
NBER WORKING PAPER SERIES

LIMITED RISK TRANSFER BETWEEN INVESTORS:
A NEW BENCHMARK FOR MACRO-FINANCE MODELS

Xavier Gabaix
Ralph S. J. Koijen
Federico Mainardi
Sangmin Simon Oh

Motohiro Yogo

Working Paper 33336
http://www.nber.org/papers/w33336

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
January 2025

For comments and suggestions, we thank Ron Akke, Eric Baker, Philippe van der Beck, John 
Campbell, Sylvain Catherine, Will Diamond, Dan Golosovker, Luigi Guiso, Jens Kvaerner, Amar 
Patel, Stavros Panageas, Tarun Ramadorai, and participants at various conferences and seminars. 
Gabaix thanks the Ferrante Fund for financial support. Koijen acknowledges financial support 
from the Center for Research in Security Prices at the University of Chicago and the Fama Research 
Fund at the University of Chicago Booth School of Business. This paper supersedes our previous 
working paper, “Asset demand of U.S. households.” The views expressed herein are those of the 
authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2025 by Xavier Gabaix, Ralph S. J. Koijen, Federico Mainardi, Sangmin Simon Oh, and 
Motohiro Yogo. All rights reserved. Short sections of text, not to exceed two paragraphs, may be 
quoted without explicit permission provided that full credit, including © notice, is given to the 
source.



Limited Risk Transfer Between Investors: A New Benchmark for Macro-Finance Models
Xavier Gabaix, Ralph S. J. Koijen, Federico Mainardi, Sangmin Simon Oh, and Motohiro
Yogo
NBER Working Paper No. 33336
January 2025
JEL No. E7, G1, G4, G5

ABSTRACT

We define risk transfer as the percent change in the market risk exposure for a group of investors 
over a given period. We estimate risk transfer using novel data on U.S. investors' portfolio holdings, 
flows, and returns at the security level with comprehensive coverage across asset classes and broad 
coverage across the wealth distribution (including 400 billionaires). Our key finding is that risk 
transfer is small with a mean absolute value of 0.65% per quarter. Leading macro-finance models 
with heterogeneous investors predict risk transfer that exceeds our estimate by a factor greater than 
ten because investors react too much to the time-varying equity premium. Thus, the small risk 
transfer is a new moment to evaluate macro-finance models. We develop a model with inelastic 
demand, calibrated to the standard asset pricing moments on realized and expected stock returns, 
that explains the observed risk transfer. The model is adaptable to other macro-finance 
applications with heterogeneous households.

Xavier Gabaix
Department of Economics 
Harvard University
Littauer Center
1805 Cambridge St
¸˛Cambridge, MA 02138
and NBER
xgabaix@fas.harvard.edu

Ralph S. J. Koijen
University of Chicago
Booth School of Business 
5807 S Woodlawn Ave 
Chicago, IL 60637
and NBER
Ralph.koijen@chicagobooth.edu

Federico Mainardi
Booth School of Business
University of Chicago
5807 S. Woodlawn Avenue 
Chicago, IL 60637
fmainard@chicagobooth.edu

Sangmin Simon Oh
Columbia Business School 
665 W 130th St
New York, NY 10027
oh@gsb.columbia.edu

Motohiro Yogo
Department of Economics 
Princeton University
Julis Romo Rabinowitz Building 
Princeton, NJ 08544
and NBER
myogo@princeton.edu



1 Introduction

We propose risk transfer as a new micro moment to evaluate macro-finance models. We
define risk transfer as the percent change in the market risk exposure for a group of investors
over a given period. The wealth-weighted sum of risk transfer is zero in the population
of investors. However, the absolute risk transfer for a group of investors, averaged in the
time series, is highly informative about a core mechanism of macro-finance models with
heterogeneous households.

Heterogeneity in risk aversion (Chan and Kogan 2002; Gârleanu and Panageas 2015;
Kekre and Lenel 2022) or optimism (Martin and Papadimitriou 2022) is a leading explanation
for the observed variation in stock allocation (or market risk exposure) across households.
Moreover, these models generate realistic variation in the equity premium over time. In
these models, households that have lower risk aversion or are more optimistic have higher
stock allocations, and they become relatively wealthier after a positive shock to the stock
market. These households want to increase their market risk exposure, resulting in a positive
risk transfer. On the opposite side, households that have higher risk aversion or are more
pessimistic become relatively poorer after a positive shock to the stock market. These
households want to decrease their market risk exposure, resulting in a negative risk transfer.
These e!ects amplify the initial shock and lower the equity premium. Although these models
are calibrated to asset prices, they are not tested on the core mechanism of risk transfer.

To estimate risk transfer, we need high quality panel data on household portfolios with
comprehensive coverage across asset classes and broad coverage across the wealth distri-
bution. We use novel data on U.S. investors’ portfolio holdings, flows, and returns at the
security level from Addepar, which is a wealth management platform for investment advi-
sors. The asset pricing theory makes predictions about market risk exposures rather than
portfolio shares. Therefore, we map portfolio holdings to market risk exposures, using es-
timated betas by asset class. We use liquid assets (i.e., equity and fixed income securities)
only because illiquid assets (e.g., private equity and direct private companies) are di"cult
to trade and would mechanically lower our estimate of risk transfer. The key finding is that
mean absolute risk transfer is 0.65% per quarter (e.g., market risk exposure changes from 0.5
to 0.50325). We find consistently low estimates for groups of households sorted by market
risk exposure.

Leading macro-finance models, calibrated to explain the time-varying equity premium,
imply much bigger risk transfer. For example, a traditional model of portfolio choice (i.e.,
mean-variance asset demand) predicts risk transfer of 270%, which is over two orders of mag-
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nitude greater than our estimate of 0.65%. The heterogeneous investor model of Gârleanu
and Panageas (2015) predicts risk transfer of 78% for the high risk aversion group and 3.5%
for the low risk aversion group, which exceed our estimate by a factor greater than ten. The
problem with these macro-finance models is that rational investors react too much to the
time-varying equity premium.

We propose an alternative model in which investors have a dampened reaction to the
time-varying equity premium, which implies inelastic demand in the long run (Gabaix and
Koijen 2023). We also add slow adjustment toward the target stock allocation to be more
consistent with observed portfolios. Beyond asset pricing, our modeling techniques may be
useful in other macro-finance applications that rely on realistic portfolio choice (Kaplan,
Moll, and Violante 2018).

This paper would not be possible without the Addepar data, which we briefly describe.
Addepar provides wealth managers with real-time portfolio information to guide investment
decisions. Whenever possible, Addepar receives daily data on portfolio holdings and flows
from custodians, which they use to compute daily dollar returns. In this paper, we aggregate
portfolio flows and returns to a monthly frequency, paired with monthly snapshots of portfolio
holdings. Addepar maps security-level data to narrow asset classes (e.g., U.S. equity, private
equity, and put options) and broad asset classes (e.g., equity and fixed income). Our sample
covers January 2016 to March 2023. The platform has been growing rapidly during our
sample period, and the total assets (number of portfolios) have increased from $180 billion
(13,765) to $2.33 trillion (235,350). Balloch and Richers (2023) is the first paper to use the
Addepar data, documenting how asset class allocations and investment returns vary across
the wealth distribution. We use the same data but focus on how investors rebalance their
market risk exposure to test macro-finance models.

The Addepar data have two important advantages relative to household surveys and
other administrative data for U.S. households. First, the data cover ultra-high-net-worth
(UHNW) investors with nearly a thousand portfolios with assets exceeding $100 million and
439 portfolios with assets exceeding $1 billion at some point in our sample. This group of
households, which is particularly relevant for asset prices, is under-represented in household
surveys. This broad coverage across the wealth distribution gives us a representative estimate
of risk transfer for U.S. households. Second, we have comprehensive coverage across asset
classes at the security level. The data cover public and private assets (including derivatives)
as well as direct and indirect holdings (e.g., mutual funds, exchange-traded funds, and hedge
funds). We cannot get such broad and detailed coverage for most U.S. institutional investors.
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Related literature We o!er risk transfer as a new statistic to test macro-finance models
with heterogeneous households. We follow a long literature that provides descriptive statis-
tics that are informative about heterogeneity in household consumption, income, wealth,
and portfolios. The literature on household consumption documents heterogeneous risk ex-
posures across households (Mankiw and Zeldes 1991; Brav, Constantinides, and Geczy 2002;
Vissing-Jørgensen 2002). The literature on household income documents heterogeneous ex-
posure to systematic and idiosyncratic risk (Guvenen, Ozkan, and Song 2014; Guvenen et
al. 2021) and the dynamics of income inequality (Piketty and Saez 2003). The literature
on household wealth documents the dynamics of wealth inequality and its relation to asset
prices (Campbell, Ramadorai, and Ranish 2019; Fagereng et al. 2020; Smith, Zidar, and
Zwick 2023; Gomez and Gouin-Bonenfant 2024).

The literature on household portfolios studies how household portfolio choice relates
to risk preferences (Calvet, Campbell, and Sodini 2007; Egan, MacKay, and Yang 2021),
income risk (Heaton and Lucas 2000; Bender et al. 2022; Catherine, Sodini, and Zhang
2022), life-cycle e!ects (Ameriks and Zeldes 2004; Betermier et al. 2022; Cole et al. 2022;
Balasubramaniam et al. 2023), and beliefs (Campbell, Ramadorai, and Ranish 2014; Giglio
et al. 2021). This literature also studies the determinants of trading (Barber and Odean 2000;
Grinblatt and Keloharju 2000; Calvet, Campbell, and Sodini 2009; Hoopes et al. 2016) and
stock market participation (Anagol, Balasubramaniam, and Ramadorai 2015). We provide
a more detailed summary of this literature in Appendix B.

This paper also contributes to the literature on demand system asset pricing (Koijen and
Yogo 2019; 2020; Gabaix and Koijen 2023). The goal of this literature is to jointly understand
asset prices, portfolio holdings and flows, firm characteristics, and macro variables. This
literature confirms the earlier evidence that asset demand is much less elastic than predictions
of standard asset pricing models (Harris and Gurel 1986; Shleifer 1986; Chang, Hong, and
Liskovich 2014). Since only institutional holdings data are publicly available in the United
States, this literature imputes the aggregate holdings of the household sector as the di!erence
between the shares outstanding and the aggregate institutional holdings. Moreover, we
observe portfolio holdings of both equity and fixed income for only a subset of institutions,
namely mutual funds and insurance companies. The Addepar data provide much more detail
on the portfolio holdings of the household sector across households and asset classes. These
data allow us to estimate risk transfer and to ask whether households, particularly the very
wealthy ones, are an important stabilizing force in financial markets.
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Outline The paper proceeds as follows. In Section 2, we introduce the data, discuss how
we construct our sample, and we provide summary statistics. In Section 3 we define risk
transfer, and detail how rational models tend to predict very high value of risk transfer. We
then conclude. Proofs are in Section D.1 of the online appendix.

2 Data and summary statistics

2.1 Definitions of assets and flows

We denote time by t and investors by i, i = 1, ..., I. We index security-level asset holdings
by a (e.g., Apple stock), which can be aggregated to narrow asset classes that we index by n

(e.g., U.S. equities or U.S. Treasuries) or broad asset classes that we index by c (e.g., equities
or fixed income). We provide the precise definitions of asset classes in Section 2.3. We use
narrow asset classes to index variables when defining the notation, and this notation extends
to individual securities and broad asset classes.

We denote dollar assets by Aint, dollar flows by Fint, and dollar returns by R$
int. We

also observe time-weighted returns in our data, which we denote by rint. The inter-temporal
budget constraint is then given by

Aint = Ain,t→1 + R$
int + Fint. (1)

We denote aggregate assets by Ait := ∑
n Aint, aggregate flows by Fit := ∑

n Fint, and aggre-
gate dollar return by R$

it := ∑
n R$

int. We define portfolio weights as ωint = Aint

Ait

.
We denote flows, expressed as a fraction of total assets, by fint = Fint

ADH

i,t→1
, where ADH

i,t→1 :=
1
2(Ait → R$

it + Ai,t→1) = Ai,t→1 + 1
2Fit. Our definition of flows follows Davis and Haltiwanger

(1992) and, when Ai,t→1 is close to zero, it leads to a definition of flows that is more robust
than the more elementary fint = Fint

Ai,t→1
. In this definition, Ait → R$

it corresponds to end-of-
period wealth, adjusted for valuation e!ects. We then also define

fit = Fit

ADH
i,t→1

=
∑

n

Fint

ADH
i,t→1

=
∑

n

fint, (2)

which satisfies fit ↑ [→2, 2].
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2.2 Data sources

Addepar Our primary data source is Addepar. Addepar is a wealth management platform
that specializes in data aggregation, analytics, and reporting for complex investment portfo-
lios that include public and private assets. It provides asset owners and advisors an overview
of their financial positions. When possible, Addepar directly receives data on holdings and
flows from custodians at a daily frequency, and recovers the dollar returns by imposing the
budget constraint.

As of November 2023, Addepar works with 1,000 financial advisors, family o"ces, and
large financial institutions that manage more than $4.5 trillion of assets on the company’s
platform, ranging from the a#uent to the ultra-high-net-worth investor segments.

Our sample contains monthly security-level data from January 2016 to March 2023. We
receive monthly updates with a delay of six months. Given our main focus on flows, we
aggregate the data to quarterly observations, as it may take some time for households to
rebalance their portfolios in response to new information.1 We have data on public and
private assets. The holdings include both direct and indirect holdings (such as ETFs, hedge
funds, and mutual funds). Portfolios are the unit of observation in Addepar. The same
household or family can have multiple portfolios.2

Addepar imposes two additional screens for data confidentiality. First, advisors that
account for more than 10% of all portfolios in a given month are removed. Once a portfolio
is removed via this process, it will not appear in subsequent months. Second, Addepar
removes concentrated positions that exceed $1 billion in equities or companies that can be
traced back to reveal a household’s identity. We do observe the portfolio identifiers that are
a!ected by this screen in each month. There are 140 such accounts in our sample.

Our sample of Addepar data includes information on 272,247 distinct client portfolios
from 2016.Q1 to 2023.Q1. In Figure 1, we summarize the number of portfolios in Panel A
and households’ total assets on the platform in Panel B before imposing any screens. The
number of portfolios grows from 13,765 in 2016.Q1 to 235,350 in 2023.Q1. The sharp increase
in the number of portfolios reflects the growth of the Addepar platform during our sample
period. Households’ total assets grow from $180 billion to $2.33 trillion during the same
period.

In Figure 2, we further report the number of billionaires that we observe in each quarter

1. We provide details on minor cleaning steps performed before aggregating the monthly data at a quarterly
frequency in Online Appendix C.3.

2. Occasionally, we observe that two portfolios have identical positions, presumably because they belong
to the same family. However, we cannot connect those portfolios with the data that we have.
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Figure 1: Number of portfolios and total assets
In Panel A, we plot the total number of portfolios, the number of portfolios that are smaller
than $1 million, and the number of portfolios that are smaller than $100k. In Panel B, we
plot the total value of assets in our sample. The sample period is from January 2016 to
March 2023.

of our sample. In 2023.Q1, the last quarter of our dataset, we observe 304 portfolios with
assets in excess of $1 billion. As a point of reference, Forbes reports 735 billionaires in the
U.S. in 2023. While these numbers cannot be compared directly, as (i) we observe portfolios
and not households, (ii) there may be some foreign investors, this comparison does indicate
that the coverage of the right tail of the wealth distribution is unusually good in our sample.
Overall, there are 439 unique portfolios that exceed $1 billion in assets at some point in our
sample.

We assign households to one of five groups based on total wealth in a given quarter:
Ait <$3m, Ait ↑[$3m, $10m), Ait ↑[$10m, $30m), Ait ↑[$30m, $100m), and Ait ↓$100m.

2.3 Definitions of asset classes

Table 1 outlines the asset classes that we use in our analysis. These definitions refine the
asset class assignments as defined by Addepar. The details of the asset class assignment are
provided in Online Appendix C.

We define liquid and illiquid asset classes in our analysis below. Using the definitions in
Table 1, the liquid narrow asset classes include all asset classes in Equity and Fixed Income,
except for Other Equity and Other Fixed Income. We treat cash separately as flows to cash
are more volatile than other asset classes. The reason is that cash plays a dual role: it is
used as a safe asset during times of stress and, second, it absorbs liquidity shocks. In the
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Figure 2: Number of billionaires
This figure plots the time-series of the number of portfolios that exceed $1 billion in assets
in each quarter of our sample. The sample period is from January 2016 to March 2023.

context of risk transfer, cash does not matter much as its market beta is zero. The remaining
asset classes in Table 1 (excluding cash) are classified as illiquid.

2.4 Sample selection

We impose a series of sample selection screens in constructing our final sample. These
screens ensure that we focus on households who are active in multiple asset classes. Also, by
imposing restrictions on the number of asset classes, it is less likely that only a fraction of a
household’s assets are covered on the Addepar platform. The screens also remove infrequent
data errors. We discuss each of the screens and summarize the impact on the size of our
sample.

We start by removing the quarter in which a household is onboarded onto the platform
as flows tend to be more volatile during this period (for instance, as the beginning-of-period
assets are unknown for some or all of the asset classes). We also remove the last quarter
that we observe a given household for the same reason.3

Second, we remove household-quarter observations when an item from the budget con-
straint is missing – that is, the starting value, Ain,t→1, the ending value, Aint, the flow, Fint,
or the dollar return, R$

int. Third, we remove household-quarter observations if the budget
constraint does not hold for at least one of the liquid narrow asset classes.4 Fourth, for a

3. It is rare for households to leave the platform during our sample period.
4. We allow for a small margin of error of $1,000 or 0.5% of the average (absolute value) of the ending

and starting value.
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Table 1: Asset class definitions
This table reports the asset class taxonomy. Narrow asset classes, which we index by n, are
categorized into five broad asset classes. The broad and narrow asset classes are obtained
after imposing corrections to Addepar’s internal classification.

Broad asset classes Narrow asset classes

Cash Money Market Fund, Certificate of Deposit, Commercial Paper, CAD, CHF, EUR, USD,
Other Currency

Fixed Income Municipal Bonds, U.S. Government/Agency Bonds, Corporate Bonds, Bond Funds,
ABS/MBS, Structured Debt, International Government/Agency Bonds, Other
Government/Agency Bonds, Other Debt

Equities U.S. Equity, Global Equity, Developed Market Equity, Emerging Market Equity, REITs,
Other Equity

Alternatives Private Equity & Venture, Hedge Funds, Direct Real Estate, Direct Private Companies,
Fund of Funds, Real Estate Funds, Other Funds, Unknown Alts.

Other Collectibles, Crypto, Derivatives, Liabilities, Other, Other Non-Financial Assets

small fraction of observations, the starting value and ending value coincide. While this can
happen for cash accounts, this is unlikely to be correct for risky assets. Therefore, we set
returns and flows to zero for such observations in liquid narrow asset classes that are not
cash. This leads to an adjustment in 0.53% of all narrow asset class-quarter observations.5

Fifth, we drop household-quarter observations with fewer than $100k in assets (across
liquid and illiquid asset classes as well as cash). This screen also mitigates the concern that
we capture only part of a household’s assets. Lastly, we restrict to households with positive
assets in the beginning or at the end of the period in at least three liquid asset classes. As
we are interested in measuring rebalancing activity, we focus on households who are active
across multiple liquid asset classes.6

We summarize the impact of each of the screens in Figure 3 for 2023.Q1, which is the last
quarter of our sample. We report the total number of accounts in Panel A and we report the
total assets covered in Panel B. The sample selection screens that have a noticeable impact
on the size of the sample are to remove the onboarding quarter, to impose a size constraint,
and to require positive positions in at least three asset classes. As wealthier households are

5. In those cases, we often observe that the flow is the negative of the dollar returns. The reason is that
the system has additional information about either the return or the flow, and completes the missing items
in those instances to ensure that the budget constraint holds. Alternatively, we can drop those observations.
However, as we balance the panel below, this alternative data construction step would be equivalent to
setting those flows to zero and mis-measuring the level of assets.

6. Our results are robust to relaxing this screen to households having only positions in two asset classes
of which one of the asset classes may be cash.
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Figure 3: The impact of sample selection screens on the number of portfolios and total assets
This figure summarizes the impact of the sample selection screens discussed in Section 2.4.
In Panel A, we show the impact on the number of accounts. In Panel B, we show the impact
on the total assets covered in our sample. The results are presented for 2023.Q1.

more likely to satisfy these screens, the impact is larger in terms of the number of portfolios
compared to total assets.

We conclude our sample construction by winsorizing the flows, fint, at the 2.5% and
97.5% percentiles by narrow asset class and quarter, and balancing the panel in terms of
holdings (across liquid and illiquid asset classes as well as cash) and flows (across liquid
asset classes as well as cash).7

2.5 Comparison to the Survey of Consumer Finances

Before proceeding with the core analysis of the paper, we compare our sample of households
in the Addepar data with the Survey of Consumer Finances (SCF) to examine the repre-
sentativeness of our sample relative to the overall U.S. population. We focus on total net
worth, liquid asset classes, and cash given the importance of these asset classes in the sub-
sequent analysis. We provide further details and the precise construction of each variable in
Appendix C. Balloch and Richers (2023) provide additional details for private asset classes

7. We set flows, returns, and assets to zero for narrow asset classes in which a household does not have a
position.
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Table 2: Comparison of Addepar and the Survey of Consumer Finances
This table reports median net worth and median wealth in cash, equities, and fixed income
for households grouped by net worth. All statistics are in millions of dollars, based on the
SCF in Panel A and the Addepar data in Panel B for 2018.Q4.

Panel A. SCF

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Dir
it ↑ [$0.1m, $1m) 328 1.36 1.15 0.07 0.42 0.40

AEq, Dir
it ↑ [$1m, $3m) 164 5.88 5.16 0.29 2.50 1.06

AEq, Dir
it ↑ [$3m, $10m) 142 9.06 7.94 0.31 6.00 1.06

AEq, Dir
it ↓ $10m 133 34.81 29.66 1.67 23.30 3.00

Total 767 2.27 1.91 0.11 0.70 0.55

Panel B. Addepar

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Dir
it ↑ [$0.1m, $1m) 10,400 1.36 1.23 0.08 0.76 0.24

AEq, Dir
it ↑ [$1m, $3m) 3,938 4.53 4.20 0.25 2.76 0.84

AEq, Dir
it ↑ [$3m, $10m) 2,011 15.04 13.03 0.69 8.86 2.15

AEq, Dir
it ↓ $10m 1,154 66.72 56.35 2.81 38.59 5.35

Total 17,503 2.79 2.49 0.15 1.54 0.42

as well as a comparison between Addepar and the sample used in Smith, Zidar, and Zwick
(2023).

The SCF is based on a random sample of the census population and tries to provide
an unbiased estimate of the population means. However, the survey data are subject to
censoring to protect privacy, multiple imputation to fill missing values (when respondents
refuse to answer), and other measurement errors. The Addepar data, based on the actual
record of asset ownership, do not have these issues. However, we do not know if the sample
of households in the Addepar data is representative of the U.S. population, conditional on
observed characteristics such as wealth. High net worth households could have multiple
accounts in the Addepar data that we are unable to connect. For all of these reasons, a
comparison between the Addepar data and the SCF may not be exact.

Three key facts emerge from the comparison. First, the sample size in the Addepar data
is an order of magnitude larger than that in the SCF across all wealth levels. For instance,
the SCF includes 1,094 households with net worth in excess of $3 million, while the Addepar
data includes 12,815 households in this wealth group.

Second, Panel A of Table 2 reports the median of net worth and of the holdings of cash
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ACash
it , equities AEq

it , and fixed income AFi
it for the 2019 SCF (that is, as of December 2018).

We also report the median of total wealth in these three broad asset classes, denoted by
ACEFi

it = ACash
it + AEq

it + AFi
it . Panel B does the same for the Addepar data as of December

2018, using concepts of net worth and wealth in the three broad asset classes that most
closely mimic the definitions in the SCF. We sort investors in four groups based on total
wealth invested in direct equity positions AEq, Dir

it , as this can be measured reliably in both
datasets. Despite our caveats discussed before, all statistics match closely for direct equity
holdings in the ranges from $0.1 to $1 million and from $1 to $3 million.

Third, the Addepar data and the SCF diverge at higher levels of direct equity holdings.
For households with AEq, Dir

it greater than $10 million, the median net worth is $34.8 million
in the SCF and $66.7 million in the Addepar data. For the same group of households, the
median ACEFi

it is $29.7 million in the SCF and $56.4 million in the Addepar data. This gap
can be explained by the fact that the SCF does not accurately capture wealth at the extreme
right tail because of survey limitations or the censoring procedure used in the SCF.

2.6 Summary statistics on portfolio holdings

We provide basic summary statistics on portfolio holdings across broad and narrow asset
classes. These results complement the results in Balloch and Richers (2023). We select a
quarter in the middle of the sample, 2019.Q4, to present the results.

We plot the total number of portfolios in each of the wealth groups in Panel A of Figure
4. While the number of portfolios naturally declines in wealth, there are still 990 portfolios
in our sample with more than $100 million in assets. We plot the fraction of total assets
invested in liquid asset classes in Panel B. Unsurprisingly, wealthier households allocate a
larger fraction of their portfolio to illiquid asset classes such as hedge funds, private equity,
and other alternatives. We explore this pattern in more detail below.

In Figure 5, we plot the average portfolio shares across investors in 2019.Q4 for the 10
largest liquid asset classes (in Panel A) and the 10 largest illiquid asset classes (in Panel
B).8 Among liquid asset classes, U.S. equities is the largest asset class, followed by municipal
bonds, global equities, corporate bonds, and U.S. government bonds. Among illiquid asset
classes, the largest asset class is private equity and venture capital, followed by hedge funds
and direct positions in private companies.

We summarize the fraction invested in broad asset classes by wealth group in 2019.Q4

8. We treat cash separately for reasons that we discuss in Section 2.7. In Figure 5, we report the average
share in cash in the right panel, having noted that we do not treat it as an illiquid asset class.
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Figure 4: Number of portfolios and the fraction invested in liquid assets by wealth group
In Panel A, we plot the number of portfolios in each of the five wealth groups. In Panel
B, we plot the average fraction invested in liquid risky assets. The results are presented for
2019.Q4.

Figure 5: Fraction invested in narrow asset classes
In Panel A, we plot the average portfolio shares in the largest 10 liquid risky asset classes.
In Panel B, we plot the portfolio shares for the illiquid asset classes as well as cash. The
results are presented for 2019.Q4.
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Figure 6: Fractions invested in broad and narrow asset classes by wealth group
In Panel A, we plot the average fractions invested in broad asset classes (Cash, Equity, Fixed
income, Alternatives, Other). In Panel B, we plot the average fractions invested in the five
largest liquid risky asset classes (U.S. Equities, Corporate bonds, Municipal and tax-exempt
bonds, Treasuries, and Global equities). The results are presented for 2019.Q4.

in Panel A of Figure 6. In line with Panel B of Figure 4, wealthier households allocate a
larger fraction to alternatives, while reducing their portfolio shares in public equities and
fixed income. Quite surprisingly, the fraction invested in cash is stable across the wealth
distribution.

We plot the portfolio shares invested in five large liquid asset classes across the wealth
distribution in Panel B of Figure 6: U.S. equities, municipal and tax-exempt bonds, U.S.
government bonds, corporate bonds, and global equities. These five asset classes account for
approximately 80% of all assets invested in liquid assets. While the shares are fairly stable,
the fraction invested in municipal bonds increases with wealth, at the expense of corporate
bonds and global equities. This pattern can be explained by the tax benefits that municipal
bonds o!er. The smaller allocation to global equities implies that wealthier investors are in
fact more home biased in their equity allocation.9

The figures presented so far point to meaningful di!erences in households’ asset alloca-
tions across the wealth distribution. That said, wealth cannot explain all (or even most)
of the heterogeneity in portfolio holdings. We document the heterogeneity in households’

9. One o!setting force may be the allocation to hedge funds that can allocate capital to global equity
markets. This is not something we can observe in our data, however.

14



Figure 7: Flows to broad asset classes
We plot the flow into broad asset classes during our sample period from 2016.Q1 to 2023.Q1.
Flows are scaled by total assets.

portfolios beyond wealth in Online Appendix H.

2.7 Flows to broad asset classes

For most of the paper, we focus on flows across liquid asset classes, as households cannot
easily move capital across illiquid asset classes such as hedge funds and private equity. Before
zooming in and studying risk transfer, we plot the cumulative flows across broad asset classes
in Figure 7. During this period, the cumulative flows have been positive for fixed income,
equities, and alternatives, and negative for cash (which includes money market funds). One
potential interpretation is that households reallocated capital to riskier, higher-yielding assets
during the low-rate environment. During the recent tightening episode of the FED, starting
in the Spring of 2022, there have been strong flows to fixed income assets, while the flows to
equities and alternatives have stagnated.

Beyond the long-term trends, investors allocate more capital to cash during the fourth
quarter of 2018 and the first quarter of 2020, which are both quarters during which the
aggregate U.S. stock market declined. Overall, the average cumulative flows are quite modest.
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3 Risk transfer to evaluate macro-finance models

We propose risk transfer as a new moment to evaluate macro-finance models. New moments
are necessary to discriminate existing models that explain (or, more precisely, generate in a
calibration) the same old moments and to guide new theories. The first generation of models
explained the asset pricing moments: the unconditional and conditional mean and volatility
of stock and bond returns (Campbell and Cochrane 1999). The second generation of models
added portfolio holdings and flows in stock, bond, and currency markets (Koijen and Yogo
2019; 2020; Gabaix and Koijen 2023). These models explain the earlier evidence that asset
demand is much less elastic than predictions of standard asset pricing models (Harris and
Gurel 1986; Shleifer 1986; Chang, Hong, and Liskovich 2014). We add risk transfer as a
third set of moments and develop a model that explains these moments. The first two sets
of moments are already non-trivial targets in representative agent models. Risk transfer,
in contrast, is just zero in representative agent models. So, risk transfer is particularly
diagnostic for heterogeneous agents models—in finance, but also in macroeconomics (e.g.
Kaplan, Moll, and Violante (2018)).

In this section, we first define risk transfer. Then, we see how rational, frictionless
macro-finance models tend to considerably overpredict its value: we illustrate this both with
a stripped-down Merton model and with a state-of-the art macro-finance model (Gârleanu
and Panageas (2015)). We then propose a model that does generate low risk transfer by
introducing inelastic demand and slow adjustment. This model and its calibration can serve
as a prototype for richer models.

3.1 Definition of risk transfer

We define risk transfer in the simplest setup, with one risky asset (“equities”) and the riskless
asset. The definition extends naturally to several assets with di!erent risk exposures.10 We
call Qit the share of the equity market owned by individual (or institution) i, and qit = ln Qit

its log. We fix a given horizon, say one period. We form a group g, e.g. investors with above
median allocation in equities. We define the risk transfer for group g to be:

RT gt = !qgt := ↔!qit↗i↑g , (3)

10. When there are several classes, conceptually, we convert them into a “exposure to equities” equivalent,
using the asset’s beta with respect to equities.
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where ↔xi↗i↑g denotes the average of xi over investors i’s in group g. It could be equal-
weighted, or, in our application, size-weighted, where size is the share of total equities owned
by i in the previous period. This is the (log) change in the fraction of total market risk held
by investors in group g. If group g buys equities the risk transfer is positive. We average
over the agents i in the group, as we want to capture the systematic movement in group
g, not idiosyncratic noise. We note that if the group is the universe of investors, the total
(size-weighted) risk transfer is 0. Hence, we need strict subgroups of investors: indeed, risk
transfer is a key quantity to analyze models with heterogeneous agents. In the baseline, we
consider the groups of high vs low initial equity share.

We define the risk transfer ratio to be the risk transfer divided by the average return over
the period, taking the absolute value of both quantities:

RT Rg := E [|RT gt|]
E [|rt|]

. (4)

The risk transfer ratio preferable, as it is independent of the horizon in the idealized limit of
a frictionless model with only permanent shocks (though not in a more behavioral model).11

One can of course envisage lots of reasonable minor variants, e.g.,

RT R↓
g :=

√√√√E
[
RT 2

gt

]

E [r2
t ] , (5)

which has the same value as RT Rg in (4) if variables are all Gaussian with mean 0, for
instance.12

3.2 Empirical values of risk transfer

We operationalize risk transfer in the following manner. We estimate risk transfer as the
percent change in the market risk exposure for a group of investors over a quarter. As
discussed, we aggregate investors into groups to identify systematic changes in market risk
exposure instead of idiosyncratic noise.

11. To see this, call Qit the share of the equity market owned by individual (or institution) i, and qit = ln Qit

its log. The risk transfer ratio is unitless, even in the continuous-time limit. In contrast, in the limit of small
intervals !t, where ↔dqit↗i→g = ωdzt + µdt, the risk transfer would be |RT gt| = ω

↘
!t |εt| for εt a standard

Gaussian. So |RT gt| and |rt| both scales as
↘

!t. SoRT Rg := E[|RT gt|]
E[|rt|] does not depend on !t (at least,

for small time intervals). This stability from “self-normalization” makes the risk transfer ratio preferable.
12. In that case,

√
E [X2] ≃ E |X| , with an unimportant proportionality constant which cancels out when

taking ratios (indeed,
√
E [X2] =

√
ω
2E [|X|]).
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Table 3: Estimated Risk Transfer

This table summarizes the risk exposure
(
”Liq

g,t→1
)
, risk transfer (RT gt), and risk transfer ratio

(RT Rg) computed using the Addepar data. This is all for the liquid part of the portfolios. See
Sections 3.1-3.2 for definitions. Each column denotes the group of investors. We first divide
investors into two groups: low and high equity share. We also present the analogous results for 10
deciles of equity share. The time horizon for risk transfer is one quarter.

Variable
Groups based risk exposure

Low High 1 2 3 4 5 6 7 8 9 10

E
[
”Liq

g,t→1
]

0.428 0.814 0.208 0.409 0.501 0.569 0.625 0.677 0.732 0.791 0.869 0.915

E [|RT gt|] 0.010 0.0031 0.031 0.015 0.0081 0.0070 0.0062 0.0041 0.0050 0.0049 0.0042 0.0055

RT Rg 0.134 0.041 0.410 0.193 0.106 0.091 0.081 0.054 0.066 0.064 0.056 0.072

We focus on liquid assets (Figure 5 lists them). We next map asset holdings into “exposure
to equities:” we use the stock market εn of each asset class n, from Blackrock’s capital market
assumptions as of May 2024 (see Appendix E). We define market risk exposure for a group of
investors g at time t→1 as ”Liq

g,t→1 = ∑
n εnωgn,t→1, where ωgn,t→1 = Agn,t→1

ALiq

g,t→1
is the portfolio share

in asset class n as a share of liquid wealth. We define the change in the market risk exposure
for a group of investors g from time t→1 to t as #gt = ∑

n εnfLiq
gnt , where fLiq

gnt = Fgnt

ALiq,DH

g,t→1
is the

flow into asset class n as a share of liquid wealth. We use liquid assets (defined in Figure 5)
only because illiquid assets are di"cult to trade and would mechanically lower our estimate
of risk transfer. Risk transfer for a group of investors g is RT gt = !gt

”Liq

g,t→1
.13

We create two groups of investors, with above- and below-median equity exposure, and
compute risk transfer for each group. More precisely, we sort investors into high and low
groups based on their lagged risk exposure, ”Liq

i,t→1. We then aggregate the assets and flows
of investors within each group and compute the risk exposures and risk transfer. The time
horizon is one quarter.

Table 3 gives the risk transfer in the Addepar data. Consider the first two columns,
where we divide the households into low versus high equity share groups (the cuto! being

13. In asset pricing models with a risky asset (with market beta of one) and a riskless asset, the definition
of risk transfer simplifies to RT gt = fgt

εg,t→1
. That is, risk transfer is the percent change in the risky asset

share through active rebalancing. As we describe in Appendix D.2, we can use this simpler definition to
compute risk transfer in the Gârleanu and Panageas (2015) model.
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the median). The average equity shares are respectively 43% and 81%. Their risk transfer
is respectively 1.0% and 0.31%. By averaging the two values, we find that the typical risk
transfer is E |RT gt| = 1%+0.31%

2 ⇐ 0.65% at the quarterly horizon:

Empirical risk transfer: E |RT gt| = E |!qgt| ⇐ 0.65%. (6)

This means that a typical group changes the fraction of the equity market it owns by 0.65%.
As the typical return in our sample is (in excess of the risk-free rate) E |rt| = 7.6% in absolute
value, we have for the risk transfer ratio: RT R = E|#qgt|

E|rt| ⇐ 0.65%
7.6% = 8.7% at the quarterly

horizon:
Empirical risk transfer ratio: RT R = E |!qgt|

E |rt|
⇐ 8.7%. (7)

The rest of Table 3 refines this, for 10 deciles of equity exposure. The message is similar.
Table 11 in the online appendix explores the risk transfer at horizons up to four quarters.
As our time sample is short, we have only seven non-overlapping yearly changes, so we
recommend taking those values as simply suggestive. Still, the message is broadly similar: a
very small risk transfer. In addition, there is a small increase with horizon, consistent with
progressive, rather than instantaneous, adjustment.

3.3 Risk transfer in a traditional portfolio choice model

We next consider which models do not and do generate the correct amount of risk transfer.
We start with the core model of portfolio choice, which is to demand a quantity of shares
equal to

Qit = Wit

Pt

ϑt

ϖiϱ2 , (8)

where Pt is the share price and ϑt is the risk premium, rationally perceived. This implies
that the average equity share of agent i is ωi = ω̄

εiϑ2 .
We assume that the agent has a one-period horizon, so that there is no Merton (1971)

hedging demand. This is the basic model, which we will refer to as the “plain Merton model.”
The risk premium is assumed to mean-revert at a rate ςω. Its shocks can be thought of as
coming from supply or demand shocks outside that do not a!ect the Addepar households.14

Then (as in Gabaix and Koijen (2023)), for such a rational investor, the risk transfer is (in

14. It would easy to augment this partial equilibrium model into a market equilibrium model, very much
along the lines of the model in section D.3.2. We’d suppose that there is an outside investor, with shocks bt

to his demand (say, an AR(1)), which then change the price and equity premium in equilibrium.
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the limit of small time intervals):

!qit = →φi!pt, φi = 1 → ωi + ↼i (↽ + ςω) , ↼i = 1
ϑ̄

, (9)

where φi is the elasticity of the demand for stocks (the Marshallian demand, which takes
into account wealth e!ects), and ↼i = ϖ ln ϱit

ϖωt

is the sensitivity to the risk premium. Very
importantly, we have ↼i = 1

ω̄ for an agent following (8). Indeed, ωit = ωt

εϑ2 , so that ↼i =
ϖ ln ϱit

ϖωt

= 1
ω̄ . This is, as we shall see later, a very high value.

So, for a group with homogeneous equity shares, the risk transfer ratio is

RT RMerton = |φg| .

Using the calibration from Gabaix and Koijen (2023) with ωi = 0.8, ϑ̄ = 4%/yr, ↽ = 4%,
ςω = 6%, so ↼i (↽ + ςω) = 1

4% ⇒ 10% = 2.5, we obtain φg = 2.7, hence, for a group

RT RMerton = |φg| = 270%. (10)

This is 30 times higher than the empirical value in (7).15 This shows how agents in the plain
Merton model are too reactive.

3.4 Risk transfer in the equilibrium model of Gârleanu-Panageas
(2015)

In the Merton model above, the risk premia shocks are unexplained: outside forces that do
not directly a!ect the Addepar investors disturb the risk premium, and we measure how
agents in our sample react to it. This is a useful rational benchmark, but a special one.
This is why a large literature has been devoted to explaining the origins of these risk premia
shocks. It is typically with a representative agent, which would generate a risk transfer of
0. So, we take a model that generates risk premia shocks and heterogeneity, Gârleanu and
Panageas (2015).16 We chose this model because it is well-cited, compact, and successfully
calibrates the variation of equity prices.

We briefly sketch the Gârleanu and Panageas (2015) model (Section D.2 of the online
appendix gives details). It has two types of agents, with high versus low risk aversion. In ad-

15. We note that a “Lucas” model where the agent has also lots of labor income would lead to an even
higher elasticity (by a factor of ⇑ 10, see Gabaix and Koijen (2023)) and risk transfer ratio.

16. We thank Nicolae Gârleanu and Stavros Panageas for discussions, and sharing their code with us.

20



dition, those agents have di!erent ages (with a Poisson probability of dying) and Epstein-Zin
utility functions. Productivity shocks create shocks to stock market values, and subsequently
the transfers between types of agents.

Importantly, the agents are rational and frictionless: they react fully rationally to shocks,
like in the simple Merton model we saw above, though with a more complex value function
(as they have a hedging demand). So, one might expect that they will react a lot.

To verify this intuition, we simulate the model, using the calibration proposed in that
original paper. Indeed, in the Gârleanu and Panageas (2015) model, the risk transfer is 78%
at a quarterly horizon for the high risk aversion group and 3.5% for the low risk aversion
group. Hence, this is much higher than in the data (about 0.65%, see (6)) for both groups.

We conclude that those agents are “too reactive” in this sophisticated model, as they
were in the plain Merton model.

3.5 Risk transfer in an equilibrium model with inelastic investors

We saw that both in the plain Merton model, and in a more state-of-the-art macro model,
risk transfer was too large as asset demand is too reactive to changes in the equity premium.
How to fix that? Fortunately, a sizable strand of research has worked on that using behavioral
inattention (see Gabaix (2019) for a survey). The key is to reduce the reactivity to prices,
by some form of inattention (or prudent processing of an imperfectly understood situation),
which leads to lowering elasticities of demand (Gabaix (2014), Giglio et al. (2021), Khaw, Li,
and Woodford (2021), and Enke and Graeber (2023)). We operationalize that in the next
model.

3.5.1 Economic environment

We now propose a model that fits the data, which is a heterogeneous-agent generalization of
the representative agent model in Gabaix and Koijen (2023). Indeed, it is set up so that in
the aggregate, it boils down to that model. Thus, it inherits its ability to explain standard
asset pricing moments such as high and volatile risk premium and a low riskless interest
rate. In addition, the present model features a heterogeneous cross-section of holdings, and
proposes a calibrated economic mechanism behind a low risk transfer.

Qualitatively, the key ingredient is that agents are inelastic, even in the long run: their
sensitivity to the risk premium, ↼, is low compared to traditional models (around 1yr, com-
pared to 1

ω = 25yr in the Merton model). Second, and much less importantly, they react
slowly, rather than very fast (as in Gabaix and Laibson 2001, Mankiw and Reis 2002). Chien,
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Cole, and Lustig (2012) also present an asset pricing model with a delayed reaction, but their
investors are fully elastic in the long run. Therefore, we suspect that our model would be
more consistent with long-run risk transfer if we had such data.

We next specify these ideas in detail. The risky asset gives an exogenous dividend that
follows a lognormal growth process, so that Dt

Dt→1
= eg+ςD

t
→ 1

2 ϑ2
D , where ⇀D

t ⇑ N (0, ϱ2
D) is i.i.d.

We write the price of the risky asset as:

Pt = Dt

↽
ept , (11)

where ↽ is the average dividend-price ratio, and pt is the deviation of the log price-dividend
ratio from its average (and will generate the “excess volatility” of the stock price), and they
are both endogenous.

Asset demand Agent i has a demand Qit, which reacts slowly to a “target” or “virtual”
demand Qv

it, as follows. Taking lower cases for logs, e.g qit = ln Qit:

!qit = µi!qv
it + (1 → µi) !qv,φ

it , !qv,φ
it :=

∑

h↔0
ς (1 → ς)h !qv

i,t→h, (12)

where !qv,φ
it is a moving average with speed ς ↑ (0, 1], and µi ↑ [0, 1] (which is unitless) is

the agility on impact.17 In other terms,

!qit =
∑

h↔0
ai (h) !qv

i,t→h, (13)

with reactivity parameter at lag h equal to:

ai (h) = (1 → µi) ς (1 → ς)h + µi1h=0, (14)

which satisfy ∑↗
h=0 ai (h) = 1. So the demand change !qit is the average of the current and

lagged virtual demand changes !qv
i,t→h, with weights ai (h).

We model the virtual demand as:

Qv
it = Witωi

Pt
e↼iω̂t+bt , (15)

where Wit is the agent’s wealth, ϑ̂t = ϑt → ϑ̄ is the deviation of the risk premium from its

17. In the continuous time limit (hence, for a full calibration if we had high frequency data), we need some
agile agents with µi > 0 for the equilibrium to exist.
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average, and bt is a “behavioral disturbance” shock. It is an AR(1): !bt = →ςbbt→1 + ⇀b
t , ςb

is the speed of mean reversion and ⇀b
t i.i.d. with mean 0 and variance ϱ2

b . It is a stand-in for
time-varying sentiment, risk tolerance, et cetera. We find it productive to study risk transfer
without taking a firm stance on the “deep” (and plausibly varied) origin of the appetite for
stocks.

This demand in (12) and (15) is a moderate variation from the Merton demand (8), which
is, with ωi = ω̄

εϑ2 ,

QMerton
it = Wit

Pt

ϑt

ϖϱ2 ⇓ Wit

Pt
ωie

↼rω̂t , ↼r = 1
ϑ̄

.

Compared to the Merton model, the main di!erences are (i) a lower sensitivity ↼i = ϖ ln ϱit

ϖωt

to the risk premium, as the plain Merton model predicts ↼r = 1
ω̄ = 25yr (as we saw in Section

3.3), which is too high compared to the empirical value, which is closer to ↼i ⇐ 1yr (see Giglio
et al. (2021), Gabaix and Koijen (2023), Dahlquist and Ibert (2024)); (ii) the behavioral
shock bt (which could be belief shocks). A more minor (but descriptive useful) di!erence is
(iii) a slow adjustment to target / virtual demand (captured by ai (0) < 1). This can be
microfounded easily via e.g. inattention to the risk premium, with also noisy beliefs (Gabaix
and Koijen (2023)), while the slow adjustment can come from psychological adjustment
costs (see the survey in Gabaix (2019)). Here, we do not revisit those well-traveled issues of
microfoundations, but rather investigate the consequence for risk exchange.

Evolution of wealth We view each agent i as a member of a vast “family” who pools
consumption. Hence, each agent i manages a portfolio, but returns to the representative
family the dividends and interest income from bonds. Dividend and interest income are
directly passed on to the household. The wealth Wit of fund i evolves as:

!Wit = Wi,t→1

(

ωi,t→1
!Pt

Pt→1
+ fit

)

, fit = (1 → ωi,t→1)
!Dt

Dt→1
+ at + ⇀it. (16)

The first term, ωi,t→1
#Pt

Pt→1
, indicates that the wealth changes because the equity price changes.

The second term, fit, is an extra flow coming from “the rest of the family,” or perhaps labor
income, or some other source of funds. In that flow, the term (1 → ωi,t→1) #Dt

Dt→1
is helpful for

the steady state. First, in the aggregate, it is necessary, in order have a balanced growth
path with a constant equity share (if equities are 10% more valuable, and the equity share is
80%, then to keep a constant equity share equal to 80%, the fund needs to receive an extra
2% of cash). We also keep it this way in the cross section. It makes the analytics much
simpler, as risk exchange will be expressed as a function of one shock, the “discount rate

23



shock” or “sentiment” !pt, rather than also the “fundamental” !dt.18

The flow term has a random component ⇀it = uit → uSt, where uit is i.i.d. with mean
0, and uSt is the size-weighted average (using weights proportional to Wi,t→1), so that the
average ⇀it is zero, ⇀St = 0. This shock ⇀it ensures that wealth follows a proportional random
growth, which will generate the power law steady state distribution of wealth that one finds
empirically (Champernowne (1953), Gabaix (2009), Benhabib, Bisin, and Zhu (2011)). The
term at ensures an adding up constraint (34). It is does not a!ect the cross-sectional risk
transfer, which is the core of our analysis, and which will turn out to be second order.

The rest of the model, which is mostly about aggregate quantities (e.g. production and
consumption, general equilibrium, determination of the risk-free rate, steady state) is not
essential to understand risk transfer, which is about the reallocation of risk across agents.
Still, we detail it in the appendix (Section A) for the interested reader. We give further
complements and robustness checks in the online appendix (Section D).

3.5.2 Equilibrium

The price clears the market at all dates, i.e., !qSt = 0. We make the innocuous assumption
that !qv,φ

S,→1 = 0 at the initial date (far in the past). For simplicity, we assume that all µi’s
and ↼i are equal. This leads to the following solution for prices (the proof is in Section D.1).
Throughout, we linearize, for small pt, bt, and keep only leading order terms. In particular,
we drop the terms O (ϱ2

b ) and O (ϱb, ϱd).
We start with a derivation of the virtual demand.19

Lemma 1. (Virtual demand in linearized form) The virtual demand (15) follows:

!qv
it = → (1 → ωi) !pt + ↼i!ϑ̂t + !bt + ⇀it. (17)

Next, we lay out the full equilibrium.

Proposition 1. (Equilibrium in the inelastic model with heterogeneous agents) The stock
price is Pt = Dt

↽ ept where the price deviation pt follows:

pt = 1
φS

bt, (18)

18. The logic the we will lay out would also work with two types of shocks, but less transparently. In
addition, given that most variations are due to !pt rather than !dt (Campbell and Shiller (1988)) this is
arguably not a very material assumption.

19. It reveals that the term at in (16) is second order, thus negligible.
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where bt is the behavioral deviation. The deviation of the risk premium from its average is
ϑ̂t = → (↽ + ςb) egpt. The virtual demand is:

!qv
it = →φi!pt + !bt + ⇀it = ⇁i!pt + ⇀it, (19)

where the elasticity of demand φi is:

φi = 1 → ωi + ↼i (↽ + ςb) eg. (20)

and long-run sensitivity of holdings to prices is the relative elasticity of demand:

⇁i = φS → φi. (21)

The holdings by agent i are given by:

!qit =
∑

h↔0
ai (h) (⇁i!pt→h + ⇀i,t→h) . (22)

Equation (21) shows that it is the relative elasticity, rather than the absolute elasticity,
that matters. For instance, if there is a negative belief shock that lowers the price, more
elastic agents buy, while less elastic agents sell. The first part of the proposition simply
reflects the forces in the representative agent model in Gabaix and Koijen (2023), whose
aggregated properties our model inherits by design.20 The only di"culty in this proposition
was to embed all those things in a general equilibrium model, while having a non-trivial
cross-section.

We next turn to the key result in this section: the risk transfer in this model. For
analytical clarity, we take the empirically relevant limit ςb ⇔ ς, which means that at the
time scale at which agents rebalance (1/ς), prices are essentially a random walk.

Proposition 2. (Risk transfer in the inelastic model above) In the model with inelastic
agents, in the limit of small time intervals, the risk transfer ratio is

RT R↓
gt :=




E

[
(!qgt)2]

E [r2
t ]




1/2

= χ |⇁i|



∑

h↔0
ai (h)2




1/2

, (23)

where χ = ϑ!pt

ϑrt

is the ratio of the volatility of the return due to changes in the risk premium

20. Lemma 2 in Appendix A contains further results about the aggregate behavior of this economy.
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to the volatility in total returns. If shocks are all Gaussian with mean 0, this gives

RT Rgt :=
E

[↔!qit↗i↑g


]

E [|rt|]
= RT R↓

gt,

while the conditional risk transfer (using the unpredictable part of risk transfer and returns):

RT RS
gt := E [|St [!qgt]|]

E [|St [rt]|]
= χ |⇁i| ai (0) = χ |⇁i| [(1 → µi) ς!t + µi] . (24)

where we use the surprise operator St [X] = Et [X]→Et→1 [X], which isolates the unpredictable
innovation in the expectation of a random variable X.

Numerically, the two values RT Rgt and RT RS
gt are very close, but RT RS

it is easier
analytically, so we start with it. Eq. (23) shows that the risk transfer ratio RT RS

gt is lower
when agents have an elasticity close to the average (a low |⇁i| in (21)), are more inert(lower
µi or ς). The regular risk transfer RT Rit, carries the same message; it simply has more
lagged shocks, replacing ai (0) by

(∑
h↔0 ai (h)2)1/2

.

3.5.3 Calibration: risk transfer in this inelastic model

We use a quarterly horizon, !t = 1
4yr. The annualized mean-reversion rate is ς̄ = 100%/yr

(as in Gabaix and Koijen 2023), so that the quarterly one is ς = ς̄!t = 0.25. We take
an agility parameter, µ = 0.2, which means that only 20% of the reaction happens on
impact. From the empirical results (section 3.2), we take ↔|ωi → ωS|↗ = 20%.21 We assume a
sensitivity to the risk premium ↼i = ↼S = 1yr (as in the empirical evaluation of Dahlquist
and Ibert (2024) and the calibration of Gabaix and Koijen (2023)). The specific value does
not matter, as the ↼i are homogeneous, but the value matters if we have heterogeneous ↼i’s
(section Section D.3.2). Then, from (21),

↔|⇁i|↗ = ↔|ωi → ωS|↗ = 0.2. (25)

In our model, what matters is !pt, the part of the return coming from non-fundamental
shocks. Given that this is the bulk of stock market fluctuations at short horizons, both
empirically (Campbell and Shiller 1988) and in our model, we approximate it by the stock
market return in excess of the risk-free rate, !pt ⇐ rt, so χ ⇐ 1. Then, the conditional risk

21. We saw that our two groups where respectively 43% and 81%. We take ϑS = 62% to be the average,
so that


|ϑi → ϑS |i→g


= 81%↑43%

2 ⇐ 20%.
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transfer ratio RT RS
g = |↘#qit≃

i↑g|
|rt| at a quarterly horizon is:

RT RS
g = χ |⇁g| [(1 → µg) ς!t + µg] = 0.2


0.8 ⇒ 1 ⇒ 1

4 + 0.2


= 8%. (26)

The value of the unconditional risk transfer is RT Rg = 9.2%, computing the infinite sum
(23). This is in line with the empirical value we found in (7).

We conclude that this inelastic model matches well the empirical values of risk transfer.
To probe the robustness of this conclusion, Section D.3 investigates plausible variants, e.g.
with di!erent loadings of the behavioral shock. It concludes that the model still delivers the
right order of magnitude of risk transfer. For this, the low sensitivity ↼i to the risk premium
is crucial: a high value would create large risk transfers as the risk premium changes. Hence,
we think that this simple model, and its calibration, might serve as a prototype for future
macro models, and enrich old ones (as surveyed by Panageas 2020).

3.6 Risk transfer as a new target for asset pricing

We think that risk transfer should be a new target for models with heterogeneous agents, in
finance and in macroeconomics. We find it to be very small empirically, but macro-finance
models typically predict a very high value. One can surmise that the same reasoning will
hold with more refined cuts of risk, e.g., with di!erent types of risk and asset classes.22 In
sum, we propose that major targets for asset pricing are traditional macro-finance moments,
such as the mean and volatility of returns, their predictability; inelasticity; and now risk
transfer.

We have used a behavioral model to make the point. One could imagine other variants,
e.g. with rational agents (as in Gârleanu and Panageas (2015)), but with a di!erent friction,
perhaps some taxes or transaction costs. However, it is unclear (and beyond the scope of
this paper) whether this would work. Indeed, those models with heterogeneous agents and
transaction costs are notoriously di"cult to work with (e.g. because actions depends on
sS shifting bands). If they then generate low medium-run elasticity of demand (and high
reaction of prices to flow), they will behave similarly to the model we proposed. In any case,
we submit that the new fact and challenge that we lay out will help guide the writing of the
core behavior in models of asset demand.

22. The definition easily generalizes to several asset classes. The risk transfer by agent i for an asset a (or
asset class a) is: RT agt = ↔!qiat↗i→g.
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4 Conclusion

In this paper, we define and operationalize “risk transfer,” and show how it is a very useful
moment to investigate macro-finance models with heterogeneous agents. We find that risk
transfer is very small in the data and that leading rational models predict a risk transfer
that is counterfactually too large. This is because agents in those models are too reactive.
We show how a model with more inelastic agents naturally calibrates better.

To do so, we used new monthly security-level data on portfolio holdings, flows, and re-
turns of U.S. households to measure risk transfer. Our data feature broad coverage across the
wealth distribution—including ultra-high-net-worth (UHNW) households—and span multi-
ple asset classes, covering both public and private assets. Our data have two important
advantages to traditional survey data: the coverage of a broad set of households, including
over 400 billionaires, and the large number of di!erent asset classes.

These new facts paint the picture of quite inert households (even for the extremely wealthy
households), with low turnover and reaction to the aggregate stocks market developments,
consistent with models of inertia, inattention, and inelasticity. This should useful to inform
basic modeling of macro-finance agents, to think about the origin of financial fluctuations,
and of the relocation of risk and return in the economy, inequality, and macroeconomics.

A Complements to the inelastic model

A.1 Aggregate equilibrium background, and representative in-
vestor

Here we give complements to the inelastic model of Section 3.5. The main text gave the
key feature: the inelastic demand. In this section, we specify important, but more generic,
details, e.g. the production and consumption, the general equilibrium background, the en-
dogenous risk-free rate, et cetera.

We specify the general equilibrium background, paraphrasing Gabaix and Koijen (2023).
The aggregate endowment Yt follows a proportional growth process, with an i.i.d. log-normal
growth rate Gt: Yt

Yt→1
= eg+ςy

t
→ 1

2 ϑ2
y , with ⇀y

t ⇑ N
(
0, ϱ2

y

)
is iid. Utility is ∑

t εtu (Ct) with
u (C) = C1→ω

1→ε . Bonds are in zero net supply. As dividend growth and GDP growth are
not very correlated, we model that GDP Yt is divided as Yt = Dt + $t into an aggregate
dividend Dt and a residual $t, where the dividend stream has i.i.d. lognormal growth, Dt

Dt→1
=

eg+ςD

t
→ 1

2 ϑ2
D , where ⇀D

t ⇑ N (0, ϱ2
D) is i.i.d. an uncorrelated with ⇀y

t . The “residual” $t can be
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thought of as a combination of wages, entrepreneurial income, and so forth (and indeed it
is the vast majority of GDP). The representative firm raises capital entirely through equity,
and passes the endowment stream as a dividend Dt. With ↽ the (endogenous) average
dividend-price ratio, the fundamental value of the stock market is

P̄t = Dt

↽
. (27)

We decompose the household as a rational consumer, who only decides on consumption
(so dissaving from a savings account made only of the riskless bond), and a behavioral
investor, who trades between a savings account (yielding the riskless rate) and in a “fund
mix” made of N funds trading trading equities and the risk-free asset. Those funds are
meant to represent the accounts in our data (as well as other entities not in our data). They
manage money, but they do not consume: they give all interest and dividend income to the
representative household.23

The rational consumer part of the household chooses consumption (but not equity shares)
to maximize lifetime utility, subject to the dynamic budget constraint for bonds. She takes
the actions of the investor as given. As she is rational, she satisfies the Euler equation for
bonds: Et[ε (Ct+1/Ct)→ε Rft] = 1, with Ct = Yt in equilibrium. This pins down the interest
rate Rft, which is constant in our i.i.d. growth economy.

The behavioral investor part of the household is influenced by bt, a behavioral distur-
bance, which is a stand-in for noise in institutions, beliefs, tastes, fears, and so on. We
assume that the investor trades (between stocks and bonds) with a form of “narrow fram-
ing” objective function (as in Barberis, Huang, and Santos (2001)). He seeks to maximize
Et [V p (Rt+1)] with V p (R) = R1→ω→1

1→ε a proxy value function, on the gross return on his
investments. Specifically, when bt = 0, he chooses his allocation ω̄M in the fund mix as:

ω̄M = argmax
ϱM

E
[
V p

((
1 → ωM

)
Rft + ωMRM,t+1

)
|bt = 0

]
, (28)

where RM,t+1 is the stochastic rate of return of the mixed fund. This choice of a “narrow
framing” benchmark is opposed to the fully rational value function, which would have all
the Merton (1971)-style hedging demand terms. Instead, the above formulation with narrow

23. This sort of model where “funds” get their flows from the representative agent but to not consume
is not uncommon, see e.g. Gertler and Karadi (2011). It simply helps keeping the “consumption” part of
the model extremely simple (as all income ultimately is passed on to the representative consumer), while
allowing for heterogeneous financial institutions (the households in our data). One could dispense with the
representative consumer, but that would introduce complications that would distract from the chief goal of
thinking about risk transfer.
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framing will lead to a high equity premium ϑ̄ = ϖϱ2
r , where the ϱ2

r is the volatility of the
stock market, which is a!ected by flow shocks.

We model the behavioral investor part of the household as rational on average, but subject
to behavioral disturbances. First, if there are no behavioral disturbances, this investor wishes
to maintain a constant allocation ω̄M in the fund mix and should invest via

!F̄t = 1 → ω

ω
!P̄t, (29)

where ω is the average equity share of existing funds (in the steady state), and P̄t is the
“fundamental value” of the stock (27).24 We assume that his policy, however, is a!ected by
the behavioral disturbance bt, so that the actual aggregate flow in the fund mix is

!Ft = !F̄t + ⇁f

ω
!

(
btP̄t

)
, (30)

which on average di!ers from the baseline amount !F̄t by a fraction !bt of the “fundamental
value” P̄t of the equity market, times a fixed loading ⇀f

ϱ . This aggregate flow is in turn given
to the various funds or families as outlined in the next section. We next turn to the cross-
sectional flows into the various funds making up the fund mix.

A.2 Demand and evolution of wealth

We give a slightly more general version than the one in Section 3.5, as it helps to think
about the robustness of the model, and it may be helpful in future calibrations. We use the
generalized version for the virtual or target demand (15):

Qv
it = Witωi

Pt
exp

(
↼iϑ̂t + ⇁d

i bt + νit

)
, (31)

where the sensitivity of demand to the behavioral disturbance, ⇁d
i , could depend on i, and

νit is some other demand shock, autocorrelated over time and independent across i’s.
Wealth Wit of fund i evolves as

!Wit = Qi,t→1!Pt + !Fit. (32)

24. Indeed, in the steady state, the average fund has equity share ϑ, so wealth W̄t = P̄t
ε . Hence, it

must have bond holdings equal in value to B̄t = W̄t → P̄t =
 1

ε → 1


P̄t, so that the inflow at t should be
!F̄t = !B̄t = 1↑ε

ε !P̄t.
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The first term, Qi,t→1!Pt indicates that the wealth grows because of capital gains and losses
(recall that dividend and interest income are directly passed on to the households, and
then consumed by them in the aggregate). There is also a dollar flow made of two parts,
!Fit = !F̄it + !F̂it:

!F̄it = Wi,t→1 (1 → ωi,t→1)
!P̄t

P̄t→1
, !F̂it = Wi,t→1

(
⇁f

i !bt + ⇀it + at

)
, (33)

where Wt is total wealth. The first part, !F̄it, ensures that we are on a balanced growth path.
On that path, we need enough new “fresh inflows”, to ensure that the funds can maintain a
constant equity share ωi. The second part, !F̂it, is the “random shock to inflows” part: it
has some loading on the systematic behavioral shock bt and some extra idiosyncratic shock
⇀it.

We next discuss the at term. As in all heterogeneous agents economy, one needs a stabi-
lizing force to ensure the existence of a steady state (see Gabaix (2009) for an exposition);
otherwise, relative wealths diverge without bounds. We choose death. Each fund dies with
a constant probability of death ↽†, and then it is replaced by a small fund, with size that is
the average size, times a small factor e† (as in endowment) less than 1, and with the same ↼i,
ωi. The remaining wealth is distributed to the other funds, proportionally to their existing
wealth: this is in the at term in (33).25 It is adjusted so that the total flow is equal to the
aforementioned aggregate flow (30) into the fund mix:

∑

i

!Fit = 1 → ω

ω
!P̄t + ⇁f

ω
!

(
btP̄t

)
, (34)

i.e. the total flow is the rational steady state flow, and the second the flow change due to
the behavioral disturbance.26 This ensures that, in the aggregate, the model behaves like
the representative agent model of Gabaix and Koijen (2023), and inherits its quantitative
aggregate properties. The above gives the following (the term at is second order, hence
omitted).

Proposition 3. (Virtual demand in the generalized model) In the model above, the change

25. This implies that the funds collected in debt are ϖ† ↔Wit↗, of which a fraction e† is distributed to the
new funds, and the rest is given to the old funds, as a proportion to their wealth Wit. So, each surviving
fund receives a proportional extra inflow ϖ† 

1 → e†
in each period. This is captured as part of the term at.

26. Hence, if a fund “dies” and is reborn with the endowment of wealth described above, we have !Fit =
e† 

Wjt→


→ Wit→ where

Wjt→


is the average of wealths before death.
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in the virtual demand is, up to higher order terms:

!qv
it = → (1 → ωi) !pt + ↼i!ϑ̂t +

(
⇁d

i + ⇁f
i

)
!bt + !νit + ⇀it (35)

So the aggregate “virtual” cumulative flow into equities is !ft =
(
⇁d

S + ⇁f
S

)
!bt + !νSt.

In the main text, we use that case of uniform loadings with ⇁f
i = 0, ⇁d

i = 1, νit = 0, but
this is for presentational ease only. Then, this gives the announced formula, (17).

Steady state distribution of wealth The small probability of death is a stabilizing
force, that permits the existence of a stochastic steady state in relative wealths Sit = Wit

Wt

.
Indeed, we have a proportional random growth model, which has the good property of
generating a power law distribution of wealth, as is relevant empirically (Champernowne
(1953), Gabaix (1999), Benhabib, Bisin, and Zhu (2011), Beare and Toda (2022), and Gomez
and Gouin-Bonenfant (2024)). With this model, we have a well-defined steady state: calling
w⇐t the log average wealth, wit → w⇐t → ωipt → ⇁f

i bt has a stationary distribution. Hence,
W̃it := Wite→ϱipt→⇀f

i
bt have a Pareto right tail. And because pt, bt are stationary and with thin,

Gaussian tails, they do not influence the power law (see Gabaix (2009) for an exposition), and
Wit has also a Pareto tail with the same exponent as W̃it. Hence, there is also a well-defined
ergodic distribution of average equity shares, ω = E [ωSt].

Aggregate behavior of asset prices We record some more aggregate properties of this
economy. They are directly inherited from the representative agent economy in Gabaix and
Koijen 2023, whose aggregate properties, and calibration, the present model replicates by
design—while adding to it the crucial innovation of a non-trivial cross-section.

Lemma 2. (Further aggregate properties of the model: average values of the aggregate
stock market in the steady state) The average dividend-price ratio is ↽ = rf + ϑ̄ → g. With
ft = bt the aggregate flow in equities, the variance of stock market returns is

ϱ2
r = var

(
⇀D

t + bp
f⇀b

t

)
, (36)

and depends on both fundamental risk (⇀D
t ) and flow risk (⇀b

t). Both contribute to the average
equity premium, which is:

ϑ̄ = ϖϱ2
r . (37)
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Finally, the interest rate is constant, and given by the traditional consumption Euler equation:

rf = → ln ε + ϖg → ϖ (ϖ + 1)
ϱ2

y

2 . (38)
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B Literature review

In Table 4, we summarize related literature on portfolio choice decisions by households.

C Additional details on Addepar data

C.1 Data structure

We have monthly data at security level on positions held and returns gained by individual
investor accounts. The dataset contains five classes of variables: (i) portfolio and security
identifiers, (ii) firm identifiers, (iii) asset class and investment identifiers, (iv) holdings, flows
and returns, and (v) variables related to other data sources. We next describe each in detail.

Portfolio and security identifiers We observe a unique identifier portfolio_entity_id for
each account held by investors in our dataset. For securities held by investors, we observe four
main identifiers. The first identifier position_entity_id is internally generated by Addepar
and uniquely identifies a security within a firm. While position_entity_id is available for
any security in the dataset, it is also complemented by CUSIP, ISIN and Sedol for securities
for which these additional identifiers are available.

Firm identifiers While we do not observe a unique identifier for firms/advisors, we observe
a detail classification of firms based on the nature of their activities. From firm_vertical,
any firm is first classified as Advisor, Broker Dealer, Consolidators, Family O"ce, Insti-
tutional, Other. Each broad classification in firm_vertical is further broken down into
firm_sub_vertical, the details of which are summarized in Table 5.
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Table 5: Firm Classification
This table provides details on the types of advisors observed for each broader advisor cate-
gory.

Category Type

Advisor Hybrid Registered Investment Advisor (Hybrid RIA), Independent Registered Investment Advisor
(Independent RIA), Other

Broker Dealer B/D Advisor, Bank Trust, National and Regional B/D, Private Bank, Wirehouse

Consolidators Platforms, Strategic Acquirer, Other

Family O"ce Multi-Family O"ce, Single Family O"ce

Institutional Endowment, Foundation, Investment Consultant, Outsourced Chief Investment O"cer (OCIO)

Other Fund Administrator, Software/Service Provider

Asset class and investment identifiers The dataset spans a variety of asset classes. For
each security, we observe the asset class entered by custodians/advisors in input_asset_class.
Depending on the position, this input can be entered either manually or chosen from a pre-
compiled list. We further observe two additional asset class classifications which are not
entered by custodians but rather internally generated by Addepar. The first one is out-
put_asset_class which classifies any security in a broad asset class (e.g. Equities, Fixed
Income). The second one is sub_asset_class that, for each broad asset class (e.g. Equi-
ties), classifies any security within a narrower asset class (e.g. U.S. Equity, Global Equity).
Separately from asset classes, we observe the type of investment associated to each posi-
tion held by each investor. A broad classification is reported in investment_type. Within
each broad classification in investment_type, we observe a narrower classification in invest-
ment_sub_type. Importantly, neither investment_type nor investment_sub_type are sub-
sets of sub_asset_class. Indeed, two positions may have di!erent sub_asset_class but same
investment_sub_type.

Holdings, flows, and returns We also observe monthly holdings, flows, and returns for
each position held by each investor. For each position, we observe dollar holdings at the
beginning of the month in starting_value while dollar holdings at month-end are reported
in ending_value. We observe a synthetic measure of monthly dollar flows in net_cashflow
as well as the break down of net_cashflow into buys and sells. For specific asset classes, we
separately observe measures of investment commitments made by the investors, contributions
and distributions:

total_commitments_since_inception, total_commitments, total_contributions, unfunded_commitments,
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fund_distributions_and_dividends. Turning to return measures, for each position held by
each investor we observe monthly time-weighted return twr, internal rate of return irr, and
dollar return total_return. We further observe the breakdown of gains into realized and
unrealized, where unrealized gains refer to unsold positions.

Variables related to other sources The dataset further includes variables from al-
ternative data sources. From Preqin, we observe preqin_id, vintage, strategy and substrat-
egy. All variables are also included in the Preqin manual where preqin_id is called FUND
ID, vintage is called VINTAGE / INCEPTION YEAR, strategy is called ASSET CLASS
and sub_strategy is called STRATEGY. Using preqin_id we can then merge all informa-
tion in the Preqin manual into the main dataset. From Morningstar, we observe morn-
ingstar_asset_class, morningstar_us_asset_class, morningstar_global_asset_class, morn-
ingstar_business_country_class, morningstar_region_breakdown, morningstar_category, morn-
ingstar_sector, morningstar_security_type, morningstar_industry. From SIX, we observe
six_instrument_type, six_security_type, six_domicile2. From Pitchbook and HFRI, we ob-
serve pitchbook_id and hfri_id respectively. We observe a separate classification for bonds
in sp_bond_type, sp_bond_sub_type and sp_bond_domicile_of_issuer. Finally, we observe
three additional identifiers internally produced by Addepar, namely issuer_id, security_id
and model_type. The latter is mainly used as an input in Addepar Navigator to produce
predictions about prices and volumes.

Variables used for asset class assignment Addepar employs an internal algorithm to
impute the narrow and broad asset classes based on the following input variables: cfi_code,
a universal six letter code provided by ISO 10962 and attributed to the entity at the time
of issue; instrument_type, directly derived from cfi_code; fund_asset_class, which describes
the broad type of fund based on morningstar_us_asset_class; fund_category, which de-
scribes the type of fund based on morningstar_category; bond_term, which assigns a bond
as short-term if the time-to-maturity is lower than one year and long-term otherwise; dom-
cile_country_class, which maps the country of domicile into United States, Developed or
Emerging; business_country_class, which maps the country in which the entity has its
headquarter into United States, Developed or Emerging; currency, which provides the na-
tive currency of the security. In Section C.2, we provide details on how these input variables
are combined to construct the asset class assignment.
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C.2 Asset class assignment and taxonomy

Each position in the data is associated with an asset class and an investment type. The
asset class represents a classification of the position into a more general asset category. The
investment type is independent of the asset class and refers to the nature of positions held
by investors. For instance, a position in a common stock would have asset class equal to
Equities and investment type equal to Common Equity. A position in an equity mutual fund
would have asset class equal to Equities but investment type equal to Mutual Funds.

C.2.1 Asset classes

For each broad asset class, we start by reporting the criteria used by Addepar for the assign-
ment of narrow asset classes. A summary of broad and narrow asset classes as we observe
in the raw data is provided in Table 6 .

Cash Positions in Addepar are assigned narrow asset class equal to: CAD if instru-
ment_type is Bank Account and currency is CAD; Certificate of Deposit if instrument_type
is Certificate of Deposit; CHF if instrument_type is Bank Account and currency is CHF;
Commercial Paper if instrument_type is Commercial Paper; EUR if instrument_type is
Bank Account and currency is EUR; Money Market Fund if instrument_type is Money Mar-
ket Fund or if instrument_type is ETF/Mutual Funds and fund_category is Money Market
Taxable or Money Market-Tax Free or Prime Money Market or Ultrashort Bond; Other
Currency if instrument_type is Bank Account; Other Short Term Government Bonds if
instrument_type is Government/Agency Bonds and bond_term is Short; Short Term US
Government Bonds if instrument_type is Government/Agency Bonds, bond_term is Short
and either domicile_country_class or business_country_class is United States; USD if in-
strument_type is Bank Account and currency is USD.

Fixed Income Positions in Addepar are assigned narrow asset class equal to: ABS/MBS
if instrument_type is ABS/MBS; Bond Funds if instrument_type is ETF/Mutual Funds
and fund_asset_class is Taxable Bond or if instrument_type is ETF/Mutual Funds and
fund_category is either Intermediate Core-Plus Bond or Intermediate Core Bond or Short-
Term Bond or Multisector Bond; Corporate Bonds if instrument_type is either Corpo-
rate Bonds or Depository Receipts on Debt; International Government/Agency Bonds if
instrument_type is Government/Agency Bonds, bond_term is either Long or Unknown
and business_country_class (or domicile_country_class) is either Developed or Emerging;
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Municipal Bonds if instrument_type is Municipal Bonds or if instrument_type is Mutual
Funds/ETF and fund_asset_class is Municipal Bond; Other Debt if instrument_type is
Other Debt; Structured Debt if instrument_type is either Structured Debt or Convertible
Bonds; U.S. Government/Agency Bonds if instrument_type is Government/Agency Bonds,
bond_term is either Long or Unknown and business_country_class (or domicile_country_class)
is United States; U.S. Government/Agency Bonds if instrument_type is Government/Agency
Bonds, bond_term is Long and both business_country_class and domicile_country_class)
are unavailable;

Equities Positions in Addepar are assigned narrow asset class equal to: Call Option if
instrument_type is Call Option; Developed Market Equity if instrument_type is Deposi-
tory Receipts on Equities or Common Equity or Preferred Equity or Convertible Equity or
Preferred Convertible Equity or Limited Partnership Units or Structured Equity or Other
Equity and business_country_class (or domicile_country_class) is Developed; Emerging
Market Equity if instrument_type is Depository Receipts on Equities or Common Equity
or Preferred Equity or Convertible Equity or Preferred Convertible Equity or Limited Part-
nership Units or Structured Equity or Other Equity and business_country_class (or domi-
cile_country_class) is Emerging; Global Equity if instrument_type is ETF or Mutual Funds
and fund_asset_class is International Equity; Other Equity if instrument_type is Depository
Receipts on Equities or Common Equity or Preferred Equity or Convertible Equity or Pre-
ferred Convertible Equity or Limited Partnership Units or Structured Equity or Other Equity
or Rights/Warrants or Acquisition Company; Other Funds if instrument_type is either Mu-
tual Funds or ETF; Put Option if instrument_type is Put Option; REITs if instrument_type
is REITs; U.S. Equity if instrument_type is Depository Receipts on Equities or Common
Equity or Preferred Equity or Convertible Equity or Preferred Convertible Equity or Lim-
ited Partnership Units or Structured Equity or Other Equity and business_country_class
(or domicile_country_class) is United States; U.S. Equity if instrument_type is either ETF
or Mutual Funds and fund_asset_class is U.S. Equity.

Alternatives Positions in Addepar are assigned narrow asset class equal to: Direct Pri-
vate Companies if instrument_type is Direct Private Companies; Fund of Funds if instru-
ment_type is Fund of Funds; Hedge Funds if instrument_type is Hedge Funds; Private
Equity & Venture if instrument_type is Private Equity & Venture; Real Estate Funds if
instrument_type is Real Estate Funds; Unknown Alts if instrument_type is Unknown Alts.
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Real Estate Positions in Addepar are assigned narrow asset class equal to Direct Real
Estate if instrument_type is either Other Direct Real Estate or Direct Residential Real
Estate.

Other Positions in Addepar are assigned narrow asset class equal to: Collectibles if in-
strument_type is Collectibles; Crypto if instrument_type is Crypto; Liabilities if instru-
ment_type is Loans/Liabilities; Other Derivatives if instrument_type is either Other Deriva-
tive or Forwards/Futures; Other Non-Financial Assets if instrument_type is Other Non-
Financial Assets.

Table 6: Initial asset class definitions
This table summarizes broad and narrow asset classes that we observe in the dataset, before
any correction is made. Narrow asset classes are categorized into six broad asset classes.
The broad and narrow asset classes are obtained from Addepar’s internal classification.

Broad asset classes Narrow asset classes

Cash Money Market Fund, Certificate of Deposit, Commercial Paper, CAD, CHF, EUR, USD,
Short Term U.S. Government Bonds, Other Short Term Government Bonds, Other
Currency

Fixed Income Municipal Bonds, U.S. Government/Agency Bonds, Corporate Bonds, Bond Funds,
ABS/MBS, Structured Debt, International Government/Agency Bonds, Unknown
Government/Agency Bonds, Other Debt

Equities U.S. Equity, Global Equity, Developed Market Equity, Emerging Market Equity, REITs,
Call Option, Put Option, Other Equity, Other Funds

Alternatives Private Equity & Venture, Hedge Funds, Real Estate Funds, Direct Private Companies,
Fund of Funds, Unknown Alts.

Real Estate Direct Real Estate

Other Collectibles, Crypto, Liabilities, Other, Other Derivatives, Other Non-Financial Assets

Adjustments to the Addepar classification We make several adjustments to the as-
signment of asset classes imputed by Addepar. First, we merge Short Term U.S. Government
Bonds into U.S. Government/Agency Bonds. Similarly, we merge Other Short Term Gov-
ernment Bonds into Unknown Government/Agency Bonds and relabel the narrow asset class
as Other Government/Agency Bonds. Third, we merge Call Option, Put Option, and Other
Derivatives into a single narrow asset class Derivatives to which we assign broad asset class
Other. Fourth, we combine Money Market Fund, Certificate of Deposit, Commercial Paper,
CAD, CHF, EUR, USD, Other Currency into a single narrow asset class Cash. Fifth, when
holdings are classified as Other Funds and the fund asset class is Sector Equity, we relabel
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the narrow asset class to U.S. Equity if either the business country class or the domicile
country class is United States.27 For the remaining observations in Other Funds, we change
the broad asset class from Equities to Alternatives. Lastly, we perform several adjustments
to holdings classified as Bond Funds: if the fund category is either Intermediate Government
or Long Government, we modify the narrow asset class to U.S. Government/Agency Bonds
if either the business country class or the domicile country class is United States; if the
fund category is Corporate Bond or High Yield Bond, we relabel the narrow asset class to
Corporate Bonds; if the fund category is Preferred Stock, we reclassify the asset class to the
equity category Other Equity; finally, we reclassify positions to Cash when the fund category
is Ultrashort Bond.

In Table 7, we report the classification of broad and narrow narrow asset classes used in
the paper and obtained by performing the above corrections on Addepar internal classifica-
tion.

Table 7: Corrected asset class definitions
This table summarizes broad and narrow asset classes used in the paper. Narrow asset
classes are categorized into five broad asset classes. The broad and narrow asset classes are
obtained by imposing corrections on Addepar’s internal classification.

Broad asset classes Narrow asset classes

Cash Money Market Fund, Certificate of Deposit, Commercial Paper, CAD, CHF, EUR, USD,
Other Currency

Fixed Income Municipal Bonds, U.S. Government/Agency Bonds, Corporate Bonds, Bond Funds,
ABS/MBS, Structured Debt, International Government/Agency Bonds, Other
Government/Agency Bonds, Other Debt

Equities U.S. Equity, Global Equity, Developed Market Equity, Emerging Market Equity, REITs,
Other Equity

Alternatives Private Equity & Venture, Hedge Funds, Direct Real Estate, Direct Private Companies,
Fund of Funds, Real Estate Funds, Other Funds, Unknown Alts.

Other Collectibles, Crypto, Derivatives, Liabilities, Other, Other Non-Financial Assets

C.2.2 Investment types

Although not directly used in the paper, Table 8 reports for completeness the breakdown of
investment types into investment sub types observed in the dataset.

27. Fund asset class, business country class, domicile country class, and fund category provide further
details on the nature or geography of the positions observed in the dataset.
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Table 8: Investment Type Taxonomy
This table provides the breakdown of investment types and investment sub types observed
in the dataset.

Category Type

Bank/Brokerage
Account

Brokerage/FX Cash Account, Non-U.S. Bank Account, U.S. Bank Account

Collectibles Collectibles

Derivative Forward, Future, Listed Option, Other Derivative, Structured Note, Swap

Equity American Depository Receipts (ADR), Common Equity, Convertible, International, Preferred Equity,
Restricted Equity, Rights/Warrants, Other Equity

Fixed Income ABS/MBS, Certificate of Deposit (CD), Corporate Bonds, International Sovereign Bonds, Muni
Bonds, Treasuries, U.S. Agency, Other Fixed Income

Held Away Employee Benefit Plan, Managed Account, Tax-Advantaged Plan, Other Held Away

Insurance Annuities, Other Insurance

Limited
Partnership

Drawdown LP, NAV LP, Unknown LP

Loans Corporate, Mortgage, Security-Based Loan (SBL) / Margin Loan, Unsecured, Other Loan

Other Crypto, Other

Private Company Operating Company, Private Option, Venture Backed Company

Public Fund Closed End Fund, ETF, Investment Trust, Master Limited Partnership (MLP), Money Market Fund
(MMF), Mutual Fund, REIT, Other Public Fund

Real Estate Commercial Real Estate, Residential Real Estate, Unknown Real Estate

C.3 Additional details on cleaning steps

We provide further details on cleaning steps that are performed before aggregating the
dataset at a quarterly frequency. These cleaning steps have the objective to correct infrequent
data issues or to ensure proper measurement for the variables of interest.

First, for a small number of portfolios, we observe that the last date of the incubation
period is later than the first month in which the portfolio appears in dataset. For these
portfolios, we drop any month that predates the last historical date. Similarly, for a minority
of portfolios, we observe positions classified as historical segments. To avoid focusing on
incubation periods where investors do not trade then, for each investor, we drop all months
that predate the last date on which an historical segment was present in the portfolio.

Second, net_cashflow in Addepar is measured net of dividends and distributions, which
we observe in fund_distributions_and_dividends. To ensure that net_cashflow properly
measure investors’ rebalancing, we add fund_distributions_ and_dividends back to net_cashflow
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and we subtract it from total_return.
Third, in the dataset at monthly frequency and security-level. We observe a minority

of observations with extreme time-weighted return which we correct in three steps. We
start by replacing missing returns with the median return by narrow asset class-month or
by CUSIP-month for all CUSIP-months for which we observe at least three observations
with available return. We then construct a robust measure of standard deviation as the
interquartile range by narrow asset class-month, divided by 1.35. For any CUSIP-month
for which we observe at least three observations with available return, we flag any return
that deviates from the median return by CUSIP-month by more than one robust standard
deviation and we replace it with the median return by CUSIP-month. For those CUSIP-
months for which we observe less than three observations, we flag any return that is higher
(lower) than the 99th (1st) percentile of returns by narrow asset class-month and we replace
it with the 99th (1st) percentile of returns by narrow asset class-month if the narrow asset
class is not Cash. If the narrow asset class is Cash, we replace these extreme returns with the
median return by month. To control for rare cases of extreme returns that are not corrected
through the procedure, we winsorize returns at -300% and 300% for each security before
aggregating the returns at the level of narrow asset classes using value weights.

Fourth, we observe a small number of investors in the monthly dataset for which all
narrow asset classes other than Other have either zero starting_value or zero ending_value.
To avoid considering historical segments where investors do not trade, we drop any portfolio-
month when two conditions are met: (i) in the previous month, the investor had either zero
starting_value or zero ending_value in all narrow asset classes other than Other; (ii) in the
current month, the investor had zero starting_value in all narrow asset classes other than
Other.

D Theory complements

D.1 Omitted Proofs

Proof of Lemma 1 and Proposition 3 We prove Proposition 3, which is a generalization
of Lemma 1, and does not depend on the previous propositions. Linearizing (16), with the
slightly more general flow in (33) (which allows for ⇁f

i ↖= 1), we get for log wealth wit = ln Wit:

!wit = ωi!pt + !dt + ⇁f
i !bt + ⇀it + at. (39)
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So, the change in the virtual log holding of the risky asset is, using (31) and ! ln Pt =
!dt + !pt:

!qv
it = !wit + ↼i!ϑ̂t + ⇁d

i !bt + !νit → (!dt + !pt)

= → (1 → ωi) !pt + ↼i!ϑ̂t +
(
⇁d

i + ⇁f
i

)
!bt + !νit + ⇀it + at.

For completeness, we show that the term at is second order, hence negligible. We use
▷ := max (ϱd, ϱb, ϱςS

) as order of magnitude of the deviations from the steady state. First,
we observe:

Wt = Pt

ωt
= P̄t

ω

Pt

P̄t

ω

ω̄t

= P̄t

ω
ept→↼S ω̂t = P̄t

ω
eO(⇁).

Then, (33) gives, taking the leading order terms only, so state:

∑

i

!Fit =
∑

i

Wi,t→1



(1 → ωi,t→1)
!P̄t

P̄t→1
+ ⇁f

i !bt + ⇀it + at



.

= Wt→1



(1 → ωS + O (▷)) !P̄t

P̄t→1
+ ⇁f

S!bt + ⇀St + at



= P̄t→1
ω

eO(⇁)


(1 → ω + O (▷)) !P̄t

P̄t→1
+ ⇁f

S!bt + at



(40)

= P̄t→1
ω



(1 → ω) !P̄t

P̄t→1
+ ⇁f

S!bt + at + O
(
▷2

)

, (41)

where (40) holds because as ⇀St = 0, and because Wt := ∑
i Wit = P̄t

ϱ if there are no
behavioral disturbances, as ω = ωS is the average equity share of the funds.

Also, by (34), we want the right-hand side to be equal to

∑

i

!Fit = 1 → ω

ω
!P̄t + ⇁f

ω
!

(
btP̄t

)
(42)

= 1 → ω

ω
!P̄t + ⇁f

ω

(
P̄t→1!bt + bt!P̄t

)

= P̄t→1
ω



(1 → ω) !P̄t

P̄t→1
+ ⇁f

S!bt + O
(
▷2

)

, (43)

where we have ⇁f
S = ⇁f + O (▷). So equating (41) and (43) gives:

(1 → ω) !P̄t

P̄t→1
+ ⇁f

S!bt + at + O
(
▷2

)
= (1 → ω) !P̄t

P̄t→1
+ ⇁f

S!bt + O
(
▷2

)
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hence the term at is second order, so negligible:

at = O
(
▷2

)
. (44)

Proof of Proposition 1 We first derive the following simple result (re-using the derivation
in Gabaix and Koijen 2023).

Lemma 3. We have the following Taylor expansion of the derivation of the risk premium
from its average, ϑ̂t = ϑt → ϑ̄:

ϑ̂t = eg (Et [!pt+1] → ↽pt) (45)

In the limit of small time intervals (where g = ḡ!t, with !t ↙ 0), the term eg in (45)
becomes a 1, we get the more essential value ϑ̂t ⇐ Et [!pt+1] → ↽pt, up to higher order terms.

Proof. Recall that Pt = Dt

↽ ept with Et

[
Dt+1

Dt

]
= eg. Call P̄t = Dt

↽ . So, we have, neglecting
second-order terms:

1 + rf + ϑ̄ + ϑ̂t = 1 + rf + ϑt

= Et [Pt+1 + Dt+1]
Pt

=
Et

[
P̄t+1 (1 + pt+1) + Dt+1 (1 + dt+1)

]

P̄t (1 + pt)

= Et


P̄t+1

P̄t

(1 + pt+1 → pt) + Dt+1
Dt

Dt

P̄t

(1 + dt+1 → pt)


= Et [eg (1 + pt+1 → pt) + eg↽ (1 + dt+1 → pt)] (46)

= eg (1 + ↽) + egEt [!pt+1 + ↽ (dt+1 → pt)] (47)

The zero-th order term gives 1 + rf + ϑ̄ = eg (1 + ↽), which is the Gordon growth formula:
writing eg = 1 + ḡ, rf + ϑ̄ → ḡ = (1 + ḡ) ↽ = Et[Dt+1]

Pt

. The next order term gives (45):

ϑ̂t = egEt [!pt+1 → ↽pt] . (48)

We next move to the core of the proof of Proposition 1. First, we show that at all dates,
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!qv
S,t = 0. Indeed, the market clearing condition is

!qSt = 0 (49)

at all dates. As we assumed that the µi are all identical to a value µ, (12) gives:

!qS,t = µ!qv
S,t + (1 → µ) !qv,φ

S,t→1, (50)

!qv,φ
St = ς!qv

St + (1 → ς) !qv,φ
S,t→1. (51)

Also, we assumed that at the initial date, !qv,φ
S,→1 = 0. Hence, at time t = 0, (49) and (50)

give !qv
S,0 = 0. Then, (49) and (51) at t = 0 gives !qv,φ

S,0 = 0. But then, at time t = 1, (49)
and (50) give !qv

S,1 = 0. Reasoning similarly, and recursively, we have, for all dates t ↓ 0,
!qv

S,t = !qv,φ
S,t = 0. We have indeed proven that !qv

S,t = 0 at all dates.
Next, we look for a solution where the price deviation from the baseline pt depends

linearly on the behavioral disturbance bt, as in:

pt = cbt,

for some coe"cient of proportionality c. So we have, using (45),

Et [!pt+1] = cEt [!bt+1] = →cςbbt = →ςbpt,

we get, by (45):
ϑ̂t = eg (Et [!pt+1] → ↽pt) = →eg (↽ + ςb) pt.

As a result, (17) gives rise to (19) with the announced elasticity φi.
Next, using !qv

S,t = 0 and taking the size-average of (19) gives

0 = !qv
St = →φS!pt + !bt

As a result, pt = 1
ζS

bt + k. As we set Pt = Dt

↽ ept , which sets the constant k to be zero to
ensure the normalization E [pt] = 0. So (18) obtains.

Next, (19) gives

!qv
it → ⇀it = →φi!pt + !bt = →φi!pt + φS!pt = ⇁i!pt,

with ⇁i = φS → φi. Finally, (13) gives !qit = ∑
h↔0 ai (h) (⇁i!pt→h + ⇀i,t→h), i.e. (22).
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Proof of Proposition 2. In the limit of small time intervals, we can neglect the “drift”
terms and only focus on the innovations. In addition, as we assumed that ςb ⇔ ς, which
means that at the time scale at which agents rebalance (1/ς), prices are essentially a random
walk.

Here “i” represents a group, so the idiosyncratic e!ect ⇀it cancels out. Eq. (22) gave
!qit = ⇁i

∑
h↔0 ai (h) !pt→h, hence (as the returns are assumed to be uncorrelated):

E
[
(!qit)2]

= ϱ2
#p⇁2

i

∑

h↔0
ai (h)2

This gives

RT R↓
i :=


E

[
(!qit)2]

ϱr
= ϱ#p

ϱr
|⇁i|




∑

h↔0
ai (h)2




1/2

and if the returns are Gaussian (so that

E [X2] ≃ E |X|), we get (23).

Eq. (22) also gives, as St [!pt→h] = 0 for h > 0,

St [!qit] = ai (0) ⇁iSt [!pt] ,

so E [|St [!qit]|] = |ai (0) ⇁i|E |St [!pt]|. This gives, assuming Gaussian mean 0 shocks:

RT RS
gt = E [|St [!qgt]|]

E [|St [rt]|]
= ϱ#pt

ϱrt

|ai (0) ⇁i| = χ |⇁i| ai (0) .

(24).

Proof of Lemma 2 This comes directly from the representative agent economy in Gabaix
and Koijen (2023), whose aggregate properties, and calibration, the present model replicates
by design.

Proof of Proposition 4. Using our convention that a (h) = 0 for h < 0, we can write
(22) as

!qit

⇁i
=

∑

h↔0
ai (h) !pt→h =

↗∑

s=→↗
ai (t → s) !ps.
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Hence, at horizon H,

!(H)qit := qit → qi,t→H→1 =
H∑

h=0
!qi,t→h = ⇁i

↗∑

s=→↗

H∑

h↓=0
ai (t → h↓ → s) !ps

= ⇁i

↗∑

h↔0

H∑

h↓=0
ai (h → h↓) !pt→h,

i.e.,
!(H)qit = ⇁i

↗∑

h↔0
(ai (h → H) + · · · + ai (h)) !pt→h. (52)

This gives:

E
(

!(H)qit

)2
= ⇁2

i ϱ
2
#p

↗∑

h↔0
(ai (h → H) + · · · + ai (h))2 .

Given that E
[
(pit → pi,t→H→1)2]

= (H + 1) ϱ2
#p, we obtain




E

[
(qit → qi,t→H→1)2]

E
[
(pit → pi,t→H→1)2]




1/2

= |⇁i| Ai (H) .

Hence, under a Gaussian assumption, we get the announced value for RT RH
it .

If we condition (52) on t → H → 1 information, we get

St→H→1 [qit → qi,t→H→1] = ⇁i

H∑

h=0
(ai (0) + · · · + ai (h)) !pt→h

hence
vart→H→1 (qit → qi,t→H→1) = ⇁2

i ϱ
2
#p

H∑

h=0
(ai (0) + · · · + ai (h))2

which then gives the expression for RT RS,H
it .

Proof of Proposition 5. By the same reasoning as in the main text and in the proof of
Proposition 1, market clearing gives 0 = !qv

St = →φS!pt + ⇁ν
Sbt, i.e. !pt = ⇀ε

S

ζS

bt. So, (76)

gives !qv
it =


→φi + ⇁v

i
ζS

⇀v

S


!pt, i.e.

!qv
it = ⇁i!pt, ⇁i := ⇁v

i

⇁v
S

φS → φi (53)
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which gives the announced value for ⇁i.

D.2 Complements to the Gârleanu-Panageas (2015) model of Sec-
tion 3.4

The model by Gârleanu and Panageas (2015) features two types of agents with di!erent
risk aversions in an overlapping generations framework. The model incorporates Epstein-
Zin utility, heterogeneous agents, an exogenous output process, human capital, and capital
markets. We show how we simulate the model, and calculate the risk transfer.28

D.2.1 Recap of model ingredients

We briefly describe the key ingredients of the model.

1. Heterogeneity. Two types of agents i ↑ {A, B}, with ϖA ∝ ϖB.

2. Utility. At each time t, agent of type i born at time s maximizes Epstein-Zin utility
adapted to continuous time

V i
st = Et

 ↗

t
f i

(
ci

su, V i
su

)
du



f i (c, V ) =
(
◁i

)→1 [(
1 → ϖi

)
V

]1→ ϑ
i

1→ωi



c▷i → (0 + ϑ)
[(

1 → ϖi
)

V
] ϑ

i

1→ωi



where ϖi controls risk aversion, 1
1→▷i is the intertemporal elasticity of substitution, ci

st

denotes consumption and V i
st the value function.

3. OLG feature. At each time t, a fraction ϑ of agents die and they are replaced by an
equivalent mass ϑ of newly born agents. Specifically, ϑ1A of newly born agents are of
type A and ϑ1B ′ ϑ

(
1 → 1A

)
are of type B, where 1A ↑ (0, 1).

4. Exogenous process. Aggregate output Yt evolves as a geometric Brownian motion

dYt

Yt
= µY dt + ϱY dBt

5. Human capital. Each agent born at time s receives at time t a fraction of aggregate

28. We thank Nicolae Gârleanu and Stavros Panageas for discussions, and sharing their code with us.
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output given by

yst = 2YtG (t → s) ′ 2Yt

(
B1e

→↽1(t→s) + B2e
→↽2(t→s)

)
(54)

where 2 ↑ (0, 1) and G (t → s) is rescaled so that
 t

→↗ ϑe→ω(s→t)G (t → s) ds = 1. It
follows that a total fraction 2 of aggregate output Yt is received by agents at each time
t and the remaining fraction is distributed as a dividend Dt = (1 → 2) Yt.

6. Capital markets. Risky asset pays dividend Dt = (1 → 2) Yt and is available in unit
supply with (endogenous) price process

dSt + Dtdt

St
= µtdt + ϱtdBt

A riskless asset is also available and guarantees a (endogenous) risk free rate rt.

7. Insurance. As in Blanchard 1985, competitive insurance is available that pays ϑW i
st

until death and receives the entire financial wealth upon death. Every agent finds it
optimal to enter such contract.

8. Budget constraint. Financial wealth W i
st evolves as

dW i
st =

[
rtW

i
st + ωi

st (µt → rt) + yst + ϑW i
st → ci

st

]
dt + ωi

stϱtdBt

where ωi
st denotes dollar holdings of the risky asset.

9. State variable. Useful to define the following state variable Xt that represents the
share of output Yt consumed by agents of type A

Xt = 1
Yt

 t

→↗
1Aϑe→ω(t→s)cA

stds (55)

with (endogenous) process

dXt = µX (Xt) dt + ϱX (Xt) dBt

D.2.2 Solving for Risky Asset Holdings ωi
st

To solve for ωi
st for each i ↑ {A, B}, s and t, we equate the di!usion of financial wealth W i

st

in the budget constraint with the di!usion implied by the definition of financial wealth as
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the presented discounted value of future consumption net of human capital, i.e.

W i
st = Et

 ↗

t
e→ω(u→t) 3u

3t
ci

sudu



→ Et

 ↗

t
e→ω(u→t) 3u

3t
ysudu



where 3t denotes the equilibrium SDF at time t.

Di!usion of wealth implied by the budget constraint The di!usion of W i
st implied

by the budget constraint is ωi
stϱt with solution for ϱt provided in equation (A.26) of the

online appendix in Gârleanu and Panageas (2015):

ϱt = s↓ (Xt)
s (Xt)

ϱX (Xt) + ϱY

where s (Xt) and ϱX (Xt) are known functions.

Di!usion of wealth implied by the present discounted value Define W i
1,st ′ Et

[ ↗
t e→ω(u→t) ◁u

◁t

ci
sudu

]

and W2,st ′ Et

[ ↗
t e→ω(u→t) ◁u

◁t

ysudu
]

so that W i
st = W i

1,st → W2,st. We need to derive the dif-
fusion of the process

dW i
st = dW i

1,st → dW2,st

Starting from W i
1,st, we have

W i
1,st = Et

 ↗

t
e→ω(u→t) 3u

3t
ci

sudu



= ci
stEt

 ↗

t
e→ω(u→t) 3u

3t

ci
su

ci
st

du



= ci
st

gi (Xt)
(56)

or equivalently
log W i

1,st = log ci
st → log gi (Xt) (57)

where gi (Xt) is a known function obtained as solution of the ODE (A.22) in the online
appendix.

By definition of the state variable Xt we have

XtYt = 1Aϑ
 t

→↗
e→ω(t→s)cA

stds (58)
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(1 → Xt) Yt = 1Bϑ
 t

→↗
e→ω(t→s)cB

stds (59)

Let ϱA
c,t and ϱB

c,t denote the di!usion of log consumption of agents of type A and B respectively.
Taking logs on both sides of (58), applying Ito’s Lemma on both sides, and matching di!usion
terms on both sides we have

ϱA
c,t = ϱX (Xt)

Xt
+ ϱY (60)

Repeating for equation (59)

ϱB
c,t = →ϱX (Xt)

1 → Xt
+ ϱY (61)

Using equation (57) the di!usion ϱA
1,t of log W A

1,st is then

ϱA
1,t = ϱA

c,t → gA (Xt)↓

gA (Xt)
ϱX (Xt) =


1

Xt
→ gA (Xt)↓

gA (Xt)



ϱX (Xt) + ϱY (62)

and the di!usion ϱB
1,t of log W B

1,st is

ϱB
1,t = ϱB

c,t → gB (Xt)↓

gB (Xt)
ϱX (Xt) =



→ 1
1 → Xt

→ gB (Xt)↓

gB (Xt)



ϱX (Xt) + ϱY (63)

Because d log W i
1,st ′ dW i

1,st

W i

1,st

, the di!usion of dW A
1,st is then W A

1,stϱ
A
1,t and the di!usion of dW B

1,st

is W B
1,stϱ

B
1,t.

Turning to W2,st, we can use (54) together with the definition in (A.17) to derive

W2,st = Et

 ↗

t
e→ω(u→t) 3u

3t
ysudu



= Et

 ↗

t
e→ω(u→t) 3u

3t

[
2Yu

(
B1e

→↽1(u→s) + B2e
→↽2(u→s)

)]
du



= Yt

[
e→↽1(t→s)ς1 (Xt) + e→↽2(t→s)ς2 (Xt)

]
(64)

Using Ito’s Lemma and ignoring again the terms that are not part of the di!usion

dW2,st = (. . . ) dt +
{
W2,stϱY +

[
e→↽1(t→s)Ytς

1 ↓ (Xt) + e→↽2(t→s)Ytς
2 ↓ (Xt)

]
ϱX (Xt)

}

︸ ︷︷ ︸
ϑ2,st

dBt

It follows that the di!usion of W i
st is W i

1,stϱ
i
1,t → ϱ2,st.

Solution Equating the di!usion terms of W i
st obtained in Sections D.2.2 and D.2.2 we have
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ωi
st =

W i
1,stϱ

i
1,t → ϱ2,st

ϱt
(65)

Aggregation Before proceeding with the simulation of the model, it is useful to derive
aggregate portfolio holdings ωi

t, financial wealth W i
t , total wealth W i

1,t, and human capital
W i

2,t across all agents of type A and B. This step confers two advantages: (i) it mirrors
our calculation in the Addepar data, where we construct risk exposure and risk transfer for
the aggregate investor in each group; (ii) it eliminates the need to keep track of agents in
di!erent cohorts in the simulation.

Recall at time t we have a mass ϑνAe→ω(t→s) of agents A that were born at time s and a
mass ϑνBe→ω(t→s) of agents B that were born at time s.

Let’s start from the aggregate agent of type A. The aggregate total wealth is

W A
1,t = ϑνA

 t

→↗
W A

1,ste
→ω(t→s)ds = ϑνA

 t

→↗

cA
st

gA (Xt)
e→ω(t→s)ds = XtYt

gA (Xt)
(66)

where the first equality just aggregates wealth W A
1,st across cohorts, the second equality uses

equation (56), and the third equality uses equation (55).
Aggregate human capital is

W A
2,t = ϑνA

 t

→↗
W A

2,ste
→ω(t→s)ds

= ϑνAYt

 t

→↗

[
e→↽1(t→s)ς1 (Xt) + e→↽2(t→s)ς2 (Xt)

]
e→ω(t→s)ds

= ϑνAYt


ς1 (Xt)
ϑ + ↽1

+ ς2 (Xt)
ϑ + ↽2



(67)

where the second equality uses (64). By definition, aggregate financial wealth is the di!erence
between aggregate total wealth and aggregate human capital

W A
t = ϑνA

 t

→↗
W A

st e
→ω(t→s)ds = ϑνA

 t

→↗

(
W A

1,st → W A
2,st

)
e→ω(t→s)ds = W A

1,t → W A
2,t (68)

Finally, aggregate portfolio holdings equal

ωA
1,t = ϑνA

 t

→↗
ωA

1,ste
→ω(t→s)ds =

W A
1,tϱ

A
1,t → W A

2,tϱY → ϑνAYt

[
φ1(Xt)↓

ω+↽1
+ φ2(Xt)↓

ω+↽2

]
ϱX (Xt)

ϱt
(69)

where the third equality uses the solution for ωA
1,st in equation (65).

The same logic can be used to derive wealth and portfolio holdings for the aggregate
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agent of type B

W B
1,t = (1 → Xt) Yt

gB (Xt)
(70)

W B
2,t = ϑνBYt


ς1 (Xt)
ϑ + ↽1

+ ς2 (Xt)
ϑ + ↽2



(71)

W B
t = W B

1,t → W B
2,t (72)

ωB
1,t =

W B
1,tϱ

B
1,t → W B

2,tϱY → ϑνBYt

[
φ1(Xt)↓

ω+↽1
+ φ2(Xt)↓

ω+↽2

]
ϱX (Xt)

ϱt
(73)

D.2.3 Simulation

Let G denote the set of functions describing the model equilibrium

G =
{
gA (X) , gB (X) , ς1 (X) , ς2 (X) , ς1 (X)↓ , ς2 (X)↓ , µ (X) , ϱX (X), S (X) , ϱ (X)

}
.

Given a solution for the functions in G on a discrete grid of X, we simulate the model as
follows:

1. Time periods. Following the authors (Appendix B; Gârleanu and Panageas, 2015),
we simulate the model for T = 4, 000 years and we drop the first 3,700 years of the
simulation to avoid that the results depend on the initial conditions for X and Y .

• All exogenous parameters
{
↽1, ↽2, ϑ,νA, µY , ϱY

}
are set as in the calibration used

in the paper.

• To match the frequency of the data in Addepar, we simulate at quarterly fre-
quency, i.e. !t = 0.25.

2. Initial conditions. We initialize X0 at its stationary mean and we set Y0 = 1.

3. Portfolio Holdings and Wealth. At each time t, we use linear interpolation to
compute the functions G at the simulated value Xt. We then construct aggregate
portfolio holdings and wealth for each agent A and B using equations (66)-(73).
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4. Update X and Y . We update X and Y using a discretized version of their process

Xt+1 = Xt + µX (Xt) !t + ϱX (Xt)
↘

!tBt+1

Yt+1 = Yt + µY Yt!t + ϱY Yt

↘
!tBt+1

where Bt+1 ⇑ N(0, 1).

5. Repeat. We repeat steps 3 and 4 until we reach T .

6. Portfolio shares. Once the simulation is over, we compute the number of shares of
the risky asset held by aggregate investors A and B as dollar holdings divided by the
asset price

QA
t = ωA

t

St
, QB

t = ωB
t

St

7. Dollar flows. We compute dollar flows as

F A
t =

(
QA

t → QA
t→1

)
St→1, F B

t =
(
QB

t → QB
t→1

)
St→1

8. Risk exposure. We compute the risk exposure (weighted average market beta in
Addepar) of the aggregate investors A and B as dollar holdings rescaled by financial
wealth

”A
t = ωA

t

W A
t

, ”B
t = ωB

t

W B
t

9. Risk transfer relative to financial wealth. We compute the market beta traded
by the aggregate investors A and B as flows divided by financial wealth

#A
t = F A

t+1
W A

t
, #B

t = F B
t+1

W B
t

10. Risk transfer relative to holdings in risky asset. Finally, we compute the risk
transfer relative to holdings in the risky asset as

!qA
t = #A

t

”A
t

, !qB
t = #B

t

”B
t
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Table 9: Summary of Results

Variable
Groups

B (High risk aversion) A (Low risk aversion)

E [”g
t ] -0.274 1.814

E [|#g
t |] 0.481 0.064

E [|!qg
t |] 0.785 0.035

Figure 8: Dollar flows of aggregate investors A and B
This figure reports dollar flows F A

t and F B
t for aggregate investors A and B respectively in

the simulation of Gârleanu and Panageas (2015).
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D.2.4 Results

Table 9 compares the time-series average of risk exposure and risk transfer obtained from
the simulation. First, it shows that the average risk transfer for both groups are much larger
than what we find in the data. Second, the simulations show that the high risk aversion
agents (group B) in Gârleanu and Panageas (2015) are on average short the risky asset. This
is because the dividend paid out by the risk asset is perfectly correlated with the endowment
received by agents. It follows that high risk averse agents use the risky asset to diversify the
risk in their human capital.

As a sanity check, we also report in Figure 1 the dollar flows of aggregate investors A
and B. As expected, the two aggregate investors trade against each other and dollar flows
sum to zero.

D.3 Complements to the inelastic model of Section 3.5

D.3.1 Risk transfer at longer horizons

We generalize Proposition 2 to horizons greater than one period.

Proposition 4. The following generalizes Proposition 2. Call !(H)qit := qit → qi,t→H→1 and
similarly for !(H)pt. Assume for simplicity that all variables are jointly Gaussian. At horizon
H ↓ 0, we have, in the limit ςb ⇔ ς of a quasi-random walk in asset prices:

RT RH
it :=

E
[


!(H)qit


]

E [|!(H)pt|]
= χ |⇁i| Ai (H) , Ai (H) :=



 1
H + 1

∑

h↔0
(ai (h → H) + · · · + ai (h))2




1/2

(74)

RT RS,H
it :=

E
St→H→1

[
!(H)qit

]

E |St→H→1 [!(H)pt]|
= χ |⇁i| AS

i (H) , AS
i (H) :=

(
1

H + 1

H∑

h=0
(ai (0) + · · · + ai (h))2

)1/2

(75)
where we use the convention that ai (h) = 0 for h < 0; AS

i (H) is increasing, with AS
i (0) =

|ai (0)| and limH⇒↗ AS
i (H) = 1.

Simulated values. The values of risk transfer (in its conditional value RT RS,H
it ) at horizon

0, 1, 2, 3 quarters are respectively: 8%, 9.6%, 11%, 12.1%, so that the increase with the
horizon is quite moderate.
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D.3.2 Generalizations of the inelastic model of Section 3.5

We next study how generalizations of this model keep robust the basic contention of low risk
transfers. For instance, suppose the following generalization of (19):

!qv
it = →φi!pt + ⇁ν

i !bt (76)

where ⇁ν
i indicates potentially di!erent loadings on the behavioral shock. In the ergodic

distribution, with a large number of families, ⇁S does not move appreciably. So, we assume
that it does not move.

Proposition 5. In the model with heterogeneous loadings on the behavioral shock, Proposi-
tion 1 remains true, replacing (21) by:

⇁i = φS → φi + ⇁ν
i → ⇁ν

S

⇁ν
S

φS = ωi → ωS → (↼i → ↼S) (↽ + ςω) + ⇁ν
i → ⇁ν

S

⇁ν
S

φS (77)

Calibration We have ωS = 0.8, ↼S = 1yr, so φS = 0.2. To think about dispersions
between groups, we take a moderate dispersion of 30% around the mean values:


|↼i→↼S |

↼S


=

〈
⇀ε

i
→⇀ε

S

⇀ε

S



〉
= 0.3. Then, we examine the extra terms in (77):

|(↼i → ↼S) (↽ + ς)| =



↼i → ↼S

↼S

 ↼S (↽ + ςω) = 0.3 ⇒ 1 ⇒ 0.1 = 3% (78)


⇁ν

i → ⇁ν
S

⇁ν
S

φS

 = 0.3 ⇒ 0.2 = 6%. (79)

This is compared to the initial term from the simplest version in (25):

|ωi → ωS| = 20% (80)

We conclude that the extra terms in (77) modify only very moderately the baseline
estimate from our model. This is only possible because ↼S and φS are small — the key
features of an inelastic market. With elastic markets (↼S = 1

ω̄ = 20yr, φS ⇐ 2), any variation
around the average would create a very large amount of risk transfer, and would violate the
empirical evidence.
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E Computing risk transfer in Addepar data

E.1 The stock market beta of each asset class

The stock market εn are taken in Table 10.29

E.2 Computing Risk Transfers with a longer horizon

In constructing multi-horizon flows, we follow these steps:

1. For each quarter t, we sum the dollar flows for quarter t and 4 future quarters. For
example, if 4 = 3, this yields the dollar flow for four consecutive quarters t + 1, t + 2,
and t + 3.

2. We rescale the dollar flow by the DH wealth at t, i.e. ADH
gt to obtain fLiq

g,n,t:t+0 .

3. We then compute the multi-horizon risk transfer as:

RT g,t:t+0 = #g,t:t+0

”Liq
g,t→1

=
∑

n fLiq
g,n,t:t+0 εn

”Liq
g,t→1

We generalize the earlier definitions of risk transfer to accommodate flows over multiple
quarters (RT g,t:t+0 ) and compute the risk transfer ratio, as:

RT Rg,0 = E [|RT g,t:t+0 |]
E [|rt:t+0 |]

where rt:t+0 is the cumulative return from t to t + 4 . We report the results for 4 = 1, 2, 3
(i.e. two-, three-, and four-quarter flows).

Table 11 provides the equivalent statistic for multi-horizon flows of Table 3, which had a
horizon of one quarter. We see an increase of the risk transfer ratio with the horizon from 1
to 2 quarters, consistent with slow and progressive rebalancing. As our time sample is short,
we have only seven non-overlapping yearly changes, so we recommend taking those values
are simply suggestive. It will be useful to revisit those result in say ten years, when there
are many more non-overlapping periods, which will allow to measure risk transfer as truly
long horizons.

29. They are taken from Blackrock: https://www.blackrock.com/institutions/en-
us/insights/charts/capital-market-assumptions.
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Table 10: Beta Values for Various Asset Classes

This table reports the market beta for various liquid asset classes, along with the intermediate values
used in their calculation: correlation ϱ, volatility ωn of each asset class, and volatility ωbenchmark

of the benchmark asset. ϱ and ωn are sourced from BlackRock’s Capital Market Assumptions
as of May 2024. For asset classes not included in their capital market assumptions, the closest
substitute has been used. ωbenchmark is chosen to align with the volatility of global equity, as the
exact benchmark index is not specified in the report. Using ϱ, ωn, and ωbenchmark , we construct ς
for each asset class.

Asset Class (n) 0 ϱn ϱbenchmark ε Index

ABS/MBS -0.121 0.057

0.168

-0.041 Bloomberg Barclays US MBS Index

Bond Funds -0.066 0.051 -0.020 Bloomberg Barclays U.S. Aggregate
Index

Corporate Bonds 0.236 0.060 0.084 Bloomberg Barclays Long Credit
index

Developed Market Equity 0.914 0.168 0.914 MSCI World ex-US Index

Emerging Market Equity 0.780 0.203 0.943 MSCI Emerging Markets Index

Global Equity 0.914 0.168 0.914 MSCI World ex-US Index

International Government/Agency
Bonds

-0.075 0.032 -0.015 Bloomberg Barclays Global
Aggregate Treasury Index ex US

Municipal Bonds -0.267 0.050 -0.080 (Not Available) – Using Bloomberg
Barclays Government Index

Other Government/Agency Bonds -0.075 0.032 -0.015 (Not Available) – Using Bloomberg
Barclays Global Aggregate Treasury
Index ex US

Structured Debt 0.630 0.070 0.263 (Not Available) – Using Bloomberg
Barclays U.S. High Yield Index

U.S. Government/Agency Bonds -0.267 0.050 -0.080 Bloomberg Barclays Government
Index

U.S. Equity 0.879 0.177 0.926 MSCI USA Index

REITS 0.781 0.202 0.942 FTSE EPRA Nareit Developed
Index (Gross)
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Table 11: Risk Exposure and Transfer: Multi-Quarter Horizon

This table summarizes the risk exposure
(
”Liq

g,t→1
)
, risk transfer (RT gt), and risk transfer ratio

(RT Rg) computed using the Addepar data for multi-quarter flows. Each column denotes the
group of investors.

(a) Two-Quarter (E [|rt → rft|] = 0.116)

Variable
Groups based risk exposure

High Low 1 2 3 4 5 6 7 8 9 10

E
[
”Liq

g,t→1
]

0.814 0.428 0.208 0.409 0.501 0.569 0.625 0.677 0.732 0.791 0.869 0.915

E [|RT gt|] 0.0053 0.020 0.065 0.028 0.016 0.010 0.010 0.0065 0.0089 0.0074 0.0066 0.010

RT Rg 0.046 0.170 0.562 0.241 0.134 0.086 0.086 0.056 0.077 0.064 0.057 0.089

(b) Three-Quarter (E [|rt → rft|] = 0.148)

Variable
Groups based risk exposure

High Low 1 2 3 4 5 6 7 8 9 10

E
[
”Liq

g,t→1
]

0.814 0.428 0.208 0.409 0.501 0.569 0.625 0.677 0.732 0.791 0.869 0.915

E [|RT gt|] 0.0069 0.029 0.101 0.043 0.022 0.013 0.014 0.0082 0.011 0.010 0.0089 0.014

RT Rg 0.047 0.195 0.684 0.289 0.153 0.090 0.094 0.055 0.076 0.067 0.060 0.092

(c) Four-Quarter (E [|rt → rft|] = 0.185)

Variable
Groups based risk exposure

High Low 1 2 3 4 5 6 7 8 9 10

E
[
”Liq

g,t→1
]

0.814 0.428 0.208 0.409 0.501 0.569 0.625 0.677 0.732 0.791 0.869 0.915

E [|RT gt|] 0.0063 0.030 0.106 0.045 0.022 0.013 0.012 0.0085 0.0093 0.010 0.0073 0.013

RT Rg 0.034 0.163 0.573 0.243 0.121 0.071 0.065 0.046 0.050 0.054 0.039 0.072
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Table 12: Classification and fraction of total wealth by broad group in SCF
This table reports the classification of items observed in SCF in six broad groups. For each
broad group, we report the total population-weighted wealth in trillions of dollars. For each
broad group, we further report the fraction of total wealth observed in each item. The data
are based on the 2019 SCF (that is, as of December 2018).

Cash Equities Fixed Income

Items Fraction of wealth (%) Items Fraction of wealth (%) Items Fraction of wealth (%)

Savings Accounts 29.36 Businesses 56.22 Quasi-liquid Retirement
Accounts

82.94

Money Market Accounts 26.74 Directly Held Stocks 17.62 Tax-free Bond Mutual Funds 6.23

Checking Accounts 21.80 Stock Mutual Funds 16.02 Directly Held Bonds 4.48

Certificate of Deposits 16.09 Trusts 7.87 Other Bond Mutual Funds 3.76

Call Accounts 5.84 Annuities 2.27 Government Bond Mutual Funds 2.17

Prepaid Cards 0.17 Savings Bonds 0.41

Total wealth ($ trillions) 6.26 Total wealth ($ trillions) 38.10 Total wealth ($ trillions) 20.01

Other Liquid Assets Illiquid Assets Excluded

Items Fraction of wealth (%) Items Fraction of wealth (%) Items Fraction of wealth (%)

Cash Value of Life Insurance 42.33 Residential Property 59.12 Primary Residence 63.16

Other Mutual Funds 31.61 Non-residential Real Estate 28.13 Total Debt 30.43

Combination Mutual Funds 26.06 Other Financial Assets 6.56 Vehicles 6.41

Other Non-Financial Assets 6.19

Total wealth ($ trillions) 2.36 Total wealth ($ trillions) 11.54 Total wealth ($ trillions) 45.49

F Additional details on the comparison with the SCF

F.1 Classification of SCF variables

Table 12 provides the classification of the items in the SCF into six broad groups: (i)
Cash, (ii) Equities, (iii) Fixed Income, (iv) Other Liquid Assets, (v) Illiquid Assets, and (vi)
Excluded. We assign to (vi) those items in the SCF that we do not observe in Addepar. For
each of these categories, we report the total wealth and the fraction of total wealth for each
item in Table 12. We classify Quasi-liquid Retirement Accounts as Fixed Income and we
further discuss this choice in Section F.3. Based on the classification adopted in the SCF,
we report in Table 13 the corresponding classification adopted on the Addepar dataset.

F.2 Variable definitions

We construct two variables to sort investors in the SCF and Addepar. For Addepar, we
first construct total wealth in direct equity, AEq, Dir

it , as the sum of all positions with (i)
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Table 13: Classification and fraction of total wealth by broad group in Addepar
This table reports the classification of items observed in Addepar in six broad groups. For
each broad group, we report the total wealth in billions of dollars. For each broad group,
we further report the fraction of total wealth observed in each item. The data are from
December 2018.

Cash Equities Fixed Income

Items Fraction of wealth (%) Items Fraction of wealth (%) Items Fraction of wealth (%)

Money Market Fund 60.85 US Equity 43.51 Municipal Bonds 43.39

USD 25.46 Private Equity & Venture 27.97 U.S. Government/Agency Bonds 17.09

EUR 5.56 Direct Private Companies 12.93 Corporate Bonds 15.21

Cash 3.93 Global Equity 6.51 Bond Funds 12.93

Certificate of Deposit 1.51 Developed Market Equity 3.76 Other Debt 10.31

CAD 1.48 Other Equity 3.36 ABS/MBS 0.43

CHF 0.55 Emerging Market Equity 1.75 International
Government/Agency Bonds

0.36

Commercial Paper 0.41 REITs 0.22 Structured Debt 0.21

Other Currency 0.26 Other Government/Agency
Bonds

0.07

Total wealth ($ billions) 49.64 Total wealth ($ billions) 275.78 Total wealth ($ billions) 97.59

Alternatives Other Excluded

Items Fraction of wealth (%) Items Fraction of wealth (%) Items Fraction of wealth (%)

Hedge Funds 47.35 Other 85.49 Liabilities 100.00

Direct Real Estate 28.64 Crypto 5.40

Other Funds 11.08 Collectibles 4.96

Unknown Alts 10.19 Other Non-Financial Assets 2.40

Real Estate Funds 1.60 Derivatives 1.74

Fund of Funds 1.14

Total wealth ($ billions) 115.57 Total wealth ($ billions) 42.22 Total wealth ($ billions) 1.67
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instrument_type = “Common Equity” or “Preferred Equity” and (ii) sub_asset_class = “US
Equity”. We construct the corresponding measure for each household in the SCF using the
variable STOCKS, corresponding to “Directly Held Stocks” in Table 12. We also construct
total wealth in equity mutual funds and ETFs, AEq, Indir

it , in Addepar as the sum of all
positions with (i) instrument_type = “Mutual Funds” or “ETF” or “Fund of Funds” and (ii)
sub_asset_class = “US Equity”. We construct the corresponding measure for each household
in the SCF using the variable STMUTF, corresponding to “Stock Mutual Funds” in Table
12.

F.3 Quasi-liquid retirement accounts

We show that Quasi-liquid Retirement Accounts (retqliq) in the SCF likely include ma-
jor positions in fixed income. We first group investors in the SCF and Addepar into four
groups based on their holdings of equity mutual funds and ETFs: AEq, Indir

it ↑[$0.1m, $1m),
AEq, Indir

it ↑[$1m, $3m), AEq, Indir
it ↑[$3m, $10m), and AEq, Indir

it ↓$10m. For each group, we
report in the second column of Table 14, the mean (median) wealth in fixed income, AFi

it ,
that we observe in the SCF when we exclude retqliq. We further report in the fifth column
the mean (median) of AFi

it observed in Addepar. For each group, wealth in fixed income
observed in the SCF is small, exactly equal to zero for a large number of households and, in
general, significantly lower than the corresponding number in Addepar.

For each group, we then report in the third column the mean (median) of retqliq observed
in the SCF for each group. We compare this measure with (i) the mean (median) wealth in
direct fixed income, AFi, Dir

it , in Addepar, which we report in the sixth column, and (ii) the
mean (median) wealth in fixed income mutual funds and ETFs, AFi, Indir

it , in Addepar, which
we report in the seventh column.30

Columns three and seven of Table 14 reveal that, especially based on median values,
retqliq in the SCF aligns well with AFi, Indir

it in Addepar (except for the wealthiest investors).
Notice also that, as we are not directly sorting investors based on retqliq or AFi, Indir

it , the
alignment between these two variables is not mechanical. This analysis suggests that retqliq
likely includes positions in fixed income mutual funds and thus it should be included in the
definition of AFi

it in the SCF.

30. We compute AFi, Dir
it in Addepar as the sum of positions in all securities characterized by: (i)

instrument_type = “Corporate Bonds” or “Municipal Bonds” or “Government Bonds”; (ii) out-
put_asset_class = “Fixed Income”. We compute AFi, Indir

it in Addepar as the sum of positions in all
securities characterized by: (i) instrument_type = “Mutual Funds” or “ETF” or “Fund of Funds”; (ii)
output_asset_class = “Fixed Income”.
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Table 14: Comparison of retirement accounts in the SCF and wealth in fixed income in
Addepar
This table compares several definitions of fixed income assets in SCF and Addepar. Columns
two to four focus on SCF while columns five to seven focus on Addepar data. In column two,
we report the mean and median wealth in fixed income observed in the SCF before adding
retqliq. Column three provides mean and median retqliq observed in the SCF. Column four
reports mean and median wealth in fixed income observed in the SCF after adding retqliq.
In columns five, six, and seven, we report wealth in fixed income, direct fixed income and
fixed income mutual funds and ETFs observed in Addepar respectively. Mean and median
values in the SCF are population-weighted. The means are reported in Panel A and the
medians in Panel B.

Panel A. Mean

SCF Addepar

Group AFi
it (No retqliq) retqliq AFi

it AFi
it AFi, Dir

it AFi, Indir
it

AEq, Indir
it ↑ [$0.1m, $1m) 0.23 0.53 0.77 0.95 0.54 0.36

AEq, Indir
it ↑ [$1m, $3m) 0.73 1.37 2.10 4.09 2.62 1.18

AEq, Indir
it ↑ [$3m, $10m) 2.06 1.60 3.66 11.64 7.85 3.03

AEq, Indir
it ↓ $10m 5.56 1.68 7.24 59.78 41.27 11.47

Total 0.52 0.77 1.28 2.94 1.90 0.80

Panel B. Median

SCF Addepar

Group AFi
it (No retqliq) retqliq AFi

it AFi
it AFi, Dir

it AFi, Indir
it

AEq, Indir
it ↑ [$0.1m, $1m) 0.00 0.30 0.34 0.29 0.00 0.17

AEq, Indir
it ↑ [$1m, $3m) 0.25 0.90 1.31 1.54 0.39 0.64

AEq, Indir
it ↑ [$3m, $10m) 1.00 1.25 2.77 4.99 2.25 1.31

AEq, Indir
it ↓ $10m 2.65 1.13 5.01 16.27 6.27 3.07

Total 0.00 0.42 0.56 0.41 0.00 0.21
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Table 15: Comparison between the SCF and Addepar - Mean
This table reports the mean of the variables defined in Section F.2 by wealth group for
the SCF (Panel A) and Addepar (Panel B). Investors are sorted based on wealth in direct
equities. The mean values in the SCF are population-weighted.

Panel A. SCF

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Dir
it ↑ [$0.1m, $1m) 328 2.69 2.25 0.21 1.25 0.79

AEq, Dir
it ↑ [$1m, $3m) 164 8.20 7.04 0.69 4.33 2.03

AEq, Dir
it ↑ [$3m, $10m) 142 18.37 15.55 0.72 12.03 2.80

AEq, Dir
it ↓ $10m 133 71.92 63.16 3.25 54.61 5.30

Total 767 6.07 5.18 0.39 3.54 1.25

Panel B. Addepar

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Dir
it ↑ [$0.1m, $1m) 10,400 4.01 3.01 0.37 1.79 0.85

AEq, Dir
it ↑ [$1m, $3m) 3,938 11.68 9.23 1.08 5.52 2.63

AEq, Dir
it ↑ [$3m, $10m) 2,011 38.12 27.33 4.17 16.28 6.88

AEq, Dir
it ↓ $10m 1,154 210.87 169.96 17.27 121.42 31.27

Total 17,503 23.29 18.21 2.08 12.18 3.95

To provide further support for this measurement assumption, we report the mean and
median of AFi

it in column four of Table 14for each wealth bracket in the SCF after we
include retqliq. Based on columns four and five, we find that the wealth in fixed income
of households in the SCF now aligns well with the corresponding measure computed for
Addepar households, especially when median values are considered.

F.4 Comparison

We now compare the measures defined in Section F.2 in the SCF (in Panel A) and in Addepar
(in Panel B). We consider two variants. First, we sort investors based on wealth in direct
equity, AEq, Dir

it , or, alternatively, we sort investors based on wealth in equity mutual funds
and ETFs, AEq, Indir

it . We select these sorting variables as they are likely measured consistently
in both datasets. This choice avoids that we introduce error when grouping investors. For
each group of investors, we compute the mean and median of each measure defined in Section
F.2.
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Table 16: Comparison between the SCF and Addepar - Median
This table reports the median of the variables defined in Section F.2 by wealth group for
the SCF (Panel A) and Addepar (Panel B). Investors are sorted based on wealth in direct
equities. The median values in the SCF are population-weighted.

Panel A. SCF

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Dir
it ↑ [$0.1m, $1m) 328 1.36 1.15 0.07 0.42 0.40

AEq, Dir
it ↑ [$1m, $3m) 164 5.88 5.16 0.29 2.50 1.06

AEq, Dir
it ↑ [$3m, $10m) 142 9.06 7.94 0.31 6.00 1.06

AEq, Dir
it ↓ $10m 133 34.81 29.66 1.67 23.30 3.00

Total 767 2.27 1.91 0.11 0.70 0.55

Panel B. Addepar

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Dir
it ↑ [$0.1m, $1m) 10,400 1.36 1.23 0.08 0.76 0.24

AEq, Dir
it ↑ [$1m, $3m) 3,938 4.53 4.20 0.25 2.76 0.84

AEq, Dir
it ↑ [$3m, $10m) 2,011 15.04 13.03 0.69 8.86 2.15

AEq, Dir
it ↓ $10m 1,154 66.72 56.35 2.81 38.59 5.35

Total 17,503 2.79 2.49 0.15 1.54 0.42
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Table 17: Comparison between the SCF and Addepar - Mean
This table reports the mean of the variables defined in Section F.2 by wealth group for
the SCF (Panel A) and Addepar (Panel B). Investors are sorted based on wealth in equity
mutual funds and ETFs. The mean values in the SCF are population-weighted.

Panel A. SCF

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Indir
it ↑ [$0.1m, $1m) 325 3.10 2.50 0.25 1.48 0.77

AEq, Indir
it ↑ [$1m, $3m) 184 8.29 7.09 0.58 4.41 2.10

AEq, Indir
it ↑ [$3m, $10m) 136 18.69 15.18 0.76 10.77 3.66

AEq, Indir
it ↓ $10m 110 52.38 46.19 1.70 37.24 7.24

Total 755 5.75 4.77 0.37 3.12 1.28

Panel B. Addepar

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Indir
it ↑ [$0.1m, $1m) 15,251 5.20 4.11 0.45 2.71 0.95

AEq, Indir
it ↑ [$1m, $3m) 2,720 20.98 16.11 2.62 9.40 4.09

AEq, Indir
it ↑ [$3m, $10m) 1,052 79.49 58.48 4.86 41.98 11.64

AEq, Indir
it ↓ $10m 318 312.47 232.66 16.02 156.86 59.78

Total 19,341 16.51 12.51 1.25 8.32 2.94
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Table 18: Comparison between the SCF and Addepar - Median
This table reports the median of the variables defined in Section F.2 by wealth group for
the SCF (Panel A) and Addepar (Panel B). Investors are sorted based on wealth in equity
mutual funds and ETFs. The median values in the SCF are population-weighted.

Panel A. SCF

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Indir
it ↑ [$0.1m, $1m) 325 1.36 1.12 0.09 0.51 0.34

AEq, Indir
it ↑ [$1m, $3m) 184 5.50 4.68 0.19 2.21 1.31

AEq, Indir
it ↑ [$3m, $10m) 136 12.24 11.17 0.43 6.50 2.77

AEq, Indir
it ↓ $10m 110 34.34 29.66 0.89 23.30 5.01

Total 755 2.24 1.84 0.10 0.80 0.56

Panel B. Addepar

Group Sample size Ait ACEFi
it ACash

it AEq
it AFi

it

AEq, Indir
it ↑ [$0.1m, $1m) 15,251 1.43 1.23 0.07 0.72 0.29

AEq, Indir
it ↑ [$1m, $3m) 2,720 8.10 6.80 0.39 3.97 1.54

AEq, Indir
it ↑ [$3m, $10m) 1,052 29.17 23.33 1.28 14.10 4.99

AEq, Indir
it ↓ $10m 318 111.73 91.40 5.16 56.92 16.27

Total 19,341 2.08 1.80 0.10 1.05 0.41
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