV

characteristics (volume, horsepower, battery capacity, range, and battery chemistry).

A.4 Battery Supply Agreements
Battery makers sell batteries to EV producers using battery supply agreements. These agreements

are confidential and the exact details of the contracts (e.g., the agreed battery price) are not publicly

known. Redacted copies of a few contracts, however, have been published by the U.S. Securities

and Exchange Commission, including, notably, a 2009 battery supply agreement signed between

Tesla and Panasonic in 2009.3 The Tesla-Panasonic agreement was signed on June 2009 and had

an initial end date of December 2010. The end date was automatically extended every year (by one

year), unless one of the parties chose to terminate the agreement. The contract specified a linear

price per every battery sold; and the quantity (i.e., the number of batteries to order) was chosen on a

rolling basis by Tesla, though they were required to provide advance notice to Panasonic, as well as

a non-binding, good faith six-month forecast of how many batteries they expect to purchase in the

next six months. The 2007 Tesla-Sanyo agreement shared similar features.4 These features inform

some of our modeling choices: (1) battery suppliers and EV producers negotiate linear prices (as

opposed to two-part tariffs, or contracts that specify both price and quantity) (2) firms negotiate

short-term contracts where the price is only fixed for one year, as opposed to long-term contracts

(since in the observed agreements, either party can terminate the contract each year).

B Modeling Details

B.1 Simultaneous Contracting and Pricing
Under the assumption of simultaneous contracting and pricing, bargaining over battery prices and

EV price setting happen simultaneously. Let dv,Simult and db,Simult denote the disagreement payoffs

for EV supplier v and battery supplier b, respectively. Then the equations characterizing the Nash-

3See https://www.sec.gov/Archives/edgar/data/1318605/000119312510017054/dex1033.
htm.

4See https://www.sec.gov/Archives/edgar/data/1318605/000119312510017054/dex1027.
htm.
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in-Nash bargaining equilibrium (Equation (4)) can be written as:

(1−λ
b)(πb −db,Simult)︸ ︷︷ ︸

b’s gains from trade

∂πv

∂τ j
+λ

b (πv −dv,Simult)︸ ︷︷ ︸
v’s gains from trade

∂πb

∂τ j
= 0.

We now describe how we use the above bargaining FOCs as well as the FOCs characterizing

downstream EV pricing to derive upstream markups as a function of downstream markups and

bargaining weight (equation (5)). This closely follows Draganska, Klapper, and Villas-Boas (2010).

Profits and Disagreement Payoffs The profits for EV producer v and battery supplier b can be

written as:

π
v(p,φ) = ∑

k∈Ωv

(pk − τk −mcv
k)qk(p,φ) = ∑

k∈Ωv

mkv
kqk(p,φ)

π
b(p,φ) = ∑

k∈Ωb

(τk −mcb
k)qk(p,φ) = ∑

k∈Ωb

mkb
kqk(p,φ)

Their disagreement payoffs are:

dv,Simult(p,φ) = ∑
k∈Ωv

(pk − τk −mcv
k)q̃k(p,φ) = ∑

k∈Ωv

mkv
kq̃k(p,φ)

db,Simult(p,φ) = ∑
k∈Ωb

(τk −mcb
k)q̃k(p,φ) = ∑

k∈Ωb

mkb
k q̃k(p,φ),

which embeds that when bargaining breaks down over the battery price for vehicle j (i.e., when

there is a disagreement), vehicle j is removed from the market, but all other vehicles are supplied

at the same prices as they would be under agreement. Here, note that q̃ j(p,φ) = 0 (since q̃ denotes

the sales when vehicle j is not offered).

Gains from Trade The gains from trade for EV maker v can be written as:

π
v −dv,Simult = ∑

k∈Ωv

mkv
k[qk(p,φ)− q̃k(p,φ)]

Likewise, the gains from trade for battery supplier b can be written as:

π
b −db,Simult = ∑

k∈Ωb

mkb
k [qk(p,φ)− q̃k(p,φ)]

Profit Derivatives The derivative of EV producer v’s profits with respect to the battery price for

vehicle j, τ j, can be written as:

∂πv

∂τ j
=−q j

This is because, under simultaneous contracting and pricing, an incremental change in the battery

price has no direct effect on downstream EV prices, so the derivatives of downstream EV prices

with respect to battery prices are zero. In a similar manner, the derivative of battery supplier b’s
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profits with respect to τ j can be written as:

∂πb

∂τ j
= q j

Upstream Markups We now plug in the above expressions for the gains from trade and profit

derivatives into the bargaining FOC for the battery price for vehicle j:

(1−λ
b)(πb −db,Simult)︸ ︷︷ ︸

b’s gains from trade

(−q j)+λ
b (πv −dv,Simult)︸ ︷︷ ︸

v’s gains from trade

q j = 0

π
b −db,Simult =

λ b

1−λ b (π
v −dv,Simult)

We now combine this FOC across different vehicles j to obtain the full vector of upstream markups

as a function of the vector of downstream markups. To facilitate this, we define a matrix S, whose

j,k term equals qk(p,φ)− q̃k(p,φ) (where recall that q̃k(p,φ) equals the sales of vehicle k when

there is disagreement over the battery price of vehicle j and vehicle j is removed from the set

of products offered). Let Tv denote the ownership matrix for EV producers: T v(k, l) equals 1 if

vehicles k and l are produced by the same EV producer and is 0 otherwise. Similarly, let Tb denote

the ownership matrix for battery suppliers: T b(k, l) equals 1 if the batteries for vehicles k and l are

supplied by the same battery supplier, and is 0 otherwise.

In matrix form, the gains from trade to EV producers and battery suppliers can be respectively

written as:

π
v

π
v

π
v −dv,Simultdv,Simultdv,Simult = (Tv ⊗S)mkmkmkv

π
b

π
b

π
b −db,Simultdb,Simultdb,Simult = (Tb ⊗S)mkmkmkb,

where ⊗ denotes element-by-element multiplication. Plugging these into the above bargaining

FOC, we obtain:

[Tb ⊗S]mkmkmkb =
λ b

1−λ b [T
v ⊗S]mkmkmkv

mkmkmkb =
λ b

1−λ b [T
b ⊗S]−1[Tv ⊗S]mkmkmkv,

which is the key estimation equation capturing how upstream markups are expressed as a function

of downstream markups.

B.2 Sequential Contracting and Pricing
In the sequential contracting and pricing game, EV makers and battery suppliers first negotiate

battery prices, after which EV makers set EV prices based on the observed battery prices. The
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battery prices are determined to maximize the Nash product:

NPj(τ j,τ− j) = (πv −dv,Sequential)︸ ︷︷ ︸
v’s gains from trade

(1−λ b) (πb −db,Sequential)︸ ︷︷ ︸
b’s gains from trade

λ b
(A1)

and the bargaining FOCs are the same as before. However, two changes arise in Equation (4) due

to the timing assumptions:

1. The disagreement profits dv,Sequential and db,Sequential depend on the new equilibrium down-

stream EV prices that would arise if EV model j is not offered; that is, downstream EV prices

are no longer constant under disagreement. The equilibrium downstream EV prices for all

EV models in the case of disagreement need to be re-calculated for every {v,b} pair.

2. The derivatives of downstream and upstream profits with respect to battery prices differ from

simultaneous contracting and pricing because firms anticipate that any change in the negoti-

ated battery price will result in a change in downstream EV prices.

Disagreement Payoffs The disagreement payoffs for EV producer v and battery supplier b when

upstream bargaining and downstream price-setting happen sequentially are:

dv,Sequential(p̃,φ) = ∑
k∈Ωv

(p̃k − τk −mcv
k)q̃k(p̃,φ) = ∑

k∈Ωv

m̃k
v
kq̃k(p̃,φ)

db,Sequential(p̃,φ) = ∑
k∈Ωb

(τk −mcb
k)q̃k(p̃,φ) = ∑

k∈Ωb

m̃k
b
k q̃k(p̃,φ)

Here, q̃, p̃ and m̃k represent the equilibrium EV sales, prices, and markups when product j is

excluded from the market.

Gains from Trade The gains from trade for EV maker v from selling vehicle j are

π
v −dv,Sequential = ∑

k∈Ωv

[
mkv

kqk(p,φ)− m̃k
v
k q̃k(p̃,φ)

]
Stacking these across vehicle models, we can write down the gains from trade to EV producers as:

π
v

π
v

π
v −dv,Sequentialdv,Sequentialdv,Sequential = (Tv ⊗Mv) · l

Here, Mv captures the changes in profits due to a price change of vehicle k when there is disagree-

ment over the battery price for vehicle j (taking into account that the downstream prices for all

other vehicles will be adjusted upon disagreement), ⊗ denotes element-by-element multiplication,

and l is a vector consisting entirely of ones. Similarly, the gains from trade for battery supplier b

from supplying batteries for EV model j are given by

π
b −db

j = ∑
k∈Ωb

[
mkb

k(τ)qk(p)−mkb
k(τ)q̃k(p̃)

]
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Stacking these across vehicle models, the gains from trade to battery suppliers can be expressed:

π
b

π
b

π
b −db,Sequentialdb,Sequentialdb,Sequential = (Tb ⊗ S̃) ·mkmkmkb

The j,k term of S̃ equals qk(p,φ)− q̃k(p̃,φ). S̃ therefore represents the changes in sales upon

disagreement, similar to the matrix S defined in the previous Section B.1, except that it takes into

account that downstream prices are reset upon disagreement.

Profit Derivatives The derivative of the EV maker’s profit with respect to the battery price τ j is:

∂πv

∂τ j
= ∑

k∈Ωv

dπv
k

dτ j
,

and in matrix form, this can be written as (Tv⊗∆∆∆πv

τ ) · l, where ∆∆∆πv

τ collects the derivatives of down-

stream profits with respect to upstream prices. Similarly, the derivative of the battery supplier’s

profit with respect to the battery price τ j is given by:

∂πb

∂τ j
= ∑

k∈Ωb

dπb
k

dτ j
= ∑

k∈Ωb

(
1{k = j} ·qk +mkb

k
dqk

dτ j

)
,

which in matrix form becomes qqq+(Tb⊗∆∆∆
q
τ) ·mkmkmkb, where ∆∆∆

q
τ collects the derivatives of downstream

sales with respect to battery prices.

Upstream Markup Then, the bargaining FOC becomes:

(1−λ
b)
[
(Tb ⊗ S̃) ·mkmkmkb

]
⊗
[
(Tv ⊗∆∆∆

πv

τ ) · l
]
+λ

b [(Tv ⊗Mv) · l]⊗
[
qqq+(Tb ⊗∆∆∆

q
τ) ·mkmkmkb

]
= 0.

From this, we can derive upstream markups as follows:

mkmkmkb =−
[
(1−λ b)

λ b ·Xt · (Tb ⊗ S̃)+(Tb ⊗∆∆∆
q
τ)

]−1

·qqq, (A2)

where Xt is a diagonal matrix defined as:

Xt = diag
([

(Tv ⊗∆∆∆
πv

τ ) · l
]
⊘ [(Tv ⊗Mv) · l]

)
.

The notation ⊘ denotes element-wise division. With the above expression for upstream markups (as

a function only of the bargaining weight λ b and quantities that can be calculated following demand

estimation, such as downstream markups) in hand, the supply-side estimation process follows the

steps as outlined in Section 4.2.

B.3 Linear Pricing
Here we describe the derivation of upstream markups in the simple linear pricing model (Villas-

Boas, 2007). In the first stage of this game, upstream battery suppliers simultaneously choose bat-

tery prices; and in the second stage, downstream EV producers simultaneously choose EV prices,

after observing the battery prices. Note that this is equivalent to the sequential contracting and
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pricing model described above when λ b = 1, i.e., when upstream battery suppliers can make take-

it-or-leave-it offers to downstream EV producers. Setting λ b = 1 in Equation (A2), we obtain the

following equation for upstream markups in the linear pricing model:

mkmkmkb =−(Tb ⊗∆∆∆
q
τ)

−1 ·qqq. (A3)

B.4 Dynamic Bargaining
We assume that battery suppliers are forward-looking while EV makers are myopic (and max-

imize current period profits). Battery suppliers and EV firms bargain over battery prices while

EV firms simultaneously choose EV markups to maximize their profits πv(p) = ∑ j∈Ωv(p j − τ j −
mcv

j)q j(p,φ). We make the assumption that EV producers choose markups (rather than prices) to

ensure that changes in negotiated battery prices directly affect EV prices (i.e., ∂ p j
∂τ j

̸= 0). These

price adjustments influence EV sales and, in turn, battery sales, which subsequently impact battery

suppliers’ experience and future production costs.5 In addition, firms assume that future markups

remain the same as the equilibrium markups in the current period, as we explain more below.

These assumptions capture the essence of LBD dynamic considerations in which upstream

suppliers use low prices to stimulate downstream demand while abstracting away modeling com-

plications that would make the problem intractable (including downstream firms’ incentives to

manipulate prices). An alternative assumption is that upstream battery price negotiations happen

first, followed by downstream EV pricing, i.e., a dynamic extension of the sequential contracting

and pricing model presented in Section B.2, but this alternative approach is less tractable.

Specifically, battery supplier b and EV producer v bargain over battery price τ j to maximize the

following Nash product:

NPt(τ jt ,τ− jt) = (πv
t −dv

t )︸ ︷︷ ︸
v’ gains

(1−λ b) (V b
t −Db

t )︸ ︷︷ ︸
b’ gains

λ b
. (A4)

The downstream profits πv
t and deviation payoffs dv

t are the same as those in Equation (A1). On the

other hand, battery suppliers’ gains from trade are dynamic value functions that incorporate future

profit gains. Battery supplier b’s payoff upon agreement V b
t is defined as:

V b
t = ∑

k∈Ωb
t

mkb
kt ·qkt(mkv

kt +mkb
kt +mckt)+

∞

∑
s=1

β
s

∑
k∈Ωb

t+s

mkb
kt+s ·qkt+s(mkv

kt+s +mkb
kt+s +mckt+s), (A5)

where mkv represents the downstream markup, mkb denotes the upstream markup, and mc is the
total marginal cost of production, consisting of marginal costs of producing batteries and non-

5The preferred bargaining model in the main text (“Simultaneous Contracting and Pricing”) assumes that EV firms
choose prices (not markups). Under this assumption, battery suppliers have no direct influence on downstream prices
or sales, i.e., ∂ p j

∂τ j
= 0. Consequently, battery firms cannot lower the negotiated battery price today to increase experi-

ence tomorrow.
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battery vehicle components (mcb +mcv). The equilibrium quantity q is determined by the final
EV price, which is equal to mkv +mkb +mc.6 The second term in Equation (A5) is the present
discounted sum of future profits and reflects the battery supplier’s dynamic considerations. We set
the time discount rate β to 0.95. Battery supplier’s deviation payoff is defined as:

Db
t = ∑

k∈Ωb
t

mkb
kt · q̃kt(mkv

kt +mkb
kt +mckt)+

∞

∑
s=1

β
s

∑
k∈Ωb

t+s

mkb
kt+s ·qkt+s(mkv

kt+s +mkb
kt+s + m̃ckt+s),

where q̃kt represents sales when product j is withdrawn from the market in time t.7 We consider

one-period deviations similar to Lee and Fong (2013) and other empirical dynamic papers. In the

second term, m̃ct+s refers to future marginal costs when the quantity in period t is q̃t instead of qt .

We impose three simplifying assumptions:

(A1) Battery suppliers believe that the current market structure, consumer preferences, and market

size continue indefinitely:

Ω
v
t+s = Ω

v
t and Ω

b
t+s = Ω

b
t for all s = 1,2, ...

(A2) Battery suppliers do not consider the impact of the battery price on future markups:
∂mkv

kt+s
∂τ jt

=
∂mkb

kt+s
∂τ jt

= 0 for all j,k, and s.

(A3) Battery suppliers assume future markups to remain the same as the equilibrium markups

(mk∗) in the current period:

mkv
jt+s = mkv∗

jt and mkb
jt+s = mkb∗

jt for all j and s.

Adjusting the battery price in the current period affects not only current profits but also the ex-

perience gained by battery suppliers, which influences future production costs. The future profits

depend on future markups and quantities, and thus, the choice of the current battery price impacts

future profits in two ways: (1) by changing future markups and (2) by influencing future sales vol-

umes. Assumption (A2) indicates that battery suppliers do not account for the first channel (the

impact on future markups) when negotiating battery prices with automakers. Instead, they focus

solely on the second channel (how the current battery prices affect future sales quantities via LBD

cost reductions). Lastly, Assumption (A3) suggests that battery suppliers believe future markups

remain at the current equilibrium level. Assumption (A2) is a behavioral assumption that makes

the dynamic analysis tractable, in spirit similar to Gowrisankaran and Rysman (2012) and Benkard,

Jeziorski, and Weintraub (2015).8

6The battery price for EV model k is equal to its production cost plus the battery supplier’s markup τk = mcb
k +mkb

k .
7Markups and costs of other EVs remain unchanged by construction.
8Gowrisankaran and Rysman (2012) develop a dynamic demand model and assume for tractability that the evolution
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With these assumptions, the bargaining FOC with respect to battery prices is as follows:

(1−λ
b)(V b

t −Db
t )

∂πv
t

∂τ jt
+λ

b(πv
t −dv

t )
∂V b

t

∂τ jt
= 0.

The derivative of battery suppliers’ payoff under agreement with respect to battery price becomes:

∂V b
t

∂τ jt
= q jt + ∑

k∈Ωb
t

mkb
kt ·

∂qkt

∂ p jt︸ ︷︷ ︸
Impact on current profit

+
∞

∑
s=1

β
s

∑
k∈Ωb

t

mkb∗
kt ·∑

m

∂qkt+s

∂ pmt+s

dmcmt+s

dτ jt
.︸ ︷︷ ︸

Impact on future profits via LBD

In matrix notation, the bargaining FOC can be rewritten as:

(1−λ
b)
[
(Tb

t ⊗S+
t ) ·mkb

t

]
⊗ [(Tv

t ⊗∆∆∆t) ·mkv
t ]+λ

b [(Tv
t ⊗St) ·mkv

t ]⊗
[
qt +(Tb

t ⊗∆∆∆
+
t ) ·mkb

t

]
= 0,

where ⊗ is the element-wise multiplication. Note that T and S are the same as those defined in
Equation 5. The matrix ∆∆∆t represents the derivative of EV demand in period t with respect to EV
prices. In contrast, S+ is a deviation matrix that incorporates dynamic terms, with ( j,k)-element:

S+jk = (qkt − q̃kt)+
∞

∑
s=1

β
s · (q jt+s − q̃ jt+s). (A6)

In comparison, S only includes the first term in Equation (A6). Similarly, the ∆∆∆
+
t also incorpo-

rates the derivatives of future EV demand due to changes in future marginal costs through LBD.
Specifically, the ( j,k)-element of ∆∆∆

+
t is:

∆
+
jkt =

∂qkt

∂ p jt
+

∞

∑
s=1

β
s
∑
m

∂qkt+s

∂ pmt+s

dmcmt+s

dτ jt
. (A7)

Note that ∆∆∆t only includes the first term in Equation (A7).

Finally, we derive the upstream markup as a function of the downstream markup from the FOCs,

similar to the approach in Section 3.2:

mkb
t =−

[
(1−λ b)

λ b ·Xt · (Tb
t ⊗S+

t )+(Tb
t ⊗∆∆∆

+
t )

]−1

·qt , (A8)

of the value of purchase follows a simple one-dimensional Markov process. Benkard, Jeziorski, and Weintraub (2015)
develop the notion of a partially oblivious equilibrium, where firms only keep track of the states of dominant firms and
the long-run industry state instead of keeping track of the state of every single firm in the industry. This simplifying
assumption allows the dynamic oligopoly model to remain relatively tractable to compute and estimate.
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where Xt is a diagonal matrix:

Xt := diag
(
[(Tv

t ⊗∆∆∆t) ·mkv
t ]⊘ [(Tv

t ⊗St) ·mkv
t ]

)
.

The notation ⊘ denotes element-wise division. Given Equation (A8), the estimation process fol-

lows the steps as outlined in Section 4.2.

C Counterfactual Analyses and Simulations

C.1 Supply Network Formation Model
We conduct counterfactual simulations to examine two types of policies: (1) consumer subsidies

and (2) domestic content requirements. As the domestic content requirement policy likely affects

the supply network and shifts battery sales from foreign to domestic suppliers, we need to de-

velop a network formation model that predicts supply links with and without the domestic content

requirement.

The unit of analysis for the network formation model is an EV model-battery supplier-country-

year combination, with a total of 23,495 observations. The model includes a rich set of controls

for the lagged network structure, a dummy for China’s whitelist policy, the subsidy rate offered

by country c at time t for a given EV model, the experience of the battery supplier, a home bias

dummy, dummies for supplier-OEM pairs that are vertically integrated, and initial attributes of EV

suppliers. Table A8 reports estimation results for the network formation model. The generosity of

subsidies provided is a key variable of interest that generates exogenous variation in the predicted

network formation. It equals the subsidy per EV sold, provided the supply relationship meets the

eligibility requirement for EV consumer subsidies (i.e., the domestic content requirement). During

China’s whitelist policy in 2016-2019, Chinese EV models that sourced batteries from suppliers

not on the list (e.g., non-Chinese battery suppliers) were ineligible for subsidies. The coefficient

estimate is large in magnitude and statistically significant. The other variables have the expected

signs. For example, battery suppliers with more accumulated experience are more likely to be

selected and EV makers are more likely to select battery suppliers with whom they have previous

relationships.

C.2 Algorithm for Counterfactual Analyses
For each counterfactual, we conduct 100 simulations and report the average outcomes. The simu-

lation process involves the following steps. In the initial year of 2013, given EV and battery pro-

duction costs, battery prices are determined by the upstream bargaining FOCs in Equation (4) and

EV prices are set based on the downstream price competition FOCs in Equation (3). Equilibrium
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EV sales are calculated based on these prices. We update the cumulative production experience of

battery producers using these equilibrium EV sales and increased cumulative production experi-

ence results in lower battery production costs in 2014 (LBD). If new EV models enter the market in

2014, we draw a battery supplier based on the link formation model and the predicted probabilities

of supplier selection. Using the updated production costs and battery supply network, equilibrium

prices and sales are recalculated. This process is repeated annually through 2020. Because the

link formation process is stochastic, we simulate the equilibrium path from 2013 to 2020 a total

of 100 times. The welfare tables and figures are based on the average outcome across these 100

simulations.

In the whitelist policy simulations, EV models are allowed to choose a battery supplier in 2016,

the policy’s beginning year. Hence, in the simulations where the whitelist policy is in place, EV

models have two opportunities to choose a battery supplier: once upon entering the market and

again in 2016 (for those that entered before 2016). One of the counterfactuals (Table 7) examines

the welfare implications of postponing the whitelist to 2021-2025 after the final sample year. To

simulate firm profits and consumer surplus from 2021 to 2025, we assume that the market structure

and global subsidies during this period remain the same as the final sample year 2020. Specifi-

cally, EV firms, EV models, and battery suppliers are assumed to be the same as in 2020. Note

that China’s subsidy rates declined steadily from 2013 to 2020, while subsidies in other regions

fluctuated. As battery suppliers accumulate production experience, the learning-induced reduction

in production costs persists throughout the forward simulation. All EV models choose a battery

supplier in the first year of the forward simulation (2021) when the whitelist becomes effective.

The subsequent steps of the simulation follow the procedures described above.

C.3 Environmental Benefits of EV Adoption
This section describes the environmental benefits of EVs relative to gasoline vehicles. Replacing

a gasoline vehicle with an electric vehicle (EV) could deliver environmental benefits through re-

ductions in both CO2 emissions and local air pollution. These benefits are monetized as carbon

benefits (via the social cost of carbon) and health benefits (via reduced pollutant exposure). We

explain how these two items are calculated below.

Carbon Reduction Benefit The carbon reduction benefit reflects the avoided economic damages

from reduced CO2 emissions. A typical gasoline vehicle in the U.S. emits 4.6 tons of CO2 annually,

assuming an average annual vehicle miles traveled (VMT) of 11,500 miles (FHWA, 2022). The

average annual VMTs for China, Europe, and South Korea / Japan are 10,000 miles/year (CMT,

2022), 9,500 miles/year (Eurostat, 2020), and 10,200 miles/year (KTI, 2023), respectively. Carbon

A-12



emission reductions when a gasoline vehicle is replaced with an EV depends on the carbon intensity

of electricity grids (International Energy Agency, 2023). The emission reduction factor is estimated

to be 50% for China (due to its coal-heavy grid), 70% for the U.S. (due to its relatively clean grid

with renewables and natural gas), 60% for Europe (due to its moderately clean grid with significant

renewables), and 52.5% for South Korea and Japan (due to their mixed reliance on fossil fuels

and nuclear energy). Finally, the latest estimate of the social cost of carbon is $185 per ton of

CO2, based on comprehensive global evidence (Rennert,Kevin and Others, 2022). The lifetime

CO2 savings for each region is calculated as: 4.6 tons of CO2 per year ×Region VMT
US VMT × Emission

Reduction Factor × Vehicle lifetime of 12 years.

Health Benefit The health benefit is derived from reductions in local air pollutants such as PM2.5,

NOx, and VOCs. These pollutants are shown to cause respiratory and cardiovascular diseases,

premature deaths, and other health issues. The health costs of different pollutants are: $100,000

to $200,000 per ton of PM2.5 (HEI, 2022), $10,000 to $40,000 per ton of NOx (EPA, 2021), and

$5,000 to $15,000 per ton of VOCs (Holland et al., 2016). The total health benefit is calculated

similarly to carbon reduction benefit.

Environmental Benefits The lifetime environmental benefits of replacing a gasoline vehicle with

an EV are summarized in Table A2. The benefit ranges from $16,465 (South Korea & Japan) to

$19,506 (China) as shown in Column (4). Regional variations reflect differences in annual vehicle

miles traveled and grid carbon intensity.

The calculations above are based on the environmental performance of an average gasoline

vehicle in the fleet, implicitly assuming that EVs replace an average gasoline vehicle. Xing, Leard,

and Li (2021) document that the EVs tend to replace more fuel efficient gasoline vehicles and

hybrid vehicles. Therefore, ignoring the non-random replacement of gasoline vehicles would result

in overestimating emissions benefits of EVs by 39 percent. To be on the conservative side, we

scale down the environmental benefits by half (shown in Column (5) and use these estimates in our

welfare analysis.

Table A2: Lifetime Environmental Benefits Of Replacing A Gasoline Vehicle With An EV

(1) (2) (3) (4) (5)
Region CO2 Savings Carbon Benefit Health Benefit Total Benefit ($)

(ton/year) ($) ($) Upper Lower
China 2.3 5,106 14,400 19,506 9,753
United States 3.22 7,141 12,000 19,141 9,571
Europe 2.76 6,124 10,800 16,924 9,462
South Korea & Japan 2.42 5,365 11,100 16,465 8,233

Notes: The calculation of environmental benefits assumes 12 years of vehicle lifetime. The lower bound
recognizes the fact EVs tend to replace more fuel efficient vehicles than an average gasoline vehicle.
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D Appendix Figures
Figure A1: Global EV Diffusion

(a) EV Sales by Region
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(b) ZEV Targets and Market Shares
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Notes: In Panel (a), the bars (left y-axis) report the annual sales of new EVs (BEVs and PHEVs) by region from 2012
to 2023. China, Europe, and the U.S. accounted for over 95% of global EV sales during this period. The grey line
(right y-axis) depicts the global share of EVs in new vehicle sales. Panel (b) depicts the zero-emission vehicle (ZEV)
targets and market shares over time by country. ZEVs include EVs and fuel cell vehicles but are predominantly EVs.
Source: International Energy Agency and the International Council on Clean Transportation.
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Figure A2: Battery Supplier Network

(a) 2013 Network (b) 2020 Network

Notes: The graphs depict the vertical relationship between battery suppliers (on the left) and EV producers (on the right)
in 2013 (Panel (a)) and 2020 (Panel (b)). The top 6 battery suppliers and top 8 EV producers are shown separately,
illustrating an oligopoly market structure in both the upstream and downstream sectors. The thickness of the lines
represents the battery sales volume in units.

Figure A3: EV Subsidies

(a) Average Subsidy by Country (b) Subsidy Design in China

Notes: Panel (a) shows the average federal subsidy per eligible EV by country during 2013-2020. Panel (b) shows the
subsidy schedule for BEVs in China, where the subsidy amount is based on driving range (Barwick, Kwon, and Li,
2024).
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Figure A4: China’s Whitelist Policy

(a) Domestic Sourcing of Batteries (b) Battery sales

(c) Residualized Vehicle Price (d) Battery Export Price

Notes: The two dotted vertical lines depict the timing of China’s whitelist policy. Panel (a) shows the share of EV
models sourcing from Chinese battery suppliers separately for EV models sold in China (red solid line, left y-axis)
and those sold elsewhere (blue dashed line, right y-axis). Panel (b) shows the growth of (average) experience of
battery suppliers over time separately for the top two Chinese suppliers (BYD and CATL) and the leading non-Chinese
suppliers (AESC, Panasonic, LG, and Samsung). Panel (c) depicts the average EV price by year for the two groups.
Panel (d) shows the free-on-board battery price ($/kWh) by country-of-origin from UN Comtrade. The price unit in
UN Comtrade was $/liter, which we transform to $/kWh based on the average energy density for each year.

A-16



Figure A5: Instruments for Experience and Battery Markups

(a) Battery Supplier Experience (b) Battery Markup

(c) EV Producer Experience

Notes: Binned scatter plots illustrate the strength of the IVs for the experience and markups of battery suppliers (Panels
(a) and (b)), as well as the IV for the experience of EV producers (Panel (c)). Residuals are obtained from partialling
out vehicle attributes, as well as country, brand, and year fixed effects.
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Figure A6: Impact of China’s Whitelist Policy (Early and Late) on Battery Production

(a) Early Whitelist, Chinese Battery (b) Early Whitelist, JP & KR Battery

(c) Late Whitelist, Chinese Battery (d) Late Whitelist, JP & KR Battery

Notes: Panel (a) illustrates EV battery production by Chinese suppliers under scenarios with and without China’s
observed whitelist policy in 2016-2019. Panel (b) presents battery production by non-Chinese suppliers under the
same scenarios. Panels (c) and (d) repeat the exercise and depict the impact on forward-simulated battery production
if the whitelist policy was implemented between 2021 and 2024 instead.
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E Appendix Tables
Table A3: LBD Estimation Results With Sequential Contracting and Pricing

Bargaining Parameter λ b = 0 λ b = 0.25 λ b = 0.5 λ b = 0.75 λ b = 1
(1) (2) (3) (4) (5)

Battery Cost Parameters
Learning Parameter γE -0.101 -0.106 -0.111 -0.117 -0.123

(0.05) (0.051) (0.052) (0.052) (0.053)
γ0(1000$/kWh) 0.873 0.863 0.851 0.839 0.826

(0.163) (0.167) (0.165) (0.162) (0.159)
BK * Time Trend -0.035 -0.034 -0.032 -0.031 -0.030

(0.007) (0.007) (0.007) (0.006) (0.006)
BK * log(Plant Capacity) -0.081 -0.079 -0.076 -0.073 -0.070

(0.037) (0.036) (0.035) (0.034) (0.033)
BK * Battery Chemistry Dummies ✓ ✓ ✓ ✓ ✓
BK * Lithium Prices ✓ ✓ ✓ ✓ ✓

Vehicle Cost Parameters
EV Experience -0.979 -0.985 -0.989 -0.991 -0.992

(0.431) (0.425) (0.419) (0.413) (0.407)
PHEV 2.781 2.350 1.917 1.491 1.075

(1.133) (1.114) (1.093) (1.072) (1.05)
Horsepower 0.252 0.247 0.241 0.236 0.230

(0.007) (0.007) (0.007) (0.007) (0.007)
Volume 0.906 0.834 0.757 0.676 0.592

(0.24) (0.236) (0.231) (0.226) (0.221)

Fixed Effects
Country ✓ ✓ ✓ ✓ ✓
EV Brand ✓ ✓ ✓ ✓ ✓
Battery Supplier ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓

Notes: This table reports supply-side parameter estimates under sequential contracting and pricing (Appendix B.2),
with different values of the bargaining parameter λ b. Estimation is done analogously as that in Table 3. See Table 3
for variable definitions.
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Table A4: LBD Estimation Results with Forward-Looking Battery Suppliers

Bargaining Parameter λ b = 0 λ b = 0.25 λ b = 0.5 λ b = 0.75 λ b = 1
(1) (2) (3) (4) (5)

Battery Cost Parameters
Learning Parameter γE -0.099 -0.105 -0.110 -0.115 -0.120

(0.051) (0.053) (0.055) (0.058) (0.06)
γ0(1000$/kWh) 0.873 0.856 0.839 0.820 0.801

(0.168) (0.168) (0.168) (0.168) (0.168)
BK * Time Trend -0.035 -0.033 -0.032 -0.031 -0.030

(0.007) (0.007) (0.006) (0.006) (0.006)
BK * log(Plant Capacity) -0.081 -0.079 -0.077 -0.075 -0.073

(0.037) (0.036) (0.035) (0.034) (0.034)
BK * Battery Chemistry Dummies ✓ ✓ ✓ ✓ ✓
BK * Lithium Prices ✓ ✓ ✓ ✓ ✓

Vehicle Cost Parameters
EV Experience -0.973 -0.981 -0.992 -1.005 -1.021

(0.43) (0.424) (0.419) (0.413) (0.408)
PHEV 2.778 2.314 1.864 1.425 0.999

(1.132) (1.113) (1.094) (1.076) (1.059)
Horsepower 0.251 0.247 0.242 0.237 0.232

(0.007) (0.007) (0.007) (0.007) (0.007)
Volume 0.912 0.845 0.777 0.708 0.636

(0.24) (0.235) (0.231) (0.226) (0.222)

Fixed Effects
Country ✓ ✓ ✓ ✓ ✓
EV Brand ✓ ✓ ✓ ✓ ✓
Battery Supplier ✓ ✓ ✓ ✓ ✓
Year ✓ ✓ ✓ ✓ ✓

Notes: This table reports supply-side parameter estimates when battery firms are forward-looking (with a discount
factor of 0.95) (Appendix B.4), with different values of the bargaining parameter λ b. Estimation is done analogously
as that in Table 3. See Table 3 for variable definitions.
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Table A5: LBD: Spillovers Across Firms

(1) (2)
No spillovers Spillovers

Battery Cost Parameters
Learning Parameter γE -0.113 -0.173

(0.052) (0.093)
γ0(1000$/kWh) 0.858 1.029

(0.164) (0.371)
BK * Time Trend -0.032 -0.022

(0.006) (0.006)
BK * log(Plant Capacity) -0.078 -0.062

(0.035) (0.018)
Within-country Spillover, θ 0.044

(0.131)
BK * Battery Chemistry Dummies ✓ ✓
BK * Lithium Prices ✓ ✓

Vehicle Cost Parameters
EV Experience -0.997 -1.032

(0.421) (0.412)
PHEV 2.172 2.064

(1.104) (1.102)
Horsepower 0.244 0.243

(0.007) (0.007)
Volume 0.807 0.877

(0.232) (0.23)
Bargaining Parameter
Bargaining Weight, λ b 0.275 0.274

(0.132) (0.133)
Fixed Effects
Country ✓ ✓
EV Brand ✓ ✓
Battery Supplier ✓ ✓
Year ✓ ✓

Notes: This table reports supply-side parameter estimates allowing for within-country across-firm learning spillovers.
Column(1) is identical to Column (1) from Table 3. In Column (2), we include the experience of rival firms in the
same country scaled by an estimated parameter θ . We instrument for rival experience using predicted rival experi-
ence constructed based on Equation (9). Estimation is done analogously as that in Table 3. See Table 3 for variable
definitions.
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Table A6: LBD Estimates Controlling for Firm-Level Patent Stock

(1) (2)

Battery Cost Parameters
Learning Parameter γE -0.113 -0.116

(0.052) (0.054)
γ0(1000$/kWh) 0.858 0.924

(0.164) (0.167)
BK * Time Trend -0.032 -0.022

(0.006) (0.009)
BK * log(Plant Capacity) -0.078 -0.085

(0.035) (0.036)
BK * log(Cumulative Patents) -0.023

(0.013)
BK * Battery Chemistry Dummies ✓ ✓
BK * Lithium Prices ✓ ✓

Vehicle Cost Parameters
EV Experience -0.997 -1.196

(0.421) (0.411)
PHEV 2.172 1.947

(1.104) (1.084)
Horsepower 0.244 0.239

(0.007) (0.007)
Volume 0.807 0.723

(0.232) (0.226)
Bargaining Parameter
Bargaining Weight, λ b 0.275 0.366

(0.132) (0.091)

Fixed Effects
Country ✓ ✓
EV Brand ✓ ✓
Battery Supplier ✓ ✓
Year ✓ ✓

Notes: This table reports supply-side parameter estimates controlling for firm innovations. Column(1) is identical to
Column (1) from Table 3. In Column (2), we control for firm-level innovation activities by adding the number of
cumulative patents (in logarithm) applied for by the battery firm since 2008. We instrument for the patent variable
using the battery firm’s exposure to industrial policies targeting the EV sector. Specifically, we construct for each firm:
(1) a weighted sum of current year industrial policies targeted at the EV sector across countries, and (2) a weighted
sum of cumulative EV industrial policies across countries. The weights are the battery firm’s predicted sales in a given
country, q̂ jct(X jcs,φ jcs) (the same predicted sales that are used to construct the IV for experience). We then include both
these IVs directly as well as their interaction with battery capacity. The data source and the construction of both the
patent and the industry policy variables are discussed in detail in Barwick et al. (2024). Estimation is done analogously
as that in Table 3. See Table 3 for variable definitions.
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Table A7: Impact of Increase in CATL / Panasonic Experience in 2013

CATL experience Panasonic experience

China Rest of World Global Japan Rest of World Global

∆ CATL or Panasonic Profit 1.00 - 1.00 1.00 - 1.00
∆ Other Battery Profit -0.02 0.00 -0.03 -0.02 -0.02 -0.04
∆ EV Variable Profit 2.53 -0.01 2.53 0.02 2.41 2.43
∆ Consumer Surplus 3.25 0.00 3.25 0.02 2.89 2.91
∆ Expenditure 2.19 0.00 2.19 0.00 1.69 1.70

∆ Welfare 4.57 -0.01 4.55 1.01 3.59 4.60

Notes: This table shows welfare changes resulting from an (exogenous) increase in the experience of CATL or Pana-
sonic starting in 2013 (and continuing thereafter as experience accumulates). We normalize changes in the CATL or
Panasonic profits to one. Changes in battery firms’ profits in the home country are primarily driven by gains in CATL’s
and Panasonic’s profit. All other values represent changes relative to the CATL or Panasonic profits.

Table A8: Network Formation Model for Counterfactual Simulations

Dep. var.: Link Formed
Eligible Subsidy 0.471∗∗∗

(0.111)
log(Supplier Experience) 0.666∗∗∗

(0.159)
Supplier-OEM Lagged Link 2.884∗∗∗

(0.199)
Supplier-OEM Lagged Link, Same Country 0.501∗∗∗

(0.127)
Dummies for Vertically Integrated Firms Yes
Initial Link, Home Bias Yes
Fixed Effects for Top 6 Suppliers Yes
Supplier Characteristics Yes
Log-likelihood -1265.59
Observations 23495

Notes: The unit of analysis is a model-country-year-battery supplier combination. The dependent variable is one if the
EV producer (i.e., OEM) for that EV model sources battery from a given battery supplier, and zero otherwise. The
results are from a conditional logit regression. Standard errors are clustered at the country - OEM level.
We assume the choice set for each OEM includes every top 15 battery supplier that had already entered the global
market. We also allow EV makers to choose a new battery supplier for each EV model in the year 2016 (even for
existing models), the beginning year of China’s whitelist policy. The eligible subsidy is the subsidy per EV sold,
provided the supply relationship meets the eligibility requirement for EV consumer subsidies. From 2016-2019, EVs
in China were ineligible for subsidies if their battery supplier was not on the whitelist. We control for the lagged
network structure using dummies: one indicating if the supplier-OEM pair had a previous supply relationship, and
another if they had a previous supply relationship in the same country.We also include a home bias dummy indicating
if the supplier-OEM pair has the same country of origin. We include dummies for all supplier-OEM pairs that are
vertically integrated. We also include the age of each supplier, and the following initial characteristics of the supplier:
the average battery capacity, the most common chemistry of batteries initially supplied, and the average number of
models for which the firm was a battery supplier. Finally, fixed effects for each of the top 6 battery suppliers are
included.
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Table A9: Impact of Consumer Subsidies Including Environmental Benefits

China Europe JP & KR US & CA Global

Panel (a): Impact of US Subsidies

∆ Welfare ($ bn.) 0.55 2.67 5.66 15.32 24.20

∆ Consumer Surplus (+) 0.14 0.96 0.04 13.35 14.48
∆ Battery Variable Profit (+) -0.21 - 4.59 - 4.38
∆ EV Variable Profit (+) 0.51 1.67 1.03 7.85 11.06
∆ Gov’t Expenditure (-) -0.05 0.39 0.01 13.10 13.45
∆ Environ. Benefit (+) 0.06 0.43 0.02 7.23 7.73

∆ EV Sales 6,646 50,224 2,266 754,788 813,925

Panel (b): Impact of European Subsidies

∆ Welfare ($ bn.) 0.83 9.39 5.52 2.81 18.54

∆ Consumer Surplus (+) 0.15 14.63 0.04 0.89 15.71
∆ Battery Variable Profit (+) -0.11 - 3.97 - 3.87
∆ EV Variable Profit (+) 0.68 4.82 1.49 1.80 8.79
∆ Gov’t Expenditure (-) -0.04 16.44 0.01 0.36 16.77
∆ Environ. Benefit (+) 0.08 6.36 0.03 0.49 6.95

∆ EV Sales 8,650 751,021 2,766 50,749 813,185

Panel (c): Impact of Chinese Subsidies

∆ Welfare ($ bn.) 56.20 1.30 0.12 1.40 59.02

∆ Consumer Surplus (+) 27.04 0.67 0.01 0.33 28.05
∆ Battery Variable Profit (+) 7.52 - -0.11 - 7.41
∆ EV Variable Profit (+) 17.60 0.62 0.21 1.02 19.45
∆ Gov’t Expenditure (-) 22.27 0.24 0.00 0.13 22.65
∆ Environ. Benefit (+) 26.31 0.25 0.01 0.18 26.75

∆ EV Sales 2,696,916 30,267 732 18,780 2,746,696

Notes: This table shows the impact (aggregated during 2013-2020) of consumer subsidies on social welfare, similar
to Table 5, except that the social welfare includes environmental benefits (report in the second to the last row in
each panel). The environmental benefits of EV adoption are calculated based on the lower bound estimates of the
environmental benefits of replacing a gasoline vehicle with an EV in Column (5) in Table A2. Panel (a) estimates
the impact of US subsidies by comparing scenarios with and without US subsidies but holding consumer subsidies in
China and Europe fixed. Panels (b) and (c) are obtained similarly.
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Table A10: Impact of Consumer Subsidies without Learning

China Europe JP & KR US & CA Global

Panel (a): Impact of US Subsidies

∆ Welfare 0.19 0.90 1.78 1.47 4.33

∆ Consumer Surplus 0.00 0.00 0.00 3.87 3.87
∆ Battery Variable Profit 0.03 - 1.21 - 1.24
∆ EV Variable Profit 0.16 0.90 0.57 1.58 3.22
∆ Gov’t Expenditure 0.00 0.00 0.00 3.99 3.99

Panel (b): Impact of European Subsidies

∆ Welfare 0.30 2.06 1.48 0.21 4.05

∆ Consumer Surplus 0.00 5.25 0.00 0.00 5.25
∆ Battery Variable Profit 0.06 0.01 1.13 0.00 1.19
∆ EV Variable Profit 0.25 2.22 0.36 0.21 3.04
∆ Gov’t Expenditure 0.00 5.43 0.00 0.00 5.43

Panel (c): Impact of Chinese Subsidies

∆ Welfare 6.00 0.21 0.27 0.22 6.71

∆ Consumer Surplus 6.06 0.00 0.00 0.00 6.06
∆ Battery Variable Profit 1.66 0.00 0.19 0.00 1.85
∆ EV Variable Profit 4.33 0.21 0.08 0.22 4.85
∆ Gov’t Expenditure 6.04 0.00 0.00 0.00 6.04

Notes: This table shows the impact (aggregated during 2013-2020) of consumer subsidies on social welfare, similar to
Table 5, except that it shuts down LBD. Panel (a) estimates the impact of US subsidies by comparing scenarios with
and without US subsidies but holding consumer subsidies in China and Europe fixed. Panels (b) and (c) are obtained
similarly.
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