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1. Introduction

The U.S. Treasury market is a cornerstone of the financial system, shaping monetary and fiscal
policy, influencing global investment flows, and serving as a benchmark for financial instruments.
Most recently, the U.S. Treasury market has taken center stage in the swift policy responses to the
global pandemic in 2020, when the Federal Reserve (Fed) aggressively purchased long-term bonds
under quantitative easing (QE) policies, to counteract outflows from foreign investors and mutual
funds. The impact of such interventions critically depends on how bond investors accommodate
sales or purchases, given their risk capacity and mandates. Against this backdrop, we ask: What is
the role of arbitrageurs in the Treasury market? Do investors cross substitute Treasuries across
maturities? How elastic is the Treasury market? What makes the Fed’s interest-rate and QE
policies effective?

In this paper, we address these questions by proposing an equilibrium model of the U.S.
Treasury market that draws on important insights from two influential literatures: the burgeoning
literature on demand-based asset pricing pioneered by Koijen and Yogo (2019), and the preferred
habitat view of the term structure of interest rates in Vayanos and Vila (2021). We extend the con-
cept of “preferred-habitat investors” in Vayanos and Vila (2021) to what we refer to as “granular-
demand investors”, whose asset demand can be flexibly estimated from Treasury holdings data,
similar to Koijen and Yogo (2019), and we show that these approaches are naturally integrated. In
our context, we rely on a novel granular dataset on Treasury portfolio holdings covering most of
the market, including commercial banks, insurance companies, foreign investors, among others, as
well as the Fed. These demand estimates can be naturally embedded into a dynamic equilibrium
model featuring risk-averse arbitrageurs clearing the market. By empirically linking arbitrageurs
to hedge funds and dealers and their Treasury holdings, the model enables us to quantitatively
evaluate the role of arbitrageurs and how the Treasury market adjusts in equilibrium to demand
shocks, macroeconomic changes, and conventional and unconventional monetary policies.

Our analysis reveals three main findings. First, the Treasury market is elastic because ar-
bitrageurs exhibit low estimated risk aversion that significantly weakens demand impact. The
strength of arbitrage is heterogeneous, stronger at shorter maturities because of lower risks, leading
to a downward-sloping term structure of market elasticity. Second, term premia rise in response
to a monetary policy tightening, since granular-demand investors exhibit high estimated cross-
elasticities and rebalance towards higher yielding short-term Treasuries and reduce long-term bond
positions accordingly, forcing arbitrageurs to absorb more risks and increase term premia. This
is in sharp contrast to Vayanos and Vila (2021) and rationalizes the widely documented excess
sensitivity of long rates to monetary policy shocks. Third, the effects of Fed purchases on bond
yields are weak unless the Fed credibly commits to a persistent expansion of its balance sheet,
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thereby rationalizing a slow unwinding of the Fed’s unconventional monetary policies.

As a first step, we create a rich novel dataset on Treasury holdings at the maturity bucket
level across a wide range of institutions, such as insurance companies, mutual funds, broker-
dealers, foreign investors, and the Fed, among others. Our dataset covers close to 80% of the
total Treasury amount outstanding at any given point in time over the 2011Q4-2022Q4 period.
We classify granular-demand investors as commercial banks, insurance companies and pension
funds (ICPFs), money market funds (MMFs), mutual funds, foreign officials, and foreign private
investors, while the arbitrageurs in our setting are the broker-dealers and hedge funds, mainly for
two reasons: First, as shown by Hanson and Stein (2015) and Du et al. (2023b), broker-dealers
and hedge funds behave as the opposite of yield-seeking investors, accommodating flows from
the rest of the market. Second, broker-dealers and hedge funds generally have better access to a
wider range of trading instruments and platforms, allowing them to deploy sophisticated arbitrage
strategies1.

Building on the instrument in Koijen and Yogo (2020) and Fang et al. (2022), we identify own
and cross-maturity yield sensitivities at the investor level based on our panel dataset of Treasury
holdings across maturity buckets and time. While we consider the Fed separately, its demand
aligns with granular-demand investors, increasing long-term holdings when yields are high and
reducing them during monetary tightenings. This is consistent with the policy objective of lowering
long-term yields during QE and maintaining overall consistency during monetary tightenings.
Moreover, across sectors, maturity preference is prevalent: MMFs hold a large amount of the
total Treasury outstanding with maturities below one year, while insurance companies and pension
funds have a greater demand for longer maturities.

Our empirical approach adds to the extant demand-based asset pricing literature in three ways.
First, we incorporate cross elasticities in our demand estimation. Treasuries of different maturities
are substitutes in providing liquidity to investors, and notably, our estimates point to significant
cross substitution. Second, our demand functions are dynamic in nature, and capture dependence
on macroeconomic conditions such as inflation, GDP gap, and total Debt/GDP. Third, we exploit
information from both the cross section and time series, consistent with Gabaix and Koijen (2024)
and Haddad et al. (2024a) that time-series information is needed to quantify the aggregate market
elasticity.

We then embed the estimated demand functions into an equilibrium model of the Treasury
market, with granular-demand investors, the Fed, and risk-averse arbitrageurs, in the spirit of
Vayanos and Vila (2021). We add to this class of models, first, by allowing for cross-substitution by

1For example, broker-dealers and hedge funds take significantly negative net positions in Treasuries at certain
periods, while we do not observe negative Treasury positions for other investors.
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non-arbitrageurs.2 Cross substitution generates a positive reaction of term premia to a monetary
policy tightening, in contrast to the negative reaction in Vayanos and Vila (2021).3 Second, we
include a monetary-policy rule that depends on macroeconomic dynamics rather than treating
the short-term interest rate as exogenous. Third, we incorporate latent outside assets held by the
arbitrageurs, adding the aspect of realism that prices of risk are not entirely driven by arbitrageur’s
Treasury portfolios. We let the data inform us how outside-asset risk exposure interacts with
Treasury pricing.

To get intuition, we first analyze a simplified version of the model that we can solve analyt-
ically, and then proceed to estimate the full model by minimizing fitting errors on the dynamics
of the yield curve. Importantly, we identify the critical arbitrageur risk aversion parameter by
matching hedge funds’ and dealers’ average Treasury holdings. Based on our estimates, we
decompose Treasury yield fluctuations into driving forces. On the one hand, we find that short-
term yields are mainly affected by monetary policy rates, but macroeconomic fluctuations and
latent demand shocks become increasingly important at longer maturities, as arbitrageurs price in
their exposure when absorbing these risks. On the other hand, we find that yield fluctuations are
mostly driven by banks, foreign officials, and foreign mutual funds.

Quantitatively, we find that a $1 billion dollar extra latent demand of the overall Treasury
market increases total Treasury valuation by $0.23 billion, indicating a multiplier of 0.23, in
sharp contrast to the multiplier of 5 in the equity market (Gabaix and Koijen 2021) and 3.5 at the
rating-level corporate bond market (Chaudhary et al. 2022). Intriguingly, in a counterfactual that
excludes arbitrageurs from the Treasury market, the Treasury-market multiplier becomes larger
than that of equity and corporate bonds. Therefore, the Treasury market is elastic in the presence
of arbitrageurs who are readily stepping in to absorb demand imbalances. This arbitrage force is
stronger at the shorter end of the maturity spectrum but becomes weaker at longer maturities due
to larger risks, leading to a downward-sloping term structure of market elasticity.

We use our estimated model as a laboratory to examine conventional and unconventional mon-
etary policies that involve interventions in the Treasury market. Regarding monetary policy shocks,
our model predicts higher risk premia in response to a monetary tightening, consistent with the
literature that empirically identifies term premium responses to monetary policy shocks (Hanson
and Stein 2015; Bauer et al. 2023). In our setting, in view of a significant cross elasticity revealed
by the data, non-arbitrageurs reduce holdings of long-term Treasuries and force arbitrageurs to hold
more long-term Treasuries and charge a higher risk premium. Notably, when cross elasticities are

2See Chaudhary et al. (2022) for estimates of cross elasticities in the corporate bond market, and An and Huber
(2024) for estimations of cross elasticities in the currency market.

3Kekre et al. (2024) introduces arbitrageur’s wealth effect to Vayanos and Vila (2021) and also generates a
positive reaction of the term premium to monetary policy tightening. We do not incorporate such a channel since
the nonlinearity due to wealth effects causes numerical challenges that are beyond our paper.
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excluded in our quantitative model, the outcome is reversed, highlighting that cross elasticities are
crucial for resolving the puzzle in Vayanos and Vila (2021).

Regarding QE, our model suggests that if bond purchases are expected to be transient, they
have little impact on Treasury yields. However, the response of Treasury yields becomes much
more prominent if investors expect QE to represent a permanent demand shift of the Fed. Our
model thus suggests that the impact of Fed purchases on bond yields is weak unless the Fed
credibly commits to a persistent expansion of its balance sheet. This quantitative finding based
on a granular analysis is consistent with the theoretical predictions in Greenwood et al. (2015), and
gives guidance on the implementation of quantitative tightening (QT).

Related Literature

Our paper contributes to a growing literature that analyzes granular asset demand in fixed-
income markets, building on the seminal work by Koijen and Yogo (2019). Specifically, Bretscher
et al. (2024), Chaudhary et al. (2022), Siani (2022), and Darmouni et al. (2022) apply demand
systems to corporate bond markets, Fang et al. (2022) to global government bond markets, Koijen
et al. (2021) to the euro area government bond market, Jansen (2024) to the Dutch government
bond market, and Jiang et al. (2022) to international bond and currency markets. Allen et al.
(2020) analyze the demand of T-bill auctions and find that auction format matters for portfolio
allocations. Doerr et al. (2023) and Stein and Wallen (2023) provide a granular analysis of the
demand of money-market funds for near-money assets. Closest to ours, Eren et al. (2023) apply
a demand system to the overall U.S. Treasury market using Flows of Funds data. Consistent with
their study, we also find that investment funds and banks are more price elastic than ICPFs and
foreign officials within the U.S. Treasury market. We contribute to this literature by using granular
data on U.S. Treasury holdings by different institutions, including the Fed, and estimating cross-
elasticities.

Furthermore, our paper is related to the preferred habitat view of the term structure of interest
rates, e.g., Culbertson (1957), Modigliani and Sutch (1966), Guibaud et al. (2013), Greenwood
and Vayanos (2014), and Vayanos and Vila (2021). Recent papers have started to build a tighter
connection between data and theory. Droste et al. (2021) identify demand shocks from Treasury
auctions and calibrate the model in a New Keynesian framework to study the impact of QE. Hanson
et al. (2024) quantify the demand and supply shocks in the interest-rate swap market. Khetan et al.
(2023) leverage more detailed data on interest-rate swaps and find a high level of segmentation.
Bahaj et al. (2023) utilize transaction-level data on UK inflation swaps to quantify a model of
inflation risks. Our contribution is to build and estimate a quantitative version of Vayanos and
Vila (2021) that accounts for empirically estimated demand functions and actual arbitrageurs’
Treasury holdings. Our results also contribute to a growing literature that quantifies the impact
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of QE (Krishnamurthy and Vissing-Jorgensen 2011; d’Amico et al. 2012; Swanson 2021; Selgrad
2023; Jiang and Sun 2024; Haddad et al. 2024b).

Our estimates of investor demand are consistent with the hypothesis of “yield-oriented in-
vestors” in Hanson and Stein (2015). We both theoretically and quantitatively confirm the rationale
in Hanson and Stein (2015) that cross-substitution drives the positive term premium response to
monetary policy tightening. This also addresses a broad literature that shows that risk premia
overall rise with monetary policy tightening (Bernanke and Kuttner 2005; Gertler and Karadi 2015;
Bekaert et al. 2013; Kekre et al. 2024).

Our paper is also related to the recent literature on the specialty of U.S. government debt.
Krishnamurthy and Vissing-Jorgensen (2012) show that there is a downward-sloping aggregate
demand curve for the convenience provided by Treasuries. The literature shows that Treasury
convenience yield is closely connected to financial crises (Del Negro et al. 2017; Li 2024), mon-
etary policy (Nagel 2016; Drechsler et al. 2018; Diamond and Van Tassel 2021), exchange rates
(Jiang et al. 2021), inflation (Cieslak et al. 2024), pricing of stocks (Di Tella et al. 2023), hedging
properties of Treasuries (Brunnermeier et al. 2024; Acharya and Laarits 2023), banking (Diamond
2020; Li et al. 2023; Krishnamurthy and Li 2023), financial regulation (Payne et al. 2022; Payne
and Szőke 2024), and government debt valuation (Jiang et al. 2024b,a). We contribute to the
above literature by unpacking the demand for Treasuries and sources of demand variations across
investors.

Finally, arbitrageurs are important in our analysis, in the same spirit as a growing literature
that focuses on financial intermediaries (He and Krishnamurthy 2013; Adrian et al. 2014; He et al.
2017; Du et al. 2018; Wallen 2020; Jermann 2020; Haddad and Muir 2021; Fang and Liu 2021;
Kargar 2021; Favara et al. 2022; Du et al. 2023a; Diamond et al. 2024; An and Huber 2024).
Haddad and Sraer (2020) show that banks’ interest income gap significantly predicts Treasury
returns. d’Avernas and Vandeweyer (2023) and d’Avernas et al. (2023) provide theories of how dif-
ferent types of intermediaries together with the central bank affect the Treasury market dynamics.
Duffie et al. (2023) uses dealer-level data on Treasury holdings to show that dealer balance sheet
utilization is important for Treasury pricing. Du et al. (2023b) quantitatively show that balance
sheet frictions of intermediaries are important in pricing Treasuries. A key contribution relative
to this literature is that we cover the majority of the Treasury market beyond intermediaries, and
explicitly link the pricing kernel with intermediation activities in the Treasury market.
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2. Data

One of our contributions is the construction of a novel granular dataset of U.S. Treasury holdings
at the sector level, capturing the majority of the market. Indeed, our dataset covers all major
institutional holders of U.S. Treasuries, including banks, the Federal Reserve, primary dealers and
hedge funds, money market and mutual funds, ETFs, and foreign official and private investors.
We next describe these data sources, the construction of our dataset, and stylized facts about U.S.
Treasury holders.

2.1. Treasury Holdings Data Sources

The Flow of Funds (FoFs) is the standard data source for extant research regarding investors in
U.S. Treasuries (e.g., Krishnamurthy and Vissing-Jorgensen (2007), Eren et al. (2023)). While the
FoFs provides information about Treasury holdings at the investor sector level, the holdings are
aggregated across all maturities and thus does not allow for a more granular analysis regarding, for
example, the term structure of interest rates or the cross-substitution across maturities. To address
these limitations, we compile a richer and more detailed dataset by leveraging multiple data sources
to obtain U.S. Treasury holdings with the highest level of granularity available. Table 1 summarizes
our primary data sources, with further details provided in Appendix A.1.

Table 1. Data sources

This table provides a summary of the different data sources that we use in this paper.

Investor Type Data Source Frequency Period Detail

Banks CALL Reports Quarterly 1976Q1-2022Q4 Maturity bucket
Fed Federal Reserve Weekly 2003W1-2022W52 Security
Primary Dealers Federal Reserve Weekly 1998W5-2022W52 Maturity bucket
Hedge Funds Form PF SEC Quarterly 2011Q4-2022Q4 Aggregate
Insurers and Pension Funds eMAXX Quarterly 2010Q1-2022Q4 Security
Money Market Funds IMoneyNet Monthly 2011M8-2022M12 Security

Flow of Funds Quarterly 1993Q1-2022Q4 Aggregate
Mutual Funds Morningstar Monthly/Quarterly 2000M1-2022M12 Security
ETFs ETF Global Daily/Monthly 2012M1-2022M12 Security
Foreign Official and Private Public TIC Quarterly 2011Q4-2022Q4 T-bill/non T-bill

2.2. Data Aggregation

The reporting frequency and granularity differ across the data sources. In constructing our final
dataset, we thus need to make choices to aggregate the data. In particular, to maintain consistency
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across datasets, we analyze data at the quarterly frequency from 2011Q4 to 2022Q4. We then
group Treasuries into three maturity buckets. We denote remaining time to maturity as τ and
divide Treasuries into three maturity buckets: τ < 1Y,1Y ≤ τ < 5Y,τ ≥ 5Y , and denote these
maturity buckets as m ∈ {1,2,3}. The choice for these three maturity buckets is motivated by two
considerations: First, this division reflects commonality across portfolio holdings data availabil-
ity for different sectors. Second, as we show later, we need sufficient cross-sectional variation
across maturity buckets to apply our instrument, and using more than three buckets complicates
identification due to a reduction in variation across buckets. Finally, for stationarity, we scale all
quantities by the ratio of potential GDP at the end of our sample period over the potential GDP at
that particular quarter. We provide details on the data aggregation process in Appendix A.2. In our
analysis, we also rely on macroeconomic dynamics, and we provide details on the macro variables
in Appendix A.3.

2.3. Stylized Facts about Treasury Holdings

Figure 1. Holdings of U.S. Treasuries by Investor Type

Panel (a) plots the fraction of total U.S. Treasury outstanding (TAO) held by each investor type over time.
Panel (b) plots the corresponding market values (billions). Sectors are U.S. banks (Banks), Federal Reserve
(FED), hedge funds outside the U.S. (HF ROW), U.S. hedge funds (HF US), U.S. insurance companies and
pension funds (ICPF), mutual funds outside the U.S. (MF ROW), U.S. mutual funds (MF US), U.S. money
market funds (MMF US), U.S. and foreign primary dealers (PD), foreign official (Foreign O), and foreign
private (Foreign P), and other U.S. investors (Other U.S. Investors). Other U.S. Investors is defined as the
total U.S. Treasuries’ outstanding minus the holdings of all the other sectors. We report market values and
the quarterly sample period is 2011Q4-2022Q4.
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Figure 1 shows the dollar values and the fraction of total outstanding of U.S. Treasuries held by
each investor type from 2011Q4 to 2022Q4. On average, our dataset contains 78% of the holders
of U.S. Treasuries. Based on FoF data, the remaining 22% consists of U.S. households (11%),
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pension funds (5%), local governments (4%), and non-financial corporations (2%).

In Figure 2, we plot maturity-bucket level Treasury holdings of each investor type over the
same period. The figure reveals several notable facts. First, MMFs are only active in maturity
bucket 1 and hold between 10% to 35% of short-term Treasuries outstanding. Second, at the other
end of the spectrum, ICPFs barely hold short-term Treasuries but hold around 5% of the Treasuries
with maturities beyond 5 years. Third, the Fed holds substantially more of the intermediate and
long-term bonds outstanding as opposed to short-term bonds. Fourth, mutual funds hold few
short-term bonds, but are equally spread among maturity buckets 2 and 3. Fifth, only primary
dealers and hedge funds have negative holdings in certain periods. Finally, foreign official holdings
significantly declined, mainly in the short and medium-maturity buckets.

Table 2. Marginal Holders U.S. Treasuries

Panel (a) reports the marginal holders of U.S. Treasuries that we obtain by regressing percentage changes
in holdings as a fraction of total outstanding (TAO) on the contemporaneous percentage changes in TAO.
Panel (b) reports the average fraction of TAO held by each sector over our sample period. We report results
for both the aggregate and by maturity bucket. Sectors are U.S. banks (Banks), Federal Reserve (FED),
hedge funds outside the U.S. (HF ROW), U.S. hedge funds (HF US), U.S. insurance companies and pension
funds (ICPF), mutual funds outside the U.S. (MF ROW), U.S. mutual funds (MF US), U.S. money market
funds (MMF US), U.S. and foreign primary dealers (PD), foreign official (Foreign O), and foreign private
(Foreign P), and other U.S. investors (Other U.S. Investors). The numbers are in percentage points and the
quarterly sample period is from 2011Q4 to 2022Q4. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Panel (a): Marginal Holders (% of outstanding)

Banks Fed HF ROW HF US ICPF MF ROW MF US MMF PD Other US Foreign O Foreign P

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Aggregate 4.4*** 39.5*** -1.9 -0.5 1.1 0.1 1.9 30.2*** 2.0* 7.4 6.3** 9.5***
τ < 1Y 2.5*** 8.0*** 12.7*** 3.1*** 0.3 0.0 0.7* 51.0*** 3.4*** 8.0*** 8.4*** 1.8
1Y ≤ τ < 5Y 7.7** 34.5** -24.7 -8.6* -4.5 0.2 9.5* 0.9 33.0 36.1*** 15.9
τ ≥ 5Y 1.7 38.2*** 15.7* 4.0* 3.4* 0.5* 6.0** 3.5* 22.4* -1.7 6.4*

Panel (b): Average Holders (% of outstanding)

Banks Fed HF ROW HF US ICPF MF ROW MF US MMF PD Other US Foreign O Foreign P

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Aggregate 3.4 19.6 4.4 1.2 2.3 0.3 3.2 5.9 0.7 21.7 27.2 10.2
τ < 1Y 3.7 8.0 4.3 1.2 0.8 0.1 0.7 22.6 0.6 27.2 16.1 14.8
1Y ≤ τ < 5Y 3.3 18.9 5.6 1.4 2.4 0.3 3.4 0.6 12.1 46.5 5.5
τ ≥ 5Y 3.4 28.6 3.2 0.9 3.3 0.4 4.7 0.9 29.3 13.1 12.3

In Table 2, we further examine which investors absorb the additional debt when supply in-
creases, or put differently, we investigate who are the marginal holders of U.S. Treasuries. To that
end, similar to Fang et al. (2022), but focusing on maturity buckets, we decompose the marginal
holders of Treasuries. For each maturity bucket m and sector ι , we regress changes in holdings on
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Figure 2. Holdings of U.S. Treasuries by Maturity Bucket

Left panels display the fraction of total U.S. Treasury outstanding (TAO) held by each investor type by
maturity buckets. Right panels plot the corresponding market values (billions). Sectors are U.S. banks
(Banks), Federal Reserve (FED), hedge funds outside the U.S. (HF ROW), U.S. hedge funds (HF US), U.S.
insurance companies and pension funds (ICPF), mutual funds outside the U.S. (MF ROW), U.S. mutual
funds (MF US), U.S. money market funds (MMF US), U.S. and foreign primary dealers (PD), foreign
official (Foreign O), and foreign private (Foreign P), and other U.S. investors (Other U.S. Investors). Other
U.S. Investors is defined as the total U.S. Treasuries’ outstanding minus the holdings of all the other sectors.
We report market values and sample period is quarterly from 2011Q4 to 2022Q4.
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changes in the total supply of debt:

Zι
t (m)−Zι

t−1(m)

St−1(m)
= aι(m)+bι(m)

St(m)−St−1(m)

St−1(m)
+ ε

ι
t (m), ∀ι (1)

where Zι
t (m) equals the total Treasury market value holdings of sector ι in maturity bucket m at

time t (in billions) and St(m) the total market value supply of Treasuries in maturity bucket m at
time t (in billions). The accounting identity in Equation (1) implies that the sum across sectors
must add up to the total so that ∑ι β ι(m) = 100% for all m. We also aggregate the holdings of each
sector across maturities and estimate the total marginal contribution of each sector.

Panel (a) of Table 2 shows the results. Notably, the largest absorbers of U.S. Treasuries are
the Fed and MMFs. In the aggregate, they absorb 39.5% and 30.2% of the U.S. debt, respectively,
whereby the Fed mainly absorbs long-term Treasuries and MMFs short-term Treasuries. These
percentages do not simply reflect proportional expansions to average holdings. Indeed, Panel (b)
shows that, on average, the Fed and MMFs only hold 19.6% and 5.9% of the total debt outstanding,
respectively. On the other hand, foreign officials only absorb 6.3% of additional U.S. debt, while
their average holdings are substantially larger at 27.2%.

3. Empirical Results

Our data reveal substantial heterogeneity in Treasury holdings across sectors. In this section, we
first set up a stylized model that can account for such heterogeneity to guide our empirical analysis.
The model suggests a distinction of sectors into what we refer to as “granular-demand investors”
and arbitrageurs, and the model nests both investor classes as special cases. We will embed them
in a rich equilibrium model of the Treasury market in Section 4.

In the context of granular-demand investors, who we plausibly associate with banks, insurance
companies and pension funds, mutual funds, money market funds, foreign investors, and other
U.S. investors, the model suggests implementing a demand analysis much in the spirit of Koijen
and Yogo (2019). This demand-based approach aptly and flexibly captures the rich heterogeneity
of institutional patterns. For example, money market funds cannot hold any Treasuries beyond one-
year maturity due to regulatory requirements. Pension funds and insurance companies naturally
have preferences for long-maturity Treasuries because of long-duration liabilities (Sharpe and Tint
1990; Campbell and Viceira 2002). Banks have a special demand for Treasuries due to various
liquidity-based regulations such as the liquidity coverage ratio.

In contrast, arbitrageurs, who we classify as broker-dealers and hedge funds following the
literature (Hanson and Stein 2015; Du et al. 2023b), hold significant gross short positions for
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arbitrage purposes and are much less subject to regulatory or institutional constraints. In the
absence of such non-pecuniary attributes, our model reduces to a portfolio optimization with limits
to risk-bearing capacity. Intriguingly, according to the model, implementing the same demand-
based regressions for arbitrageurs will typically generate misleading results. Therefore, rather than
applying a reduced-form regression to uncover “demand functions” for arbitrageurs, we instead use
arbitrageurs’ positions to structurally discipline the parameter governing risk-bearing capacity in
our full model (see Section 4).

3.1. Towards an Empirical Model of Treasury Demand

To guide our empirical analysis, we start with a simple model of investor demand for U.S. Trea-
suries. We index investor groups by ι and denote their portfolio holdings of maturity τ ∈{1, · · · ,N}
as Zι

t (τ) and stack all maturities into a vector Zι
t . We denote the return on a Treasury with maturity

τ as R(τ)
t+1, and the risk-free as rt . We allow for flexible beliefs and denote the beliefs of sector ι as

Eι in expectations, and Vι in covariances. For the sake of realism, we accommodate that investors’
portfolios extend beyond Treasuries and denote the non-Treasury holdings as Z̃ι

t and the associated
returns as R̃ι

t+1.

We model the optimization problem of investor ι with wealth W ι
t as

max
Zι

t ,Z̃ι
t

Eι
t [W

ι
t+1]−

γ ι

2
Vι

t (W
ι

t+1)+ V ι(Zι
t )︸ ︷︷ ︸

non-pecuniary

W ι
t+1 =W ι

t (1+ rt)+
N

∑
τ=1

Zι
t (τ)(R

(τ)
t+1 − rt)︸ ︷︷ ︸

Treasury returns

+ Z̃ι
t (R̃

ι
t+1 − rt),︸ ︷︷ ︸

outside portfolio return

(2)

where the objective function includes a non-pecuniary component that captures the special at-
tributes of U.S. Treasuries, such as liquidity or safety, as in Krishnamurthy and Vissing-Jorgensen
(2012). The non-pecuniary term can also reflect balance sheet costs of holding cash securities,
such as the supplementary leverage regulation on banks. Similarly, the term can represent an
inconvenience for certain Treasuries, such as that of short-term Treasuries for pension funds or
insurance companies. For tractability, we assume that the derivative of V ι is affine in the portfolio
choice Zι

t ,
∂V ι(Zι

t )

∂Zι
t

= V̄ ι
0 −V̄ ιZι

t . (3)

In the budget equation, the “outside portfolio” can capture institutional features such as the long-
duration liabilities of pension funds and insurance companies. Moreover, we allow for heteroge-
neous risk-aversion γ ι . Institutions such as money-market funds can be approximated as agents
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with extremely high γ ι and thus unable to bear the risks of long-term bonds.

Denote the aggregate states of the economy as the vector βt , and the vector of Treasury yields
as yt =

(
y(1)t ,y(2)t , · · · ,y(N)

t

)′
. We allow for flexible beliefs about asset returns,

Eι [R(τ)
t+1 − rt ] = µ

ι(τ) ·βt +φ
ι(τ) · yt , (4)

where the dependence on yields could reflect the heuristic inference regarding how the yield curve
predicts expected returns (Fama and Bliss 1987), or “reaching for yield” (Hanson and Stein 2015).

Solving for (2), we obtain the first-order condition for Zι
t (τ),

µ
ι(τ) ·βt +φ

ι(τ) · yt +V ′
τ(Z

ι
t ) = γ

ι

(
Vι(R(τ)

t+1,Rt+1)Zι
t +Vι(R(τ)

t+1, R̃
ι
t+1)Z̃

ι
t

)
, (5)

where we denote the vector of returns as Rt+1 = (Rt+1(1),Rt+1(2), · · · ,Rt+1(N))′. Stacking all the
values of τ ∈ {1, · · · ,N} in (5) and using the assumption in (3), we obtain:

Zι
t =

(
Vι(Rt+1,Rt+1)+

1
γ ι

V̄ ι

)−1( 1
γ ι

(µ ι
βt +φ

ιyt +V̄ ι
0 )−Vι(Rt+1, R̃ι

t+1)Z̃
ι
t

)
, (6)

where we define the coefficient matrices µ ι = (µ ι(1), · · · ,µ ι(N))′, φ ι = (φ ι(1), · · · ,φ ι(N))′. We
assume that the outside portfolio covariance term Vι(Rt+1, R̃ι

t+1)Z̃
ι
t can be decomposed into linear

dependence on aggregate states βt plus “noise”, in the same spirit as market microstructure models
(Kyle 1985; De Long et al. 1990). The noise term can reflect sector-level idiosyncratic risks, such
as pension-specific regulation changes, or erroneous stochastic beliefs as in De Long et al. (1990).
We lump the noise term with the inverse of the matrix in (6) as a normally distributed vector uι

t ,
and can thus express the solution as:

Zι
t = b̂ι

0 +Bι
1yt +Bι

2βt +uι
t . (7)

In the absence of restrictions on the belief parameters µ ι and φ ι , the model can thus span the entire
space of affine functions over βt and yt plus a normally-distributed noise term. As a result, the
solution of the optimization problem in (2) can be flexibly represented in the empirically tractable
form (7). In fact, the model suggests that demand-based regressions using (7) are a promising
approach to understanding investor behavior.

We note that the model allows for a relevant role for cross-elasticities in that Zι
t (τ) may depend

on yt(τ
′) for τ ′ ̸= τ , i.e., Bι

1 having non-zero off-diagonal elements. Intuitively, this allows investors
to rebalance their portfolios towards higher-yielding maturity buckets. Indeed, certain investors
such as insurance companies, mutual funds, and banks, are “yield-seeking” and are attentive to the
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relative yields among fixed-income securities (Becker and Ivashina 2015; Hanson and Stein 2015;
Choi and Kronlund 2018). Importantly, within the context of the model, such cross-elasticities are
not a reflection of arbitrage activity, but rather of yield-oriented beliefs as captured in (4). Indeed,
in the equilibrium model that we set up in Section 4, equilibrium returns only depend on the
aggregate states of the model, including the aggregate state vector βt and the aggregation of demand
imbalances, so that a rational arbitrageur infers all elements of φ ι as zero and its demand does not
directly respond to yields. Rather, arbitrageurs consistently infer Treasury prices according to the
market equilibrium. Accordingly, a demand estimation based on (7) is inadequate for arbitrageurs,
so we explicitly model them as enforcing arbitrage within the equilibrium model of Section 4.

The expression for Treasury holdings in (6) also makes it clear how the model accommodates
that the optimal Treasury portfolio depends on other assets through the outside portfolio. Indeed,
the portfolio depends on other assets if other assets’ risk exposure comoves with Treasuries. To
the extent that the state vector captures risks priced in other assets, innovations to these variables
may transmit to Treasury demand fluctuations. For example, including the credit spread in the
state vector allows for credit market shocks to be reflected in Treasury demand. In such a way, the
model also captures substitution between corporate bonds and Treasuries.

Finally, we discuss the Federal Reserve’s Treasury demand. Clearly, the Fed is not a profit-
maximizing institution. The Fed’s demand is driven by its policy decisions, for example, to reduce
long-term interest rates through its QE program. We find it useful to describe the Fed’s Treasury
demand also in the form of (7), as a flexible way of capturing its policy objective.

3.2. Empirical Methodology

Inspired by our model specified in Section 3.1, we estimate granular-demand investor ι’s demand
for U.S. Treasuries according to (7). For practicality, we have two slight modifications. First, we
group Treasuries into three maturity buckets, consistent with the empirical aggregation of Treasury
holdings, and we denote a maturity bucket as m ∈ {1,2,3}. Second, we add bond characteristics
in the demand as a control, although those bond characteristics will not be directly modeled. In
particular, we implement the following regression:

Zι
t (m) = θ

ι
0 +bι

1yt(m)+bι
2yt(−m)+(bι

3)
′xt(m)+(bι

4)
′Macrot +uι

t (m), (8)

where yt(m) is the yield for maturity bucket m, yt(−m) equals the weighted-average yield of
the other maturity buckets, xt(m) is a vector of value-weighted bond characteristics for maturity
bucket m: coupon, maturity bucket fixed effects, bid-ask spread, and Macrot equals a set of macro
variables, including GDP gap, debt/GDP, core inflation, and credit spread. We residualize the
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coupon and the bid-ask spread with respect to the maturity fixed effects to address multicollinearity
issues and ensure that maturity preferences are not confounded with either of these two char-
acteristics. This residualization also makes sure that demand loadings on bond features do not
systematically drive demand. We provide summary statistics for this set of variables in Table A1
and the correlation table in Table A2.

We focus on the dollar value of holdings rather than portfolio weights, because dynamics in
total portfolio demand are crucial for the term structure of interest rates – modeling only portfolio
weights is not sufficient. For example, inflows into money-market mutual funds will cause extra
demand for short-maturity Treasuries, but their below-one-year Treasury portfolio weight is 100%
and does not capture such fluctuations. Moreover, we use market values rather than face values
because our model in Section 4 indicates that market values are the relevant signals for investors,
so our specification in (8) has a direct mapping to our dynamic quantitative model.4

Different from Koijen and Yogo (2019), but following our model in Section 4.2, we include
“other yield” to capture cross substitution across the maturity structure. We find that if we only
include own yield but not other yield in our analysis, we would uncover a coefficient on own
yield that is downward biased. The reason is that own yield and other yield are correlated, while
demand increases if own yield goes up, but decreases when other yield goes up. Hence, when not
accounting for other yield, bι

1 picks up both the positive and negative effect, leading to a coefficient
that is biased towards zero.5

In our specification, we assume that the macro variables are exogenous to investors, as in Fang
et al. (2022) and Koijen and Yogo (2020). That is, investor (latent) demand does not contempora-
neously affect macro variables. In addition, we also assume that bond characteristics, except for
yields, are exogenous to latent demand. This assumption is the basis for the construction of our
instrumental variables.

We could estimate the demand system specified in Equation (8) by GMM if it satisfies the
moment condition:

E[uι
t (m)|yt(m),yt(−m),xt(m),Macrot ] = 0. (9)

The concern with this moment condition is that the error term may not be orthogonal to yields.
For instance, if sectors have a large demand for Treasuries unrelated to bond characteristics or
macro variables, then this latent demand is likely to also suppress the yield. As such, we need an
instrument for bond yields.

Instrument. We build on the instrument used in Koijen and Yogo (2020) and Fang et al. (2022)

4However, our empirical estimates are similar if we replace all market values with face values of Treasury holdings.
5Table A7 shows that the coefficient on own yield is attenuated closer to zero when not accounting for other yield.
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and use the following three step procedure. First, we estimate demand for each investor type as in
Equation (8), but excluding the yield. We then in a second step extract the predicted values Ẑι

t (m).
We also follow step (1) and (2) for the nominal value of Treasury supply at each maturity bucket,
whereby we regress it on the FFR and macro variables, consistent with the specification of our US
Treasury model introduced in Section 4. In a third step, we impose market clearing and extract the
imposed yield that sets the implied demand equal to the implied market value of supply:

∑
ι

Ẑι
t (m) =

Ŝt(m)

(1+ ỹt(m))τ(m)
, (10)

where Ŝt(m) is the predicted nominal value of supply for maturity bucket m, and τ(m) the corre-
sponding maturity. We take τ(m) as the average bond duration for maturity bucket m. We then
extract pseudo yield ỹt(m) that clears the market at each point in time t and use it as an instrument
for the actual yield yt(m): It(m) = ỹt(m). We apply the same logic to the value-weighted yield of
the other buckets, for which the instrument equals the value-weighted pseudo yield for the other
maturity buckets: It(−m) = ỹt(−m).

In summary, the idea behind the instrument is that the pseudo yield isolates the component of
the yield that is driven by bond characteristics and macro variables. This instrument satisfies
the exclusion restriction under the identifying assumption that bond characteristics and macro
variables are exogenous to investor latent demand, as we assume throughout. Moreover, we rely
on the nonlinear relationship between pseudo yields and bond characteristics as well as macro
variables. The reason is that in the case of a linear relationship, the pseudo yields would be
perfectly collinear with bond characteristics and macro variables in the second stage (8). This
assumption of nonlinearity is satisfied because of the convexity effect of compounding interest as
in (10), and empirically relevant because of a strong first stage. In Appendix B, we give a stylized
example to further clarify these arguments.6 More formally, we can weaken moment condition (9)
to:

E[uι
t (m)|It(m), It(−m),xt(m),Macrot ] = 0. (11)

The first stage estimates of the demand system are summarized in Table A4. The corresponding
Kleibergen-Paap statistic to test for weak instruments is 11.13, above the threshold of 10 for
rejecting weak instruments (Stock and Yogo 2005).7

6We thank Quentin Vandeweyer for discussing our paper and providing these stylized examples.
7The first stage is the same for all sectors, except MMFs, for which the statistic equals 4.27. The reason is that

MMFs do not invest in maturities beyond 1 year, so the instrument cannot exploit heterogeneity across maturities and
we should interpret their result with care.
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3.3. Demand Functions of Granular-Demand Investors

Table 3. Demand System Results - IV

This table shows the IV estimates of our demand system specified in Equation (8). The dependent variable
is the market value ($ billion) of U.S. Treasuries held by sector ι in maturity bucket m at time t, adjusted by
the ratio of GDP potential at the end of our sample period over the value at current quarter. The endogenous
variables are: yt(m), which is the value-weighted yield of maturity bucket m, yt(−m), which is the value-
weighted yield of the other maturity buckets excluding maturity bucket m. We instrument own and other
yield using pseudo yields specified in Section 3.2. Additional variables include Coupon Rate, Bid-Ask
Spread, maturity bucket indicators, Credit Spread, Debt/GDP, Credit Spread, GDP Gap, and Core Inflation.
We orthogonalize the coupon and the bid-ask spread with respect to maturity fixed effects. For explanations
of sector abbreviations, refer to the notes of Table 2. The quarterly sample period is from 2011Q4-2022Q4.
HAC standard errors with optimal lags are reported in brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Banks ICPF MF ROW MF US MMF Other U.S. Foreign O Foreign P

(1) (2) (3) (4) (5) (6) (7) (8)
yt(m) 63.850** 3.833 6.934* 137.258*** 436.596* 172.272 -33.849 32.697

[26.277] [11.461] [3.716] [47.699] [236.128] [199.313] [115.257] [94.669]
yt(−m) -72.167** -1.247 -3.663 -152.400*** -611.375* -17.813 -94.278 -42.745

[28.676] [13.518] [4.025] [53.939] [367.663] [257.566] [154.463] [125.330]
Coupon Rate -148.638*** 3.053 -4.817 -137.838** 55.752 182.530 -480.953** -315.103*

[35.111] [18.189] [4.853] [61.177] [545.299] [319.718] [191.041] [180.040]
Bid-Ask Spread 7.730 18.664*** 3.059** 12.692 136.693 109.723 -102.377** -65.497

[7.921] [4.472] [1.206] [16.243] [140.086] [76.916] [46.128] [56.216]
1{1Y ≤ τ < 5} 56.159*** 148.746*** 12.952*** 189.591*** -427.082*** 2923.108*** -346.709***

[15.057] [4.427] [2.132] [26.569] [122.524] [91.434] [83.651]
1{τ ≥ 5} -68.055 182.999*** 9.623 36.298 451.302 148.771 44.390

[47.867] [20.885] [7.022] [91.367] [413.365] [226.244] [186.195]
Credit Spread 15.144 -12.095 0.784 -37.701 -512.281** 286.080 95.977 -30.513

[20.288] [13.631] [2.489] [40.149] [202.541] [185.470] [90.280] [130.369]
Debt/GDP 648.082*** -7.771 41.743*** -18.509 5592.173*** 2142.833** -1806.284*** 651.782

[79.844] [48.167] [10.595] [135.214] [1277.801] [919.753] [572.490] [536.095]
GDP Gap 11.000*** -4.501** 1.424*** 12.121** -75.617*** -9.814 -10.512 8.537

[3.708] [1.885] [0.460] [5.146] [21.914] [29.890] [17.207] [17.759]
Core Inflation 16.814** -0.440 -2.254*** -3.223 59.070 -13.744 -74.315* 3.339

[6.870] [3.300] [0.854] [11.134] [95.780] [49.601] [40.866] [33.921]

Observations 135 135 135 135 45 135 135 135
Kleibergen-Paap
Statistic (first stage) 11.13 11.13 11.13 11.13 4.27 11.13 11.13 11.13

Table 3 shows the results using the IV methodology outlined in the previous section.8 We
find that all investors have downward sloping demand curves, except for the foreign official sector,
although its coefficient is insignificant and small in economic magnitude. That is, granular-demand
investors demand more U.S. Treasuries of maturity bucket m when the yield (price) is high (low).
In addition, investors load negatively on the yield of other maturity buckets, meaning that their
demand for maturity bucket m decreases when the yields of other buckets are high. Generally,
we find that other elasticity is slightly higher than own elasticity, but the order of magnitude

8The results of the OLS estimates are in Appendix A3.
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between the coefficients is similar. This is consistent with the findings in Chaudhary et al. (2022).
They find a ratio between cross-elasticity and own-elasticity of close to 1 at the CUSIP level and
for portfolios at the rating × quarter-to-maturity level for corporate bonds, the latter aggregation
closely resembling ours. This ratio implies that own and cross-elasticity have the same magnitude,
but with opposite sign. Additionally, Table A5 shows that the coefficients on own and other yield
are qualitatively similar when not controlling for macro variables. Finally, Table A6 reveals that our
results are robust to a specification where pseudo yields are inferred solely from coupon, maturity,
GDP gap, and Debt/GDP, while omitting bid-ask spread, credit spread, and core inflation. This
finding underscores the robustness of our IV to excluding bond characteristics and macro variables
that are potentially endogenous and thereby violating the exclusion restriction of the IV.

Moving to the bond characteristics, ICPFs, and foreign MFs have a higher demand for Trea-
suries when the bid-ask spreads are high; that is, when Treasuries are less liquid,9 while foreign
official investors reduce their demand at that time. This suggests heterogeneous liquidity prefer-
ences across investors. Furthermore, ICPFs have a high demand for long-term Treasuries, while
foreign officials have a high preference for medium-term bonds, highlighting the importance of
heterogeneity in maturity preferences across investors. By means of the investment mandates of
MMFs, they only operate in the shortest maturity bucket. Moving to the macro variables, we find
that banks, MFs U.S., and MFs ROW increase their demand for Treasuries when the GDP gap
is high, while MMFs and ICPFs reduce their demand. Foreign investors reduce their demand for
Treasuries when core inflation is high, while banks increase their demand. Finally, we find that
Banks, MF ROW, MMFs, and Other U.S. Investors increase demand for Treasuries when debt/GDP
is high, while foreign officials heavily reduce their demand in response to a rise in the U.S. debt
burden, consistent with the trends described in Table 2.

By looking at holdings in market values, Table 3 does not allow a comparison among the price
elasticities across investor types. As such, we scale the holdings for each sector by the average
holding of that sector, across buckets and time. Figure 3a plots the coefficients on own and other
yield for each investor type. Interestingly, mutual funds and MMFs appear to be most price elastic,
followed by banks10. ICPFs and foreign official investors are the least price elastic. Although our
estimated own elasticities appear large for certain sectors, these sectors tend to be small relative to
the total amount outstanding (e.g., the most elastic U.S. mutual fund sector holds only 4.7% of the
market). In addition, we also uncover significant cross elasticity, which reduces the equilibrium

9Bretscher et al. (2024) find that ICPFs’ corporate bond demand has a positive loading on the bid-ask spread. For
instance, ICPFs may prefer illiquid assets to keep their solvency positions appearing more stable. However, they find
that MFs prefer liquid bonds in the cross-section. This finding does not necessarily contradict our result that picks up
a preference for liquidity in the time-series by removing maturity fixed effects. Our finding should thus be interpreted
as foreign MFs having a higher demand for Treasuries when market liquidity declines.

10Eren et al. (2023) also find that banks and investment funds are more price elastic.
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market elasticity because investors tend to cross substitute rather than absorb quantities in net.
Importantly, as we illustrate in Section 5.3, the equilibrium market elasticity in the presence
of arbitrageurs is significantly different from the value-weighted elasticity of granular-demand
investors.

Figure 3. Yield Elasticities by Investor Type

Panel (a) plots the coefficients on own and other yield for different granular-demand investors, scaling
holdings for each sector by the average holding across time and maturity buckets for that sector to allow for
comparison of coefficients across investor types. A coefficient of 50 implies that for a one percentage point
increase in yield, the demand goes up by 50%. For explanations of sector abbreviations, refer to the notes
of Table 2. Panel (b) shows the yield sensitivities for the Federal Reserve by maturity bucket, whereby we
scale the holdings in each bucket by the time-series average holding in that bucket. We use market values
scaled by GDP potential and the quarterly sample period is 2011Q4-2022Q4.
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3.4. Demand Functions of the Fed

For the Fed, we estimate their demand curves separately for each maturity bucket. The reason is
that the Fed implements unconventional monetary policies mainly via long-term Treasuries. We
should, therefore, expect the Fed to respond to yields for its long-term Treasury holdings, but not
for its short- and medium-term Treasury holdings. In contrast, we do not have a strong prior that
granular-demand investors have significantly different responses to yields across maturities.

Table 4 summarizes the results. Interestingly, in the long-term bucket, the Fed behaves sim-
ilarly to granular-demand investors: the Fed increases its long-term Treasury holding when the
long-term yield is high, while reduces its holding when the short-term yield is high. This revealed
behavior is consistent with the Fed’s policy goals. Specifically, QE aims to lower long-term yields,
prompting the Fed to expand its balance sheet when long-term yields rise. Moreover, the Fed aligns
its conventional and unconventional monetary policies by simultaneously increasing the short-
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Table 4. Demand System Results - Fed

This table shows the IV estimates of our demand system specified in Equation (8) for the Fed. The
dependent variable is the market value ($ billion) of U.S. Treasuries held by the Fed in each maturity bucket
m at time t, adjusted by the ratio of GDP potential at the end of our sample period over the value at current
quarter. The endogenous variables are: yt(m), which is the value-weighted yield of maturity bucket m,
yt(−m), which is the value-weighted yield of the other maturity buckets excluding maturity bucket m. We
instrument own and other yield using pseudo yields specified in Section 3.2. Additional variables include
Coupon Rate, Bid-Ask Spread, Credit Spread, Debt/GDP, Credit Spread, GDP Gap, and Core Inflation.
Column (1) shows the results for τ < 1Y , Column (2) for 1Y ≤ τ < 5, and Column (3) for τ ≥ 5. The
quarterly sample period is from 2011Q4 to 2022Q4. HAC standard errors with optimal lags are reported in
brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

1{τ < 1Y} 1{1Y ≤ τ < 5Y} 1{τ ≥ 5Y}

(1) (2) (3)
yt(m) -14.733 -49.318 385.678**

[100.514] [208.133] [157.594]
yt(−m) 120.213 112.178 -478.703***

[146.510] [254.479] [79.222]
Coupon Rate -35.947 -2557.515*** 246.631

[186.162] [256.424] [248.683]
Bid-Ask Spread 203.700*** 102.781 -177.449***

[59.059] [75.504] [65.788]
Credit Spread 24.368 206.475 -231.120*

[82.169] [138.053] [137.150]
Debt/GDP 3643.632*** 429.732 4649.721***

[398.422] [564.090] [1020.458]
GDP Gap -6.980 -16.387 -49.862**

[7.078] [14.768] [22.644]
Core Inflation 46.812 -61.166 155.350***

[40.232] [40.724] [29.301]

Observations 45 45 45
Kleibergen-Paap Statistic (first stage) 4.27 9.58 14.67

term interest rate and reducing long-term Treasury holdings, resulting in a negative cross-elasticity
in its long-term Treasury demand. Despite the significant price elasticity in long-term Treasury
holdings, the Fed’s medium and short-term Treasury holdings are not responsive to Treasury yields,
consistent with the focus of QE/QT on long-term securities.

Additionally, we find that the Fed reduces demand for long-term bonds when the GDP gap is
high, indicating less need to support the economy via QE when the economy is doing well. More-
over, the Fed significantly expands its Treasury holdings in all maturity buckets when Debt/GDP
is higher, indicating prominent fiscal accommodations by the Fed.

Figure 3b shows the relative yield sensitivities of the Fed across maturity buckets. Clearly, the
Fed’s short- and medium-term Treasury holdings are price inelastic, while its long-term Treasury
holdings exhibit significant price elasticity, comparable in magnitude to that of banks.
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4. An Equilibrium Model of the Treasury Market

The previous section revealed three key findings. First, granular-demand investors and the Fed have
downward-sloping demand curves. Second, their total demand exhibits strong cross substitution.
Third, the Fed’s demand for short- and medium-maturity is not significantly affected by Treasury
yields, while its long-maturity Treasury demand increases with long-maturity Treasury yield but
decreases with short-term yields, consistent with its policy objectives.

Building on these empirical results, this section develops a model where strategic arbitrageurs
interact with granular-demand investors and the Fed in the Treasury market, in the spirit of Vayanos
and Vila (2021). We capture Treasury demand of granular-demand investors and the Fed using
demand functions, motivated by the model in Section 3.1, while we explicitly model arbitrageurs
using a stripped-off version of the model in Section 3.1 that reflects pure arbitrage. After we set
up the model, we provide a simplified version that allows us to derive analytical results to obtain
intuition regarding the fundamental mechanisms. Finally, we estimate the full model from the data.

To capture the rich economics in the Treasury market, we deviate from Vayanos and Vila
(2021) mainly in three aspects. First, we incorporate cross-substitution in investor demand, a
critical feature that generates realistic term premium responses to monetary policy shocks. Second,
we include a monetary-policy rule that depends on macroeconomic dynamics, rather than treating
the short-term interest rate as exogenous, allowing us to quantify the magnitude of monetary policy
shocks. Third, we account for latent outside assets held by arbitrageurs, adding the element of
realism that prices of risks are not entirely driven by arbitrageurs’ Treasury portfolios.

4.1. Model Setup

The model is discrete-time and infinite-horizon. There are four types of agents in the economy: a
competitive arbitrageur sector, the Fed, a set of granular-demand investors, and the government.
We only explicitly model the strategic decisions by arbitrageurs while we capture the behavior of
other agents by policy rules that map directly to our estimated demand functions. We model the
Treasury market explicitly by market clearing. Economic dynamics are driven by macroeconomic
shocks, monetary policy shocks, and demand shocks.

Consider zero-coupon bonds of maturities τ ∈ {1,2, · · · ,N} that all pay a face value of 1 at
maturity. Denote by P(τ)

t and y(τ)t , respectively the time-t price and yield of the bond with maturity
τ . We use “prime” to denote the transpose of vectors and matrices, and all vectors are column
vectors. Define the log price vector as

pt =
(

log(P(1)
t ), log(P(2)

t ), · · · , log(P(N)
t )

)′
. (12)
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For simplicity, we denote the yield of a one-period bond as rt , defined as rt =− log(P(1)
t ).

We consider rt as directly controlled by monetary policy. All other bond yields and prices
are endogenously determined in equilibrium. Denote the total return from holding a Treasury of
maturity τ as

R(τ)
t+1 =

P(τ−1)
t+1 −P(τ)

t

P(τ)
t

. (13)

Accordingly, the total return of one-period Treasury is Rt+1 = R(1)
t+1 = exp(rt)−1 ≈ rt .

The dynamics of the economy is driven by a K-dimensional vector of macro factors,

βt = (β1,t ,β2,t , · · · ,βK,t)
′ , (14)

which follows a VAR(1) process,

βt+1 = β̄ +Φ(βt − β̄ )+Σ
1/2

εt+1. (15)

In the above expression, εt+1 is a K-dimensional vector that follows an i.i.d. standard normal
distribution, and Φ is a matrix that determines the long-run dynamics.

We interpret the vector βt as macro states of the economy that drive the monetary policy stance
in equilibrium and also expectations regarding future economic states. Monetary policy depends
on contemporaneous economic variables,

rt+1 = r̄+φ
′
r(βt+1 − β̄ )+ρrrt +σrε

r
t+1, (16)

where ρr captures monetary policy inertia, as discussed, for example, in Clarida et al. (2000), and
εr

t+1 reflects monetary policy shocks. We assume that monetary policy shocks εr
t+1 are indepen-

dent from εt+1, i.e., monetary policy shocks are not subsumed by public information on macro
dynamics.

Denote the set of institutions excluding arbitrageurs as I . Sector-ι’s (ι ∈ I ) demand for
bonds with maturity τ ∈ {1, · · · ,N} follows the functional form in (7) of Section 3.1,

Zι
t (τ) = θ

ι
0(τ)−α

ι(τ)′pt −θ
ι(τ)′βt +uι

t (τ), (17)

where we use log prices instead of yields for consistency with Vayanos and Vila (2021), but the
two are equivalent. The parameter vector α ι(τ) loads on the whole log-price vector pt and reflects
not only the demand sensitivity to the price of maturity τ itself but also sensitivities to prices of
other maturities τ ′ ̸= τ , capturing cross elasticities. We lump the demand for bonds from granular-
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demand investors and the Fed together, and refer to it either as the “non-arbitrageur demand”,
defined as

Zt(τ) = ∑
ι∈I

Zι
t (τ). (18)

Accordingly, we define θ0(τ), α(τ), θ(τ), and ut(τ) as the sums of corresponding values from
each sector ι ∈ I . We use column vector forms to express our setup in a more convenient and
compact notation. In vector form, we can write (18) as

Zt = θ0 −α pt −θβt +ut , (19)

where θ0 = (θ0(1),θ0(2), · · · ,θ0(N))′ is an N-dimensional vector, α = (α(1),α(2), · · · ,α(N))′

an N ×K matrix, and θ = (θ(1),θ(2), · · · ,θ(N))′ an N ×K matrix. The unobservable, maturity-
specific latent demand shock, ut = (ut(1),ut(2), · · · ,ut(N))′, reflects the non-systematic compo-
nent of demand shocks. We assume that ut is i.i.d., with mean zero and covariance matrix Σu.

On the supply side, we assume that the government issues Treasuries depending on macroe-
conomic conditions and the monetary policy rate. Accordingly, we specify the aggregate value
of government bond supply, or, more precisely, the supply to the public market, i.e. marketable
Treasury securities, as

St(τ) = S̄(τ)+ζ (τ)′βt +ζr(τ)rt , (20)

or, in vector form, as
St = S̄+ζ βt +ζrrt , (21)

where ζ = (ζ (1),ζ (2), · · · ,ζ (N))′ is an N ×K matrix. We can interpret Equation (21) as coming
from a budget equation of the government, where Treasury supply needs to adjust to the need for
government financing, which in turn is driven by macroeconomic conditions and the prevailing
interest rate. Therefore, our model implicitly captures fiscal dynamics of the government.

We model a representative arbitrageur as a special version of the generic problem in (2).
In particular, we shut off the non-pecuniary term to reflect pure arbitrage, and assume rational
expectations. We denote arbitrageur positions in Treasuries of maturity τ as Xt(τ), and the outside
asset position as X̃t .

We view modeling outside assets as adding an important element of realism to models in the
spirit of Vayanos and Vila (2021), since arbitrageurs’ risk-bearing capacity in the Treasury market
plausibly depends on their positions in other markets. We will estimate arbitrageurs’ outside asset
risk exposure with a revealed preference approach.
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Accordingly, arbitrageurs’ wealth dynamics evolve as

Wt+1 =Wt(1+Rt)+
N

∑
τ=2

Xt(τ)(R
(τ)
t+1 −Rt)+ X̃t(R̃t+1 −Rt). (22)

We assume that the return of the outside asset is normally distributed and depends on the state of
the economy, in that

R̃t+1 = φ̃
′
βt + φ̃rrt + σ̃

′
εt+1 + σ̃

′
rε

r
t+1, (23)

where φ̃ is a K ×1 vector, φ̃r is a scalar, σ̃ is a K ×1 vector, and σ̃ ′
r is a scalar.

The objective of arbitrageurs is to maximize a mean-variance utility,

max
{Xτ

t }τ ,X̃t

Et [Wt+1]−
γ

2
Vart(Wt+1), (24)

subject to the wealth dynamics specified in (22).

Finally, for each maturity τ , there is a market-clearing condition,

Zt(τ)+Xt(τ) = St(τ). (25)

We conjecture that there is an affine equilibrium in the form of

pt = Aβt +Arrt +Auut +C, (26)

where A = (A(1),A(2), · · · ,A(N))′ is an N ×K matrix, Ar = (Ar(1),Ar(2), · · · ,Ar(N))′ is an N ×1
vector, Au =(Au(1),Au(2), · · · ,Au(N))′ is an N×N matrix, C =(C(1),C(2), · · · ,C(N))′ is an N×1
vector.

4.2. A Simplified Version with Analytical Solutions

To gain intuition regarding the mechanisms at play in the model, we analyze a simplified version
of the model in this subsection. In particular, we assume N = 2, so that there are only two
maturities for consideration that represent “short” and “long”. We assume that the granular-demand
investor demand has a simple structure with the matrix capturing the demand response to price (see
Equation (19)), given as

α =

(
a −b/2
−b a/2

)
. (27)

Since p(2) =−2y(2), the long-term and short-term Treasury demand responses to long-term yield
are a and −b, so the matrix of demand responses to yields is symmetric. We assume that both
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a and b are positive, so that Treasury demand increases in its own yield, but decreases in the
other-maturity yield, which is the case for the aggregate granular-demand investor demand as we
uncovered in Section 3.

We set K = 1 so that the macro factor βt is only one dimensional, and we interpret this single-
dimension factor as “supply” factor that drives the total debt supply. We also set φr = 0 so that
monetary policy process does not depend on the macro factor, and r̄ = 0 for simplicity. We further
set ζr = 0 so that debt supply is

S(τ)t = S̄(τ)+ζ (τ)βt , (28)

for τ = {1,2}. We impose a regularity condition that ζ (2)>−θ(2) so that any supply expansion
does not automatically get overshadowed by the expansion of demand in response to such supply
expansion. Finally, for simplicity, we shut off all outside portfolio exposure by setting X̃t = 0.

Using the first order conditions and the market clearing condition, we find the following unique
equilibrium solution for log prices,

p(1)t =−rt ,

p(2)t =−1+ρr + γσ2
r b

1+ a
2γσ2

r
rt −

γσ2
r (ζ (2)+θ(2))

1+ a
2γσ2

r
βt +

γσ2
r

1+ a
2γσ2

r
ut(2)+

1
2 − γ S̄(2)+ γθ0(2)

1
σ2

r
+ a

2γ
,

(29)

where the first equation reflects that the short rate is given by the monetary policy stance, and
the second equation comes from arbitrageurs accommodating the imbalance between Treasury
supply and non-arbitrageur demand subject to risk aversion. Detailed derivations are provided in
Appendix D.2, which also contains proofs of all the following propositions in this section.

Using Equation (29), we summarize the drivers of Treasury price variation in the following
proposition.

Proposition 1 (Decomposition of Treasury Pricing). Monetary policy rate rt plays a dominant

role for short-maturity Treasuries, while macro shocks and latent demand shocks become more

important for long-maturity Treasuries.

Proposition 1 is an intuitive result by simply observing Equation (29). The more general
message is that the relative importance of macro factors and latent demand increases as the maturity
of Treasuries increase, because the arbitrage force gets weaker at longer maturities. Furthermore,
Proposition 1 also implies that a demand shock, either latent demand or permanent demand, has
a larger price impact if it comes from longer maturities, because shorter-maturity demand shocks
are better accommodated by arbitrageurs given that arbitraging short-maturity Treasuries involves
lower risks. Taking the limit, the one-period arbitrage is perfect and the short rate is not affected
by any demand shock.
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Next, we analyze how arbitrageurs’ risk aversion γ affects Treasury pricing.

Proposition 2 (Impact of Arbitrageurs’ Risk Aversion). For long-term Treasuries, a higher ar-

bitrageur risk aversion γ increases the magnitude of the Treasury price sensitivity to the macro

factor βt , latent demand ut , and permanent demand θ0(2).

Proposition 2 states that higher arbitrageur risk aversion makes Treasury prices more sensitive
to many sources of variations in the model, which is intuitive given that arbitrageurs accommodate
order imbalances subject to risk aversion.

It is useful to consider two extreme cases. In the first case, we take γ → ∞, so that arbitrageurs
“drop out” from the market. Then the long-term Treasury price becomes

p(2)t =−2b
a

rt −
2
a
(ζ (2)+θ(2))βt +

2
a

ut(2)+
2
a
(θ0(2)− S̄(2)). (30)

This is a case where Treasury prices are entirely driven by supply and demand absent from strategic
arbitrage. Therefore, there is no distinction among a temporary latent demand shock ut , a perma-
nent demand shock θ0(2), or a supply shock ζ (2)βt – all of them share the same price impact.
Moreover, the short-term rate rt has an impact on the long-term Treasury price p(2)t only if the
cross substitution b is different from zero.

In the second case, we take γ → 0, so that arbitrageurs are risk neutral and arbitrage to the full
extent, leading to

p(2)t =−(1+ρr)rt +
1
2

σ
2
r , (31)

which is the log Treasury price under the expectations hypothesis (the second term is the Jensen’s
term after taking logs). Intuitively, the current short rate is rt and in expectation the next period
short rate is ρrrt , leading to a log price of −(1+ρr)rt plus a convexity adjustment.

According to the non-arbitrageur demand in (19) and the simplified elasticity matrix in (27)
and solution in (29), we obtain non-arbitrageur holdings as

Z(2)
t =

θ0(2) 1
σ2

r
− 1

4a+ a
2γ S̄(2)

1
σ2

r
+ a

2γ
+

a
2(1+ρr)−b

1+ a
2γσ2

r
rt +

a
2γσ2

r (ζ (2)+θ(2))
1+ a

2γσ2
r

βt +
1

1+ a
2γσ2

r
ut(2). (32)

Expression (32) reflects equilibrium non-arbitrageur demand adjustments from two sources: one
directly reflects demand dependence on the macro factor βt and latent demand ut absent a Treasury
price effect, and the other reflects the response to the Treasury price change, both from the own
yield and the other yield, due to cross elasticity. We note that if γ → ∞, the above expression
converges to Z(2)

t → S̄(2)+ ζ (2)βt , i.e., the total debt supply in this simplified model as in (28).
In this extreme case, the arbitrageurs’ holdings of long-term Treasury become zero. Generally,

25



arbitrageur holdings are X (2) = S(2)t −Z(2)
t , which in this simplified model is

X (2)
t =

1
σ2

r
S̄(2)+ 1

4a−θ0(2) 1
σ2

r
1

σ2
r
+ a

2γ
−

a
2(1+ρr)−b

1+ a
2γσ2

r
rt +

ζ (2)+θ(2)
1+ a

2γσ2
r

βt −
1

1+ a
2γσ2

r
ut(2). (33)

We next discuss how the yield curve responds to monetary policy.

Proposition 3 (Monetary Policy and Risk Premium). If 2b/a > 1+ρr (strong cross elasticity), a

positive monetary policy shock increases the term premium and causes over-reaction of long-term

yields relative to the expectation hypothesis. On the other hand, if 2b/a < 1+ ρr (weak cross

elasticity), we obtain the opposite result and there is under-reaction of long-term yields.

We note that Proposition 3 sharply contrasts with the typical results in Vayanos and Vila
(2021) type of models without cross elasticity. As Proposition 2 of Vayanos and Vila (2021)
shows, there is under reaction of long-term yields relative to the expectations hypothesis. The
basic intuition is that when the monetary policy rate rises, long-term Treasuries are cheaper due to
the expectations effect, which induces non-arbitrageur investors to hold more of them and reduces
the amount arbitrageurs absorb, therefore reducing the risk premium of long-term Treasuries and
dampening the yield increase in the first place. When there is strong cross substitution, however,
there is another force at work in that non-arbitrageur investors tend to reduce long-term Treasury
holdings when short-term rate is higher, which then forces the arbitrageurs to increase their long-
term Treasury holdings (see Equation (33)). This counteracts the first force and may cause the
yield to be even higher than according to the expectations hypothesis. The proposition provides a
sharp characterization of the conditions under which this new force dominates the first one.

In Section 3, we show that for most sectors, the cross elasticity is of a similar order of
magnitude as the own elasticity. After aggregating all the sectors, we find that 2b/a = 2.3 across
maturities, while ρr = 0.78, so the strong cross elasticity is supported in the data. As a result,
Proposition 3 suggests overreaction of long-term yield relative to the expectations hypothesis,
which is consistent with the literature (Bekaert et al. 2013; Hanson and Stein 2015; Gertler and
Karadi 2015; Kekre et al. 2024). Kekre et al. (2024) generates overreaction by introducing wealth
effects for arbitrageurs, while we achieve the same result by allowing for cross elasticities.

Apart from traditional monetary policy, unconventional monetary policy can also be analyzed
within the framework. We interpret QE as a demand shift, i.e., a higher θ0(2).

Proposition 4 (QE and Treasury Pricing). QE increases Treasury prices and reduces Treasury

yields.

Proposition 4 indicates the pivotal role of Fed’s demand in the Treasury market. With a
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persistent QE in place (higher θ0(2)), the Fed permanently increases Treasury prices and lowers
Treasury yields.

We note that in this two-maturity model, there is no difference between a temporary demand
shock ut(2) and a permanent demand shock θ0(2), since after one period, the two-period bond
becomes one period and the price is fully determined by the monetary policy rate. In the full
model, we expect the effect to be stronger for permanent shocks since they have a stronger impact
on the pricing kernel of arbitrageurs, and we will examine this hypothesis quantitatively using the
full model.

Finally, we want to caution readers that although Propositions 2 to 4 provide very sharp
characterizations regarding the roles of cross elasticities, price responses, and arbitrageur positions,
these predictions are obtained under a drastic simplification of the full model. In the richer full
model, we consider more than two maturities, so the risk premium on the macro factors βt will be
priced into long-term Treasuries, and the demand elasticity matrix α is more complicated than the
one in Equation (27). More importantly, the full model accounts for arbitrageurs’ outside portfolio
which is affected by all the important factors including rt and βt , so predictions about how the
short-rate rt and macro factors βt affect the Treasury yield curve are more complicated than the
simple predictions in this section. Nevertheless, we believe this simple model still provides useful
intuition that guides and helps us interpret our quantitative analysis in the following sections.

4.3. Solving and Estimating the Model

As noted, we conjecture an affine solution of the model of the form (26). Given this conjecture,
we solve for the mean-variance problem in (24) and derive arbitrageurs’ first-order conditions for
Treasury holdings. For tractability, we make a simplifying assumption that the idiosyncratic latent
demand shocks are not priced and do not carry a risk premium. This is a typical result in most
asset pricing models. It is important to note that this assumption does not imply no price impact
by latent demand shocks, since ut can still directly affect prices via demand pressure.

Define the expected return on Treasuries of maturity τ as µ
(τ)
t ≡ Et [R

(τ)
t+1], where R(τ)

t+1 =

exp(r(τ)t+1)−1 ≈ r(τ)t+1+
1
2Vart [r

(τ)
t+1]. The approximation becomes exact when we take a continuous-

time approach11. The log return can be further expressed as r(τ)t+1 = p(τ−1)
t+1 − p(τ)t and expanded

using (15) and (26).

11Refer to Greenwood et al. (2023) for a more detailed discussion.
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Next, solving the optimization problem (24), we get the first-order conditions

µ
(τ)
t −rt = Â(τ−1)′ γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)Xt(τ̂)

)
+Σ

1/2
σ̃ X̃t

)
︸ ︷︷ ︸

λβ ,t

+Ar(τ−1)′ γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)Xt(τ̂)

)
+σrσ̃rX̃t

)
︸ ︷︷ ︸

λr,t

,

(34)

where λβ ,t is the price of risk of macroeconomic shocks and λλ ,t is the price of risk of monetary
policy shocks, and Â(τ − 1) is the risk exposure to macro factors given in Appendix D.1 (see
Equation (A8)). For the Treasury price exposure to macroeconomic shocks, Â(τ −1), the expected
return µ

(τ)
t − rt needs to provide compensation, and the compensation per unit of exposure is

reflected by λβ ,t . Similarly, the exposure of the Treasury price to interest-rate risks, Ar(τ − 1),
requires compensation as reflected by λr,t .

Moreover, Equation (34) implies that the price of risk in this model is also affected by the
“outside asset” position X̃t , and its risk exposure. Note that we do not have sufficient degrees
of freedom to pin down all parameters related to the dynamics of the outside asset. Instead, we
assume that they can be spanned by βt and rt , so that

Σ
1/2

σ̃ X̃t = Ψβt +Λrt +ψ

σrσ̃rX̃t = Ψrβt +Λrrt +ψr,
(35)

where Ψ is a K ×K matrix, ψ is a K × 1 vector, Ψr is a 1×K vector, and ψr is a scalar. These
extra parameters need to be estimated together in the full model.

Next, we solve for Xτ
t using the market clearing Equation (25) and replace Zt(τ) with (18),

St(τ) with (20), thereby pinning down the equilibrium arbitrageur holdings as12

Xt(τ) =
(
S̄(τ)+ζ (τ)′βt +ζr(τ)

′rt
)
−
(
θ0(τ)−α(τ)′pt −θ(τ)′βt +ut(τ)

)
. (36)

Expanding the expected return µ
(τ)
t and plugging the equilibrium arbitrageur holdings Xτ

t of (36)
into the pricing equation (34), we obtain an equilibrium condition that we rewrite purely in terms of
βt , rt , and ut . Because the equation holds for all values of these variables, the coefficients in front
of them must all be matched, and so does the intercept term. Matching the coefficients, we arrive at
a set of iterative equations for the coefficient matrices A, Ar, and Au, as well as the vector C. These
equations are given in Appendix D.1. The common structure of these iterative expressions is that
they are all related to the granular-demand price elasticity α(τ) and arbitrageur risk aversion γ .
Therefore, both granular-demand function and arbitrageur risk aversion are central in driving the

12Note that this is an equilibrium result, not a "demand function". As discussed in Section 3.1, the demand of
rational arbitrageurs does not explicitly depend on yields.
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pricing of Treasury securities.

To solve and estimate the model, we denote the actual Treasury yields as yo
t (τ) for maturity

τ , and the model-implied Treasury yields as yt(τ). Let h be the steady-state arbitrageurs’ holdings
of long-term (above 1Y) Treasuries as a fraction of the total long-term Treasuries outstanding. We
find that h is very sensitive to the parameter γ . We denote the corresponding data moment as ho,
which is about 6% for Treasuries in our main sample from 2011 to 2022. Then we estimate the
remaining parameters through the following problem:

min
{γ,Au,Ψ,Ψr,Λ,Λr,ψ,ψr}

E
[

M · (h−ho)2 + ∑
t

∑
τ

(yt(τ)− yo
t (τ))

2
]
, (37)

subject to the equilibrium restrictions that discipline these parameters, detailed in Appendix D.3.
We pick M to be sufficiently large so that the average intermediary Treasury holding is matched
well. In our implementation, we pick M = 1000000. Further increasing M does not change the
results.

4.4. Estimation Results

In line with our empirical analysis and motivated in Appendix A.3, we choose the macro state vec-
tor as βt = (credit spread, GDP gap, core inflation, debt/GDP). Adding additional macroeconomic
variables does not significantly increase the explanatory power of the model for Treasury yield
dynamics but could introduce over-fitting problems, so we choose this set of four macro variables.
We estimate a VAR of the form (15) using the same sample period as in our main empirical
analysis. We find that core inflation and debt/GDP are both highly persistent. Nevertheless, the
maximum absolute value of the eigenvalue is 0.89, so macro variables converge to their long-run
average.

To fit the monetary policy rule, we have to rely on a longer time period, because monetary
policy rate does not exhibit much variation during our main sample period. In particular, we use
the post-Volcker period (1990 to 2024) excluding the zero lower bound (ZLB) period (2008-2015).
We start from 1990 because that is when the Fed gained credibility in its fight against inflation.
The coefficients on GDP gap and inflation have the same signs as in the classical Taylor rule
(Taylor 1993). Moreover, there is a high level of monetary policy inertia reflected by a coefficient
of 0.78 on the lagged policy rate. This dependence on the lagged policy rate generates an impact
of the monetary policy rate on long-term yields from the expectations effect and is critical to
understanding how the yield curve responds to monetary policy shocks εr

t+1.

We estimate problem (37) on our main data sample from 2011Q4 to 2022Q4. Since we take
expectations, the latent demand component in (26) will drop out in the objective function. In Figure
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A4 of Appendix E.1, we show that the model-implied expected yields (equation (26) with ut = 0)
can fit the term structure reasonably well, both across maturities and over time. We further show
that incorporating information on demand ut leads to model predictions even closer to the data,
consistent with the idea that demand shocks matter in the Treasury market.

The resulting absolute risk-aversion parameter is γ = 0.03. As shown in later sections, this is
a low level of risk aversion that leads to an elastic Treasury market. The novelty of our approach is
that we only rely on quantities to pin down arbitrageurs’ risk aversion. As a result, the model can
generate realistic quantity allocations across sectors and build tight linkages between quantities
and prices. Our approach relies on granular data that allow us to distinguish arbitrageurs explicitly
from granular-demand investors.

5. Dissecting the Treasury Market

In this section, we put our estimated model to work, and illustrate its basic mechanics and implica-
tions by dissecting the Treasury market. In particular, we decompose Treasury yields into different
driving forces, quantify the impact of arbitrageur risk aversion, evaluate the aggregate elasticity
of the Treasury market, and show the term structure of market elasticity. A key advantage of our
approach is that from our granular demand data, we explicitly recover sector-level latent demand
and their contribution to total demand, in contrast to the extant literature that relies on latent factors
(Ang and Piazzesi 2003; Bikbov and Chernov 2010; Joslin et al. 2014).

5.1. Decomposing Treasury Pricing

We start by taking guidance from the model to decompose Treasury prices and their variation into
their underlying drivers. Indeed, by virtue of Equation (26), we obtain a decomposition of yields
into macroeconomic states, monetary policy rate, as well as latent demand, while from Equations
(17) and (20), we obtain a decomposition of yield changes into sector-specific demand shocks and
supply shocks. Indeed, we define ∆Zι

t = −θ(τ)Σ1/2εt + ut as the demand shock of sector ι , and
∆St = ζ ′εt +ζrσrε

r
t as a supply shock in the model. While the first decomposition reveals how state

variables and latent demand drive the overall variations in Treasury yields, the second one focuses
on sector heterogeneity and the unpredictable components of supply and demand. In both of them,
we express the contribution of each variable as the Shapley value of R2, which is calculated as
the marginal contribution of each variable to the R2 among all possible sets of combinations of
dependent variables.

Regarding the first decomposition, Panel (a) in Figure 4 shows that the relative contribution of
economic forces varies across the term structure, in line with the model predictions in Proposition
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Figure 4. Decomposition of Treasury Yield Variation.

In this figure, we decompose Treasury yield variations. In Panel (a), we show the relative contribution
of macroeconomic factors, FFR, and latent demand to the variation in Treasury yields, using the relative
magnitude of their Shapley values of R2, which is calculated as the average marginal contribution of each
variable to the R2 among all possible sets of dependent variable combinations. In Panel (b), we focus on
how these different factors take effect through the supply and demand forces in the model, by regressing
one-quarter difference in Treasury yields of different maturity buckets on aggregate supply shocks and
sector-level demand shocks, which are unpredictable components driven by latent demand shocks and macro
shocks.
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(a) Decomposition into macroeconomic, short rate,
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(b) Contribution of sector-level demand and aggre-
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1. For short-maturity Treasuries, monetary policy plays the dominant role, explaining the vast
majority of variation, while macro variables play a secondary role. We note that latent demand
almost has no explanatory power for short-maturity Treasury yields. As the maturity increases,
the relative importance of the FFR declines while the relative importance of both macro variables
and latent demand shocks expand. In particular, for long-maturity Treasuries, macroeconomic
variables can explain about half of the variation in yields.

As shown in Figure 4 Panel (b), the second decomposition varies across the maturity structure
of Treasuries. Although banks’ holdings are very small compared to the entire market (3.4% as
shown in Table 2), they play a sizable role in transmitting shocks to the Treasury market, especially
in the medium-maturity bucket (1∼5 years). The foreign official sector contributes significant
shocks to both short- and medium-maturity buckets, while foreign mutual fund demand shocks
significantly contribute to yield variations in the long maturity bucket. Importantly, we find that
a sector’s contribution to yield variation can substantially differ from its average holdings, as that
contribution predominantly depends on how actively a sector responds to shocks.
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5.2. Arbitrageur Risk Aversion

In our model with arbitrageurs, the response of Treasury yields to shocks is not only shaped by
granular-investors’ individual demand elasticities, but, critically, also by arbitrageur risk aversion,
as shown by Proposition 2. To provide quantitative guidance regarding the effects of γ , we find it
illuminating to compare the baseline case with estimated risk aversion to an extreme case where we
send γ → ∞ and thus exclude the arbitrageurs. In the latter case (γ → ∞), market clearing implies

pt = α
−1 ((θ0 −θβt +ut)−

(
S̄+ζ βt +ζrrt

))
. (38)

Thus, absent arbitrageurs, the equilibrium price response to a demand shock is simply α−1. On the
other hand, with arbitrageurs, the equilibrium demand elasticity also depends on arbitrageur risk-
aversion γ , the volatility of macroeconomic shocks Σ, monetary policy uncertainty σr and inertia
ρr, and the persistence of macroeconomic dynamics Φ. In this case, therefore, the equilibrium
demand elasticity may significantly differ from the estimated granular-demand investors’ demand
elasticities.

In Table 5, we illustrate the equilibrium Treasury price response (in %) at each maturity
bucket to a latent demand shocks that is 1% of outstanding in a specific maturity bucket. This
is a granular version of price multiplier as in Gabaix and Koijen (2021). In Panel (a), we report
the multiplier in the full model with arbitrageurs for the three maturity buckets we consider in
our empirical analysis, using the average duration as the representing maturity. We find that for a
given demand shock, the price response at longer maturities is much stronger. For example, the
response of the long-maturity Treasury price is 13 times larger than the short-maturity Treasury
price response, given a shock to short-maturity demand. Moreover, shocks to demand for longer-
maturity Treasuries are more powerful, reflected by larger multipliers associated with shocks to
longer maturities.

In Panel (b), we effectively remove arbitrageurs by setting γ = ∞, and examine the correspond-
ing price multipliers, obtained from scaling (38) with the outstanding amount in each maturity
bucket. We find that in this case, price multipliers are generally one to two orders of magnitude
larger than in the baseline case. Clearly, without arbitrageurs, the price impact on T-bills is too
large for a world in which the Fed tightly controls the money market. With arbitrageurs, the
Fed controls the monetary policy rate by actively accommodating any demand shocks in the one-
period (one-quarter) Treasury market, and arbitrageurs propagate these dynamics through the term
structure, with weakening price effects at longer maturities.

The force of arbitrage is illustrated in Panel (c) of Table 5, where we report the ratio of the
price impacts in the case without arbitrageurs and the baseline case. On average, the price impact
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Table 5. Impact of Latent Demand Shocks on Treasury Prices with and without Arbitrageurs.

We illustrate the impact of latent demand shocks with and without arbitrageurs. In panels (a) and (b), a value
of 1 at row i and column j implies that 1% extra latent demand of maturity bucket i increases the price at
maturity j by 1%. Panel (c) shows the ratio of the corresponding cells in Panel (b) over Panel (a).

Panel (a): With Arbitrageur

price change (%) of
short maturity medium maturity long maturity

shock on short maturity 0.001 0.006 0.013
shock on medium maturity 0.008 0.057 0.139
shock on long maturity 0.015 0.111 0.323

Panel (b): Without Arbitrageur

shock on short maturity 0.344 1.292 7.108
shock on medium maturity 2.287 7.508 44.102
shock on long maturity 0.707 2.478 12.878

Panel (c): Price Impact Ratio (Panel (b)/Panel (a))

shock on short maturity 432.899 230.737 531.800
shock on medium maturity 288.740 132.617 316.304
shock on long maturity 46.904 22.229 39.884

in the case without arbitrageur is more than 100 times the one with arbitrageurs. In Appendix E.2,
we also show the impact of permanent demand shocks with and without arbitrageurs and reach a
similar conclusion.

5.3. How Elastic is the Treasury Market?

In view of the price responses of each maturity bucket in Table 5, we can estimate the aggregate
Treasury market multiplier, which is the percentage valuation change of the entire Treasury market
for a demand shock to the overall Treasury market that is worth 1% of total Treasury value.

Using long-run average values of total Treasury supply in each maturity bucket as weights, we
convert numbers in Table 5 into a total market multiplier, which is 0.23. This implies that for a $100
billion dollar demand shock on the whole Treasury market, the total Treasury valuation increases
by $23 billion dollars. On the other hand, the multiplier is 0.78 for a representative permanent
demand shock13. In contrast, Chaudhary et al. (2022) report a multiplier for the corporate bond
market of 3.5, while Gabaix and Koijen (2021) find a multiplier of 5 for the stock market. As a
result, the equilibrium price impact in the Treasury market is significantly weaker, which suggests

13See Appendix E.2 for more details on calculating market multipliers for both latent and permanent demand shocks.
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that the Treasury market is, in fact, quite elastic.

Notably, however, once we remove arbitrageurs by setting γ = ∞, the estimated Treasury
market multiplier increases to 26.82, substantially larger than the multipliers in corporate bond
and equity markets. This illustrates the importance of accounting for arbitrageurs when computing
aggregate price elasticities. Intuitively, with low estimated risk aversion, arbitrageurs aggressively
trade and thus dampen the effect of demand shocks.

Figure 5. The Term Structure of Market Elasticity

This figure illustrates how market elasticity differs with the maturity of the demand shock. In particular, we
define the market elasticity of maturity τ as the inverse of total market multiplier at maturity τ , which is
the percentage change in total Treasury valuation in response to a change in Treasury demand at maturity τ

equal to 1% of total Treasury outstanding.
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We also estimate multipliers for each maturity and find notable heterogeneity among them.
We define the market elasticity at maturity τ as the inverse of total market multiplier at maturity
τ , which is the percentage change in total Treasury valuation in response to a change in Treasury
demand at maturity τ equal to 1% of total Treasury value. Figure 5 reveals a sharply downward-
sloping term structure of the market elasticity with a one-year elasticity of around 14, while
falling to 2 at the 10-year maturity. Intuitively, this steep decline reflects the higher risk exposure
arbitrageurs have to bear when absorbing shocks to the demand of longer-maturity Treasuries. It
is then natural to conjecture that the slope of the term structure of market elasticity is sensitive to
arbitrageur risk aversion. Indeed, when we increase risk aversion by 20%, the slope is muted and
no longer monotonic, as the dotted line in Figure 5 shows. In this case, arbitrage at the shorter
end of the maturity spectrum becomes harder, while demand factors become more important and
heterogeneously affect the term structure.
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5.4. Treasury Market Elasticity under the Microscope

The aggregate Treasury market elasticity masks heterogeneous responses and elasticities of differ-
ent granular-demand investors as well as arbitrageurs. The granular nature of our setting allows
us to trace the equilibrium response of the entire Treasury market down to portfolio adjustments
at the sector level. We illustrate such rebalancing in response to selling pressure and distress in
the Treasury market. We do so by considering both a temporary or a permanent negative demand
shock, and examining the responses of all sectors, including that of the Fed.

We use our granular sector-level demand functions to examine how each sector adjusts to latent
demand shocks at the average state in the model. We start with the equilibrium with a zero latent
demand shock at the steady state, so that the benchmark price is p̄ = Aβ̄ +Ar r̄ +C. Next, we
introduce a demand shock ∆u to the model, and then trace out how each sector absorbs this shock.
The new price will be p = Aβ̄ +Ar r̄+Au∆u+C, with corresponding change ∆p = p− p̄ = Au∆u.
Each sector ι , including the Fed, absorbs this shock according to the demand specifications in
equation (17), namely ∆Zι = −∑ι∈I α(ι)Au∆u, where we exclude the shock ∆u itself and only
consider adjustments due to price changes. For permanent demand shocks, we need to solve the
equilibrium coefficients {A,Ar,Au,C} again under a different level of demand θ0 and obtain a new
price p′, which then allows us to calculate the demand change ∆Zι =−∑ι∈I α(ι)(p′− p).

In Table 6, we show how different sectors rebalance their portfolios in response to a $100
billion sell-off in the long-maturity Treasury bucket. Panel (a) examines the impact of a temporary
shock, while Panel (b) focuses on a permanent shock. The Table reveals that the Fed’s balance sheet
remains largely unchanged in response to a temporary demand shock, but adjusts significantly to
a permanent shock. This contrast reflects the model’s property that temporary demand shocks
have a much smaller price impact compared to permanent shocks (also see Figure 7). Moreover,
it captures the reality that as a central bank, the Fed prioritizes long-term policy goals and avoids
reacting to short-term market fluctuations. Specifically, in response to a permanent shock in long-
term Treasuries, the Fed increases its long-term Treasury holdings by $42.6 billion, absorbing
42.6% of the total shock and emerging as the primary stabilizer of the long-term Treasury market
during persistent demand shifts.

On the other hand, for a temporary demand shift, arbitrageurs are the only sector that responds
significantly. Comparing Panels (a) and (b), we observe that the arbitrageur sector expands its
balance sheet substantially in both cases, but for different reasons. In Panel (a), arbitrageurs are
willing to hold significantly more long-term Treasuries to accommodate the temporary demand
shock because they have lower impact on the risks that they bear. In contrast, Panel B reflects a
permanent demand shock, leading to a significant increase in the risk premium and thus the long-
term yield (also see Figure 7). In response, the Fed, U.S. mutual funds, and other U.S. investors,
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Table 6. Model-Implied Sector-Level Portfolio Adjustment to Demand Shocks.

This table illustrates how each sector adjusts their portfolio positions in response to a $100 billion sell shock
(temporary as in Panel (a) and permanent as in Panel (b)) of Treasuries at maturity bucket 3 (τ ≥ 5Y),
excluding the sell shock in the first place.

Panel (a): A $100 billion Temporary Sell Shock of τ > 5 Treasuries

Sector τ < 1 1 ≤ τ < 5 τ ≥ 5 Total Change

Banks -0.9 0.7 -1.0 -1.2
ICPF 0.1 0.2 0.1 0.4
MF ROW 0.1 0.3 0.1 0.5
MF U.S. -1.9 1.6 -1.9 -2.2
MMF -24.6 0.0 0.0 -24.6
Other U.S. 7.2 10.1 7.3 24.5
Foreign Official -6.8 -6.5 -6.9 -20.2
Foreign Private -0.8 0.1 -0.8 -1.5
Fed 6.5 1.8 -9.3 -1.0
Arbitrageurs 21.1 -8.2 112.4 125.2

Panel (b): A $100 billion Permanent Sell Shock of τ > 5 Treasuries

Sector τ < 1 1 ≤ τ < 5 τ ≥ 5 Total Change

Banks -6.7 -3.3 7.3 -2.7
ICPF 0.0 0.2 0.6 0.7
MF ROW -0.2 0.1 1.0 0.9
MF U.S. -14.0 -6.9 15.8 -5.1
MMF -102.0 0.0 0.0 -102.0
Other U.S. 3.0 11.2 29.7 43.9
Foreign Official -12.2 -13.4 -11.4 -37.0
Foreign Private -4.1 -2.4 3.4 -3.1
Fed 15.8 8.2 42.6 66.6
Arbitrageurs 120.5 6.3 11.0 137.8

significantly increase their long-term Treasury holdings. Moreover, because of a strong cross
substitution, U.S. mutual funds, foreign investors, banks, and money market funds, all significantly
reduce their short-term Treasury holdings.14 Arbitrageurs fill this gap by significantly expanding
their short-term Treasury holdings.

Notably, in both scenarios that we consider in Panels (a) and (b) of Table 6, we find that the
foreign official sector exacerbates the original negative demand shock. Note that our estimation

14Note that the estimated own and cross elasticity for MMFs have to be interpreted with care because of a rather
weak first stage. If the true cross elasticity is lower than our estimates reveal, then MMFs would sell less short-
term Treasuries in response to a sell shock, and therefore, simultaneously, arbitrageurs would absorb less short-term
Treasuries.
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is at quarterly frequency, so this reveals that not only in crisis times such as COVID-19, but also
in normal times, the foreign official sector amplifies Treasury yield fluctuations in response to
demand shocks.

6. Conventional and Unconventional Monetary Policies

In this section, we use the model to analyze monetary policy shocks and quantitative easing.

6.1. The Impact of Conventional Monetary Policy

To examine conventional monetary policy, we consider the impact of a one-standard deviation
shock to monetary policy, εr = 1, at the steady state, which translates into a positive shock to the
short rate by 0.75%. In Figure 6, we illustrate how the term structure responds to an increase in
the monetary policy rate. The left panel illustrates the response of the yield curve. In the absence
of changes in risk premia, the expected future short rate change is the same as the expectation
hypothesis, Et [∆rt+h] = σrρ

h
r , and the expectation component of the yield curve change for ma-

turity τ is 1
τ ∑

τ−1
h=0 σrρ

h
t . While, as shown in panel (a) of Figure 6, the expectation component

declines quickly over maturity, approaching zero at around a 15-year maturity, the full response in
the model strongly reacts to the monetary policy shock even at a 30-year maturity. Accordingly,
their difference, i.e., the risk premium or term premium, positively responds to a monetary policy
shock, as shown in panel (b).

Although this positive response of the term premium to monetary policy shocks and the
“excessive reaction” of long-term yields in our model are well-documented empirically, many
models in the literature struggle to rationalize them. While in models with perfect arbitrage (i.e.,
zero risk aversion) the expectation hypothesis holds and the term premium should not respond,
in models of market segmentation (e.g., no arbitrageurs), short-rate shocks do not significantly
change long term rates, leading to a negative response of the term premium. In models with risk-
averse arbitrageurs and preferred-habitat investors in the spirit of Vayanos and Vila (2021), a higher
policy rate typically reduces the term premium, because it lowers Treasury prices and thus boosts
non-arbitrageur demand, so that arbitrageurs reduce their Treasury holding and thus command a
lower price of risk.

Our model rationalizes the evidence through the presence of cross substitution in investors’
demand functions. Intuitively, with the estimated cross-substitution, granular-demand investors
tend to rebalance their portfolios towards higher yielding short-term bonds after a positive mone-
tary policy shock, thereby alleviating the demand for long-term bonds in view of falling prices and
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Figure 6. Contemporaneous Yield Curve Response to a Monetary Policy Shock.

This figure illustrates the impact of a one standard deviation monetary policy shock (εr
t = 1) under three

different models: the full model, the model with risk-neutral arbitrageurs (the expectation hypothesis),
and the model without cross elasticities. The left panel illustrates yield curve responses. The right panel
illustrates the response of the term premium, which is the risk premium component of yields.
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(b) Term premium response

leaving a higher share of them for arbitrageurs to absorb. Indeed, under stringent assumptions,
Proposition 3 shows that with high cross-substitution term premia rise in response to positive
monetary policy shocks. Consistent with this intuition, Figure 6 also shows that when we exclude
cross elasticities and re-solve the model, the yield curve under-reacts relative to the expectation
hypothesis, aligning with the baseline result in Vayanos and Vila (2021). This suggests that
accurately capturing cross elasticities in investor demand is essential for understanding the term
structure response to monetary policy shocks15.

Our mechanism critically depends on granular-demand investors’ portfolio adjustments and
rebalancing in response to monetary policy shocks. Our granular model does not only allow to put
these under the microscope, but it also takes into account strategic debt issuance by the government
in response. Table 7 illustrates such supply and demand adjustments in response to the monetary
policy shock. As total debt supply is driven by the contemporaneous macro variable Debt/GDP,
the government supplies more short-maturity bonds and reduces long-term bond supply, with a
total net change of Treasuries outstanding of zero. In response, almost all investors rebalance
towards higher-yielding short-term Treasuries reflecting cross-substitution, especially the highly
elastic MMFs and other U.S. investors. Consistent with overall monetary tightening, the Fed
aggressively sells long-term Treasuries, reflecting the large and negative loading on the short-term
interest rate (see Table 4), in fact beyond the shrinking of the corresponding supply. Importantly,

15Our rationale based on cross elasticities in investors’ demand is consistent with Hanson and Stein (2015) who
consider yield-oriented investors comparing long- and short-term yields when making long-term bond investments.
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Table 7. Portfolio Adjustment to Monetary Policy Shocks.

This table illustrates portfolio adjustments to a one standard deviation shock to monetary policy, which is a
0.75% increase in one-period rate. We also report the model-implied change of Treasury supply in
response to this shock. All units are in billions of dollars.

Sector τ < 1 1 ≤ τ < 5 τ ≥ 5 Total Change

Banks 12.3 1.4 -21.6 -7.8
ICPF 2.1 1.5 0.5 4.0
MF ROW 3.1 2.1 0.1 5.3
MF U.S. 27.6 4.4 -44.7 -12.8
MMF 13.5 0.0 0.0 13.5
Other U.S. 109.2 84.4 44.1 237.7
Foreign Official -63.5 -61.0 -65.2 -189.7
Foreign Private 3.8 -1.9 -14.4 -12.5
Fed 44.3 21.8 -170.2 -104.0
Arbitrageurs 67.6 -110.3 109.1 66.3
Total Supply 220.0 -57.7 -162.3 0.0

arbitrageurs absorb most of the net increase in long-term Treasuries so that they command higher
risk premia. Notably, the foreign official sector sells Treasuries across all maturities, perhaps
reflecting an incentive to defend their local currency in time of a stronger dollar or to provide
liquidity to their domestic markets in face of capital outflows.

6.2. The Impact of Quantitative Easing

Through the lens of our model, we can think of quantitative easing (QE) policies as changes in
the Fed’s demand, either through a temporary or a permanent change. We distinguish between
transient QE, modeled as an increase in ut , and permanent QE, which amounts to an increase in
θ0. Proposition 4 suggests that QE increases Treasury prices and decreases Treasury yields.

Figure 7 shows the quantitative impact of both transient QE and permanent QE in the full
model. In both cases, we consider the steady state yield as the baseline scenario and introduce
a $100 billion extra demand on each of the three maturity buckets, respectively, and show the
change of yields in response to the demand shock. Panel (a) of Figure 7 shows that transient QE
on short-maturity Treasuries has little effect on the yield curve, as dealers elastically arbitrage
between short-maturity Treasuries and the one-period rate controlled by monetary policy. As
maturity increases, the yield curve becomes more reactive, as arbitrageurs are more reluctant to
bear the extra risks involved in absorbing long-maturity Treasuries. It is thus natural that the
Fed usually purchases long-term Treasuries in QE programs. These patterns are quantitatively
significantly amplified in the case of permanent QE, as panel (b) of Figure 7 illustrates. Moreover,
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Figure 7. Impact of QE Shocks on Treasury Yields.

This figure illustrates how a $100 billion QE shock on different maturity buckets, either temporary (left
panel, increasing latent demand ut) or permanent (right panel, increasing permanent demand θ0), affects
Treasury yields. For dollar values, we use the stationary model unit as described in Section 4.
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there is a strong localization effect, in that QE on a specific maturity bucket affects that maturity-
bucket yield more strongly than others. As in Vayanos and Vila (2021) and Greenwood et al.
(2023), with multiple sources of risks affecting different maturities differentially, arbitrageurs
do not aggressively trade against a permanent demand shock, causing a localization of the price
impact.

To compare the model-implied results with empirical studies regarding the impact of QE, we
have to consider details of the QE implementation. First, the duration of QE purchases ranges
between 3 to 10 years, so the average effect is in between our maturity buckets 2 and 3, i.e.,
between the solid orange line and dotted red line in Figure 7. Second, the expected duration of
the QE purchase is between one quarter (panel (a) of Figure 7) and permanent (panel (b) of Figure
7). As a rough approximation, using the average value of bucket 2 and 3, our model implies that
the impact of a $100 billion purchase generates yield declines ranging from 3 to 14 bps in 10-year
Treasuries, depending on the expected persistence of QE. This is in a similar order of magnitude
as the 4.5 bps reported in Gulati and Smith (2022), who survey the extant literature, including
Krishnamurthy and Vissing-Jorgensen (2011) and Swanson (2011). Our model highlights that
the effectiveness of QE critically depends on how credibly the Fed can signal its commitment to
a sustained expansion of its balance sheet, perhaps through Forward Guidance, so that investors
perceive it as permanent.
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7. Conclusion

In this paper, we estimate an equilibrium model of the U.S. Treasury market to dissect Treasury
pricing and understand the impact of conventional and unconventional monetary policies. Our
model nests granular-demand investors, whose Treasury demand can be flexibly estimated from a
novel dataset on granular Treasury holdings, in the spirit of Koijen and Yogo (2019), risk-averse
arbitrageurs, who absorb demand imbalances as in Vayanos and Vila (2021), and the Fed.

Our quantitative analysis reveals an elastic Treasury market and a downward-sloping term
structure of market elasticity, as arbitrageurs readily absorb demand imbalances, especially at the
short end of the maturity spectrum. Moreover, it rationalizes rising risk premia in response to mon-
etary tightening, as due to cross-substitution arbitrageurs have to increase their long-term Treasury
holdings. Finally, the effectiveness of QE is significantly driven by the expected persistence of the
Fed’s interventions.

We view our paper as the building block of a framework for combining novel data with equilib-
rium demand-based models to shed light on important macro-finance questions in the government
bond market. Future research can build on our approach and incorporate this demand view of
Treasury pricing into macroeconomic models to study the macro implications of government bond
demand.
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Internet Appendix of
“Granular Treasury Demand with Arbitrageurs”

Kristy A.E. Jansen Wenhao Li Lukas Schmid

A. Data Sources and Aggregation

This appendix details the various data sources used to construct our dataset of granular U.S.
Treasury holdings and explains how these datasets are merged. Specifically, in A.1 we report
the data sources of U.S. Treasury holders, in A.2 we discuss the process of merging datasets of
Treasury holdings, and in A.3 we provide data sources for macro variables.

A.1. Treasury Holders

A. Banks - CALL Reports

Banks are major investors in the U.S. Treasury market. We obtain banks’ holdings of U.S. Trea-
suries at the maturity bucket level from CALL reports. CALL reports are regulatory filings required
for all U.S. banks and include detailed information on a bank’s assets, liabilities, income, and
expenses. The CALL reports are filed on a quarterly basis and cover the period from the first
quarter of 1976 to the end of 2022. Banks report their aggregate U.S. Treasury holdings and their
holdings in different maturity buckets of U.S. Treasuries and U.S. Agency bonds combined. The
maturity buckets are: τ < 3M, 3M ≤ τ < 1Y , 1Y ≤ τ < 3Y , 3Y ≤ τ < 5Y , 5Y ≤ τ < 15Y , τ ≥ 15Y .
To obtain their allocation to U.S. Treasuries for different maturities, we assume that the fraction of
Treasuries versus Agency bonds is fixed across maturities at a given point in time. Hence, at each
point in time, we multiply the total maturity bucket holdings by the fraction of Treasuries relative
to the sum of Treasuries and Agency bonds.

B. Fed - Federal Reserve

In the aftermath of the Great Financial Crisis, the Federal Reserve has become a major player in
the U.S. Treasury market. The Federal Reserve System Open Market Account (SOMA) reports
security holdings that are acquired through open market operations by the Fed. These data are
obtained through the website of the Federal Reserve Bank of New York.1 The holdings are at the
security (CUSIP) level and reported on a weekly basis since the start of 2003.

1https://www.newyorkfed.org/markets/soma-holdings
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C. Primary Dealers - Federal Reserve

To maintain transparency of U.S. and foreign primary dealers trading activities, their total weekly
positions are made available through the website of the Federal Reserve Bank of New York.2

Primary dealers report their holdings for conventional maturity buckets since early 1998. However,
the specific maturity buckets reported change over time. The time frames with the same reporting
standards are: January 1998 to June 2001, July 2001 to March 2013, April 2013 to December
2014, January 2015 to December 2021, and from January 2022 onward. Generally, more recent
data reports finer maturity buckets. To be consistent across time, we treat July 2001 to March 2013
as the baseline and aggregate the maturity buckets of subsequent periods to match that of this time
frame. The final maturity buckets are: T-bills, Treasuries with τ ≤ 3Y , 3Y < τ ≤ 6Y , 6Y < τ ≤ 11Y ,
and τ > 11Y .

D. Hedge Funds - Form PF

We obtain aggregate U.S. and foreign hedge fund Treasury positions from Form PF that hedge
funds file with the SEC.3 As of 2011Q4, hedge funds must file Form PF if they are registered
or are required to register with the SEC, manage private funds, and have at least $150 million in
total assets. The Fed reports the totals separately for domestic and foreign hedge funds. We only
observe the aggregate Treasury positions, so we rely on the maturity distribution obtained from
primary dealers to infer the maturity bucket holdings. That is, we multiply the maturity bucket
weights of primary dealers with the aggregate hedge fund Treasury positions at each point in time
to obtain maturity bucket specific hedge fund holdings. The reason we rely on primary dealers to
infer the maturity distribution is twofold. First, we define both as arbitrageurs, consistent with the
literature (Du et al. 2023b; Vayanos and Vila 2021). Second, corroborating the idea that both hedge
funds and primary dealers act as arbitrageurs, the aggregate Treasury holdings of primary dealers
and hedge fund align closely in that higher aggregate Treasury holdings for primary dealers tend
to come with higher holdings for hedge funds (see Figure A1 of the Appendix).

E. Insurers and Pension Funds - eMAXX

eMAXX provides a comprehensive coverage of fixed income holdings of institutional investors
at the security (CUSIP) level. The database predominantly covers the holdings of insurance
companies, mutual funds, and pension funds (Becker and Ivashina 2015; Bretscher et al. 2024). We

2The data and the list of primary dealers that must report can be found here: https://www.newyorkfed.org/
markets/counterparties/primary-dealers-statistics. Specifically, the Fed allows certain foreign-owned
institutions to operate as primary dealers in the U.S. Treasury market if they meet specific criteria.

3We thank Moritz Lenel for directing us to this data source.
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only use the data on insurance companies and pension funds, and rely on Morningstar for mutual
funds. Due to the voluntary nature of reporting by pension funds, the coverage of pension funds
in eMAXX is limited, unlike the mandatory reporting by insurance companies. Additionally, we
focus on the U.S. eMAXX database, which covers the holdings of North American investors. The
holdings data are quarterly and cover the period from the first quarter of 2010 to the end of 2022.

F. Money Market Funds - IMoneyNet and FoFs

IMoneyNet provides a wide coverage of asset holdings (predominately fixed income and cash)
by U.S. money market funds (MMFs) at the security (CUSIP) level. We focus on both holdings
reported by MMFs domiciled in the U.S. as well as on their offshore holdings. The holdings are
reported on a monthly basis since August 2011.

To obtain a larger coverage of the total MMF population, we augment the data with FoFs from
the Federal Reserve. Using our security-level database, we verify that on average 99.6% of MMF
holdings are in either T-bills or U.S. Treasuries with remaining time to maturity less than 1 year.
Hence, we can reasonably assume that MMF Treasury holdings reported in FoF have remaining
maturities below 1 year.

G. Mutual Funds - Morningstar

We obtain holdings data on domestic and foreign mutual funds from Morningstar, Inc. The funds
report all their positions including stocks, bonds, and cash at the security (CUSIP) level. We
focus on both fixed-income and allocation funds. Funds either report monthly or quarterly, and to
maintain consistency across the funds and other data sets we use data at quarter ends. Figure A2
reports the aggregate holdings in USD (trillions) over time. These aggregates align closely with
the numbers reported in Maggiori et al. (2020).

H. ETFs - ETF Global

We obtain the holdings of U.S. Exchange Traded Funds (ETFs) at the security (CUSIP) level from
ETF Global. ETF Global contains extensive coverage of securities held by U.S. ETFs and in our
analysis we focus on fixed-income funds. Funds either report daily or monthly, and to maintain
consistency with the other datasets we use data at quarter ends. As U.S. ETFs only hold a small
fraction of U.S. Treasuries outstanding, we merge them with the U.S. mutual fund sector.

A.3



I. Foreign Official and Private - Public TIC

We obtain quarterly U.S. Treasury holdings by foreign investors from the Treasury International
Capital Reporting System (TIC). Specifically, we obtain the public TIC Form SLT that exists as of
September 2011. As of this date, TIC also provides a breakdown of the total amount held in T-
bills versus non T-bills. As of December 2011, TIC also distinguishes between foreign official and
foreign private investors. Moreover, to avoid double counting, we subtract from the private foreign
Treasury holdings the holdings of foreign mutual funds that we obtain through Morningstar and
foreign hedge funds that we obtain through Form PF.

A.2. Data Aggregation

For the data sources in Table 1 that are at the security level, we observe the corresponding CUSIP
identifiers that we use to match the holdings data with the CRSP U.S. Treasury Database. The
CRSP U.S. Treasury Database contains detailed bond-level information on U.S. Treasuries, in-
cluding bond yields, prices, bond type, coupon rate, maturity date, issue date, and issuance size.
We use the bond prices to convert nominal holdings to market values. For the sectors that report at
a more aggregate level (banks, foreign investors, hedge funds, and primary dealers), we use their
reported market value holdings directly.

For investors that report at the CUSIP level, including insurers and pension funds, mutual
funds, ETFs, money market funds, and the Fed, it is straightforward to divide their holdings in
the respective maturity buckets: τ < 1Y,1Y ≤ τ < 5Y,τ ≥ 5Y . For banks, we aggregate maturity
bucket τ < 3M and 3M ≤ τ < 1Y to obtain the first bucket, 1Y ≤ τ < 3Y and 3Y ≤ τ < 5Y for the
second bucket, and 5Y ≤ τ < 15Y and τ ≥ 15Y for the third bucket. We follow a similar approach
for the primary dealers, whereby we assign T-bills to bucket 1, τ ≤ 3Y and 3Y < τ ≤ 6Y to bucket
2, and 6Y < τ ≤ 11Y and τ > 11Y to bucket 3. As motivated earlier, we assume that hedge funds
have the same maturity bucket distribution as primary dealers.

For foreign investors, we only observe the fraction that is held in T-bills versus non T-bills.
To allocate the foreign holdings to different maturity buckets, we first multiply the T-bill holdings
by the inverse of the fraction of the total amount outstanding in maturity bucket 1 of the CRSP
universe that is in T-bills, at each point in time. The reason is that on average only 60% of the
total amount outstanding in maturity bucket 1 consists of T-bills, while the remaining 40% are
bonds and notes with remaining time to maturity below 1 year. This adjustment is meant to more
accurately reflect the remaining maturity structure, but our estimations for foreign investors are
similar when we assume that T-bills are the only securities held in bucket 1. We then subtract the
additional fraction we attribute to maturity bucket 1 from the total non T-bill holdings to compute
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the total holdings in the remaining maturity buckets. To further determine the fraction in maturity
bucket 2 versus 3, we choose the fraction such that the average duration of both the foreign official
and foreign private investors’ Treasury portfolio is consistent with Tabova and Warnock (2021) at
each point in time. To assign the fractions, we take the bond durations of a 6-month, 3-year, and
15-year bond, respectively, as representative bonds for each maturity bucket. However, our main
results do not depend on this choice. For instance, the results are qualitatively and quantitatively
similar if we choose instead a 10-year or a 20-year bond for the third bucket.

To obtain the residual sector, we subtract the holdings of all investors from the total amount
outstanding in each bucket. Since we observe the total foreign investor position, the residual
sector consists of U.S. based investors only and hence we will refer to this sector as “Other U.S.
Investors”.

Finally, in our growing economic environment, portfolio holdings in dollar values will not
be stationary. For stationarity, we scale all quantities in our regressions and in the model by the
ratio of potential GDP (ticker "NGDPPOT" in FRED, which is nominal potential gross domestic
product) at the end of our sample period over the potential GDP at that particular quarter. For
example, the ratio of potential GDP in 2022 Q4 to that in 2011 Q4 is 1.6. The dollar value of total
debt supply in 2011 Q4 is 10.7 trillion, but we use a scaled value, namely 10.7∗1.6 = 17.1 trillion.
We use nominal values so that the scaling adjusts for the inflation effect. Moreover, using a GDP
adjuster rather than just inflation ensures that we account for the growing scale of the economy.
Finally, we use nominal potential GDP rather than nominal GDP to avoid cyclical fluctuations in
nominal GDP that causes mechanical correlations among the variables due to the scaling. The
underlying assumption is that after accounting for the scaling effect, all quantities are stationary in
the fundamental state variables. An alternative scaling is to use a constant exponential growth rate
matching the overall economic growth during our sample period, and we find that this approach
leads to similar results.

A.3. Macro Data

We complement our dataset with a number of macroeconomic variables that capture relevant
drivers of monetary and fiscal policy stances, as well as aggregate economic conditions. Specifi-
cally, we obtain four macro variables from the Federal Reserve Economic Data (FRED).

First, we include the GDP gap and core inflation to capture aggregate economic conditions
as well as the response of monetary policy to macroeconomic dynamics. They together reflect
aggregate demand and supply fluctuations in the economy, and they are also the variables that
drive monetary policy in the Taylor rule.

Second, we include the debt/GDP ratio to capture the overall supply and dynamics of govern-
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ment debt. As an indicator of the government’s fiscal policy stance, the debt/GDP ratio is plausibly
connected to the GDP gap, as well as inflation.

Finally, as an indicator of financial market conditions relevant to the aggregate economy,
we include credit spreads, which have been widely shown to predict macroeconomic movements
(Gilchrist and Zakrajšek 2012; Krishnamurthy and Muir 2017).

B. Identification of the Instrument

To illustrate the identification of our instrument, we assume a simplified setting of one asset with
maturity τ and price Pt =

1
(1+yt)τ . We also assume one investor and fixed supply S.

Let’s assume that the data-generating-process of demand is given by:

Zt = θ +b1yt +(b2)
′xt +(b3)

′Macrot +ut (A1)

The instrument is then constructed from a pseudo market clearing Ẑt =
S

(1+yt)τ as:

Ẑt = θ̂ +(b̂2)
′xt +(b̂3)

′Macrot =
S

(1+ ỹt)τ
(A2)

Solving for ỹt , we obtain:

ỹt =

(
Ẑt

S

)− 1
τ

−1 =

(
θ̂ +(b̂2)

′xt +(b̂3)
′Macrot

S

)− 1
τ

−1 (A3)

Plugging back into Equation (A1), we have:

Zt = θ +b1

( θ̂ +(b̂2)
′xt +(b̂3)

′Macrot

S

)− 1
τ

−1

+(b2)
′xt +(b3)

′Macrot +ut (A4)

Hence, the relationship between the pseudo yield ỹt and the bond characteristics xt and macro
variables Macrot are not collinear because of the non-linearity that stems from the convexity effect
of compounding interest. In our main specification, we also obtain predicted supply based on the
FFR and the macro variables. In that case, the denominator of Equation (A4) would also contain
the macro variables Macrot , adding yet another layer of non-linearity.
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C. Additional Empirical Analysis

Table A1. Summary Statistics

This table provides summary statistics of the main variables of interest: yt(m), which is the value-weighted

yield of maturity bucket m, yt(−m), which is the value-weighted yield of the other maturity buckets

excluding maturity bucket m, Coupon Rate, Bid-Ask Spread, Credit Spread, Debt/GDP, GDP Gap, and

Core Inflation.

mean sd min max

yt(m) 1.400 1.081 0.041 4.291

yt(−m) 1.469 0.902 0.132 4.289

Coupon Rate 2.039 0.883 0.750 4.158

Bid-Ask Spread 0.046 0.028 0.010 0.096

Credit Spread 0.949 0.233 0.550 1.490

Debt/GDP 0.762 0.095 0.654 0.974

GDP Gap -1.329 1.910 -9.106 1.846

Core Inflation 2.461 1.322 1.173 6.429

Table A2. Correlation Table

This table provides the correlation table of the main variables of interest: yt(m), which is the value-

weighted yield of maturity bucket m, yt(−m), which is the value-weighted yield of the other maturity buckets

excluding maturity bucket m, Coupon Rate, Bid-Ask Spread, Debt/GDP, Credit Spread, GDP Gap, and Core

Inflation. We orthogonalize the coupon and the bid-ask spread with respect to the maturity fixed effects.

yt(m) yt(−m) Coupon Bid-Ask Spread Credit Spread Debt/GDP GDP Gap Inflation
yt(m) 1
yt(−m) 0.58 1
Coupon -0.09 -0.28 1
Bid-Ask Spread 0.02 -0.03 -0.31 1
Credit Spread -0.01 -0.03 0.29 -0.07 1
Debt/GDP -0.10 -0.15 -0.57 0.48 -0.14 1
GDP Gap 0.47 0.55 -0.40 0.24 -0.26 0.17 1
Inflation 0.40 0.49 -0.49 0.01 -0.01 0.43 0.57 1
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Table A3. Demand System Results - OLS

This table shows the OLS estimates of our demand system specified in Equation (8). The dependent
variable is the market value of US Treasuries held by sector ι in maturity bucket m at time t. The
independent variables are: yt(m), which is the value-weighted yield of maturity bucket m, yt(−m), which is
the value-weighted yield of the other maturity buckets excluding maturity bucket m, Coupon Rate, Bid-Ask
Spread, indicator variable if the holdings are in maturity bucket 2 (1{1Y ≤ τ < 5}), indicator variable if the
holdings are in maturity bucket 3 (1{τ ≥ 5}), Credit Spread, Debt/GDP, GDP Gap, and Core Inflation. We
orthogonalize the coupon and the bid-ask spread with respect to the maturity fixed effects. The quarterly
sample period is from 2011Q4-2022Q4. HAC standard errors with optimal lags are reported in brackets;
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Banks ICPF MF ROW MF US MMF Residual Foreign O Foreign P

(1) (2) (3) (4) (5) (6) (7) (8)
yt(m) 56.676*** -4.351 3.845** 34.136** 26.371 94.762 -203.031*** -84.390

[14.325] [6.016] [1.574] [15.409] [82.959] [96.325] [61.419] [57.919]
yt(−m) -57.315*** 5.909 -0.143 -31.597** 105.763 -29.348 77.017 112.609

[14.624] [7.585] [1.881] [15.447] [109.295] [120.441] [67.085] [75.499]
Coupon Rate -135.101*** 10.707 -1.277 -17.017 512.046 191.910 -304.136*** -163.445

[23.444] [12.861] [2.925] [33.696] [390.244] [233.422] [114.897] [121.617]
Bid-Ask Spread 7.806 19.847*** 3.413*** 24.162* 19.679 129.796** -80.549** -54.510

[7.638] [4.834] [1.143] [13.148] [96.878] [65.928] [38.206] [47.171]
1{1Y ≤ τ < 5} 58.001*** 151.759*** 14.013*** 224.702*** -391.160*** 2983.216*** -308.538***

[12.694] [5.180] [1.626] [20.429] [119.457] [68.496] [89.159]
1{τ ≥ 5} -51.544** 197.389*** 15.426*** 231.527*** 551.566*** 456.849*** 274.318**

[23.479] [12.992] [2.969] [26.707] [203.121] [114.795] [114.354]
Credit Spread 11.640 -13.700 -0.022 -65.416** -205.221 290.260 57.080 -66.427

[18.426] [12.313] [2.458] [32.228] [151.589] [191.649] [84.304] [124.695]
Debt/GDP 697.984*** -3.425 47.785*** 200.882* 7587.435*** 1757.942** -1590.849*** 998.612*

[63.868] [43.153] [9.359] [106.771] [537.329] [878.071] [511.343] [511.718]
GDP Gap 10.028*** -4.249** 1.406*** 11.035*** -69.571*** 3.596 -8.555 4.775

[3.480] [1.753] [0.435] [4.187] [24.891] [28.517] [16.147] [16.596]
Core Inflation 15.072** 0.410 -2.171*** -1.397 -90.427* 17.296 -63.522* 0.139

[6.703] [3.189] [0.766] [8.157] [52.450] [50.306] [35.251] [33.024]

R-squared 0.903 0.914 0.843 0.855 0.946 0.657 0.979 0.501
Observations 135 135 135 135 45 135 135 135
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Table A4. First Stage IV

This table shows the first stage estimates of the IV methodology specified in Equation (8). The dependent
variable in Column (1) is yt(m), the value-weighted yield of maturity bucket m and in Column (2) is yt(−m),
the value-weighted yield of the other maturity buckets −m. We instrument own and other yield using
pseudo yields specified in Section 3.2. Additional variables include Coupon Rate, Bid-Ask Spread, indicator
variable if the holdings are in maturity bucket 2 (1{1Y ≤ τ < 5}), indicator variable if the holdings are in
maturity bucket 3 (1{τ ≥ 5}), Credit Spread, Debt/GDP, GDP gap, and Core Inflation. We orthogonalize the
coupon and the bid-ask spread with respect to the maturity fixed effects. The quarterly sample period is from
2011Q4-2022Q4. HAC standard errors with optimal lags are reported in brackets; ∗p < 0.10, ∗∗p < 0.05,
∗∗∗p < 0.01.

yt(m) yt(−m)

(1) (2)
It(m) 0.722*** 0.437***

[0.046] [0.048]
It(−m) 0.690*** 0.876***

[0.118] [0.076]
Coupon Rate -0.281 -0.784***

[0.191] [0.157]
Bid-Ask Spread -0.024 -0.077

[0.069] [0.061]
1{1Y ≤ τ < 5} -1.027*** -0.055

[0.311] [0.223]
1{τ ≥ 5} -0.042 -0.783***

[0.253] [0.199]
Credit Spread 0.833*** 0.898***

[0.202] [0.171]
Debt/GDP 1.804** 0.752

[0.730] [0.662]
GDP Gap -0.237*** -0.225***

[0.047] [0.028]
Core Inflation 0.160*** 0.151***

[0.062] [0.048]

R-squared 0.890 0.894
Observations 135 135
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Table A5. Demand System Results - IV no macro

This table shows the IV estimates of our demand system specified in Equation (8). The dependent variable is
the market value of US Treasuries held by sector ι in maturity bucket m at time t. The endogenous variables
are: yt(m), which is the value-weighted yield of maturity bucket m, yt(−m), which is the value-weighted
yield of the other maturity buckets excluding maturity bucket m. We instrument own and other yield using
pseudo yields specified in Section 3.2. Additional variables include Coupon Rate, Bid-Ask Spread, indicator
variable if the holdings are in maturity bucket 2 (1{1Y ≤ τ < 5}), and indicator variable if the holdings are
in maturity bucket 3 (1{τ ≥ 5}). We orthogonalize the coupon and the bid-ask spread with respect to the
maturity fixed effects. The quarterly sample period is from 2011Q4-2022Q4. HAC standard errors with
optimal lags are reported in brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Banks ICPF MF ROW MF US MMF Residual Foreign O Foreign P

(1) (2) (3) (4) (5) (6) (7) (8)
yt(m) 146.066*** 0.557 8.414** 141.113*** 1210.993*** 313.912 -293.653** 99.110

[38.843] [9.782] [4.275] [49.284] [434.761] [204.318] [122.231] [86.344]
yt(−m) -161.043*** -5.469 -5.703 -130.824*** -2285.615*** -318.431 199.981 -123.476

[44.117] [12.116] [4.372] [50.581] [574.119] [244.400] [136.224] [101.632]
Coupon Rate -360.163*** 7.351 -9.967** -141.013*** -4860.838*** -248.146 193.798 -497.699***

[47.643] [13.938] [4.534] [46.457] [1619.799] [245.908] [160.971] [132.489]
Bid-Ask Spread 22.638 15.807*** 5.994*** 21.304 1131.961** 161.940* -118.377** -46.004

[16.315] [4.264] [1.322] [14.153] [446.927] [84.296] [49.492] [58.635]
1{1Y ≤ τ < 5} 27.473 150.612*** 12.477*** 185.848*** -462.763*** 3012.506*** -369.049***

[23.555] [4.969] [2.554] [29.830] [121.314] [93.922] [86.631]
1{τ ≥ 5} -220.327*** 185.541*** 6.683 40.850 121.980 636.045*** -82.673

[75.197] [18.561] [8.187] [92.872] [409.193] [225.281] [162.500]

Observations 135 135 135 135 45 135 135 135
Kleibergen-Paap statistic
(first stage): 17.92 17.92 17.92 17.92 6.09 17.92 17.92 17.92
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Table A6. Demand System Results - IV alternative pseudo yield

This table shows the IV estimates of our demand system specified in Equation (8). The dependent variable
is the market value of U.S. Treasuries held by sector ι in maturity bucket m at time t, adjusted for GDP
potential. The endogenous variables are: yt(m), which is the value-weighted yield of maturity bucket
m, yt(−m), which is the value-weighted yield of the other maturity buckets excluding maturity bucket
m. We instrument own and other yield using pseudo yields specified in Section 3.2, but we leave out
the bid-ask spread, credit spread, and core inflation in determining the pseudo yields. Additional control
variables include Coupon Rate, Bid-Ask Spread, indicator variable if the holdings are in maturity bucket
2 (1{1Y ≤ τ < 5}), indicator variable if the holdings are in maturity bucket 3 (1{τ ≥ 5}), Credit Spread,
Debt/GDP, Credit Spread, GDP Gap, and Core Inflation. We orthogonalize the coupon and the bid-ask
spread with respect to the maturity fixed effects. The quarterly sample period is from 2011Q4-2022Q4.
HAC standard errors with optimal lags are reported in brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Banks ICPF MF ROW MF US MMF Other US Investors Foreign O Foreign P

(1) (2) (3) (4) (5) (6) (7) (8)
yt(m) 80.308*** 4.761 6.377** 119.801*** 449.737** 145.170 -93.150 26.001

[24.048] [9.694] [3.109] [38.100] [223.508] [175.354] [93.762] [88.226]
yt(−m) -91.837*** -2.831 -3.588 -138.151*** -633.948** 24.210 -22.188 -39.676

[26.610] [11.760] [3.483] [44.329] [321.304] [229.082] [125.733] [118.286]
Coupon Rate -168.230*** 1.571 -4.624 -122.320** 42.489 222.458 -409.389** -311.057*

[32.920] [17.577] [4.390] [53.242] [531.712] [290.088] [160.986] [166.095]
Bid-Ask Spread 5.943 18.617*** 3.185*** 15.328 140.023 111.588 -96.074** -64.218

[8.048] [4.467] [1.196] [15.390] [131.357] [77.183] [43.538] [55.851]
1{1Y ≤ τ < 5} 50.591*** 148.476*** 13.195*** 196.112*** -418.811*** 2943.054*** -343.984***

[13.944] [4.538] [1.933] [23.794] [120.090] [79.762] [82.811]
1{τ ≥ 5} -99.390** 181.017*** 10.415* 66.530 507.277 262.229 54.898

[44.827] [17.588] [5.903] [74.048] [363.952] [183.827] [174.674]
Credit Spread 19.663 -11.724 0.776 -40.877 -522.200*** 276.286 79.398 -31.145

[21.765] [13.775] [2.446] [38.098] [193.865] [186.482] [83.831] [129.543]
Debt/GDP 610.977*** -12.415 39.827*** -14.686 5529.946*** 2255.687** -1666.044*** 640.370

[81.620] [48.080] [10.155] [125.989] [1007.451] [916.652] [554.062] [540.285]
GDP Gap 11.227*** -4.422** 1.499*** 12.799** -75.848*** -11.527 -11.501 9.130

[3.792] [1.910] [0.477] [5.149] [21.716] [30.398] [16.927] [17.973]
Core Inflation 16.635** -0.312 -2.077** -1.116 63.786 -16.243 -74.024* 4.843

[6.597] [3.322] [0.835] [10.110] [75.793] [49.773] [37.837] [33.332]

Observations 135 135 135 135 45 135 135 135
Kleibergen-Paap
Statistic (first stage) 15.43 15.43 15.43 15.43 4.05 15.43 15.43 15.43
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Table A7. Demand System Results - IV no other yield

This table shows the IV estimates of our demand system specified in Equation (8), excluding other yield.
The dependent variable is the market value of US Treasuries held by sector ι in maturity bucket m at time t.
The endogenous variable is yt(m), which is the value-weighted yield of maturity bucket m. We instrument
own and other yield using pseudo yields specified in Section 3.2. Additional variables include Coupon
Rate, Bid-Ask Spread, indicator variable if the holdings are in maturity bucket 2 (1{1Y ≤ τ < 5}), indicator
variable if the holdings are in maturity bucket 3 (1{τ ≥ 5}), Credit Spread, Debt/GDP, Credit Spread, GDP
Gap, and Core Inflation. We orthogonalize the coupon and the bid-ask spread with respect to the maturity
fixed effects. The quarterly sample period is from 2011Q4-2022Q4. HAC standard errors with optimal lags
are reported in brackets; ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

Banks ICPF MF ROW MF US MMF Residual Foreign O Foreign P

(1) (2) (3) (4) (5) (6) (7) (8)
yt(m) 20.646* 3.087 4.741*** 46.022** 80.663** 161.608** -90.289** 7.108

[12.225] [4.713] [1.545] [18.159] [39.923] [66.379] [39.403] [36.768]
Coupon Rate -80.866*** 4.224 -1.377 5.280 414.985 199.257 -392.417*** -274.961**

[20.840] [13.467] [2.122] [34.344] [407.796] [195.077] [91.510] [109.395]
Bid-Ask Spread 10.123 18.706*** 3.180*** 17.746 46.508 110.314 -99.250** -64.080

[9.395] [4.557] [1.183] [14.364] [95.683] [74.943] [42.695] [53.563]
1{1Y ≤ τ < 5} 68.861*** 148.965*** 13.597*** 216.415*** -423.947*** 2939.702*** -339.186***

[15.583] [4.457] [1.794] [23.204] [118.893] [74.681] [83.942]
1{τ ≥ 5} 23.528 184.582*** 14.272*** 229.698*** 473.907*** 268.412*** 98.634

[19.173] [8.277] [2.710] [29.847] [141.663] [77.168] [67.383]
Credit Spread -1.735 -12.387 -0.072 -73.347** -243.628* 281.914 73.925 -40.510

[20.063] [13.295] [2.560] [36.008] [133.309] [193.586] [85.946] [126.429]
Debt/GDP 855.805*** -4.181 52.287*** 420.152*** 7277.569*** 2194.104** -1534.920*** 774.817

[86.977] [38.086] [10.768] [142.550] [390.054] [890.121] [457.434] [508.858]
GDP Gap 7.548** -4.561** 1.249*** 4.832 -69.348*** -10.665 -15.021 6.492

[3.607] [1.969] [0.407] [4.217] [22.415] [31.623] [13.238] [15.981]
Core Inflation 11.329 -0.535 -2.533*** -14.805 -68.659* -15.098 -81.479* 0.091

[8.763] [3.457] [0.869] [9.636] [38.799] [52.227] [43.071] [35.375]

Observations 135 135 135 135 45 135 135 135
Kleibergen-Paap statistic
(first stage): 116.35 116.35 116.35 116.35 618.66 116.35 116.35 116.35
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Figure A1. U.S. Treasury Holdings Hedge Funds versus Primary Dealers. This graph shows
the aggregate holdings of U.S. Treasuries (in billions) by hedge funds (left y-axis) and primary
dealers (right y-axis) over time.
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Figure A2. Morningstar Aggregate Holdings by Domestic and Foreign Bond Funds. This
graph shows the aggregate holdings of US and foreign bond funds in USD (trillions) over time.
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D. Model Derivations and Estimation

D.1. Derivations for the Full Model

As noted, we conjecture an affine solution of the model of the form (26). In order to solve the
model, we need to pin down the matrices A, Ar, and Au, as well as the vector C. We next outline
the critical steps in the model solution.

We start with the holding return of bonds with maturity τ from t to t +1, using (15) and (26),

r(τ)t+1 = p(τ−1)
t+1 − p(τ)t

= A(τ −1)′βt+1 +Ar(τ −1)rt+1 −A(τ)′ ·βt −Ar(τ)rt +Au(τ −1)′ut+1 −Au(τ)
′ut

= A(τ −1)′(β̄ +Φ(βt − β̄ )+Σ
1/2

εt+1)+Ar(τ −1)(r̄+φ
′
r(Φ(βt − β̄ )+Σ

1/2
εt+1)+ρrrt +σrε

r
t+1)

−A(τ)′ ·βt −Ar(τ)rt +Au(τ −1)′ut+1 −Au(τ)
′ut +C(τ −1)−C(τ).

(A5)

We can approximate the total holding return as

R(τ)
t+1 = exp(r(τ)t+1)−1 ≈ r(τ)t+1 +

1
2

Vart [r
(τ)
t+1], (A6)

which becomes exact when we take a continuous-time approach. Refer to Greenwood et al. (2023)
for a more detailed discussion. Since there is no uncertainty regarding the current short rate, this
approximation also leads to Rt+1 = R(1)

t+1 = exp(rt)−1 ≈ rt .

With (A5) and (A6), we can express the total return as

R(τ)
t+1 = A(τ −1)′(β̄ +Φ(βt − β̄ )+Σ

1/2
εt+1)−A(τ)′ ·βt +C(τ −1)−C(τ)

+
1
2
(
A(τ −1)′+Ar(τ −1)φ ′

r
)

Σ(A(τ −1)+φrAr(τ −1))

+Ar(τ −1)(r̄+φ
′
r(Φ(βt − β̄ )+Σ

1/2
εt+1)+ρrrt +σrε

r
t+1)−Ar(τ)rt

+
1
2
(Ar(τ −1)σr)

2 +Au(τ −1)′ut+1 −Au(τ)
′ut +

1
2

Au(τ −1)′ΣuAu(τ −1).

(A7)

We note that the return R(τ)
t+1 in (A7) contains four important components. The first one reflects

innovations to the macroeconomic factors βt . The second one reflects innovations to latent demand
ut . The third one is the innovation to the monetary policy rate rt . The final components are the
Jensen terms for each type of risk, including the macroeconomic shocks, monetary policy shocks,
and latent demand shocks.
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To simplify expressions, we denote

Â(τ −1) = A(τ −1)+φrAr(τ −1), (A8)

so that Â(τ −1)′ = A(τ −1)′+Ar(τ −1)φ ′
r. Therefore, Equation (A7) can be simplified as

R(τ)
t+1 = A(τ −1)′(β̄ +Φ(βt − β̄ )+Σ

1/2
εt+1)−A(τ)′ ·βt +C(τ −1)−C(τ)

+
1
2

Â(τ −1)′ΣÂ(τ −1)+Au(τ −1)′ut+1 −Au(τ)
′ut +

1
2

Au(τ −1)′ΣuAu(τ −1)

+Ar(τ −1)(r̄+φ
′
r(Φ(βt − β̄ )+Σ

1/2
εt+1)+ρrrt +σrε

r
t+1)−Ar(τ)rt +

1
2
(Ar(τ −1)σr)

2.

(A9)

Wealth thus evolves as

Wt+1 =Wt(1+ rt)+
N

∑
τ=2

X (τ)
t (R(τ)

t+1 − rt)+ X̃t(R̃t,t+1 − rt)

=Wt(1+ rt)+ X̃t(R̃t,t+1 − rt)+
1
2

Au(τ −1)′ΣuAu(τ −1)

+
N

∑
τ=2

X (τ)
t


A(τ −1)′(β̄ +Φ(βt − β̄ )+Σ1/2εt+1)−A(τ)′ ·βt +

1
2 Â(τ −1)′ΣÂ(τ −1)

+Au(τ −1)′ut+1 −Au(τ)
′ut +

1
2Au(τ −1)′ΣuAu(τ −1)

+Ar(τ −1)(r̄+φ ′
r(Φ(βt − β̄ )+Σ1/2εt+1)+ρrrt +σrε

r
t+1)−Ar(τ)rt

+C(τ −1)−C(τ)+ 1
2(Ar(τ −1)σr)

2 − rt


=Wt(1+ rt)+

N

∑
τ=2

X (τ)
t

 A(τ −1)′
(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2 Â(τ −1)′ΣÂ(τ −1)

−Au(τ)
′ut +

1
2Au(τ −1)′ΣuAu(τ −1)+C(τ −1)−C(τ)

+Ar(τ −1)(r̄+φ ′
rΦ(βt − β̄ )+ρrrt)−Ar(τ)rt +

1
2(Ar(τ −1)σr)

2 − rt


+

(
N

∑
τ=2

X (τ)
t

(
A(τ −1)′Σ1/2 +Ar(τ −1)φ ′

rΣ
1/2
)
+ X̃t σ̃

′

)
εt+1 +

(
N

∑
τ=2

X (τ)
t Ar(τ −1)σr + X̃t σ̃

′
r

)
ε

r
t+1

+

(
N

∑
τ=2

X (τ)
t Au(τ −1)′

)
ut+1 + X̃t(φ̃

′
βt + φ̃rrt − rt).

(A10)

To simplify notatations, it is convenient to define the expected return on Treasuries of maturity τ
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as

µ
(τ)
t = A(τ −1)′

(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2

Â(τ −1)′ΣÂ(τ −1)−Au(τ)
′ut +C(τ −1)−C(τ)

+
1
2

Au(τ −1)′ΣuAu(τ −1)+Ar(τ −1)(r̄+φ
′
rΦ(βt − β̄ )+ρrrt)−Ar(τ)rt +

1
2
(Ar(τ −1)σr)

2.

(A11)

In that case, we obtain expected next-period wealth

Et [Wt+1] =Wt(1+ rt)+
N

∑
τ=2

Xt(τ)
(

µ
(τ)
t − rt

)
+ X̃t(φ̃

′
βt + φ̃rrt − rt),

and variance of next-period wealth

Vart(Wt+1) =

(
N

∑
τ=2

Xt(τ)Â(τ −1)′Σ1/2 + X̃t σ̃
′

)(
N

∑
τ=2

Xt(τ)Σ
1/2Â(τ −1)+ X̃t σ̃

)

+

(
N

∑
τ=2

Xt(τ)Ar(τ −1)σr + X̃t σ̃
′
r

)2

+

(
N

∑
τ=2

Xt(τ)Au(τ −1)′(Σu)1/2

)(
(Σu)1/2

N

∑
τ=2

Xt(τ)Au(τ −1)

)

=
N

∑
τ=2

Â(τ −1)′ΣÂ(τ −1)(Xt(τ))
2 +2 ∑

τ̂ ̸=τ

Â(τ −1)′ΣÂ(τ̂ −1)Xt(τ)Xt(τ̂)

+2
N

∑
τ=2

Â(τ −1)′Σ1/2
σ̃ · (Xt(τ)X̃t)+ σ̃

′
σ̃(X̃t)

2 +

(
N

∑
τ=2

Xt(τ)Ar(τ −1)σr + X̃t σ̃
′
r

)2

+
N

∑
τ=2

Au(τ −1)′ΣuAu(τ −1)(Xt(τ))
2 +2 ∑

τ̂ ̸=τ

Au(τ −1)′ΣuAu(τ̂ −1)Xt(τ)Xt(τ̂).
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Consequently, we can write the FOC of arbitrageurs in (34) as

µ
(τ)
t − rt = γ

(
N

∑
τ̂=2

Â(τ −1)′ΣÂ(τ̂ −1)Xt(τ̂)+ Â(τ −1)′Σ1/2
σ̃ X̃t

)

+ γ

(
N

∑
τ̂=2

Ar(τ −1)σ2
r Ar(τ̂ −1)Xt(τ̂)+Ar(τ −1)′σrσ̃rX̃t

)

+ γ

(
N

∑
τ̂=2

Au(τ −1)′ΣuAu(τ̂ −1)Xt(τ̂)

)

= Â(τ −1)′γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)Xt(τ̂)

)
+Σ

1/2
σ̃ X̃t

)

+Ar(τ −1)′γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)Xt(τ̂)

)
+σrσ̃rX̃t

)

+Au(τ −1)′γ

(
N

∑
τ̂=2

Σ
uAu(τ̂ −1)Xt(τ̂)

)
.

(A12)

φ̃
′
βt + φ̃rrt − rt = γ

(
N

∑
τ=2

A(τ −1)′Σ1/2
σ̃ ·Xt(τ)+ σ̃

′
σ̃ +

N

∑
τ=2

Ar(τ −1)′σrσ̃r ·Xt(τ)+(σ̃r)
2

)
.

(A13)
Defining the prices of risk as

λβ ,t = γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)Xt(τ̂)

)
+Σ

1/2
σ̃ X̃t

)
, (A14)

λr,t = γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)Xt(τ̂)

)
+σrσ̃rX̃t

)
, (A15)

λu,t = γ

(
N

∑
τ̂=2

Σ
uAu(τ̂ −1)Xt(τ̂)

)
. (A16)

Using definitions in (A14), (A15), and (A16), and expanding µ
(τ)
t with (A11), we rewrite arbi-

trageur FOC in (A12) as

A(τ −1)′
(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2 Â(τ −1)′ΣÂ(τ −1)+Ar(τ −1)(r̄+φ ′

rΦ(βt − β̄ )+ρrrt)

+C(τ −1)−C(τ)−Ar(τ)rt +
1
2(Ar(τ −1)σr)

2 −Au(τ)
′ut +

1
2Au(τ −1)′ΣuAu(τ −1)− rt

= Â(τ −1)′λβ ,t +Ar(τ −1)λr,t +Au(τ −1)′λu,t .
(A17)
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Ultimately, these coefficients are pinned down in equilibrium, that is, when markets clear. The
market clearing condition is

Zt(τ)+Xt(τ) = St(τ). (A18)

for maturity τ ∈ {1,2, · · · ,N}. As a next step, using expressions for Zt(τ) in (18) and St(τ) in (20),
we express the equilibrium arbitrageur holdings solved from (A18) as

Xt(τ) =
(
S̄(τ)+ζ (τ)′βt +ζr(τ)

′rt
)
−
(
θ0(τ)−α(τ)′pt −θ(τ)′βt +ut(τ)

)
. (A19)

As a result, our model implies that the price of risks λβ ,t , λr,t , and λu,t all vary over time, and
depends on the quantity of Treasury supply St(τ), non-arbitrageur demand Zt(τ), as well as the
outside portfolio returns X̃t .

In the main text, we impose the assumption that Au(τ − 1)′λu,t ≈ 0, which holds well quan-
titatively after we estimate the model. The idea is that idiosyncratic latent demand shocks do not
affect price of risks. Under this simplification assumption, we plug (A19) into the pricing equation
(A17) and expand λβ ,t and λr,t using (A14) and (A15),

A(τ −1)′
(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2

Â(τ −1)′ΣÂ(τ −1)+C(τ −1)−C(τ)

Ar(τ −1)(r̄+φ
′
rΦ(βt − β̄ )+ρrrt)−Ar(τ)rt +

1
2
(Ar(τ −1)σr)

2 −Au(τ)
′ut

+
1
2

Au(τ −1)′ΣuAu(τ −1)− rt

=Â(τ −1)′γ

(
N

∑
τ̂=2

(
ΣÂ(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)

−(θ0(τ̂)−α(τ̂)′pt −θ(τ̂)′βt +ut(τ̂))

))
+Σ

1/2
σ̃ X̃t

)

+Ar(τ −1)γ

(
N

∑
τ̂=2

(
σ

2
r Ar(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)

−(θ0(τ̂)−α(τ̂)′pt −θ(τ̂)′βt +ut(τ̂))

))
+σrσ̃rX̃t

)
.

(A20)
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With the assumption in (35), and the affine expression of pt in (26), we rewrite (A20) as

A(τ −1)′
(
β̄ +Φ(βt − β̄ )

)
−A(τ)′βt +

1
2

Â(τ −1)′ΣÂ(τ −1)+C(τ −1)−C(τ)

+Ar(τ −1)(r̄+φ
′
rΦ(βt − β̄ )+ρrrt)−Ar(τ)rt +

1
2
(Ar(τ −1)σr)

2 −Au(τ)
′ut

+
1
2

Au(τ −1)′ΣuAu(τ −1)− rt

=Â(τ −1)′γ

 ∑
N
τ̂=2

(
ΣÂ(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)

−(θ0(τ̂)−α(τ̂)′ (Aβt +Arrt +Auut +C)−θ(τ̂)′βt)−ut(τ̂)

))
+Ψβt +Λrt +ψ



+Ar(τ −1)γ

 ∑
N
τ̂=2

(
σ2

r Ar(τ̂ −1)

(
(S̄(τ̂)+ζ (τ̂)′βt +ζr(τ)

′rt)

−(θ0(τ̂)−α(τ̂)′ (Aβt +Arrt +Auut +C)−θ(τ̂)′βt)−ut(τ̂)

))
+Ψrβt +Λrrt +ψr

 .

(A21)

Matching the coefficients on βt , rt , ut , and the constant term, we obtain iteration equations as
follows:

A(τ −1)′Φ−A(τ)′+Ar(τ −1)φ ′
rΦ

= Â(τ −1)′ γ

((
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

))
+Ψ

)
︸ ︷︷ ︸

λβ ,β

+Ar(τ −1)γ

((
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

))
+Ψr

)
︸ ︷︷ ︸

λβ ,r

,

(A22)

Ar(τ −1)′ρr −Ar(τ)−1 = Â(τ −1)′ γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζr(τ)

′+α(τ̂)′Ar
)
+Λ

)
︸ ︷︷ ︸

λr,β

+Ar(τ −1)′ γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζr(τ)

′+α(τ̂)′Ar
)
+Λr

)
︸ ︷︷ ︸

λr,r

,

(A23)
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−Au(τ)
′ = Â(τ −1)′γΣ

((
N

∑
τ̂=2

Â(τ̂ −1)α(τ̂)′Au

)
−
(
0, Â(1), ..., Â(N −1)

))

+Ar(τ −1)′γσ
2
r

((
N

∑
τ̂=2

Ar(τ̂ −1)α(τ̂)′Au

)
− (0,Ar(1), ...,Ar(N −1))

)
,

(A24)

A(τ −1)′(I −Φ)β̄ +Ar(τ −1)(r̄−φ
′
rΦβ̄ )+

1
2

Â(τ −1)′ΣÂ(τ −1)

+
1
2
(Ar(τ −1)σr)

2 +
1
2

Au(τ −1)′ΣuAu(τ −1)+C(τ −1)−C(τ)

= Â(τ −1)′γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
S̄(τ̂)−

(
θ0(τ̂)−α(τ̂)′C

))
+ψ

)

+Ar(τ −1)′γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
S̄(τ̂)−

(
θ0(τ̂)−α(τ̂)′C

))
+ψr

)
.

(A25)

D.2. Proofs of Results in the Simple Model

Since the simple model is a special case of the main model, we can use the derivations for the main
model to help with proofs in the simple model. In particular, we will rely on the iteration equations
in (A22), (A23), (A24), and (A25) in Section D.1 to help derive the simple model.

Derivations of Equilibrium Treasury Prices in Equation (29)

First, we note that due to perfect arbitrage, we must have p(1)t =−rt , so that A(1) = 0, Ar(1) =−1,
C(1) = 0, and Au(1)′ = (0,0). The holding return for 2-period Treasury bond as in (A7) can be
simplified as

R(2)
t+1 =−A(2) ·βt +C(1)−C(2)− (ρrrt +σrε

r
t+1)−Ar(2)rt +

1
2

σ
2
r −Au(2)′ut . (A26)

Next, we set τ = 2 in the iteration equation for Ar in (A23), which leads to

Ar(1)ρr −Ar(2)−1 = Ar(1)γ
(
σ

2
r Ar(1)α(2)′Ar

)
−ρr −Ar(2)−1 =−γ

(
−σ

2
r (−b,

a
2
)

(
−1

Ar(2)

))

−ρr −Ar(2)−1 = γσ
2
r

(
b+

a
2

Ar(2)
)
.
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Therefore,

Ar(2) =−1+ρr + γσ2
r b

1+ 1
2γσ2

r a
.

To obtain A(2), we set τ = 2 in the iteration equation for A in (A22),

−A(2) = Ar(1)γ
(
σ

2
r Ar(1)(ζ (2)+α(2)′A+θ(2))

)
=−γ

(
−σ

2
r (ζ (2)+(−b,

a
2
)

(
0

A(2)

)
+θ(2))

)
= γσ

2
r (

a
2

A(2)+ζ (2)+θ(2)).

which leads to

A(2) =−γσ2
r (θ(2)+ζ (2))

1+ γσ2
r

a
2

.

Next, we solve for Au. For τ = 2, equation (A24) leads to

−Au(2)′ =−γσ
2
r

(
−α(2)′

(
Au(1)′

Au(2)′

)
− (0,Ar(1))

)

−Au(2)′ =−γσ
2
r

(
−(−b,

a
2
)

(
Au(1)′

Au(2)′

)
− (0,−1)

)

Au(2)′ = γσ
2
r

(
−a

2
Au(2)′− (0,−1)

)
Au(2)′ =

1
1+ γσ2

r
a
2
(0,γσ

2
r ).

Consequently, we obtain the Au matrix as

Au =

 0 0

0 γσ2
r

1+γσ2
r

a
2

 .

Then, we solve for C(2) via setting τ = 2 in equation (A25),

1
2

σ
2
r +C(1)−C(2) = Ar(1)γ

(
σ

2
r Ar(1)(S̄(2)−θ0(2)+α(2)′C)

)
1
2

σ
2
r −C(2) = γσ

2
r

(
S̄(2)−θ0(2)+(−b,

a
2
)

(
0

C(2)

))
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C(2) =
1
2σ2

r − γσ2
r S̄(2)+ γσ2

r θ0(2)
1+ γσ2

r
a
2

=
1
2 − γ S̄(2)+ γθ0(2)

1
σ2

r
+ γ

a
2

.

Summarizing all the above, we obtain

p(2)t =−1+ρr + γσ2
r b

1+ a
2γσ2

r
rt −

γσ2
r (ζ (2)+θ(2))

1+ a
2γσ2

r
βt +

γσ2
r

1+ a
2γσ2

r
ut(2)+

1
2 − γ S̄(2)+ γθ0(2)

1
σ2

r
+ a

2γ
,

which is identical to equation (29).

Proof of Proposition 1

According to equation (29), p(1)t is entirely explained by rt , while p(2)t are also explained by βt and
ut(2). As a result, macro shocks and latent demand shocks are more important for long-maturity
Treasuries.

Proof of Proposition 2

To prove Proposition 2, we derive three important sensitivities.

∂ p(2)t

∂βt
=−γσ2

r (ζ (2)+θ(2))
1+ a

2γσ2
r

∂ p(2)t

∂ut
=

γσ2
r

1+ a
2γσ2

r

∂ p(2)t

∂θ0(2)
=

γσ2
r

1+ a
2γσ2

r

The magnitudes of these three sensitivities clearly all increase with γ .

Proof of Proposition 3

The expectation component of the long-term Treasury yield is

ȳ(2)t =
1+ρr

2
rt
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Using y(2)t =−p(2)t /2 and equation (29), we get the term premium expression

y(2)t − ȳ(2)t

=

(
1+ρr + γσ2

r b
2+aγσ2

r
− 1

2
(1+ρr)

)
rt +

γσ2
r (ζ (2)+θ(2))

2+aγσ2
r

βt −
γσ2

r
2+aγσ2

r
ut(2)−

1
2 −

r̄
σ2

r
− γ S̄(2)+ γθ0(2)

2+aγσ2
r

=
b− 1

2(1+ρr)a
2

γσ2
r
+a

rt +
γσ2

r (ζ (2)+θ(2))
2+aγσ2

r
βt −

γσ2
r

2+aγσ2
r

ut(2)−
1
2 −

r̄
σ2

r
− γ S̄(2)+ γθ0(2)

2+aγσ2
r

As a result,
∂ (y(2)t − ȳ(2)t )

∂ rt
=

b− 1
2(1+ρr)a
2

γσ2
r
+a

while the baseline response according to the expectation hypothesis is

∂ ȳ(2)t

∂ rt
=

1+ρr

2
> 0

Consequently, the full response is

∂y(2)t

∂ rt
=

1+ρr

2︸ ︷︷ ︸
expectation hypothesis

+
b− 1

2(1+ρr)a
2

γσ2
r
+a︸ ︷︷ ︸

change of term premium

When 2b > (1+ ρr)a, the term premium component is positive, so that the long-term Treasury
yield over-reacts to monetary policy shock compared to the expectation hypothesis. When 2b <

(1+ρr)a, the term premium component is negative, so that the long-term Treasury yield under-
reacts to monetary policy shock compared to the expectation hypothesis.

Proof of Proposition 4

The impact of QE on Treasury price, as reflected by the increase of the permanent demand θ0(2),
is as follows,

∂ p(2)t

∂θ0(2)
=

γσ2
r

1+ a
2γσ2

r
> 0.

Therefore, Treasury prices increase with QE, which implies a decrease of Treasury yields.
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D.3. Setting Model Parameters

The model is quite flexible accounting for the rich dependence of investor demand on macroeco-
nomic factors and Treasury prices, as well as dynamics in the state variables. In this subsection,
we provide details of how we use data to directly inform model parameters.

We take the average duration as the maturity for each maturity bucket, obtaining τ1 = 2,
τ2 = 10, and τ3 = 42 (all in quarters). For each maturity bucket, we sum up the coefficients of
non-arbitrageur demand in Table 3 and 4. To convert regression results to the model format, we
express the demand for each maturity bucket separately, and use the intercept term to capture
maturity-bucket fixed effects. We then add the maturity-by-maturity bucket estimates of the Fed
to the granular-demand investor demand to obtain total non-arbitrageur demand. For simplicity,
our model does not capture characteristic-based demand (i.e., loadings on coupon rate and bid-
ask spread), so we take the average of these components and add them to the intercept of non-
arbitrageur demand.

Moreover, in the model, the demand is expressed as a function of prices, not yields, so we need
to convert the yield sensitivity into price sensitivity, using the chain rule,

∂Z(τ)
∂ pτ

=
∂Z(τ)

∂yτ

∂yτ

∂ pτ
=−1

τ

∂Z(τ)
∂yτ

(A27)

Second, we estimate the supply dynamics in Equation (21). We implement a linear regression
of the Treasury total supply in each maturity bucket and then recover the loadings on macro factors,
the short rate, and the intercept S̄. Similar to the demand estimation, we concentrate the supply
into three maturities that represent the average duration of three maturity buckets. In Figure A3,
we illustrate that the model fits the total supply well. The R2s of all three regressions are above
95%.

Third, we estimate the monetary policy dynamics in (16). We rewrite the monetary policy
equation as

rt+1 = (r̄−φ
′
rβ̄ )+φ

′
rβt+1 +ρrrt +σrε

r
t+1, (A28)

where the intercept term is identified as a whole. To fit the monetary policy rule, we have to use
a longer time period, because monetary policy rate does not have much variation during our main
sample period. In particular, we use the post-Volcker period (1990 to 2024) excluding the zero
lower bound (ZLB) period (2008-2015). We start from 1990 because it is when the Fed gained
credibility in its fight of inflation. The resulting monetary-policy equation is:

rt+1 = 1.9−1.36∗ credit spreadt+1 +0.06∗GDP gapt+1 +0.22∗ core inflationt+1

−1.13∗debt/GDPt+1 +0.78∗ rt +0.75∗ ε
r
t+1

(A29)
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Figure A3. Treasury Supply: Data versus Model Fitting.

Equation (A29) suggests that the Fed lowers the interest rate if credit spread is high, GDP gap
(GDP deviation from potential GDP) is low and tightens interest rate if inflation is high. The
coefficient on GDP gap and inflation have the same signs as the classical Taylor rule (Taylor 1993)
but much smaller coefficients. Moreover, there is moderate amount of monetary policy inertia
reflected by the coefficient of 0.78 on lagged policy rate. This dependence on lagged policy rate
generates an impact of monetary policy rate on long-term yields from the expectation effect and is
critical to understand how yield curve responds to monetary policy shocks εr

t+1.

Fourth, we estimate the dynamics of macro factors in Equation (15). It is important to get
the long-run average of macroeconomic factors correct. Therefore, we take the sample average
of macro factors directly as β̄ . Denote the demeaned macro factors as β̂t . Then we recover the
coefficients with the following regression:

β̃t+1 = Φβ̃t +Σ
1/2

εt+1. (A30)

Alternatively, we could directly run a linear regression with an intercept to uncover β̄ and Φ

simultaneously. We find that the estimations of Φ are similar between the two approaches, but
the simultaneous estimation of β̄ and Φ gives unreasonable long-run average of macro variables.
The matrix Σ is estimated as the covariance matrix of the regression residuals in (A30).

D.4. Model Estimation

According to equation (A22) and (A23), we can reformulate the main estimation problem (37) over
the parameter set {γ,Au,λβ ,β ,λβ ,r,λr,β ,λr,r,ψ,ψr}, replacing Ψ,Ψr,Λ, and Λr with λβ ,β ,λβ ,r,λr,β ,
and λr,r. This equivalent formulation simplifies the iteration equations in solving the model.

Estimation of the model involves high dimensionality and requires a reasonable initialization
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of model parameters. Our high-level idea is to iteratively divide the model into smaller problems
and initialize the model from a bottom-up approach.

At the first step, we solve for the following simpler optimization problem with unconstrained
C to initialize the price of risk matrices λβ ,β ,λβ ,r,λr,β , λr,r, and the constant term C,

min
{λβ ,β ,λβ ,r,λr,β ,λr,r,C}

E
[
∑
t

∑
τ

(yt(τ)− yo
t (τ))

2
]
, (A31)

subject to
A(τ)′ = A(τ −1)′Φ+Ar(τ −1)φ ′

rΦ− Â(τ −1)′λβ ,β −Ar(τ −1)λβ ,r (A32)

Ar(τ) = Ar(τ −1)ρr −1− Â(τ −1)′λr,β −Ar(τ −1)λr,r (A33)

where Â(τ −1) is a function of A(τ −1) and Ar(τ −1) as defined in (A8), and yt(τ) =−pt(τ)/τ ,
where pt(τ) satisfies the pricing equation in (26), pt = Aβt +Arrt +Auut +C. The latent demand
term ut is unobservable with mean 0 and uncorrelated with βt and rt . As a result, we can rewrite
the objective function as

min
{λβ ,β ,λβ ,r,λr,β ,λr,r,C}∑t

∑
τ

(
Aβt +Arrt

τ
+

C
τ
+ yo

t (τ))
2, (A34)

We note that this problem does not explicitly involve arbitrageur risk aversion γ , because that is
embedded in the solution of risk premium λβ ,β , λβ ,r, λr,β , λr,r and the intercept C.

In the estimation, the dimension of β is K = 4, and the dimension of rt is 1. The vector C is
120×1 (quarterly frequency of 30 years gives rise to 120 maturities). Therefore, the total degree
of freedom is 5*5+120 = 145. This is a very high dimensional optimization problem. Similar
to a typical affine term structure estimation, it is important to find a good initial point for the
algorithm. We leverage on an important insight from the affine term structure literature, which is
to use regressions to initialize the coefficient matrix. In particular, we start with a linear regression
problem:

min
A,Ar,C

∑
t

∑
τ

(Aβt +Arrt +C+ τyo
t (τ))

2,

Solving this estimation on A, Ar, and C is equivalent to regress the log-price vector

(yo
t (1),2yo

t (2), · · · ,Nyo
t (N))

on βt and rt , where C serves as the intercept term.

Next, knowing the values of the matrices A, Ar, we can view the iteration equations in (A32)
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and (A33) as another set of regressions. Rewriting (A32) and (A33) in a regression form,

A(τ)′−A(τ −1)′Φ︸ ︷︷ ︸
left hand side

= Ar(τ −1)︸ ︷︷ ︸
dep var

(φ ′
rΦ−λβ ,r)− Â(τ −1)′︸ ︷︷ ︸

dep var

λβ ,β ,

−Ar(τ)+Ar(τ −1)ρr −1︸ ︷︷ ︸
left hand side

= Â(τ −1)′︸ ︷︷ ︸
dep var

λr,β +Ar(τ −1)︸ ︷︷ ︸
dep var

λr,r.
(A35)

where the regression coefficients are φ ′
rΦ−λβ ,r, λβ ,β , λr,β , and λr,r. Note that φr and Φ are directly

estimated in the data. Consequently, we can use regressions to initialize all of the four price of risk
matrices and also the constant term C.

Next, we note that for any given γ , and the solved matrix A, Ar, and Â, we can uniquely pin
down the latent-demand impact matrix Au. Therefore, we can effectively eliminate Au from the
parameters to be estimated. To see that, we denote

Âshift =
(
0, Â(1), ..., Â(N −1)

)′
Ashift

r = (0,Ar(1), ...,Ar(N −1))′
(A36)

which are “shifts” of the original Â and Ar matrices. Then we can stack all different τ in equation
(A24) to get the matrix equation(

Âshift
γΣ

N

∑
τ̂=2

Â(τ̂ −1)α(τ̂)′+Ashift
r γσ

2
r

N

∑
τ̂=2

Ar(τ̂ −1)α(τ̂)′+ I

)
Au

=Âshift
γΣ(Âshift)′+Ashift

r γσ
2
r (A

shift
r )′

(A37)

which is simply a linear equation for Au that can be solved immediately. We initialize γ so that
average of Au is 0.0001, which implies that a 100 billion dollar shock will change the average
Treasury market price by 1%.

To initialize the intercepts ψ and ψr of arbitrageur’s outside portfolios, we implement another
"regression" according to equation (A25), by treating γÂ and γÂr as the independent variables and
ψ and ψr as the corresponding coefficients.

With initial values of {γ,Au,λβ ,β ,λβ ,r,λr,β ,λr,r,ψ,ψr}, we can estimate all of these parame-
ters in the full optimization problem,

min
{γ,Au,λβ ,β ,λβ ,r,λr,β ,λr,r,ψ,ψr}

E
[

M · (h−ho)2 + ∑
t

∑
τ

(yt(τ)− yo
t (τ))

2
]
, (A38)

subject to iteration equations in (A32) and (A33) that give rise to {A,Ar, Â}, equation (A37) that
solves for Au, equation (A25) that solves for C, predicted yield yt(τ) = −pt(τ)/τ , where pt(τ) is
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determined by (26), and arbitrageur long-term Treasury holdings as a fraction of total outstanding,

h =
∑τ>4 Xt(τ)

∑τ>4 St(τ)
, (A39)

where τ > 4 is for maturities above 4 quarters, and Xt(τ) and St(τ) are given by equation (36) and
(20). Expanding yt(τ) =−pt(τ)/τ and using (26), we can further express the estimation problem
as

min
{γ,Au,λβ ,β ,λβ ,r,λr,β ,λr,r,ψ,ψr}

E
[

M · (h−ho)2 + ∑
t

∑
τ

(
Aβt +Arrt +C

τ
+ yo

t (τ))
2
]
, (A40)

After we estimate problem (A40), we can recover the arbitrageur’s outside asset risk loadings
Ψ, Ψr, Λ, Λr, from the definitions of λβ ,r, λβ ,β , λr,β ,and λr,r in equations (A22) and (A23):

Ψ =
1
γ

λβ ,β −
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

)

Ψr =
1
γ

λβ ,r −

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζ (τ̂)′+α(τ̂)′A+θ(τ̂)′

))

Λ =
1
γ

λr,β −
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
ζr(τ)

′+α(τ̂)′Ar
)

Λr =
1
γ

λr,r −
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
ζr(τ)

′+α(τ̂)′Ar
)

To speed up the algorithm, we express the equation for C as a linear equation rather than a
iterative procedure. In particular, we rewrite (A25) as

A(τ −1)′(I −Φ)β̄ +Ar(τ −1)(r̄−φ
′
rΦβ̄ )+

1
2

Â(τ −1)′ΣÂ(τ −1)

+
1
2
(Ar(τ −1)σr)

2 +
1
2

Au(τ −1)′ΣuAu(τ −1)− Â(τ −1)′γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)
(
S̄(τ̂)−θ0(τ̂)

)
+ψ

)

−Ar(τ −1)′γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)

(
S̄(τ̂)−θ0(τ̂)

)
+ψr

)

=Â(τ −1)′γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)α(τ̂)′

)
C+Ar(τ −1)′γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)α(τ̂)′

)
C+C(τ)−C(τ −1)

(A41)

A.28



The left-hand side is a single value and denote it as C0(τ). Also denote the vector

Ã(τ)′ = Â(τ −1)′γ

(
N

∑
τ̂=2

ΣÂ(τ̂ −1)α(τ̂)′

)
+Ar(τ −1)′γ

(
N

∑
τ̂=2

σ
2
r Ar(τ̂ −1)α(τ̂)′

)
+(1τ −1τ−1)

′

where 1τ is an N-dimensional vector that is one for element τ but zero otherwise. Then equation
(A41) can be simplified as

C0(τ) = Ã(τ)′C

for all τ ∈{2,3, · · · ,N}. For τ = 1, we know that p(1)t =−rt , which implies that C(1)= 0. Stacking
all of the equations for τ ∈ {1,2,3, · · · ,N}, we get

0
C0(2)

...

CN(1)

=


1′1

Ã(2)′

...

Ã(N)′

C,

which is a linear system that can be easily solved.

E. Additional Quantitative Results

E.1. Model Fit and Steady-State Yields and Holdings

In Figure A4, we show that the model can fit the the term structure reasonably well, both across ma-
turities and over time. Note that these results are achieved by having only fundamental economic
variables as state variables, which is much more challenging than a typical affine term structure
model that includes factors coming directly from Treasury yields. The equilibrium restrictions in
the model impose tight restrictions on how flexibly the model can explain the dynamics of Treasury
yields.

In our baseline estimation, we minimize the expected fitting error, so the realizations of ut do
not enter the estimations, as in (A40). According to the model, nevertheless, demand shocks should
play a role in explaining the dynamics of the Treasury yield curve. In Figure A5, we compare data
with model predictions as in (26) accounting for the impact of latent demand ut . Contrasting
Figure A5 with Figure A4, we find that including ut in the prediction of yields significantly
increases the predictive power, particularly at the long-maturity end. This should be viewed as
an out-of-sample test given that we do not use information from ut to estimate the model (note
that average arbitrageur holding h in (37) is not affected by ut since ut on average is zero). In
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particular, the magnitude of fluctuations for long-maturity Treasuries are much closer to the data
counterparts after we incorporate the impact of ut . On the other hand, at the one-year maturity, we
find that including ut causes the predicted yield to fluctuate more than the data. This indicates that
there is plausibly stronger arbitrage at short-maturity Treasuries than our mean-variance framework
implies, so arbitrageurs play an even bigger role at the short end of the yield curve.

Overall, we find that including ut improves the predictive power of the model on yield curve
dynamics, consistent with the idea that demand shocks matter in the Treasury market.

Figure A4. Model Fit on the Dynamics of Treasury Yields.

Model predicted yields are constructed using equation (26) without latent demand (setting ut = 0).
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In Figure A6 panel (a), we illustrate the steady-state yield curve. This steady-state yield curve
is upward-sloping and mainly reflects the average shape of the yield curve in our model estimation
period.

In Figure A6 panel (b), we illustrate the steady-state portfolio allocations across different
sectors. The model implies that in the long run, foreign investors are still the largest holder among
all groups of investors, and the Fed also plays an important role. Insurance and pension funds
are not large holders, but they predominantly hold long-term Treasuries. Finally, as targeted by
the calibration, arbitrageurs’ longer-term (>1Y) Treasury holding is 6% of the total longer-term
Treasuries outstanding.
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Figure A5. Model Fit on the Dynamics of Treasury Yields (including latent demand u).

Model predicted yields are constructed using equation (26) with latent demand ut .
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Figure A6. Steady State.

This figure illustrates the yield curve and portfolio allocations at the steady state, defined as the state where
all shocks are zero. The left panel illustrates the steady-state yield curve. The right panel illustrates the
steady-state portfolio holdings (as % over total outstanding) for each group of investors and maturity bucket.
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E.2. Calculating Treasury Market Multiplier and Elasticity

The total multiplier of the Treasury market is defined as the % valuation change in the whole
Treasury market in response to a "representative demand shock" that is 1% of total Treasury
valuation Stotal = ∑τ S(τ), where S(τ) is the steady-state outstanding of Treasuries at maturity
τ . The representative demand shock reflects the outstanding weight of each maturity bucket.
Formally, define the weight vector ω = S/Stotal . Then the representative demand shock is

u = ω ∗ (Stotal ∗1%) = S∗1%.

Therefore, the total percentage change in Treasury valuation is

100∗ ∑τ ′ S(τ ′)Au(τ
′, ·)u

Stotal .

Dividing by the 1% change in total demand is equal to the market multiplier,

M = 100∗ ∑τ ′ S(τ ′)Au(τ
′, ·)u

Stotal /1% = 100∗ 1
Stotal S′AuS = 100∗ω

′AuS. (A42)

This market multiplier is closely related to the bucket-level multiplier in Table 5. In particular, the
percentage change of price at maturity τ ′ in response to a 1% extra latent demand of maturity τ is

M (τ ′,τ) = 100∗ Au(τ
′,τ)∗1%∗S(τ)

1%
= 100∗Au(τ

′,τ)S(τ) (A43)

As a result, the total market multiplier is a function of maturity-bucket-level multiplier,

M = ∑
τ ′

∑
τ

ω(τ ′)M (τ ′,τ) (A44)

Using equation (A44) and the values in Table 5 Panel (a), we obtain a total market multiplier of
0.23, i.e., a 1% representative demand shock on the whole Treasury market increases total Treasury
valuation by 0.23%. This can also be equivalently stated as a $1 billion demand shock increasing
Treasury valuation by $0.23 billion. Following the same procedure, we can use Panel (b) of Table
5 to calculate the Treasury market multiplier in the case without arbitrageurs, which leads to a
value of 26.82.

Next, we show the aggregate multiplier for permanent demand shocks. In Table A8, we show
the price impact of permanent demand shocks in the case with and without arbitrageurs. This table
has the same format as our main Table 5. Using Panel (a) of A8, we can calculate the Treasury
market multiplier for permanent demand shock as 0.78, which is higher than the case of latent
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demand shock, because permanent demand shocks significantly change the risk premium.

Panel (b) of Table A8 is identical to Panel (b) of Table 5, because absent from arbitrageurs,
latent demand shocks and permanent demand shocks are treated the same by granular-demand
investors. Consequently, in the case without arbitrageurs, Treasury market multipliers to permanent
demand shock and to latent demand shock are identical.

Table A8. Impact of Permanent Demand Shocks on Treasury Prices with and without
Arbitrageurs.

We illustrate the impact of permanent demand shocks with and without arbitrageurs. In panels (a) and (b), a
value of 1 at row i and column j implies that 1% extra latent demand of maturity bucket i increases the price
at maturity j by 1%. Panel (c) shows the ratio of the corresponding cells in Panel (b) over Panel (a).

Panel (a): With Arbitrageur

Price change (%) of
short maturity medium maturity long maturity

shock on short maturity 0.000 0.003 0.006
shock on medium maturity 0.015 0.109 0.220
shock on long maturity 0.090 0.701 2.130

Panel (b): Without Arbitrageur

shock on short maturity 0.624 2.349 12.919
shock on medium maturity 2.900 9.520 55.921
shock on long maturity 1.046 3.667 19.061

Panel (c): Price Impact Ratio (Panel (b)/Panel (a))

shock on short maturity 1335.985 706.168 2069.383
shock on medium maturity 192.915 87.241 254.564
shock on long maturity 11.562 5.234 8.947

Next, we provide details on how to calculate the term structure of market elasticity. According
to Section 5.2, the price impact of demand shocks at different maturities is heterogeneous. To
capture such heterogeneity, we introduce the concept of market multiplier at maturity τ , which is
the percentage change in total Treasury valuation in response to a change of Treasury demand at
maturity τ that is expressed as percentage of total Treasury outstanding,(

∑τ ′ S(τ ′)Au(τ
′,τ)∗ (1%∗Stotal)

Stotal

)
/1%, (A45)

Then we define the market elasticity at maturity τ as E (τ) as the inverse of the market multiplier
at maturity τ in (A45),

E (τ) =
1

∑τ ′ S(τ ′)Au(τ ′,τ)
(A46)
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