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1 Introduction

This paper provides a closed-form theory of the complexity of standard economic
decisions and its implications for behavior. The guiding thread underlying our
model is that the insights, thoughts and calculations underlying economic actions
and beliefs are produced by the mind, akin to a cognitive factory. To represent that,
we apply the macroeconomic framework of production functions to the individ-
ual decision-making problem and combine it with standard notions of imprecise
cognitive processing adapted from the cognitive sciences. As a car firm uses labor,
steel and plastic as inputs, the mind, to produce a thought, uses mental labor, and
thoughts about subproblems, that in turn rely on more mental labor, and thoughts
about sub-subproblems. In a related way, macroeconomics conceptualizes the total
efficiency of a process via total factor productivity. Here, complexity – the difficulty
of producing a thought – will be a sort of inverse total factor productivity. How-
ever, such mental operations tend to be imprecise and are a prone to error, which
can lead to systematic and predictable deviations from optimality (Gabaix, 2019;
Woodford, 2020). We propose a combination of the concepts of production func-
tions and imprecise cognition, harnessing methods that that the economic toolbox
is already well adapted to while accommodating the richness of key insights from
the cognitive sciences.

Why should economists care about complexity? Even though complexity intu-
itively matters for key economic outcomes and policymaking, there is a dearth of
theories about the complexity of economic decisions to guide and discipline empiri-
cal work. Existing empirical work (including our own) often invokes complexity
as a catch-all concept, a reduced-form notion or a residual explanation, and had
to rely on ad hoc definitions of complexity for a specific application under consid-
eration. In theory and applied work, there is a collection of “local” complexity
definitions that are not applicable outside of their narrowly defined contexts (see
review below).

We attempt to provide a domain-general theory, starting from an elementary
definition of complexity. We posit a cognitive production function that takes cog-
nitive labor L as an input to generate an expected level of performance q 2 [0, 1] on
a decision task by means of a cognitive strategy. The primary objective of this
paper is to endogenize this cognitive production function. We define two no-
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tions of complexity. Input-based complexity is the mental effort required to achieve
performance level q. Output-based complexity is the performance shortfall – rela-
tive to perfect accuracy – of the response reached given mental effort L. Notably,
this setup proposes a continuous notion of complexity: complexity is a function,
defined for a given level of performance or cognitive labor. Complexity is thus
a high-dimensional object, hence potentially quite untractable, so we propose a
one-dimensional measure, by imagining a world with a Cobb-Douglas production
function of thought. Then, the one-dimensional measure of complexity is a form
of inverse total factor productivity. This is the key object on which calculations can
be made.

We then proceed to the more concrete task of the paper, deriving complexity
from primitives. The basic building blocks of our model are the components of a
problem: each dimension i captures a state of the world or problem parameter
xi that the utility-maximizing action depends on. We study linear-quadratic se-
tups that cover all smooth problems by Taylor approximation. The agent receives
noisy cognitive signals about how each dimension i should change their rational
action. We interpret such processing noise not as perceptual noise about problem
parameters but rather as integration noise that occurs when people form mental
representations of problem quantities in determining how those affect their action.
Agents account for such cognitive processing noise in an (as-if) Bayesian fashion
by integrating the signal with a suitable prior. This approach to imprecise cogni-
tion leverages a large body of work in the cognitive sciences as well as a recent
theoretical and empirical literature in economics as reviewed below.

The primitives of the agent’s optimization problem are (i) the relative impor-
tance share si of each dimension, i.e., the share of variance in the action that is due
to dimension i; and (ii) the complexity ci of dimension i, which corresponds to the
amount of cognitive labor that would have to be devoted to dimension i to achieve
optimal performance. We start out assuming exogenous micro-complexities ci but
endogenize those later. We primarily focus on Cobb-Douglas (with curvature pa-
rameter a) micro cognitive production functions (at the level of a dimension) to
leverage their aggregation properties. The agent decides how much cognitive la-
bor Li to devote to each dimension subject to an overall effort constraint. Notably,
this generally makes cognitive effort substitutable across dimensions: agents will
invest more resources into more important dimensions. Our model yields the fol-
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lowing central expression for the macro complexity of a problem as a function of
the above primitives (see eq. (12) for details):

C ((si, ci)i=1...N) =

 
N

Â
i=1

s
1
a
i c

a�1
a

i

! a
a�1

(1)

So, the macro complexity C is a form of non-linear sum of the underlying micro-

complexities ci, weighed by the importance s
1
a
i of the various dimensions. We de-

rive the following general propositions about complexity C. First, higher compo-
sitionality leads to more complexity: problem complexity increases with the num-
ber of dimensions N, but more precisely, as a function of the “effective” number of
dimensions, where important dimensions (with high si) count more than less im-
portant ones. Second, complexity decreases in the relative extremity of individual
dimensions: as the importance share of the most important dimensions rises, com-
plexity decreases. Intuitively, the agent can focus their attention more and more
on that dominating dimension: in the limit where there is only one very large di-
mension, only that dimension matters: if s1 ' 1, then C ' c1. Third, the central
behavioral implications of complexity are larger errors and behavioral attenua-
tion: as complexity rises, people’s actions becomes less precise, and less sensitive
to variation in problem parameters, relative to the corresponding sensitivity of the
rational action. Moreover, complexity increases the subjective feeling of error, cog-
nitive uncertainty (Enke and Graeber, 2023).

Applications A central objective of our model is to provide an easy-to-use ap-
proach to model and test for complexity in concrete economic applications, e.g.
empirical or theoretical — not just for behavioral theory. We provide a user’s guide
that delineates the basic template for applying our model to practical economic set-
tings. We then implement this approach to study, through the lens of our model,
the complexity of basic static consumption, of the tax system, and of consumption
planning over the life cycle.We revisit the basic theory of consumption, where a
consumer chooses a bundle of goods.1 We ask: what is the complexity of choosing
a good, or N goods?

The conclusions are the following: Even choosing a good is hard, as we typi-

1The prior conclusions in Gabaix (2014) and Lian (2021) still hold, but we can now ask about the
complexity of such decisions.
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cally cannot precisely identify a key parameter, the elasticity of demand. Consider
the following question: The price of coffee goes up by 10%, how much would you
decrease your demand for coffee? Introspection shows that this is hard to know
– even though basic economics essentially always assumes perfect knowledge of
this.

Then, we move on to the complexity of choosing two goods, with a “linear
good” that absorbs income effects. When utility is separable, the problem is rela-
tively easy: choose one good at a time. As the degree of complementarity (or sub-
stitutability) increases, complexity is higher. Suppose that I like eating fish with
lemon. Then, my optimal consumption of fish depends on the price of fish, and
my consumption of lemon. And vice-versa: my optimal consumption of lemon
depends on the price of lemon, and my consumption of fish. So we have a “loop”
— a fixed point problem — which adds complexity.

So, one prediction is that people will make more mistakes when goods have
higher complementarity of substitutability — this captures that there are many
moving parts that interact with each other.2

We then move to the complexity of intertemporal consumption. Our model
captures the intuition that optimally responding to a $1 change in permanent in-
come is easy, as this is achieved by increasing consumption today by $1 – the an-
swer exhibits zero “compositionality” in our model. However, reacting optimally
to a $1 change in transitory income is harder, as it requires taking into account the
number of consumption periods. Reacting to a change in the interest rate is harder
yet, as it requires introspecting about one’s elasticity of substitution in addition
to the number of periods. Hence, even controlling for objective stakes, the inter-
est rate is more complex to incorporate than income. In practice, that implies that
people are more reactive to income shocks than interest rate shocks, compared to
a rational benchmark.

Our applications demonstrate how our model delivers testable predictions for
classic economic decision problems. Complementing the theoretical approach,
we conduct an empirical exercise with two main objectives: first, we provide a
portable methodology to experimentally measure subjective perceptions of com-
plexity. Second, we test the basic predictions of our theory in the case of intertem-

2This also would give a theory of “menus of bundles” — simplifications where restaurants pro-
pose a pre-arranged bundles: this simplifies the decision.
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poral consumption choice.

Measuring perceptions of complexity We propose a theory-guided procedure to
measure the subjective feeling of complexity in a manner that is widely applicable
and portable across decision contexts. We ask subjects to make pairwise complex-
ity comparisons between tasks they have previously worked on. Specifically, we
ask them to judge in which past task they found it more difficult to determine
an answer that falls within a specific distance to the (suitably defined) optimal
response. We estimate complexity scores statistically by maximum likelihood. To
obtain cardinal complexity scores from these pairwise judgments, we leverage two
calibration tasks that can be freely selected and held constant across experimental
contexts (for instance, mentally computing 7 + 53 and 7 + 53 + 394 + 7893). By
(arbitrarily) normalizing complexity in terms of the calibration tasks, we obtain
absolute complexity scores for different decision problems.

We then conduct a simple proof-of-concept experiment on the theory’s predic-
tive validity. We find that, when the model predicts that a decision problem is more
complex, people indeed (i) perceive it as more complex – this way, validating the
model’s core feature –, (ii) commit larger errors, (iii) respond in a more attenuated
way to variation in parameters, and (iv) spend more time on the problem.

Extensions and limitations We provide the following extensions of our theory.
First, we endogenize micro-complexities by modeling further layers in the hierar-
chy of the cognitive production function and extend the model to multi-dimension
actions. Second, while the baseline model is formulated for continuous choice, in
Section 5 we provide a way to re-factor all our continuous-action results to ap-
ply to the discrete-action case, such as consumer choice between multiple goods
or standard choice under risk paradigms. We obtain a generally applicable no-
tion of complexity for discrete choices. When one alternative is clearly dominating
and thus more tempting than the others, choosing is easy. When there are sev-
eral roughly equally tempting alternatives, with many attributes, choosing is more
complex. This result squares well with the widely documented empirical finding
that response times and error rates increase as stimuli or the value of choice options
become more similar (e.g., Li and Camerer, 2022).

We point out several limitations of our approach. Our model is cognitive in
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nature and thus does not speak to motivational biases, such as explored in the lit-
erature on motivated beliefs. We also do not model flawed intuitions in the sense of
“what comes to mind,” which has been the focus of much classic work (à la Kahne-
man and Tversky, 1979) as well as more recent advances in behavioral economics
(Bordalo et al., 2012). Instead, we take the mental representation of a problem as
given and explore the implications of allocating cognitive labor within that rep-
resentation to different components in a boundedly rational fashion. Moreover,
while we discipline our theory using two main building blocks – macroeconomic
production functions and imprecise cognitive processing – we do not provide an
axiomatization of our approach. We propose that the analogy to production func-
tions is useful because behavioral economics sometimes faces the challenge that it
relies on different levels of abstractions than most economic theory, such as mem-
ories or neuroeconomic processes, making it hard to incorporate these concepts
broadly.

Related literature We provide a (necessarily incomplete) overview of connec-
tions to previous work here and defer a more extensive discussion of the volu-
minous existing literature on complexity to Appendix B. First, on the theoretical
side, the central distinguishing feature of our model is that it provides a measure
of complexity that applies to canonical economic models in a fairly general way.
This is largely owed to the model relying on continuous actions and concepts. Dif-
ferent complexity concepts have received significant attention in specific subfields
of economics, such as automata in game theory and experimental economics (Ru-
binstein, 1998; Oprea, 2020; Banovetz and Oprea, 2023; Rubinstein, 1986; Abreu
and Rubinstein, 1988; see also the overview in Chatterjee and Sabourian, 2020),
notions of computational complexity in computer science (see, e.g., Lloyd, 2001)
or the number of states in lottery choice (e.g., Puri, 2024; Bernheim and Sprenger,
2020).

Second, a growing literature abstains from modeling complexity explicitly and
focuses on the type of behaviors that are induced by information-processing con-
straints and complex decision environments. This includes theoretical (e.g., Wood-
ford, 2020) and experimental work (e.g., Frydman and Jin, 2022; Khaw et al., 2021;
Enke et al., 2023, 2024; Enke and Graeber, 2023) on noisy (or imprecise) reasoning
and heuristic or rule-based decision-making (Nielsen and Rehbeck, 2022; Halevy
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and Mayraz, 2022; Lacetera et al., 2012a; Tversky and Kahneman, 1974). Empiri-
cal work has also identified a pervasive aversion to complexity, e.g., in the case of
lotteries (Goodman and Puri, 2022; Fudenberg and Puri, 2023) or multi-attribute
choice (Iyengar and Lepper, 2000; Iyengar and Kamenica, 2010). Our model is
compatible with this work, especially the behavioral attenuation induced by noisy
processing, but attempts to endogenize the origin of such simplification strategies.

Third, the literature on the empirical measurement of complexity spans many
disciplines, as reviewed by Oprea (2024a). A recent example in economics, ap-
plied to lottery choice complexity, is Enke and Shubatt (2023). Our approach is
a belief-based metric that elicits a subjective ranking of tasks, leveraging the idea
that comparisons may be cognitively less demanding than absolute assessments
(e.g., Stewart et al., 2005) and employing methods from psychometrics (Bradley
and Terry, 1952). The topic of what determines the complexity of a task has a long
history in the cognitive sciences (as reviewed, e.g., in Campbell, 1988; Liu and Li,
2012).

Fourth, a growing literature studies field applications of complexity, often lever-
aging intuitive notions for what makes a choice more or less complex. This line of
work primarily includes – but is not limited to – applications to financial decision-
making (e.g., Célérier and Vallée, 2017; Carvalho and Silverman, 2023; Colliard and
Georg, 2023; Carlin, 2009) and the tax code (e.g., Aghion et al., 2024; Zwick, 2021).

Fifth, we relate to the project of behavioral macroeconomics. It is well estab-
lished by now that inattention has direct implications for macroeconomics, such
as fiscal and monetary policy (Gabaix (2020)) and general equilibrium thinking
(Angeletos and Lian (2023)). While much prior work models the benefit of atten-
tion, modeled as some gains in the traditional utility from more optimal decisions
(Gabaix and Laibson (2002), Sims (2003), Gabaix (2014), Woodford (2020)), endo-
genizing meaningfully the cost of attention (e.g. based on the complexity of the
subparts) has proven more challenging. We provide an attempt to endogenize at-
tention, which is a key contribution of our paper.

Several recent papers have been employing the approach in this paper. Fenig
and Petersen (2024) studies analytically and experimentally a life-cycle planning
model related to the life-cycle we present, with a rich series of variants. Kurtz-
David et al. (2024) model the complexity of strategic interactions. Gabaix (2024)
derives the optimal simplicity in a number of situations, e.g. the optimal simplicity
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of a tax system, or a contract.

Outline of this paper. Section 2 provides the basics of the theory. Section 3 out-
lines some applications, to the basic theory of consumption, the complexity of the
tax system, of intertemporal consumption and of planning consumption across the
life cycle. Section 4 presents our experimental method, and the results. Section 5
extends the theory to discrete actions, and applies this to the choice between risky
lotteries, and between complex financial products. Section 6 extends the model to
limited metacognition. Section 7 concludes. The appendices contain proofs and
experimental instructions, as well as some extensions, e.g. the complexity of fore-
casting, of basic arithmetic operations, first and second order complexity aversion,
and the interaction between learning and complexity.

2 The Complexity of Decision Problems: Basics

2.1 Cognitive production function

Our model is inspired by the observation that in practice, people approach most
problems pragmatically in the precise sense that they do not strive for perfect ac-
curacy but instead aim for a balance of committing sufficient resources to get to a
sufficiently close to optimal response.3 This idea suggests that people have a some-
what continuous perception of complexity in a given problem, and it calls for a
theoretical concept of “pragmatic complexity”. Consequently, rather than exam-
ining the question of “What’s the complexity of getting the problem exactly, or
100%, right?”, as much prior work does, we ask “What’s the complexity of get-
ting the problem q percent right”, for a quality q that can be less than 100%. This
motivates the concept of a “complexity curve” as a function of q. This subsection
develops this simple line of reasoning and introduces the corresponding analogy
of a cognitive production function.

The cognitive production function Take the problem maxa u (a). Suppose
that cognitive effort L leads to decision ã (L) (which could be stochastic), hence to

3This observation relates to Simon’s idea of “satisficing” (Simon, 1955).
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Figure 1: Illustration of a cognitive production function Q(L) and a complexity
curve L(q). Parameters: C = 100, a = 3/4.

utility U (L) = E [u (ã (L))]. We normalize

Q (L) :=
U (L)� U (0)

Ur � U (0)
(2)

where U (•) = Ur is the utility corresponding to perfect choice, U (0) the utility
obtained with 0 thinking (e.g. randomize). So Q (L)  1.

The primary objective of this paper is to endogenize the cognitive production
function. In our examples below, we employ the following parametrization:

Q (L) = M
✓

L
C

◆
:= min

 ✓
L
C

◆1�a

, 1

!
(3)

with a 2 [0, 1), and C > 0 is a complexity parameter, which we will endogenize.
So, for L 2 [0, C], the function is increasing and concave. It saturates at 1 for L > C.
This is because the maximal precision is reached for L = C. Figure 1 (left panel)
illustrates this production function.

We will often want a version with a > 1, which will induce “sparsity”, the fact
that some dimensions are not attended at all (Gabaix (2014)). Then, the production
function has the shape, Q (L) = max

⇣
1 �

� L
C + F

�1�a , 0
⌘

, with F � 0, see Section

10



A.1.

The complexity curve We can now define the mental effort required to achieve
precision q 2 [0, 1] – the complexity curve as a function of q. This is none other than
the cost function, which is here the inverse of the production function: L (q) =

Q�1 (q). When the production function is concave, the cost function is convex.
This is illustrated in Figure 1 (right panel), which uses C = 100. To get the prob-
lem 100% right the complexity is L (1) = 100. But to get the problem 70% right
the complexity is L (0.78) = 25. In computer science, the “complexity” is typically
understood as the complexity to reach a 100% correct answer, q = 1. In economic
life, people sensibly settle for q less than 1, as we will illustrate. We record those
observations in a definition.

Definition 1. (Complexity) Call Q (L) the cognitive production function as a func-
tion of mental effort L, normalized so that the maximum value is 1. We call output-
based complexity the performance shortfall 1 � Q (L) of the decision reached after
mental effort L. We call input-based complexity the mental effort L (q) = Q�1 (q)
needed to reach a performance q.

Those dual notions of complexity are functions, so very high dimensional ob-
jects. Empirically, a lower-dimensional parametrization is useful. In our Cobb-
Douglas example (3), the main parameter is C. The output-based complexity is
(see (3)): 1 � Q (L) = max

⇣
1 �

� L
C
�1�a , 0

⌘
, so that it is weakly increasing in C.

The input-based complexity at performance target q is L (q) = q
1

1�a C, so that it is
increasing in C, and, in fact, proportional to it.

The substance of the paper is to actually compute the cognitive production
function, this way endogenizing complexity, in particular the parameter C. We
now turn to this task.

2.2 Complexity of a problem with one layer in the production
function of thought

2.2.1 Setup

The task is to maximize over a continuous action a an objective function u (a, x),
where u is smooth (three times continuously differentiable) and concave in a. We
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Figure 2: Illustration of two cognition production functions, with one and two
layers. Notes. In both, the output decision a takes as inputs approximations of x1,
x2 and x3. In the two-layer function, each xi further takes as inputs approximations
of the zij.

assume that the x are drawn from a distribution with mean normalized to 0. We
take a to be one-dimensional for now, but it is easy to extend to a multidimensional
a (Proposition 19). We call default action ad the optimal action “at the default”, i.e.
when all x are equal to 0, ad = argmaxa u (a, 0) . We call axi is the partial derivative
at a default point. The rational answer is thus (after linearization, so up to second
order terms in xi, so that we assume that the deviations xi are “small”)

ar = Â
i

axi xi = Â
i

yi, yi := axi xi (4)

The agent’s objective is to cognitively construct those yi := axi xi, which indicates
by how much dimension i of the problem should change the rational action. This
is schematically illustrated in Figure 2 (left panel); the xi give rise to the decision a.

We model that people receive noisy signals ys
i about yi:4

ys
i = miyi + (1 � mi) yd

i +
q

mi (1 � mi)#i (5)

where mi 2 [0, 1] is the precision of the signal, yd
i is a default value, equal to 0 when

the mean of xi is 0, and #i a mean-zero noise with variance s2
#i
= s2

yi
. If all the shocks

4The noisiness is not central — the fact that signals are imperfect is.
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are jointly Gaussian, with the prior of yi equal to yd
i , we have E

⇥
yi|ys

i
⇤
= ys

i .
5

Accordingly, we posit that if the decision maker sees ys
i , she takes the decision

a = Â
i

ys
i .

The next Lemma records the value of information.

Lemma 1. (Value of information: Continuous choice). The expected utility after ac-
quiring precision mi is, up to third order terms in sxi :

U (m) = U (0) + Â
i

Vimi, Vi =
1
2

���u00
⇣

ad
⌘��� s2

yi
(6)

We imagine that a mental effort Li allows the decision maker to reach precision
mi (Li) for a cognitive production function that is exogenously given for now. So,
the mental allocation problem is

max
L1,...LN

Â
i

Vimi (Li) s.t. Â
i

Li  L. (7)

Let us define the following key quantity:

si =
Vi

Âj Vj
=

s2
yi

Âj s2
yj

. (8)

Here, si is the relative importance of dimension i: more precisely, it is the share of
variance in the action due to dimension i. The cognitive allocation problem is

Q (L) := max
L1,...Ln

Â
i

simi (Li) s.t. Â
i

Li  L. (9)

2.2.2 The macro complexity of a problem

We next solve for problem (9), and discuss its economics. We leverage the body
of knowledge on how to tractably model production functions – in particular, the

5We shall not assume that agents are Bayesian (as traditional information economics) – instead,
we will use that benchmark as an inspiration for the model (as e.g in Gabaix (2014), Woodford
(2020)). When ys

1 and ys
2 are correlated, a Bayesian agent would use E

⇥
y1|ys

1, y2
2
⇤

to infer y1, but
instead we model the agent as being a “limited Bayesian”, who simply performs E

⇥
y1|ys

1
⇤
.
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aggregation properties of Cobb-Douglas and CES production functions.

Proposition 1. (Macro complexity from micro complexity) Suppose that the “micro”
cognitive production function of component i is

mi (Li) = min

 ✓
Li
ci

◆1�a

, 1

!
(10)

where the complexity of dimension i, ci, is exogenous for now, and a 2 [0, 1). If at the
optimum of problem (9) we are in the “interior region” (mi

�
L⇤

i
�
2 (0, 1), where L⇤

i is the
optimal allocation to dimension i), then the macro cognitive production function is

Q (L) = max

 ✓
L
C

◆1�a

, 1

!
(11)

with “macro complexity” C = C ((si, ci)i=1...N), using the “complexity aggregator”:

C ((si, ci)i=1...N) :=

 

Â
i

s
1
a
i c1� 1

a
i

!� a
1�a

(12)

The key message of Proposition 1 is equation (12), which formulates an en-
dogenous macro complexity C in terms of the exogenous micro-complexities of
the components ci.6 In terms of Figure 1 (left panel), the “micro cognitive produc-
tion functions” leading to the micro-components xi were posited Cobb-Douglas
with complexity ci. Proposition 1 also records that the resulting “macro” cognitive
production for decision a is also Cobb-Douglas: simply enough, Cobb-Douglas in,
Cobb-Douglas out. To build intuition, we examine a few polar cases.

A few polar cases Take the case where s1 tends to 1, and the other si are close
to 0. Then, C tends to C = c1: the effective complexity of the macro problem is that
of the one “important” component.

Next, take the case where ci = c̄ for all i, for some c̄ > 0. When the N compo-

6The appendix records extensions of this proposition. Proposition 16 extends it to the case a > 1,
which leads to the same complexity aggregator. Proposition 17 derives the allocation of attention
component-by-component.
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Figure 3: Complexity C as the share of dimension 1 varies. Notes. This graph plots
complexity C when one component has share s and the other N � 1 components
have share 1�s

N�1 (with N = 5).

nents have equal share (si =
1
N ), then

C = Nc̄ (13)

In the more general case, C = N f c̄ where N f is the number of components:

C = N f c̄, N f =

 
N

Â
i=1

s
1
a
i

!� a
1�a

2 [1, N]

For instance, N f = N if si = 1
N for all i, and N f = 1 if s1 = 1, while the other

components have 0 share.
We illustrate this in Figure 3. It shows the complexity C of the problem when

one component has share s, the other N � 1 components have share 1�s
N�1 (here with

N = 5), and we normalize c̄ = 1. Start with s = 0. Then, there are effectively only
4 components, so C = 4. As s increases, C increases, up to the point where s = 1

5 ,
so that we have 5 equally-sized components, and C = 5. In the limit where s = 1,
there is now just one effective component, and C = 1. In between as s increases
between 1

5 and 1, complexity C decreases.
The qualitative phenomena illustrated in Figure 3 are general, and independent
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of the curvature parameter a. We state two propositions formalizing them.

Proposition 2. (Complexity from compositionality) Assume ci is the same for all i.
If the effective number of components rises, complexity is higher. More compositionality
leads to more complexity.

Next, consider a thought experiment generalizing Figure 3.

Proposition 3. (Simplicity from extremity) Assume ci is the same for all i. Con-
sider a dimension i, change its share dsi and change other shares proportionally (dsj =
�
1i=j � sj

�
dsi). If the share of the largest unit rises, C falls. If the share of the smallest

unit rises, C rises.

Finally, we record the extremal values of C as the shares vary.

Proposition 4. (Complexity measure as a varies) The complexity aggregator from (12),

Ca =

✓
Âi s

1
a
i c1� 1

a
i

◆ a
a�1

, is weakly increasing in a 2 [0, •], and:

C0 = min
i

ci
si

 C1 = exp

 

Â
i

si ln
ci
si

!
 C• = Â

i
ci.

For instance, when a ! •, we obtain the simple measure C• = Âi ci, the
sum of the elementary complexities. When a = 1, ln C1 is a “complexity-adjusted”
entropy. Hence, by varying a, one can recover a number of sensible measures. Still
we will keep a constant in a given application.

We next state a Lemma that is useful for calculations.

Lemma 2. (Equivalent formulation with quasi-complexities) Define the quasi complexities
as:

c̃i = c1� 1
a

i , C̃ = C1� 1
a (14)

Then, (12) becomes:
C̃ = Â

i
s

1
a
i c̃i (15)

In (15) the macro complexity C̃ is the weighted sum of the micro complexity

c̃i, with weights s
1
a
i . The interpretation of quasi-complexity is most intuitive when

a > 1, as then C̃ is an increasing function of C. The weights s
1
a
i add up to more than

1 when a > 1.
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2.3 How complexity affects outcomes: actions, errors, delibera-
tion time

Next, we relate complexity to observables, namely the average actions, the amount
of errors, and the deliberation time. Higher complexity attenuates action’s respon-
siveness to incentives

We imagine a researcher gives subjects a series of tasks, maxa u (a, x), with x
drawn from a distribution with mean 0, and xi having variance s2

xi
, with the xi

uncorrelated across i’s. For each task x and subject s, the researcher collects a (s, x)
and compares it to the rational action ar (s, x). We suppose that the subjects have
a fixed attention L for each task. The next proposition states what the researcher
should find, under our model.

Proposition 5. (Higher complexity makes actions less responsive to incentives)
Suppose that one regresses empirical actions a on the rational action ar:

a � ad = M
⇣

ar � ad
⌘
+ k + #

where M :=
cov(a�ad,ar�ad)

var(ar�ad)
is the composite attention parameter, k is a constant, and # is

extra noise. Then, in the limit of a large sample,

M = Q (L) ,

and, as

Q =

✓
L
C

◆1�a

,

more complexity leads to more attenuation.

Proposition 5 implies that macro attention M can be recovered from choice:
it reveals itself as an attenuated response M to incentives. This is consistent with
models of imperfect perception, (Gabaix (2014)), field evidence (surveyed in DellaV-
igna 2009 and Gabaix (2019)), and systematic experimental evidence (Enke et al.
(2024)). More importantly, Proposition 5 can allow to (potentially) measure the
production function of attention, hence the output-based complexity. In addition,
Proposition 5 indicates that we can recover the micro-complexity of the various
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components, also from choice. Viewed another way, given a theory-predicted com-
plexity C, we can predict the degree of attenuation in choices.7

One limitation of this proposition is that the attention L is exogenous. It could
be endogenous in practice. If the elasticity of total mental capacity to the task is
limited (something that seems likely), then this effect is moderate in size, and does
not change drastically the message of Proposition 5—see Proposition 7 for details.

Higher complexity leads to larger errors and higher cognitive uncertainty Next,

we study mistakes. We take the root mean square error, sa = E
h
(a � ar)2

i1/2
. Its

subjective counterpart (assuming agents are aware of the potential random errors
they commit) is related to Enke and Graeber (2023)’s concept of cognitive uncer-
tainty, which in its basic form may be translated in the present context as sCU = csa

for some positive coefficient c.

Proposition 6. (Higher complexity leads to more errors and more cognitive un-
certainty) More complexity leads to larger errors sa and higher cognitive uncertainty
sCU = csa (i.e., subjective feeling of committing errors):

sa =
p

1 � Qsar , Q =

✓
L
C

◆1�a

(16)

Hence, we predict that model complexity C leads to larger errors. Moreover,
there is a non-trivial functional form, which again could be tested.

Higher complexity leads to higher time spent (in the sparsity-inducing case a >

1) The next Proposition 7 shows that effort is decreasing in complexity when a <

1, but is increasing in the sparsity-inducing case a > 1 (and the constant F is low
enough). We will assess that the latter is the relevant case.

Proposition 7. (How complexity affects effort and performance) Assume the same
production functions as in Lemma 6. Suppose that one solves the optimum effort, given a
shadow benefit p > 0 and a shadow cost of effort w > 0, maxL pQ (L)� wL, and assume

that the solution is interior. The optimum effort is L⇤ = C
⇣

wC/p
|a�1|

⌘�1/a
� FC, and the

7One can also predict attention dimension-by-dimension, something formalized in Appendix
A.2. The complexity C is a sufficient statistic for the feeling of the degree of complexity (at least, in
the interior region of Proposition 1), but not for the action.
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resulting attention is: Q (L⇤) =
⇣

wC/p
|a�1|

⌘1� 1
a if a < 1 and Q (L⇤) = 1 �

⇣
wC/p
|a�1|

⌘1� 1
a if

a > 1. As a result, higher complexity C decreases performance Q (L⇤), but decreases effort
L⇤ if a < 1 and F � 0, while increasing effort if a > 1 and F is low enough. Higher
benefit of thinking p, and lower cost of effort w increase effort L⇤ and performance Q (L⇤).

2.4 Recursive complexity: when the complexity of an action de-
pends on the complexity of the other actions

Suppose a multidimensional action, and dimension j, aj depends on the other ac-
tions ak, as well as some x, as in

ar
j = Â

i
bixi + Â

k 6=j
gjkak

Then, using the formulation with quasi-complexities (14), we obtain:

C̃aj = Â
i

⇣
s

aj
xi

⌘ 1
a c̃i + Â

k 6=j

⇣
s

aj
ak

⌘ 1
a C̃ak (17)

where the saj are are the importance shares of xi vs ak in the decision, e.g.

s
aj
xi =

b2
i s2

xi

D
, s

aj
ak =

g2
ks2

ak

D
, D = Â

i
b2

i s2
xi
+ Â

k
g2

ks2
ak

Hence, the complexity of aj, C̃aj , depends on the complexity of action k, C̃ak . This
formulation is tractable, as (17) is a system of linear equations in C̃.8

3 Applications

We present general guidelines on how to use the model, and then several applica-
tions to consumption problems.

8This formulation could be used to think about the complexity of games—we simply interpret
ak as the action of another player. This is the “oneself as another” perspective, to use philosopher
Ricœur (1992)’s expression (“soi-même comme un autre”). We are developing this in another paper.
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3.1 Applying the model: a user’s guide

In the following we provide some general guidance for applying the model to
concrete settings.

1. Formulate the rational, fully specified problem, in the form maxau (a, x),
where x = (xi)i=1...N are deviations from a default.

2. Think through a “natural” description of the xi’s. For instance: are they pre-
sented in a nominal frame or a real frame; do decision-makers think about
the base good price x1 and the “shrouded attribute” price x2 separately, or
do they have direct access to the sum (x1 + x2)? This step generally requires
some application-specific assumptions (in much the same way a researcher
specifies e.g. an agent’s utility function).9

3. Then, apply the model: calculate the importance shares of the dimensions, si

as in (8), and obtain the complexity measure C from (12).

(a) In the most basic case, use a Laplacian ignorance prior and posit that all
micro-parts have the same complexity ci = c̄

(b) However, one can go one step further, and apply the model recursively
to find the complexity ci of subproblem i as a function of its components,
as in Section D.1. In the end, the complexity of the sub-sub-components
may be arbitrary, also at c̄.10

With the model-based complexity prediction at hand, one can then relate it to ob-
servables (e.g. error rate by consumers, markups by firms), and use the theoretical
guidance about the theoretical correlates of complexity, e.g. errors and attenuation
(Section 2.3), and the subjective feeling of complexity (measured via the procedure
of Section 4.1).

We now show a series of progressively richer examples to illustrate concrete
use cases of the model.

9Using the identifiability results of Section 2.3, one could in principle elicit the agents’ frame.
10Conceivably, one could imagine that the complexity ci of basic components will be estimated

systematically, and that researchers can use estimates from prior results, much in the way that
economists now use “standard” parameters for loss aversion, adjustment costs in investment, or
the elasticity of substitution between goods.

20



3.2 The basic static theory of consumption

We now study the complexity of a basic building block in economics: consumer
theory. This is useful, because that problem is central to most models, and other
problems (e.g. producer theory) are entirely similar, so that the arguments and
effects can be transposed. To simplify the discussion and avoid income effects (for
now), we center on quasi-linear utility, U (c, c0) = v (c) + c0, i.e. where there is
a special good 0 with marginal utility and price of 1, and the consumption of the
other goods are represented by vector c. So, the rational problem is simply

max
c2Rn

v (c)� p · c (18)

We denote proportional, i.e. log, changes using hats (e.g. ĉ = dc
c ).

3.2.1 Choosing the quantity one good: the difficulty of introspecting about
one’s demand elasticity

We start with the case of one good. If a good’s price changes by p̂ percent, con-
sumption should change by ĉ percent:

ĉ = �y p̂ (19)

where y = � u0(c)
cu00(c) is the elasticity of substitution.11

If the agent simply needs to pay attention to the price, then the complexity of
choosing consumption is just that of looking up the price, Cĉ = cp̂.

The newer case is that the agent may not know y. Traditional economics as-
sumes that people know their preferences, including the elasticity of demand y.
Readers can introspect about their elasticity of substitution for mineral water, or
coffee, or fish. Intuitively, those quantities seem hard to know.

We will model that via some effortful introspection, people can get a better esti-
mate of their rational elasticity of demand. Then, the complexity is C

�
sp̂, sy, cp, cy

�
,

where sp̂ =
Vp̂

Vp̂+Vy
, sy = 1 � sp̂ are the importance shares, and the values of infor-

mation are
11Indeed, u0 (c) = p, so that u00 (c) dc = dp, implying dc

c = �y dp
p with y = � u0(c)

cu00(c) .
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Vp̂ =
⇣

ȳ2 + s2
y

⌘
s2

p̂, Vy = s2
ys2

p̂. (20)

When the difficulty is knowing one’s elasticity, the complexity is higher when peo-
ple are more uncertain about their tastes. Indeed, more generally, the difficulty of
a choice is not to simply to know the elements of the choice (such as the price), but
to simulate the hedonic consequences of it.

It may be worth pondering how people introspect about their rational demand
elasticity. One technique is the “limit case” method: for instance, if we go without
food for days, life is miserable. Through that thought experiment (or real world
experiment), we conclude that limc!0 u (c) = �•, so the macro-elasticity of the
demand for aggregate food is less than 1, y < 1.12 But not eating one specific food
for days (e.g. strawberries) is fine — it lowers utility by just a bit. So the micro-
elasticity of one given food item is greater than 1, y? > 1.13 Via this sort of thought
experiment, people may get a sense of their elasticities of demand. Modeling that
process explicitly would be interesting in future research (see Gabaix and Laibson
(2022) and Imas et al. (2022) for some progress on this).

3.2.2 Complexity of multi-good consumption

With N goods, again expressing proportional changes using hats:

ĉi = �yi p̂i � Â
j 6=i

yij ĉj, (21)

12We have in mind a utility such as u (c) = c
1� 1

y

1� 1
y

.

13We have in mind something like nested CES here, e.g. u (c1, . . . , cn) = C
1� 1

y

1� 1
y

with C =

 

Âi c
1� 1

y?
i

! y?

y?�1

, with a macro-elasticity y < 1 and a micro-elasticity y? > 1.

22



where we call yij =
uijcj
uiici

the cross-elasticity of consumption.14 Now, we study how
having many goods affects complexity, so that we assume that the elasticities yi

and yij are known to the agent. Then, the complexity of choosing i is:

C̃ci =
⇣

sci
yi

⌘b
c̃yi +

�
sci

pi

�b c̃pi + Â
j 6=i

⇣
sci

cj

⌘b
C̃cj (22)

and it is recursive, as in Section 2.4.

Example: two goods To gain intuition, let us examine in some detail the case of
two goods. Calling x1 = �y1Dp1 and a1 = �Dc1, (21) becomes:

a1 = x1 + g1a2, a2 = x2 + g2a1 (23)

where g1 = y12, g2 = y21 express the degree of complementarity, and

ar
1 =

x1 + g1x2
1 � g1g2

, ar
2 =

x2 + g2x2
1 � g1g2

(24)

We assume that x1 and x2 are uncorrelated, with same variance s2
x . So, s2

a1
=

1+g2
1

(1�g1g2)
2 s2

x and in (23) the share of variance in a1 coming from x1 vs a2 are sa1
x1 and

sa1
a2 with:

sa1
x1 =

1

1 + g2
1(1+g2

1)
(1�g1g2)

2

, sa1
a2 = 1 � sa1

x1 (25)

The expressions for sa2
x2 and sa2

a1 are similar, swapping the 1 and 2.
We call C̃ := C1�b, with b := 1

a . We normalize the complexity of x1 and x2 to 1.
So:

C̃a1 =
�
sa1

x1

�b C̃x1 +
�
sa1

a2

�b C̃a2 , C̃a2 =
�
sa2

x2

�b C̃x2 +
�
sa2

a1

�b C̃a1

Hence, we have a simple linear system in C̃a1 , C̃a2 , so we can solve it. In what

14Here is the derivation. We decompose u00 = u00D + u00ND, where u00DD contains the diagonal
terms, and u00ND the non-diagonal terms (i.e., u00D

ij = u00
ij1i=j, u00ND

ij = u00
ij1i 6=j). Then, u00Ddc = dp

gives u00Ddc = dp � u00NDdc and

dc =
⇣

u00DD
⌘�1

dp �
⇣

u00DD
⌘�1

u00NDdc
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Figure 4: Complexity of choosing between two goods, as a function of their com-
plementarity g. Notes. This graph plots Ca from Proposition 8 as a function of g,
with b = 0.2 and Cx = 1.

follows, we take the simplified case where g1 = g2 = g.

Proposition 8. (Complexity of choosing between two goods as a function of their
complementarity) The complexity of choosing good 1, when the complementarity between
goods 1 and 2 is g1 = g2 = g, is:

Ca =

 
sb

x + sb
a sb

x

1 � s2b
a

! 1
1�b

Cx, sx =
1

1 + g2(1+g2)

(1�g2)2

, sa = 1 � sx (26)

The complexity is increasing in |g|. It is lowest where there is no complementarity (g = 0),
so that Ca = Cx. When g ! 1, the complexity becomes unboundedly large, Ca ! •.

Figure 4 shows the result. We see that complexity is minimal at g = 0, and
increases in |g|, i.e. as the goods become more complements or substitutes.

3.2.3 Choosing one good in the presence of many taxes: The complexity of the
tax system

A natural question is “what is the complexity of a tax system?” We now show how
the model offers a simple and novel way to address this question.

24



We take the model with one good. The problem is maxc v (c)� (p + Âi ti) c. If
there are N taxes with equal complexity c̄ and importance shares si, the complexity

is C = c̄
✓

Âi s
1
a
i

◆� a
1�a

.

The can be extended to the income tax. Suppose that there are N taxes (local,
federal, social security, unemployment, child benefits, food support...), each with
its tax rate Ti (e) given earnings e, so that total tax is T (e) = Âi Ti (e) and the
total marginal tax rate is T0 (e) = Âi T0

i (e).
15 The importance share for tax i is

sT0
i (e) =

T02
i (e)

Âj T02
j (e)

. If the micro complexity of each is just ci = c̄, the complexity of

the marginal tax rate is just the effective number of components (from (12)):16

CT0(e) = c̄

 

Â
i

⇣
sT0

i (e)
⌘ 1

a

!� a
1�a

. (27)

Suppose next that we have richer data — for instance, we know that it takes ti

hours to perfectly determine the amount of tax i.17 Then, we could set ci = ti, and
the complexity of the tax system emerges as:

CT0(e) =

 

Â
i

⇣
sT0

i (e)
⌘ 1

a
t

1� 1
a

i

!� a
1�a

(28)

It is expressed as an “effective number of hours”. The fact that it is less than Âi ti

reflects that agents don’t need to perfectly think through all the minutiae linked to
tax i.

These formulas can be readily applied to measure the effective complexity at
different levels of the income distribution. As a conjecture, one might imagine that
taxes are very complex at very high incomes (as they have e.g. many types of as-

15The agent’s problem u (a, x) = a � T (a, x) � a2

2y , where a is the labor supply, a � T (a, x) is

disposable income, i.e. consumption, a2

2y is the disutility of effort, and the wage is normalized to 1.
So the optimal rational action is: a = y (1 � Ta (a, x)) . We have Ta (a, x) = Â xi, xi = T0

i (a), where
xi is the marginal tax rate. We assume for simplicity that marginal tax rates are constant across
labor levels a. This could easily be extended, at the cost of more notations.

16The complexity of seeing the average tax rate is calculated in the same way, replacing T0
i (e) by

Ti(e)
e .
17A rough proxy might also be the number of words in the tax code for tax i, or some concave

transform of it.
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sets), and at very low incomes (as they receive e.g. many types of subsidies), but
are only moderately complex at the middle incomes. One could imagine optimiz-
ing on the trade-off between incentives and complexity.

The conclusion is that the model gives a new measure of complexity of the tax
system, (27).

3.3 The complexity of life: Complexity of consumption planning
over the life cycle

We have completed our tour of the complexity of static consumption. We now
extend our analysis to address the polar opposite: What’s the complexity of con-
sumption planning across the life cycle?

Our framework offers a partial answer, with the complexity of planning con-
sumption across one’s life span illustrated in Figure 5. Suppose that the agent is
born at time 0, dies at time T� 1, deterministically, and has utility ÂT�1

t=0 btu (at � ht),
where at is consumption, ht is an i.i.d. random taste or needs shock. The agent has
earnings et = ē + êt, where ē is mean earnings, and êt is a predictable deviation
(known at time 0), but requires mental effort to contemplate. So, the rational prob-
lem is:

max
(at)

T�1

Â
t=t0

btu (at � ht) s.t. wt+1 = R (wt � at + et)

What’s the complexity of solving this problem, for an agent at age t0? We as-
sume small shocks, or a quadratic utility function to remove precautionary saving,
and b = R = 1 to remove mechanical “time horizon” effects. We say complexity
of all parameters is the same, 1, but complexity of cash is 0.18 The complexity of
life-cycle consumption planning as a function of age is illustrated in Figure 5.

Proposition 9. (Complexity of the life-cycle problem, as a function of age) Call
e1,t =

⇣
1 � 1

T�t

⌘
ht, eit = êt+i�2

T�t for i = 2, . . . , T � t + 1. Form, for i � 1, sit =

E[e2
it]

ÂT�t+1
j=1 E

h
e2

jt

i . Then, the complexity of the life-cycle at age t is C (st, 1), see Figure 5.

The life cycle problem is easier (i) when you’re very old, because few periods
are left to think about, life has reached a stark simplicity; (ii) when you’re very

18This just for expositional clarity. This way, we do not have to average on the realization of cash.

26



Figure 5: Complexity of life, as a function of age. Notes. This graph plots the
complexity of the life-cycle problem at age t. Calibration parameters are in Section
C.

young, because even though there are lots of predictable events êt in the future,
they don’t matter much, as they are smoothed over many periods, so the normative
impact ∂at

∂es
= 1

T�t is low. The hard spot is middle age.
The model could be enriched, with big decisions early in life (e.g., choice of a

profession), leading to the fact that “consumption choice” still keeps the shape de-
rived here; but with the complexity of “human capital choice” being much larger
early in life. Down the road of research, one could imagine correlating those pre-
dictions with survey measures of happiness, stress etc. Our point is that the model
allows a simple angle to attack those rich issues.

3.4 Complexity of intertemporal consumption

We finally introduce a last enrichment to our study of consumption, with a non-
trivial interest rate to take into account. It will guide our experimental investiga-
tion.

Setup We now present an application, which is intertemporal consumption choice,
where the interest rate varies. Agents live for T + 1 periods t = 0 . . . T, have earn-
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ings et in period t, and can borrow and save at interest rate r. Their flow utility

function is u (c) = c
1� 1

y

1� 1
y

and there is no discounting. So the rational problem is:

max
c1,c2

T

Â
t=0

u(ct) s.t.
T

Â
t=0

ct � et

(1 + R)t = 0. (29)

Optimal consumption at time 0 is:

cr
0 =

ÂT
t=0

et
(1+R)t

ÂT
t=0 (1 + r)(y�1)t (30)

To see it more clearly, we call êt = et � e0, and assume r and the êt to be small.
Then, the Taylor expansion of c0 is (with residual error O

�
kêk |r|+ r2�)

cr
0 = e0 +

T

Â
t=1

beêt + brr, be =
1

1 + T
, br = �y

T
2

e0 (31)

Intuition Before presenting the formal analysis, let us inspect our intuition about
the effect of different parameters and pit it against the model predictions. First, (31)
confirms that incorporating a change in permanent income e0 is easy (keeping the
êt constant): one just consumes it one for one.

However, incorporating a change in êt is harder: one needs to divide it by the
total number of periods, which is evidently more challenging.

Incorporating the interest rate is even harder, because one needs to take into
account three quantities: the number of periods in the future, T, and the intertem-
poral elasticity of substitution (IES), y. The latter is, we submit, particularly hard
to assess.

Formal analysis Let us think about be = 1
1+T (see (31)). It’s composed of just

one element, T, so by Proposition 1 its complexity is just the complexity of that
element. We call it c̄. This gives

Ce = c̄

The complexity of br = �y T
2 y1 is more recondite. It is composed of two non-

obvious elements, T and y. We here assume for simplicity that their complexity is
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the same, c̄. This a form of ignorance prior. We suspect that the elasticity is harder
to introspect about, so that more generally cy � cT. Given the multiplicative func-
tional form, br

TT = br
yy, so that the shares are equal to 1

2 . So Cr = C
⇣

1
2 , 1

2 , c̄, c̄
⌘
= 2c̄

Cr = 2c̄

Then, for the complexity of the whole problem, take

C = C (sr, sê, Cr, Ce)

where sr is the share of the interest rate in the consumption problem:

sr =
(brr)2

(brr)2 + (beê)2

and se = 1� sr. When ê = r = 0, sr is undefined, but the complexity is zero. Hence
(by Lemma 4) total complexity is between 0 and Cr + Ce = 3c̄.

All in all, we see how the model makes precise the intuition above: the interest
rate is more complex (actually, twice as complex) as income. It gives the com-
plexity of the intertemporal consumption problem as a function of the parameters
(how much interest rates matter compared to future income deviations), which
will allow for experimental investigation below.

4 Experimental Evidence on Complexity

The purpose of our empirical exercise is twofold. First, in Section 4.1 we propose
a novel measurement of complexity that is motivated by and tightly linked to our
model. Second, in Section 4.2 we harness this measurement tool to conduct a sim-
ple experiment that acts as a proof of concept for the main behavioral implications
of the model.

4.1 A portable methodology for measuring subjective complexity

We propose a new experimental methodology for measuring perceived complex-
ity, with three key objectives. First, the measure should be disciplined by the the-
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ory. Second, it should capture fine-grained variation in people’s subjective percep-
tions of complexity across variants of a task. Third, it should be simple to imple-
ment and portable across decision environments.

To meet these criteria, our methodology leverages simple pairwise compar-
isons between decision problems that subjects have previously completed. Con-
sider a participant who first works on an intertemporal consumption problem with
an interest rate of zero and then completes a problem that has a positive interest
rate but is otherwise identical. On a subsequent screen, we again show both de-
cision screens, presented side-by-side. The participant is then asked in which of
the two problems they would find it “more difficult” to come up with an answer
that falls within a specified window of, e.g., $3 to either side of their subjectively
optimal, i.e., expected-payoff-maximizing answer.

A few remarks on this basic version of a complexity judgment are in order.
First, previous work relies on non-comparative assessments of individual tasks on
absolute scales. For instance, Enke and Graeber (2023) use judgments on a prob-
ability scale and Oprea (2020) has subjects choose a monetary amount. A host of
evidence from the cognitive sciences suggests that people find comparative assess-
ments easier than absolute assessments (e.g., Stewart et al., 2005) and that absolute
judgments are, in fact, often unduly influenced by comparisons, as documented in
the vast literature on cognitive comparison effects, such as anchoring (Kahneman
et al., 1982). We therefore rely on a pairwise comparison technique that we propose
is cognitively less challenging than an absolute assessment.19

Second, the measurement implements the notion of pragmatic complexity intro-
duced above that reflects the practically relevant notion of getting a task approx-
imately – but not necessarily exactly – right. Specifically, rather than asking sub-
jects to assess the complexities of getting a task exactly right, which is often near-
impossible in continuous problems and irrelevant for many practical purposes, we
ask them to evaluate how difficult it is to get close to the payoff-maximizing an-
swer. The measure is therefore defined up to a suitable definition of proximity
to optimality in a given problem. In effect, this is equivalent to picking a specific
point in the complexity curve developed above. The measurement, however, is
meaningful independent of which exact window the experimenter chooses. When

19We validate this by comparing the performance of our measure against that of cognitive uncer-
tainty as suggested by Enke and Graeber (2023).
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assessing task variants within a given problem class such as the intertemporal con-
sumption problem, the width of the optimality window is kept constant. When
making comparisons across different problem classes, we suggest choosing win-
dow sizes in a way that they are large enough so that obtaining that level of ac-
curacy is still meaningful (achievable in principle) to subjects, yet not too large so
that most subjects believe they can achieve this performance with reasonable ef-
fort. A portable way of choosing the window size across problem classes is to pick
it so that some fraction (e.g., 50%) of actual responses are expected to fall within
this level of accuracy.

Third, the basic measure is unincentivized, although we also provide and test
an incentivized variant. As recent experimental work on this topic suggests, unin-
centivized measures often do equally well or even outperform incentivized mea-
sures (see, e.g., the discussion in Enke and Graeber, 2023). At the same time, unin-
centivized measures circumvent the need to explain a complicated payment struc-
ture to subjects (potentially interfering with “behavioral incentive compatibility”;
Danz et al. (2022)), and they avoid potential confounds from incentive dilution or
interactions with the main experimental task of interest. We also provide an incen-
tivized variant, in which subjects are asked to forecast other subjects’ subjective
feeling of complexity and receive a higher payoff for a more accurate forecast.

Fourth, our measure is easy and almost costless to implement for researchers,
as it requires virtually no additional instructions.

Fifth, despite its plain binary nature in its elementary form, our methodology
can be used to obtain numerical complexity scores that are readily comparable
across decision classes and experimental environments. To do so, we implement
the following protocol. After each new decision problem, we ask subjects to make
a number of pairwise complexity assessments between this problem and previous
decision problems the subject has faced. We pick the iterative comparison pairs ef-
ficiently using the Quicksort algorithm.20 This allows us to construct a subject-level
complexity ranking of the decisions tasks from pairwise comparisons alone. To
convert these rankings to an absolute score, we add two canonical “anchor tasks”,
which merely serve to normalize the scale in a simple, domain-independent fash-
ion. Empirical researchers can freely choose anchor tasks in a way that is domain-

20On average, this entails approximately log2(n!) comparisons for n tasks. In our experiment,
subject perform 13.5 comparisons on average for 7 tasks.

31



general or adequate for their specific setting of interest. Here, we employ two
simple mental algebra tasks: subjects were asked to compare the complexity of a
task to that of computing 7+53 as well as to computing 7+53+394+7893 in their
heads.

We obtain numerical complexity scores from these pairwise comparison data
by applying a well-established method from psychometrics, popularized by Bradley
and Terry (1952). Specifically, we assume that subject i facing task t perceives com-
plexity as:

cit = ct + #it + bi (32)

where ct is the average complexity of task t, bi is a subject-specific complexity, and
#it is noise. 21 Hence, the probability that task t is judged more complex than t0,
i.e. cit > cit0 , is:

pt,t0 = P (ct + #it > ct0 + #it0) (33)

We assume that the noise term #it is i.i.d. extreme value-distributed, so that the
model reduces to Logit on pairs and can be estimated using conventional software.
To obtain interpretable units, we rescale estimated parameters so that the simple
addition task has a complexity of ceasy = 1 and the harder addition has chard = 10.
Standard errors are adjusted accordingly.

4.2 Experiment on intertemporal consumption

4.2.1 Design

We implement a naturalistic version of the intertemporal consumption task out-
lined in Section 3.4. Participants are informed that their choices in this experiment
will affect the amounts of two time-dated food delivery vouchers by UberEats,
each of which is only valid during a specific future time window: the Early Period
is the week starting after the day of the survey, and the Late Period is the week
starting six months following the survey.22 To ensure concave preferences via real
satiation, respondents are further told at the beginning of the study that the vouch-

21One could imagine various refinements, along the lines of cit = aict + #it + bi, with a variable
ai, or equivalently a subject-specific noise, but we do not pursue that here.

22The food delivery voucher paradigm is adapted from Enke et al. (2023). Fenig and Petersen
(2024) presents an alternative rich design with many periods, and also contains a useful survey of
the literature in experimental macro.
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ers are only valid for a specific type of cuisine, Mexican restaurants.
Participants receive two separate voucher budgets, one for each period, and can

then re-allocate these budgets between the two periods by saving or borrowing at a
certain interest rate. Moreover, even though the time difference between Early and
Late Periods is fixed across all tasks, the interest rate compounds a specific number
of times that varies across problems. On the decision screen, participants are asked
to enter their desired consumption in the Early Period, as shown in Figure F.2. The
complexity comparison screen is designed to look like two decision screens side
by side, as shown in Figure F.3.

We call e1 the Early Period budget, e2 the Late Period budget, r the interest rate
and T is the number of rounds of compounding. Subjects are reminded that while
the interest rate compounds T times, the Early and Late periods are, in fact, always
six months apart. To estimate utility curvature y, we complement our design with
six simple price list choices, see Appendix F.2.

Participants completed five different consumption problems. The selection
of task parameters was fully randomized, with e1, e2 2 {$150, $200, $250}, r 2
{0%, 8%, 16%} and T 2 {1, 2, 3}, leaving us with 34 = 81 task configurations in to-
tal. For analyses at the task level, we only include tasks that have been completed
by at least three respondents.

The computation of our measure of complexity via the Bradley-Terry proce-
dure is detailed in Appendix F.3. To provide an example, our approach yields the
following complexities for tasks with initial endowments (e1, e2, r, T):

C(200, 200, 0%, 1) = 0.00

C(150, 200, 0%, 1) = 1.00

C(200, 250, 8%, 1) = 2.98

C(200, 250, 8%, 3) = 3.83

Hence, among those four configurations, the problem with identical Early and Late
Period budget as well as no interest rate is the simplest. The problem with different
budgets, a non-zero interest rate and multiple compoundings is the most complex.

We conducted online experiments using the survey platform Prolific. The ex-
periment was approved by Harvard IRB (IRB17-2035). Our experimental instruc-
tions are reproduced in Appendix F.1. We screened out participants who failed a
simple attention check or incorrectly answered any one of a series of comprehen-
sion questions about the task instructions twice. After applying these exclusion
restrictions we end up with a sample of 194 subjects (out of 207 who started the
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experiment). Subjects were paid $3.5 for completing the study in its entirety. Re-
spondents spent a median time of 20 minutes on the survey.

4.2.2 Results

The objective of this empirical exercise is to bring our theoretical measure of com-
plexity to the data by analyzing how it relates to (i) experimentally measured com-
plexity as well as (i) behavioral implications as predicted by the model. Our anal-
ysis proceeds in three steps. First, we examine how well our model of complexity
predicts respondents subjectively perceived complexity across tasks. Second, we
test to what extent model-based complexity of a task is related to the error rate of
a task as well as response times. Third, we test whether model-based complexity
predicts attenuated responses to variation in task parameters. All analyses are per-
formed on task-level averages or estimates, involving only tasks which have been
completed by at least three respondents.

Model complexity predicts subjective perceptions of complexity Figure 6 shows
average complexity scores for each task configuration. Visual inspection provides
the first piece of evidence in line with model predictions: tasks in which the ex-
change rate can be neglected (r = 0) and where the budgets in the two periods
coincide (e1 = e2) are indeed perceived as least complex, by a margin. Conversely,
tasks with a non-zero exchange rate and large differences in the budgets for the
two periods tend to be judged as being most complex.

Figure 7 makes the relationship between model complexity and estimated com-
plexity explicit, plotting average subjective complexity against model complexity
by task configuration. Recall that the most basic prediction of the model is that,
when the model predicts that a task is complex, subjects should also report that
they feel that it is complex. Reassuringly, Figure 7 confirms this, showing a pro-
nounced positive relationship. Column 1 of Table 1 shows corresponding regres-
sion results. This simple regression achieves an R2 of 79%, with a positive and
significant coefficient on model complexity. Our experimental results thus vali-
date the fundamental thrust of our model on perceptions of complexity: when the
model deems a task complex, subjects broadly concur.
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Figure 6: Subjective complexity across tasks. Notes. This graph shows respondents’
subjective complexities of the consumption tasks, as estimated by the model de-
tailed in Section 3.4. Tasks are labelled as (e1, e2, r, T), e.g. in (150, 250, 8%, 3) sub-
jects receive an Early Period and Late Period budgets of e1 = 150 and e2 = 250, the
interest rate is r = 8% and it compounds T = 3 times. Bars show 95% confidence
intervals. Interpretation. In line with the predictions of the model, tasks with an
interest rate of 0 and with a small difference between e1 and e2 are judged easiest,
while those with a large difference in budgets e2 � e1, a high interest rate r and
multiple compoundings T are judged most complex.

35



Figure 7: Model complexity predicts subjective complexity. Notes. This graph
plots the estimated subjective complexities of consumption tasks (see Section 4.1)
against the complexity predicted by our model (see Section F.3). Bars show 95%
confidence intervals. Interpretation. There is a positive correlation between com-
plexity predicted by the model and complexity as subjectively reported by par-
ticipants in the experiment. Moreover, the model explains 79% of the variance in
subjective complexity by task.

Model complexity predicts errors and responses times Based on individual cal-
ibrations of utility curvature, we estimate participants’ optimal responses in each
task and use that to compute the average absolute error implied by their decisions.
Column 2 of Table 1 shows that model complexity has a significant positive effect
on average absolute errors in a task.

We also find that model complexity predicts thinking time, as proxied by the
time spent on the decision screen. Interestingly, model complexity has slightly
greater explanatory power than respondents’ subjective complexities across both
measures. Our findings thus confirm the insight from our model that tasks that are
more complex through the lens of our model lead cognitively constrained agents
to commit larger errors on average.

Model complexity predicts attenuation in responses Table 2 presents results on
the relationship between model complexity and behavioral dampening of reac-
tions to problem parameters. Column 1 shows a regression of the average first-
period allocation in a task on the rational consumption, computed using the glob-
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Table 1: Model-predicted complexity increases subjective feeling of complexity,
errors, and decision time

Subjective complexity Absolute Error Decision time
Model complexity 1.333⇤⇤⇤ 9.979⇤⇤⇤ 1.893⇤⇤⇤

(0.075) (1.679) (0.590)
Subjective complexity 5.053⇤⇤⇤ 1.056⇤⇤

(1.275) (0.458)
Constant 2.429⇤⇤⇤ 41.178⇤⇤⇤ 36.811⇤⇤⇤ 19.371⇤⇤⇤ 17.989⇤⇤⇤

(0.169) (4.105) (7.174) (1.490) (2.587)
Observations 81 81 81 81 81
R2 0.787 0.275 0.159 0.087 0.061

Notes. This table displays different regressions on model complexity, computed
as in Section F.3, or subjective complexity, computed as in Section 4.1. Absolute
error is the average absolute error within a task, computed for each respondent
as the difference between their stated answer and the rational answer using their
elicited yi (see Section F.2). Decision time is the average time in seconds spent on
the decision screen. All regressions are done at the task level, averaging over par-
ticipants who answered that task. Interpretation. Higher model complexity leads
to greater subjective complexity, larger absolute errors and longer decision times,
as predicted by the theory (see Section 2.3).
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Table 2: Higher model complexity leads to more attenuation in responses to incen-
tives

First Period Allocation
cr

1 0.973⇤⇤⇤ 0.982⇤⇤⇤ 0.950⇤⇤⇤
(0.135) (0.119) (0.122)

Mod. comp. ⇥ cr
1 -0.070⇤⇤⇤

(0.018)
Mod. comp.>Median⇥cr

1 -0.156⇤⇤⇤

(0.047)
Constant -27.542 -5.751 -8.934

(24.561) (24.188) (24.571)
Observations 81 81 81
R2 0.357 0.456 0.450

Notes. Column 1 regresses the average Early Period allocation for each task on the
rational allocation, computed using the calibrated y. Column 2 adds an interaction
term with model complexity. Column 3 adds an interaction term with a dummy
variable equal to 1 if a task’s model complexity is greater than the median. Interpre-
tation. The coefficient the interaction terms is significantly negative, showing that
greater model complexity leads to attenuated reaction to the rational allocation, as
predicted by the theory (see Section 2.3).
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ally calibrated utility parameter. Column 2 adds an interaction between the ra-
tional consumption and model complexity, finding a significantly negative coef-
ficient: complexity makes agents underreact to problem parameters. Column 3
replaces the continuous measure of model complexity by a dummy equal to 1 if
model complexity is higher than the median, again documenting a significantly
negative coefficient: its magnitude is now more interpretable, and shows that the
size of this effect is large. Note that the increase in explanatory power, R2, from
adding either of the interaction terms is also substantial, between 35% and 46%.
Our experimental results thus confirm the key behavioral predictions of our model
that more complex problems lead agents to underreact to variation in the rational
response. Appendix F contains a more detailed discussion of the experimental
design and findings.

5 Complexity of Discrete Choice

In many situations, we face a choice between two or several actions (e.g. buy or
rent an apartment), rather than a continuous choice (e.g. how large of a apartment
to buy). Hence, we now extend the model to discrete choice.

5.1 Transposing our behavioral theory of continuous choice into
a behavioral theory of discrete choice

We use a theoretical device to transform a behavioral theory of continuous choice
into a behavioral theory of discrete choice.

Position of the Problem Consider a theory for a behavioral treatment of smooth
problems, where the action a is smooth – it is in a subset A of Rd

Choice of continuous action a : max
a:a2A✓Rd

u (a, x) . (34)

Next, let us consider a discrete problem

Choice of discrete action k : max
k:k2K✓N

v (k, x) , (35)
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where K is now a discrete subset. We still maintain that for each k, v (k, x) is twice
continuously differentiable in x. How do we transpose our theory of a our contin-
uous action problem (34) to a discrete choice problem (35)?

Proposed solution We define as a (k) the probability of playing action k, so Âa a (k) =
1, a 2 D (K). We then define the utility function, convex in a, as

u (a, x) := Â
k

a (k) v (k, x)� bD
⇣

a, ad
⌘

, (36)

where D
�
a, ad� is a divergence measure that is convex in a, ad 2 D (K) is a default

action probability, and b > 0. We shall take the Kullback-Leibler divergence, or
relative entropy, between a and ad:

D
⇣

a, ad
⌘
= 1 + Â

k
a (k)

✓
ln

a (k)
ad (k)

� 1
◆

(37)

We could take other divergences D
�
a, ad�.23 We discuss below the specification of

ad and b.
We propose to use the machinery developed for u (a, x), e.g. the allocation of

attention to x, and the feeling of complexity, for the discrete problem v (k, x).24

Definition 2. (Complexity: going from continuous choice to discrete choice). The com-
plexity of the discrete problem (35) is the complexity of the associated smooth
problem (34), as seen in Section 2, with the associated utility function defined in
(36).

For instance, suppose that we ask “what is the mental effort Li associated with
variable xi, and its impact on utility?” in the discrete problem. We apply the
continuous-choice framework of Section 2 to the utility function u (a, x), and obtain
an attention to xi, and a gain from attention; this applies to the discrete problem
(35).

23For instance, we could take D
⇣

a, ad
⌘
= Âk

(a(k)�ad(k))2

2ad(k) , which yields the same divergence up

to third order terms, when a � ad is small.
24The use of regularization is standard in the machine learning literature (Goodfellow et al.,

2016), and also has been used in economics (e.g. Matějka and McKay, 2015) to study choice, but not
yet for the feeling of complexity.
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This approach is conceptually simple. To be useful, it needs to lead to relatively
simple concrete calculations. We verify this in the next section, and proceed to
illustrations in Section 5.3.

5.2 Complexity of discrete choice model: Concrete measures

We now detail the machinery of discrete choice. The reader eager to see concrete
results may wish to go straight to the concrete illustrations of Section 5.3. For
notational simplicity, we replace a (k) by ak and v (k, x) by vk (x). We start with a
well-known fact.

Lemma 3. The solution of maxa u (a, x) where u is in (36) is a = aF �ad, v (x) , b
�
, where

the probability of playing action k is:

aF,k
⇣

ad, v (x) , b
⌘
=

ak,de
1
b vk

Âk0 ak0,de
1
b vk0 (38)

When b ! 0, the model converges to frictionless choice, i.e. the agent chooses
argmaxk vk.

We next derive the associated value of information in discrete-choice, which
is analogue of Lemma 1, which covered the value of information in continuous-
choice.

Lemma 4. (Value of information: Discrete choice) The expected utility after acquiring
precision mi is, up to third order terms in sxi :

U (m) = U
�
0+
�
+ Â

i
Vimi, U

�
0+
�
= Â

k
ad,kµk (39)

where Vi =
V0

i
2b is the value of information in dimension i, with:

V0
i (a) = Â

k
ak
⇣

vk
xi
� v̄xi

⌘2
s2

xi
(40)

If information in dimension i only affects an option k (i) (i.e., if vk0
xi
= 0 for k0 6= k), V0

i
reduces to:

V0
i (a) = ak(i)

⇣
1 � ak(i)

⌘ ⇣
vk(i)

xi

⌘2
s2

xi
(41)
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This value is more informative if it affects an option with high ak �1 � ak�,
which is maximal at ak = 1

2 . This is because there is no point in furthering the
search if an option has very low prior probability ak of being used (as very likely it
will not be chosen), or if an option has a very high probability of being chosen (as
very likely it will be chosen anyway).

Specification of the noise parameter b and the default action ad We need to
specify b. It should be proportional the scale of the problem, and intuitively to the
uncertainty. So, we we define the following function bF, that returns a value of b

given the parameters of the problem:

bF
⇣

ad
⌘

:=

 

Â
i

V0
i

⇣
ad
⌘!1/2

b̄, (42)

where function V0
i is in (40) and b̄ is a unitless parameter. The intuition is the

following. The expected value of full information prefactor is
⇣

1
2 Âi V0

i

⌘1/2
, so

has the interpretation of the average amount of change in relative valuations that
can be learned if it was costless. If b̄ = 0, the agent’s choice has zero trembling.
Typically, we recommend the parametrization b̄ = 1. We shall make the following
assumption.

Assumption 1. (Setting the default action ad and the noise parameter b in discrete
choice) We set ad and b in the following manner. First, we define ad,0 (k) := 1

K the
“ignorance prior” on the actions, assigning equal probability to all actions; and compute
an initial value of b, b0 := bF �ad,0�, using (42). Then, we obtain the default action
probability, ad = aF �ad,0, v

�
xd� , b0�, where aF is the function in (38), and its associated

b = bF �ad�.

This action responds to incentives, as visible in v
�
xd�. This procedure cap-

tures, we submit, some of the thought process of the agent. ad,0 is the “complete
ignorance priori”, which allows to still calculate some sense of the dispersion of
valuations, and the typical size b0. This then allows to put more weight on the
“more tempting” options, as in ad, and a more refined b.25

25One could imagine richer variants. For instance, if some actions are in “red” or otherwise
visually salient (as in Li and Camerer (2022)), they will capture a large initial attention ad,0 . This
would change our modeling of ad,0,via a “bottom-up process”, but not the modeling of ad given
ad,0.
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Complexity of discrete choice We can finally obtain the complexity of discrete
choice.

Proposition 10. (Complexity of discrete choice, input-based) As in Proposition 1,
suppose that the micro cognitive production function mi (Li) is in (10), and that and the
optimum we have an interior solution (mi

�
L⇤

i
�
2 (0, 1)). Then the complexity is as in

Proposition 1, with complexity aggregator C = C (si, ci) where si =
V0

i
Âj V0

j
and V0

i is

defined (40).

We next move to the output-based complexity.

Proposition 11. (Complexity of discrete choice, output-based) The output-based com-
plexity is, with µ̄ = 1

K ÂK
k=1 µk,

1 � Q (L) =
Âi V0

i (1 � mi (L))
Âi V0

i + 2b
�
Âk ad,kµk � µ̄

� . (43)

Finally, we record the allocation of attention to each dimension of the problem.

Proposition 12. (Discrete choice: allocation of attention across dimensions) Given a
shadow cost of cognitive effort w, the attention mi to dimension i is mi = A

⇣
Vi

wci

⌘
, where

A (v) = argmaxm vm � Q�1 (m) is the optimal attention given stakes v, and Vi is the
value of information i, given in (40).

5.3 Complexity of discrete choice: examples

We present some applications, deferring others to the online appendix (see Section
D.9 for lotteries).

5.3.1 Complexity of choosing between two goods: a simple one and a complex
one

Suppose that there are two goods (so, K = 2). Good 2 has a known value of 0, while
good 1 has a value v1 that requires thinking. We split v1 = µ + v, where µ is the
default value (the one obtained with a very superficial glance at the problem), and
v = Âi bixi captures the non-trivial dimensions to think about, normalized so that
the xi have mean 0. Defining as above yi := bixi, so that v = ÂN

i=1 yi incorporates
the impact of the N dimensions.
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Figure 8: Complexity of discrete choice. Notes. The task is to choose between
good 1 (with value µ + x) and good 2 (with value 0). This plot shows the output-
based complexity of a discrete choice problem 1 � Q (L) as a function of µ as in
(44). Interpretation. When the first impression µ of the value of good 1 is from 0,
the problem is easy: for instance, if µ is very positive (resp. very negative), it is
“clear” that one ought to take good 1 (resp. good 2). However, when µ is close to
0, the choice is “complex”, as more exploration is warranted. Parameters: sx = 1,
m (L) = 1

2 and a = ebµ

1+ebµ .

We apply the model. Applying (42) we have b =
q

ÂN
i=1 s2

yi
b̄, and then the

initial probability of choosing the first good, obtained after simply glancing at µ, is
a = a1 = ebµ

1+ebµ . Then, V = 1
b a (1 � a) s2

y , and (43) gives the output-based complex-
ity:

1 � Q (L) =
V (i)� V (m)

Âk akµk + V (i)� µ̄
=

a (1 � a) s2
x (1 � m (L))

a (1 � a) s2
x +

1
2 |µ|

(44)

We see that the complexity is lower when |µ| is higher. This is plausible: if µ � sx

is very high, the decision is a “no brainer”: then a is close to 1, as clearly, the agent
should choose good 1 over good 2 (which, we recall, has a value of 0). Likewise, if
µ is very negative, good 1 is clearly inferior and the agent should choose good 2 (a
is close to 0).
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5.3.2 Complexity of choosing between several goods

With K uncorrelated goods and D dimensions Suppose that we have K goods.
Each good k has D dimensions xkd, and its value is

vk = µk +
D

Â
d=1

bdxkd

with var (bdxkd) = s2
kd the same across goods and all xkd uncorrelated across di-

mensions and goods. So there are KD dimensions xkd to potentially examine.26

Let us take the case where “looking up dimension d for good k” has a cost ckd.

Proposition 13. (Complexity of choosing among K goods). The prior probability

of using good k is ad,k µ eµk/b0 with b0 =
⇣

1
K

⇣
1 � 1

K

⌘
Âk,d s2

kd

⌘1/2
b̄. The value of

information for good k’s dimension d is V0
kd = ad

k
�
1 � ad

k
�

s2
kd, and the importance is

skd =
V0

kd

Âk0 ,d0 V0
k0d0

. The complexity of choosing among the K goods is then

C = C (skd, ckd) (45)

By Lemma 12, the attention to dimension d of good k as mkd = A
✓

V0
kd

2bwckd

◆
.27

When the goods are symmetrical, in the sense that skd = sd and ckd = cd, one can write

skd = sksd, where sk =
ad

k(1�ad
k)

Âk0 ad
k0(1�ad

0k)
is the relative importance of good k, and sd =

s2
d

Âd0 s2
d0

is the relative importance of dimension d. The complexity of the problem is:

C = K f C f , K f =

 

Â
k

s
1
a
k

! a
a�1

, C f =

 

Â
d

s
1
a
d c1� 1

a
d

! a
a�1

(46)

where K f 2 [1, K] is effective number of goods, and C f is the effective complexity of each
good.

In conclusion, we also provide a theory of the complexity of discrete choice,
and of the allocation of attention. Its predictions seem sensible – more goods and

26Formally, the dimensions are indexed by i = (k, d) 2 I = {1, . . . , K}⇥ {1, . . . , D}.
27Hence, we recover the allocation of attention to the dimension d in K symmetric goods, as in

Gabaix (2019), eq. (38), but can treat much more general cases, with asymmetric good.
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more compositionality increase the complexity. But having an “extremely tempt-
ing option” does decrease the complexity, as K f becomes 1.

6 Imperfect Metacognition: Solving the Infinite Regress
Problem

So far we have modeled imperfect cognition (i.e., imperfect choice of action a) with
perfect metacognition (perfect choice of the mental effort Li). But it is clear intu-
itively that we all exhibit imperfect metacognition (see Bronchetti et al. (2023) for
measurement). We next show how the model handles imperfect metacognition,
after a simple enrichment. Put simply, we re-use the model “at the meta level”,
i.e. at the level of choosing cognitive actions (“inside, in the mind”) rather than at
the level of the physical action (“outside, in the world”). This has the advantage of
solving the infinite regress problem—at some point, the benefit of thinking about
thinking etc stops.We next show how this works.

6.1 The metacognitive problem

The “level 0” problem was to choose outside action a: maxa u (a, x), which gives
a value of information pa = 1

2 |uaa|Âi |axi xi|2, pxi = 1
2 |uaa| |axi xi|2. The “level 1”

problem is “meta”: choose inner mental effort Li

max
Li

V (Li, pxi) , V (Li, pxi) := pxi Q (Li; ci)� wLi (47)

It has the same form as the level 0 problem, with decision variable Li and hard-to-
think about variable pxi , ci, so that:

aMeta = Li, xMeta = (pxi , ci)

Hence, we can apply the model to this meta choice, where the agent imperfectly
perceives the benefits and costs of attention, which are the components of xMeta.

We next examine two questions: will this optimization process stop, and, does
this extension yield testable predictions?
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6.2 How the infinite regress stops

By Lemma 5 in Section A.1, the optimal attention is 0 when the gain from attention
pxi is small enough. The next proposition shows that at each level of metacog-
nition, the value of the metacognitive step decreases geometrically. This gives a
concrete solution to the “infinite regress” problem of Simon (1955). Reasoning at
the meta-meta-level (iterating the number of metas) brings exponentially smaller
benefits, so agents will stop quickly.

Proposition 14. (Benefits of metacognition, meta-metacognition etc.) Take the sparsity-
inducing cognitive production function with a > 1. The value of the meta stage falls
geometrically

pxi,Meta = gpxi , g =

✓
1 � 1

a

◆
1 � md

2

For instance, when a = 2, md = 1
2 ,then g = 1

8 . As a result, the price of the k�th round of
meta-reasoning is

pxi,Meta = gk pxi

So the process of meta-cognitive iteration will stop at the earliest iteration k such that
gk pxi < wcA (a), where A(a), given in (50), depends solely on a.

6.3 How agents with limited metacognition differ: Empirical pre-
dictions

We now derive some consequences of limited metacognition. Consider people
who have very limited metacognition. Then, instead of true importance share si,
they see sd

i = 1
N . Instead of true complexity ci of each subpart, they see cd = c̄.

Then, perceived complexity is

Cd = C
⇣

sd
i , cd

⌘
= Nc̄ = number of non-zero elements

So, we can predict that the less sophisticated the subjects, the more (i) they rely
on “number of non-zero elements” for their feeling of complexity; (ii) their alloca-
tion of effort is more uniform across inputs and hence less sensitive to incentives;
(iii) they’re more influenced by visual cues, e.g. salient information in red or at the
center. The latter point is due to the fact that when not directed by stakes, people
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react more to the “default” attention directed by visual cues, as in Li and Camerer
(2022).

We formalize this as follows. Instead of the determinants si µ Vi, people per-
ceive Vi with dampening M 2 [0, 1], i.e. Vs

i = VMs

i
�
Vd�1�Ms

, so their perception
is si (M) µ sMs

i . Likewise, they perceive the complexities with dampening, so
cMc

i
�
cd�1�Mc

. Hence, the perceived complexity is given as follows.

Proposition 15. (Complexity measure with imperfect metacognition) Call Ms,Mc 2
[0, 1] the degree of precision in metacognition regarding shares vs micro complexities, so
that Ms = 1 (respectively Ms = 0) means perfect (respectively fully imperfect) metacog-
nition with respect to shares (and similar for Mc. Then, the complexity measure with
imperfect metacognition becomes:

C = C (si (M) , ci (M)) =

 

Â
i

s
Ms

a
i c

Mc(1� 1
a)

i

! a
a�1
 

Â
j

sM
s

j

! ‘1
a�1 ⇣

cd
⌘1�Mc

(48)

Indeed, when metacognition is perfect (Ms = Mc = 1), measure (48) becomes
our original measure (12). Bronchetti et al. (2023) shows that the allocation of at-
tention is directionally sensible (people’s attention increases in the stakes) but not
quite optimal (their attention doesn’t react to the stakes as much as it ought to).
This corresponds to Ms,Mc < 1 in our model. More generally, one could imagine
that researchers would routinely measure both the quality of cognition (via m) and
that of metacognition (via Ms,Mc). One could also endogenize the metacognitive
attentions Ms, Mc, applying again the model, at the metacognitive level.

7 Conclusion

We propose a simple, tractable theory of complexity for basic economic decision
problems. The theory allows us to formalize intuitions about subjective percep-
tions of complexity. It provides tools to predict and measure complexity – e.g., the
complexity of evaluating a cup of coffee, goods with complementarity, the tax sys-
tem, lotteries, or the complexity of planning intertemporal consumption. Guided
by the model, we then propose a simple and portable experimental methodology
to measure perceptions of complexity. Our experimental analysis confirms the core
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tenets of the theory in an intertemporal consumption task. We hope that our mea-
sure will be useful to predict and measure complexity, and study its impact on
economic decisions.
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A Appendix: Some complements to the theory

A.1 The model with sparsity

One can set up

Q (L) = max

 
1 �

✓
L
C
+ 1
◆1�a

, 0

!
(49)

with a > 1, while in the main model a 2 [0, 1). This means that attention greater
than 0 occurs for L 2 (C, •). So often we will have 0 attention to a feature, i.e.
sparsity: Q = 0. Indeed, we have the following.

Lemma 5. (Sparsity threshold for a > 1) Suppose that people use the cognitive pro-
duction function (49) with a > 1. Then, in the problem maxL pQ (L)� wL the optimal
attention is 0 iff:

p
wC

< A (a) , A (a) =
1

a � 1
(50)

Proof. We have an interior optimum if the maximand of V (L) = pQ (L)� wL is
L = 0. As V is concave, this is the case iff V0 (0+)  0, i.e. p

C (1 � a)  w.

Then, we get the following variant of Proposition 1. Its message is that func-
tional forms do not change – just in all expressions, one replaces Q by 1� Q and m
by 1� m, and now a > 1. In particular, the complexity aggregator (12) is the same.
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Proposition 16. (Macro complexity from micro complexity, variant of Proposition
1 with a > 1) Suppose that the “micro” cognitive production function of component i is

mi (L) = max

 
1 �

✓
Li
ci

+ fi

◆1�a

, 0

!
(51)

where the complexity of dimension i, ci, is exogenous for now with a > 1, and fi � 0. If
at the optimum of problem (9) we are in the “interior region” (mi

�
L⇤

i
�
2 (0, 1), where L⇤

i
is the optimal allocation to dimension i), then the macro cognitive production function is

Q (L) = max

 
1 �

✓
L
C
+ F

◆1�a

, 0

!
(52)

with “macro complexity” C = C ((si, ci)i=1...N), using the “complexity aggregator” (12),
and with F = Âi ci

C . In addition, at the optimum L⇤
i

1 � mi (L⇤
i ) =

✓
C

ci/si

◆ 1�a
a

(1 � Q (L)) (53)

so that attention to dimension i is larger than the average attention Q (L) if and only if
ci
si
� C.

The shifts fi and F may seem a bit odd, but they are largely innocuous. The
polar cases are fi = 0 (which is notationally simpler), and fi = 1,which ensures a
concave function mi (L) with mi (0) = 0.

One can also get a more “intrinsic” formulation of C.

Lemma 6. (Intrinsic characterization of C as a function of marginal effort L0 (Q))
Consider the production functions

Q (L) =

8
<

:
min

⇣� L
C + F

�1�a , 1
⌘

if a < 1

max
⇣

1 �
� L

C + F
�1�a , 0

⌘
if a > 1

with C > 0 and F is an arbitrary constant independent of L. To achieve a target precision
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Q, (52), the effort is, in the interior region (Q 2 (0, 1))

L (Q) = C ⇥

8
<

:
Q

1
1�a � F if a < 1

(1 � Q)
1

1�a � F if a > 1

so that
L0 (Q) = CL̄0 (Q) , (54)

where

L̄0 (Q) =
1

|a � 1|

8
<

:
Q

a
1�a if a < 1

(1 � Q)
a

1�a if a > 1

is independent of C and F. Hence, C is the prefactor in the derivative of effort with respect
to the target performance.

Optimal effort, for a given shadow cost of effort Proposition 7 shows that in
the “shadow cost” version, with a linear cost wL, the performance Q (L⇤ (w)) is
independent of the shifter constant F.

A.2 Further predictions on actions vs complexity

We next record the attention to each dimension of the problem.

Proposition 17. (Allocation of attention between components of a problems) Consider the
setup of Proposition 1, with a < 1. The optimum L⇤

i satisfies:

mi (L⇤
i ) =

✓
siC
ci

◆ 1�a
a

Q (L) , (55)

so that attention to dimension i is larger than the average attention Q (L) if and only if
ci
si
 C.

The following refines Proposition 5

Proposition 18. In the setup of Proposition 5, regressing a � ad on its rational compo-
nents ar

xi
xi

a � ad = Â
i

miar
xi

⇣
xi � xd

i

⌘
+ k + #
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yields a regression coefficient equal to (in population)

mi =

✓
siC
ci

◆ 1�a
a

M (56)

from (55).

A.3 Multi-dimensional actions

In many situations, the action is multidimensional, so is in a 2 RK. We state how
the basic analysis essentially carries over.

Proposition 19. (Multidimensional action) When the action is multidimensional (a 2
RK), the value of more precision to dimension i is

Vi = �1
2

a0xi
uaaaxi s

2
xi

(57)

so that the relative importance shares are si = Vi
Âj Vj

. The measure of complexity of the
problem is otherwise the same as in the one-dimensional action case (e.g. Proposition 1).

Note that the dimensions of axi is K ⇥ 1, and that of uaa (which is the second
derivative) is K ⇥ K. In the one-dimensional action case, Vi = � 1

2 u00 �ad� a2
xi

s2
xi

.
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B Appendix: Review of Related Literature

Our paper ties into various literatures. First, on the theoretical side, the central
distinguishing feature of our model is that it provides a measure of complexity
that applies to canonical economic models in a fairly general way. This is largely
owed to the model relying on continuous actions and concepts. Earlier proposals
used the number of parts in automata (Rubinstein, 1998), or sequences of discrete
decisions (Gabaix et al., 2006), which makes them less tractable: they require either
simulation by a computer or rather pain-staking enumeration of cases, and it is
unspecified how they could be applied to smooth bread-and-butter problems such
as intertemporal consumption. Instead, they are meant for simple games with a
few discrete actions. Other models using continuous concepts do not feature an
explicit theory of complexity. Sims (2003) builds a theory of Bayesian inattention
based on communication through a channel with finite Shannon capacity. There is
no theory of different degrees of complexity: how the (typically, entropy) cost of
communicating of some things is higher than others (e.g. income). Caplin et al.
(2020) uses an analogy with production theory that is similar to ours to propose a
methodology for recovering attention costs from choice data in the rational inat-
tention framework, but does not endogenize task complexity. Alaoui and Penta
(2022) characterizes the core properties that are necessary and sufficient for the de-
cision to reason about a problem to be captured by a cost-benefit analysis. Ortoleva
(2013) models an agent with thinking aversion in risky choice, conceptualized as
the cognitive cost required to figure out their preferences in order to make a choice.
Gabaix (2014) builds a model of behavioral inattention with sparsity (i.e., not all
dimensions are processed), which is tractable enough to apply to basic Arrow-
Debreu-style consumer theory and general equilibrium, as well as to public fi-
nance and macroeconomics (Farhi and Gabaix, 2020; Gabaix, 2020). But in that line
of research, the “cost” of thinking about each dimension is left unmodeled, and
typically it’s meant to be the same for each dimension. Our work provides such a
theory of the “cost” of processing a dimension. Most other behavioral models (e.g.
Bordalo et al., 2013) do not feature any explicit notion of complexity. They could
be extended, so that their behavioral features would vary with complexity.

Notions of complexity also have a long tradition in behavioral economics. Si-
mon (1955) introduces the notion of bounded rationality. Lipman (1995) gives a
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literature review on a model of bounded rationality stemming from limited in-
formation processing. Aragones et al. (2005) studies “fact-free learning”, i.e. dis-
covering new patterns among already known facts, and show that this amounts
to an algorithmically NP-complete variable selection task. The analysis of fact-
free learning, or reasoning, has been conducted for a variety of settings, including
unawareness (Schipper, 2015), sequential use of heuristics (Manzini and Mariotti,
2007) and strategic interactions (Crawford and Iriberri, 2007).

While general and precise notions of complexity have proven elusive, there is
much work on the type of behaviors that are plausibly induced by complex deci-
sion environments, especially noisy or imprecise choices (see, e.g., Woodford, 2020)
and heuristic or rule-based decision-making (Nielsen and Rehbeck, 2022; Halevy
and Mayraz, 2022; Lacetera et al., 2012a; Tversky and Kahneman, 1974; Enke et al.,
2023).

Various notions of complexity have received substantial attention in game the-
ory. For example, Rubinstein (1986) explores strategic complexity in two-person
supergames where players’ strategies have to be carried out by finite automata.
Abreu and Rubinstein (1988) extend Rubinstein (1986) by deriving more general
properties for games with limited strategic complexity, and show that it results in
discontinuities of strategies and payoffs with respect to game parameters.28 More
recently, Li (2017) introduces the concept of “obvious strategy-proofness” for a
set of simple auctions and matching algorithms. The concept is binary in nature:
when a mechanism is not obviously strategy-proof, there is no remaining notion of
lower or greater complexity. Chatterjee and Sabourian (2020) provide an extensive
literature review on strategic complexity in game theory.

In the field of computer science, there is a vast literature on complexity that
mostly revolves around the prominent P vs. NP problem (see e.g. Lloyd, 2001).
This work typically looks at asymptotic notions of complexity, focusing on the
number of operations (for instance) needed to solve a problem with N components,
and in particular considering whether this number is bounded by a polynomial.
These concepts are of limited usefulness to economists, who have mostly been
interested in problems that feature bounded rationality even with a very small
number N of components, e.g., one or few elements. Hence, many of these insights
from computer science are potentially less directly relevant for economic decision-

28See Rubinstein (1998) for a review of game theory with finite automata.
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making.
In contrast, to this literature, we try to propose a smooth, tractable, and psycho-

logically intuitive notion of complexity. A few papers are already using some of the
modeling ideas in this paper. Fenig and Petersen (2024) studies analytically and ex-
perimentally a life-cycle planning model related to the life-cycle we present, with a
rich series of variants. Kurtz-David et al. (2024) model the complexity strategic in-
teractions. Gabaix (2024) derives the optimal simplicity in a number of situations,
e.g. the optimal simplicity of a tax system, or a contract.

Second, on the empirical side, we connect to several literatures. A recent line
of experimental work on bounded rationality studies the effects of specific notions
of complexity. Enke and Shubatt (2023) study the complexity of binary choice be-
tween lotteries. Oprea (2020) asks respondents how much they would be willing
to pay to avoid implementing different sets of rules, motivated by an automata-
based concept of algorithmic complexity. Kendall and Oprea (2024) ask respon-
dents to predict the output of data-generating processes, and show that they can
rarely explain their mental model and seem attracted to common, simple models;
“partition complexity” (adapted from Lipman (1995)) and “sparsity complexity”
(adapted from Gabaix (2014)) perform best at predicting extraction. Concurrent
work shows that a large set of classical decision anomalies in risky (Oprea, 2024b)
and intertemporal choice (Enke et al., 2023) occur in variants of the decision prob-
lems that rule out the motivation explanations. These papers conclude that valu-
ation errors as a consequence of complexity, i.e. the cognitive cost of information
processing, are the source of these anomalies, but do not provide a theory of such
costs. Martı́nez-Marquina et al. (2019) experimentally show that the difficulty of
contingent reasoning through multiple possible states compromises maximization
in the acquiring-a-company game. Another line of work explores the neural foun-
dations and decision-making signatures of computational complexity (Bossaerts
et al., 2019; Bossaerts and Murawski, 2017). For example, Murawski and Bossaerts
(2016) make subjects solve the knapsack problem and find that human perfor-
mance decreases with algorithmic complexity as defined in computer science. Jin
et al. (2021a) design an experiment in which senders are forced to write a truthful
report to receivers, and find that senders strategically shroud information by mak-
ing their reports intentionally complex. A different notion of complexity is studied
in work on choice overload (Iyengar and Lepper, 2000; Iyengar and Kamenica,
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2010), which suggests that a larger set of options induces various behaviors, in-
cluding a preference for simple-to-understand options. Fenig and Petersen (2024)
provide an experimental investigation of complexity in a planning experiment.

Abeler and Jäger (2015) conduct an experiment in which subjects work for a
piece rate and face taxes of varying complexity but identical marginal incentives,
and show that more complex tax schedules generate underreaction to changes in
incentives. Dean and Neligh (2023) experimentally examine the predictions of
rational inattention models and find that people adjust attention when there are
changes in incentives, but note that results are qualitatively inconsistent with in-
formation costs that are linear in Shannon entropy. Salant and Spenkuch (2022)
propose a model of satisficing with evaluation errors that features complexity of
individual alternatives. They test their model on chess data and document that
complex moves are chosen less frequently, among other findings.

Our experimental measurement approach leverages insights from psychomet-
rics. In particular, we adapt techniques proposed by Bradley and Terry (1952). Puri
(2024), building on Huck and Weizsäcker (1999), Sonsino et al. (2002) and the dis-
cussion of complexity in Bernheim and Sprenger (2020), proposes lotteries are less
favorably evaluated if they are more complex, and uses the number of outcomes
as a measure of the complexity. Evidence for this effect is provided in Fudenberg
and Puri (2023) and Goodman and Puri (2022). This evidence indirectly supports
our measure (we develop lotteries in Section D.9), which is richer than the number
of outcomes (and admits that as a particular case), as each outcome is weighted by
its importance.

Third, our proposed theory and experimental findings speak to a more applied
empirical literature on the effects of complexity. Aghion et al. (2024) analyze taxes
on the self-employed in France, who can choose one of three possible complex
systems; they find that people take time to switch to the most favorable regime
and only learn over time about changes. You and Zhang (2009) analyze compa-
nies’s annual SEC 10-K filings and show that markets react more sluggishly to
more complex reports. Célérier and Vallée (2017) find that more complex financial
products (of the equity protection type) have higher markups. Relatedly, Carvalho
and Silverman (2023) study people’s sophistication in opting out of complex finan-
cial situations. Colliard and Georg (2023) find that under more complex financial
regulations, students make more mistakes in computing the risk-weighted asset.
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Carlin (2009) builds a model in which firms increase their market power by adopt-
ing more complex rules in retail financial markets: our framework would endoge-
nize the noise in people’s mind while considering financial products. Molavi et al.
(2024) argue that constraints on the complexity of agents’ models of asset prices
can generate return predictability. Zwick (2021) studies how the complexity of the
tax code affects corporate filing behavior.

Fourth, our paper relates to a long line of work on task complexity in the cogni-
tive sciences. Campbell (1988) synthesizes this literature on complexity in psychol-
ogy and identifies four key determinants: multiple paths to a desired end-state,
multiple desired end-states, conflicting interdependence and uncertain or proba-
bilistic linkages. Byrne and Johnson-Laird (1989) conduct experiments about about
how people reason about spatial relations between objects, and find that the num-
ber of mental models required for a task (rather than the number of steps in each
model) determine its difficulty of a task. Liu and Li (2012) provide a more recent
review of definitions of task complexity in psychology and suggest a framework
with six components (goal, output, input, process, presentation, and time). Gersh-
man et al. (2015) build bridges with computer science to chart potential advances
on the question of “computational rationality”, i.e. identifying optimal decisions
while taking into consideration the costs of computation. Griffiths et al. (2015) ar-
gue that bounded rationality is also found in the algorithmic level of analysis, i.e.
how we come up with approximately correct decision rules because of cognitive
resource constraints even when the mind knows problem determinants.

Finally, we relate to the project of behavioral macroeconomics. There is now
much evidence that inattention, or the hardness to think about the future, has im-
portant implications for macro, e.g. fiscal and monetary policy (Gabaix (2020)) and
general equilibrium thinking (Angeletos and Lian (2023)). But how to endogenize
attention? Doing so is important, in part to make models robust to the Lucas cri-
tique. Much has been done on how to model the benefit of attention, modelled
as some gains in the traditional utility from more optimal decisions (Gabaix and
Laibson (2002), Sims (2003), Gabaix (2014), Woodford (2020)). But endogenizing
meaningfully the cost of attention (e.g. based on the complexity of the subparts)
has proven much more challenging. Doing this is a key contribution of our paper.
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C Appendix: Omitted proofs

Proof of Lemma 1 This is quite standard (see e.g. Gabaix (2014), Lemma 2).
We use the fact that (5) implies
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We call s := maxi si. By Taylor expansion, a � ar = Âi
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Next, by Taylor expansion around ar,
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Taking expectations,
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Applying this to m = 0 gives U (0)� U (i) = Âi Vi + O
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.
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Proof of Proposition 1 Consider the dual problem, with a cost of effort (1 � a)w:

max
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Â
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a
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and the cost incurred for dimension i is: (1 � a)wLi = (1 � a) vimi.
The aggregate attention is, with v = Âi vi and si =
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so, using the definition of C in (12):
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This also gives (55).
Finally, the constraint Âi Li = L gives w:
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So, to maximize complexity subject to Âi si = 1, all the ∂C
∂si

should be equal, which
means that si should be proportional to ci.
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We also record for future reference.
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Proof of Proposition 4 We shall prove the following slightly more general
result.

Lemma 7. Calling b = 1
a , the complexity aggregator C̃b := C1/b =
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Proof. With g := 1 � b, and Yi := ci
si

we have

C̃b = G (g) :=
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where the Yi are drawn with probability si. Hence, we need to show that G (g) is
weakly increasing in g for g from �• to •. The proof is well-known. Suppose for
instance g0 > g > 0. Then, set d = g0

g and Zi = Yg
i . Then, we have E
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by Jensen’s inequality. Taking the power 1
g0 gives G (g0) � G (g). The other cases

(including negative g’s ) are similar.

Proof of Proposition 7 This is by calculation. For a > 1, we solve,
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and the resulting attention is
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so that the cost of attention paid is:
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So an increase in p increases attention Q and effort L. But controlling for p, there is
a negative relation between attention Q and the cost wL.

In the case a > 1, effort is increasing in C iff F  (wC/p)�1/a (a � 1)1+ 1
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Proof of Proposition 9, and complements The rational answer to the problem
is

at =
wt

T � t
+

✓
1 � 1

T � t

◆
ht +

T�1

Â
s=t

ês
T � t

= Â
i

eit

where e0,t =
wt

T�t , and for i � 1, the eit are as in the Proposition. Then, we apply
the general machinery of the paper.
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Proof of Lemma 12 Before proving Lemma 12, we record how actions depend
on parameters.

Lemma 8. (Discrete choice: sensitivity of actions to parameters) Take the discrete
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choice problem. A change in information dxi creates a change in the probability of choosing
action k equal to
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where v̄xi is the average value of valuation changes created by the change in variable xi:
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Proof of Lemma 8 We have
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⇤
We can now finish the proof of Proof of Lemma 12. The LQ approximation from a

higher precision is:
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As the agent imagines that the dxi are uncorrelated across i’s, we keep only the
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diagonal terms, so that
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Proof of Proposition 10 By Definition 2 of the complexity of discrete choice,

the complexity is that of u (a, x). Lemma 4 gives DU = Âi
V0

i
2b mi. Hence, we apply

Proposition 1, with si µ V0
i

2b µ V0
i .

Proof of Proposition 11 We follow Definition 1. The “naive” answer ad,0,
the agent randomized over actions with equal probability, yields average utility
v (0) = µ̄ = 1

K ÂK
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Hence, the output-based utility is
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Proof of Proposition 13 First, we derive ad and b, following Assumption 1.
The naive initial action distribution is ad,0,k = 1

K . We also develop the case with
uncorrelated information across goods, but different variances s2
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This gives ad,k µ eb0µk . Then, (42) gives (in this expression, the superscript d means
default and the underscript d means dimension)
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Particular case where all goods have similar variances across dimensions. We next
suppose that skd = sd. Then, (42) gives
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of good k, and sd =
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is the importance share of dimension d. Hence, the

complexity of is C(skd, ckd) with ckd = cd, as it is independent of the good. Hence,
the complexity C satisfies
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Proof of Proposition 12
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���
✓

Lp p
L

◆2

Because the FOC is (1 � a) pCa�1L�a = w, we have Lp p
L = 1

a . Also,

�VLLL2 = �pxQ00 (L) L2 = px (a � 1) aL�a�1Ca�1L2 = px (a � 1) a

✓
L
C

◆1�a

= px (a � 1) a
⇣

1 � md
⌘

for a > 1. So, still for a > 1,

pxi,Meta =
1
2

px
✓

a � 1
a

◆⇣
1 � md

⌘

For a < 1, �VLLL2 = px (a � 1) a
�
�md� for a < 1, and

pxi,Meta =
1
2

px
✓

1 � a

a

◆
md
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Proof of Proposition 15 Indeed,

C = C (si (Ms) , ci (Mc)) =

0
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i
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Â
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sM
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a�1 ⇣

cd
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Proof of Proposition 19 The proof is as for Lemma 1, but with multidimen-
sional action a. The main arguments are as follows. The expected utility gains are
as in (6): with yi := axi xi is now a vector, we have

2dU = �Â
i,j

y0juaayi (76)

Assuming that the expected innovations are uncorrelated, we get

dU = �1
2 Â

i,j
a0xi

uaaaxi s
2
xi

mi

Hence, the value of information — of knowing more about i — is Vi = � 1
2 a0xi

uaaaxi s
2
xi

.

D Appendix: Theory complements

D.1 Endogenizing micro-complexity: Complexity of a problem
with two layers in the production function of thought

So far, the “atomic” complexities ci of the components xi were exogenous. Now,
we endogenize them. To do so, we use the same technique as above, but model the
cognitive hierarchy down to one level deeper. That gives us a theory of the com-
plexity of parts as a function of the complexity of the subparts, and sub-subparts,
etc., extending the predictive power of the theory to the extent that it can then be
based on assumptions about the complexity of the smaller subparts (instead of the
larger parts). We will leverage this in the experimental Section 4.

We still have ar = Âi axi xi, but now we study what happens when axidepends
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on parameters zij, as in:
axi = Â

j�0
axi,zij zij,

where zi0 = 1 is used for the “default” value axi,zi0 = ad
xi
(0). Figure 2 (right panel)

shows the corresponding schema. Instead of stopping the analysis at xi (as in the
left panel), we study their construction with the zij (right panel): their cognitive
production builds axi xi (bottom arrows pointing up), which in turn builds a (top
arrows pointing up). Then, the cognitive production function is

Fa = Â
i,j

���axi,zij xizij

���
2

mij
�

Lij
�

where mij
�

Lij
�
= M

⇣ Lij
cij

⌘
, and M is our Cobb-Douglas function (3). We obtain

the same structure as in the prior one-layer case. Also, the production function for
axi xi is

Faxi xi = Â
j

���axi,zij xizij

���
2

mij
�

Lij
�

So, with sij =

⇣
axi ,zij zij

⌘2

Âj0

✓
axi ,zij0 zij0

◆2 as the importance share of zij for xi, and, as before,

c = C ((si, ci)i=1...N) ,

we see how we get production functions from underlying parts. In the two-layer
setup above, the macro-complexity of decision a is the following function of the
micro-complexity ci of the dimensions i, as was true in Proposition 1

c = C ((si, ci)i=1...N) . (77)

But in addition, the complexity ci of dimension i is endogenized as:

ci = C
⇣�

sij, cij
�

j=0...Ni

⌘
, (78)

where sij =

⇣
axi ,zij zij

⌘2

Âj0

✓
axi ,zij0 zij0

◆2 is the importance of zij for dimension i. Furthermore, the
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complexity of a can be also expressed as a function of the nano-components:

c = C
⇣�

sisij, cij
�

i=1...N,j=0...Ni

⌘
(79)

Clearly, one could go deeper, and endogenize the complexity of each nano com-
ponent zij, in turn.

D.2 The mind as a cognitive economy

In the following, we make a number of speculative remarks on how the model pro-
posed in this paper may map to actual cognitive process in the human brain. More
precisely, if we were consulted during the design of the brain (which, sadly, we
were not), this is how we would propose to implement the “cognitive economy”
of this paper. We would implement it like an economy, with not just production,
but also price signals circulating in the mind.

Recall that for a, the problem is (from (9))

max
L

paQ (L)� wL, (80)

where pa = 1
2
��u00 �ad��� s2

a is the benefit (in utils) of going from zero to full precision,
and w is the shadow cost of effort.

Then, the precision problem for xi is also

max
L

pxi mi (Li)� wLi, (81)

with

pxi := pa a2
xi

s2
xi

s2
a

= pasi. (82)

This has the interpretation that the price pa was sent “down the production chain”
as a transformed price pxi , to indicate to the module thinking about xi how much
effort to invest in xi.

This can be generalized to the two-layer production function. Then, we form

pzij = pxi sij (83)

so, the price pa generates pxi , which in turn generates pzij , which instructs how
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Figure D.1: Cognitive architecture with quantities and prices. Notes. Inputs con-
tribute to the outcome, i.e. flow upwards on the tree, while prices inform about
the value of different inputs, i.e. flow downwards on the three.

much to think about pzij .
We see that prices fall as we proceed down the network. At some point, this

can stop. Indeed, when a > 1, by Lemma 5, we stop when

pzij

wcij
< A (a) (84)

for a value of A (a) specified in the Lemma.
One could contemplate that this is how the mind allocates prices throughout

its architecture. One could also speculate that one day, programming computers
might explicitly use this kind of architecture. For many calculations, one does need
only a finite, and potentially small, precision. The value of each calculation could
be circulated in a program with this sort of “prices”, in the sense of value.

D.3 Outside the interior region

We now generalize Proposition 1, to the case where the mi can be equal to 1 at the
optimum.

Proposition 20. Given the assumption of Proposition 1, in the general case where we may
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be outside the “interior” region, so that we allow mi(Li) to be equal to 1, we have

Q (L, (si, ci)) = min
w

2

6664 Â
i: ci

si
w

si +

0

BB@
L � Âi: ci

si
w ci

C
✓
(si, ci)i: ci

si
>w

◆

1

CCA

1�a
3

7775
(85)

Then, the attention mi = 1 for ci
si
 w, and mi < 1 for ci

si
> w.

The corresponding intuition is simple. Suppose that there are just two compo-
nents, and let us say that c1

s1
< c2

s2
. For low total cognitive budget L, both compo-

nents get some partial attention mi < 1. Then, for L above a value L⇤, the attention
to dimension 1 is full (m1 = 1), so that all the residual effort is invested in L2. Then,

the production function is Q (L) = s1 + s2

⇣
L�c1

c2

⌘1�a
.

D.4 Interaction with learning

We sketch how to incorporate learning in the model. Suppose that people learned
the optimal action ak = a⇤

�
xk� for some parameters xk, with k 2 {1, . . . , K}. Then,

given a new vector x, a sensible strategy it so find an prior situation xk close to x,
anchor in the optimal action ak, and adjust for the small difference between x and
xk.

We formalize this idea, and enrich it in the process. Call Wk the utility loss given
L cost if the default is taken to to be ak, xk:

Vk (L) = max
L1,...LN

�1
2
|u00
⇣

xk
⌘
|Â

i
a2

xi

⇣
xk

i � xi

⌘2
(1 � mi (Li)) s.t. Â

i
Li  L

Then, the agent chooses the best situation according to:

min
k

Vk (L)

And the associated complexity is low is a paradigmatic situation xk is close to the
situation x faced by the agent. We state the following simple result, whose proof is
immediate.

Lemma 9. (Learning decreases complexity) Hence, a richer set of learned paradigms
xkis leads to less complexity: a lower value of mink Vk (L).
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One could imagine thinking of an “optimal” learning, e.g. an optimal spacing
of paradigmatic situations xk.

D.5 First vs. second order complexity aversion

So far, the errors affect precision via second order terms. But one could well imag-
ine that they are first order terms. This is analogous to the corresponding issue in
risk aversion.

Indeed, if the errors ei := ys
i � yi are uncorrelated, a = Âi yi, as = Âi ys

i , then
the error in a is as � a = Âi ei. So, if the errors are all uncorrelated, the quadratic
error is

E
h
(as � a)2

i
= Â

i
s2

ei
(86)

where s2
ei

is the variance of error ei in dimension i . However, suppose that the
errors have the maximal correlation of 1. Then

E
h
(as � a)2

i
=

 

Â
i

sei

!1/2

(87)

So each sei enters with a power 1 rather than 2. Then, the utility loss is in (6) is:

U = Ur � 1
2

���u00
⇣

ad
⌘���

 

Â
i

syi (1 � mi)
1/2

!2

So, defining m̃i = 1 � (1 � mi)
1/2, and the shares (8) become:

s̃i =
syi

Âj syj

(88)

the problem (9) becomes:

Q̃ (L) := max
L1,...LN

Â
i

s̃im̃i (Li) s.t. Â
i

Li  L (89)

Moreover, we can imagine that the production function in m̃ space is the one we
had used for m in (10).Then, the problem is formally the same, except that the share
s̃i depend on standard deviations rather than their squares—first order rather than
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second order. Mechanically, first order subjective losses from complexity will lead
to a even more powerful force to avoid complexity.

D.6 Cognitive-risk adjusted certainty equivalent

When performing max u (a, x), the agent might use a certainty equivalent, which
we posit to be as follows:

xs,C
i = xs

i � l sign
⇣

uaxi xi

⇣
a � ad

⌘⌘
(1 � mi) sxi (90)

where l � 0 is akin to a loss aversion coefficient, with as a rough guesstimate
l ' 0.2. Then, the agent takes the action:

max
a

u
⇣

a, xs,C
⌘

(91)

For instance, if u (a, x) = � (a � ar (x))2 with ar (x) = x1 � x2 with x1 > 0 and
x2 > 0, and ad = 0. Then the action using the certainty equivalent is:

a = x1 � l (1 � m1) sx1 � x2 � l (1 � m2) sx2 (92)

Here is the interpretation of (90). Suppose that uaxi xi > 0, so that xi is a “good
news” for a (like x1 > 0 in our example), i.e. increases the optimal a compared
to the case where xi = 0. Then, the perceived certainty equivalent is a little
dampened, but a quantity proportional to the uncertainty about xi. Likewise, if
uaxi xi < 0, xi is “bad news” for a (like x2 in our example) then the agent, mindful
of cognitive noise, is even more pessimistic, or distrustful of the situation. This
capture the fact that willingness to pay is generally lower than willingness to ac-
cept.

D.7 Complexity of forecasting

We want to capture that some forecasts are “more complex” than others. For in-
stance, if xt = rxt�1 + #t, then Et [xt+h] = rhxt is reasonably simple. But if the
process is multidimensional,

xt = Axt�1 + #t
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, and ft,h = Et [yt+h] = Et [b0xt+h] = b0Ahxt is rather complex. We formalize and
quantify that.

We suppose a default matrix Ad = D, typically D = rIN, for some r. Then, the
default prediction is f d

t,h = b0Dhxt, and the discrepancy is

d (A) := b0
⇣

Ah � Dh
⌘

xt

The marginal impact of an difference Aij � Dij between the true and default tran-
sition matrix is:

vij = E
h
d2

Aij

�
Aij � Dij

�2
i

and it’s share is: sij =
vij

Âi0 j0 vi0 j0
. Then, the complexity is just C (s).

For instance, suppose that A = Diag (ri) and D = r̄I, for some r̄, with #it

uncorrelated across i and t. Then,

vii =
⇣

bihrh�1
i (ri � r̄)

⌘2
var (xi) (93)

while vij = 0 if i 6= j. Hence, the complexity is higher there the variable y is
“effectively” composed of more variables xi with different autocorrelations ri.

D.8 Ex post simplification of decisions, for instance to communi-
cate an answer

We often wish to have a simple decision rule — for instance, one that does only use
the simplest of numbers, 0 and 1. For instance, if the correct answer is ar = 1.1x1 +

0.2x2, we might replace it by as = x1. Similarly, if the answer is ar = 3.12, we
might just say as = 3. Saying otherwise would be pedantic — uselessly burdening
the recipient of the information with largely superfluous extra information. We
formalize this basic fact here.

Suppose that the answer is ar = Âi bixi.29 The metric of complexity of an an-
swer a = Âi bs

i xi is C (bs) = Âi C
�
bs

i
�

with

C (bs
i ) = c01bs

i /2{0,1} + c11bs
i =1 (94)

29For instance, if ar = 3.12, we express this as ar = x1 + 0.1x2 + 0.01x3, with the xi’s equal to 3, 2
and 1.
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which means that there a penalty of c1 for a bs
i equal to 1, and a penalty of c0 � c1

for a bs
i different from the “simple” values of 0 and 1. We could have other “simple”

numbers, e.g. 1
2 , but we leave the generalization there.

Then, the problem of the “simplifier” is

min
(bs

i )i=1...N

�
bi � bs

i
�2 kxik2

kak2 + C (bs
i ) (95)

The first term is the error in the recommended answer (as a fraction of the modulus
of the correct answer); the second term is the cost of using this.

D.9 Application: Complexity of choosing between lotteries

What’s the complexity of evaluating a lottery? Let’s say that a lottery has W events,
w = 1 . . . W, and event w has probability pw and payoff rw. The expected value is
Âw pwrw. To represent the imprecise perception, we draw on a rich psychomet-
ric literature (e.g., Dehaene, 2003; Zhang and Maloney, 2012; Gabaix, 2019; Khaw
et al., 2021; Enke and Graeber, 2023) documenting that (i) probabilities are pro-
cessed in log odds (i.e. agents use noisy versions of p̃w = ln pw

1�pw
) and (ii) ab-

solute values of payoffs are processed as logs (i.e. agents use noisy versions of
r̃w = ln |rw|), while preserving the sign Sw = sign (rw). Accordingly, we posit that
the agents processes values using the function:

V
�
( p̃w, r̃w, Sw)w2W

�
=

Âw P ( p̃w) R (r̃w, Sw)

Âw P ( p̃w)
(96)

with the inverting functions (mapping the log odds p̃ into probabilities P) P ( p̃) =
1

1+e� p̃ and R (r̃, S) = er̃L (S). We also allow for loss aversion, where L (S) = 1 if
S = 1, and L (S) = �l if S = �1, with l � 1 the loss aversion coefficient. If l = 1,
the agent is simply risk neutral.

The complexity of the lottery is simply the complexity of calculating this V
in (96). We assume that the cost are the same for p̃w and r̃w, except when the
corresponding value of p̃w or r̃w is infinite – then the cost is 0 as the underlying
value is 0 or 1.

When a = •, the complexity of a gamble is just twice the number of non-zero
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outcomes, as in Puri (2024).30 However, when a < •, our complexity measure is
more nuanced than simply the number of outcomes, as it is importance-weighted.
For instance, consider the lottery with payoffs: (0.8, $3) , (#, $2) , (0.2 � #, $1). As
the small probability # goes to 0, this converges to the lottery (0.8, $3) , (0.2, $1). In
our model, the complexity of the first lottery does indeed converge to that of the
second. But this would not be the case in a “number of non-zero outcomes” model.

Several lotteries If there are K lotteries, we proceed similarly. Each lottery k is
characterized by pk

w, rk
w, and vk = V

⇣�
p̃k

w, r̃k
w

�
w2Wk

⌘
. We use the complexity of

choosing between K lotteries from Proposition 10.

D.10 Application: Complexity of choosing between different fi-
nancial products

Consider an agent who chooses between K financial products. What’s the com-
plexity of this decision problem? We use the empirical examples of Célérier and
Vallée (2017), who study “equity protected” financial products. An example is “At
maturity, if the underlying index registers a level equal to or higher than 70% of
its strike level, the product offers a capital return of 104% of the initial investment;
otherwise, the product offers a capital return of 70% the initial investment.”

Formally, if r is the return on the index, the return of the product k is Rk (r, xk),
where xk = (xkd)d=1...Dk

is a set of features or dimensions of the problem that
parametrize that payoff. Célérier and Vallée (2017) use as their main complexity
measure the number of features (#xk = Dk).31 How would they do it if they used
our measure? Applying our model, the consumer’s utility buying product k is,
omitting background risk and the like:

vk
⇣

xk
⌘
= E

h
U
⇣

Rk (r, xk)
⌘i

(97)

This fits into our general framework (35). Hence, we apply the general formula,
including

vk
xkd

= E
h
U0
⇣

Rk (r, xk)
⌘

Rk
xkd

(r, xk)
i

30For simplicity, we only discuss lotteries with non-zero dollar outcomes.
31They further use the number of scenarios and the number of characters used to describe the

product.
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This shows how the “important” features will matter more, where “important”
means a large impact on the real return Rk, especially when marginal utility is
high, i.e. for low returns.

In the case where a ! • and the “micro” complexities ckd are all the same (say,
equal to 1), then our measure is the same as Célérier and Vallée (2017)’s: the num-
ber of features. However, in the general case, the measures differ. By calibrating
the complexity of different types of features one might obtain a structural model
of complexity in this context of financial products. Of course, the same could be
done, in principle, for other types of goods, e.g., the selection of health care prod-
ucts (Abaluck and Adams-Prassl, 2021a).

E Appendix: Complexity of basic arithmetic operations

It is clear that computing 3 + 2 is easier than 3.989 + 6.2. For many issues in eco-
nomics, this can be forgotten. However, for others (e.g. when thinking about the
“cognitive noise” in laboratory evidence), this may be important. Accordingly, we
next explore a modeling of the complexity of basic arithmetic operations. This
section is still exploratory, and likely to change.

E.1 Complexity of a number

Suppose that we need to calculate xy. What is the complexity of that? We stylize
the mental operations in the following way.

For instance, 1 or 10 is simpler than 3 or 0.37. People first choose a simplification
of x, which is the nearest number number of the type 10n or 1

2 ⇥ 10b, perhaps sign
s that can be +1 or �1:

min
a2Z,b2{0,1, 1

2},s2{�1,1}
|x � sa ⇥ 10b|p (a)

where p (0) = p (1) = 1 and p
⇣

1
2

⌘
= 1.5, is a penalty capturing that 1

2 is a bit

more complex than 0 and 1. We also call x0 = sa ⇥ 10b the resulting value.
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Then, we calculate the relative error of replacing x by x0:

r
�
x, x0

�
=

2|x � x0|
|x|+ |x0| 2 [0, 1]

Then, the difficulty of x is

d (x) = r
�
x, x0

�g , g =
1
2

(98)

This captures that difficulty is higher when there is an error, and the function is
concave. The value of g = 1

2 is just a simple value yielding a concave function.
We could refine all this, e.g. to see that 2 is a simpler number than 3: that would

be refining the function p (a). We defer that to future research.

E.2 Complexity of addition

Suppose that we want to perform Âi xi. We posit that the first number is “free”.
So, the complexity of that is

C (si, ci) (99)

with ci = c+ for all numbers, except the largest xi, in absolute value and si =
x2

i
Âj x2

j
.

Here c+ is the complexity of an addition.
As an enrichment, there can be a penalty for handling negative numbers, so

that ci = c+,>0 for xi > 0, ci = c+,<0 for xi < 0, and ci = 0 for xi = 0:

ci = c+
�
1 + l1xi<0

�
(100)

As another enrichment, we can use the penalty for the complexity of the num-
ber xi. So, we

ci = c+d (xi) (101)

so that simpler number are easier to add.

E.3 Complexity of subtraction

It is the complexity of addition, with the penalty for negative numbers (100).
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E.4 Complexity of multiplication

Suppose that we want to perform px. We use the “difficulty” of p and x, d (x) ,d (p),
given in given in (98). We observe that the difficulty is 0 if p or x is equal to 0 or 1.
So, we say

cp⇥x = c⇥d (x) d (p) (102)

with for instance c⇥ = 5c+ is the complexity of a multiplication.
There is a connection with Khaw et al. (2021). They show convincingly that for

“complex” products, people perform a noisy operation, so instead of px returns
something like (see also Weber, Dehaene, Zhang and Maloney (2012); Gabaix (2014,
2019); Enke and Graeber (2023))

psxs = (px)m
⇣

pdxd
⌘1�m

e
p

m(1�m)ũ� 1
2 m(1�m)s2

u (103)

i.e. there is shrinkage m < 1, anchoring on a default pdxd, and noise ũ. A refine-
ment is the probability is perceived in log odds space; then, defining L (p) = ln p

1�p
the log odds, the perceived log odds are mL (p) + (1 � m) L

�
pd�, and after inver-

sion,

ps = L�1
✓

mL (p) + (1 � m) L
⇣

pd
⌘
+
q

m (1 � m)#̃

◆

and
psxs = psxm

⇣
xd
⌘1�m

e
p

m(1�m)ũ� 1
2 m(1�m)s2

u

What we bring here is the endogeneization of the shrinkage and noise, via m =

Q
� L

cp⇥x

�
, where cp⇥x is the cost of computing that product. In particular, when

either p or x is has a low difficulty d (x), the noise is 0: plainly, when asked to
perform 1 ⇥ 3, people answer 3 with no difficulty.

E.5 Complexity of the certainty equivalent in a gamble

When forming the certainty equivalent of (p, X), things are easy when p = 0 or 1.
They’re hard where p is different from those values. In part, because we need to
simulate. So, we say that the complexity is

c(p,X) = c⇤d (p) (1 + d (x)) (104)
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where d (p) is the complexity of the probability number, and c⇤ is a constant to be
calibrate.

E.6 Complexity of a composite sum, Âi pixi

Let us call vi = pixi. We have cvi given above in (104). We set

ci = cvi + c+
�
1 + l1xi<0

�

which is the complexity of a multiplication, then an addition (enriched by the
penalty l for negative numbers); except for the largest pixi, which has a complexity
of simply ci = cvi .

Then, we use C (si, ci) for all this, with si =
(pixi)

2

Âj(pjxj)
2

E.7 Complexity of choosing between two gambles.

Suppose that we need to evaluate a gamble p1x1 vs a certainty equivalent. We use
the complexity of discrete choice in Section 5. We get

qbinary

 
ln

pAXA
pBXB

, s1Qp
✓

L
C

◆1/2
, s1

!

F Appendix: Complements to the experimental part

F.1 Survey design

Figure F.2 shows the decision screen respondents face in the survey. Figure F.3
shows the complexity comparison screen from the survey using the “Your subjec-
tive complexity” elicitation. Figure F.4 shows the complexity comparison screen
using the “Previous respondents’ subjective complexity” elicitation.
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Figure F.2: Decision Screen in the Intertemporal Consumption Task

Figure F.3: Complexity comparison screen in the “Your subjective complexity” elic-
itation

Figure F.4: Complexity comparison screen in the “Previous respondents’ subjective
complexity” elicitation
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F.2 Calibration of utility

As described in the main text, we find no discounting in our settings. To calibrate
the utility parameter y, we asked respondents to choose quasi-certainty equiva-
lents. After completing all tasks, respondents are shown a bundle of Early Period
and Late Period budgets (e1, e2) and asked which symmetric bundle (x, x) would
make them indifferent between the two. To make subjects think about the bundles
more concretely, this is elicited using a price list mechanism, where respondents
have to indicate their switching point in a list of increasing symmetric bundles, as
shown in Figure F.5. They are asked to repeat this choice for 6 different bundles,
with the random parameters e1, e2 2 {150, 200, 250}.

To calibrate an average y, we then minimize the loss L(y) = Âi,b

⇣
log xi,b

xr
b(y)

⌘2
,

where xi,b is the observed choice for subject i and bundle b = (eb
1, eb

2) while xr
b(y)

is the rational choice for bundle b given y. We obtain y = 0.85. Using a quadratic
loss functions yields a very similar estimate of y = 0.89. To calibrate a subject-level
yi, we perform the same loss-minimization exercise on each respondent’s choices
The median yi is 0.89. To limit the impact of outliers, given the low number of ob-
servations per subject, we enforce the reasonable parameter bounds y 2 [0.01, 10].

Figure F.5: Calibration of utility via price-list choice between bundles
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F.3 Computation of model complexity

Call e1, e2 the Early Period and Late Period budgets, r the interest rate and T the
number of compoundings. Denote R = (1 + r)T � 1 the effective interest rate
between periods. The rational Early Period consumption is, as in (30),

cr
1 =

e1 +
e2

(1+R)

1 + (1 + R)y�1 (105)

We take the default action to be allocating the Early Period budget, i.e. cd
1 = e1.

Taking the Taylor expansion around R = 0 and e1 = e2, this becomes, up to
o
⇣
k(R, e2 � e1)k2

⌘
:

cr
1 = e1 +

1
2
(e2 � e1)�

y

2
e1R = cd

1 + y1 + y2,

where the inputs of the problem are the two terms:

y1 =
1
2
(e2 � e1) , y2 = �y

2
e1R (106)

We assign them “micro” complexities c1 = 1 and c2 = 3 as 1 and 3 values are
respectively needed to compute them. This is justified in Section 3.4. Their shares

are given by si =
y2

i
y2

1+y2
2
. We then use the usual complexity aggregator

C =

✓
s

1
a
1 c1� 1

a
1 + s

1
a
2 c1� 1

a
2

◆ a
a�1

, (107)

with a = 5, a value that seems natural as it induces sparsity. For example, this
yields the following complexities:

C(200, 200, 0%, 1) = 0.00

C(150, 200, 0%, 1) = 1.00

C(200, 250, 8%, 1) = 2.98

C(200, 250, 8%, 3) = 3.83

F.4 Validating complexity elicitations

We find that asking respondents about their subjective feeling of complexity pro-
duces credible results. To validate this unincentivized measure, we compare it to
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an incentivized version. One half of subjects were asked to predict which param-
eter combination respondents in a previous survey found more complex,. They
were also informed that after the survey, some participants would be selected for
a bonus, that one of their comparisons would be selected randomly, and that if it
aligned with the majority of previous respondents they would receive a bonus of
$5. See Figure F.4 for the precise formulation.

Column 1 of Table F.1 shows a regression of task-level complexity using the
“Previous respondents” elicitation on task-level complexity using the “You” elici-
tation. We only include tasks that have been compared by at least three different
respondents in each elicitation mode and apply the MLE separately on each set of
comparisons. The regression shows a significantly positive coefficient quite close
to 1, as well as a high R2: the former reflects attenuation due to measurement error
in the dependent variable and the latter reflects measurement error in both. We
conclude that there is no reason to believe the two differ systematically.

Column 2 shows a regression of task-level complexity using the “Previous re-
spondents” elicitation on model complexity. We only include tasks that have been
compared by at least three different respondents in the “Previous respondents”
elicitation. We also obtain our main finding, namely a highly significant coeffi-
cient and high R2, in this incentivized subset. Overall, we conclude that the incen-
tivized elicitation of complexity yields estimates that are not substantially different
from the unincentivized one. Our methodological recommendation to researchers
is therefore to use the simpler, unincentivized elicitation. In all analyses except
Columns 1 and 2 of Table F.1, we pool observations across both modes.

Columns 3 compares our headline measure of complexity with an alternative
measure using sliders. After playing all rounds, subjects are shown slider where
each task has a numeric complexity between 1 and 100, set by default at a location
corresponding to its complexity ranking in the main round. Respondents are the
given the opportunity to adjust and refine their complexity judgements, and we
stress that they are allowed to reverse orders. We find that respondents rarely re-
verse their judgements, and that MLE complexity and mean slider complexity are
highly correlated. Finally, Column 4 compares subjective complexity with the av-
erage certainty respondents have about their answer, in line with Enke and Grae-
ber (2023): the regression coefficient is negative and significant, as predicted by
Proposition 6.
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Table F.1: Validating Complexity Elicitations

Dependent variable: ”Previous” Complexity
”Previous”-subjective complexity Subjective complexity

”You”-subjective complexity 0.837⇤⇤⇤
(0.076)

Model complexity 1.380⇤⇤⇤
(0.104)

Slider complexity 0.101⇤⇤⇤
(0.005)

Certainty -0.109⇤⇤⇤
(0.014)

Constant 1.805⇤⇤⇤ 2.768⇤⇤⇤ 1.063⇤⇤⇤ 12.963⇤⇤⇤
(0.432) (0.260) (0.270) (0.921)

Observations 71 76 81 81
R2 0.574 0.683 0.860 0.327

Notes. Column 1 regresses task-level complexity using the “Previous respondents”
elicitation on task-level complexity using the “You” elicitation, keeping only tasks
with three different respondents in each elicitation mode, and applying the MLE
separately on each set of comparisons. Column 2 regresses task-level complexity
using the “Previous respondents” elicitation on model complexity, keeping only
tasks that have been compared by at least three different respondents in the “Pre-
vious respondents” elicitation. Columns 3 regresses pooled subjective complexity
with the mean complexity slider value. Columns 4 regresses subjective complexity
with the average certainty respondents have about their answer. Columns 3 & 4
only keep tasks that have been compared by at least three respondents in either
elicitation.
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