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Many economic studies consider units that are exposed differently to a common set of shocks.
Consider, for example, Autor et al. (2013)’s influential study of how the surge in Chinese imports in
the 1990s and 2000s affected US local labor markets. They measure regional exposure to this “China
shock” by the extent to which workers were employed in industries that saw growing competition
with China. This idea is captured by a shift-share explanatory variable: the average of national
industry-level shifts in US imports from China, weighted by the regional shares of employment across
industries. They further construct an instrumental variable with a similar shift-share structure: the
average of industry growth in Chinese imports among non-US countries, again weighted by industry
employment shares of US commuting zones. By using this instrument in a two-stage least squares
regression, the authors intend to address potential endogeneity concerns: namely, that US imports
from China may be affected by US-specific productivity and demand shocks.

Instruments like these, which sum a common set of shifts with heterogeneous exposure share
weights, are often used in studies of labor, trade, macroeconomics, public economics, finance, and
more. While such instruments date back at least to Freeman (1975, 1980), the number of papers
using them has grown markedly over the last ten years (Goldsmith-Pinkham (2024)). Today, around
1/8th of all instruments featured in NBER working papers are explicitly described as shift-share,
while many others implicitly have a shift-share structure.

When do such instruments successfully solve endogeneity concerns, and when might they fail?
This question is challenging to answer because shift-share instruments leverage two distinct sources
of variation and it is not obvious what properties of each are important. Intuitively, one might
view the shifts as helpful because they represent potentially exogenous changes to the system under
study. However, these shifts vary at a different level (e.g. industries) than the unit of analysis (e.g.
local labor markets). Are they still useful then? In contrast, the shares vary across units but are
usually predetermined (e.g., employment shares are measured in a pre-period). So how should their
potential exogeneity be understood?

This article gives conceptual answers to these questions and provides practical guidance for
using shift-share instruments or assessing the credibility of such instruments when used by others.
We build on a recent econometric literature which suggests two distinct paths to identification.
One path, developed by Borusyak et al. (2022) and Adão et al. (2019), leverages many exogenous
shifts while making no assumption on the exogeneity of the shares. The second path, proposed by
Goldsmith-Pinkham et al. (2020), instead focuses on share exogeneity. Each of these two approaches
has distinct practical implications regarding appropriate estimators, ways to conduct valid inference,
and diagnostic tests.

We begin with a discussion of broad motivations for using shift-share instruments and an
overview of the core logic for both paths. We discuss how identification “from the shifts” can
be understood as leveraging a shift-level natural experiment, while identification “from the shares”
can be viewed as pooling together multiple difference-in-differences designs leveraging heterogeneous
shock exposure. We then provide two checklists researchers can follow when implementing a shift-
share design, considering the exogenous shifts and exogenous shares approaches in turn. We take
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an applied perspective throughout, illustrating key concepts and practical steps with examples; see
Borusyak et al. (2023a) for a more technical review.

Appendix A answers further practical questions that often arise with shift-share instruments.
For instance, we discuss how to interpret estimates as local averages of heterogeneous effects, how to
handle multiple instruments and interaction terms, how to approach shift-share instruments where
the shifts are measured in-sample (as in Bartik (1991) and Card (2009)) and whether a leave-out
construction of the shifts is helpful in those cases.

Shift-Share Basics

What are Shift-Share Instruments and Where do They Come From?

Table 1 lists some prominent examples of shift-share instruments from a variety of settings. We
discuss some of these examples in depth below. Here, the table is meant to illustrate some common
features of a shift-share research design. Each study seeks to estimate a causal or structural rela-
tionship between two variables measured across a set of units i. The outcome variable is denoted
yi. Borrowing standard language from the world of causal inference, we refer to the explanatory
variable xi as the treatment. For example, Autor et al. (2013) seek to estimate the causal effect
of growing exposure to Chinese imports xi on the growth in local manufacturing employment yi
(among other outcomes) across US regions i. The table shows many other examples of outcomes
and treatments across regions, firms, products, and individuals.

To formalize the goal in such settings, consider a model of the form:

yi = βxi + γ′wi + εi, (1)

where wi denotes some vector of observed control variables. Here β is the parameter of interest,
capturing the effect of the treatment on the outcome (which for simplicity is assumed to be the same
across units). The error term εi captures all unobserved determinants of the outcome. We assume
throughout that this outcome equation is correctly specified, focusing on consistent estimation of β
rather than choosing and interpreting the specification.

Importantly, in writing equation (1), we allow for the possibility of treatment endogeneity: i.e.,
a non-zero correlation between xi and εi. In the Autor et al. (2013) example this allows US regions
with more exposure to Chinese imports to have different unobserved labor market conditions which
would have led to lower or higher manufacturing employment growth in the absence of the China
shock. Such endogeneity introduces bias in ordinary least squares estimates of equation (1). A
standard solution to this challenge is to find an instrument zi which is plausibly uncorrelated with
the unobserved model error εi while nevertheless correlated with the endogenous treatment xi. The
parameter β can then be estimated by two-stage least squares.
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The instruments in Table 1 are distinguished by their shift-share structure:

zi =
K∑
k=1

sik︸︷︷︸
Share

gk︸︷︷︸
Shift

, (2)

where (g1, . . . , gK) is a set of shifts that is common to all units and the (si1, . . . , siK) are sets
of exposure shares that vary across units. In many applications, the shares sum to one for each
observation such that zi is a share-weighted average of the shifts.

In most of the Table 1 examples, the shifts are defined at a different level k than the units
i. For example, Bartik (1991) and Autor et al. (2013) work with regional outcomes and industry-
level shifts. Exceptions are studies of network spillovers where k indexes friends or neighbors of
individuals or regions. It is also worth noting that while most examples in Table 1 use a shift-share
instrument to address endogeneity in a treatment xi, some (indicated by an asterisk in the treatment
column) consider “reduced-form” regressions on zi itself. We capture this by defining xi = zi in
such settings.

Researchers might motivate shift-share instruments in different ways. A common motivation
arises when the treatment measures the growth of some economic variable over time, and can
be decomposed into some start-of-period shares and over-time shifts. Suppose, for example, that
xi =

Xi1−Xi0
Xi0

is the growth in employment Xit for local labor market i over two periods, t = 0, 1.
Regional employment can be decomposed across industries: Xit =

∑
kXikt where Xikt denotes

the period-t employment of industry k in local labor market i. This leads to a decomposition
of regional employment growth rates in terms of period-0 industry employment shares and local
industry growth rate shifts:

xi =
∑
k

Xik0

Xi0︸ ︷︷ ︸
Share

· xik︸︷︷︸
Local shift

, for xik =
Xik1 −Xik0

Xik0
. (3)

A researcher might then construct an instrument by choosing a set of common shifts gk to replace
the local shifts. The shares from the decomposition could be kept or also replaced, e.g. with further
lagged shares. Instruments constructed in this way tend to be highly correlated with the treatment.

To illustrate this motivation, consider an example inspired by the canonical shift-share instru-
ment of Bartik (1991). The goal is to estimate the inverse elasticity of regional labor supply β

relating wage growth yi to employment growth xi across regions i. As usual, to estimate a supply
elasticity we need an instrument that shifts labor demand. Decomposition (3) captures the idea
that xi averages local employment growth across different industries, xik, using initial employment
shares sik = Xik0

Xi0
as weights. The local shifts reflect changes to both labor demand and labor supply.

To isolate demand variation, we can form an instrument that keeps the local industry employment
shares from the decomposition but introduces a set of common shifts. The shifts are meant to be
predictive of the local industry growth rates while only capturing demand variation. Bartik (1991)
defines gk as national industry growth rates, proxying for aggregate demand shifts. One might also
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define gk as specific industry demand shifts, such as a change in government subsidies.
Decomposition (3) is helpful for illustrating why the shares in the definition of zi often, but

not always, sum to one for each observation. In the previous example, regional employment shares
mechanically sum to one across industries. However, sometimes the instrument is constructed from
shifts that could only happen in a subset of industries: say, within the manufacturing sector. Only
those industries would appear in the shift-share instrument formula, and the shares would add up
to a number smaller than one. We discuss the importance of this below.

Decomposing the treatment is not the only way to arrive at a shift-share instrument. Another
common way is by “apportioning” some national changes to units. Appendix A.5 illustrates this
approach and shows how it relates to the decomposition above. In still other cases, an instrument
naturally takes a shift-share form. For instance, many reduced-form studies of how shocks propagate
across a network (e.g., Cai et al. (2015)) use the fraction of unit i’s friends or neighbors who have been
selected for some intervention. This variable inherently has a shift-share structure: zi =

∑
k sikgk

where gk is a dummy variable indicating that k has been selected and sik is a dummy variable
indicating that k is a friend of i, scaled by the number of friends i has.

Regardless of the motivation, the core challenge in using such zi is to argue convincingly that it
is exogenous: i.e., uncorrelated with the model unobservable εi. Such arguments are typically made
from contextual knowledge about the source of variation in the instrument. The unique challenge
with shift-share instruments is that there are two distinct sources of variation: the shifts and the
shares. Thus, to argue convincingly that these instruments are exogenous, one must explain what
properties of the shifts and shares make zi uncorrelated with εi (rather than simply stating the
basic exogeneity restriction of Cov [zi, εi] = 0). We next introduce the two paths for making such
arguments.

What is Identification from Many Exogenous Shifts?

One strategy to ensure that the shift-share instrument zi is exogenous is to have exogenous gk. For
example, imagine a lottery that randomly assigns a subsidy level gk to each industry k. In the above
labor supply setting, local employment growth xi can be instrumented for by a weighted average
of the subsidies, using initial local employment shares as weights. Subsidies can be viewed as only
affecting wages by shifting labor demand and do not have direct effects on labor supply. In general,
exogenous shifts should be as-if randomly assigned and should only affect the outcome through the
treatment (an exclusion restriction).

Shift-based identification stems from a simple observation: a share-weighted average of random
shifts is itself as-good-as-random. This is true even if the shares are econometrically endogenous,
in the sense that units with different shares may have systematically different unobservables. For
instance, regions that specialize in high-skill intensive industries may experience more immigration
from certain countries, such that the total employment share of high-skill intensive industries pos-
itively correlates with unobserved immigration shocks in the error term. But as long as subsidies
are assigned at random across many high- and low-skill intensive industries, on average the places
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specializing in high-skill intensive industries will have typical values of the instrument. Thus, a
shift-share research design based on experimental shifts requires no assumptions on the exogeneity
of exposure shares.

While a lottery provides intuition for an idealized experiment, the necessary and sufficient
condition for instrument exogeneity is a weaker condition on the shifts: gk should be uncorrelated
with an average of εi taken across units with weights sik. In our running example, this would
mean that subsidies gk—even if not truly randomized—are not systematically higher or lower in
industries which are concentrated (in terms of employment shares sik) in regions with high vs.
low labor supply shocks εi. Violations of this condition are the key threat to identification in the
exogenous shifts approach.

Another way to understand the exogenous shifts approach is to view the shift-share instrument
as a “translation device” for a set of as-good-as-random shifts to a different level of analysis. For
instance, when industry subsidies are as-good-as-randomly assigned, one could imagine running an
industry-level analysis which uses the subsidy gk directly as an instrument for industry employment.
Specifying the equation at the level of local labor markets may define a more interesting economic
parameter, capturing spillovers when workers move across industries in response to the subsidies.
However, the key identification assumption is the same, with the shift-share instrument translating
the industry-level natural experiment to local labor markets.

The “weighted average of lotteries” logic highlights two other requirements of the exogenous
shifts approach. First, it requires many shifts g1, . . . , gK . Otherwise, if K is a small number, the
shifts may by chance be correlated with unobservables even if they are truly random.1 This can be
viewed as an instance where the law of large numbers does not apply: there are effectively only a
few exogenous comparisons, regardless of how many units are observed.

Second, the shares have to add up to one such that the shift-share instrument has an interpre-
tation as a share-weighted average of shifts rather than a share-weighted sum. Otherwise, even if
shifts are drawn fully at random, the instrument may systematically vary across units through the
sum of shares. We discuss below how the exogenous shifts approach extends in this “incomplete
shares” case.

What is Identification from Exogenous Shares?

A different strategy to ensure shift-share exogeneity is to have exogenous shares. What does this
mean exactly? One could imagine the set of sik being as-good-as-randomly assigned to units, as if
drawn in a lottery, and satisfying an exclusion restriction (that the shares affect the outcome only
via the treatment of interest). Alternatively, when the outcome is measured in changes, one may
interpret share exogeneity as a set of parallel trends conditions similar to ones used in difference-
in-differences strategies. That is, for sik to be uncorrelated with εi one could assert that—if not for
any change in the treatment—outcomes would have trended similarly for units that were more vs.

1We note that it does not matter whether the gk take many distinct values. For instance, assigning a 10% subsidy
to some of the many industries (and 0% to the rest) should be viewed as having many shifts.

7



less exposed to k. Shares are exogenous when such parallel trends conditions hold for each k.
To make this logic concrete, consider an example inspired by Card (2009) who estimates the

(inverse) elasticity of substitution between migrant vs. native workers in labor demand, β. Here
the model (1) relates changes in the relative wages of migrants vs. natives between two periods, yi,
to changes in the relative employment of these groups, xi, across local labor markets. Suppose that
between these periods we saw a sudden change in national migrant inflows from a particular origin
country κ, such as the sudden inflow of Cuban immigrants following the Mariel Boatlift studied by
Card (1990). One might be willing to assume that regions which were more or less exposed to this
inflow, as captured by the initial share of migrants from Cuba siκ, would have seen similar trends
in labor demand for migrant vs. native labor: i.e., that Cov [εi, sik] = 0. In this case, the Cuban
migrant share would be a valid instrument for identifying β.

Under such share exogeneity, shift-share instruments can be viewed as combining multiple valid
share instruments—each operating under the same difference-in-differences logic, but capturing dif-
ferent exposure variation.2 Indeed, Goldsmith-Pinkham et al. (2020) show that shift-share estimates
can generally be viewed as pooling togetherK “one-at-a-time” estimates each using a single sik share
as the instrument. In the above example this would mean sudden changes in migrant inflows across
many origin countries, to different extents. In this case, if a parallel trends condition holds with
respect to each exposure share, a shift-share instrument combining them with gk weights will also
be a valid instrument.

Thus, the exogenous shares approach is appropriate when a researcher is comfortable using any
of the individual shares as an exogenous instrument. The plausibility of share exogeneity depends
on whether there are conceivably any unobserved shocks that affect the outcome via the same (or
similar) shares as the ones used to construct the instrument. Even if shares are drawn at random
from a lottery, the presence of any such shocks would always lead to parallel trend violations.

The plausibility of share exogeneity is boosted by constructing the instrument with shares which
are “tailored” to the treatment of interest, in the sense of mediating only the shocks to xi and not a
broad set of shocks that might affect yi. For example, in the literature on the effects of immigration
(e.g. Card (2009)), exposure shares are tailored to the research question: they measure local
migration from various origins in the past. This scenario can be contrasted with popular shift-share
designs with shares reflecting local industrial composition while studying the regional impacts of
specific industry shifts, such as import competition with China in Autor et al. (2013) or robotization
in Acemoglu and Restrepo (2020). The industry employment shares are “generic,” in that they could
potentially measure an observation’s exposure to other shocks (essentially, any industry shock),
many of them unobserved. In studies using such shares, it would not be plausible to make a case
for identification based on the exogeneity of shares. Under the exogenous shares view, Autor et al.
(2013) and Acemoglu and Restrepo (2020) use essentially the same instruments (lagged employment

2To see this link, note that we can formalize the above example as a setting with only one non-zero immigration
shift: i.e. gκ ̸= 0 and gk = 0 for all other host countries k ̸= κ. The resulting shift-share instrument zi =∑

k ̸=κ sik · 0 + siκgκ = siκgκ is perfectly collinear with siκ, so using this single exposure share as the instrument will
produce numerically the same estimate.
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Table 2: Summary of Main Practical Takeaways

Approach

Many exogenous shifts Exogenous shares
(1) (2)

Identification
argument

Shifts are as-good-as-randomly assigned
and only affect the outcome through the
treatment

Each share satisfies parallel trends: the
outcomes of units with high vs. low shares
would have trended the same if not for the
treatment

Estimation Control for the sum of shares (if not one)
and shift-share aggregates of any shift-level
controls

Check robustness to using share instruments
directly: e.g., one share at a time or pooled
via two-stage least squares or limited
information maximum likelihood

Statistical
inference

Get exposure-robust standard errors from
the equivalent shift-level instrumental
variable regression

Use conventional heteroskedasticity- or
cluster-robust standard errors

Balance
tests

For both the shift-share instrument and
the shifts

For both the shift-share instrument and the
shares with high Rotemberg weights

Do not use
when…

You would not want to use the shifts
directly as an instrument in a shift-level
regression, e.g. because they are too few or
endogenous

You would not want to use shares directly as
instruments, e.g. because they are “generic”
(capturing the unit’s exposure to many types
of shocks)

shares) for different treatments.
The role of the shifts is secondary with the exogenous shares strategy: Goldsmith-Pinkham et

al. (2020) show that the shifts affect the weights in their representation of shift-share as pooled
one-at-a-time share-instrument estimates, but they do not affect the identification of β so long
as the shares are exogenous. The choice of gk, however, may affect the power of the shift-share
instrument. Intuitively, the decomposition (3) suggests that a powerful instrument might use as the
gk the average of shifts xik across units (e.g. replacing the local growth rates of industry employment
xik with the national ones gk).

Many Exogenous Shifts in Practice

We now describe a list of practical steps for applying shift-share designs with many exogenous shifts.
This checklist can also be instructive for assessing the design of existing papers using shift-share
instruments. Column 1 of Table 2 summarizes some of the main practical takeaways discussed in
this section. We illustrate the checklist in the labor supply setting from above, where gk represents
as-good-as-randomly assigned federal subsidies to industries k. At the end of this section, we discuss
several real-world examples.
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A Checklist for the Shift-Based Approach

1. Motivate the shift-share strategy with a shift-level idealized experiment Any com-
pelling instrumental-variable design begins with thinking about what endogeneity bias is being
addressed: i.e., exactly which unobserved variables (or confounders) are likely to bias simple ordi-
nary least squares estimation. For example, when attempting to estimate a labor supply equation
with data on local employment growth xi and local wage growth yi, the model error εi will include
unobserved local labor supply shocks (e.g., immigration of foreign workers to each region). Because
equilibrium employment growth arises from both labor supply and labor demand shocks it is gener-
ally correlated with εi, generating bias in ordinary least squares estimates. To estimate β, we need
an instrument which is uncorrelated with local labor supply changes.

Once potential confounders are specified, the researcher can describe a hypothetical shift-level
experiment which would generate shifts that are unrelated to these sources of bias while never-
theless generating variation in the treatment. For example, one can imagine assigning new federal
subsidies at random across industries. Industries receiving larger subsidies are likely to expand their
production and thus their demand for local workers, increasing local employment xi. By virtue of
random assignment, these subsidy shifts are unrelated to local labor supply conditions. The exper-
imental ideal is thus useful to clarify exactly the type of shift-level variation one would want for
identification.

2. Bridge the gap between the observed and ideal shifts The next step is to describe how
the actual shift-share design used for the empirical analysis approximates the idealized experiment.
This may involve (i) specifying some control variables and (ii) describing how observed shifts proxy
for the ideal ones.

In our running example, imagine changes in subsidies gk are not randomized across industries
and could provide shift-level variation analogous to the randomized subsidies only conditional on
some controls. There could be two types of such controls, depending on whether shift-level or unit-
level confounders motivate including them. For the former, one may consider shift-level observables
qk that both correlate with the gk and can have a direct impact on the outcome of interest. For
example, one might worry that subsidies are systematically larger in skill-intensive industries and
that immigration from skill-abundant countries shift labor supply in regions where those industries
concentrate. In this case, one would like to control for the indicator of skill-intensive industries
in the shift-share specification. But how can this be done if such qk vary at the industry level
while the specification is estimated at the regional level? Borusyak et al. (2022) show that the
answer is to control for

∑
k sikqk: shift-share aggregates of the industry-level confounders, with

the same exposure shares as in the construction of the instrument. In the skill intensity example,
this amounts to controlling for the total regional employment share of all skill-intensive industries.
With this control variable, the shift-share instrument will only leverage the variation in gk which is
uncorrelated with the qk: e.g., residual variation in subsidies after controlling for skill intensity.

Controls of the second type arise from unit-level observables which are thought to correlate both
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with the error term εi and with zi. For example, one might expect labor markets in the US “rust
belt” to experience different unobserved local labor supply shocks vs. other parts of the country,
and that industries more concentrated in these states see systematically different subsidies. In this
case, a straightforward solution is to control for a rust belt indicator.3

Even after including the controls, the shifts may only be viewed as proxies for idealized ones.
In Autor et al. (2013), for example, industry-level productivity shifts in China are unobserved but
proxied with the growth of imports from China in non-US countries. In Bartik (1991), labor demand
shifts are proxied with national employment growth rates. In those cases, the applicability of the
exogenous shifts approach depends on whether the gap between the proxy and ideal shift could be
contaminated by confounders. In Appendix A.11 we show that this problem arises in Bartik (1991).

3. Include the “incomplete share” control In shift-share designs where the exposure shares
sik do not add up to one—what Borusyak et al. (2022) call the “incomplete shares” case—a special
control must be included: the sum of shares, Si =

∑
k sik. To build intuition, recall that with

“complete” shares (when Si = 1), the shift-share instrument is a weighted average of the shifts so if
shifts arise from a pure lottery then the shift-share instrument is also like a lottery outcome. This
logic breaks down with incomplete shares, when zi is a weighted sum of the shifts. Then, even with
randomly assigned shifts—which have, say, a positive mean—an observation with a higher Si would
systematically get higher values of the instrument. The instrument is thus correlated with the sum
of shares, which can in turn be correlated with the error, leading to bias. Controlling for Si removes
the problem, because units with the same Si get different values of the shift-share only for random
reasons.4

4. Lag shares to the beginning of the natural experiment When constructing the shift-
share instrument, one needs to decide when to measure the shares. Decomposition (3) suggests
measuring them at the beginning of the period of interest, but it is common in practice to lag them
further. Is this practice justified?

In the exogenous shifts approach, it is best to measure the shifts at the beginning of the nat-
ural experiment that generates them. This avoids the situation where the shifts affect the shares,
potentially generating bias.5 At the same time, shares matter for instrument power; lagging shares

3An alternative way would be to consider industry-level controls as described above: e.g., the share of Rust Belt
regions in the industry employment. The relative merits of these two approaches remain unexplored.

4In Appendix A.4 we explain why this solution is typically better than renormalizing the shares to add up to one.
We also note that sometimes researchers introduce the shares that add up to one across observations instead of shifts.
In such a case, it is not appropriate to control for Si. Instead, the shift-share instrument should be rewritten in a
different way consistent with (2); see Appendix A.5.

5Not every response of the shares to past shifts makes the shift-share instrument endogenous: if this response is
not related to the error terms, there is no problem. But it is possible to imagine situations where the bias would
arise. Following footnote 32 in Borusyak et al. (2022), consider the labor supply setting and imagine that subsidies
now occur in two periods. Suppose regions vary in labor market flexibility, the reallocation of employment towards
industries with larger subsidies is stronger in flexible local labor markets. If subsidies are random but persistent
across the two periods, industries with large subsidies will be increasingly concentrated in regions with flexible labor
markets. The shift-share instrument will therefore take higher values in flexible labor markets, causing bias if flexible
labor markets also have stronger employment growth for other reasons.

11



beyond what is necessary would typically make the instrument weaker.
What constitutes the beginning of the natural experiment? If there were no shifts correlated

with gk in the past, it is just the beginning of the period when the gk are measured. However, if
the shifts unfold over several periods in a serially correlated way, it is appropriate to lag the shares
further, to the first of these periods—or alternatively to extract unpredictable shock innovations
and use them to construct the shift-share instrument. Another problem that arises with serially
correlated shifts is that past shifts may have direct dynamic effects on the current outcomes (see
Jaeger et al. (2017)). Simply lagging the shares does not help with this problem. We discuss the
problems arising in panels and possible solutions in Appendix A.1.

5. Report descriptive statistics for shifts in addition to observations Empirical papers
normally present the number of observations and summary statistics for the main variables. In shift-
share analyses that leverage the variation in shifts, it is important to also present such descriptive
statistics for these—in the same way as one would in a non-shift-share setting at the shock level.
While the mean and standard deviation of zi is useful to know, so are the mean and standard
deviation of gk.

One detail here is that, as we show below, each shift carries an importance weight proportional
to the exposure share of that shift for an average observation, sk = 1

N

∑
i sik. For example, when

studying subsidy shifts across industries, the importance weights could correspond to the average
industry employment share across local labor markets. Thus, it is natural to report descriptive
statistics with those weights as well. For instance, the weighted version of the number of shifts is
the “effective number of shifts”—the inverse of the Herfindahl index of shock importance weights,
1/
∑

k s
2
k. When the effective number of shifts is small, a few shifts may drive the empirical analysis,

potentially making the results noisy and unreliable. This is not specific to shift-shares: a similar
issue can arise when running a weighted ordinary least squares regression, if some observations get
disproportionately large weights.6

Descriptive analyses for the shifts need not be limited to their effective number and the distri-
bution. For instance, one could also describe the distribution of the shifts after residualizing them
on shift-level controls the researcher plans to include. Or one could plot the shifts on the map if
they have a geographic dimension.

6. Implement balance tests for shifts in addition to the instrument In every research
design, it is useful to perform balance tests: specifically, to check that the variation believed to
be exogenous is indeed not correlated with proxies for confounders. In a shift-share design with
exogenous shifts, this can be done in two ways: for the instrument at the level of units, and also
directly for the gk at the level of shifts.

Checking balance of the instrument at the unit level is relatively standard. For instance, a typical
pre-trend test involves regressing the lagged outcome on zi while including the controls picked in

6If shifts are correlated within certain clusters, the Herfindahl index can be computed at the level of such shift
clusters, since having many correlated shifts may also not be enough for a reliable statistical analysis.
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advance (such as the incomplete share control). The only particularity of shift-share designs in this
case is that standard errors should be computed appropriately, as we discuss in the next step.

But when the identifying variation is at the shift level, it is also useful to check balance of shifts
directly, with respect to shift-level variables that may proxy for unobservables. For example, in our
running example with a change in industry subsidies, one could check whether the shifts correlate
with variables reflecting labor supply factors, such as the composition of the workforce and the
share of immigrants in the industry. This test is useful to assess whether changes in subsidies are
systematically different for certain industries that would likely have been on different employment
trends even absent changes in labor demand.

7. Produce the main estimates with correct standard errors and check sensitivity
Valid statistical inference in shift-share designs with exogenous shifts requires a special “exposure-
robust” approach. Intuitively, inference must take into account that units with similar shares
mechanically have correlated zi and may also have correlated εi due to their common exposure
to unobserved shocks. For example, regions specializing in the same industries will be affected by
the same (potentially unobserved) industry shocks. Adão et al. (2019) show with a Monte Carlo
simulation that this issue can be very serious in practice.

Two solutions have been developed, both leveraging as-if random assignment of the shifts. First,
Adão et al. (2019) provide a variance estimator which is asymptotically valid regardless of the
correlation structure of the errors across observations, as long as the exogenous shifts are mutually
uncorrelated or clustered in a known way (e.g., by group of industries). Second, Borusyak et
al. (2022) show that one can simply run a particular shift-level two-stage least squares regression
which always produces an identical coefficient as β̂ from the shift-share regression (1) but gives
valid standard errors, since it is estimated at the same level at which the shifts are assigned.
In this regression, the k-level outcome and treatment are certain transformations of the original
outcome and treatment, shifts gk directly serve as a single instrument, shift-level controls qk are
directly included as controls, and estimation is weighted by average shares sk = 1

N

∑
i sik.7 The

ssaggregate packages in Stata and R automate the transformation of the outcome and treatment
for this regression. The shift-level regression offers the flexibility to accommodate various types of
dependence in the shifts: e.g., not only standard clustering but also spatial clustering and serial
correlation. The equivalent regression can also be used to produce exposure-robust first-stage F-
statistics to judge the instrument strength.

After producing the main shift-share estimates, it can be instructive to check their robustness to
a variety of choices. For example, one may examine the stability of the estimate under alternative
sets of controls which could correspond to different assumptions of conditional quasi-random shift
assignment. Similarly, one may check that estimation with and without unit-level importance
weights (e.g., population weights in a regional analysis) yields similar results.

7Specifically, the transformation of the outcome and treatment involves first residualizing them on the included
i-level controls and then, for each k, averaging across observations with weights sik.
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Examples of the Shift-Based Approach

We now discuss two examples, which illustrate some of the key practical insights for shift-shares
with exogenous shifts. The first example focuses on how to use the shift-share design with a true
experiment. The second describes a shift-share design with quasi-experimental shifts and illustrates
why “incomplete shares” deserve special attention. Appendix A.1 provides an additional example
leveraging time-series variation in the shifts.

Shift-share in a randomized trial Franklin et al. (2023) leverage randomized shifts in a shift-
share design to estimate the indirect impacts of an intervention. They study a large public works
program offering employment at high wages to low-income workers residing in specific neighborhoods
in Addis Ababa, Ethiopia. The authors estimate the impact of this program on private sector wages:
by increasing employment in public works, the program can reduce labor supply for other activities
and increase private wages. Identification relies on the randomized rollout of the program, and the
authors find large wage effects.

While the program is randomized at the level of residential neighborhoods k, it may have
spillovers on wages in other neighborhoods (labor markets i) because workers can commute. Using
data on the baseline-period commuting data, Franklin et al. (2023) build a measure of each labor
market’s exposure to the randomized roll-out: for each labor market, the shift-share treatment takes
an average of intervention dummies across places of residence (the shifts) weighted by the share of
workers who commute from those places of residence (exposure shares which sum to one).

In this setting, if the shifts are simply randomly assigned, there is no need to introduce controls.
Imagine, however, that some residential neighborhoods k were ineligible for randomization. Then,
the total share of commuters from eligible areas is less than one, and controlling for this total is
necessary. With this control, and assuming that commuting shares correctly capture the structure
of spillovers, the shift-share design identifies the causal impact of the program.

Shift-share without an experiment Autor et al. (2013) study the impact of import competition
with China on US employment. While this relationship could be analyzed across industries, they
adopt the “local labor markets approach” (following, e.g., Topalova (2010)). Simplifying details,
they define the outcome as the employment change in a US local labor market (commuting zone) and
the treatment as the change in local exposure to import competition. Local exposure is measured as
the average of national industry changes of imports from China (in dollars per US worker), weighted
by local employment weights of different industries.8 Ordinary least squares estimates may be
biased if, for example, high productivity growth in China happens in industries with systematically
different productivity or demand trends in the US or if US consumers substitute to Chinese goods
in industries where US productivity is lagging.

8This approach is meant to account for important spillovers across industries: if workers can move from an industry
affected by import competition to another one, declines in industry employment are not informative of the aggregate
effects of import competitions. Spillovers across commuting zones are likely more limited.
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In this setting, the idealized experiment would be to assign observed productivity shifts at
random across manufacturing industries in China. These shifts would have different incidence across
US commuting zones given the pre-determined industrial composition of each area. In practice,
productivity changes are unobserved and, as a proxy, Autor et al. (2013) use the observed growth
of imports from China in industry k in eight high-income countries excluding the US. Measuring
imports in those countries ensures that demand and supply shocks that are idiosyncratic to the US
cannot bias the results.

An important feature of this setting is that the exposure shares do not sum to one, since only
manufacturing industries are exposed to trade with China. Locations with a larger total share of
employment in manufacturing are likely on different potential outcome trends, e.g. because of the
secular decline in manufacturing (which can have many causes other than trade). To address this
issue, it is necessary to control for the sum of exposure shares in each location. Note that the
appropriate control equals the total regional share of manufacturing employment in the period in
which the shares are measured. Since Autor et al. (2013) lag the shares by a decade relative to the
period of the outcome and treatment, the incomplete share control should be lagged as well.

A further adjustment is called for because Autor et al. (2013) conduct the analysis in a repeated
cross-section over two ten-year periods, and the average shifts are different in the two periods.
Here, leveraging shock variation across industries only within periods requires controlling for the
interaction of the sum of exposure shares with period indicators. This control prevents the bias
that would arise if the manufacturing sector as a whole (and regions specializing in manufacturing
industries) declined at different rates in the two periods for reasons unrelated to trade.

To assess the plausibility of the design, it is instructive to conduct industry- and commuting zone-
level balance tests. At the industry level, it could be that China specializes in certain industries (e.g.,
low-skill industries) that could have been on different employment trends in the US absent trade
shocks. To speak to this concern, one can correlate the shift gk with industry-level variables reflecting
the structure of employment and technologies—such as the skill and labor intensity, average wages,
and investment in new technologies (e.g., computers) in a pre-period. Using the data from Autor
et al. (2013), Borusyak et al. (2022) find that the shifts are balanced across these dimensions.

Correlating the regional shift-share instrument with potential commuting zone-level confounders
is also instructive. Such a correlation would arise if China specializes in industries that are located
in commuting zones with unusual observed characteristics, which can raise concerns they are on
different potential employment trends, too. One can regress commuting zone-level predetermined
variables—such as the lagged fraction of population who is college-educated, foreign-born, female,
or working in routine occupations—on the shift-share instrument, controlling for the sum of shares
interacted with period fixed effects. One can also implement a standard “pre-trend” test, with
lagged commuting zone outcome on the left-hand side. Autor et al. (2013) and Borusyak et al.
(2022) find that most of these tests pass.

Using this shift-share strategy, Autor et al. (2013) document a substantial decrease in both
manufacturing employment and total employment in local labor markets that were more exposed
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to import competition from China. Introducing incomplete share controls interacted with period
indicators, Borusyak et al. (2022) find smaller effects, especially for total employment.

Exogenous Shares in Practice

We now provide a list of practical steps to determine whether and how to use the exogenous-share
approach to shift-share designs. As before, these steps can also serve as a blueprint for readers
of papers using these designs. A summary of the key takeaways is given in Column 2 of Table 2.
We develop this checklist with the immigration setting from above, where sik represents the lagged
share of immigrants from country k in region i. We discuss several applied examples at the end of
this section.

A Checklist for the Share-Based Approach

1. Determine whether the exposure shares are potentially suitable instruments Like
before, the researcher can start by motivating the outcome equation and describing the main sources
of treatment endogeneity. With the exogenous shares approach in mind, the researcher would then
provide reasons why the shares may be useful instruments to address the corresponding threats.
While we illustrate how this can done with detailed empirical examples below, here we highlight
two general guiding principles.

First, the instrument exogeneity argument requires shares to be “tailored” to the treatment.
Recall that the shares cannot be exogenous instruments if they capture the exposure of the outcome
to some unobserved shocks. This rules out cases where the shares are “generic,” in the sense of
capturing exposure to many shocks, while the treatment only captures one such mechanism (e.g.,
import competition in Autor et al. (2013)) and it is not feasible to control for the effects of all other
shocks. Conversely, in our running migration example, it is conceivable that the share of migrants
from a certain origin only captures the region’s exposure to migration shocks, making such shares
potentially exogenous.

Second, the identification strategy can be strengthened by exploiting a source of variation in
the initial shares that is more likely to satisfy exogeneity. Terry et al. (2023), for instance, study
the effects of migration on innovation and worry that the initial composition of migrants may be
correlated with labor demand factors. For instance, migrants from certain origins may have settled
in regions with persistently strong labor demand, which could directly impact innovation. They
address this issue by replacing the shares with their component arising from specific historical quasi-
experiments, leveraging how the timing of historic waves of immigration coincided with the timing
of growth across US regions.

A simpler strategy of lagging the shares can also sometimes help, but it does not by itself
guarantee exogeneity. Lagging the shares will typically weaken the instrument, so it’s important
to explain why it is plausible that lagging the shares reduces their covariance with the error term
by more than it reduces the covariance with the treatment. For example, in studies of the effect
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of immigration on local labor markets, lagging the shares to an earlier decade is helpful if (i) labor
demand shocks that attract migrants are transitory, and (ii) new migrants persistently go to places
where migrants from the same origin arrived earlier.

2. Choose the necessary unit-level controls Even if the shares are tailored, their exogeneity
is a nontrivial assumption, similar to any parallel trends assumption. As usual, exogeneity can be
relaxed by including control variables. For example, the researcher can control for certain sums
of shares to only leverage share variation conditional on these sums. In the migration setting,
controlling for the initial total immigrant share would mean that the shift-share would leverage
variation in the composition of migrants across locations, avoiding comparisons between regions
with high and low migration intensity overall.

3. Characterize which shares matter the most for the estimates When viewing the
shift-share estimate as a pooled version of K one-at-a-time share-instrument estimates, it can be
important to understand whether a small subset of these instruments drive the results. If this is
the case, the researcher can use those shares to explain how the identification strategy works and
can focus on them for the balance tests described below.

Goldsmith-Pinkham et al. (2020) show how to measure the importance weight of each share
instrument, which they refer to as “Rotemberg weights” (referencing Rotemberg (1983)). They
are based on a decomposition of the shift-share estimator into a weighted sum of individual-share-
instrument estimators with weights that add up to one, although some can be negative. These
weights are larger for shares that are exposed to a bigger gk and that are more predictive of
treatment. The Rotemberg weights can be interpreted as measuring the sensitivity of the shift-
share estimate to violations of exogeneity by each share instrument. The bartik_weight command
in Stata and R provided by Goldsmith-Pinkham et al. (2020) computes these weights.9

4. Implement balance tests for individual shares in addition to the instrument Like
in any design, it is worth checking balance of the instrument on observable variables that may
be expected to correlate with the error term. Different variables can serve for useful balance tests:
pre-period changes in the outcome variable (corresponding to a pre-trends test), unit characteristics
measured at the beginning of the period, or contemporaneous changes in placebo outcomes that are
not expected to be causally affected by the treatment.

The special feature of the exogenous-share approach is that balance tests can also be performed
on individual shares, since each of them is assumed to be exogenous. To avoid issues with testing
many hypotheses, it is natural to focus on the subset of shares that are most important for the
resulting estimate as measured by the Rotemberg weights. We note that outcome pre-trends are
more likely uncorrelated with individual shares when either the shares have changed drastically

9Unfortunately, the Rotemberg weights are not unique when the shares add up to one. This is because the
shares—and thus individual-share estimators—are perfectly multicollinear. In this case, Goldsmith-Pinkham et al.
(2020) recommend choosing the Rotemberg weights that correspond to the demeaned shifts.

17



since the pre-period or there were no shocks of the same nature as gk in the past (see Jaeger et al.
(2017)).

5. Check sensitivity to how share instruments are combined When shares are exogenous,
the parameter β is overidentified: any individual share or linear combination of shares is itself a
valid instrument. The shift-share instrument is one such combination but, since many others are
available, it is instructive to check that the shift-share estimate would not be too dependent on the
researcher’s choice. Here we review several such tests and discuss what their failure may indicate.

A standard statistical test for whether using each of the individual shares as an instrument
yields statistically indistinguishable estimates of β is the Sargan-Hansen overidentification test.
(Wooldridge, 2002, Ch. 6.2.2). Graphical procedures aid the interpretation of this test. A conven-
tional “visual instrument variable” procedure (Angrist and Pischke, 2008, p.103) plots K reduced-
form coefficients (from regressions of the outcome on a given share, including all controls) against
corresponding first-stage coefficients (from similar regressions of the treatment). Since individual-
share estimates of β are given by the ratio of reduced-form and first-stage coefficients, the points
in this plot should all lie on a single ray from the origin when all share instruments estimate the
same parameter (i.e. when the overidentification test “passes”).10 An alternative graph is proposed
by Goldsmith-Pinkham et al. (2020): a scatter plot of the K estimates of β, each using one of the
shares as an instrument, against their respective first-stage F -statistics. Here one hopes to see that
all estimates are similar, especially those with high F -statistics and large Rotemberg weights.

Since individual share instruments may not be very strong, it is also useful to check the sensitivity
of the β estimates to alternative combinations of multiple share instruments. One may examine
whether the estimate changes when using only a few shares—e.g., those with the largest Rotemberg
weights. Another approach is to keep all shares for higher precision but combine them in a different
way. When K is small relative to the sample size, two-stage least squares is the natural estimator to
report; an efficient generalized method of moments estimator is another option. With many shares,
two-stage least squares suffers from bias but several estimators robust to “many weak instruments”
are available instead: jackknife instrumental variables (Angrist et al. (1999)), limited information
maximum likelihood, the heteroskedasticity-robust Fuller estimator (Hausman et al. (2012)), and
modified bias-corrected two-stage least squares (Kolesar et al. (2015)).11

It is comforting if all of the above checks indicate robustness of the shift-share estimate; but
what should the researcher conclude if not? The answer depends on whether the causal effect of
xi on yi can vary across units i (making the constant-β model (1) misspecified). When the effects
are homogeneous, the failure of the above tests indicates that the share exogeneity assumption is
violated. This need not be the case with heterogeneous effects, as different combinations of share
instruments may estimate different combinations of causal effects even when all share instruments

10Formally, Appendix B.2 shows that the shift-share estimate of β equals the coefficient from a regression of reduced-
form coefficients on first-stage coefficients, with no intercept and with particular weights related to the Rotemberg
weights.

11The shift-share estimator also requires a similar bias correction when the shifts are estimated from the sample, as
in Bartik (1991). In Appendix A.12 we discuss the leave-out shift-share estimator that helps in this scenario.
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are exogenous. Still, sensitivity of the estimates to the choice of the instruments is a cause for
concern: the interpretation of shift-share estimates (and those from the alternative estimators) can
be challenging under such effect heterogeneity. They may not represent the average effect for some
subpopulation of “compliers,” especially because share instruments are correlated with each other
(Mogstad et al. (2021)).

Examples of the Share-Based Approach

We now use two examples to illustrate the exogenous-share approach in the contexts of the labor
market responses to migration and retirement rates. Both examples show the tight conceptual link
between the exogenous shares approach and difference-in-differences research designs.

Labor market effects of immigration We first consider the design of Card (2009, Table 6) and
its re-analysis by Goldsmith-Pinkham et al. (2020). The goal is to estimate the (inverse) elasticity of
substitution between immigrant workers and native workers in labor demand, i.e. the relationship
between the log wage gap between immigrant and native workers and the ratio of immigrant to
native hours worked. Simplifying details, the analysis considers a cross section of outcomes (in
levels) in 2000 across 124 cities, separately for high-school and college-educated workers.

As with any demand equation, ordinary least squares estimates may be biased: a positive labor
demand shock for migrants would draw more immigrants into a location and at the same time
increase their wages relative to natives. An instrument is needed that shifts the relative supply of
migrant and native workers. Card (2009) proposes a shift-share instrument, leveraging immigration
patterns from 38 countries indexed by k. Here sik is the share of immigration group k in the
population of city i in 1980; note that these shares add up to the initial migration share rather than
one (and the initial migration rate is not controlled for). The gk is the number of migrants in group
k moving to the US from 1990 to 2000, normalized by the national stock of migrants from k already
in the US in 1990.

This shift-share strategy alleviates some endogeneity concerns, as the shares are uncorrelated
with some relative labor demand factors. Specifically, transitory regional labor demand shocks
(which attract migrants to a particular location in the current period only) would be a problem for
ordinary least squares but not for Card’s instrument, since the migrant shares are measured before
these shocks are realized. In contrast, persistent regional labor demand factors (e.g., characteristics
that always make immigrants more productive relative to native workers, such as the prevalence
of certain languages like Spanish) would remain a problem for both ordinary least squares and the
shift-share approach, since these factors impact the beginning-of-period migrant share while also
entering contemporaneous labor demand in the error term.

Some of the potential limitations of Card’s instrument can be addressed by simple adjustments to
the empirical strategy. In particular, estimating the outcome equation in differences would alleviate
concerns about time-invariant regional confounders. Moreover, controlling for the total initial share
of migrants would make the shift-share leverage the composition of migration origins. This would
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address labor demand shocks that affect all migrants equally.
Working with the original Card (2009) setting, Goldsmith-Pinkham et al. (2020) compute the

Rotemberg weights to show which shocks matter most for the estimates. They show that Mexico
receives half of the weight in the sample of high school equivalent workers. Thus, for these workers
one can largely think of the research design as using the initial Mexican immigrant share as the
instrument. Indeed, Card (2009) notes that the shift-share is highly correlated with the initial
fraction of Mexican migrants. For college equivalent workers, Goldsmith-Pinkham et al. (2020)
document that the top country is the Philippines, receiving 15% of the total weight.

Goldsmith-Pinkham et al. (2020) also perform balance tests for share instruments with high
Rotemberg weights. They report that the 1980 Mexican immigrant share does not predict relative
wages in 1980 or 1990, but does in 2000 (the year of analysis). While the patterns for Mexico are
comforting, the 1980 share of immigrants from the Philippines correlates with the native-immigrant
wage gap in all three periods. Other countries also feature statistically significant violations of
pre-trend balance, raising concerns about share exogeneity. In part, the correlation between pre-
period outcomes and certain origin shares could arise because pre-period outcomes are affected by
pre-period immigration rates. Including lagged immigration rates in the model could help pre-trend
tests pass while also making causal estimates more credible.

With these caveats, shift-share estimates suggest that when the ratio of immigrant to native
hours worked increases by 10% (because of supply shocks), the wage of migrants relative to native
workers falls by 4% for high school graduates, and by 7% for college graduates. This implies that
migrant and native workers are more substitutable for low-skill groups. Goldsmith-Pinkham et al.
(2020) also report the results obtained with alternative estimators, such as two-stage least squares.
They find that the point estimates remain very similar. Similarly, plotting the estimates using
individual shares as instruments against their respective F -statistics, they find little variation in
the estimates, especially for the strong instruments. In Appendix Figure 1 we report the visual
instrumental variables graph. Since individual estimates are similar for all origin countries, the
estimates lie near the ray through the origin with the slope equal to the shift-share estimate. These
tests demonstrate the robustness of the baseline estimate to alternative ways of combining the share
instruments and indicate that treatment effect heterogeneity is a limited concern in this setting.

Labor market effects of retirement Mohnen (2024) studies the impact of the retirement rate of
older generations on labor market outcomes for younger generations in the US, conducting the anal-
ysis at the commuting zone level. Specifically, the author relates 10-year differences in labor market
outcomes for the young (unemployment rate, share working in high-skilled jobs, etc.) to retirement
rates over 10 years in the commuting zone. The specification further includes start-of-period re-
gional controls: employment share of manufacturing and routine occupations, unemployment rate,
etc. Still, ordinary least squares estimates may be biased because strong labor demand in some com-
muting zones may explain both low retirement rates among older workers and low unemployment
rates for younger workers.

The author addresses this identification challenge with a shift-share strategy that leverages
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cross-area variation in age composition among the older population. Specifically, the instrument for
the 10-year retirement rate in commuting zone i uses the local share of age k among the population
aged 45 to 80 as sik (such that shares sum to one in each commuting zone), and the national 10-year
retirement rate by age as gk. The age composition predicts retirement rates because older workers
are more likely to retire, giving the shift-share instrument power. The identification assumption is
that the age shares (among people above 45) are all valid instruments conditional on the controls.

To better understand the source of variation, the author describes which age shares matter the
most in driving the estimates. He reports Rotemberg weights, documenting that they are close to
proportional to the 10-year national retirement rates by age.

Shift-share estimates suggest that the retirement slowdown in the US in recent decades was
detrimental to career outcomes for the youth. In places where fewer workers retire, young workers
have lower wages and are more likely to have low-skill jobs, and their job mobility falls, although
their unemployment does not increase.

To assess whether the results might depend on how the share instruments are combined, the
author performs an overidentification test which passes. He also reports alternative estimators:
using a particular combination of shares (the initial share of the population age 52-59 as a fraction
of the population above 45), or all detailed age shares as separate instruments via generalized
method of moments. All estimates suggest similar results, lending support to the validity and
robustness of the design.

Conclusion

We have reviewed two frameworks for shift-share research designs, which include sufficient conditions
for instrument validity, narratives for interpreting these conditions intuitively, balance tests for the
assumptions, and various practical recommendations. Table 2 summarizes the key practical insights
for the two approaches, leveraging either exogenous shifts or shares.

How can one pick between the two approaches? In some settings one approach is a “non-
starter”: e.g., the exogenous shifts approach with too few shifts or the exogenous shares approach
when the treatment is specific while the shares are generic. In other settings, it may be productive
to think through the potential bias and efficiency properties of the instruments each approach
would suggest. For instance, when estimating the local demand elasticity for migrant labor, can a
plausibly exogenous supply shift (“push factor”) with a strong effect on migration be found? Or is
it plausible that there are no national demand shifts for migrants of any origins—in which case a
(likely stronger) share-based instrument may be convincing enough? We hope our review will help
researchers assess such tradeoffs.
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A Other Practical Concerns with Shift-Share IVs

In this appendix we discuss some questions which come up frequently in shift-share instrumental
variable (IV) designs. These twelve questions are: What if shares are observed in a panel? What
kind of local average treatment effect does the shift-share IV estimate? Do the “shares” have to
really be shares, between zero and one? Should the shares be normalized to add up to one? Can
shift-share instruments be constructed by apportioning national changes to units? Can the shifts
be unit-specific? Can one take a shift-share average of shift-share IVs? What if a log, or another
transformation, of a shift-share variable is used? Can one use multiple shift-share instruments?
What about interaction terms in shift-share regressions? Should the instruments in Card (2009)
and Bartik (1991), which measure the shifts as the national growth of some equilibrium outcome
(industry employment or total migration by origin), be viewed through the lens of exogenous shifts
or exogenous shares? And what is the role of leave-one-out construction of shifts?

A.1 What if shocks are observed over multiple periods in a panel?

While our main discussion considered a single cross-section (typically, with first-differenced out-
comes), in many applications researchers have access to shifts gkt happening in multiple periods t.
In a panel of units i over periods t = 1, . . . , T , one may consider an IV specification

yit = βxit + γ′wit + εit, (4)

with a shift-share IV zit =
∑

k siktgkt and some controls wit, potentially including unit and period
fixed effects. Here we indexed the shares sikt by the period when they are used, not when they are
measured: for instance, sikt can be time-invariant, fixed in an early “base” period.

The panel setting offers new possibilities. In the exogenous shifts approach, if a natural ex-
periment generates exogenous shifts in several periods, “stacking” them provides more estimation
power. Moreover, panels with many periods make it possible to apply the many exogenous shifts
approach even when K is small, thanks to the time-series variation in the shifts. In the simplest
case, there may be just one shift in each period and heterogeneous unit exposure to this shift, such
that zit = sitgt (where sit is often time-invariant). When many periods are observed, exogeneity of
the time series variation in gt is sufficient for consistent estimation. Exposure-robust inference also
follows from the time-series properties of the shifts. The shift-level equivalent IV regression in this
case is just a time-series regression regardless of the number of units in the panel, and standard
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errors should correspondingly be clustered in a time-series way (e.g., by period or allowing for serial
correlation in the shifts). Below we provide a detailed illustration of these points in the setting of
Nunn and Qian (2014).

In the exogenous shares approach, the number of available instruments is also larger in a panel,
as primitive instruments are individual shares interacted with period dummies, all assumed to
be valid. Correspondingly, Rotemberg weights are computed for each pair of k and t, although
Goldsmith-Pinkham et al. (2020) recommend reporting their sums over time for clarity.

Panel data also pose new challenges. We focus on the exogenous shifts approach in this discus-
sion. First, the shifts may have different means in different periods. In conventional panel models,
time-varying means are addressed by including period fixed effects (FEs), γt. Correspondingly, in
shift-share designs, time-varying shift means are addressed by a share-weighted aggregate of period
FEs:

∑
k siktγt. With complete shares, i.e. when

∑
k sikt = 1, this control coincides with the period

FEs. But in the incomplete shares case, the sum of shares control needs to be interacted with period
FEs. The setting of Autor et al. (2013) discussed in the main text illustrates this point.

Second, shifts can be serially correlated, in which case each period cannot be viewed as a
separate natural experiment. Then, as mentioned in Step 4 of the exogenous shifts checklist, the
static specification in (4) suffers from an omitted variables bias problem when there are dynamic
causal effects, i.e. if lagged shifts affect current outcomes (Jaeger et al., 2017). Intuitively, the
estimated coefficient for the treatment in specification (4) is biased because it also includes the
dynamic causal effect of past treatments. Moreover, if the shares can respond to past shifts which
are correlated with contemporaneous shifts, the shares cannot be viewed as measured before the
natural experiment in shifts began (see footnote 5).

There are two solutions to the problems of serial correlation in shifts. One involves estimating
richer specifications which include the relevant lagged treatments, as well as lagging the shares
underlying the shift-share IV further. The shares need to be measured at a date before the sequence
of serially correlated shifts began if such a date exists. Jaeger et al. (2017), for instance, show that
migration rates by country of origin are very serially correlated since 1970s, but not correlated
with those from earlier decades. Thus, year 1970 can be viewed as the beginning of the natural
experiment in their setting.

An alternative solution is based on isolating the unpredictable component of the contempora-
neous shifts before constructing the shift-share IV. For instance, if the shifts follow a first-order
autoregressive process, one can control for the lagged shifts (by controlling for a share-aggregated
version of them at the unit level). If the shift-share IV leverages the idiosyncratic component
of shifts, the issues stemming from serial correlation disappear.12 This approach only yields the
contemporaneous effect but does not require a correct specification of the dynamic effects.

12There are different ways of extracting the idiosyncratic component of shifts. Instead of controlling for lagged shifts,
another natural approach could be to control for the time-invariant component of shifts. Implementing this strategy is
easy when time-invariant shares are used: then including unit fixed effects in the control vector wit implicitly removes
any shift-level confounders αk, since the corresponding share-aggregated control

∑
k siktαk is time-invariant.
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Example of shift-share IV with time-series variation Nunn and Qian (2014) study the
impact of US food aid on conflicts in a long panel of recipient countries. Simple ordinary least
square (OLS) estimates, or even those with country fixed effects, are subject to several potential
biases: the presence of conflict may increase the demand for food aid; there might be many omitted
variables—such as political and economic crises—affecting both conflict and food aid; or donors
may decide to reduce food aid to countries engaged in conflict.

To resolve these issues, the authors leverage exogenous time variation in US wheat production
over time. Due to price stabilization policies requiring the US government to buy wheat from US
farmers at a set price, the US government accumulates excess reserves in high production years,
which is shipped to developing countries as food aid. The shift-share design leverages these time
series shifts, using as exposure weights a country’s likelihood of being a US food aid recipient.
Specifically, the quantity of wheat aid shipped from the US to recipient i in year t is instrumented
by zit = sigt, where gt is the amount of US wheat production in the previous year and si is the
fraction of years that recipient country i receives a positive amount of US food aid during the sample
period, 1971–2006.

How can one follow our exogenous shifts checklist in this context? For steps 1–2, the researcher
would clarify whether all time series variation in wheat production is considered as-good-as-random.
This requires an exclusion restriction, that US wheat production affects conflict in other countries
only through US aid. Moreover, if US wheat production is correlated with key economic indicators
such as oil prices, which can have a direct effect on conflict, the researcher would need to control
for these variables interacted with si. Indeed, the interaction of the oil price with si is one of the
controls Nunn and Qian (2014) include. They also include other controls, such as dummies for six
geographic regions of the world interacted with year dummies. For step 3, the incomplete share
control here is simply si, the time-invariant exposure to US aid, since each observation is exposed
to only one shift; in Nunn and Qian’s regression it is absorbed by country fixed effects. For step
4, one would measure si before, rather than during, the sample period. For step 5, it would be
useful to plot the time series of wheat prices, which serves as identifying variation. Christian and
Barrett (2024, Fig. 3) finds strong serial correlation and an inverse U-shaped trend in wheat prices.
In this case, it may be appropriate to analyze dynamic causal effects or extract an unpredictable
component of the time series of US wheat production. For step 6, one can check whether the time
series of wheat production is correlated with potential confounders, such as the aforementioned oil
prices. At the country-by-year level, an IV regression with lagged conflict as the outcome would
constitute a standard pre-trend test. Finally, for step 7, one can cluster standard errors at the level
of identifying variation, i.e. by year (rather than by country, which is more conventional in panel
regressions). Given the shifts (and, likely, errors) are serially correlated, heteroskedasticity and
autocorrelation-consistent standard errors may be more appropriate. Indeed, Christian and Barrett
(2024) show that conventional standard errors can lead to spuriously significantly relationships in
this setting. These standard errors are easier to obtain from the time-series regression equivalent
to the original panel regression.
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A.2 Does shift-share IV estimate a LATE when the effects are heterogeneous?

With many exogenous shifts, yes, and different units and shifts receive a different weight in shift-
share IV regressions. Otherwise, a local average treatment effect (LATE) interpretation is more
challenging.

Provided the shifts are as-good-as-randomly assigned and mutually uncorrelated, as if arising
from a lottery, Adão et al. (2019) and Borusyak et al. (2022) prove that shift-share regressions
(both IV and OLS) identify convex averages of heterogeneous treatment effects under a monotonic-
ity condition similar to the one imposed by Imbens and Angrist (1994) to establish identification
of LATEs in standard IV regressions. Note that as-good-as-random assignment here is formally
stronger than the necessary condition on shift exogeneity described in the main text. For example,
it requires the shifts to be independent of treatment effect heterogeneity as well.

What makes the shift-share setting unique is that effect heterogeneity can arise in two di-
mensions: across units i and shifts k. Thus, the shift-share IV estimate can be interpreted as
averaging across both dimensions, with certain weights. We derive and interpret these weights in a
heterogeneous-effects causal model inspired by the decomposition formula (3).13 For concreteness,
we consider our labor supply example. The model is as follows:

xik = πikgk + uik,

xi =
∑
k

sikxik,

yi =
∑
k

βiksikxik + εi.

Here xik are changes in employment by region and industry—the local shifts. They are affected by
the industry subsidies gk with a coefficient of πik. Regional employment growth xi is an aggregate
of industry-by-region growth rates xik weighted by regional employment shares sik, as in equation
(3). But the effects of xik on the wage change yi are not necessarily proportional to sik, as captured
by the heterogeneous effects βik. Variation in βik across i captures the idea that the local labor
supply elasticity may depend on the region. In turn, variation in βik across k reflects the scenario in
which employment changes coming different industries (say, tradable and nontradable ones) would
have different wage impacts through labor supply.

Following the logic of Adão et al. (2019) and Borusyak et al. (2022), it is easy to show that,
when the shifts gk have mean zero, variance σ2k, and no mutual correlation conditional on all other

13This formulation generalizes Proposition 2 of Adão et al. (2019) to IV, rather than reduced-form regressions.
Footnote 16 in Adão et al. (2019) considers IV regression but does not allow the effects βik to vary by k. The analysis
in Appendix A.1 of Borusyak et al. (2022) is very general, allowing further for nonlinear effects, but they do not
discuss the intuition for the resulting LATE. One limitation of our formulation is that employment growth in industry
k is not allowed to be affected by subsidies to other industries; the model in Appendix A.7 of Borusyak et al. (2022)
relaxes that assumption but does not study heterogeneous effects.
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sources of unobserved heterogeneity (uik, εi, πik, βik), the shift-share IV estimand equals

β =

∑
i

∑
k πiks

2
ikσ

2
k · βik∑

i

∑
k πiks

2
ikσ

2
k

.

That is, heterogeneous effects βik are averaged with weights proportional to: (1) the strength of the
first-stage effect πik, (2) the local share sik squared, and (3) the shift variance σ2k. Evidently, the
weights are non-negative under a monotonicity condition πik ≥ 0 (which holds trivially in shift-share
OLS regressions, which correspond to πik = 1, uik = 0).

To gain more intuition for the weights, suppose πik ≡ π and σ2k ≡ σ2. Then, if all heterogeneity
is by region (βik = βi), the weight on βi is equal to the Herfindahl–Hirschman index of local industry
concentration,

∑
k s

2
ik. A region exposed to many different industry shifts will not be useful for the

regression because the law of large numbers eliminates most variation in the shift-share instrument.
Conversely, when all heterogeneity is by industry (βik = βk), the weight on βk is equal to

∑
i s

2
ik.14

Naturally, this weight is higher for larger industries. More interestingly, it is also higher when the
local shares of this industry are very unequal across regions. For instance, tradable industries will
play a larger role than nontradable industries of a similar national size, as typical tradable industries
concentrate in a small number of regions while nontradable ones are present in every region with
relatively homogeneous shares.

The heterogeneous-effect interpretation of shift-share IVs without as-if random shifts is less
established. de Chaisemartin and Lei (2023) raise concerns of non-convex weighting of unit-specific
causal effects when shift-share IVs are justified by parallel trend assumptions, with respect to
either shares (as in the exogenous shares approach) or shifts (i.e., with a weaker restriction on the
shift exogeneity), adding to a large literature noting similar issues for popular two-way fixed effect
specifications (e.g. de Chaisemartin and D’Haultfoeuille (2020) and Borusyak et al. (2023b)). Part
of this issue is apparent in the Goldsmith-Pinkham et al. (2020) Rotemberg weight decomposition
since, as Goldsmith-Pinkham et al. (2020) note, some weights may be negative. To the best of our
knowledge, the case of heterogeneous causal effects across shifts has not—to our knowledge—been
studied without as-if random shifts.

A.3 Do the “shares” have to really be shares?

No, they can be any exposure weights.
In most applications sik is non-negative and typically they are some initial shares; notably this

is the case when the shift-share IV follows from the decomposition (3). But econometric results go
through when sik are any weights that measure the exposure of observation i’s treatment to the
shift gk.

As an example, consider the Miguel and Kremer (2004) study of spillover effects of deworming.
In their OLS specification, the key explanatory variable zi is the number of student i’s neighbors
who have received a randomized deworming treatment. Upon inspection, one may notice that this

14Note that this is not a Herfindahl–Hirschman index because the shares add up to one across industries, not regions.
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is a shift-share variable: zi =
∑N

k=1 sikgk where k indexes all students, sik is a dummy that equals
one if students i and k are neighbors, and gk is a dummy that student k has been selected for
deworming. Here the exposure weights are not shares of anything: they take values of zero and one
and their total is the number of neighbors student i has. There is no problem with this, as long as
the sum of shares (i.e., the number of student’s neighbors) is controlled for.

A.4 Should I normalize the shares to add up to one?

You could, but controlling for the sum of shares is probably a better solution.
From our earlier discussion of how the incomplete shares case requires extra care (specifically,

picking appropriate controls in the many exogenous shifts approach), one might conclude that this
case is something to be avoided. This can be done by constructing the instrument using shares
normalized to add up to one. For instance, while Autor et al. (2013) define sik as employment
shares of manufacturing industry k relative to total employment in labor market i, one could
consider redefining the shares to have local manufacturing employment in the denominator.

Such a conclusion would be misguided, however. First consider IV regressions, where the treat-
ment xi is given by the economic question. Then the researcher needs to choose the best shift-
share IV zi, and in particular the shares, to maximize instrument strength. Whether identification
leverages exogenous shifts or exogenous shares, power is maximized when the shares reflect the
relationship between the treatment and the shifts, e.g. following the treatment decomposition (3).
For example, in the Autor et al. (2013) setting, using the local manufacturing employment in the
denominator would reduce power because the shift-share instrument would exhibit large variation
even in areas where manufacturing is a low share of total employment and the treatment (import
competition) is close to zero. Including appropriate controls is a better way to avoid OVB while
retaining statistical power, compared to modifying the shares.

Second, consider OLS shift-share analyses, such as spillover regressions, where the researcher is
deciding on the right-hand side variable xi = zi. This choice is about specifying the most plausible
functional form for how the shifts affect the outcome, such that the coefficient is economically
meaningful. Again, this is achieved by setting the shares to reflect the exposure of observations
to the exogenous shifts. For example, the fraction of treated friends, as in Cai et al. (2015), is a
shift-share variable with the shares adding up to one, while the number of treated friends, as in
Miguel and Kremer (2004), is an incomplete shares example. Still, if the researcher believes that
the outcome is determined by the number of treated friends, they should use that specification, and
include appropriate controls to avoid bias.

A.5 Can shift-share instruments be constructed by apportioning national changes
to units?

Yes, and in fact Bartik (1991), Card (2009), and Autor et al. (2013) all derived their instruments
this way. However, to apply the tools from this paper correctly, the resulting instruments must be
rewritten with different shares and shifts, as in equation (2).
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We illustrate the apportioning logic with the labor supply example. Recall that the percent
change in regional employment is an aggregate across industries: xi = (

∑
k ∆Xik) /Xi0. The re-

searcher can then replace the local industry employment change (in levels), ∆Xik, with a prediction
that allocates the national change in the industry employment, ∆Xk, to regions proportionally to
the initial regional composition of the industry, Xik0

Xk0
. Region i therefore “gets” Xik0

Xk0
·∆Xk workers

in industry k. Adding up such predictions and rescaling them by the initial regional employment
yields the instrument:

zi =

∑
k

Xik0
Xk0

·∆Xk

Xi0
. (5)

While this expression looks different from the shift-share instrument
∑

k
Xik0
Xi0

· ∆Xk
Xk0

that follows
from the decomposition of xi in equation (3), a simple rearrangement of terms shows that they are
actually the same: ∑

k
Xik0
Xk0

∆Xk

Xi0
=

∑
kXik0 · ∆Xk

Xk0

Xi0
=
∑
k

Xik0

Xi0
· ∆Xk

Xk0
. (6)

This rearranging step is crucial for applying the theoretical results and taking the practical
steps in both exogenous shifts and exogenous shares approaches. The left-hand side of (6) is based
on employment shares relative to the industry total, whereas the shares on the right-hand side
are relative to the regional total. The left-hand side suggests that the national shifts are industry
employment changes in levels, ∆Xk, although this leaves the denominator unaccounted for by either
shares or shifts; on the right-hand side of (6), the shifts are relative changes in national industry
employment.

Both conceptual and practical issues arise if the apportioning formula (5) is used without rewrit-
ing it as in (6). In the exogenous shifts approach, assuming ∆Xk is as-good-as-randomly assigned
is untenable, as larger industries of course get larger employment changes on average (provided
national employment is growing).15 This assumption is also not sufficient because the denominator
Xi0 in (5) is ignored, while it affects the identification conditions. Measuring shifts in relative terms
instead makes their as-if random assignment a more plausible assumption. In the exogenous shares
approach, using the shares relative to the industry total, Xik/Xk, as instruments is the same as
using initial employment levels Xik, since the share denominators in (5) do not vary across ob-
servations. Thus, variation in the local industry size is used instead of the local composition of
industries that is usually intended in shift-share IV designs. Moreover, since the remaining terms
in the summation, ∆Xk/Xi0, vary across i, zi cannot be viewed as pooling variation in the shares
(relative to the industry total).

More practically, applying the checklists above to the wrong shares and shifts would lead to incor-
rect controls (e.g., incomplete share controls) and diagnostic tests (e.g., based on wrong Rotemberg
weights). In (5), it looks like there is an incomplete share problem, while (6) makes it clear there is
not (since

∑
k

Xik0
Xk0

̸= 1 while
∑

k
Xik0
Xi0

= 1).
15In Appendix A.11 we argue that the exogenous shifts lens may not be appealing for the Bartik (1991) instrument.

However, the issues we discuss here are not specific to that application, and they arise similarly with the Autor et al.
(2013) instrument.
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A.6 Can the shifts be unit-specific?

Yes.
While we introduced shift-share variables as combining heterogeneous shares with a common

set of shifts, the econometric framework also nests settings where each unit is exposed to a distinct
set of shifts. One can define k to index the shifts to all observations and redefine the shares such
that the exposure of a unit to another unit’s shift is zero.

A set of examples is considered by Borusyak and Kolerman-Shemer (2024) who study “regression
discontinuity aggregation” designs in which a shift-share treatment aggregates policy discontinuities
defined at smaller geographic units. For instance, Clots-Figueras (2011) estimates the effect of the
fraction of women in state legislatures in India, using the fraction of women who won against a man
in a close election as the IV. Although each state has a distinct set of constituencies, this instrument
is a shift-share where each state has non-zero exposure only to its own constituencies’ shifts.

A.7 Can I take a shift-share average of shift-share IVs?

Yes, and the result is also a shift-share IV, with the same shifts but more complicated shares.
This situation commonly arises when studying spillovers from treatments (or instruments) that

already have a shift-share structure. Adão et al. (2023), for instance, study spatial spillovers from
regional import competition with China. Let zi =

∑
k sikgk be the Autor et al. (2013) instrument,

capturing direct exposure of commuting zone i to Chinese imports based on industry shifts gk and
local employment shares sik. Slightly simplifying, Adão et al. (2023) define the indirect exposure
of commuting zone j as the inverse-distance weighted average of direct exposures of all other com-
muting zones: z∗j =

∑
i s

∗
jizi, where the shares s∗ji decay with the distance between j and i (and

s∗jj = 0). One can see that this variable can be rewritten as z∗j =
∑

k s
∗∗
jkgk with compound shares

s∗∗jk =
∑

i s
∗
jisik and original shifts gk.

Representing the shift-share instrument with the resulting shares and shifts, in one step, makes
it clear that exogeneity of gk is still sufficient for identification. It also yields appropriate incomplete
share and other share-aggregated controls, and correct standard errors.

A.8 What if I take logs of a shift-share?

A log — or any other nonlinear transformation — of a shift-share variable is not a shift-share
variable. This may or may not complicate IV exogeneity.

In the exogenous shares approach, which views the shift-share IV as a particular function of
the shares (where the shifts serve as weights), a nonlinear function of a shift-share IV is just
another function of the same shares. If all individual shares are exogenous instruments, i.e.
E [εi | si1, . . . , siK ] = 0, then any function of them is exogenous, too.

On the contrary, shift exogeneity does not imply exogeneity of nonlinear transformations of
the shift-share IV, such as taking the log; such transformations can lead to a new type of bias.
To see this, imagine the shares add up to one and the exogenous shifts are assigned in a lottery
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with positive values. Then, regardless of how the shares are correlated with the error term, the
share-weighted average of the lottery shifts zi =

∑
k sikgk is not correlated with the error. That

logic fails for log zi: because of Jensen’s inequality, units with dispersed shares will on average have
a higher log zi than units with concentrated shares, potentially leading to bias. Similar issues arise
with other transformations of shift-share IVs, e.g. using a dummy that a shift-share variable is in
the lowest quartile of its distribution, as in Greenstone et al. (2020).

There are two ways to avoid this bias. First, Borusyak and Hull (2023) propose a “recentering”
adjustment to the nonlinear instrument, such as log zi, based on rerandomizing the shifts, e.g.
by permuting them. Second, putting the log inside the sum, i.e. replacing log

∑
k sikgk with∑

k sik log gk, yields an actual shift-share IV with shares sik and shifts log gk.
For a concrete example, Berman et al. (2015) estimate the effects of log firm exports on the

log of its domestic sales to measure returns to scale. While our discussion so far has focused on
outcomes and treatments measured as changes, consistent with the decomposition (3), Berman et
al. (2015) perform the analysis in logs of levels, using a panel of firms and controlling for firm fixed
effects. They instrument log exports with zit = log

∑
k sikGkt, where k denotes product-by-country

pairs, sik is the share of this pair in firm’s exports (on average across periods), and Gkt is the total
world exports of this product to this country. Leveraging exogeneity of Gkt, or the log-changes in
Gkt over time, would require the corrections discussed above.

Borusyak and Hull (2021, footnote 82) show an additional problem with this IV: it implicitly
uses shares that are not the sik and may not capture the intended economic intuition. For instance,
one may think that for firm i that has 50% of initial exports in a certain product-country cell k
(sik = 0.5), a 10% increase of world exports in that cell raises zit by approximately 0.05. This is
not the case. To see the issue, suppose changes in Gkt over time are sufficiently small and consider
how zit = log

∑
k sikGkt changes in response, relative to some base period 0 (recalling that, with

firm fixed effects, changes over time play the key role). It is easy to show that

zit − zi0 ≈
∑
k

sikGk0∑
k′ sik′Gk′0

(logGkt − logGk0) ̸=
∑
k

sik (logGkt − logGk0) . (7)

Thus, the response of zit to a 10% shift to Gkt is determined not only by the share of k in firm i’s
initial exports but also by the world supply of k in the initial period — which was presumably not
intended when constructing the instrument. To avoid this issue, one can replace log

∑
k sikGit with∑

k sik logGkt.

A.9 What if I have multiple shift-share instruments?

This is fine, both when multiple shift-share variables instrument for a single treatment and when
multiple IVs are necessitated by multiple treatments. One should just perform the relevant steps for
each of the shift-share IVs: e.g., include incomplete share controls in the exogenous shifts approach
and check sensitivity to how shares are combined in the exogenous shares approach.

Getting exposure-robust standard errors may be more challenging in this case. When the shares
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are the same but there are several sets of exogenous shifts, Borusyak et al. (2022) show how the
shift-level equivalent IV regression extends in this case, yielding correct standard errors. Appendix
B.1 below extends this result by allowing for several shift-share IVs that use different shares and
different shifts, as long as all shifts are defined at the same “level” k. We derive an equivalent
shift-level representation of the estimator in terms of a set of moment conditions (but no longer as
a simple IV). This equivalence result yields exposure-robust standard errors. A Stata example is
available in our GitHub repository, https://github.com/borusyak/shift_share_jep.

We give two examples. First, Dauth et al. (2014) consider the impacts of two import compe-
tition shifts in Germany, originating from the growth of China and from the accession of Eastern
European countries into the European Union. Both are shift-share variables that combine the local
employment shares of different industries with two national industry import competition shifts.

Second, including both direct and spillover effects of a certain treatment in the same specifica-
tion can be viewed as using two shift-share variables with the same shifts but different shares. For
instance, the right-hand side variables in Miguel and Kremer (2004) are the student i’s own de-
worming dummy and the number of her dewormed friends. We explained above how their spillover
treatment is a shift-share IV that uses deworming dummies as the shifts gk and the patterns of
friendship as exposure weights. Mechanically, one’s own deworming status is also a shift-share with
the exposure weight being one for i = k and zero otherwise.

A.10 What if I have interaction terms in a shift-share regression?

This is similar to having multiple shift-share variables.
There can be two types of interaction terms in shift-share regressions. A more conventional one

interacts zi with some unit-level variable ai. For instance, in the Autor et al. (2013) context, one
may be interested in understanding whether labor market responses to import competition vary by
the share of college graduates in the region. This interaction can be written as a shift-share IV with
the same shifts and different exposure weights: aizi =

∑
k(aisik)gk.

The second type — albeit not exactly an interaction — aims to identify the heterogeneous
responses to different groups of shifts. For instance, Bombardini and Li (2020) consider the health
effects of two treatments: regional exposure to the national industry growth of exports for all
industries and for pollution-intensive industries in particular. The former is a standard shift-share
variable zi =

∑
k sikgk while the latter can be written as z′i =

∑
k sik(bkgk) where bk is industry’s

pollution intensity.16 This z′i is a shift-share IV with shares sik and shifts bkgk.17We refer the reader
to Appendices A.9 and B.1 for a discussion of incomplete share and other appropriate controls, as
well as exposure-robust standard errors with multiple shift-share instruments.

16Note that z′i is not the same as the interaction of zi with the regional share of pollution-intensive industries, which
would be an interaction term of the first type.

17It can also be viewed as a shift-share with shares sikbk and shifts gk. Both interpretations lead to the same
practical conclusions, in different ways. For instance, with as-good-as-random gk, one needs to control for

∑
k sikbk.

In the former interpretation this follows because the shifts gkbk can be considered as-good-as-random only controlling
for bk (while the shares add up to one). In the latter interpretation this follows because the shares sikbk add up to∑

k sikbk (while the shifts are already as-good-as-random).
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A.11 Can the instruments in Bartik (1991) and Card (2009) be valid without
exogenous shares?

This depends on the underlying model, but probably not. We consider shift-share instruments with
shifts constructed as national averages of endogenous local shifts correlated with the error terms,
as in Bartik (1991) and Card (2009). The researcher might argue that these shifts proxy for some
latent exogenous shifts. Here we show that the proxy error in the shifts is innocuous when the
local shares are exogenous (and if there are many more observations than shifts), while otherwise
the proxy error typically makes the instrument invalid. Thus, there is little value in focusing on
the shifts for justifying the validity of Bartik (1991) and Card (2009) type instruments, except in a
special case discussed below.

For concreteness, we illustrate the general insight in the setting of Bartik (1991); we discuss
Card (2009) at the end. Bartik (1991) estimated the (inverse) elasticity of local labor supply by
using a shift-share instrument that combined local employment shares of different industries with the
national growth rate of employment in each industry (see Table 1). For the Bartik (1991) instrument
to be valid, it has to capture labor demand conditions. Interestingly, Blanchard and Katz (1992)
focus on the exogeneity of the shifts, rather than local employment shares, when introducing the
Bartik (1991) instrument: “This series will be valid for our purposes [of isolating a labor demand
shift] as long as the national growth rates are not correlated with labor supply shifts in the state”
(p. 25). Is the exogenous shifts approach appropriate in this setting? In particular, is it a problem
that the shifts are equilibrium outcomes which may also be affected by labor supply factors?

We give intuition before the formal analysis. Suppose high net migration—internal or foreign—
into a region makes employment in all local industries grow. Then, industries that are concentrated
in regions with growing net migration will systematically have higher employment growth in most
regions, and therefore nationally. That, however, is precisely the situation when the industry growth
rate shifts are econometrically endogenous. The main (although not the only) case when this does
not happen is if no industry is concentrated in regions with growing or falling net migration. But
that corresponds to the case where the local shares of all industries are exogenous with respect to
the local net migration rate. It is further required that industries are not too concentrated in a
small number of regions, such that random local migration shocks do not have a big impact on
national industry growth rates.

We now formally characterize how labor supply shocks affect national industry growth rates.
We model employment growth by region and industry as

xik = g∗k + uik,

where g∗k is the latent national industry labor demand shock and uik captures labor supply factors.18

Since labor demand conditions are unobserved, Bartik (1991) proxy for them by the national in-
dustry employment growth rate gk when constructing the shift-share instrument. Denoting by Eik,

18The results extend directly to the case where labor demand shifts vary across regions.
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Ei, and Ek the initial employment levels by region-industry, region, and industry respectively, we
have:

gk =
∑
i

Eik

Ek
xik = g∗k + g̃k,

where the proxy error is given by
g̃k =

∑
iEikuik
Ek

. (8)

We consider a favorable case where the labor demand conditions g∗k are exogenous, and thus the
only concern is whether g̃k affects the exogeneity of the instrument.

As discussed in the main text, the necessary and sufficient condition for the shift-share in-
strument to be valid is that the measured shifts gk have no covariance with a particular industry
confounder. Specifically, provided the regional analysis is performed with initial employment Ei as
importance weights, as is commonly done, this confounder is the average of regional error terms εi
weighted by initial employment in industry k:19

ε̄k =

∑
iEikεi
Ek

. (9)

The expressions for the proxy noise (8) and the confounder (9) exhibit a striking similarity: if
some labor supply conditions in εi affect employment local in all industries (uik), we may expect
employment-weighted averages of those shocks to be correlated, too. Indeed, in the simple model of
local labor markets in Appendix A.7 of Borusyak et al. (2022), regional labor supply shocks affect
industry employment growth rates equally, such that uik = γεi for some γ > 0. In that model, g̃k
and ε̄k would be perfectly correlated.

There are, however, some special cases in which the problem does not arise, both linked to the
properties of the local employment shares. First, if the shares of all industries are exogenous with
respect to the regional error term εi and the number of industries is small, ε̄k

p→ 0 for each k. In
this case, the exogeneity of the shifts is not required so any proxy noise is fine (Goldsmith-Pinkham
et al., 2020).20

Second, if for each industry the share sik is exogenous with respect to the local employment
change in that industry due to labor supply, uik, the proxy noise will average out: g̃k

p→ 0. This is
the case, in particular, for labor supply shocks that induce reallocation of workers across domestic
regions in the sample without changing industry. Naturally, such reallocation does not affect the
national industry employment growth. However, it seems unlikely that this scenario constitutes
the only source of local shift endogeneity, particularly since industry switching (or, similarly, inter-
national migration or mobility out of unemployment or non-employment) is necessary to generate
nontrivial national industry growth rates to begin with. In that case, the Bartik (1991) instrument

19The weights in this averaging combine the shares underlying the instrument, sik = Eik/Ei, and importance
weights Ei.

20One can see is that ε̄k is the weighted covariance between sik and εi weighted by Ei and rescaled by Ek; see
Appendix A.2 in Borusyak et al. (2022) for further details on how ε̄k

p→ 0 constitutes the relevant notion of share
exogeneity.
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cannot be valid without shares being exogenous (with respect to εi) too.
Analogous issues are likely present in Card (2009), who constructs the shifts as the national

growth rate of migration from origin country k which are aggregates of local migration rates from
that country. Here problems arise if the local migration rates by origin are endogenous, i.e. cor-
related with the error term—which for Card (2009) reflects the relative demand for migrant vs.
native labor. As long as the local migration rates from all origins respond to the same local relative
demand conditions, the resulting national shifts cannot be viewed as exogenous without the local
shares of migration from different origins being exogenous, too.

We close by noting that our discussion here concerned problems with shifts constructed as
national averages of endogenous local shifts, but in practice researchers often use leave-one-out
averages.We discuss the role of leave-one-out adjustments in the next section.

A.12 What is the role of leave-one-out construction of shifts?

This is a useful way of mitigating bias when pooling variation from many exogenous share instru-
ments. It is an open question whether this practice can help to extract exogenous latent shifts when
the shares are endogenous.

In settings like Bartik (1991) where, as explained above, the shifts can be mechanically con-
founded by the errors, it is common since Autor and Duggan (2003) to use “leave-out” constructions
of shift-share instruments: zi =

∑
k sikgk,−i, where gk,−i is, say, the industry growth rate in all re-

gions except i (or perhaps except nearby regions, too).21 With many exogenous shares, Borusyak et
al. (2022, Appendix A.6) show that using leave-one-out means to construct the national growth rates
is useful to address the finite sample bias that can mechanically arise when using own-observation
information. This approach is similar to how jackknife instrument variable estimators avoid bias of
2SLS in presence of many instruments (Angrist et al., 1999).

In practice, Autor and Duggan (2003) observed that including own region in shift construction
made the IV substantially stronger, raising concerns about the mechanical relationship. Other
authors (e.g., Goldsmith-Pinkham et al. (2020)) found that the leave-out correction is empirically
minor when the measured shifts average over sufficiently many observations.

It is an open question whether leave-one-out constructions can help address the problem of proxy
bias in the shifts discussed in Appendix A.11 when the shares are endogenous. On the one hand, the
leave-one-out construction can be viewed as similar to jackknife instrumental variable estimation
which Kolesar et al. (2015) show can be consistent under a particular orthogonality condition even
when there are many invalid instruments. On the other hand, the error terms of observations with
shares similar to i can be correlated with εi, in which case leaving out i may not suffice. In a Monte
Carlo simulation available by request, we confirm that leave-one-out need not fully eliminate the
bias when the shares are endogenous.

We finally note that the leave-out constructions of shift-shares are distinct from a practice of
21Strictly speaking, such zi is not a shift-share as defined by equation (2), since gk,−i has some variation across

units.
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measuring the shifts from entirely different data, e.g. in different countries. Autor et al. (2013), for
instance, instrument regional exposure to Chinese imports in the US using industry shifts measured
in other developed countries; Hummels et al. (2014) and Aghion et al. (2022) use similar approaches
when instrumenting firm-level imports. Unlike leave-out constructions, here the shifts gk are the
same for all units in the sample. Moreover, the mechanical correlation between the error term
and the shifts does not arise, such that the exogenous shifts approach can be applied under the
appropriate assumptions (e.g., that import demand shifts in the US and other developed economies
are uncorrelated in the Autor et al. (2013) context).22

B Theoretical Results

In this appendix, we present three new theoretical results.

B.1 Exposure-Robust Standard Errors for Shift-Share IV Regressions with Mul-
tiple Treatments

We derive exposure-robust standard errors for a IV (or OLS) regression with multiple shift-share
instruments, by recasting the estimator as a method of moments estimator at the level of shifts.
This result builds on Borusyak et al. (2022), Proposition 5.

Consider a just-identified shift-share IV regression:

yi = β1x1i + · · ·+ βRxRi + γ′wi + εi (10)

where x1i, . . . , xRi are instrumented with a set of shift-shares z1i, . . . , zRi for zri =
∑K

k=1 srikgrk.
Both the shares and the shifts can differ across r but we require the shifts to vary at the same level
for all r (and thus with the same number of shifts K). Assuming the shifts grk are as-good-as-
randomly assigned after controlling for some vector of shift-level controls qrk (which can vary across
r), we require the vector of controls wi to include

∑
k srikqrk for each r. The vector wi further

includes the intercept and possibly other controls.
The IV estimator β̂ for β = (β1, . . . , βR)

′ in (10) satisfies a system of R equations:

1

N

∑
i

y⊥i −
R∑

j=1

β̂jx
⊥
ji

 zri = 0, r = 1, . . . , R,

where for any variable vi we let v⊥i denote the in-sample projection of vi on wi. Expanding the
expression for zri, exchanging the order of summation, denoting ṽ(r)k = 1

N

∑
i srikv

⊥
i , and combining

22In settings like Hummels et al. (2014), the researcher may therefore entertain two options: to measure the shifts
in a different country and follow the exogenous shifts approach, or to measure the shifts in the country of interest in
a leave-out way and follow the exogenous shares approach.
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terms yields a set of R shift-level moment conditions satisfied by β̂:

∑
k

ỹ(r)k −
R∑

j=1

β̂j x̃
(r)
jk

 grk = 0, r = 1, . . . , R.

Letting g̃rk be the projection of grk on qrk weighted by srk = 1
N

∑
i srik and noting that

∑
k ṽ

(r)
k qrk =

0 since wi includes
∑

k srikqrk, we further have a set of R equations on the residualized shifts:

∑
k

ψ̃
(r)
k = 0, for ψ̃(r)

k =

ỹ(r)k −
R∑

j=1

β̂j x̃
(r)
jk

 g̃rk.

In matrix form, this can be rearranged as

Ωβ̂ =M,

where Ωrj =
∑

k x̃
(r)
jk g̃rk and Mr =

∑
k y

(r)
k g̃rk. Thus, β̂ = Ω−1M . Moreover, since (10) implies

ỹ
(r)
k −

∑R
j=1 βj x̃

(r)
jk = ε̃

(r)
k for true β, we also have

β̂ − β = Ω−1E for Er =
∑

k
ε
(r)
k g̃rk.

We assume that the appropriate relevance condition holds and suppose that vectors of shift
residuals g̃k = (g̃1k, . . . , g̃Rk)

′ are asymptotically independent across some shift clusters c. Letting
ψ̃k =

(
ψ̃
(1)
k , . . . ψ̃

(R)
k

)′
, we then have an asymptotic approximation of the exposure-robust variance-

covariance matrix of β̂:

Var
[
β̂ − β

]
≈ Ω−1Var [E] (Ω−1)′

≈ Ω−1

(∑
c

(∑
k∈c

ψ̃k

)(∑
k∈c

ψ̃k

)′)
(Ω−1)′. (11)

We note that the derivation here simplifies if the shares are the same for all shift-share instru-
ments (and qrk are also the same) and only the shifts vary across r. In this case, the coefficients and
exposure-robust standard errors can be obtained by an IV estimator at the shift-level, as shown by
Borusyak et al. (2022). This includes instruments constructed as

∑
k sikbkgk for different “interac-

tion” variables bk, as discussed in Appendix A.10.

B.2 Visual IV weights with Share Exogeneity

In this appendix, we show the shift-share IV estimate equals the slope of the regression line through
the points on the visual IV graph for the exogenous shares approach, without intercept and with
appropriate weights.

Let β̂k be the share-IV estimate for industry k and let ωk denote the Rotemberg weights, which

39



Figure 1: Visual IV for Exogenous Shares, Applied to Card (2009)
A: High-school graduates B: College graduates
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Notes: The visual IV graph in the setting of Card (2009) using the replication data from Goldsmith-Pinkham et al.
(2020), estimating the relationship between the log wage gap between immigrant and native workers (as the outcome)
and the ratio of immigrant to native hours worked (as the treatment). Card (2009) instruments the local ratio of
immigrant to native hours with a shift-share instrument, leveraging immigration patterns from 38 countries. We
plot the reduced-form coefficient against the first-stage coefficient for each share IV, using the immigration shares
from each of the 38 countries one at a time as instruments. Panel A focuses on high-school graduates while Panel B
considers college graduates. The shift-share IV estimate is visualized as the slope of the ray through the origin.

sum to one and are such that the shift-share IV coefficient is β̂ =
∑

k ωkβ̂k.23 Write β̂k = ρ̂k/π̂k,
where ρ̂k and π̂k are reduced-form and first-stage estimates for the kth share-IV. Then we have:

β̂ =
∑
k

ωk
ρ̂k
π̂k

=

∑
k(ωk/π̂

2
k)ρ̂kπ̂k∑

k(ωk/π̂
2
k)π̂

2
k

,

which is the slope from a regression of ρ̂k on π̂k, with no intercept and with weights ωk/π̂
2
k (which

are not necessarily convex since Rotemberg weights can take negative values).

23See Proposition 3 in Goldsmith-Pinkham et al. (2020) for the definition of Rotemberg weights and Section IV.B
for the adjustments needed when the shares add up to one.
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