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1 Introduction

Climate change endangers both economies and human well-being across the globe. The

ways in which people adjust their actions in light of new climate change-related information

(“new news”) will play an increasingly crucial role in determining the societal consequences

of carbon emissions (Nordhaus, 1993; Hinkel et al., 2014; Auffhammer, 2018; Kahn, 2020;

IPCC, 2021). Adaptation to climate change can take place through various means. For in-

stance, both businesses and individuals have the option to relocate to areas that offer greater

protection from climate change-related disasters; this is often referred to as a “higher ground”

approach. Once a location is chosen, they can further safeguard themselves by investing cap-

ital in defensive measures (Barreca et al., 2016; Deschenes, Greenstone and Shapiro, 2017; Ito

and Zhang, 2020).

Adaptation behaviors like these are predicated upon individuals’ awareness of high-stakes

climate risks associated with properties in the housing market, like flooding. However, an

increasing body of evidence suggests that individuals in the United States are largely unaware

of these risks (Bakkensen and Barrage, 2022; Wagner, 2022). This lack of awareness implies

that properties located in high-flood risk areas in the U.S. may be overvalued, with some

estimates around $200 billion in aggregate (Gourevitch et al., 2023), which is expected to

worsen over time as the population’s exposure to climate change risk intensifies (Marcoux

and Wagner, 2023).

The lack of flood risk awareness could be highly meaningful given that flood-related events

have caused more direct economic damage than any other type of natural disaster worldwide

(Miller, Muir-Wood and Boissonnade, 2008). In the United States alone, these damages have

exceeded $1 trillion since 1980 (NOAA, 2018; Wing et al., 2022), and some argue that the

indirect economic damages could be greater than the direct effects (Hallegatte, 2008; Koks

et al., 2015). These direct and indirect economic consequences are expected to escalate over

time and might not be mitigated, even if society were to dramatically and immediately reduce

carbon dioxide emissions (Dottori et al., 2018; Wobus et al., 2019).

The human costs associated with flooding may be mitigable if people become aware of

current and future risks and actively engage in adaptive behavioral changes (offsetting mea-

sures). By increasing understanding of the risks involved and taking appropriate action, in-

dividuals can potentially reduce the impact of flooding on their lives and livelihoods. How-

ever, we do not yet know how individuals react to information about specific climate change-

related risks associated with their investments. There is no causal evidence suggesting that

climate change risk information impacts on people’s search and house buying decisions and

ultimately where people live. To explore this, we conducted a rigorous assessment to measure
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the causal impact of climate change information on searching and buying decisions within

the United States national housing market. We present the first large-scale field experimen-

tal evidence offering insights into how precise flood risk information influences the behavior

of home buyers across the United States. Our nationwide natural field experiment was con-

ducted in late 2020 utilizing the Redfin website and application (“app”), involving the partic-

ipation of a substantial user base (17.5 million individuals in total). For home buying in the

U.S., using an online search brokerage such as Redfin is extremely common; according to the

National Association of Realtors, 97% of U.S. home buyers use the internet for their search.

In an unexpected and unannounced manner, Redfin randomized the assignment of com-

plete property-level flood information at the individual customer level. Randomization took

place either at the device level or, if the user was registered with Redfin and logged in, at the

individual level (so all devices would definitely have the same experimental group). For each

property that a treated user searched for, they were provided with two key pieces of informa-

tion: a flood risk score ranging from 1 (minimal risk) to 10 (extreme risk), and the predicted

likelihood of flooding over a 30-year period.1 Customers were not able to filter their search

results based on the flood score, and sellers were blind to the information.2

Apart from the flood risk information, all other features of the Redfin search experience

remained consistent for both the treated and control groups. The flood risk information had

no direct bearing on any search or pricing algorithms. Considering the significant market

share held by Redfin during the experiment, our study generated variation in flood informa-

tion within approximately 20% of the entire U.S. internet property market throughout the

experiment’s duration, resulting in nearly 400 million property views. This widespread par-

ticipation allowed for robust analysis of the effects of flood information on searching and

buying behavior within the housing market, and whether the information affected the hedo-

nic equilibrium.

In our natural field experiment, the detailed new flood risk information displayed on Redfin

for every property in the United States was generated by First Street Foundation (FSF) (Bates

et al., 2021). FSF is a registered 501(c)(3) non-profit organization that embraces an open sci-

ence perspective and continuously updates and enhances its predictive model (although this

model and output are relatively recent). The FSF model can predict flood risk for the whole

of the U.S. and it has been argued that the FSF model and output are more reliable and valid

than those provided by FEMA for a number of reasons; indeed, considerable literature has

highlighted the limitations of FEMA’s mapping technology (Wing et al., 2018, 2022). Unlike

1This flood risk information was positioned approximately two-thirds of the way down the viewing page for
each property, regardless of whether the individual was using their phone or computer.

2During the experiment, no seller or agent complained to or questioned Redfin about the flood risk infor-
mation.
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FEMA’s flood maps, which primarily serve the requirements of the National Flood Insurance

Program and thus do not measure flood risk for the whole of the US, the FSF flood score is

generated by a predictive model that incorporates not only past flood risks but also consid-

ers future climate change trends and pluvial and fluvial risks.3 The FSF predictive model

has undergone peer review (Armal et al., 2020; First Street Foundation, 2020; Flavelle et al.,

2020; Porter et al., 2021), and ongoing research efforts aim to validate its model predictions

by leveraging recent natural disasters as natural experiments.

Our main hypothesis is that the presence of property-level flood risk information will af-

fect consumer behavior and the housing market. We posit that the availability of this new

flood risk information will lead to a reduced likelihood of individuals searching for, engag-

ing with, and purchasing high flood risk homes. We develop and build on the closed form

hedonic models presented in Epple (1987) and Giannias (1999). We show that moving from

partial to full information on the distribution of flood risk on properties can affect demand.

Our emphasis is on one’s belief updating about a property based on the asset’s attributes

draws on previous research on expectations and decision-making (Manski, 2004; Glaeser and

Nathanson, 2017; Kuchler, Piazzesi and Stroebel, 2023). We are precise on the populations in

our data that would be exposed to the new flood risk news to test this "new news" hypothesis–

these are individuals who are searching for properties that were previously seen as previously

safe (in a state of the world before FSF model and outputs) but now are high risk for flood

(because of the FSF output and predictions). By testing how information shapes individuals’

expectations, we aim to shed light on the role of information in facilitating forward-looking

adaptation to climate change.

The Redfin data allows us to observe the entire search process for both treated and con-

trol customers, as well as their interactions with the Redfin app for each property they visit,

both before and during the field experiment. Our partnership with Redfin provides us with

3Several notable distinctions exist between FEMA’s flood maps and FSF’s maps. Firstly, FEMA’s flood maps
do not provide universal coverage across the United States, whereas the FSF flood score offers national coverage.
Secondly, FSF’s national model incorporates pluvial (precipitation) and fluvial (rivers, creeks) flooding simula-
tion, which FEMA’s maps do not include. Thirdly, FSF’s model employs a Regionalized Flood Frequency Analysis
(RFFA) approach that utilizes traditional statistical propensity matching techniques to model ungauged streams,
river reaches, and regions with known gauged characteristics, thereby producing flow parameters with high
confidence. Additionally, FSF’s model incorporates environmental factors to assess recent and future changes
in flood risk over a 30-year period. Fourthly, every local FEMA map must be agreed on by local politicians,
businesses, and other organizations; in other words, the maps consider flood risks as defined by FEMA, but
also political and business interests (which means real flood risk is not presented accurately to the public and
markets). In contrast, FSF models are not affected by local lobbying concerns. Lastly, the flood score data pro-
vided by FSF varies for each property in the United States, therefore providing more granular information than
FEMA’s version. FSF’s hazard layer for a 1-in-100-year event (representing a 1% annual risk of occurrence)
identifies approximately 1.7 times as many properties at risk compared to FEMA’s Special Flood Hazard Area
designation (First Street Foundation, 2020). These problems have been previously discussed as FEMA’s flood
maps are currently outdated for policymaker and consumer use (Mulder and Kousky, 2023), emphasizing the
need for improved mapping technologies and updated flood risk information.
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comprehensive insights into user behavior without the need to impose much structure on the

search process–we observe it directly through eyeballs on the app where treatment is orthog-

onal to everything related to searching and buying a property. Another measurement and

identification benefit of the partnership with Redfin is that they employ real estate agents, an

organizational practice that grants us access to detailed information on bidding behavior for

all users who engage the services of a Redfin agent, both before and during the experiment,

both for control and treated users. This vertical arrangement throughout the home searching

and buying process enables a comprehensive analysis of how trusted information about the

future, specifically related to flood risk, influences sorting and market outcomes in the real

estate sector. Throughout the duration of the experiment, Redfin had an average of 1,757

lead agents per month across the country (Redfin, 2021). This wealth of agent data is instru-

mental in enhancing our understanding of bidding patterns and buying behavior, but also

how search behavior maps onto bidding and buying behavior, which has not been previously

linked in the literature.

Additionally, we augment our analysis by linking the Redfin data with market data on all

U.S. property transactions and listings during our experimental period. This linking allows

us to examine the impact of treatment information disclosure on the hedonic equilibrium of

the housing market. By incorporating transaction data, we can assess how the availability of

randomized flood risk information influences the overall market dynamics and pricing. All

of these data sources provide a novel and comprehensive foundation for our project, enabling

us to accurately measure search dynamics, bidding behavior, and the impact of information

disclosure on individuals’ climate-risk adaptive behavior.

1.1 Primary Findings

We report three main sets of results. First, we show how the randomized flood risk infor-

mation changes people’s search and property engagement behavior, and how they learn and

develop strategies to trade-off the flood disamenity in their search behavior. Second, we show

how the randomized flood risk information changes people’s bidding and buying behavior.

Third, we show how the randomized flood risk information shifts the resulting hedonic hous-

ing price distribution.

First, our analysis revealed that the randomized flood risk information had a significant

and meaningful impact on users’ search behavior. Specifically, individuals who randomly

received the flood risk information were more inclined to search and browse properties with

lower flood risk compared to the control group. Among those who initially searched for

homes with high flood risk, the treatment led to a 12% reduction in the flood risk of their

searched homes after two months. We found that consumers learned which properties and
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locations had high flood risk and created a sense of which properties were to be avoided (these

homes make up 4% of US housing stock). The information had little impact on the flood score

for searched homes for those searching for relatively lower risk homes before the treatment

started.

The availability of detailed search data allowed us to gain precise insights into the trade-

offs consumers make when searching for lower flood risk properties. We found that treated

individuals were willing to trade-off certain property characteristics, such as neighborhood

amenities (bike and walk score), and their consideration set of properties became more spa-

tially concentrated. We found that treated individuals did not adjust the price, size, number

of bedrooms, or number of bathrooms of their search.4 These results suggest a process of

spatial elimination in the search behavior, which is consistent with the elimination by aspects

model (Tversky, 1972; Payne, Bettman and Johnson, 1988). People kept the same search pa-

rameters for the number of bedrooms and bathrooms, price, and square foot, but traded off
flood risk for neighborhood characteristics.

We also found that when the flood score was very variable in a defined location (i.e., high

standard deviation of flood scores within a zip code), the impact of the randomized flood

information was significantly large, but the information had no impact when the flood score

was very uniform within a zip code. Together with the above result, this suggests that the

impact of the information led people to search geographically narrower and overall more

efficiently (see the time-to-offer results below). We also found that the spatially further away

that people are searching for a home from where they live, the treatment effects are larger,

suggesting that this information substituted somewhat for local experience. Finally, we also

found that the flood risk information did not push people to search for homes with other

climate risky attributes that were not observable to the individual user (such as heat, wind,

and wildfire).5

All of these results suggest that individuals actively and organically adjusted their search

parameters and strategies in response to the flood risk information provided by Redfin. Users

in the treatment group could not filter flood score on their search on the app, so they discov-

ered the flood score by learning by searching. While there might be several mechanisms as to

why the information led to a change in behavior (that we cannot estimate because we had no

exogenous variation), such as larger anticipated flood damage costs, larger insurance costs, or

even public shame about buying a high flood risk home, our results and these mechanisms are

most consistent with and can be rolled into our new news hypothesis. That is, we predicted

4Our data allows us to observe the consideration set for all consumers, which is usually unobserved in
studies (Honka, Hortaçsu and Wildenbeest, 2019).

5At the time of the experiment, only flood risk was available to treated users, although we had information
on the heat, wind, and wildfire risk of each property.
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that treatment effects from the information should be for the homes that were not previously

identified as high risk but now are due to climate change and better modeling (from FSF). In

fact, roughly 2.5% of U.S homes fall into this category and this is where we see the largest

treatment effects of the flood risk information on search behavior.

However, it is important to note that we failed to reject several null hypotheses. For in-

stance, individuals across all income levels exhibited similar behaviors in response to the

flood risk information. Furthermore, we examined whether users browsing from counties

impacted by a recent flood event showed different treatment effects. However, our analysis

revealed no significant difference in treatment effects for individuals browsing from these

counties compared to others.

We also investigated whether there was a divide in responsiveness to the risk information

based on political affiliation, using county-level Presidential voting patterns as a proxy (Dun-

lap, McCright and Yarosh, 2016). Interestingly, we found that Democrats and Republicans

responded similarly to the flood risk information, both in terms of search behavior, engage-

ment, and bidding behavior. In real estate markets, all buyers are confronted with tradeoffs,

and our results suggest that across the political spectrum, flood risk information induces, on

average, the same behavioral response.

Second, our analysis of the impact of flood risk information on physical engagement with

homes and overall bidding behavior revealed several interesting findings. While the random-

ized flood risk information did not significantly change the overall probability of touring a

property, placing an offer, or closing a bid through Redfin (the extensive margin behaviors),6

it did have an effect on the bidding behavior at the intensive margin. Specifically, we ob-

served that treated individuals who were initially browsing high flood risk properties were

more likely to make offers on properties with approximately 57% lower flood scores com-

pared to their control counterparts. We show that this is not a selection effect but a change

in where the user makes an offer. In line with our theoretical model, when we examine those

properties that are in-land and have a medium or high flood risk, we find a reduction in of-

fers by 35% and 58%. These results suggest that even medium-risk homes in-land (which is

approximately 11% of U.S. housing stock) are negatively impacted by the full information on

flood risk.

We also find that all treated consumers (irrespective of their baseline risk) make an offer

quicker than the control group, and this is larger for those that are searching for high flood

risk homes at baseline—-a 7% reduction in time finding their home and making an offer. This

result suggests that this flood risk information increased allocative efficiency in the housing

6The information also did not change what type of customer was likely to tour and place an offer through
Redfin, so we do not find selection on observables as we move down the funnel.
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market across all flood risk types. Both of these results are consistent with the elimination by

aspects model found in the search data above and are driven by the homes that are part of the

"new news" hypothesis–those properties that are classed as high flood risk by FSF but not by

FEMA.

Overall, these findings indicate that the flood risk information influenced what properties

people chose to make offers on, as they sought to strike a balance between flood risk and other

property attributes. The information also affected what properties the treated users ended up

living in–i.e., lower flood risk properties.7 Altogether, the information affected the behaviors

of those searching and bidding for medium and high risk homes which overs 15% of the US

housing stock.

Third, our analysis of the impact of the flood risk information on the hedonic equilibrium

pricing of properties revealed significant findings. We leveraged the exogenous variation

created by our randomization, which resulted in some homes having a higher percentage

of treated users and others having a lower percentage just through random chance.8 We

found that when all Redfin looking (eyeballing) a property are treated (in comparison to

no Redfin users treated for that property), property prices dropped by $7,000 (1.7% of the

property price) for homes with high flood risk across the United States. Because 100% of

Redfin market share was only 8% of the total housing market share,9 if we extrapolate and

scale-up these results linearly, the effect of property prices would be around a 21% reduction

($85,000). Given that FEMA estimates that the average cost for flood damage in the NFIP

in the U.S. from 2016 to 2022 was $66,000, these numbers are quite aligned, especially given

that the average price for properties for sale on the MLS is higher than the price for properties

insured through the NFIP.

The flood risk information had a tangible effect on property prices, with homes in high

flood risk areas experiencing a decrease in value. This value can be construed as the value

of the best information available on the expectations of climate change impacting high-risk

homes. The ex-ante losses posed by climate change are lower if risk lovers (and maybe those

with an edge in upgrading risky homes) are more likely to live in these homes. While we

cannot directly observe these attributes of people, our evidence supports the claim of some

“reshuffling.” Due to the high risk homes having less competition, we find that that prices for

less risky homes increased by around $4,000. Overall, the information cause less competition

on the high risk homes (4% of the homes in the U.S.) and more competition on the medium

7The observed behavior can be interpreted as individuals "voting" with their actions, making choices that
optimize their desired bundles of flood risk, other amenities, and tax considerations (Banzhaf and Walsh, 2008).

8One can think of this design as akin to Crépon et al. (2013), but where homes (as opposed to areas) randomly
receive from 0 to 100% of the searchers as treatment users.

9Only 40% of the total Redfin customers were placed into the field experiment.
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risk homes (15% of the homes in the U.S.).

Notably, these results suggest that the flood risk information provided by FSF revealed pre-

viously unrecognized flood risks that were not captured in the property market by FEMA’s

maps. We found no heterogeneity in terms of the initial property price, suggesting that the

impact of the flood risk information was consistent across different price ranges. This sup-

ports our earlier search results, which showed that consumers of all income levels and from

different geographic locations were affected by the flood risk information. We also find some

evidence that investors (which are an increasing share of the US housing market10) are also

affected by the information.

Overall, our findings from analyzing how the flood risk information impacted search, en-

gagement, offers, and the housing market all the search provide evidence that the flood risk

information through the “new news” mechanism. This mechanism influenced the hedonic

equilibrium pricing of properties, with homes in high flood risk areas experiencing a reduc-

tion in value due to the newly revealed flood risks provided by FSF’s predictive model.

1.2 Relationship to Existing Literature

Our research addresses a crucial gap in the literature by conducting a field experiment that

examines the impact of climate change information on the process of searching for and buying

a home with no selection into the field experiment with complete covertness. While previ-

ous studies have used observational data or simulations to analyze climate change adaptation

(Massetti and Mendelsohn, 2020),11 our experiment leverages a unique opportunity to study

the causal effects of flood risk information on consumer behavior and provide the first evi-

dence that climate change adaptation can be forward-looking without the role of physically

experiencing climate change.

Existing empirical literature has explored how climate risk is capitalized into local home

10See DeFusco et al. (2018); Bayer, Mangum and Roberts (2021); Favilukis and Van Nieuwerburgh (2021).
11Despite the limitations of identification in previous research, there have been several notable papers that

have highlighted the possibility that adaptation can be an important mechanism for reducing the marginal
costs of climate change (Lemoine, 2018; Biardeau et al., 2020; Bento et al., 2020; Dundas and von Haefen, 2020;
Aragón, Oteiza and Rud, 2021; Cruz Álvarez and Rossi-Hansberg, 2021; Davis et al., 2021; Heutel, Miller and
Molitor, 2021; Kahn et al., 2021; Carleton et al., 2022). While there are non-experimental papers suggesting
that flood maps (Hino and Burke, 2021; Weill, 2022) or flood disclosure requirements (Lee, 2021) may cause a
change in property prices, these maps and disclosures are based on the inferior FEMA maps that exclude the
new flood-risk science and are not forward looking. We would not find any treatment effects in our experiment
if previous information sets were complete, available, and accessible, hence our new news interpretation would
not exist.
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prices, with mixed findings regarding the extent of capitalization.12 In addition, such studies

often assume that market participants are fully aware of the actual risk faced by properties.13

In contrast, our research challenges this assumption by demonstrating that individuals are

averse to high flood risk properties once they are exposed to new information, leading to our

new news hypothesis. The fact that the flood risk information influenced search behavior,

bidding behavior, and hedonic equilibrium pricing suggests that the information was not

previously known or fully incorporated into market outcomes prior to the experiment.

Our findings align with the growing body of literature that shows individuals have dif-

ficulty evaluating probabilities of infrequent hazards and may lack adequate information

about risk (Slovic, 1987; Siegrist and Gutscher, 2006; Botzen, Aerts and van den Bergh, 2009;

Bubeck, Botzen and Aerts, 2012; Wachinger et al., 2013; Mulder, 2021; Bakkensen and Bar-

rage, 2022; Wagner, 2022). It also contributes to the understanding that incomplete informa-

tion in hedonic models can hinder the estimation of the value of non-market amenities (Bar-

wick et al., 2019; Bergman, Chan and Kapor, 2020; Myers, Puller and West, 2022; Ainsworth

et al., 2023; Gao, Song and Timmins, 2023). Our research contributes to this field by pro-

viding empirical evidence on the role of readily-available, accurate flood risk information in

shaping consumer behavior and market outcomes. In so doing, we shed light on the lim-

itations of individuals’ risk perception, and emphasize the need for improved information

dissemination to facilitate better decision-making in the housing market.

Our research is also related to important papers that have estimated the adaptation costs

of coastal flooding, hurricanes, and storms (Seetharam, 2018; Balboni, 2019; Hong, Wang and

Yang, 2020; Desmet et al., 2021; Fried, 2022; Jia, Ma and Xie, 2022; Bilal and Rossi-Hansberg,

12There are a range of studies suggesting weak or partial capitalization of flood risk into property values (Har-
rison, T. Smersh and Schwartz, 2001; Hallstrom and Smith, 2005; Bin et al., 2008; Daniel, Florax and Rietveld,
2009; Kousky, 2010; McKenzie and Levendis, 2010; Bin and Landry, 2013; Beltrán, Maddison and Elliott, 2018;
Ortega and Tas.pınar, 2018; Bernstein, Gustafson and Lewis, 2019; Eichholtz, Steiner and Yönder, 2019; Muller
and Hopkins, 2019; Murfin and Spiegel, 2020; Baldauf, Garlappi and Yannelis, 2020; Gibson and Mullins, 2020;
Keys and Mulder, 2020; Giglio et al., 2021; Hino and Burke, 2021). Some other studies often fail to detect signif-
icant negative effects, or may even find positive premiums (Bin and Kruse, 2006; Atreya and Czajkowski, 2019).
The size of these capitalization effects partially depend on the mortgage lender and insurer behavior (Gallagher,
2014; Garbarino and Guin, 2021; Ouazad and Kahn, 2022), but also on the research design as it is unlikely that
these studies thoroughly control for unobservables (Kurlat and Stroebel, 2015; Piazzesi, Schneider and Stroebel,
2020; Giglio, Kelly and Stroebel, 2021).

13Recent research has documented that the majority of households in high risk flood zones do not even
have basic flooding insurance (Kousky et al., 2020; Wagner, 2022) and that many people are not flood insurance
literate and do not understand their level of risk (Botzen, Kunreuther and Michel-Kerjan, 2015; Royal and Walls,
2019; Kousky and Netusil, 2023). Moreover, any adaptation measures that are taken, such as home elevation,
are under-invested because benefits accrue too far into the future (Hovekamp and Wagner, 2023). Conell-Price
and Mulder (2024) conducted a survey experiment with homeowners in a Qualtrics online panel, and found
that owners who underestimate their own flood risk showed no belief updating when provided the true risk
(using the FSF model). This result suggests some entrenched motivated reasoning due to the bad news effect
with these homeowners on the supply side, and further supports information interventions on the demand side,
which might be more effective as the bad-news motivated reasoning would be absent.
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2023; Castro-Vincenzi, 2023; Hsiao, 2023). Our paper complements their work by adopting

a microeconomic perspective focused on the assignment of heterogeneous home buyers to

different homes. This matching process is more likely to feature less ex-post regret if home

buyers are better informed about the emerging risks that specific homes face. Since a home

purchase is typically considered a longer-term investment, expectations of emerging risks

should play a key role in the search process.14 The results from our natural field experiment

suggest that anticipating such risks is important for assessing the general equilibrium welfare

effect of increased flooding.15

We believe that the forward-looking element of climate change is important, yet many exist-

ing large climate adaptation models do not allow for such expectations’ impact on behavior

and welfare (they only examine the costs of experienced extreme events). Additionally, by

studying how consumers trade off current and future climate risks against other housing at-

tributes, our research contributes to the understanding of decision-making processes in the

housing market, which we know little about.16

Our paper builds on an emerging literature that seeks to improve the locational investment

decisions made by those assigned to a treatment group. For example, Chetty, Hendren and

Katz (2016), Chetty and Hendren (2018), and Bergman et al. (2019) attempt to steer people to

neighborhoods based on a model of upward mobility to help such individuals anticipate what

their child will gain from growing up there. Bottan and Perez-Truglia (2020) has a model to

illustrate what individuals could gain from selling their homes and test such information on

selling their property. The FSF flood risk information in our treatment should be thought of

as a similar model-based information intervention.17

We also build on the literature on housing search. There are not many papers that observe

and analyze the individual search behavior of home buyers because it is usually difficult

to observe home buyers’ behavior or ascertain the data from search companies. And there

are none that tie search data to bidding and transaction data like we have. The only paper

14The treatment in our field experiment does not reference any changes in government policy, thereby main-
taining fixed expectations about potential future government interventions in flood risk. These expectations are
important, as they significantly influence decisions related to investment and migration (Hsiao, 2023).

15This result is consistent with the other work on the climate change adaptation benefits of better weather
forecasts (Molina and Rudik, 2022; Cole, Harigaya and Surendra, 2023; Downey, Lind and Shrader, 2023;
Shrader, 2023; Shrader, Bakkensen and Lemoine, 2023; Burlig et al., 2024).

16According to Greenstone (2017) “(t)here is currently tremendous interest in randomized control trial experi-
ments in economics, but I am not aware of any field experiment applications of Rosen’s hedonic model to date (although
they would be an incredible addition both substantively and methodologically.” That is what we do in this paper.

17Our main results are also consistent with other papers showing that it is possible to change location choices
and welfare using information in a field experiment (Bergman, Chan and Kapor, 2020; Ainsworth et al., 2023).
These two papers focus on school choice and find that even in the presence of public information on school
value add, consumers still have biased beliefs on location choice. In our case of flooding, there was no public
information on flooding at the property level in the U.S., so our consumers were not necessarily biased given
their information sets. What we estimate is the effect of new flooding news on location choice.
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approaching the level of data we have is Piazzesi, Schneider and Stroebel (2020), but on a

much smaller scale with no exogenous variation in the level of amenity for users and no

information on bidding/buying behavior of the demand side.18

We also add to the general literature on housing search and dynamics. We find that the

results of our field experiment are consistent with an elimination-by-aspects search model,

which suggests that information frictions are very important to understanding the hous-

ing market. In comparison to the papers in this literature (Piazzesi and Schneider, 2009;

Genesove and Han, 2012; Head, Lloyd-Ellis and Sun, 2014; Ngai and Tenreyro, 2014; Burn-

side, Eichenbaum and Rebelo, 2016; Guren, 2018), we show experimentally that search fric-

tions can be reduced by the right information that alters their search, bidding, and buying

behaviors. Finally, the flood information causes home buyers to bid and buy their homes

earlier, and thus affects the time-to-sell value. In comparison to the papers in the time-to-

sell literature that primarily focus on price (Genesove and Mayer, 1997; Ngai and Sheedy,

2020; Gabrovski and Ortego-Marti, 2021), we show experimentally that reducing information

frictions with respect to flooding can reduce time-to-sell by 7% and that such demand-side

information can impact on overall allocative efficiency.

Overall, we view our field experiment estimates to be important because they convey how

home investors respond to low cost yet salient “new news” information about emerging

risks.19 We view our research as a first step in an ambitious research agenda that examines

the welfare effects of societal learning about emerging climate risks. Investors are not passive

agents in the climate change adaptation debate; they are forward-looking and can anticipate

climate change without having to experience it. Since the field experiment was conducted in

2020-2021, a significant portion of the U.S. housing market now makes this information read-

ily available to both buyers and sellers. Platforms like Redfin.com, Zillow.com, Homes.com,

and CoStar, among others, currently provide access to this data. As a result, future research

on the U.S. housing market must consider the findings of this paper, particularly in light of

the fact that consumers now have comprehensive information on climate-related risks.

The paper is structured as follows: Section 2 describes the background and the natural field

experiment, and section 3 states the data used and the empirical design. Section 4 analyzes

the field experiment, section 5 analyzes the impact of the information on the housing market,

and finally, section 6 concludes.

18There are other papers that use Google search/trends data, but they do not observe individuals and their
search strategies (Wu and Brynjolfsson, 2015; Møller et al., 2023), or a set of selected consumers are surveyed
(Genesove and Han, 2012).

19Since the field experiment was completed, the flood risk information has been rolled out to all consumers
on Redfin and other online property marketplaces due to its success (e.g., Realtor, Estately, homes.com, apart-
ments.com). Redfin now also provides this information on other risks that have been known to have incomplete
markets, such as wildfire risk (Baylis and Boomhower, 2023; Boomhower, Fowlie and Plantinga, 2023).
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2 The Field Experiment

In this section, we describe the background to the field experiment in 2.1, the design of the

field experiment in 2.2, the implementation of the field experiment in 2.3, and the theoretical

model that guides our field experiment and its interpretation in 2.4.

2.1 Background

The field experiment was conducted through one of the largest full-service real estate broker-

ages in the United States, i.e., Redfin, that had more than 47 million average monthly users in

2021. Redfin acts as a full-service real estate brokerage that pairs agents with people to sell

their current homes or buy new ones. We will first provide the background to the treatment

and then describe the design of the field experiment.

Redfin allows users to search for properties to buy in any part of the United States. The

search process is as follows: (1) the user opens the app and a map pops up with all of the

homes for sale around their current location (see center screen in Figure 1–a green price label

box corresponds to a property for sale); (2) the user can start to move the map around or

change the location to see what properties are in a give location; and (3) the user can filter

their search, based on price ranges, number of bedrooms, number of bathrooms, home type

(e.g., house, townhouse, condo, etc.), size of property and lot, time on Redfin, and then basic

home features (e.g., garage, pool, etc.). At the time of the field experiment, the user could not

filter on flood score or walk/transit score (see left two screens in Figure 1). Also, for those in

the treatment group, they could not filter on flood score. For registered users, they can like

and save a property, see their search history, and re-start any saved searches (see right two

screens in Figure 1) (in addition to receiving emails). By clicking on the green price label box,

the user gets to see the full property listing. In our data we can observe what properties they

are seeing on the app.
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Figure 1: The Redfin app

For the flood score information, Redfin had contracted with the non-profit organization

First Street Foundation (FSF), who created the Flood Factor Score as a tool to predict a prop-

erty’s current and future risk of flooding.20 FSF models flooding from fluvial, pluvial, and

coastal sources (tidal and surge) while also integrating current and future environmental

considerations, all at a property level (Bates et al., 2021). Notably, the model provides the

ability to capture flooding in areas of the country that do not have a gauge, are under-gauged,

or are outside of typical flood risk models’ purview. The method used to create that flood

risk relies on a novel Regionalized Flood Frequency Analysis (RFFA) approach that makes

use of traditional statistical propensity matching techniques to model the characteristics of

ungauged streams, river reaches, and country with known gauged characteristics to produce

likely flow parameters with high confidence. Additionally, a core component of the model

is the ability to also include pluvial (rainfall) events as probabilistic flood risks with depths

and associated return periods (First Street Foundation, 2020). The model has undergone peer

review, is open sourced, and the flood models are perceived as being one of the best in the

United States.21

20It is currently selling its prediction model’s forecasts to several agencies in the U.S. government and to the
GSEs, but also now makes the flood risk data for every U.S. residential property freely and publicly available.
FSF has received funding from donors such as 2040 Foundation, Hightide, and Grantham.

21An open science process has led to the creation of this FSF model. Many scientists have contributed to the
model, and they are part of an iterative scientific process refining the model and testing its accuracy. The risk
scores are reported to the public without confidence intervals. The scientific community continues to debate
the merits of educating the public about current and future risks without overloading the public with nuances
regarding model uncertainty regarding the veracity of key assumptions (Cooper et al., 2022). Any predictive
model of flood risk will induce both Type 1 and Type 2 errors. There will be some locations where the model
will over-state the risk, and there will be other areas where the model will under-state the true risk (Bates,
2023), although the model attempts to reduce false positives by using the conservative climate scenario SSP2-
4.5 instead of the extreme scenario of SSP5-8.5.

14

https://firststreet.org/


The Flood Factor Score is a 1 to 10 score presented as (a) minimal (1), (b) minor (2), (c)

moderate (3-4), (d) major (5-6), (e) severe (7-8), and (f) extreme (9-10) flood risk. It noti-

fies the individual about a property’s potential of risk flooding at least once over a life of a

30-year mortgage signed today. The flood risk score is two-dimensional, where a high flood

score implies that a property has a larger likelihood and severity of flooding over the next 30

years (see Figure A1). The score incorporates the current and future risk of all major types of

flooding (and their combinations), including high-intensity rainfall, overflowing rivers and

streams, high tides, and coastal storm surges. The score can vary considerably for properties

in the same neighborhood due to local flood dynamics, such as property differences in ele-

vation, proximity to water bodies, and proximity to flood risk reduction projects (First Street

Foundation, 2020). This information is the most objective the individual can receive on the

flood risk of a property.22

2.2 The Design of the Field Experiment

The overall design was a natural field experiment since users were not aware of the ex-

periment, and there was no selection in or out of the experiment (Harrison and List, 2004).

In this natural field experiment, Redfin randomly assigned new and existing Redfin users to

either the treatment group, in which they were shown a Flood Factor Score section on every

on-the-market and off-the-market property listing page they visited, or to a control group

without a Flood Score section. Figure 2 presents the experiment experience using a mobile

device for both the control and treatment groups within a property page with a flood score

of 6 (i.e., major flood risk). The control group (Figure 2(a)) did not see the flood risk section

while scrolling a property page, whereas the treatment group (Figure 2(b)) had full access to

it.23

22We do not test whether the individuals in our experiment fully update their beliefs as a result of receiving
the treatment information, nor do we examine whether there are other mechanisms as to why this informa-
tion might work in changing behavior, e.g., attention. We provide some indicative evidence that the results
below that show that the results information changed behavior more over time, which goes against the attention
mechanisms.

23Figure A2 shows the color and labels Redfin used to show a property’s flood score within the flood risk
section, ranging from 1 to 10.
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Figure 2: The Visual Experience for the Treatment Group and the Control Groups

(a) Control (b) Treatment

The flood risk section was placed after the property’s public facts and neighborhood in-

formation. When a user clicks on the flood risk section, they view an “about flood risk”

paragraph, the colored (i.e., from light green to dark red depending on the risk) Flood Factor

Score, and the flood likelihood of the property over time (i.e., 1, 5, 10, 15, 20, 25, and 30

years).24

The Redfin users in the treatment group always see the main flood risk number as they

scroll down the page for every property that they search for, but they can ignore the more

in-depth flood risk probabilities over time by not clicking on the tab (that unfolds the full

30 year flood risk information). They choose their own intensity of engagement with the

provided information. Redfin did not nudge the home searchers to focus on this information

or advertise the new information feature to consumers (they had to organically discover it on

their own with no help in learning about the flood risk). It is included as an additional piece

of information about the home. Throughout the searcher’s web page experience, we observe

their full organic search activity (for all those in both treatment and control groups). The

flood risk information covered 99.9% of the U.S. housing market (First Street Foundation,

2020).

24Research by Keller, Siegrist and Gutscher (2006) suggests that providing flood risk probabilities over 30
years as opposed to one year helps individuals more make informed decisions.
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2.3 Implementation of the Field Experiment

The nationwide natural experiment enrolled 17,455,506 unique users (8,730,329 users in the

treatment group and 8,725,177 in the control arm) for 12 weeks between October 1st, 2020

and January 3rd, 2021.25 The number of unique users in the field experiment represented

approximately 41% of average monthly unique Redfin users in 2020 (Redfin, 2020). The

experiment enrolled both new users (5,827,406 in the control group and 5,832,461 in the

treatment group) browsing the website and app and existing ones (2,877,250 in the control

arm and 2,876,760 in the treatment arm) who have been browsing the website and app before

entering to an experiment arm. Of these individuals, we have 1,328,785 (664,352 in the

control arm and 664,433 in the treatment arm) individuals who are registered Redfin users.

We focus on this registered sample because: (i) they have a higher likelihood of actually

purchasing a home; (ii) we observe their behavior for a longer time frame (usually from before

the experiment so we know their flood risk type); and (iii) we can guarantee compliance with

the assignment mechanism (see below).

Randomization Architecture. Redfin sets up randomized experiments by creating inde-

pendent cohorts of equal size. Its cohort assignment is random, independent, and sticky. The

randomness element ensures that users have an equal probability of being assigned to any co-

hort. The independence criterion ensures that a user’s cohort assignment in one experiment

does not influence their assignment in subsequent experiments. Stickiness guarantees that

once a user has been allocated to a specific cohort, they remain within that group throughout

the experiment.

Redfin assigns users to treatment and control cohorts through a hashing algorithm, con-

sidering both the unique experiment ID and the unique user ID (i.e., an HTTP cookie). The

algorithm begins by first hashing the experiment ID using the SHA-1 algorithm. Following

this, the hashed experiment ID is combined with the user’s unique ID, which is then hashed

via the MD5 algorithm. The assignment of users to a specific cohort is then conducted by

dividing the MD5 hashed identifier by the total number of cohorts (two in our case) and us-

ing the remainder from this operation to determine the user’s assignment (i.e., treatment and

control).

Given the cohort assignment, Redfin employs a system known as “Bouncer flags” to further

control the enrollment of users into experiments. Bouncer flags can be activated for any

proportion of public users (approximately 40% for our experiment), and the users under

these flags are designated as enrolled users. Whenever a user browses Redfin, the bouncer

flag first identifies a user’s cohort and quickly decides the specific experience a user will view

25At this point in time, the macroeconomic environment was between the COVID-19 peaks and a stable
economy. We had full access to the data from Redfin for one week before the first day of the experiment.
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while browsing listings. This stage ensures the stickiness of users within each experiment.

Individuals entered the experiment sequentially through time (see Figure 3)26 by first

checking whether an individual’s HTTP cookie (i.e., the user identifier) has been assigned

to the experiment and, if not, randomly assigning the user to a treatment arm until the target

number of daily experiment assignments was reached. A variable number of individuals en-

tered the experiment each day; on average, 103,902 individuals per group entered each day.

Once an individual entered the experiment, they remained in the same group until the end

of the experiment. After the experiment finished, Redfin scaled up the treatment to everyone

so every user had access to the Flood Factor section for each property they viewed.

Figure 3: Number of Registered Users Entering the Experiment

(a) By Day (b) Cumulative

2.4 The Unbiasedness of the Treatment Effect Due to Randomization

The nature of the randomization and its implementation allows us to be precise about in-

ternal validity of our study. More specifically, how our study satisfies the three assignment

mechanism restrictions and the four exclusion restrictions to be able to identify an unbiased

treatment effect. For the three assignment mechanism restrictions, we comply with the non-

zero probability condition (every Redfin user has a probability of being assigned to treatment

and we controlled the functional form of the assignment), individualism (assignment of each

Redfin users to treatment was orthogonal to the outcomes and assignments of other Redfin

users), and unconfoundedness: (the assignment of each Redfin user to treatment is perfectly

orthogonal to potential outcomes).

We also satisfy the four exclusion restrictions. First, we have SUTVA. In our experiment,

26See Figure A3 for a visual representation of how the 17.5 million Redfin customers entered the experiment.
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any Reffin user’s potential outcomes do not vary with the assigned treatment or to that under-

taken by any other Redfin user. That means that there is no variation in the form or version of

the treatment that leads to different potential outcomes.27 Second is observability, and in our

experiment, we have to observe a user on the platform to be assigned to treatment or control.

In this case, we will always observe the control and treatment’s first potential outcome in the

experiment period. We might have differential attrition over time (throughout searching or

from searching to moving to bidding and buying a property), however we test this and do not

find that the assignment to treatment affects whose potential outcomes we observe over time.

Third, we have complete compliance. As mentioned in the randomization architecture

section, for those Redfin users who are registered, we can guarantee complete compliance

over the course of the experiment. For those that are not registered users, we cannot guarantee

full compliance to our assignment, so that is the reason we focus on those users for the search,

although we will examine the impact for all users too. Forth, given these three assumptions

are not violated, we can therefore state that we have statistical independence, meaning that

the assignment mechanism governing who is treated and who is not treated is independent

of all potential outcomes. This allows us to recover an internally valid unbiased estimator of

the impact of flood risk information on behavior.

2.5 Demand Side Hypotheses Through the Lens of a Hedonic Housing Assignment Model

A parametric closed form hedonic assignment model allows us to concisely state our paper’s

core hypotheses. At any point in time, there is a hedonic equilibrium real estate pricing

gradient that maps each home’s attributes into a market price. In equilibrium, every home is

occupied and given market prices nobody wants to trade homes.

To simplify the exposition, we model climate change as a one time change in the distri-

bution of risk across geographic locations. There is a "before" and an "after" period. The

assumption that "climate change" is a one time surprise allows us to sidestep the modeling

challenge of incorporating expectations into a closed form hedonic assignment model.28

If climate change increases the risk that a given home faces and if a buyer is unaware of

this shift, then the buyer may subsequently regret her investment. If climate increases the risk

27For example, a treated Redfin user searching for a home has no impact on the search or potential outcomes
of other Redfin users.

28We recognize that different people will have different baseline beliefs about emerging climate risks. Some
may believe the FEMA risk maps as delineating risks. Others may rely on their past experience in the areas
they have lived. Some may be skeptical about whether the risk of extreme events is rising. Those who are most
surprised by the "new news" of the FSF nudge and those who become aware of now "known unknowns" are likely
to value this forecast information the most. Future hedonic research can follow Severen, Costello and Deschenes
(2018) by integrating the “forward-looking Ricardian approach” into closed form hedonic assignment models.
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that different homes face and if this knowledge is common knowledge, then in the hedonic

equilibrium, those who choose to live in riskier homes will be compensated through lower

prices. In our empirical work below, only a subset of buyers are informed about the new

risks.

To simplify the algebra below, we focus on one attribute of housing namely flood safety (f ).

We assume that consumers purchase one property and the numeraire good X. Properties are

assumed to vary only with respect to the local flood safety level.29 Consumers only differ by

their preference for flood safety (γ). It is assumed to be normally distributed with mean γ̄

and standard deviation σγ .

We assume the supply of properties is exogenous, and their safety follows the distribution

N (h̄,σ2
h ). We consider a quadratic hedonic pricing function P (f ) = π0+π1f +π2f

2. Each home

buyer’s utility is given by:

Ui = Y − P (f ) +γif := C −π1f −π2f
2 +γif (1)

where Y denotes income, and we collect all constant terms into C. The home buyer chooses

the safety level that maximizes their utility. By setting the FOC to 0, each home buyer’s chosen

safety level is:

fi =
γi −π1

2π2
(2)

We aggregate fi to obtain the aggregate demand density for the safety level. Based on

our assumption on γ , the demand density follows N ( γ̄−π1
2π2

,
σ2
γ

4π2
2
). In equilibrium, the demand

density must match the supply density at each safety level. We match the first two moments of

the demand density with those of the supply density to solve for π1 and π2, given as follows:

π1 = γ̄ +
h̄σγ
σh

and π2 = −
σγ
2σh

(3)

Then the gradient of the hedonic function is ∂P
∂f = γ̄ +

h̄σγ
σh
− σγ

σh
f . The function is concave as

consumers have a diminishing marginal willingness to pay for safety.

29We assume higher flood risk lowers utility but do not parse out the reasons as to why it causes a loss.
There are at least five reasons why higher flood risk could cause a utility loss: (1) people think they will die
or be physically hurt in the flood; (2) people think that flooding will destroy their home; (3) people think that
flood areas will experience rising insurance prices over time; (4) people think they will lose time and resources
cleaning up after flood after flood; (5) people think they will spend more money offsetting flood risk to reduce
flood damage in high FSF score areas.
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Proposition 1: Due to climate change, the distribution of flood safety shifts such that; h̄

decreases to h̄′ and σ2
h increases to σ ′2h . When home buyers have full information about this

new distribution, the price gradient becomes steeper at higher safety levels, in comparison to

the pre-climate change world.30

Consumers reevaluate the safety level of each property based on their new information on

climate change. In this case, the gradient of the new hedonic function is ∂Pnew
∂f = γ̄ +

h̄′σγ
σ ′h
− σγ

σ ′h
f .

Consider a given safety level f0. We can calculate the difference in price gradient before

and after climate change: ∂Pnew
∂f −

∂Pold
∂f = ( h̄

′

σ ′h
− h̄

σh
)σγ + ( 1

σ ′h
− 1

σh
)σγf0. Because 1

σ ′h
− 1

σh
> 0, the

difference is an increasing function of f0. Note that the first term is negative, which suggests

that consumers may be willing to pay less for properties with low safety levels in the full

information scenario.

Now suppose only k% of the population (randomly selected) know the true distribution of

safety levels after climate change. We assume the z-score of each property is constant before

and after climate change.31 That is, for a property with safety f in the post-climate change

world, its pre-climate change safety level is h̄+ f −h̄′
σ ′h

σh. For home buyers without information

on the new distribution of safety, their utility is given by:

Ui = C′ −π′1f −π
′
2f

2 +γi(h̄+
f − h̄′

σ ′h
σh) (4)

That is, they are likely to overestimate the safety of a property and derive more utility from

living in a riskier place. This implies the following proposition.

Proposition 2: Consider two consumers with the same risk preference, and only consumer

A knows the true climate change induced distribution of the safety of properties. Then con-

sumer A bids higher for properties that are safer under climate change and bids lower for the

riskier properties.

We now study the equilibrium in the partial information scenario. For consumers with

true information, their chosen safety is f treat
i = γi−π′1

2π′2
. For those without true information, by

setting the FOC of their utility function to zero, we solve for their choice f control
i =

γi
σh
σ ′h
−π′1

2π′2
.

The demand density is the density of kf treat
i +(1−k)f control

i . To find the equilibrium, we again

match the moments of the demand density with the moments of the supply density N (h̄′,σ ′2h ).

The new hedonic coefficients are given by:

30To simplify the discussion, we assume that climate change leads to a one time shift in the distribution of
safety.

31This assumption can be relaxed. In general, we need a one-to-one mapping function from pre-climate
change safety to post-climate change safety. We choose the function that preserves the z-score for algebraic
simplicity.
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π′2 = −
σγ
2σ ′h

√
k2 + (1− k)2(

σh
σ ′h

)2 and π′1 = kγ̄ + (1− k)γ̄
σh
σ ′h

2
− 2π2h̄

′ (5)

We can compare the price gradient with respect to safety in the partial information post-

climate change world with that in the pre-climate change world.

Proposition 3: When a larger fraction of home buyers receive the new information, the

increase in the price gradient is larger, especially at high safety levels.

Proposition 1 is a special case of this proposition (i.e. when k = 1). Intuitively, when

more people know the true risk, more of them are willing to buy safer properties. The price

function becomes steeper at high safety levels due to the rising demand.

Our three propositions suggest that safety is currently undervalued due to a lack of infor-

mation on risk, but once that information on risk becomes available (i.e., new news), people

act on it and value it, and those with a higher preference for safety will act on it even more.32

This “new news” hypothesis allows us to be a bit more precise about who is expected to

change their behavior as a result of this information. This hypothesis predicts that the fol-

lowing consumers will be affected by the new information:

(a) consumers searching for properties that are in-land (i.e., not coastal) but have high flood

risk defined by FSF;

(b) consumers searching for properties that are in-land (i.e., not coastal) but close to a wa-

terfront (e.g., river, lake) and have high flood risk defined by FSF; and

(c) consumers searching for properties that are not defined risky by FEMA by are on the

coast.

For populations (a), (b), and (c), the information will revise their flood risk beliefs upward

and will search and buy lower flood risk homes, as per propositions 1 and 2. We believe

that the central tenet and test of this new news hypothesis is the following two groups of

consumers will be less affected by the FSF flood risk information:

(d) consumers searching for properties in already FEMA designated as high risk; and

(e) consumers searching for properties with zero to low risk.

32We have considered the case where everyone knows the true distribution of property safety, respectively,
under two states: without and with climate change. However, we also predict what will happen if there are
some people who do not believe in climate change. In Appendix A.1, we discuss this case.
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Population (d) should already be informed about the flood risks because of current informa-

tion dissemination and because you need flood insurance to obtain a mortgage in these FEMA

areas.33 These are the predictions for the new news hypothesis on search and offers.

Based on our propositions and predictions, property prices will change their gradient w.r.t.

flood risk. The prices on FSF high flood risk but FEMA low/no risk properties will decrease

through a lack of demand (either a lower willingness to pay by consumers or a lack of offers

overall that will reduce competition and reduce prices) and that the prices on FSF low risk

properties will go up because of an increase in demand (either a higher willingness to pay by

consumers or an increase in competition for the property that will drive up prices).

3 Data and Empirical Strategy

In this section, we describe the data and its sources (3.1), the estimation strategy (3.2), and

show the randomization balance tests (3.3).

3.1 Data

The datasets used in this paper come from multiple sources, arising either from browsing,

touring, and bidding data generated by Redfin, multiple listing service and county records, or

publicly available data sets, such as census estimates. The web data-generating process was

the following.34 Every time an individual clicks on a home, the website collects the following

information about the individual’s home session activity.

Property views data. Once a user clicks and opens a new property, a single data point is

generated with the following columns: the user’s anonymized unique ID and an anonymized

login ID;35 the timestamp when the property view began; whether the action was conducted

by a bot; whether the action was conducted via a cellphone or a desktop; the zip code and

its accuracy (in kms.) from where the user conducted the search; the flood risk score of the

property; the list price of the property at that point in time; the number of bedrooms and

bathrooms of the property; the approximate square feet of the property; the zip code where

the property is located; whether the property is new construction; whether the property is a

33We recognize that there still might not be full information from the FEMA high flood risk ratings, but there
should be less of an effect for this population than populations (a) to (c).

34An individual accessing the website through a computer, phone, or tablet can browse property listings on
the market and the entire stock of homes.

35The “unique ID” follows each individual across time, and it is created the first time a browser visits our
partner’s webpage. The “login ID” is created when an individual decides to register to the platform.
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short sale;36 the year when the property was built; and the walking, transit, and bike scores

where the property is located.37 We organize this dataset as a panel where our observation

unit is the user at the day level.

Engagement data. This data section provides information about the actions a user con-

ducted within a property page. That is, whenever a user scrolled or clicked a feature within

a property page, a single data point was generated with the following information: the user’s

anonymized unique ID and an anonymized login ID; the timestamp of the action; whether

the action was conducted by a bot; whether the action was conducted via a cellphone or a

desktop; and the engaged action conducted (e.g., clicked on the pictures, “favorited” a house,

conducted a tour, etc.). This data also contains the seconds spent per session, the number

of sessions, and the number of total and unique listing views, among other variables. In

this sense, we have multiple single data points for every property view that a user conducts.

As mentioned above, we organize this dataset as a panel where our observation unit is the

individual at the day level.

Touring, bidding, and closing data. A unique feature of our study is that we can follow

individuals through each step of the home-buying experience: the search, the property tour,

the bid, and the closing process for a property. A single data point is generated every time

a user tours a house, places a bid, or closes a deal. These observations contain the user’s

anonymized unique ID and an anonymized login ID; the day on which action was done (i.e.,

either touring the property, placing an offer to a property, or closing the deal); the property

ID that allows knowing characteristics of the property; the offer price and characteristics of

the offer and close; and characteristics of the tour. We organize this dataset as a panel where

our observation unit is the user at the touring, bidding, or closing level.

Multiple Listings Service Data. Multiple Listing Service (MLS) data comes from Redfin and

covers those regions where the brokerage operates.38 Each listing contains unique listing and

property identifiers, sale date, sale price, listing added and end date, listing price, number

of bedrooms, year built of the property, approximate square feet of the property, number of

bedrooms, whether the listing is new construction, geographic characteristics of the property,

among other variables.

36A short sale is a sale that takes place when a financially distressed homeowner sells their property for less
than the amount due on the mortgage. The buyer of the property is a third party (not the bank), and all proceeds
from the sale go to the lender.

37These scores are supplied by Walk Score, and they range from 0 - 100. Walk Score measures the walkability
of any address, Transit Score measures access to public transit, and Bike Score measures whether a location is
good for biking. A higher score represents a better measure for each category.

38Redfin currently operates in every state in the United States except for North Dakota. For a complete list of
the local markets where Redfin operates, see the following link.
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3.2 The Empirical Strategy

Our objective is to estimate whether the randomized disclosure of flood risk information

about a property affects the behavior of individuals throughout the home buying search pro-

cess. To do this, we rely on three estimators.

Average Treatment Effect (ATE) across post-treatment time points. We estimate the ATE of

disclosing a property’s flood risk information on the behavior of individuals throughout the

home buying process. In our dataset, our unit of observation is the user at the day level. Users

are organized as a panel, where every row of the data set is the average value of a user in a

given day. We implement an estimator with the following functional form:

yit = β0 + β1Iit + β2Di + β3 (Iit ∗Di) +uit (6)

Where, yit is the average outcome of individual, i, during day, t. We will focus on the

flood risk score of the property as the outcome variable. Iit is an indicator that takes 1 if the

observation occurs after the individual, i, was first treated. The binary treatment indicator for

individual, i, is D ∈ {0;1}. This estimator takes the form of a classic difference-in-differences

to take advantage of the experiment design and deal with a potential regression to the mean

situation commonly observed in longitudinal experiments (Twisk et al., 2018). β3 in equation

6 provides an unbiased estimate of the ATE, and randomization provides internal validity of

the estimate. Standard errors are clustered at the individual level.

Conditional Average Treatment Effect (CATE) across post-treatment time points. We use a sim-

ilar estimator as in equation 6 with an interaction term on an observed covariate, X ∈ R, in

the following way:

yit = β0 + β1 (Iit ∗Xi) + β2 (Di ∗Xi) + β3 (Iit ∗Di ∗Xi) +uit (7)

Where, Xi , represents the covariate of individual, i. For this estimator, we focus our atten-

tion on using the baseline average flood risk of all the houses viewed before the experiment

begins for individual, i, as a covariate, Xi . This estimator differs from equation (6) above,

since the information might have a very different impact across the different types of flood

risk that an individual is exposed to. This specification is going to be our main specification to

understand how the effects of the information impact people who are searching and buying

low, medium, and high risk flood properties, and to test our new news hypothesis.

To account for multiple hypotheses, we used the Romano-Wolf procedure to adjust for

the familywise error rate Romano and Wolf (2010). This procedure employs a step-down

approach that progressively adjusts p-values based on their significance, using bootstrap re-
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sampling to account for dependencies between tests. We applied this procedure to equation

7 with three subgroups (i.e., low, medium, and high-risk search at baseline) and six subsets of

registered users: (1) all registered users, (2) those without a waterfront search at baseline, (3)

those with a waterfront search at baseline, (4) those without a FEMA search at baseline, (5)

those with a FEMA search at baseline, and (6) those with a waterfront search but no coastal

search at baseline. We conducted 1,000 resamples for the search regressions and 3,000 re-

samples for the offer regressions, clustering standard errors at the user level.

Our approach here is conservative, since we are using the CATEs for testing one main hy-

pothesis of new news, i.e., the response to treatment for those searching for high flood risk

homes is likely to be different than those searching for low flood risk homes, especially when

the high flood risk is a surprise (i.e., not previously been defined as high flood risk due to

FEMA biases). We have two different sub-populations that receive the treatment, but the

treatment is different for each of the sub-populations. As per List, Shaikh and Vayalinkal

(2023), one could argue that we are testing one hypothesis, but we try to be conservative in

our multiple hypotheses testing.39

Average Treatment Effect at any post-treatment time point. We use the following estimator to

obtain an estimate of the average treatment effect of disclosing a property’s flood risk infor-

mation on the behavior of individuals at any point throughout the home buying process, and

it allows us to understand whether treated users kept adjusting their search patterns as time

passed. Relative to the estimator of equation 6, this estimator provides a flexible, dynamic

functional form across time to understand how the treatment changes over time:

yit = β0 +
∑
k,−1

βk (Tik ·Di) +uit (8)

Where Tik, is an indicator variable for individual, i, in the period, k , 1, since the treatment

was implemented to that specific individual. This indicator variable remains zero for all the

control units, and as before, D ∈ {0;1}, is a binary treatment indicator for individual, i. The

coefficient that estimates the estimand during period, t, in equation 8 is βk. To provide further

evidence that randomization ensured a balance between the treatment and control units, we

conducted a joint test of the null hypothesis:
∑

t<T0
βk = 0. Standard errors are clustered at the

individual level.

39Moreover, we test this new news hypothesis for different outcome variables (e.g., search, engagement, and
offers). We do not need to adjust for multiple hypothesis testing for these three outcome variables because of
two reasons. First, the population of interest changes between search to engage to offer (think of it as a funnel),
so we are not fixing the sample and changing the outcome variable. Second, as argued by Viviano, Wuthrich
and Niehaus (2021) and List, Shaikh and Vayalinkal (2023), even if we had the same sample throughout, it is
not clear whether the null hypotheses corresponding to all such outcomes should be included in the family of
testing. In our case, it is of interest to determine, with some confidence, which outcomes are affected by the
flood risk treatment, especially as there is not a clear way for us to aggregate search, engagement, and offer data.
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3.3 Pre-Experiment Balance

We check the balance in the observable covariates between treatment and control to ensure

the randomization worked. Each column of tables A1 and A2 provide estimates of regress-

ing outcomes of interest before the experiment began against a treatment dummy variable

for registered users.40 We cannot statistically reject the null hypothesis for the coefficient

of interest for every regression, providing evidence that randomization worked by creating

balanced treatment and control groups before the experiment began. Figures A4 (a) through

(f) present the estimates generated by the event-time study estimator for individuals at any

given pre-treatment time point, aiming to assess differences in pre-trends. The results further

suggest that the randomization process was effective, indicating the likelihood of parallel

pre-trends between treatment and control units. Tables A5 to A10 present balancing tests in

the observable covariates between treatment and control stratified by average flood risk cate-

gory (i.e., low, medium, and high) at baseline. We cannot reject the null between treated and

control users at baseline. Finally, Table A11 presents the number of registered users within

each flood risk category before the experiment began, stratified by treatment assignment for

the registered individuals.41 One cannot reject that treatment and control distributions are

different (Pearson χ2(5) = 5.1, p-value = 0.398), suggesting a balance between the number of

treatment and control users within flood risk categories.

Registered vs. Non-Registered Users. Given that most of our results have as sample

users that “registered” on the website, tables A13 and A14 present the results of regress-

ing outcomes of interest at baseline against a “registered” dummy variable. Registered and

non-registered users have different browsing patterns. On average, registered users browsed

31% more properties, and their zip code concentration index was 19%–i.e., registered users

concentrated their browsing patterns in a higher number of zip codes. Regarding the charac-

teristics of the houses, registered users browsed properties with 0.9% fewer bedrooms, 0.3%

fewer bathrooms, 0.7% fewer square feet, 0.1% lower year of built, 6.3% higher flood scores,

and 6.3% higher list prices.42 They also had a 0.2% less probability of browsing a new con-

struction and a 0.3% less probability of browsing short sales. Finally, they browsed properties

with 4.2% more, 1.1% less, and 2.7% more walk, transit, and bike scores, respectively.

Given that registered users are more typical of the average individual who is going to buy

40Tables A3 and A4 provide estimates for all users.
41Table A12 presents the results for all users.
42The states of California (27.11% of all the registered users with pre-experiment information), Washington

(9.07%), Illinois (7.63%), Maryland (5.25%), New York (5.19%), Massachusetts (4.49%), Texas (3.80%), Virginia
(3.04%), Florida (3.52%), and Pennsylvania (3.85%) had the top 10 highest number of registered users partici-
pating in our experiment. The states of Florida (22.62%), California (13.01%), New York (8.98%), Washington
(6.95%), and Illinois (4.94%) had the highest percentage of registered users browsing, on average, extremely
risky properties pre-experiment.
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properties in the market in 2020, we will conduct the empirical analysis on search, engage-

ment, and bidding with registered individuals in the experiment. We will leverage the whole

dataset to examine general equilibrium effects on the housing market.

4 Results

In this section, we provide evidence of how the randomized treatment flood risk information

affected (i) home search behavior over time (4.1); (ii) engagement with the homes (4.2); and

(iii) tours, offers, and closes (4.3). We will then analyze whether the treatment effects differ

by political partisan alignment and recent flooding events (4.4).

4.1 Home Search Behavior Dynamics

In searching for a home using the Redfin Platform, the buyer knows their preferences and

their budget constraint. The search process allows the searcher to learn about the heteroge-

neous differentiated products available for purchase. While it is easy to quickly learn an area’s

day-to-day weather conditions, it has not been easy to acquire information about property-

specific environmental risks. As the cost of acquiring such information is effectively lowered

to zero for a randomized subset of Redfin users, we study how they respond to this access to

information.

First, we estimate equation (6) for the whole sample, not segmenting by flood risk. Tables

A15 (i.e., for all Redfin users) and A16 (i.e., for registered Redfin users) present the average

treatment effects of having access to the flood factor on the number of properties browsed

per day (column 1), the average characteristics of the browsed properties per day (columns 2

to 5), the average flood score of the properties browsed per day (column 6), and the Herfind-

ahl–Hirschman zip code location index (HHI) of a user by day (column 7).43 On average,

without stratifying users by their average flood score of all the houses viewed before the ex-

periment began, the treatment had no significant effect on the daily browsing behavior of

users. Specifically, it did not alter the average number of properties viewed, nor did it affect

the typical characteristics of these properties, such as the number of bathrooms, bedrooms,

square footage, list price, or the HHI zip code associated with the properties browsed.

When categorizing users based on the average flood risk score of all properties they viewed

prior to the experiment (as determined by the CATE in equation (7)), registered treated users

had a meaningful and significant change in their search behavior, marked by a steady decline

in the flood risk profile of properties they investigated before the start of the experiment.

43Tables A17 and A18 present estimates for those users with information pre-experiment.
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Figure 4 presents estimates of β3 from equation (7) by baseline average flood score search

category. The most significant shift was observed among users who, before the experiment,

browsed on average properties with high (severe or extreme) flood risk. Specifically, treated

registered users in this category showed a 4.7% reduction in the flood risk score of the prop-

erties they browsed compared to their counterparts in the control group, with a statistical

significance of p<0.01. This reduction in flood risk score, equivalent to a 0.5-point decrease

on a ten-point scale, represents a substantial change. To put the magnitude of this effect into

perspective, it equates to average reductions in long-term flood risk of 8.0%, 10.6%, 6.2%,

4.1%, 3.4%, 2.9%, and 2.7% over timeframes of 1, 2, 5, 10, 20, and 30 years, respectively.

However, for users browsing in areas with relatively low initial flood risk, the potential

for significant reduction was naturally limited, prompting an analysis of the standard devi-

ation effect size. For the high-risk treated group, the standardized effect size was -10.8%. In

contrast, the effect sizes for users focusing on low and medium flood risk properties were

0.03% (standard error = 0.10) and -0.54% (standard error = 0.43), respectively, highlighting

the nuanced impact of the intervention across different levels of initial flood risk.44

Figure 4: CATE on the Average Flood Score of a Daily Search for Registered Users
% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began.

44When expanding the analysis to include all users, not just those registered, we found that users browsing
on average low, medium, and high flood-risk areas prior to the experiment demonstrated changes in the flood
risk scores of 0.00% (standard error = 0.03), -0.78% (standard error = 0.17), and -1.73% (standard error = 0.95),
respectively, compared to their counterparts in the control group.
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In Figure 5, we present estimates of βk from estimator 8 (i.e., an event-time study) for

registered users browsing, on average, high risk properties before the experiment. The re-

sults show that, on average, there was no statistically significant difference between treat-

ment and control groups before the experiment, suggesting that randomization was properly

conducted. However, as time progressed, treated users began browsing properties with pro-

gressively lower flood scores than the control group. By the ninth week, treated users were

browsing properties with a -11.8% (p < 0.01) lower flood score compared to a week before the

experiment, whereas after the sixth week, the reduction was -5.2% (p < 0.01) less flood risk

score, relative to control users.

Our analysis revealed no statistically significant impacts in event-time studies of regis-

tered users who browsed properties with low and medium risk levels before the experiment

commenced. Specifically, Figures A5 (a) and A5 (b) display the outcomes for users who, on

average, were looking at properties with low and medium levels of risk prior to the start of

the experiment, respectively.

Figure 5: Event-time Study on the Average Daily Flood Score
of Properties Searched for Registered Users
High-risk cohort, % Change relative to Control

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 8. Coefficients are relative to the week before a user entered the
experiment. Vertical lines crossing the estimates are confidence intervals at the 95% level. The vertical dashed line represents the beginning
of the experiment for a user. The x-axis represents each user’s baseline average flood score search category before the experiment began.
Pre-trends p-value = 0.66, leveling of coefficients p-value = 0.000

Place-based factors may also influence the impact of flood information. For instance, differ-

ences in information access and local knowledge between homeowners and non-local buyers
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can create a situation where the latter may unwittingly purchase properties with higher envi-

ronmental risks. In addition, the relative place-based risks associated with flood-prone areas

could further affect the effectiveness of our treatment. For example, people residing in safe

areas may be more likely to adjust their home search when looking for properties in high-risk

areas, whereas those already in flood-prone areas may not be as responsive to our treatment.

In this sense, we calculated the difference in the mean, standard deviation, and coefficient of

variation of the zip code’s flood score between an individual’s origin and most search destina-

tions at baseline, and we interacted it with the treatment and the average flood score search

at baseline to test our previous hypothesis.

Our findings revealed a decrease of 12.77% in the average flood risk for individuals who,

before the experiment, primarily searched for homes in high flood risk areas and whose search

areas had a higher coefficient of variation (CV) in flood risk than their origin. This decrease,

observed after receiving flood risk information, is depicted in Figure 6 (b) and could stem

from two adjustments: either the treated individuals shifted their searches to zip codes with

a lower average flood risk or to those with a greater standard deviation in flood risk. When

we analyzed the effect of combining the treatment with the difference in flood risk scores

(mean and standard deviation) between the destination and origin zip codes, we found no

significant or meaningful impact, as shown in Figures A6 and A7.

Figure 6: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Characteristics of Most Searched Destination and Origin Zip Code at Baseline

% Change relative to Control

(a) Lower Coefficient of Variation Flood

Score at Destination Zip Code than Origin

(b) Higher Coefficient of Variation Flood

Score at Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s average flood score search category before the
experiment began.
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Besides showing flood risk categories, our study provided a detailed view of flood risk via

a quinquennial cumulative flood probability for properties, as visually detailed in Figure 2.

Keeping users’ pre-experiment flood score search categories constant, a one percentage point

increase in the baseline cumulative flood probability for 2020 resulted in a 0.052% decrease in

the average flood score search, with no statistically significant effects observed for cumulative

probabilities in subsequent 5-year increments up to 30 years.

Figure 7: CATE on the Average Flood Score of a Daily Search
for Registered Users, by Cumulative Flood Probability at Baseline

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s average flood probability search before the
experiment began.

Our data partner also classifies the type of flood risk each property faces. FSF classified en-

vironmental risks into three categories: “Precipitation,” “Precipitation and Sea Level Rise,”

and “Precipitation, Sea Level Rise, and Hurricane Storm Surge.” Holding each user’s average

flood score search category before the experiment constant, we found that individuals who

searched at baseline for properties with “Precipitation, Sea Level Rise, and Hurricane Storm

Surge” risks experienced a 2.8% reduction in their flood score exposure. In contrast, those

who searched for properties with “Precipitation and Sea Level Rise” risks reduced their ex-

posure by 1.4%. However, browsing for properties with only “Precipitation” risk at baseline

did not yield a statistically significant effect (Figure 8).
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Figure 8: CATE on the Average Flood Score of a Daily Search
for Registered Users, by Type of Risk at Baseline

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average type of environmental risk search
before the experiment began. Coastal areas on the East Coast and Hawaii are referred as “Precipitation, Sea Level Rise, and Hurricane Storm
Surge”, other coastal areas are “Precipitation, and Sea Level Rise” and all other locations are “Precipitation”.

Our analysis extends to the treatment’s impact on diverse groups searching for homes based

on specific criteria: (a) waterfront location (seas/coastal, rivers, lakes) or not; (b) within FEMA

high-risk zones or not; (c) coastal proximity or not; and (d) combinations of these factors.

We classified individuals into different categories based on whether their pre-experiment

searches included homes with these characteristics.

Figures 9 (a) and (b) illustrate that flood risk information mostly influenced customers

searching for waterfront properties before the experiment. Figures 10 (a) and (b) reveal a

similar effect on those searching for FEMA high-risk properties, with a greater impact on

those without FEMA high-risk properties in their initial search. Figure 11 indicates the infor-

mation’s effect on customers considering the waterfront comes from properties not situated

on the coast. These findings collectively support the “new news” hypothesis, demonstrating

the treatment’s effectiveness, particularly for individuals interested in waterfront properties

not classified as coastal and, thus, not included in the NFIP or marked as risky by FEMA.
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Figure 9: CATE on the Average Flood Score of a Daily Search for Registered Users

% Change relative to Control

(a) Without Waterfront Search at Baseline (b) With Waterfront Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any
waterfront property before the experiment are classified as “without” waterfront search at baseline. On the other hand, users who browsed
at least one waterfront property before the experiment are classified as “with” waterfront search at baseline.

Figure 10: CATE on the Average Flood Score of a Daily Search for Registered Users

% Change relative to Control

(a) Without FEMA Risk Search at Baseline (b) With FEMA Risk Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The x-
axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any property
considered risky by FEMA before the experiment are classified as “without” FEMA risk search at baseline. On the other hand, users who
browsed at least one property considered risky by FEMA before the experiment are classified as “with” FEMA risk search at baseline.
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Figure 11: CATE on the Average Flood Score of a Daily Search for Registered Users,
With Waterfront and Without Coastal Search at Baseline

% Change relative to Control

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who browsed at least one
waterfront property before the experiment are classified as “with” waterfront search at baseline. A property is classified as being located
on the coast when its geographic coordinates (latitude and longitude) are 200 meters or less from the nearest shoreline. Users who did
not browse any coastal property before the experiment are classified as “without” coastal search at baseline. On the other hand, users who
browsed at least one coastal property before the experiment are classified as “with” coastal search at baseline.

We now test what property attributes users are willing to trade off for a reduction in the

flood score of property. As seen in Figure 12, users browsing high flood risk properties pre-

experiment appear not to trade-off in the number of bedrooms, bathrooms, square footage,

or list price a property has for a lower flood score. However, we observed an uptick in the

Herfindahl-Hirschman Index (HHI), indicating a more focused search pattern and efficient

search among consumers within particular zip codes, although a confidence level of 90%

supports this finding.

We observed a decrease in bike score, with similarly sized reductions in walk and transit

scores, though the latter two showed greater variability. Bike scores assess infrastructure like

lanes and trails, topography, destinations, road connectivity, and biking prevalence. Walk

scores evaluate proximity to amenities like grocery stores, schools, and restaurants, awarding

points based on distance, and consider pedestrian friendliness through population density

and road metrics like block length and intersection density. We hypothesize that both walk

and bike scores may reflect the availability of public funds for infrastructure improvements

and the area’s business climate, suggesting that while highly valued, users may compromise

on these aspects.

Figures A8 and A9 in the Appendix show that users who initially searched for properties
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with low and medium flood risk, respectively, did not significantly change how they valued

property attributes, suggesting no notable trade-offs were made.

Figure 12: CATE on the Average Outcomes of a Daily Search
for Registered Users Browsing High Risk Properties at Baseline

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 90% and 95% levels. The x-axis represents treatment effects for users browsing high flood risk
properties, on average, before the experiment began.

To investigate if users were open to higher fire, heat, and wind risks for lesser flood risk, we

examined changes in these scores for viewed properties. Note that neither treated nor control

groups had access to fire, heat, or wind scores during the experiment. Results in Figure 13

show no statistically significant differences in scores between the groups. Nonetheless, an

increase in fire scores was observed for users initially viewing high flood risk properties,

though this rise was not statistically significant.
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Figure 13: CATE on the Average Fire, Heat, and Wind
Outcomes of a Daily Search for Registered Users

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents treatment effects for users browsing low, medium, and high
flood risk properties, on average, before the experiment began.

4.1.1 Nonparametric Conditional Average Treatment Effects

The impact of flood information on users may vary based on individual characteristics. We

recognize that Redfin customers could vary with respect to their risk aversion, and they can

vary with respect to their incomes and their local social capital, and family ties to an area

where they are searching. Such searchers may also vary with respect to whether they trust

the data that Redfin is supplying.

In the previous section, we demonstrated heterogeneity in treatment effects by analyzing

how these effects differed depending on users’ pre-experiment flood risk search behavior.

However, the impact of our treatment could also vary based on other individual character-

istics, in addition to baseline flood risk search behavior. Moreover, the estimator used to

calculate the previous CATE, i.e., the estimator presented in equation 7 relies on the linearity

assumption of the effect that covariates, Xi , have on the treatment. If these effects were non-

linear, our calculated estimates would be biased or would not cover the entire distribution of

heterogeneous treatment effects.

To account for the possibility of nonlinearity and to incorporate the influence of other base-

line characteristics on treatment effects, we utilize a Generalized Random Forest algorithm

known as causal forests (Athey, Tibshirani and Wager, 2019; Athey and Wager, 2021). We fur-

ther describe this algorithm in section A.4. Figures A21 to A23 show the predicted conditional
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average treatment effects through causal forests stratified by baseline flood risk categories.

Several results are worth highlighting. Figure A21 shows how the algorithm identified that

80%45 of the conditional average treatment effects were negative for those users browsing

extremely risky properties before the experiment began—albeit only 25% of them were sta-

tistically significant at the 90% level. The largest reduction for this group was a reduction of

-20% in the average flood risk score. Moreover, Figure A22 also plots how causal forests found

that about 60% of the treatment effects were negative for those users browsing medium risky

properties before the experiment began. The most significant reduction was -15% relative to

the control group.

Finally, for those in the low pre-experiment risk groups, we did not find negative statisti-

cally significant treatment effects (Figure A23). Nevertheless, we found positive statistically

significant effects at the right end of the treatment effects distribution.

4.2 Engagement

The Redfin experiment represents an “intention to treat.” Each searcher must decide whether

she keeps engaging with this information. Everyone has a time budget constraint and indi-

vidual home buyers know their home purchase priorities. It is conceivable that a home buyer

would spend relatively little time engaging with the flood risk data, given that there are many

other dimensions of a home’s quality to consider. In this section, we test this hypothesis.

Figure A11 reveals that the treatment had no statistically significant effect on website regis-

tration likelihood. Similarly, Tables A19 (for all users) and A20 (for registered users) indicate

no significant differences in daily website usage—measured by seconds spent, sessions per

day, unique home views, or total home views—between treatment and control groups. Fur-

ther analysis based on pre-experiment flood score searches showed individuals interested in

high-risk properties did not spend more time but engage in fewer sessions on Redfin’s web-

site, as detailed in Figures 14 (a) and (b). Similarly, Figures 15 (a) and (b) indicate that these

users did not viewed more unique and total homes daily.

45When focusing on the population regardless of their pre-experiment average flood search, we found that
62.1% were affected by the flood risk information.
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Figure 14: CATE on the Time Spent on the Website per Day for Registered Users

(a) Seconds Spent (b) Number of Sessions

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Figure (b) estimates were calculated
using a Poisson regression and transformed to incidence rate ratios.

Figure 15: CATE on the Number of Homes Viewed per Day for Registered Users

(a) Unique Home Views (b) Total Home Views

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Both figure estimates were calculated
using a Poisson regression and transformed into incidence rate ratios.

However, we do find that the treatment had an impact on some engagement with the list-

ings. Figure 16 shows how the treatment (stratified by the baseline average flood score search

category) affected the times a user engaged with (a) the flood risk section46, (b) “favorite” a

46Engaging with the flood risk refers to reaching the flood risk section for the treated individuals and reaching
the section where the flood risk should be for the control individuals.
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property, (c) next photo, and (d) active similar properties, as a percentage of all the proper-

ties a user browsed per day. Both groups of users, those browsing, on average, low risk and

high risk properties at baseline, exhibited increased engagement with the flood risk section

once they entered the experiment, compared to the control users (Figure 16 (a)). As well,

users browsing, on average, properties with low flood risk pre-experiment “favorited” more

properties once the flood score became available, whereas those browsing, on average, high

risk properties pre-experiment, “favorited” fewer properties (Figure 16 (b)) and clicked fewer

times “next photo” (Figure 16 (c)).

Our findings presented above suggest that users previously browsing high risky proper-

ties adjust their search behavior once they learn about the flood risk (which we have already

seen from the average flood score search results in the previous section). This finding has

important economic content because we reject the hypothesis that informed, risk-loving in-

dividuals seek out risky homes. If such “complete information” matching was taking place,

then we would not expect to observe the facts we reported above.

Figure 16: CATE on the Percentage of Times Registered Users
Engaged with a Specific Property’s Features per Day

% Times User Engaged with Feature for Listings Viewed per Day

(a) Engaged with the Flood Risk Section (b) Clicked “Favorite” a Property
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(c) Clicked Next Photo (d) Clicked Active Similar Properties

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.

We also examine some of these engagement metrics for different types of properties (based

on the user’s pre-experiment search history). Figures A12 and A13 in the Appendix show

the average treatment effect on the engagement with the flood risk section for users browsing

waterfront and FEMA-risky properties at baseline. Consistent with the search results, we

found that treated users looking at the waterfront and FEMA-risky areas are more likely to

spend more time searching for the flood risk section. Lastly, Figures A14 and A15 in the

Appendix illustrate that the treatment influenced the frequency of treated users marking

properties as "favorite," mirroring the trend observed in Figure 16 (b).

4.3 Tours, Offers, and Closes

Redfin provides customers with an integrated house purchase process such that home

buyers can search for a specific home and then work with a Redfin directed brokerage service.

It gives its users the option to tour properties, place a bid on a particular property, and close

a deal. In our experiment for all users who search for a given property and then choose

to tour the property and then place a bid for that property, we observe each of these steps

play out in the housing purchasing process. Based on revealed preference logic, we view

touring and bidding on a home as important (and costly) evidence that one is responding to

information. In this section, we will analyze whether the treatment information affected the

extensive margin decision to tour and make an offer, as well as conditional on touring and

making an offer, do they change the type of home they tour and make an offer on.

Tours. As seen in Figures 16 (a) and (b), having access to the flood risk score of the prop-

erties doesn’t affect the likelihood of booking a tour or canceling a home tour, irrespective of

their baseline flood score search or the flood score of the property; that is, we do not find a
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statistically significant difference on the probability of booking or canceling a home tour for

the treatment group. We also found that providing flood score information influenced the

timing of property tours, as illustrated in Figure A16. Users who initially browsed properties

with low, medium, and high flood risk experienced a change in the days to tour a property,

+.9%, -2%, and -.8%, respectively, compared to the control group.

Figure 16: CATE on the Probability of Booking a Tour and Canceling a House Tour

% Change relative to Control for Registered Users

(a) Probability of Booking a Tour (b) Probability of Cancelling a House Tour

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score category of the property.

Offers. Figures 17 (a) and (b) show the probability of an individual placing a house offer

and the flood score of a property someone in our experiment bid on, stratified by the baseline

average flood score search category and relative to their control counterpart. Figure 17 (a)

shows no statistically significant difference in having access to the flood score of properties

on the probability of bidding on a property. However, Figure 17 (b) shows that treated users

browsing high risky flood properties pre-experiment place bids on properties with -57.1%

(s.e. = 19.73) less flood score than their control counterparts. This effect is extremely large.

While there are no differences in the likelihood of making an offer from figure 17 (a), we still

might have selection of who is making an offer. While we are balanced on pre-experiment

baseline risk, there might be a selection of observables. However we show that this result

is not a selection effect but a change in where the user makes an offer. We check this by

examining the balance of the search prior to the experiment was run for treatment and control

users who make an offer (we check for low, medium, and high flood risk). In Appendix

Tables A21 to A26, we show that for registered users who eventually placed an offer during

the experiment, we cannot statistically reject the null hypothesis across several outcomes,
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regardless of the baseline flood-risk levels.

Figures 18 (a) and (b) show how treated groups trade off characteristics of a property to

reduce their flood exposure. On the one hand, as seen in Figure 18 (a), people who browsed

riskier properties before the experiment started had a lower probability of placing an offer

on waterfront properties. That is, those users who had access to flood scores and browsing

high-risk properties before the experiment started had a -39. 6% lower probability of placing

a bid on a waterfront property. On the other hand, Figure 18 (b) shows that users browsing

high-risk properties before the experiment began went on to bid properties with -14.6% less

square feet (se = 17.08).

Figure 17: CATE on Offers

% Change relative to Control

(a) Probability of Placing an Offer (b) Flood Score of the Property

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 7 for figure (b). Vertical lines crossing the estimates are confidence
intervals, where the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score
search category before the experiment began. S.E. clustered at the registered user level. FE = Fixed Effects of the location of the Property.
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Figure 18: CATE on the Characteristics of an Offer

% Change relative to Control

(a) Prob. of Offer being on the Waterfront (b) Square Feet of the Property

Note: For Figure (b), coefficients are in the form of ((eβ3 − 1) · 100) from equation 7. Vertical lines crossing the estimates are confidence
intervals, where the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score
search category before the experiment began. Standard errors clustered at the user level. FE = Fixed Effects of the location of the Property.

Our analysis extends to how property type influences offer behaviors. Figures 19 (a) and

(b) indicate that reductions in flood scores for offers predominantly involve waterfront prop-

erties. While Figures 20 (a) and (b) reveal minor discrepancies between FEMA high risk and

non-FEMA properties, Figure 21 demonstrate that the significant decreases in flood score

originate from waterfront properties not situated on the coast, further corroborating the “new

news” hypothesis.
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Figure 19: CATE on the Flood Score of an Offer for Registered Users

% Change relative to Control

(a) Without Waterfront Search at Baseline (b) With Waterfront Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any
waterfront property before the experiment are classified as “without” waterfront search at baseline. On the other hand, users who browsed
at least one waterfront property before the experiment are classified as “with” waterfront search at baseline. Estimates are with City Fixed
Effects.

Figure 20: CATE on the Flood Score of an Offer for Registered Users

% Change relative to Control

(a) Without FEMA Risk Search at Baseline (b) With FEMA Risk Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any
property considered risky by FEMA before the experiment are classified as “without” FEMA risk search at baseline. On the other hand,
users who browsed at least one property considered risky by FEMA before the experiment are classified as “with” FEMA risk search at
baseline. Estimates are with City Fixed Effects.
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Figure 21: CATE on the Flood Score of an Offer for Registered Users,
With Waterfront and Without Coastal Search at Baseline

% Change relative to Control

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who browsed at least one
waterfront property before the experiment are classified as “with” waterfront search at baseline. A property is classified as being located
on the coast when its geographic coordinates (latitude and longitude) are 200 meters or less from the nearest shoreline. Users who did
not browse any coastal property before the experiment are classified as “without” coastal search at baseline. On the other hand, users who
browsed at least one coastal property before the experiment are classified as “with” coastal search at baseline.

While we find that treated users searching for high flood risk properties prior to the experi-

ment are significantly less likely to make an offer on a high flood risk home, we are interested

to see if there are any trade-offs for the lower flood risk. For the high flood risk property

users, while the flood score of the offered properties decreases, Figure 22 shows that there are

meaningful changes in the size of the property, the list price, transit score, and submitted an

offer for a property in a zip code different from their most frequently browsed one at baseline.

However, given the sample size, are estimates are little uncertain.
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Figure 22: CATE on the Average Outcomes of the Offers
for Registered Users Browsing High Risk Properties at Baseline

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents treatment effects for users browsing high flood risk properties,
on average, before the experiment began. *: The outcome variable is a binary indicator that takes a value of one when a user submits an
offer for a property in a zip code different from their most frequently browsed one at baseline and zero otherwise. As such, the treatment
represents a shift in probability rather than a percentage change, as with the others.

While we demonstrate some convincing evidence that users changed the houses they made

offers on with respect to flood risk, we also analyze whether that changes the users’ exposure

to other climate change risks. Based on the fire, heat, and wind scores from the First Street

Foundation, we observed that users relocating from flood risk areas did not show a statisti-

cally significant preference for properties with different fire, heat, or wind scores compared to

those who had access to flood scores (refer to Figure 23). We find that treated users in the high

flood risk group are less likely to make a bid on a home exposed to heat (p < 0.06), and that

the fire risk was reduced although the estimate is noisy. Altogether, we do not observe that

the treatment information made high flood risk users move into properties that are exposed

to other climate risks, and it is more likely that they reduced overall climate risk.
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Figure 23: CATE on the Average Fire, Heat, and Wind Outcomes
of the Offers for Registered Users

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents treatment effects for users browsing low, medium, and high
flood risk properties, on average, before the experiment began.

We also examine time to make an offer based on experimental group. We observe the time

from the start to the experiment to the time of the first offer for all those who are registered

and use Redfin for offers. We find that access to a property’s flood score reduces the time to

make an offer, as Figure 24 demonstrates. Redfin users browsing on average properties of

low, medium, and high flood risk before the experiment took -2%, -6%, and -7% fewer days

to submit an offer compared to the control group. These results suggest that the information

led to increased allocative efficiency in the housing market.
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Figure 24: CATE on the Days between Entering the Experiment
and Placing an Offer for Registered Users

% Change relative to Control

Note: Coefficients are in the form of incidence rate ratios from equation 7 using a Poisson regression. Vertical lines crossing the estimates
are confidence intervals, where the cap represents the confidence interval at the 90% and 95% levels, respectively. The x-axis represents
treatment effects for users browsing low, medium, and high flood risk properties, on average, before the experiment began.

Closing. In the process of selling a home, the “closing” is one of the final steps, as money

and legal paperwork are exchanged to finalize the transaction. From basic revealed preference

logic, if a home buyer doubts following through with a purchase, this is the key time to walk

away from the deal.

We now show the probability of an individual closing a house offer and the flood score

of a property on which someone in my experiment closed, stratified by the baseline average

flood score search category and relative to their control counterpart. As seen in Figure 25

(a), we found a lower probability (-15%) of closing an offer between treatment and control

groups for those browsing medium risky properties pre-experiment. Figure 25 (b) shows

the average treatment effects of having access to properties’ flood score on the property’s

closed flood score. On average, registered treated users browsing pre-experiment high flood

risk properties closed properties with -58.8% (p < 0.01) less flood risk than their control

counterparts. This result is extremely similar to the result on the offers made in Figure 17.
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Figure 25: CATE on the Probability of Closing on a Property

% Change relative to Control

(a) Probability of Closing an Offer (b) Flood Score of the Closed Properties

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began. FE = Fixed Effects of the location of the Property.

4.4 Does Political Ideology or Recent Flooding Events Influence the Treatment’s Effec-
tiveness?

Previous research has noted the political divide concerning interest and climate change

concerns (Dunlap and McCright, 2008; Bernstein et al., 2022). Blue state voters and their

elected officials routinely express their support for the green economy and subsidies to decar-

bonize it. Energy conservation nudges focused on peer comparisons tend to be more effective

with liberals than conservatives, or areas that are deemed more green (Dunlap and McCright,

2008; Costa and Kahn, 2013; Allcott, 2015).

We test whether political ideology influences the average treatment effect of the flood in-

formation. We calculate conditional average treatment effects by whether the zip code where

the user lives voted for Biden or Trump in the 2020 Presidential election. In Figures 26 (a)

and (b), we show the impact of Biden and Trump winning zip codes for search and offers,

respectively. For search, we see that Trump and Biden supporters respond more to high flood

risk than medium flood risk (p < 0.05). We cannot reject the null that Biden and Trump’s

counties respond to the flood score in the same way for both searches and offers.
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Figure 26: Flood Risk by Counties from Where Users Browsed
the Most at Baseline, Stratified by Whether Biden or Trump Won in 2020

% Change relative to Control

(a) Search (b) Offer

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. We assigned a baseline county to
where users browsed the most from at baseline.

Studies have also estimated the impact of flooding events on the real estate market and

risk perceptions, finding that home buyers respond to recent major flooding events and ad-

just their risk perceptions only during a brief period of time (Kousky, 2010; Zhang, 2016;

Zhang and Leonard, 2019). We test whether the county from which a user made the most

searches and the county a user searched for properties the most at baseline experienced a

flooding event in the past seven days to further examine the heterogeneity of our conditional

average treatment effects. Figures A17 (a) and (b) show that a flooding event did not have

a statistically significant effect on how treated users browsed for properties within counties

experiencing a flooding event in the past 7 days.

5 Real Estate Market Price Responses to Property Specific Flood Risk In-

formation

While no home buyer gains utility from owning a home at risk of flood, the population differs

with respect to their willingness to pay for such a home. Higher-income people have a higher

economic capacity to avoid such risky homes. More risk loving people and those with the

ability and economic capacity to upgrade their homes will be more likely to bid for risky

homes than risk averse people who do not want to invest the time and effort in upgrading a

home (Shogren and Stamland, 2002).
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In a setting where buyers and sellers have complete information about climate risks, the

climate risks will be capitalized into the sales price of the home. Hedonic real estate regres-

sion techniques can be used to recover the marginal value of the home’s attributes. Recent

papers have followed this strategy to estimate the compensation for flood risk (Ortega and

Tas.pınar, 2018; Bernstein, Gustafson and Lewis, 2019). Gao, Song and Timmins (2023) study

the responsiveness of regional migration in China to local air pollution. They find that this

migration elasticity nearly doubles when the authorities publicize urban air pollution lev-

els. This study’s natural experiment demonstrates that people are more responsive and more

likely to adapt to a pollution threat when they are informed about it. Our experiment’s indi-

vidual level variation in access to environmental risk information allows us to take the next

step here to investigate how different people engage with such information.

Our field experiment’s results highlight that home buyers do not have ‘complete informa-

tion about emerging risks. Home buyers are responding to this information in every phase

of the search process. In this section, we study how property-specific revelation of flood risk

affects the housing hedonic gradient. An ideal field experiment for answering this question

would randomize the flood score at the property level (not at the individual searcher level).

For every home sold in the experimental period, there was a random fraction of users who

were in the treatment and the control group. This variation is due to random variation of

who gets placed into treatment and control with small samples. For example, suppose that

50 Redfin home buyers chosen randomly in the treatment group chose to click on 14 Elm

Street, Belmont, MA 02478 when the experiment was going on (the last three months of

2020). Suppose that during that time, 100 Redfin home buyers chosen at random to be in the

control group also looked at that home. This means that 50/150 of the Redfin searchers that

were randomly selected to be in the experiment knew the home’s flood score during the study

period–we will call this number the fraction who are treated.47

Our dependent variable is the sales price minus the list price. This variable reflects the

“new news” associated with the home (Bajari et al., 2012). The First Street Foundation flood

score treatment information was an unanticipated event that could not be incorporated into

the list price. In our econometric model below, the variable, Frac_Treat represents the ratio

of the count of people in the treatment group who visited this property divided by the total

count of all Redfin searchers who visited this property. We estimate the following regression:

ypt = β0 + β1Fp + β2Frac_Treatp + β3

(
Fp ∗Frac_Treatp

)
+λz +mt +upt (9)

47Let’s also remember that Redfin allocated around 41% of its total traffic to this experiment. Thus, 59% of
its monthly traffic, by definition, didn’t know about the flood score. Following the 14 Elm Street example, we
can say that 50/336 of Redfin’s total searches for this house knew its flood score. If Redfin has a 20 percent
market share, then the market wide exposure to treatment for this home equals 50/1680 or about 3%.
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where, ypt, represents the dollar spread between the sale price and the property listing

price, p, sold in the month, t, of the experimental period. Fp shows the property’s flood

risk category (i.e., low, medium, and high), whereas, Frac_Treat, represents the percentage of

people who viewed the property and were in the treatment group as a fraction of all Redfin

viewers. λz and mt represent zip code- and month-fixed effects, respectively. upt are the

residuals. Standard errors are clustered at the zip code level.

Figure 27 (a) shows the distribution of the variable, Frac_Treat, i.e., the percentage of peo-

ple who viewed the property and were in the treatment group as a fraction of all Redfin

viewers, which follows a normal distribution. Figure 27 (b) shows estimates of β3 from es-

timator 9. We did not find a statistically significant effect when running estimator 9 on the

whole sample of listings sold during the experimental period.

Figure 27: The Association Between Treatment Exposure Intensity
and the (Sale - Listing Price) Spread

(a) Distribution of Listing Views Conducted

by Treated Users per Listing

(b) All Listings

1PP Increase in Exposure Intensity, ($)

Note: For Figure (b), vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the
95% level. The x-axis represents the flood score of the property.

However, when we divide the listings into two groups based on their characteristics —being

on the waterfront or being in a FEMA risk zone —we observe that our intensity treatment

variable, referred to as Frac_Treat, has an impact on the difference between the sale price

and the listing price. Figure 28 illustrates how a 1 percentage point increase in the intensity

treatment variable affects the spread between the sale price and the listing price for properties

that are not situated on the waterfront (see Figure 28 (a)), as well as for properties that are not
considered risky by FEMA (see Figure 28 (b)), stratified by the listing’s flood risk score. For

both instances, properties considered highly risky by First Street Foundation, incurred a price
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penalty as the percentage of treated users viewing the listing in Redfin increased.

A one percentage point increase in the percentage of views conducted by the treated users

led to a negative penalty of -$68 and -$53 for highly risky properties not on the waterfront and

not considered risky by FEMA, respectively. In other words, going from 0% (pre-experiment

beliefs) to 100% (every user on Redfin having the FSF flood score) in our variable of interest

leads to a price penalty of -$6,800 (1.7% of property prices) and -$5,300 (1.3% of property

prices) under list price among severely risky properties not on the waterfront and not consid-

ered risky by FEMA, in that order. These results suggest that the intervention influenced risk

expectations for those properties either not perceived as risky (i.e., not on the waterfront) or

not defined as risky by a government institution (i.e., not considered risky by FEMA).

We obtain these hedonic estimates based on a thought experiment where we increase the

percentage of people having the flood information from 0% to 100% . However, only roughly

40% of Redfin users were part of the experiment, and Redfin had 20% market share at the

time, so zero to one hundred is actually 0% to 8% of the whole market receiving this infor-

mation. So we have to make some assumptions about moving from the partial to the gen-

eral equilibrium to value what would happen if all consumers had the information (Banzhaf,

2021). If we assume linearity in the impact of the proportion of people having the informa-

tion of flood risk and property prices, the overall impact of house prices on high flood risk

homes to be around $85,000 (21% of the property prices). Given that FEMA estimates that

the average cost for flood damage in the NFIP in the U.S. from 2016 to 2022 was $66,000,

these numbers are quite aligned, especially given that the homes for sale on the MLS has a

higher value than all homes insured through the NFIP.
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Figure 28: CATE of an Increase in Exposure Intensity on the (Sale - Listing Price)

(a) Not Waterfront Listings

1PP Increase in Exposure Intensity, ($)
(b) Not FEMA Risky Listings

1PP Increase in Exposure Intensity, ($)

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. As
well, for Figure (b), the x-axis represents the flood score of the property.

However, we did not observe a statistically significant effect of an increase in our treatment

intensity variable on the difference between the sale price and listing price for properties lo-

cated on the waterfront versus those classified as risky by FEMA (as shown in Figure 29),

suggesting that flood risk was already priced for those properties.

Figure 29: CATE of an Increase in Exposure Intensity on the (Sale - Listing Price)

(a) Only Waterfront Listings

1PP Increase in Exposure Intensity, ($)
(b) Only FEMA Risky Listings

1PP Increase in Exposure Intensity, ($)

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score of the property.

55



Finally, we have access to information on whether an investor bought a property, the time

on the market (for examining some elements of allocative efficiency), and loan value. An in-

vestor is defined as any buyer whose name of the buyer of the listing includes at least one of

the following keywords: LLC, Inc, Trust, Corp, Homes; or any buyer whose ownership code

on a purchasing deed includes at least one of the following keywords: association, corporate

trustee, company, joint venture, or corporate trust. In Figure 30, we find that low risk is

treated differently by investors than medium and high risk. It seemed that for low flood risk

homes, moving from 0 to 100% treated Redfin users led to a 2.5 percentage point increase

in the probability of an investor buying the property (over a baseline of 9.76% in the control

group). Medium and high risk have a lower likelihood of purchasing a home, although they

are more noisy. This result does demonstrate that the flood risk is changing the expected

returns of a property, and such returns are more pivotal for investors than regular homeown-

ers. We do not find any impact of the treatment intensity variable on affecting the time on

the market (Figure A18), the loan value of the mortgage of the property (Figure A19), and the

listing price of not FEMA Risky and not waterfront properties (Figure A20).

Figure 30: CATE of an Increase in Exposure Intensity
on the Probability a Listing was Bought by an Investor

% Change relative to Control

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score of the property. An investor is defined as any buyer whose name of the buyer of the listing includes at
least one of the following keywords: LLC, Inc, Trust, Corp, Homes. We also define an investor as any buyer whose ownership code on a
purchasing deed includes at least one of the following keywords: association, corporate trustee, company, joint venture, or corporate trust.

Our interpretation of these results is that the sales price represents the outcome of a type

of auction process. For homes located in high flood risk areas for whom this information is

made public to a large number of searchers, then these treated individuals are less likely to
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bid aggressively for the home. The winning bidder for the home will end up paying less for

the home. By subtracting the asking price, we standardize the dependent variable.48 This

negative capitalization effect is likely to be even larger in cities experiencing population loss

(Glaeser and Gyourko, 2005).

Our findings have implications for hedonic real estate models of amenity and disamenity

capitalization. Given that homes are durable goods, dynamic hedonic analysis teaches us that

the expected present discounted flow of flood risk is the right “x” variable to include in a

hedonic home price regression (Bishop and Murphy, 2011, 2019; Bayer et al., 2016; Severen,

Costello and Deschenes, 2018). If home buyers are forward-looking, they will base their bids

and purchase price based on the expected future risk stream. This is also consistent with an

extrapolative model of home buying (Glaeser and Nathanson, 2017), in that (all else equal) a

high flood risk score reduced future demand for the home, and if flood risk scores are spatially

correlated, then a zip code that faces overall flood risk could be perceived to be on the decline

and this makes the property even less attractive. This discussion highlights the importance

of using expectations-based amenity variables when studying real estate price capitalization

of climate risks when these place based risks are changing over time.

6 Conclusion

A majority of American adults live in owner-occupied housing. Such housing is often their

major asset. Rising global greenhouse gas concentrations pose new place-based risks for such

real estate. In the past, trusted information about these place-based risks was difficult to

access. As Internet real estate platforms such as Redfin incorporate pinpoint climate risk

maps into their platform, this information plays a valuable role in educating home buyers.

This information can play a causal role in accelerating the pace of climate change adaptation

if home buyers respond to this information by becoming more discerning about how they

search and buy.

Thanks to Redfin’s integrated real estate platform, we are able to study the entire search

process for a randomized treatment group and a control group. A unique feature of this

field experiment is our ability to track how the same individuals act when searching on the

internet and when they are physically taking actions, such as searching, touring, and closing

on homes. We observe a logical consistency in the treatment group’s choices at every step

in the housing purchase process. At each stage of the housing search process, the flood risk

information influenced consumer behavior related to search, bidding, and closing. In the

48Given that this is a short run experiment that the seller was unaware was taking place, the asking price is
likely independent of the flood score.
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market overall, we find real changes in house prices with the flood risk information. All

of the evidence from the field experiment in this paper points to the new news hypothesis.

People were not previously aware of the risk, but now they are through an understandable

piece of information that allows consumers to have the correct flood risk beliefs. This matters

for climate change adaptation.

The three-month field experiment was extremely high stakes for the consumers, sellers, and

the market overall, in that the experiment affected the sales of 8,150 high flood risk properties

(average price = $653,000) totaling $5.3 billion. The information reduced the prices of these

high flood risk properties by $57 million. The experiment affected the sales of 186,000 low

flood risk properties (average price = $697,000) totaling $129.5 billion. Of this, the informa-

tion increased prices of these low flood risk properties by around $100 million, suggesting a

net benefit welfare effect overall.

Future research could explore demand-side and supply-side factors to gain a deeper un-

derstanding of the causal effects of pinpoint climate risk information. Specifically, on the

demand side, it would be beneficial to investigate how various individuals update their prior

beliefs when presented with climate risk information. For example, do people become scared

or more informed about another attribute of the differentiated product (i.e., the home) when

they learn it faces higher risk? Given the expense of sea walls, and levees, and given the

possibility of moral hazard and "Peltzman Effects" induced by them (Wang, 2021; Benetton

et al., 2022; Bradt and Aldy, 2022; Ostriker and Russo, 2022; Hsiao, 2023), it is important to

evaluate how to configure demand-side information to accelerate adaptation.

On the supply side, new research could focus on understanding how providers of climate

risk information can present it more effectively. For example, what presentation formats

most effectively convey risk information to consumers? Additionally, it may be helpful to

investigate how the credibility and reliability of the information source affect its impact on

decision-making. This understanding might become even more important as the government

response to actual flood disasters is very heterogeneous (Eisensee and Strömberg, 2007).

Our study has documented that millions of people respond to location specific risk infor-

mation (now all large housing search companies provide this flood and climate risk infor-

mation) . This response reveals that they trust this information. Going forward, fostering

competition between spatial risk modeler forecasts and identifying the best models will play

an important role in determining the pace of climate risk adaptation. With access to trusted

information that becomes common knowledge, real estate developers will be more likely to

invest in building in locations and with materials and designs that foster resilience to flooding

risk. Insurers will be more likely to engage in risk pricing that provides incentives for greater

self-protection investment by those who occupy risky homes.

58



Redfin is a company whose efforts to educate its customers about climate risks help them to

make informed decisions. Redfin chose to incorporate the First Street Foundation risk scores

on its platform. Future research could explore how different platforms decide what climate

risk information to incorporate into their web page interface. If a platform with a large market

share incorporated biased estimates of place based risks, then the scaled dissemination of

such information could hinder climate change adaptation.

Throughout this paper, we have assumed that sellers do not strategically respond to the

ongoing field experiment. Since Redfin did not receive any complaints from sellers related

to the property specific flood information, we do not believe that they were aware that the

demand side experiment was unfolding. Going forward, home sellers seeking to sell an ob-

jectively climate-risky home (as measured by flood risk, fire risk, and heat risk) will know

that potential buyers can go to the FSF webpage and research the home, or this information is

just directly on the Redfin platform. Sellers of such risky homes will be likely to have to sell

at a discount unless they take proactive and credible steps to upgrade the home’s resilience to

climate risk. As more sellers seek to offset their homes’ climate risk, this will create a new re-

silience market for goods ranging from better windows to shield the home from PM2.5 from

wildfires to anti-flooding strategies (Acemoglu and Linn, 2004). In this sense, the diffusion of

emerging risk information accelerates climate change adaptation.
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A Appendix

A.1 Theory extension

We have considered the case when everyone knows the true distribution of property safety, respec-

tively under two states: without and with climate change. Now suppose the true state is that climate

change takes place, but only k% of the population (randomly selected) know the true distribution of

safety is N (f̄ ′ ,σ ′2f . Consumers’ utility depends on their perceived safety level and the price of the

property. Their perceived safety hinges upon their belief on climate change. Consider those without

the true information. They have a p% probability to believe climate change is not happening and a

(1− p)% to believe the opposite. They seek to maximize their expected utility. Then these consumers

face the following maximization problem, where P2 denotes the price equilibrium function in this

economy without full information:

Maxh1
pU (h0, I − P2(h1),α) + (1− p)pU (h1, I − P2(h1),α) (10)

While consumers with updated information (i.e., know the true distribution, no uncertainty) face

the following:

Maxh1
U (h1, I − P2(h1),α) (11)

Note that from the definition of h1 and h0, we can rewrite h0 =
h1σ

′
f +f̄ ′−f̄
σf

, which would allow us to

solve for h1 in the first case.

The maximization problems can be solved by finding the first order conditions. From the first order

conditions, the demand for safety for the two groups of consumers can be written as, where n′′1 and n′′0
are coefficients of P2(h):

h0 =
(γ1 +γ2α)(p

σ ′f
σf

+ 1− p) + p(
ρσ ′f
σ2
f
− ωπ′′1

σf
)(f̄ ′ − f̄ ) +ω(I −π′′0 )(p

σ ′f
σf

+ 1− p)−θπ′′1

2ωπ′′1 (p
σ ′f
σf

+ 1− p)− ρ((
σ ′f
σf

)2 + 1− p)
(12)

h1 =
γ1 +γ2α +ωI −ωπ′′0 −θπ

′′
1

2ωπ′′1 − ρ
(13)
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A.2 The Treatments

Figure A1: The First Street Foundation flood score matrix calculation

Figure A2: Colors and Labels of Flood Scores Displayed
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A.3 Additional figures and tables

Figure A3: Number of Users Entering the Experiment

(a) By Day (b) Cumulative

Table A1: Balance Tests for Registered Users

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment 0.012 -0.004** -0.040 -20.732 51497.580 0.000 -1.047
(0.011) (0.001) (0.035) (17.045) (60686.895) (0.001) (5.388)

Constant 4.616*** 3.427*** 2.717*** 2347.868***798274.542*** 1.749*** 6974.568***
(0.343) (0.006) (0.071) (13.855) (23944.058) (0.007) (125.229)

Obs. 3,886,331 3,832,821 3,828,927 3,811,433 3,827,826 3,845,367 3,886,331

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A2: Balance Tests for Registered Users

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment 0.000 -0.000 -0.000 0.000 -0.000 0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.035*** 0.005*** 1971.718*** 25.411*** 32.484*** 35.014***
(0.000) (0.000) (0.056) (0.052) (0.044) (0.045)

Obs. 3,756,792 3,756,792 3,687,767 3,479,666 2,197,226 3,609,231
Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).
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Table A3: Balance Tests for All Users

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment -0.000 0.000 0.000 0.000 -0.000 -0.001 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.179*** 2.286*** 1.357*** 2024.415*** 485799.127*** 0.369*** 7085.469***
(0.001) (0.001) (0.000) (0.711) (333.888) (0.000) (2.706)

Obs. 20,263,675 19,553,720 19,749,101 19,702,920 19,276,527 20,007,907 20,263,675

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A4: Balance Tests for All Users

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment 0.000 0.000 0.000 -0.003** -0.001 -0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.037*** 0.007*** 1972.515*** 24.693*** 32.771*** 34.417***
(0.000) (0.000) (0.021) (0.019) (0.016) (0.016)

Obs. 20,263,675 20,263,675 19,710,317 18,362,013 10,963,216 19,221,707
Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).

Table A5: Balance Tests for Registered Users (Low Flood Score)

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment 0.001 -0.001 -0.002 -0.003 -0.007* 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.688*** 2.306*** 1.368*** 2043.907***509464.695*** 0.243*** 5967.618***
(0.065) (0.003) (0.002) (2.925) (2336.592) (0.000) (112.946)

Obs. 3,201,727 3,150,989 3,164,474 3,154,546 3,157,116 3,192,673 3,201,727

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A6: Balance Tests for Registered Users (Low Flood Score)

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment 0.000 -0.000 -0.000 -0.001 -0.001 0.001
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.036*** 0.005*** 1971.660*** 25.146*** 32.104*** 34.440***
(0.000) (0.000) (0.203) (0.113) (0.253) (0.070)

Obs. 3,201,727 3,201,727 3,156,132 2,984,810 1,897,289 3,093,164

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).
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Table A7: Balance Tests for Registered Users (Medium Flood Score)

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment -0.002 -0.002 -0.004 -0.005 -0.011 0.003 0.004
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.479*** 2.061*** 1.255*** 1871.379***490104.659*** 1.693*** 6393.800***
(0.049) (0.004) (0.002) (5.119) (2866.718) (0.007) (102.238)

Obs. 496,765 484,654 487,313 484,647 489,071 495,171 496,765

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A8: Balance Tests for Registered Users (Medium Flood Score)

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment -0.001 -0.000 -0.000 0.006 0.001 0.004
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.034*** 0.006*** 1971.419*** 27.544*** 34.902*** 38.944***
(0.000) (0.000) (0.171) (0.184) (0.220) (0.138)

Obs. 496,765 496,765 485,020 454,676 282,374 473,876

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).

Table A9: Balance Tests for Registered Users (High Flood Score)

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment -0.014 0.011 0.014 0.018 0.006 -0.005 -0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.346*** 1.750*** 1.251*** 1744.026***501075.050*** 6.417*** 7333.455***
(0.040) (0.015) (0.012) (21.034) (12133.754) (0.031) (103.815)

Obs. 34,191 33,072 33,295 33,127 33,716 33,992 34,191

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A10: Balance Tests for Registered Users (High Flood Score)

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment 0.009** -0.001 0.000 0.034 0.040* 0.018
(0.000) (0.000) (0.000) (0.001) (0.001) (0.000)

Constant 0.030*** 0.006*** 1977.218*** 23.030*** 34.823*** 40.533***
(0.000) (0.000) (0.458) (0.490) (0.414) (0.377)

Obs. 34,191 34,191 33,193 30,790 13,613 32,271

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).
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Figure A4: Balance Tests Trajectories
Estimates relative to the week before the experiment began

(a) Views (b) Bedrooms

(c) Bathrooms (d) Sq. Ft.

(e) List Price (f) Flood Score
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Table A11: Pre-Experiment Distribution of Flood Score
for Registered Users by Treatment Status

Number of Registered Users; Column Percentages in Parenthesis

Flood Score Category Control Treatment Total

Low 369,997 369,779 739,776

(83.41) (83.46) (82.82)

Medium 66,976 66,566 133,542

(15.10) (15.02) (15.10)

High 6,592 6,707 13,299

(1.49) (1.51) (1.50)

Total 443,565 443,052 886,617

(100.00) (100.00) (100.00)

Table A12: Pre-Experiment Distribution of Flood Score for Users by Treatment Status

Number of Users; Column Percentages in Parenthesis

Flood Score Category Control Treatment Total

Low 2,382,113 2,383,094 4,765,207

(82.79) (82.84) (82.82)

Medium 435,051 433,629 868,680

(15.12) (15.07) (15.10)

High 60,086 60,037 120,123

(2.07) (2.08) (2.08)

Total 2,877,250 2,876,760 5,754,010

(100.00) (100.00) (100.00)
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Table A13: Registered vs. Non-Registered Users During the Pre-Experiment Phase

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Registered 0.313*** -0.009*** -0.003*** -0.007*** 0.063*** 0.031*** -0.194***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.023*** 2.292*** 1.356*** 2025.810*** 475826.054*** 0.359*** 7508.680***
(0.000) (0.000) (0.000) (0.547) (249.535) (0.000) (2.022)

Obs. 19,091,234 18,401,110 18,592,661 18,551,868 18,117,389 18,848,928 19,091,234

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Coefficients are in the form of (eβ − 1).

Table A14: Registered vs. Non-Registered Users During the Pre-Experiment Phase

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Registered -0.002*** -0.003*** -0.001*** 0.042*** -0.011*** 0.027***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.037*** 0.008*** 1972.762*** 24.336*** 32.853*** 34.106***
(0.000) (0.000) (0.016) (0.014) (0.013) (0.013)

Obs. 19,091,234 19,091,234 18,558,011 17,264,853 10,223,715 18,090,938
Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Except for columns (1) and (2), coefficients are in the
form of (eβ − 1).
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Table A15: ATE on the Characteristics of the Homes Viewed
% Change relative to Control

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Experiment began 21.896*** 0.091*** 0.100*** -0.346*** -2.783*** 1.082*** -7.009***
(0.056) (0.022) (0.026) (0.034) (0.065) (0.035) (0.039)

Treatment -0.026 0.061 0.020 0.030 0.031 -0.065 0.043
(0.075) (0.033) (0.039) (0.051) (0.100) (0.050) (0.054)

Diff-in-diffs -0.010 -0.044 -0.004 -0.016 -0.027 -0.015 -0.060
(0.079) (0.032) (0.037) (0.048) (0.092) (0.049) (0.055)

Obs. 82,829,780 79,522,502 80,268,396 80,114,762 78,399,668 81,365,064 82,829,780

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 6.

Table A16: ATE for Registered Users on the Characteristics of the Homes Viewed
% Change relative to Control

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Experiment began 20.278*** 0.336*** 0.288*** -0.311*** -2.917*** 0.837*** -7.926***
(0.155) (0.058) (0.069) (0.090) (0.175) (0.087) (0.109)

Treatment 0.023 -0.118 -0.230* -0.295* -0.731** -0.068 0.029
(0.209) (0.087) (0.103) (0.135) (0.268) (0.128) (0.153)

Diff-in-diffs -0.021 0.096 0.091 0.116 0.193 -0.078 -0.183
(0.219) (0.082) (0.097) (0.126) (0.246) (0.123) (0.154)

Obs. 15,074,700 14,779,817 14,837,436 14,771,224 14,834,564 14,889,899 15,074,700

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 6.
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Table A17: ATE on the Characteristics of the Homes Viewed
with Pre-Experiment Information

% Change relative to Control

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Experiment began 28.066*** 0.210*** 0.463*** -0.136*** 0.704*** 1.586*** -12.333***
(0.065) (0.025) (0.029) (0.038) (0.072) (0.038) (0.045)

Treatment -0.032 0.062 0.020 0.032 0.031 -0.065 0.040
(0.076) (0.033) (0.039) (0.051) (0.100) (0.050) (0.055)

Diff-in-diffs 0.070 -0.048 -0.008 -0.036 0.019 -0.023 -0.059
(0.091) (0.035) (0.041) (0.053) (0.102) (0.053) (0.063)

Obs. 60,606,062 59,045,933 59,514,136 59,398,412 58,427,212 60,459,949 60,606,062

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 6.

Table A18: ATE for Registered Users on the Characteristics of the Homes Viewed
with Pre-Experiment Information

% Change relative to Control

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Experiment began 19.570*** 0.498*** 0.485*** 0.065 -1.488*** 0.868*** -9.129***
(0.160) (0.060) (0.070) (0.092) (0.179) (0.089) (0.113)

Treatment 0.032 -0.109 -0.226* -0.279* -0.701** -0.068 0.018
(0.210) (0.087) (0.103) (0.135) (0.269) (0.128) (0.153)

Diff-in-diffs -0.059 0.083 0.097 0.137 0.289 -0.055 -0.098
(0.227) (0.084) (0.099) (0.129) (0.252) (0.126) (0.159)

Obs. 13,746,356 13,538,474 13,588,603 13,544,431 13,584,855 13,704,992 13,746,356

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Note: Coefficients are in the form of ((eβ − 1) · 100)
from equation 6.
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Figure A5: Event-time Study on the Average Daily Flood Score
of Properties Searched for Registered Users

(a) Low (b) Medium

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 8. Coefficients are relative to the week before a user entered the
experiment. Vertical lines crossing the estimates are confidence intervals at the 95% level. The vertical dashed line represents the beginning
of the experiment for a user. The x-axis represents each user’s baseline average flood score search category before the experiment began.

Figure A6: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Characteristics of Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Mean Flood Score at

Destination Zip Code than Origin

(b) Higher Mean Flood Score at

Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began.
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Figure A7: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Flood Characteristics of the Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Standard Deviation Flood Score at

Destination Zip Code than Origin

(b) Higher Standard Deviation Flood Score

at Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began.

Figure A8: CATE on the Average Outcomes of a Daily Search
for Registered Users Browsing Low Risk Properties at Baseline

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 90% and 95% levels. The x-axis represents treatment effects for users browsing low flood risk
properties, on average, before the experiment began.
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Figure A9: CATE on the Average Outcomes of a Daily Search
for Registered Users Browsing Medium Risk Properties at Baseline

% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 90% and 95% levels. The x-axis represents treatment effects for users browsing medium flood
risk properties, on average, before the experiment began.

Figure A11: CATE on the Probability of Platform Registration
% Change relative to Control
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Table A19: Average Treatment Effects on Platform Activity
Coefficients in terms of Elasticity, % Change relative to Control

(1) (2) (3) (4)
Total Seconds Number Sessions Unique Home Views Total Home Views

Treatment -0.432 -0.000 -0.001 -0.002
(1.335) (0.001) (0.002) (0.002)

Experiment began 294.450*** 0.156*** 0.296*** 0.328***
(18.732) (0.011) (0.019) (0.023)

Diff-in-diffs 3.827** 0.000 0.003 0.004
(1.338) (0.001) (0.002) (0.002)

Obs. 67,880,318 67,880,318 67,880,318 67,880,318

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Estimates from columns 2, 3, and 4 were calculated
using a Poisson regression.

Table A20: ATE for Registered Users on the Activity on the Platform
Coefficients in terms of Elasticity, % Change relative to Control

(1) (2) (3) (4)
Total Seconds Number Sessions Unique Home Views Total Home Views

Treatment 0.123 -0.001 -0.000 -0.001
(4.048) (0.001) (0.004) (0.004)

Experiment began 290.309*** 0.123*** 0.210*** 0.242***
(30.415) (0.013) (0.030) (0.036)

Diff-in-diffs 4.067 0.002 0.000 0.001
(4.288) (0.001) (0.004) (0.004)

Obs. 23,909,318 23,909,318 23,909,318 23,909,318

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level. Estimates from columns 2, 3, and 4 were calculated
using a Poisson regression.
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Figure A12: CATE on the Percentage of Times Registered Users
Engaged with the Flood Risk Section of a Listing per Day

% Times User Engaged with Feature for Listings Viewed per Day

(a) Without Waterfront Search at Baseline (b) With Waterfront Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any
waterfront property before the experiment are classified as “without” waterfront search at baseline. On the other hand, users who browsed
at least one waterfront property before the experiment are classified as “with” waterfront search at baseline.

Figure A13: CATE on the Percentage of Times Registered Users
Engaged with the Flood Risk Section of a Listing per Day

% Times User Engaged with Feature for Listings Viewed per Day

(a) Without FEMA Risk Search at Baseline (b) With FEMA Risk Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The x-
axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any property
considered risky by FEMA before the experiment are classified as “without” FEMA risk search at baseline. On the other hand, users who
browsed at least one property considered risky by FEMA before the experiment are classified as “with” FEMA risk search at baseline.
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Figure A14: CATE on the Percentage of Times Registered Users
Clicked “Favorite” a Property per Day

% Times User Engaged with Feature for Listings Viewed per Day

(a) Without Waterfront Search at Baseline (b) With Waterfront Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any
waterfront property before the experiment are classified as “without” waterfront search at baseline. On the other hand, users who browsed
at least one waterfront property before the experiment are classified as “with” waterfront search at baseline.

Figure A15: CATE on the Percentage of Times Registered Users
Clicked “Favorite” a Property per Day

% Times User Engaged with Feature for Listings Viewed per Day

(a) Without FEMA Risk Search at Baseline (b) With FEMA Risk Search at Baseline

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The x-
axis represents each user’s baseline average flood score search category before the experiment began. Users who did not browse any property
considered risky by FEMA before the experiment are classified as “without” FEMA risk search at baseline. On the other hand, users who
browsed at least one property considered risky by FEMA before the experiment are classified as “with” FEMA risk search at baseline.
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Figure A16: CATE on the Days between Entering the Experiment
and Going on a House Tour for Registered Users

% Change relative to Control

Note: Coefficients are in the form of incidence rate ratios from equation 7 using a Poisson regression. Vertical lines crossing the estimates
are confidence intervals, where the cap represents the confidence interval at the 90% and 95% levels, respectively. The x-axis represents
treatment effects for users browsing low, medium, and high flood risk properties, on average, before the experiment began.

Table A21: Balance Tests for Registered Users That Eventually Placed an Offer
(Low Flood Score)

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment 0.054 -0.007 -0.003 -0.009 0.012 0.012 -0.026
(0.032) (0.011) (0.012) (0.016) (0.027) (0.009) (0.020)

Constant 1.331*** 1.205*** 0.861*** 7.616*** 13.130*** 0.225*** 8.531***
(0.020) (0.007) (0.008) (0.011) (0.019) (0.006) (0.014)

Obs. 21,983 21,823 21,866 21,807 21,881 21,975 21,983

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level.

Table A22: Balance Tests for Registered Users That Eventually Placed an Offer
(Low Flood Score)

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment -0.002 -0.003 0.000 0.016 0.013 0.038
(0.003) (0.002) (0.001) (0.034) (0.025) (0.022)

Constant 0.037*** 0.008*** 7.588*** 3.345*** 3.480*** 3.628***
(0.002) (0.002) (0.000) (0.023) (0.015) (0.015)

Obs. 21,983 21,983 21,830 21,162 14,858 21,558

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level.
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Table A23: Balance Tests for Registered Users That Eventually Placed an Offer
(Medium Flood Score)

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment -0.079 -0.053 -0.036 -0.064 0.012 -0.050 -0.001
(0.071) (0.028) (0.031) (0.039) (0.069) (0.032) (0.046)

Constant 1.259*** 1.159*** 0.828*** 7.547*** 13.055*** 1.036*** 8.633***
(0.050) (0.020) (0.025) (0.030) (0.048) (0.023) (0.030)

Obs. 3,108 3,074 3,079 3,073 3,090 3,104 3,108

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level.

Table A24: Balance Tests for Registered Users That Eventually Placed an Offer
(Medium Flood Score)

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment -0.004 0.003 0.002 0.015 0.027 0.007
(0.006) (0.002) (0.001) (0.089) (0.061) (0.049)

Constant 0.032*** 0.003*** 7.586*** 3.449*** 3.554*** 3.783***
(0.005) (0.001) (0.001) (0.068) (0.044) (0.036)

Obs. 3,108 3,108 3,064 2,964 2,051 3,044

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level.

Table A25: Balance Tests for Registered Users That Eventually Placed an Offer
(High Flood Score)

(1) (2) (3) (4) (5) (6) (7)
Views Bedrooms Bathrooms Sq. Ft. List Price Flood Score HHI Zip

Treatment -0.036 -0.072 0.039 0.084 -0.179 -0.010 0.016
(0.234) (0.182) (0.133) (0.193) (0.360) (0.047) (0.203)

Constant 0.999*** 0.965*** 0.782*** 7.379*** 13.337*** 1.997*** 8.799***
(0.160) (0.079) (0.068) (0.092) (0.179) (0.038) (0.134)

Obs. 214 211 212 212 214 214 214

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level.
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Table A26: Balance Tests for Registered Users That Eventually Placed an Offer
(High Flood Score)

(1) (2) (3) (4) (5) (6)
New Construction Short Sale Year Built Walk Score Transit Score Bike Score

Treatment 0.016 0.002 0.003 -0.186 -0.004 0.060
(0.024) (.) (0.003) (0.284) (0.101) (0.154)

Constant 0.021 0.000 7.589*** 3.483*** 3.652*** 3.716***
(0.020) (.) (0.002) (0.177) (0.041) (0.126)

Obs. 214 214 212 199 92 211

Note: *** p<0.001, ** p<0.01, * p<0.05. Standard Errors Clustered at the User Level.

Table A27: Romano-Wolf Corrected P-Values for Search Main Results

Figure # Risk Score at Baseline Clustered SE P-Value Romano-Wolf P-Value
4 Low 0.56 0.82

Medium 0.33 0.43
High 0.02 0.01

9(a) Low 0.30 0.37
Medium 0.47 0.69

High 0.90 0.95
9(b) Low 0.90 0.95

Medium 0.43 0.61
High 0.02 0.01

10(a) Low 0.37 0.50
Medium 0.78 0.95

High 0.25 0.25
10(b) Low 0.77 0.95

Medium 0.34 0.46
High 0.07 0.01

11 Low 0.59 0.84
Medium 0.71 0.93

High 0.02 0.01

Note: Standard Errors Clustered at the User Level for both p-values. 1,000 resamples for the Romano-Wolf p-value.
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Table A28: Romano-Wolf Corrected P-Values for Offer Main Results

Figure # Risk Score at Baseline Robust SE P-Value Romano-Wolf P-Value
17(b) Low 0.68 0.99

Medium 0.39 0.97
High 0.00 0.07

19(a) Low 0.79 0.99
Medium 0.14 0.75

High 0.76 0.99
19(b) Low 0.14 0.75

Medium 0.30 0.93
High 0.05 0.48

20(a) Low 0.58 0.99
Medium 0.63 0.99

High 0.77 0.99
20(b) Low 0.93 0.99

Medium 0.45 0.98
High 0.11 0.70

21 Low 0.12 0.70
Medium 0.03 0.36

High 0.05 0.47

Note: Robust Standard Errors at the User Level for both p-values. 3,000 resamples for the Romano-Wolf p-value.
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Figure A17: CATE on the Average Flood Score of a Daily Search for Registered Users, by
whether the user’s county of origin or destination search at baseline experienced a flood

shock in the past 7 days

% Change relative to Control

(a) County of Origin (b) County of Destination

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level.
Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. The x-axis represents each user’s baseline average flood score search category
before the experiment began.

Figure A18: The Association Between Treatment Exposure Intensity
and the Time on the Market for All Listings

1PP Increase in Exposure Intensity, ($)

Note: For Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level.
The x-axis represents the flood score of the property.
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Figure A19: The Association Between Treatment Exposure Intensity
and Loan Value for All Listings

1PP Increase in Exposure Intensity, ($)

Note: For Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level.
The x-axis represents the flood score of the property. Only listings that were bought with a loan.

Figure A20: The Association Between Treatment Exposure Intensity
and Listing Price for Not Waterfront and Not FEMA Risky Listings

1PP Increase in Exposure Intensity, ($)

Note: For Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level.
The x-axis represents the flood score of the property.

A.4 Nonparametric Heterogeneous Treatment Effects

We seek to identify the conditional average treatment effect on the treated (CATE), which seeks to

identify differences in treatment effects within the population and how big these differences are with

an estimand defined as:
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CATE ≡ τ(X) = E

[
Y

(1)
i −Y

(0)
i | Xi = x

]
= µ1(x)−µ0(x) (14)

Where Y
(1)
i and Y

(0)
i are the potential outcomes of outcome, Y , with observed covariates, X ∈ R, for

individual, i. The goal is to identify the CATE or τ(X) which is the difference in potential outcomes

that equates to the difference in the conditional expectation of x: µ1(x)−µ0(x). Given that our treatment

was randomized, we could estimate τ(x) via estimator 7. However, estimator 7 relies on the linearity

assumption of the effect that covariates, Xi , have on the treatment. If these effects were non-linear,

our calculated estimates would be biased or wouldn’t cover the entire distribution of heterogeneous

treatment effects. We rely on causal forests, a Generalized Random Forest algorithm, to relax this

assumption and not provide a parametric form (Athey, Tibshirani and Wager, 2019; Athey and Wager,

2021). Causal forests are built to identify how treatment effects vary across users by maximizing the

difference in the relationship between our target variable (i.e., our outcome variable) and a specific

feature (i.e., our treatment indicator) within other features (i.e., our baseline covariates). This method

employs a splitting criterion optimized for detecting splits that reveal treatment effect heterogeneity.

The objective is to identify leaf nodes where the treatment effect is constant but distinct from other

leaves.

In our analyses, we utilize baseline variables as covariates, X. We use the most searched city, the

device most used by the user to browse the web (i.e., mobile or desktop), the number of weeks since

the user entered the experiment, and the baseline average flood of all the houses viewed by user, i. We

randomly split our data into training (70%) and testing (30%) samples. We used the training sample to

fit a causal forest with 50,000 trees grown in the forest and four grown trees on each subsample. After

training the causal forest, we predicted conditional treatment effects on the testing sample and a 90%

confidence interval around each one. On each graph presented below, we show the percent rank of the

conditional average treatment effects with a 90% confidence interval, where a bigger coefficient size

tells us that more observations lie within the branch of the calculated conditional average treatment

effect.
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Figure A21: Causal Forest—High Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the extreme risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.

Figure A22: Causal Forest—Medium Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the severe risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.
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Figure A23: Causal Forest—Low Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the major risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.
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A.5 Six Categories

Table A29: Pre-Experiment Distribution of Flood Score for Users by Treatment Status

Number of Users; Column Percentages in Parenthesis

Flood Score Category Control Treatment Total

Minimal 1,962,300 1,963,483 3,925,783

(68.20) (68.25) (68.23)

Minor 419,813 419,611 839,424

(14.59) (14.59) (14.59)

Moderate 323,050 322,315 645,365

(11.23) (11.20) (11.22)

Major 112,001 111,314 223,315

(3.89) (3.87) (3.88)

Severe 29,470 29,681 59,151

(1.02) (1.03) (1.03)

Extreme 30,616 30,356 60,972

(1.05) (1.05) (1.05)

Total 2,877,250 2,876,760 5,754,010

(100.00) (100.00) (100.00)
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Table A30: Pre-Experiment Distribution of Flood Score
for Registered Users by Treatment Status

Number of Registered Users; Column Percentages in Parenthesis

Flood Score Category Control Treatment Total

Minimal 275,765 275,476 551,241

(62.17) (62.18) (62.17)

Minor 94,232 94,303 188,535

(21.24) (21.28) (21.26)

Moderate 53,124 52,913 106,037

(11.98) (11.94) (11.96)

Major 13,852 13,653 27,505

(3.12) (3.08) (3.10)

Severe 3,799 3,825 7,624

(0.86) (0.86) (0.86)

Extreme 2,793 2,882 5,675

(0.63) (0.65) (0.64)

Total 443,565 443,052 886,617

(100.00) (100.00) (100.00)
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Figure A24: CATE on the Average Flood Score of a Daily Search for Registered Users
% Change relative to Control

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began.
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Figure A22: Event-time Study on the Average Daily Flood Score
of Properties Searched for Registered Users

% Change relative to Control
(a) Extreme (b) Severe

(c) Major (d) Moderate

(e) Minor (f) Minimal

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 8. Coefficients are relative to the week before a user entered the
experiment. Vertical lines crossing the estimates are confidence intervals at the 95% level. The vertical dashed line represents the beginning
of the experiment for a user. The x-axis represents each user’s baseline average flood score search category before the experiment began.
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Figure A23: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Characteristics of Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Mean Flood Score at

Destination Zip Code than Origin

(b) Higher Mean Flood Score at

Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began.

Figure A24: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Flood Characteristics of the Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Standard Deviation Flood Score at

Destination Zip Code than Origin

(b) Higher Standard Deviation Flood Score

at Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began.
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Figure A25: CATE on the Average Flood Score of a Daily Search for Registered Users, by
Characteristics of Most Searched Destination and Origin Zip Code at Baseline

(a) Lower Coefficient of Variation Flood

Score at Destination Zip Code than Origin

(b) Higher Coefficient of Variation Flood

Score at Destination Zip Code than Origin

Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where
the cap represents the confidence interval at the 95% level. The x-axis represents each user’s average flood score search category before the
experiment began.

Figure A26: CATE on the Average Flood Score of a Daily Search for Registered Users,
by Redfin’s Probability of Registered User Buying a House at Baseline

(a) Bottom 90 of Redfin’s Probability (b) Top 10 of Redfin’s Probability

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began.
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Figure A27: CATE on the Average Flood Score of a Daily Search for Registered Users,
by Within-City Average Price Quintile Search at Baseline

Stratified by Average Flood Score Search at Baseline

(a) Extreme (b) Severe

(c) Major (d) Moderate

(e) Minor (f) Minimal

Note: Note: Coefficients are in the form of ((eβ3 − 1) · 100) from equation 8. Vertical lines crossing the estimates are confidence intervals at
the 95% level. The x-axis represents the baseline average listing price quintile within a city search category of each user pre-experiment.
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Figure A28: CATE on the Probability of Platform Registration
% Change relative to Control

Figure A29: CATE on the Average Flood Score of a Daily Search for Registered Users, by
whether the user’s county of origin or destination search at baseline experienced a flood

shock in the past 7 days

(a) County of Origin (b) County of Destination

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level.
Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. The x-axis represents each user’s baseline average flood score search category
before the experiment began.

104



Figure A30: CATE on the Number of Homes Viewed per Day for Registered Users

(a) Seconds Spent (b) Number of Sessions

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.

Figure A31: CATE on the Number of Homes Viewed per Day for Registered Users

(a) Unique Home Views (b) Total Home Views

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.
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Figure A32: CATE on the Percentage of Times for Registered Users
Engaged with a Specific Property’s Features per Day

(a) Engaged with Flood Risk Section (b) Clicked “Favorite” a Property

(c) Clicked Next Photo (d) Clicked Active Similar Properties

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents each user’s baseline average flood score search category before the experiment began.
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Figure A33: CATE on the Probability of Booking a Tour and Canceling a House Tour

% Change relative to Control for Registered Users

(a) Probability of Booking a Tour (b) Probability of Cancelling a House Tour

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score category of the property.

Figure A34: CATE on the Probability of Making an Offer as a Function of the Flood Score

% Change relative to Control

(a) Probability of Placing an Offer (b) Flood Score of the Property

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began. S.E. clustered at the registered user level. FE = Fixed Effects of the location of the Property.

107



Figure A35: CATE on the Characteristics of an Offer

% Change relative to Control
(a) Prob. of Offer being on the Waterfront (b) Square Feet of the Property

Note: For Figure (b), coefficients are in the form of ((eβ3 − 1) · 100) from equation 7. Vertical lines crossing the estimates are confidence
intervals, where the cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score
search category before the experiment began. Standard errors clustered at the user level. FE = Fixed Effects of the location of the Property.

Figure A36: CATE on the Probability of Closing on a Property

% Change relative to Control

(a) Probability of Closing an Offer (b) Flood Score of the Closed Properties

Note: Coefficients are in the form of ((eβ3 −1) ·100) from equation 7. Vertical lines crossing the estimates are confidence intervals, where the
cap represents the confidence interval at the 95% level. The x-axis represents each user’s baseline average flood score search category before
the experiment began. FE = Fixed Effects of the location of the Property.
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Figure A37: The Association Between Treatment Exposure Intensity
and the (Sale - Listing Price) Spread for All Listings

1PP Increase in Exposure Intensity, ($)

Note: For Figure (b), vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the
95% level. The x-axis represents the flood score of the property.

Figure A38: CATE of an Increase in Exposure Intensity on the (Sale - Listing Price)

(a) Only Not Waterfront Listings

1PP Increase in Exposure Intensity, ($)
(b) Only Not FEMA Risky Listings

1PP Increase in Exposure Intensity, ($)

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. As
well, for Figure (b), the x-axis represents the flood score of the property.
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Figure A39: CATE of an Increase in Exposure Intensity on the (Sale - Listing Price)

(a) Only Waterfront Listings

1PP Increase in Exposure Intensity, ($)
(b) Only FEMA Risky Listings

1PP Increase in Exposure Intensity, ($)

Note: Vertical lines crossing the estimates are confidence intervals, where the cap represents the confidence interval at the 95% level. The
x-axis represents the flood score of the property.

Figure A40: Causal Forest—Extreme Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the extreme risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.
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Figure A41: Causal Forest—Severe Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the severe risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.

Figure A42: Causal Forest—Major Risk Group
% Change relative to Control

Note: The causal forest was trained on 70% of the major risk universe, and the plotted effects are calculated on 30% of the rest. We use
50,000 trees to grow the forest. We use baseline variables to fit the model. A bigger size of the circle effects tells us that more observations
lie within the branch of the calculated conditional average treatment effect.
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Figure A43: Causal Forest—Moderate Risk Group
% Change relative to Control

Note: For computational reasons, we used 20% of the moderate risk universe. From that sample, the causal forest was trained on 70% of it,
and the plotted effects are calculated on the 30% rest. We use 50,000 trees to grow the forest. We use baseline variables to fit the model. A
bigger size of the circle effects tells us that more observations lie within the branch of the calculated conditional average treatment effect.

Figure A44: Causal Forest—Minor Risk Group
% Change relative to Control

Note: For computational reasons, we used 10% of the minor risk universe. From that sample, the causal forest was trained on 70% of it,
and the plotted effects are calculated on the 30% rest. We use 50,000 trees to grow the forest. We use baseline variables to fit the model. A
bigger size of the circle effects tells us that more observations lie within the branch of the calculated conditional average treatment effect.
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Figure A45: Causal Forest—Minimal Risk Group
% Change relative to Control

Note: For computational reasons, we used 5% of the minimal risk universe. From that sample, the causal forest was trained on 70% of it,
and the plotted effects are calculated on the 30% rest. We use 50,000 trees to grow the forest. We use baseline variables to fit the model. A
bigger size of the circle effects tells us that more observations lie within the branch of the calculated conditional average treatment effect.
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