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ABSTRACT

This paper reviews the literature on firm wage differences and the fixed effects methods typically 
used to measure these differences. High wage firms tend to be more productive, larger, more sought 
after by workers, and to employ more credentialed and higher wage workers. The latest evidence 
suggests high wage firms also tend to offer better amenities and are prone to outsourcing and 
mass layoffs. Reviewing the requirements of the “AKM model” of Abowd, Kramarz, and Margolis 
(1999), I provide a graph theoretic interpretation of the restrictions this model places on the wage 
changes of workers who switch employers and examine the extent to which they are satisfied in a 
benchmark dataset. Assumptions are provided that give these wage changes a causal interpretation 
and I discuss some difficulties that arise in aggregating them into a global ranking of firm wage 
levels. In reviewing the econometrics of variance decompositions, I argue that attention ought to 
focus on effect sizes rather than variance shares, which can be difficult to compare across datasets 
with different noise levels. Cross-fitting and clustering methods for addressing limited mobility 
bias are reviewed. A series of bounding and imputation exercises suggest the network pruning 
typically used in conjunction with cross-fitting methods has little effect on estimands of interest. A 
review of the latest international evidence finds that the bias-corrected standard deviation of firm 
effects tends to be substantially elevated in less developed countries. Variance estimation methods 
for second step regressions of firm effects on covariates are reviewed and illustrated with an 
empirical application to the firm size wage premium. Finally, I discuss connections between the 
AKM model and the celebrated sequential auction framework of Postel-Vinay and Robin (2002a), 
concluding with some areas for future work at this intersection.
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Nearly a century of empirical study supports the view that employers offer different wages for identical

work. Fueled by the dissemination of linked employer-employee datasets, a rapidly advancing literature seeks

to quantify the role of firms in generating wage inequality using high dimensional fixed effects methods. This

paper provides an overview of the literature on firm wage effects, summarizing the evidence base that has

been accumulated on which firms pay high wages, their contribution to inequality, and econometric issues

that arise in working with models of firm wage fixed effects.

The paper begins with a survey of early empirical investigations of firm and industry components of

wage dispersion. Slichter (1950) and Stigler (1962) pioneered the measurement of wage dispersion across

employers, providing estimates of the variability of posted wages within narrowly defined job categories

and the variability of wage offers within the same worker. Generations later, Krueger and Summers (1988)

used the panel structure of large surveys to study the wage changes accompanying worker mobility between

industries, concluding that substantial across industry dispersion is present in average pay for equivalent

work. These findings renewed interest in deviations from competitive labor market models and foreshadowed

many of the economic and econometric debates surrounding the use of fixed effects methods today (Katz et

al. 1989; Murphy and Topel 1990; Gibbons and Katz 1992). A related literature on firm size wage premia and

intra-industry dispersion documented sizable wage differences across firms and plants in the same industry

(Brown and Medoff 1989; Brown, Hamilton, and Medoff 1990; Groshen 1991; Cappelli and Chauvin 1991).

Abowd, Kramarz, and Margolis (1999)’s landmark study provided a unified framework for studying these

phenomena by applying high dimensional fixed effects methods to matched employer-employee data.

A large empirical literature has refined and extended many of the conclusions from Abowd, Kramarz,

and Margolis (1999)’s paper. Five notable patterns stand out from this literature. First, consistent with

standard job ladder models, firm wage fixed effects have been found to be positively related to proxies of

firm productivity, firm size, and revealed preference measures of firm desirability (Card, Cardoso, and Kline

2016; Bloom et al. 2018; Sorkin 2018; Crane, Hyatt, and Murray 2023). Second, high wage firms tend to

employ high wage workers, men, and workers with greater educational attainment (Card, Heining, and Kline

2013; Card, Cardoso, and Kline 2016). Third, firm wage effects are highly temporally persistent (Lachowska,

Mas, Saggio, et al. 2023; Engbom, Moser, and Sauermann 2023), and a handful of studies suggest changes

in labor market institutions can alter the mix of firm effects in an economy (Card, Heining, and Kline 2013;

Dustmann, Lindner, et al. 2022). Fourth, high wage firms are more likely to “fissure”, or outsource jobs, and

to conduct mass layoffs, both of which may indicate that firms face horizontal equity constraints in wage

setting (Goldschmidt and Schmieder 2017; Bertheau, Acabbi, Barceló, et al. 2023). Fifth, the latest research

suggests that the most productive firms also provide the best amenities, aligning with revealed preference

evidence that high wage firms tend to be more desirable than low wage firms (Sorkin 2018; Lamadon,
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Mogstad, and Setzler 2022; Sockin 2022; Roussille and Scuderi 2023; Maestas et al. 2023; Lehmann 2023;

Caldwell, Haegele, and Heining 2024b).

Delving into the econometric assumptions underlying many of these studies, we review “the AKMmodel”:

a two-way fixed effects model of wage determination allowing for unrestricted worker-firm sorting patterns.

After discussing the standard identification requirements of two-way fixed effects estimators in matched

employer-employee data, a graph theoretic interpretation of the model is introduced where firms serve as

vertices and the wage changes between employers constitute directed edges. The restrictions that the AKM

model places on these edges are explained, highlighting the special role played by cycles in the mobility

network. These restrictions yield a complex mapping between wage changes and firm effects; however,

pruning the mobility graph to a spanning tree yields a just-identified set of firm effects with a particularly

simple structure. The plausibility of the AKMmodel restrictions is then evaluated empirically in a benchmark

dataset. After accounting for noise in the edge specific wage changes, I find that the least squares estimates

provide a remarkably accurate (albeit imperfect) summary of the wage changes associated with moving

between particular pairs of firms.

Building on the graph theoretic interpretation, I introduce non-parametric assumptions that endow the

wage changes accompanying worker mobility with a causal interpretation. Difficulties arise with aggregating

these causal effects into a global ranking of firm wage levels. Least squares estimates of firm effects are shown

to rely on “indirect contrasts” involving mobility between other firm pairs than those under consideration,

a phenomenon that has been found to also arise in other settings with multiple treatments (Goldsmith-

Pinkham, Hull, and Kolesár 2022). Indirect contrasts can be avoided when the network is pruned to a

tree but least squares estimates of firm effects do not automatically allow global comparison of wage levels

across firms without further assumptions. The section concludes by proposing an assumption that ensures

a transitive ranking of firm wage levels and discussing how this assumption might be usefully weakened in

future research.

Abowd, Kramarz, and Margolis (1999) proposed a now canonical variance decomposition of log wages

into components attributable to worker and firm heterogeneity and sorting. Plugging estimated fixed effects

into variance decompositions has long been understood to generate important biases (Krueger and Summers

1988; Andrews et al. 2008). I review approaches to circumventing these biases, including the cross-fitting

based bias-correction of Kline, Saggio, and Sølvsten (2020) and recently proposed clustering methods that

assume the firm heterogeneity possesses a lower dimensional structure (Bonhomme, Lamadon, and Manresa

2019; Bonhomme, Holzheu, et al. 2023). Cross-fitting approaches require a substantial amount of worker

mobility, which researchers typically enforce by pruning to a set of “leave-out connected” firms. A simple

approach to bounding the influence of this pruning step on the estimand is proposed and applied to a well

5



known benchmark dataset. I also discuss imputation strategies that can be used to address concerns about

biases arising either from pruning or neglected serial correlation. An empirical investigation suggests that

the selection biases associated with pruning and serial correlation are likely minimal in large administrative

datasets.

Reviewing the empirical literature on bias-corrected variance decompositions, I argue that interest ought

to center on the magnitude of these variance components themselves rather than variance shares, which

are difficult to compare across datasets with different intrinsic noise levels. Bias-corrected estimates of the

economic magnitude of the variability in firm fixed effects are typically sizable, relative both to the dispersion

in person effects and to the effect sizes of human capital interventions. A review of recent studies yields

estimated standard deviations of firm fixed effects ranging from 15 to 60 log points, with estimates in the US

and European countries clustering around 20 log points. In line with a growing literature on labor market

misallocation (e.g., Hsieh and Klenow 2009), dispersion in firm effects appears to be most pronounced in

the least developed countries. Investigating the factors driving this relationship between dispersion and

development is a fruitful area for future research.

A virtue of fixed effects methods is that the estimates can be shared with other research teams who

can explore other hypotheses about the relationship between the latent effects and observables. I review

the logic of “two-step” regressions of estimated fixed effects on observables, contrasting it with one-step

approaches predicated on stronger random effects assumptions. While second step regressions of estimated

firm fixed effects on firm and worker level covariates are unbiased, inference is complicated by correlation

across the fixed effects estimates, a problem that is well understood theoretically but has largely been ignored

in applied work. Kline, Saggio, and Sølvsten (2020) proposed an approach to obtaining heteroscedasticity

robust standard errors reflecting the uncertainty stemming from the error underlying the linear fixed effects

model. I illustrate this approach with an application to the firm size wage premium, which is found to vary

in complex ways across Italian regions. Naive two-step standard errors, of the sort that currently pervade

the empirical literature, are shown to significantly understate the true uncertainty present in averages of

firm fixed effects in this example.

Finally, I discuss connections between the AKMmodel and the influential class of search models pioneered

by Postel-Vinay and Robin (2002a) and Postel-Vinay and Robin (2002b). While these “sequential auction”

models have traditionally been assessed based on their ability to jointly explain job mobility and wage

dynamics within firm matches, we discuss the theory’s implications for hiring wages. Di Addario et al.

(2023) showed that a simple linear specification allowing fixed effects for hiring origins nests the reduced

form of hiring wages in the sequential auction model of Bagger, Fontaine, et al. (2014). Dispersion in these

hiring origin fixed effects can be viewed as capturing a contribution of search frictions (or equivalently, “luck”)
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to wage inequality. While recent evidence suggests that hiring origins are less influential than these models

predict, bilateral competition between firms undoubtedly plays an important role in wage determination for

some types of jobs. I discuss the importance for future work of allowing departures from the full information

benchmark underpinning canonical variants of this competition framework and conclude with some directions

for future research on the econometrics and economics of firm wage setting.

1 Background

Economists have long been aware that employers differ in the pay offered to equivalent workers. Slichter

(1950) showed in survey data that the hourly wages of narrowly defined manual occupations varied widely

across employers in Boston. Studying industry data from the 1950 Economic Census, he found that industry

value added and profits were important drivers of average pay, leading him to conclude that managerial

practices were an important determinant of industry pay setting. A decade later, Stigler (1962) collected

data on the job offers of business school graduates. In one of the earliest analyses of matched employer-

employee data, he documented that within occupational categories, the dispersion of wage offers across

companies was of the same order of magnitude as dispersion of wage offers within individual. Moreover,

these company pay differences were found to be persistent across years. He concluded from this evidence

that wage dispersion for equivalent workers “is of the order of magnitude of 5-10 per cent even in so well

organized a market as that of college graduates at a single university.” (Stigler 1962, p. 96)

Generations later, Krueger and Summers (1988) examined the extent to which industry differences in

pay reflected the sorting of high ability workers to high paying sectors. Using the 1984 Current Population

Survey, they fit linear models with worker quality controls and industry fixed effects, finding a bias-corrected

standard deviation across two-digit industries of industry fixed effects in wages of 14 log points and a standard

deviation in total compensation of roughly 18 log points. To account for unobserved differences in worker

quality, they fit longitudinal models to the 1984 displaced workers survey, finding that including worker fixed

effects had little impact on estimates of one digit industry fixed effects, suggesting a limited role for selection

on unobserved worker quality. Corroborating this view, Gibbons and Katz (1992) found sizable industry

wage differentials even after restricting to transitions induced by mass layoffs or plant closures. A large

literature debated the interpretation of these findings and whether they can be attributed to compensating

differentials, efficiency wages, or employer learning (Katz et al. 1989; Murphy and Topel 1990; Holzer, Katz,

and Krueger 1991; Gibbons, Katz, et al. 2005).

Several authors also studied wage differences between establishments and firms of different size (Oi

and Idson 1999). Brown and Medoff (1989), Brown, Hamilton, and Medoff (1990), and Oi and Idson
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(1999) showed that larger firms, and larger plants within large firms, paid higher wages. Studying worker

switches between establishments again confirmed that these differences were generally not attributable to

unobserved worker characteristics. Adjustments for workplace amenities were also found to have little impact

on the firm size wage premium. Corroborating evidence from Groshen (1991) and Cappelli and Chauvin

(1991) documented large wage dispersion across establishments within industry that could not be explained

by differences in measured human capital. These intra-industry employer differentials were shown to be

comparable in magnitude to inter-industry wage differences.

Seeking to unify these findings, Abowd, Kramarz, and Margolis (1999) – henceforth, AKM – studied

employer wage differences in large administrative panels from France and the United States featuring worker

and firm identifiers. In what may have been the first high dimensional regression in labor economics, they fit

linear models allowing a separate fixed effect for each worker and each firm, along with firm specific trends

intended to capture heterogeneity in firm seniority trajectories. AKM found that estimated firm wage effects

varied substantially across firms and were correlated with observable measures of firm productivity. However,

the estimates suggested that worker and firm fixed effects were only modestly positively correlated and that

industry and firm size wage premia were largely accounted for by differences in person effects. Unfortunately,

shortly after their study was published, subsequent work revealed that some of these empirical conclusions

were artifacts of an inaccurate approximation to the full least squares solution (Abowd, Creecy, and Kramarz

2002; Abowd, Lengermann, and McKinney 2003).

Despite these early stumbles, the work of Abowd, Kramarz, and Margolis (1999) heralded an important

transition in empirical labor economics towards interest in the development of econometric methods for the

study of matched employer-employee data. While the literature on panel data econometrics traditionally

treated fixed effects as nuisance parameters (Chamberlain 1984), AKM viewed these effects as objects of direct

interest. This perspective permeates the literature today. Rather than focus attention on the relationship

between wages and a handful of observable firm characteristics such as size, sector, or productivity, labor

economists now routinely apply fixed effects estimators to enormous administrative datasets in an attempt

to “let the data speak” directly about which employers offer high or low wages. The relationship between

employer wage fixed effects and low dimensional worker and firm observables can then be scrutinized in

a second step, perhaps even by a different research team. While similar transitions from structured to

unstructured data analysis have occurred in many other areas of empirical economics – see the chapter in

this Handbook by Walters (2024) for some examples – the change has arguably been most dramatic in the

literature on wage determination, where it has long been understood that wages vary meaningfully across

employers in ways that are difficult to capture with the worker and firm characteristics measured in standard

datasets.
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2 What sorts of firms pay high wages?

Before delving into the econometrics of fixed effects models, it is useful to provide an overview of what

has been learned about the types of firms that offer high wages from empirical research utilizing matched

employer-employee data. This body of work has refined our empirical understanding of traditional regularities

such as the firm size and industry wage premiums, while also offering new insights into how labor market

institutions, outsourcing practices, and job displacement contribute to wage inequality.

2.1 Productivity, worker flows, and firm size

The empirical literature finds that firm wage fixed effects are strongly associated both with observable

measures of firm productivity and desirability. AKM’s original study documented that firm wage effects

were positively correlated with value added per worker and capital share. An updated analysis by Abowd,

Kramarz, Lengermann, et al. (2012) utilizing exact least squares solutions finds qualitatively similar patterns

in more recent panels of French and US administrative data. Using Portuguese data on hourly wages merged

to firm accounting data from Bureau Van Dijk, Card, Cardoso, and Kline (2016) documented that firm

wage effects exhibit a “hockey stick” like relationship with log value added per worker, exhibiting a slope

of essentially zero at very low levels of value added followed by a nearly constant elasticity relationship at

higher levels. Subsequent work documents similar nonlinearities in Germany (Bruns 2019), France (Coudin,

Maillard, and Tô 2018), Canada (Li, Dostie, and Simard-Duplain 2023), Hungary (Boza and Reizer 2024),

and Italy (Di Addario et al. 2023). Possible explanations for the hockey stick shape include the presence

of binding wage floors that prohibit very low firm effects, the existence of a “competitive fringe” of less

productive firms that engage in essentially competitive wage setting, and non-classical measurement error in

value added per worker.

Sorkin (2018) devised a revealed preference measure of firm desirability based on the idea that a desirable

firm hires workers from other desirable firms. The proposed measure, which is motivated by a wage posting

model in the spirit of Burdett and Mortensen (1998), involves applying the Google PageRank algorithm (Page

et al. 1999) to the network of job to job flows. Sorkin (2018) reports that his measure of firm desirability

exhibits a correlation of roughly 0.54 with firm wage effects derived from quarterly earnings in Longitudinal

Employer Household Dynamics (LEHD) data. Crane, Hyatt, and Murray (2023) also use LEHD data to

show that firm wage fixed effects are strongly positively related to the “poaching rank” index of Bagger and

Lentz (2019), which provides another revealed preference measure of firm desirability consistent with a class

of sequential auction models that will be discussed below.

Firm wage fixed effects have been shown to be positively related to firm size and negatively related to
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quit rates (Card, Heining, and Kline 2013; Bassier, Dube, and Naidu 2022). Bloom et al. (2018) study the

changing nature of the firm size wage premium by fitting separate fixed effects models to the US Social

Security Administration’s Master Earning File in each of three time periods: 1980-1986, 1994-2000, and

2007-2013. In the first period, firm wage fixed effects are monotonically increasing in firm size, with an

enormous 55 log point gap in average firm effects between companies with 15,000 or more employees and

those with 1-10 employees. In later periods, the relationship between wages and firm size grows more concave.

In the final 2007-2013 sample, monotonicity appears to break down, with mean firm fixed effects estimated

to be slightly higher among firms with 1,000-2,500 employees than at the largest firms. The pay gap between

the largest and smallest firms falls to roughly 22 log points in this period. To date, little evidence is available

regarding whether similar transitions have occurred in other countries.

2.2 Entry, reallocation, and dynamics

The distribution of firm effects has been shown to respond to changes in labor market institutions. Card,

Heining, and Kline (2013) fit separate models to four overlapping 6-7 year intervals of German data spanning

the period from 1985 to 2009. They find that the variance of firm wage effects roughly doubles over the

course of their study. Most of the growth in dispersion of firm effects occurs in the latter two intervals, a

period that saw a rapid liberalization of the German labor market. Analyzing cohorts of firms, they find

that within cohort inequality in firm wage effects is roughly stable over time but newer cohorts of firms are

more unequal.1 Tying these cohort trends to the breakdown of the German collective bargaining system,

they document that firms not covered by bargaining agreements are more likely to exhibit very low wage

fixed effects.

Song et al. (2019) conduct a similar “rolling AKM” analysis making use of US social security records

over the period 1978-2013. While they find that inequality increased dramatically across firms over this

period, firm effect variances were surprisingly stable, suggesting the rise in between firm inequality was a

consequence of increased worker-firm sorting. This discrepancy between the German and US results may

have to do with differences in the institutional environment of these labor markets. The US has enjoyed a

relatively stable regulatory environment over the period studied by Song et al. (2019), while post-unification

Germany faced enormous pressure on its sectoral bargaining system that plausibly paved the way for the

entry of very low wage firms (Dustmann, Fitzenberger, et al. 2014). Dustmann, Lindner, et al. (2022) show

that the enactment of a German minimum wage led low wage workers to reallocate to firms with higher

wage fixed effects, and that German regions differentially exposed to the minimum wage hike experienced

an increase in the average AKM fixed effect of surviving establishments.

1Sorkin and Wallskog (2023) find a similar pattern in US data, albeit without controlling for person effects.
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The temporal stability of the firm effect variances among cohorts of German firms documented by Card,

Heining, and Kline (2013) suggests that firm wage effects are persistent. Lachowska, Mas, Saggio, et al.

(2023) used hourly wage data derived from Washington state UI records to measure this persistence more

carefully. They estimate unrestricted firm fixed effects over pairs of adjacent years, yielding a sequence of

fixed effects for each firm. Fitting an AR1 model to these estimates, they find a bias-corrected autocorrelation

of firm wage effects of 0.98. Contemporaneous work by Engbom, Moser, and Sauermann (2023) finds that

projecting firm wage effects derived from 8 year intervals onto the effects derived from pooling 32 years of

Swedish wage data yields a slope of roughly 0.95, suggesting that wage fixed effects are highly stable among

long lived firms.

2.3 Sorting, outsourcing, and displacement

High wage firms employ high wage workers. This pattern has been repeatedly documented in the form

of positive bias-corrected correlations between worker and firm fixed effects (Andrews et al. 2008; Kline,

Saggio, and Sølvsten 2020; Bonhomme, Holzheu, et al. 2023). However, the pattern is usually evident (albeit

attenuated) from uncorrected estimates fit to population level administrative records. Card, Heining, and

Kline (2013) and Song et al. (2019) both find that the uncorrected correlation between worker and firm fixed

effects has increased in recent decades. Observable worker characteristics are also predictive of firm effects.

Low wage firms tend to disproportionately employ women (Card, Cardoso, and Kline 2016), immigrants

(Dostie et al. 2023), minorities (Gerard et al. 2021), younger workers (Kline, Saggio, and Sølvsten 2020),

and workers with lower educational attainment (Card, Heining, and Kline 2013). Low wage firms are also

typically intensive in jobs involving low wage occupations (Card, Heining, and Kline 2013; Goldschmidt and

Schmieder 2017) and tend to exhibit less complex job hierarchies (Huitfeldt et al. 2023).

Goldschmidt and Schmieder (2017) find that German firms with high wage fixed effects are more likely to

outsource workers in food services, cleaning, security, and logistics (FCSL) occupations. One interpretation

of this pattern is that firms face horizontal equity constraints making it difficult to tailor wages to the

match surplus of individual workers. Consistent with this view, they estimate separate firm fixed effects for

FCSL and non-FCSL workers at each employer and find that firms paying 10% higher wages to non-FCSL

workers tend to pay FCSL worker roughly 8% higher wages (Goldschmidt and Schmieder 2017, Figure A-8).2

Rather than share a large wage premium with workers at all layers of the organization, firms tend to spin

off jobs lying outside their area of core competency in order to economize on wage costs. In the wake of an

outsourcing event, measured as a setting where many FCSL workers move from a “mother” establishment to

2Conducting a similar exercise in Argentine data, Drenik et al. (2023) find that firms paying regular workers 10% higher
wages pay temporary workers roughly 5% higher wages.
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the same “daughter” establishment specializing in FCSL services, the wage of outsourced workers plummet.

This drop turns out to be almost entirely explained by the low fixed effects of establishments specializing

in FCSL services. Goldschmidt and Schmieder (2017) argue that the growth of firms specializing in FCSL

services is an important driver of German inequality consistent with the firm cohort patterns documented

by Card, Heining, and Kline (2013).

In line with the German evidence on outsourcing, Lachowska, Mas, and Woodbury (2020) document in

Washington state UI records that firms in the top quintile of firm fixed effects account for a disproportionate

share of displaced workers. However, they find that 70% of displaced workers move to employers with similar

or better firm effects despite suffering wage losses. As a result, they estimate that firm fixed effects account

for only 17% of the earnings losses associated with job displacement; however, this share rises to roughly two

thirds among the workers who move to lower wage employers upon displacement. Schmieder, Von Wachter,

and Heining (2023) find in German administrative records that nearly all of the average daily wage losses

associated with displacement are explained by differences in firm effects. Bertheau, Acabbi, Barceló, et al.

(2023) study a harmonized panel of seven European countries and find that between 35% (in Spain) and

100% (in Portugal) of the daily wage losses of job displacement after five years are explained by the loss of

firm fixed effects. In a longer working paper (Bertheau, Acabbi, Barcelo, et al. 2022), they conjecture that

this variation across countries may be attributable to the intensity of active labor market policies, which they

show turns out to strongly predict the magnitude of country specific wage losses. Like Lachowska, Mas, and

Woodbury (2020), Bertheau, Acabbi, Barceló, et al. (2023) find in all seven countries that job displacement

is most common among firms with estimated firm fixed effects in the top quintiles.

2.4 Industry structure and amenities

A headline finding of Abowd, Kramarz, and Margolis (1999)’s original study was that industry wage dif-

ferentials are largely explained by person effects. This conclusion turned out to have been driven by the

computational method used in their analysis to approximate the least squares solution in the largest samples

of firms (Abowd, Creecy, and Kramarz 2002). Subsequent analysis of early LEHD data from four states

found substantial differences in average firm effects across sectors (Abowd, Lengermann, and McKinney

2003, Table 11). Sorkin (2018, Table V) finds in a broader LEHD dataset comprised of large employers in

27 states that four digit industry codes account for roughly 45% of the variation in firm fixed effects.

More recently, Card, Rothstein, and Yi (2024) analyze LEHD data covering all 50 states for the years

2010-2018. They find that roughly one third of the variance in firm wage effects is explained by four

digit NAICS industry codes. Remarkably, the average industry premiums are nearly identical for workers
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who have, and have not, obtained a college degree. They estimate that the highest paying industry is

coal mining, while the lowest paying industry is drinking places. Perhaps surprisingly, their industry wage

premia estimates turn out to be positively correlated with production function based estimates of industry

wage markdowns from Yeh, Macaluso, and Hershbein (2022), which may indicate that variation in industry

averages of firm wage effects reflect productivity more than market power.

Card, Heining, and Kline (2013) find in German data that between industry dispersion of firm effects rose

between 1985 and 2009 and that high wage workers increasingly sort to high wage industries. In contrast,

Haltiwanger, Hyatt, and Spletzer (2024), fitting AKM models to three intervals of LEHD data covering the

period 1996-2018, find that the contribution of industry averages of firm wage fixed effects to wage inequality

has been relatively stable. Like Card, Heining, and Kline (2013), however, they find that the sorting of high

wage workers to high wage industries increased substantially.

Sorkin (2018, Table V) reports that nearly half of the variation in his flows based measure of firm

desirability is between 4 digit industries. He argues that elevated wages in sectors such as mining primarily

reflect compensating differentials. Relating the firm wage effects to measures of firm desirability, he concludes

that as much as two thirds of the variation in firm wage fixed effects could reflect compensating differentials.

Subsequent work by Lamadon, Mogstad, and Setzler (2022) concurs that compensating differentials are

an important determinant of firm wage fixed effects; however, they also find that high wage firms tend to

have the best amenities. This view is corroborated by Sockin (2022), who documents that higher wage

firms list more job amenities in job advertisements. Likewise, Maestas et al. (2023) find that adjusting for

valuations of observed amenities derived from stated preference experiments actually widens inter-industry

wage differentials.

An emerging consensus is that the most desirable firms tend to offer both the highest wages and the

best amenities, making firms with large wage fixed effects highly desirable on average. Roussille and Scuderi

(2023) provide revealed preference evidence from an online job board for software engineers that higher wage

firms offer better observed and unobserved amenities. Similar conclusions are reached by Lehmann (2023)

and Lagos (2024) utilizing administrative records from Austria and Brazil, respectively. Caldwell, Haegele,

and Heining (2024b) provide survey evidence from German workers that perceptions of the wages available

at other firms are strongly correlated both with firm effect estimates from administrative data and with

workers’ perceptions of the non-wage amenities at those firms. See Mas (2024) for a comprehensive analysis

of the recent literature on compensating differentials.
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3 The AKM model

The fixed effects model considered by Abowd, Kramarz, and Margolis (1999) can be written:

Yit = αi + ψj(i,t) +X ′
itβ + εit, (1)

where Yit is the logarithm of worker i’s wages in year t and j (i, t) ∈ {1, . . . , J} ≡ [J ] is a function returning

the identity of the firm employing worker i in year t. In their original application to an unbalanced panel of

French administrative data, J was on the order of five hundred thousand, two million workers were studied,

and the panel consisted of roughly five million person-year observations. Subsequent work has considered

much larger samples. For instance, Song et al. (2019) fit models with over 79 million person effects and

5.8 million firm effects to a five year panel with 220 million person-year observations. To avoid notational

clutter, it will be useful to restrict attention to the case where the panel is balanced in what follows such

that t ∈ {1, . . . , T} ≡ [T ].

The person effect αi is a portable component of wages that a worker can take with them to other

employers. This parameter can capture skills, as well as a worker’s reputation, bargaining prowess, or

discrimination at the market level. The firm effect ψj is a non-portable component of wages enjoyed only

when a worker is employed at firm j. This effect can be a function of both the firm’s productivity, some of

which is shared with the worker in the form of higher wages, and its unobserved amenities, which may yield

compensating differentials. The firm effect may also reflect the degree to which effort is monitorable at the

firm, which can generate variation in efficiency wages (Shapiro and Stiglitz 1984; Akerlof and Yellen 1990).

The vector Xit includes year fixed effects and measures of labor market experience.3

The time varying error εit captures innovations to the portable component of the worker’s wage along

with any measurement errors. These errors are assumed to obey a strict exogeneity restriction, requiring

that E [εit|j (i, s) = j,Xis = x] = 0 for all workers i ∈ {1, . . . , N} ≡ [N ], all time periods (s, t) ∈ [T ]
2
, and

all possible firm assignments j ∈ [J ] and covariate values x ∈ X . From a statistical perspective, εit provides

the “noise” that creates slippage between firm effect estimates and the true fixed effects. Thinking carefully

about how to account for this noise is the core contribution of much of the recent econometrics literature

studying these models.

The strict exogeneity condition embeds both the requirement that worker mobility between firms is not

driven by time varying wage fluctuations (often described as “exogenous mobility”) and that the mapping

from worker and firm heterogeneity to expected log wages is additively separable. However, it does not

3See Card, Cardoso, Heining, et al. (2018) for discussion of identification issues posed by introducing age and year effects. In
their original study, Abowd, Kramarz, and Margolis (1999) included firm specific seniority trends, which introduces additional
identification challenges that I will not consider here.
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restrict, in any way, the joint distribution of worker and firm effects. Therefore, workers may sort to firms

based on any function of their own αi and the vector ψ of firm wage effects. The pairing of (1) with the

strict exogeneity restriction has come to be known as “the AKM model” and I will follow convention in

using this eponym as a shorthand. It is worth noting, however, that closely related assumptions are now

employed in several literatures exploiting the switching of units between groups (e.g., Finkelstein, Gentzkow,

and Williams 2016; Chetty and Hendren 2018).

In the AKM model, movements between firms reveal differences in firm wage setting. In the case where

T = 2, for any two firms j ̸= k between which workers move, we have

E [Yi2 − Yi1 | j (i, 1) = j, j (i, 2) = k,Xi1, Xi2] = ψk − ψj + (Xi2 −Xi1)
′
β. (2)

As Abowd, Creecy, and Kramarz (2002) detail, the firm effect levels are only identified up to a constant

within the largest “connected set” of employers: that is, the set of firms connected, directly or indirectly,

via worker moves. Intuitively, if there are two collections of firms between which workers never move, the

difference in their wage levels will not be identified. A single restriction on the firm effects – typically a

normalization that one of them is zero – within each connected set is required for the design matrix of

worker and firm dummies to have full rank, enabling least squares estimation of (1).

In the German social security records analyzed by Card, Heining, and Kline (2013), the largest connected

set captured around 97-98% of person year observations depending on the period analyzed. These shares

can be lower when studying subpopulations. For example, fitting models separately by gender to Portuguese

data, Card, Cardoso, and Kline (2016) find that the largest connected set comprises 88% of person-year

observations for male workers and 91% of observations for female workers. In both settings, the wage

distributions and worker characteristics in the largest connected set tend to be similar to those in the

broader population.

Our discussion so far of the connectedness and normalization requirements for estimation of the firm

effects has been a bit vague. The next subsection delves deeper into these subjects by providing a graph

theoretic interpretation of the AKM model. I focus there on the properties of the mobility network, defined

as a directed graph where vertices correspond to firms and edges represent worker moves between firms.

At the cost of some additional notation, this network based lens will allow us to develop an interpretation

of the AKM model as a restricted model of “edge effects.” This interpretation motivates a corresponding

representation of the least squares estimator of firm effects as a linear combination of estimated edge effects.

A closely related representation was explored by Jochmans and Weidner (2019). My exposition differs from

theirs primarily in clarifying how the presence of cycles in the mobility network influence the algebraic
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mapping between the wage changes of movers and the firm fixed effects estimates. Section 3.2 investigates

the extent to which the restrictions motivating the firm fixed effects estimator are satisfied in a benchmark

dataset. Section 3.3 discusses causal interpretations of edge and firm effects, concluding with some directions

for future research.

3.1 An edgy interpretation of firm effects

We begin with some definitions. A graph is a collection of vertices and edges joining those vertices. The

graph we are considering is directed, which means that each edge starts at one vertex and ends at another.

Here, the vertices correspond to the set of firms [J ]. An edge is an ordered pair of vertices (j, k) ∈ [J ]
2
,

with the first entry denoting an origin firm from which a worker moved and the second entry denoting the

destination of the move. To simplify the analysis, we will continue to assume T = 2, in which case the set

of all edges in the graph can be defined as:

E =

(j, k) | (j, k) ∈ [J ]
2
, j ̸= k,

∑
i∈[N ]

1 {j (i, 1) = j, j (i, 2) = k} > 0

 .

Denoting the total number of edges by |E|, I will index the edges by ℓ ∈ {1, . . . , |E|} ≡ [E], referring to

individual edges by {eℓ}ℓ∈[E].

A walk is a sequence of edges that join a set of firms. A trail is a walk with no repeated edges. A path is

a trail with no repeated firms. The mobility graph is connected if there is a path from any firm to any other

firm. A tree is a connected graph for which there is a unique path between any pair of firms. A spanning

tree is any subset of a connected graph that contains all firms and is a tree.

1

2

3

4

e1 e2

e3e4

e5

e6

Figure 1: A mobility network (J = 4, |E| = 6)

Figure 1 depicts a connected graph with four firms and six edges. Arrows indicate the directions in which

workers move between firms. A spanning tree of this network is given by the solid edges. The dashed edges
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depart from the tree by generating alternative paths of moving between firms. These alternate paths yield

cycles: that is, trails that lead us back to where we started. For example, using a minus sign to denote

traversal of an edge in reverse, the trail {e1, e2, e3,−e4} is a cycle. A fundamental cycle is a cycle formed

by departing from the spanning tree using a single edge not in the tree. There are |E| − J + 1 distinct

fundamental cycles in a connected graph. The other fundamental cycles in this graph are {e2, e3, e6} and

{e2, e3,−e5}.

The incidence matrix B provides a mathematical representation of the graph’s edges.4 Every row of B

represents a firm, while every column represents an edge. A single entry in each column equals 1, denoting

that edge’s destination firm, and a single entry equals -1, capturing that edge’s origin firm. The remaining

entries equal zero. In the graph above B takes the form:

e1 e2 e3 e4 e5 e6

1 −1 0 0 −1 0 0

2 1 −1 0 0 −1 1

3 0 1 −1 0 0 0

4 0 0 1 1 1 −1

An important property of B, to which we will return, is that its rows are orthogonal to the graph’s cycles.

For instance, the cycle {e1, e2, e3,−e4} can be represented by the vector c1 = [1, 1, 1,−1, 0, 0]
′
. Likewise, the

cycles {e2, e3, e6} and {e2, e3,−e5} are captured by the vectors c2 = [0, 1, 1, 0, 0, 1]
′
and c3 = [0, 1, 1, 0,−1, 0]

′

respectively. It is easy to verify that Bc1 = Bc2 = Bc3 = 0. More generally, Bc = 0 for any |E| × 1 vector

c in the linear span (also known as the “cycle space”) of the fundamental cycles. For example, the trail

{e5, e6}, which can be represented by c2 − c3, is in this graph’s cycle space. In a connected graph, the cycle

space is the nullspace of B, meaning it contains the set of all vectors c ∈ R|E| such that Bc = 0.

3.1.1 Firm effects as restricted edge effects

Returning to (2), we can now rewrite the AKM model in a notation directly linked to the structure of the

graph. To simplify the analysis, suppose that the vector β is known and define R = Y2 − Y1 − (X2 −X1)β

as the N × 1 vector of worker wage changes adjusted for the change in time varying covariates. Let F t

denote the N × J matrix of firm assignment indicators in period t, the i’th row of which can be written

4Jochmans and Weidner (2019) work with a weighted definition of the incidence matrix. I rely here on an unweighted
definition in order to highlight connections to cycles in the graph. Weights are introduced below in section 3.1.2.
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(1 {j (i, t) = 1} , 1 {j (i, t) = 2} , . . . , 1 {j (i, t) = J}). The AKM model implies

R = (F 2 − F 1)ψ + ε,

where ψ = (ψ1, . . . , ψJ)
′
is the J × 1 vector of firm fixed effects and ε = (ε12 − ε11, . . . , εN2 − εN1)

′
is the

N × 1 vector of differences in wage errors obeying E [ε | F 1,F 2] = 0.

We can write the matrix of first differenced firm indicators in terms of the edge dummies via the relation

F 2 − F 1 = EB′ where E is an N × |E| matrix of (directed) edge indicators – i.e., dummies of the form

1 {j (i, 2) = k} · 1 {j (i, 1) = j} for all origin-destination firm pairs (j, k) traversed by movers. Hence, the

AKM model is equivalently expressed in terms of the incidence matrix as

R = EB′ψ + ε.

Here, strict exogeneity can be represented as the requirement that E [ε | E] = 0.

It is instructive to contrast the AKM model with a model of unrestricted edge fixed effects:

R = E∆+ u,

where ∆ is an |E| × 1 vector of edge effects and the N × 1 error vector u obeys E [u|E] = 0. Section 3.3

introduces assumptions giving these edge effects a causal interpretation. The AKM model imposes ∆ = B′ψ,

which entails |E| − J + 1 linear restrictions on the edge effects. When these restrictions hold, the two error

terms are identical (u = ε). Hence, the AKM model can be thought of as projecting the |E| ≤ J (J − 1)

edge effects down to only J − 1 linearly independent firm effects.

To understand the nature of the edge restrictions entailed by the AKM model, note that for any vector

c in the cycle space, c′∆ = c′B′ψ = 0, which follows from the cyclic orthogonality properties of B discussed

earlier. For example, the AKM model imposes that wage changes should be symmetric across origin firm -

destination firm pairs, a property that was emphasized by Card, Heining, and Kline (2013) and is reflected

in our example of the cycle c2 − c3. However, the AKM restrictions go far beyond pairwise symmetry,

restricting network dependent tuples of edge effects. For example, the fundamental cycle c1 involves four

edges. Though directly visualizing the restrictions pertaining to such 4-cycles is challenging, their logic

mirrors the restrictions pertaining to the 2-cycles studied by Card, Heining, and Kline (2013): that “taking

a walk” along the graph should have no effect on wages so long as one ends up back at the same firm where

the walk began.

It may be helpful here to illustrate this reasoning with a simple thought experiment. Consider two
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workers of the same age, both of whom are employed at firm j in 2010, where they earn the same wage. In

subsequent years, each worker switches employers twice before returning to firm j in 2020. The AKM model

stipulates that we should expect these two workers to earn the same wages in 2020, regardless of the identity

of their two intermediate employers. Indeed, if our two time periods were 2010 and 2020, these workers

would be viewed as “stayers” and equation (2) predicts their wage change depends only on the change in

time varying covariates.

Mathematically, these cyclic restrictions exhaust the empirical restrictions of the AKM model on edge

effects within a connected set of firms. That is, if c′∆ = 0 for any cycle in the graph space, then there

must exist a set of firm effects capable of rationalizing the edges exactly. To understand why, recall that B’s

nullspace coincides with the cycle space of the graph, which implies we can decompose the edge effects as

∆ = B′ψ̇ +Cη̇,

where ψ̇ is a vector of coefficients from a linear projection of ∆ onto B′, C is an |E| × |E| − J + 1 matrix

collecting the graph’s fundamental cycles, and η̇ is an |E| − J + 1 vector of “cycle effects” that serve as

residuals. Plugging this decomposition into the edge effects model yields,

R = EB′ψ̇ +ECη̇ + u.

The AKM model amounts to assuming that η̇ = 0, in which case ψ̇ = ψ and ε = u. When there are no cycle

effects, then the true dimension of the edge effects is much lower than it appears: the AKM model reduces

the |E| edges to J − 1 linearly independent firm effects.

While |E| − J + 1 = 3 in the graph depicted in Figure 1, large scale empirical applications can feature

hundreds of thousands (or even millions) of restrictions. As with any economic or statistical model, these

restrictions are unlikely to be satisfied exactly. When the restrictions do not hold, the firm effects can be

thought of as a linear projection that provides a lower dimensional summary of the edge effects. We will

examine the quality of this summary in section 3.2.

3.1.2 Estimators

Let ∆̂ =
(
E′E

)−1
E′R denote the |E| × 1 vector of estimated edge effects. The normal equations defining

the least squares estimator of ψ can be written

BW ∆̂ = Lψ,

19



where W = E′E is a diagonal weighting matrix recording the number of workers moving along each edge and

L = BWB′ = (F 2 − F 1)
′
(F 2 − F 1) is a symmetric J × J matrix known in graph theory as the Laplacian.

The Laplacian encodes information about each’s firm’s role in the mobility network. The jth row and kth

column of L equals the negative of the total number of workers moving (in either direction) between firms

j and k when j ̸= k, while the jth diagonal entry of L gives the total number of workers moving to or from

firm j.

L is singular, which implies there are an infinite number of solutions to the normal equations. Jochmans

and Weidner (2019) study the properties of the solution L†BW ∆̂, where L† denotes the Moore-Penrose

inverse of L. I will take a slightly different approach by studying the solution that results when one of the

firms is taken as the “reference firm” with zero firm effect. While both solutions yield the same predicted edge

effects, the reference firm solution is typically used in practice and happens to also simplify the subsequent

theoretical analysis. Bozzo (2013) provides some useful results on connections between the two approaches.

Define B(1) as the submatrix leaving out the first row of B and let L(11) = B(1)WB′
(1) denote the

submatrix of L leaving out its first row and column. If we impose the restriction ψ1 = 0, then we obtain the

constrained normal equations

B(1)W ∆̂ = L(11)ψ(1),

where ψ(1) is ψ omitting its first entry. A classic result in graph theory, Kirchhoff’s matrix tree theorem,

states that any cofactor of the unweighted Laplacian matrix gives the number of spanning trees in the graph.

When the edges are weighted, generalizations of the theorem (e.g., Spielman 2019, Theorem 13.4.1) establish

that any cofactor of L gives the total edge weight of the graph’s spanning trees, where the weight of each tree

is given by the product of the edge weights it contains. A connected graph must have at least one spanning

tree. Hence, when the mobility graph is connected, it follows that det
(
L(11)

)
> 0, implying that L(11) has

full rank.

The least squares estimator that results from treating the first firm as the reference can therefore be

written

ψ̂(1) = L−1
(11)B(1)W ∆̂. (3)

Variants of this estimator are heavily used in applied research; however, computation is typically implemented

by iterative conjugate gradient (CG) methods rather than direct inversion of L(11).
5 CG routines are available

in most scientific computing packages including MATLAB and SciPy. The efficiency of these routines is

greatly aided by “preconditioning” the problem with an approximate Cholesky factorization of L(11). In

5We have glossed over the issue of how to form R – and consequently ∆̂ – in the first place. Typically, one estimates the
coefficient vector β on the time varying covariates Xit in a first step and subtracts them off. This initial adjustment step is
also greatly accelerated with CG methods.
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the empirical examples below, I rely on the combinatorial multigrid solver package of Koutis, Miller, and

Tolliver (2011) as a preconditioner.

3.1.3 Combination weights and smoothing

Equation (3) reveals that the estimated firm effects are linear combinations of the average wage changes

associated with each edge. In general, the combination weights are such that each firm effect can depend on

each element of ∆̂. For example, when the edges in the graph depicted in Figure 1 each represent a single

mover, the firm effect estimates can be written:

ψ̂(1) =
(
B(1)B

′
(1)

)−1

B(1)∆̂ =


7
12 − 1

12 − 1
12

5
12 − 1

6
1
6

1
2

1
2 − 1

2
1
2 0 0

5
12

1
12

1
12

7
12

1
6 − 1

6

 ∆̂. (4)

Recall that B(1)c = 0 for any vector c in the graph’s cycle space. It is easy to verify in the above example

that perturbing ∆̂ by adding to it any vector c ∈ {c1, c2, c3} yields no change in the estimated firm effects

ψ̂(1). This cyclic invariance property can be thought as offering a form of robustness to certain types of

confounding trends in the error ε. For example, a trend shared by the movers traversing edges e5 and e6

(i.e., movers between between Firms 2 and 4) will “difference out.” Likewise, ψ̂(1) is unaffected by adding a

constant to the wage changes of the movers traversing each of the edges e2, e3, and e5.
6 Adding a constant

to the wage changes of movers on edges e2 and e3 while subtracting that constant from movers on e5 also

has no effect.

Whether confounding cyclic trends of this nature tend to be present in economic data is an interesting

question for future research. Mobility cycles are common among employers in the same industry and region.

Suppose the error ε takes the form ε = Cη + u where η is a vector of cycle effects driven by demand shocks

to those industry-regions. Though this error structure violates the AKM edge restrictions, unweighted firm

effect estimates remain unbiased because
(
B(1)B

′
(1)

)−1

B(1)∆̂ = ψ +
(
B(1)B

′
(1)

)−1

B(1)u.

An important simplification of (3) arises in the case where the mobility graph is a tree. By definition,

a tree has J vertices and J − 1 edges, which implies the submatrix B(1) is square. Recall that L(11) =

B(1)WB′
(1). Since L(11) has full rank, B(1) must also have full rank. Hence, we can write:

ψ̂(1) =
(
B(1)WB′

(1)

)−1

B(1)W ∆̂ =
(
B′

(1)

)−1

W−1B−1
(1)B(1)W ∆̂ =

(
B′

(1)

)−1

∆̂.

6When the number of movers differs across edges in a cycle, then the magnitude of a trend shared across the cycle’s edges
would need to be inversely proportional to the number of movers along each edge in order to difference out. That is, the firm
effect estimates become invariant to perturbing ∆̂ in the direction W−1c where c is a vector in the cycle space. However, fitting
the AKM model directly to the edge effects by unweighted least squares (i.e., setting W = I in estimation) restores invariance
to cycle specific trends.

21



The predicted edge effects implied by the estimated firm effects are given by B′
(1)ψ̂(1) = ∆̂, indicating that

the firm effects rationalize the adjusted wage changes ∆̂ with no error. This phenomenon reflects that the

firm effects are just-identified by (i.e., “they saturate”) the edge specific wage changes.

Consider the spanning tree depicted in Figure 1, which is comprised of the graph’s first three edges. The

B′
(1) associated with this tree and its inverse are depicted below:

B′
(1) =


1 0 0

−1 1 0

0 −1 1

 ,
(
B′

(1)

)−1

=


1 0 0

1 1 0

1 1 1

 .

In any spanning tree, one can always ensure that
(
B′

(1)

)−1

is triangular by ordering the edges of B(1)

according to their distance from Firm 1. However, some of the entries in such a triangle may possess a

negative sign if reaching the reference firm requires traversing an edge in reverse.7 The triangular structure

of
(
B′

(1)

)−1

ensures that each firm effect is simply the sum of the (oriented) edge effects on the path

connecting it to the reference firm. Consequently, the difference in firm effect estimates for any two firms

j and k connected by an edge must equal the average wage change of the workers moving directly between

them. We will return to this property when discussing causal interpretations of firm effects.

A closely related property can be shown to hold when the graph is a polytree, meaning that the undirected

graph is a tree but some firm pairs may be connected by edges in both directions. For example, adding an

edge from Firm 4 to Firm 3 to the spanning tree depicted in Figure 1 yields a polytree. Any polytree can

be transformed into a simple tree by transferring the weight from one edge to the other in each pair of

edges connecting the same firms. This transformation can be represented by an |E| × J − 1 matrix T that

differences the relevant edge pairs in the incidence matrix. For example,



−1 0 0 0

1 −1 0 0

0 1 −1 1

0 0 1 −1


︸ ︷︷ ︸

B



1 0 0

0 1 0

0 0 1

0 0 −1


︸ ︷︷ ︸

T

=



−1 0 0

1 −1 0

0 1 −2

0 0 2


.

Remarkably, the firm effect estimates are invariant to such transformations. Specifically, when B represents

a polytree, the least squares weights for the transformed graph
(
B(1)WTT ′WB′

(1)

)−1

B(1)WTT ′W equal

7For example, choosing Firm 3 as the reference in this spanning tree yields
(
B′

(3)

)−1
=

−1 −1 0
0 −1 0
0 0 1

.
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the weights L−1
(11)B(1)W for the untransformed graph.8 Since B(1)WT is a square invertible matrix rep-

resenting a simple tree, the firm effects derived from fitting the AKM model to a polytree can equivalently

be written
(
T ′WB′

(1)

)−1

T ′W ∆̂. Consequently, in any polytree, the difference in estimated firm effects

between any pair of firms joined by a pair of edges will equal a mover weighted average of the two oriented

edge effects connecting them. As in a simple tree, the difference in firm effects for any pair of firms joined

by a single edge will depend only on that estimated edge effect.

When the graph is not a tree, the firm effects become over-identified and the vector of predicted wage

changes is ∆̃ ≡ B′
(1)ψ̂(1) = H∆̂, where H = B′

(1)L
−1
(11)B(1)W is an |E| × |E| weighted projection matrix

that is invariant to the choice of reference firm. Like the usual “hat” matrix (Hoaglin and Welsch 1978),

H’s diagonal entries {hℓℓ}ℓ∈[E] give the leverage of each observation (in this case each edge effect) on the

predicted value. One can write the ℓ’th leverage:

hℓℓ = b′ℓL
−1
(11)bℓnℓ,

where bℓ is the ℓ’th column of B(1) and nℓ is the ℓ’th diagonal entry of W . In large systems, costly inversion

of L(11) can be avoided when by breaking computation into a CG step that solves a linear system and a

subsequent matrix multiplication step.9 Leverages lie in the interval [0, 1], with larger values indicating that

dropping that edge from the data would lead to a greater change in the estimated firm effects. Any edge

that is part of a cycle has hℓℓ < 1. An edge with hℓℓ = 1 is known as a bridge. Dropping a bridge breaks

the graph into two or more connected components, in which case at least one firm effect can no longer be

estimated.

When the graph is a tree, all edges are bridges and H is the identity matrix. However, when the graph

exhibits cycles, H departs from identity and some “smoothing” across edges takes place. The rows of H

give the smoothing weights used to form the prediction for each edge. Each row’s weights sum to one but the

entries can be negative. For example, if we assume a single mover traverses each edge of the graph depicted

8The transformation T maps the edges back into the span of the weighted incidence matrix, implying the weighted orthog-

onality condition T ′W
(
I −B′

(1)L
−1
(11)

B(1)W
)

= 0. Expanding this condition yields T ′W = T ′WB′
(1)L

−1
(11)

B(1)W . Pre-

multiplying by B(1)WT gives B(1)WTT ′W = B(1)WTT ′WB′
(1)L

−1
(11)

B(1)W . Dividing both sides by B(1)WTT ′WB′
(1)

yields the result.
9Note that we can rewrite the ℓ’th leverage hℓℓ = b′ℓzℓ, where zℓ = L−1

(11)
bℓnℓ. The first step solves the equation L(11)zℓ =

bℓnℓ for the vector zℓ via CG methods. The second step computes hℓℓ = b′ℓzℓ by vector multiplication. This process can be
parallelized across edges to recover all of the leverages.
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in Figure 1 then the hat matrix takes the following form:

H =



7
12 − 1

12 − 1
12

5
12 − 1

6
1
6

− 1
12

7
12 − 5

12
1
12

1
6 − 1

6

− 1
12 − 5

12
7
12

1
12

1
6 − 1

6

5
12

1
12

1
12

7
12

1
6 − 1

6

− 1
6

1
6

1
6

1
6

1
3 − 1

3

1
6 − 1

6 − 1
6 − 1

6 − 1
3

1
3


Inheriting the properties of B(1), these smoothing weights are orthogonal to any vector in the cycle space

but are otherwise widely dispersed across the edges. Placing weight on edges throughout the network is

efficient when the AKM model restrictions hold. Otherwise, ∆̃ may provide a poor estimate of ∆.

3.2 Evaluating the AKM restrictions

To evaluate whether the AKM model provides an accurate summary of the wage changes associated with

(directed) moves between firm pairs, we study two years of the Veneto Workers History (VHW) data. This

dataset has emerged as a popular benchmark in the literature due to the low barriers associated with

obtaining access to it.10 We work with an extract of 1,859,459 person-year observations from the years

1999 and 2001 that was studied previously by Kline, Saggio, and Sølvsten (2020). The largest connected set

contains 73, 933 firms and 747, 205 workers, 197, 572 of whom switch employers between the two years. These

197, 572 “movers” are spread across 150, 417 edges. Hence, the AKM model implies 76, 485 restrictions on

the edge effects.

The AKM model is fit to the log daily wage changes of workers by solving the normal equations using

MATLAB’s preconditioned conjugate gradient routine. The only time varying covariate included is an

indicator for the year being 2001. Job stayers contribute to the firm effect estimates only indirectly via

estimation of the year fixed effect β̂. We use this same year effect estimate to preadjust wage changes before

collapsing them to estimated edge effects ∆̂.

3.2.1 Visualizing goodness of fit

Figure 2 summarizes how the conditional distribution of estimated edge effects varies with the AKM predic-

tions. Each dot depicts the mean edge effect within a bin of predicted edge effects
(
∆̃
)
. The bands around

the dots give a sense of dispersion within each bin: the upper limit of each band gives the 75th percentile of

10The data can be requested at https://www.frdb.org/en/dati/dati-inps-carriere-lavorative-in-veneto/.
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estimated edge effects in that bin, while the lower limit gives the 25th percentile.

Figure 2: Log daily wage change of edge
(
∆̂
)
versus AKM prediction

(
∆̃
)

Notes: The vertical axis depicts binned averages of the elements of ∆̂: the average adjusted log daily wage changes associated with
each origin-destination firm edge. The horizontal axis gives bins of ∆̃: the wage change predicted by the least squares estimates of
firm effects. Panel comprised of the 1999 and 2001 waves of the Veneto Work Histories dataset developed by the Economics
Department in Università Ca’ Foscari Venezia under the supervision of Giuseppe Tattara.

The AKM model stipulates that, in the absence of noise, the dots should all lie on the dashed 45 degree

line. On average, the edge effects do tend to lie remarkably close to the 45 degree line. Moreover, the bands

around the dots reveal only modest dispersion around the averages. However, the AKM model was fit to the

same data as the edge effects, which induces a mechanical dependence between the two sets of estimates.

Indeed, if the graph had been a tree, the edge predictions would all lie exactly on the 45 degree line.

Looping over edges to compute the leverages {hℓℓ}ℓ∈[E] reveals that about 22% of the edges are bridges

that must mechanically lie on the 45 degree line. Roughly 44% of the firm effects are just-identified by one

of these bridges. Dropping the bridges leaves 117,657 edges with hℓℓ < 1 that connect 41,195 firms. The x’s

in Figure 2 depict the mean predictions in this subpopulation, which still track the 45 degree line closely.

However, the interquartile range of deviations is amplified. To evaluate whether these deviations are larger

than we should expect under the AKM model requires accounting for noise in the estimated edge effects.
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3.2.2 Accounting for noise

The noise in the edge effects that concerns us derives from the vector u of wage change errors. One can

think of these errors as capturing the idea that if a different worker happened to traverse the same edge, a

different wage change would likely result. In what follows, I will use the expectation and variance operators

Eu [·] and Vu [·] to convey that integration is ultimately being conducted with respect to the edge effects

error u introduced in section 3.1.1. Hence, the expected value of the AKM prediction is Eu
[
∆̃
]
= H∆ and

the variance matrix of the estimated edge effects is Vu
[
∆̂
]
=
(
E′E

)−1
E′E [uu′]E

(
E′E

)−1
.

Denote the vector of differences between the predicted and estimated edge fixed effects by ∆̂−∆̃ = M∆̂,

where M = (I −H) is the “residual maker” matrix. Let ∆̂ℓ denote the ℓ’th entry of ∆̂ and ∆̃ℓ the ℓ’th

entry of ∆̃. A standard goodness of fit statistic is the sum of squared residuals. We will work with a mover

weighted version of this statistic:
∑
ℓ nℓ

(
∆̂ℓ − ∆̃ℓ

)2
=
(
∆̂− ∆̃

)′
W
(
∆̂− ∆̃

)
= ∆̂′M ′WM∆̂.11 So long

as the wage change errors have finite variance, we can write the expectation of this sum as

Eu
[
∆̂′M ′WM∆̂

]
= ∆′M ′WM∆︸ ︷︷ ︸

squared bias

+ trace
(
M ′WMVu

[
∆̂
])

︸ ︷︷ ︸
noise

.

The AKM model stipulates that M∆ = 0, which implies ∆′M ′WM∆ =
∑
ℓ nℓ

(
∆ℓ − Eu

[
∆̃ℓ

])2
= 0.

However, the model doesn’t restrict the trace term, which captures the expected contribution of noise. If the

wage change errors are independent across movers, then Vu
[
∆̂
]
is a diagonal matrix and the trace expression

simplifies to

trace
(
M ′WMVu

[
∆̂
])

=
∑
ℓ∈[E]

nℓ (1− hℓℓ)Vu
[
∆̂ℓ

]
,

where Vu
[
∆̂ℓ

]
is the ℓth diagonal entry of Vu

[
∆̂
]
. This formula captures the intuition that high leverage

edges are expected to yield smaller residuals because of overfitting. Conversely, edges with higher noise levels

Vu
[
∆̂ℓ

]
should yield larger squared residuals.

For edges with more than a single mover, a simple unbiased estimator of Vu
[
∆̂ℓ

]
is available: the squared

standard error, V̂u
[
∆̂ℓ

]
= 1

nℓ
s2ℓ , where sℓ is the standard deviation of adjusted wage changes along edge

ℓ. Reflecting the sparsity of the mobility network, only 9,459 of the edges that are not bridges have 2 or

more movers. Denote this set of edges by E2+. Combining the leverages with the edge specific standard

errors yields an expected sum of squared residuals under the null hypothesis that the AKM model holds of∑
ℓ∈E2+

nℓ (1− hℓℓ) V̂u
[
∆̂ℓ

]
= 207.58.

11The residual maker matrix will not, in general, be symmetric when the number of movers varies across edges. Fortunately,
M ′WM = WM for any distribution of mover weights, which significantly simplifies the calculations below.
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Empirically, the residual sum of squares is
∑
ℓ∈E2+

nℓ

(
∆̂ℓ − ∆̃ℓ

)2
= 360.51. The difference, 360.51-

207.58=152.92, between the actual and expected sum of squares provides an unbiased estimate of the sum of

squared approximation errors:
∑
ℓ∈E2+

nℓ

(
∆ℓ − Eu

[
∆̃ℓ

])2
. A natural benchmark for these approximation

errors is the (mover-weighted) sum of squared edge effects
∑
ℓ∈E2+

nℓ∆
2
ℓ , an unbiased estimate of which is∑

ℓ∈E2+
nℓ

(
∆̂2
ℓ − V̂u

[
∆̂ℓ

])
= 978.67. The ratio of these two numbers can be thought of as one minus the

(uncentered) R2 from an infeasible mover-weighted regression of the true edge effects in {∆ℓ}ℓ∈E2+
onto

the matrix of first differenced firm dummies.12 Hence, the data suggest the AKM approximation captures

roughly (1− 152.92/978.67) × 100 ≈ 84% of the variation in true edge effects. Equivalently, the estimated

correlation between the edge effects and the AKM predictions is 0.92.

Table 1: Goodness of fit by edge sample

Sample
Number

of
Movers

Number
of Edges

Root Mean
Squared

Model Error

Root Mean
Squared

Edge Effect
R2 Root Mean

Noise Level

At least 2 movers 50,254 9,459 0.055 0.140 84.37 0.124
At least 3 movers 39,048 3,856 0.041 0.117 87.58 0.092
At least 4 movers 34,941 2,487 0.038 0.109 87.95 0.076

At least 1 mover

Singleton noise level twice
edges w/ 2 movers

158,452 117,657 0.119 0.225 71.85 0.195

Singleton noise imputed
via log-log regression

158,452 117,657 0.112 0.219 73.86 0.204

Including bridges

Singleton noise imputed
via log-log regression

197,572 150,417 0.100 0.232 81.38 0.200

Notes: All samples but the last are comprised of edges that are not bridges. Letting E denote the set of edges under
consideration and |E| =

∑
ℓ∈E nℓ the number of movers across such edges, the “root mean squared model error” is computed

as the square root of 1
|E|

∑
ℓ∈E nℓ

{(
∆̂ℓ − ∆̃ℓ

)2
− (1− hℓℓ) V̂u

[
∆̂ℓ

]}
. “Root mean squared edge effects” is given by the

square root of 1
|E|

∑
ℓ∈E nℓ

(
∆̂2

ℓ − V̂u

[
∆̂ℓ

])
. The R2 is the square of the ratio of these two quantities. Root mean noise

level gives the square root of 1
|E|

∑
ℓ∈E nℓV̂u

[
∆̂ℓ

]
. The row labeled “Singleton noise level twice edges w/ 2 movers” imputes

V̂u

[
∆̂ℓ

]
for each edge with a single mover as twice the average squared standard error of edges with exactly two movers.

The rows labeled “Singleton noise imputed via log-log regression” impute the noise level of edges with a single mover based
upon a linear regression among edges with 2-10 movers of the log of the average noise level against an intercept and the log
of the number of movers. Imputations conducted separately for bridges and non-bridges.

Of course, this R2 estimate is itself subject to sampling uncertainty and applies only to a particular

population of edges. Table 1 repeats this goodness of fit exercise restricting to edges with more movers. The

R2 estimates are remarkably stable, suggesting that these findings are unlikely to be an artifact of noise. The

final column of the table reports the square root of the noise level within edges due to irreducible uncertainty

across movers. Depending on the sample of edges considered, the average noise level is four to five times

12The centered R2 is nearly identical because the mean edge effect in the E2+ sample is 0.01 and the mean AKM prediction
in this sample is 0.01. In the broader sample of 117,657 edges that are not bridges, the mean edge effect is 0.001 and the mean
AKM prediction is 0.005.
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greater than the average squared model error.

The two rows in the second panel of Table 1 impute the noise levels of the edges with a single mover

and recompute the relevant quadratic forms over all edges that are not bridges. The first of these rows sets

the noise level of the singleton edges equal to twice the average noise level of edges with exactly 2 movers,

an imputation that would be valid under homoscedasticity. The second row relaxes the homoscedasticity

assumption by allowing an arbitrary linear relationship between the log of the average noise level and the log

of the number of movers. This linear relationship, estimates of which are depicted in Appendix Figure A.1,

fits the data well and suggests slightly higher noise levels for the singleton edges. Under both imputations,

the R2 falls modestly to just above 70%.

Finally, recall that nearly half of the firm effects are just-identified by a bridge, contributing no model

error at all to the edge predictions. Applying a corresponding linear imputation of singleton noise lev-

els to the bridges (depicted in Appendix Figure A.1) yields an estimated sum of squared edge effects

across all edges
∑150,417
ℓ=1 nℓ

(
∆̂2
ℓ − V̂u

[
∆̂ℓ

])
of roughly 10, 671. Hence, the estimated R2 from an infea-

sible regression of all edge effects (inclusive of bridges) onto the first differenced firm dummies evaluates to[
1− (0.112)

2 × 158, 452/10, 671
]
× 100 ≈ 81%.

In sum, the AKM model provides a highly informative (albeit imperfect) summary of the expected wage

effects of worker mobility. If we were using firm effect estimates to predict the wage changes associated

with worker moves, these findings suggest that noise would be a greater hindrance than model error. The

model errors that are present result from cycles in the mobility network among a highly concentrated subset

of firms. One interpretation of these errors is that they reflect heterogeneity in the firm effects faced by

different sorts of workers. We now turn to thinking about the conditions under which the estimated AKM

firm effects retain a causal interpretation in the presence of such heterogeneous effects.

3.3 Causality

The AKM model bears a strong resemblance to a difference in differences specification with J treatment

arms where firm effect differences ψj − ψk represent average treatment effects and the exogenous mobility

assumption ensures “parallel trends.” It is natural then to ask whether least squares estimation of (1) can

identify causal effects under non-parametric restrictions on potential outcomes and worker firm assignments.

I will begin with the antecedent task of finding conditions under which the edge effects introduced in section

3.1.1 can be given a causal interpretation. To ease exposition, we will again confine attention to the case

where T = 2 and ignore time varying covariates, which can be thought of as having been adjusted for in a

previous step.
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Let Yit (d1, d2) denote the potential log wage of worker i in year t who works at firm d1 ∈ [J ] in period 1

and d2 ∈ [J ] in period 2. To mimic conventional treatment effects notation, I will use the symbol Dit = j (i, t)

to denote the firm employing worker i in period t. We now state three assumptions that endow the average

wage changes of workers switching employers between the two periods with a causal interpretation. Our first

assumption is an exclusion restriction:

Assumption 1 (Exclusion). Yit (d1, d2) = Yit (dt) for t ∈ {1, 2}.

This assumption rules out the possibility that past or future firm assignments affect wages. Assumption

(1) is violated in sequential auction models (Postel-Vinay and Robin 2002a; Cahuc, Postel-Vinay, and Robin

2006), which posit that hiring wages are influenced by the firm from which a worker was poached. However,

Di Addario et al. (2023) find in Italian data that past employers exhibit a negligible influence on hiring

wages outside of the law and banking sectors, suggesting this assumption is likely to provide a reasonable

approximation for most workers. When Assumption 1 holds, we can link observed wages to potential wages

via the relation Yit = Yit (Dit).

The next assumption mimics the parallel trends assumption of standard difference in differences models:

Assumption 2 (Parallel trends). E [Yi2 (j)− Yi1 (j) |Di1 = j,Di2 = k] = 0 ∀k ̸= j ∈ [J ]
2
.

Assumption 2 states that, among workers switching between any pair of firms, the average potential

wages at their origin firms would not have changed between periods. As noted earlier, we should think of

Yit here as pre-adjusted for year and age / experience effects, in which case this amounts to a restriction

that potential origin and destination wages exhibit a common time trend. Card, Heining, and Kline (2013)

reported event study plots of the average earnings trajectories of workers who transitioned between groups

of firms characterized by their leave-out wage quartile. These plots, which are now a standard diagnostic,

indicate that workers moving to high wage firms do not experience faster wage growth before moving, nor

does their wage trend change upon moving to a new firm, suggesting that Assumption 2 provides a reasonable

approximation.

Finally, we make a stationarity assumption on average treatment effects among firm switchers:

Assumption 3 (Stationarity). E [Yi1 (k)− Yi1 (j) |Di1 = j,Di2 = k] = E [Yi2 (k)− Yi2 (j) |Di1 = j,Di2 = k] ≡

∆jk, ∀k ̸= j ∈ [J ]
2
.

In a mild abuse of our earlier notation for edge effects, this last condition simply ensures that the average

treatment effect ∆jk of moving from firm j to firm k among those who make this transition is not time

dependent. The plausibility of Assumption 3 will, of course, depend on the nature and length of the sample

period under consideration. Lachowska, Mas, Saggio, et al. (2023) and Engbom, Moser, and Sauermann
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(2023) provide empirical evidence that firm effects are quite stable over the five to seven year horizons

typically studied in the literature.

The following proposition establishes that when these conditions are satisfied worker moves between pairs

of firms identify average treatment effects on the wages of movers.

Proposition 1 (Firm switches identify average treatment effects on movers). If Assumptions 1, 2, and 3

hold, then

E [Yi2 − Yi1 | Di1 = j,Di2 = k] = ∆jk.

Proof. The assumptions used in each step of the below proof are listed above the equals sign:

E [Yi2 − Yi1 | Di1 = j,Di2 = k]
A1
= E [Yi2 (k)− Yi1 (j) | Di1 = j,Di2 = k]

= E [Yi2 (k)− Yi2 (j) + Yi2 (j)− Yi1 (j) | Di1 = j,Di2 = k]

A2
= E [Yi2 (k)− Yi2 (j) | Di1 = j,Di2 = k]

A3
= ∆jk.

Hence, contrasts of the form in (2) can identify causal estimands under plausible assumptions even if firm

effects are heterogeneous. In particular, one does not need the process determining wages to be additively

separable in unobserved worker and firm heterogeneity for these assumptions to hold.

While Proposition 1 endows the mean wage changes accompanying firm switches with a causal interpre-

tation, these average causal effects are not sufficient to order firms in terms of their average wage levels. The

∆jk represent average treatment effects for a potentially highly selected group of movers between firm j and

firm k. Without further assumptions, this heterogeneity undermines our ability to rank the potential wages

offered by firms because wage changes may be intransitive. For example, with three firms, we could have

∆12 > 0,∆23 > 0,∆13 < 0 because the workers who move between Firm 1 and Firm 3 are different from

those who move between Firm 2 and Firm 3 or Firm 1 and Firm 2.13 Proposition 1 does not even rule out

the possibility that wage changes between firm pairs are asymmetric – i.e., that sign (∆jk) = sign (∆kj) –

which is also a form of intransitivity.

13Patterns of this nature are familiar from the social choice literature, where pairwise elections have long been observed to
exhibit intransitivities in the form of Condorcet (1785) cycles. Young (1995) provides an accessible introduction to the graph
theoretic interpretation of these cycles.
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3.3.1 Indirect contrasts and spanning trees

The AKM model enforces transitivity by imposing that ∆jk = ψk − ψj . We discussed in Section 3.1 how

this assumption implies restrictions on edges forming a cycle. For example, if workers move from Firm 1 to

Firm 2, Firm 2 to Firm 3, and Firm 3 to Firm 1, then the AKM model requires that ∆12 +∆23 +∆31 = 0.

When cyclic restrictions of this nature are violated, least squares estimation of (1) is not guaranteed to

provide firm effect estimates that, when contrasted, yield a convex weighted average of treatment effects.

This difficulty is familiar from both the difference in differences literature and recent work on least squares

estimation in environments with multiple treatment arms (Goldsmith-Pinkham, Hull, and Kolesár 2022). As

in those settings, the problem emerges, in part, from imposing over-identifying restrictions that are violated

empirically. Unlike in randomized experiments, however, interpretation problems persist even when we

saturate the model because the causal contrasts under study (i.e., the “edge effects”) pertain to potentially

non-comparable populations.

It was already mentioned in Section 3.1.3 that the firm effect estimates are, in general, a linear combination

of all of the edge specific wage changes. The combination weights need not sum to one in each row and can

be negative. These negative entries do not immediately undermine a causal interpretation of the firm effect

estimates because the edge effects are directed. Returning to the graph depicted in Figure 1, in the case

where a single mover is present along each edge, equation (4) implies that Firm 2’s fixed effect estimate can

be written:

ψ̂2 =
7

12
∆̂12︸ ︷︷ ︸

direct

+
3

12
∆̂14 +

1

12

(
2∆̂14 − ∆̂23 − ∆̂34

)
+

2

12

(
∆̂42 − ∆̂24

)
︸ ︷︷ ︸

indirect

= ∆̂12︸︷︷︸
direct

+
5

12

(
∆̂14 − ∆̂12 − ∆̂23 − ∆̂34

)
︸ ︷︷ ︸

−c′1∆̂

+
2

12

(
2∆̂23 + 2∆̂34 + ∆̂42 − ∆̂24

)
︸ ︷︷ ︸

(c2+c3)
′∆̂

.

With the first firm effect normalized to zero, it is natural for ψ̂2 to place substantial weight on ∆̂12, which

offers a direct contrast of the wages at Firm 1 and Firm 2 for a well-defined subpopulation of movers. From

the first line, we see a weight of 7/12 is placed on ∆̂12. However, indirect contrasts measuring the effects of

moving between other pairs of firms also contribute to ψ̂2, an example of what Goldsmith-Pinkham, Hull,

and Kolesár (2022) term “contamination.” The combination weights in this representation sum to 13/12,

revealing that ψ̂2 cannot be written as a convex weighted average of direct and indirect contrasts.

Under the AKM model, the indirect contrasts contain additional information about ∆12. To see this,

note from the second line that by rearranging terms, we can write the firm effect as the direct contrast

∆̂12 plus two terms that have mean zero under the AKM model because they correspond to cycles. With
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independent and identically distributed errors, adding these terms cuts the variance of ψ̂2 in half, which can

be verified by summing the squares of the coefficients multiplying each edge effect in the first line. However,

with unrestricted selection into edges and treatment effect heterogeneity, these indirect contrasts need not

be informative about any individual’s causal effect of moving from Firm 1 to Firm 2.

Indirect contrasts can be avoided by pruning the mobility network to a polytree. As discussed in Section

3.1.3, pruning the graph in Figure 1 to its first three edges yields estimates taking the form


ψ̂2

ψ̂3

ψ̂4

 =


1 0 0

1 1 0

1 1 1


︸ ︷︷ ︸

B−1
(1)


∆̂12

∆̂23

∆̂34

 .

Importantly, this representation holds no matter how many workers traverse each edge. Here, each firm effect

is a simple sum of contrasts ∆̂jk, which provides a causal interpretation to the difference in estimated firm

effects between any two firms that share an edge. For example ψ̂3 − ψ̂2 = ∆̂23. However, the interpretation

of differences in estimated firm effects between firms that do not share an edge is murky.

For example, the estimator ψ̂4 = ∆̂12+∆̂23+∆̂34 is not guaranteed to reveal anything about the relative

wage levels of Firm 4 and Firm 1. Fundamentally, without moves from Firm 4 to Firm 1 (which would

introduce a cycle into the graph) there is no information in the data directly revealing these firms’ relative

wage levels for any given individual. For the wage changes of the workers moving between Firms 1 and 2 to

even reveal the expected sign of the wage change associated with moving from Firm 1 to Firm 4, we need a

transitivity restriction: e.g., that for any three firms (j, k,m) ∈ [J ]
3
, ∆jk > 0,∆km > 0 ⇒ ∆jm > 0.

Ensuring transitivity requires either restricting the treatment effect heterogeneity or restricting selection.

We will follow the tradition in the treatment effects literature of avoiding restrictions on the outcome equation

and examine a restriction on selection that not only ensures a stable ordering of firms but allows cardinal

comparison of firm wage levels.

3.3.2 Restricting selection

The following exogeneity assumption ensures comparability of firm wage levels based upon moves by assuming

away selection on treatment effects:

Assumption 4 (No selection on treatment effects). Yi2 (k)− Yi2 (j) ⊥ Di1, Di2 ∀k ̸= j ∈ [J ]
2
.

Importantly, Assumption (4) permits mobility decisions to be related to average treatment effects E [Yi2 (k)− Yi2 (j)].

For example, workers can gravitate towards high wage firms as in the Burdett and Mortensen (1998) model.
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However, this assumption prohibits selection on “match” components of wages as arises in many models with

comparative advantage (e.g., Gibbons, Katz, et al. 2005; Eeckhout and Kircher 2011; Haanwinckel 2023;

Gottfries and Jarosch 2023).

When Assumption 4 does hold, worker mobility identifies unconditional average treatment effects. These

average treatment effects necessarily obey transitivity because they pertain to the same population, allowing

firm wage levels to be ranked on a common scale. Hence, we can write ∆jk = E [Yi2 (k)− Yi2 (j)] = ψk−ψj ,

in which case least squares estimation of (1) identifies pairwise average treatment effects within the connected

set of firms. We summarize this logic in the following result.

Proposition 2. If Assumptions 1, 2, 3, and 4 hold, then ∆jk = E [Yi2 (k)− Yi2 (j)] ∀k ̸= j ∈ [J ]
2
.

Let ψ = (ψ2, . . . , ψJ)
′
, where ψj = E [Yi2 (j)] − E [Yi2 (1)] for j ∈ [2, . . . , J ], and define the J − 1 ×

1 vector Fit = (1 {Dit = 2} , . . . , 1 {Dit = J})′. If the worker mobility network is connected and ψ1 =

0, then E
[
ψ̂k − ψ̂j | {Fi2, Fi1}i∈[N ]

]
= E [Yi2 (k)− Yi2 (j)] ∀k ̸= j ∈ [J ]

2
, where ψ̂ =

(
ψ̂2, . . . , ψ̂J

)′
=[∑

i∈[N ] (Fi2 − Fi1) (Fi2 − Fi1)
′
]−1∑

i∈[N ] (Fi2 − Fi1) (Yi2 − Yi1).

Proof. ∆jk = E [Yi2 (k)− Yi2 (j)] follows directly from Assumption 4. Using Proposition 1, the definition of

ψ, and the assumption that ψ1 = 0, we have

E [Yi2 − Yi1|Di2, Di1] =
∑

(j,k)∈{2,...,J}2

(ψk − ψj) (1 {Di2 = k} − 1 {Di1 = j}) = (Fi2 − Fi1)
′
ψ.

Connectedness of the mobility network ensures the estimator ψ̂ is well defined. It follows that E
[
ψ̂ | {Fi2, Fi1}i∈[N ]

]
=

ψ. The definition of ψ and assumption that ψ1 = 0 imply E
[
ψ̂k − ψ̂j | {Fi2, Fi1}i∈[N ]

]
= ψk − ψj ∀k ̸= j ∈

[J ]
2
.

This proposition implies that, in the absence of selection on treatment effects, the cyclic restrictions

discussed in Section 3.1.1 should hold. While these restrictions offer a reasonable approximation to the edge

effects, the empirical analysis in Section 3.2 indicated they are unlikely to hold exactly. Of course, the same

could be said of most empirical work relying on quasi-experimental variation. Nonetheless, future researchers

may find it fruitful to entertain some weakenings of Assumption 4.

One approach is to find richer time varying covariates that plausibly account for selection. Recent

work by Vafa et al. (2022) demonstrates that low dimensional embeddings of employment histories can

capture significant information about both potential wages and mobility, potentially restoring independence

of adjusted wages. Similarly, conditioning on transition patterns less likely to be plagued by selection could

improve the credibility of firm effect estimates. For example, Di Addario et al. (2023) show that the sequential

auction model of Bagger, Fontaine, et al. (2014) predicts that the AKM model restrictions should hold for

33



the subpopulation of workers displaced from their two previous jobs and provide evidence supporting this

hypothesis. The scope for selection may also be diminished among subpopulations whose transitions are

prompted by plant closures or mass layoffs (Gibbons and Katz 1992).

A second approach involves imposing a priori bounds on the maximal selection present in the network.

For example, one could constrain max(j,k)∈[J]2 |∆kj − E [Yi2 (k)− Yi2 (j)]| and seek estimation and inference

procedures that perform well subject to this bound, utilizing extensions of the methods discussed in Arm-

strong and Kolesár (2018), Armstrong and Kolesár (2021), and Rambachan and Roth (2023).14 In some

contexts it might be reasonable to consider asymmetric bounds on selection. For example, a static Roy

(1951) selection model would posit that ∆jk ≥ E [Yi2 (k)− Yi2 (j)] for voluntary moves. While this sort of

condition can be violated in sequential auction models and models with compensating differentials, it seems

reasonable to expect positive selection on wage gains more often than negative selection.

A third approach is to develop network formation models that deliver dynamic propensity scores for

mobility between firms that can be used to make semi-parametric adjustments to wage changes. While some

early progress has been made in this direction (Abowd, McKinney, and Schmutte 2019), particularly with

the use of stochastic block models (Nimczik 2017; Jarosch, Nimczik, and Sorkin 2024), this literature is still

in its infancy. A challenge for future work in this area is evaluating the quality of propensity score models

in networks that are extremely sparse.

Finally, a number of authors depart from “design based” assumptions on selection and work with in-

teractive factor models of wage outcomes (Bonhomme, Lamadon, and Manresa 2019; Lei and Ross 2023).

These models rationalize intransitivities in edge effects in terms of latent heterogeneity in the sorts of workers

that transition between different edges. To date, however, most research in this vein has worked with lower

dimensional representations of the mobility network, typically by clustering firms into a small set of groups,

in order to circumvent the incidental parameter biases that emerge from fitting nonlinear models to sparse

networks (Chen, Fernández-Val, and Weidner 2021). An interesting question for future research is whether

the clustering step can be skipped and the structure of the underlying (uncoarsened) edge effects more fully

rationalized with factor models of this nature.

14A major technical hurdle in this setting relative to conventional difference in differences problems is that most edges have
very few movers, implying that normality of the estimated edge effects is not assured.
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4 Variance decomposition

Abowd, Kramarz, and Margolis (1999) proposed summarizing the influence of firms on covariate-adjusted

wage inequality via the finite sample variance decomposition

Vn [Yit −X ′
itβ] = Vn [αi]︸ ︷︷ ︸

person effect variance

+ Vn
[
ψj(i,t)

]︸ ︷︷ ︸
firm effect variance

+2Cn
[
αi, ψj(i,t)

]︸ ︷︷ ︸
sorting

+Vn [εit]︸ ︷︷ ︸
noise

,

where n is the number of person-year observations in the sample, Vn [xit] = n−1
∑
i,t (xit − En [xit])2,

En [xit] = n−1
∑
i,t xit, and Cn

[
αi, ψj(i,t)

]
= n−1

∑
i,t αi

(
ψj(i,t) − En

[
ψj(i,t)

])
. Attention usually focuses

on the firm effect variance Vn
[
ψj(i,t)

]
, which gives a first pass measure of the importance of firms in wage

determination. Note that this quantity is person-year weighted, so that the firm effects of larger firms make a

greater contribution to wage inequality. The covariance component Cn
[
αi, ψj(i,t)

]
, which is often converted

into a correlation coefficient, measures the assortativeness of worker-firm matching.

It has become common to scale the variance and covariance components by Vn [Yit −X ′
itβ] in order

to give each component a share interpretation. While such exercises allow a complete decomposition of

residual wage inequality, the variance shares depend critically on the noise level Vn [εit], which can vary

depending on the volatility of earnings in the country being studied, the nature of the earnings measure

(hourly, monthly, quarterly, or annual), and the demographics of the workers under study. As discussed

below, cross-fitting and clustering methods both provide approaches to consistently estimating Vn [εit]. To

maximize comparability across studies then, it is advisable to scale decomposition exercises by the “signal

variance” Vn [Yit −X ′
itβ]−Vn [εit], which captures the variability of long run expected wages of the worker-

firm pairings observed in the data.

Variance shares measure the relative importance of variance components but say nothing about the ab-

solute magnitude of variability present. Variance components are also difficult to interpret because they

are measured in squared log points. Standard deviations allow a more direct assessment of the magni-

tude of worker and firm heterogeneity because they are measured in log points. For example, a find-

ing that Vn
[
ψj(i,t)

]1/2
= 0.25 implies that moving to a standard deviation higher paying firm yields a

roughly [exp (.25)− 1] × 100 ≈ 28% higher wage. Moreover, by Chebyshev’s inequality, we know that the

(employment-weighted) share of firms with firm effects more than k standard deviations above the mean is

at most 1/k2. Hence, in this example, no more than 6.25% of person year observations can be at firms with

wages 100 log points or more above the mean.
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4.1 Limited mobility bias

The exogenous mobility assumption guarantees that least squares will produce unbiased estimates of each

fixed effect. It is therefore tempting to plug the least squares estimates {α̂i}Ni=1and
{
ψ̂j

}J
j=1

into the Vn and

Cn operators to form estimates of the relevant variance components. Unfortunately, doing so will produce

biased estimates because these operators are quadratic functions. To understand the problem, observe that

for any unbiased estimator ψ̂j of ψj , we can write

Eε
[
ψ̂2
j

]
= Eε

[(
ψ̂j − ψj + ψj

)2]
= Eε

[(
ψ̂j − ψj

)2
+ 2ψj

(
ψ̂j − ψj

)
+ ψ2

j

]
= Vε

[
ψ̂j

]
+ ψ2

j > ψ2
j ,

where Eε [·] denotes expectation with respect to the mean zero noise terms {εit}i∈[N ],t∈[T ] in (1) and Vε [·]

gives the corresponding variance. Hence, estimation noise leads the square of the estimator to provide

an upwardly biased estimate of the square of the parameter. A similar argument reveals that for any

unbiased person effect estimator α̂i of αi and any unbiased firm effect estimator ψ̂j of ψj that Eε
[
α̂iψ̂j

]
=

αiψj + Cε
[
α̂i, ψ̂j

]
. Abowd, Creecy, and Kramarz (2002) termed these biases in the context of fixed effects

estimation (1) “limited mobility bias” on account of the observation that if the number of movers between

each firm were to grow infinitely large, the noise would disappear and the bias along with it. Andrews

et al. (2008) derived the nature of the bias in plugin estimates of the variance components in the AKM

decomposition more formally and established that the covariance Cn
[
α̂i, ψ̂j(i,t)

]
between person and firm

effects must be biased down.

When a consistent estimator V̂ε
[
ψ̂j

]1/2
of the standard error Vε

[
ψ̂j

]1/2
is available, one can form a bias-

corrected estimate of each ψ2
j with ψ̂2

j − V̂ε
[
ψ̂j

]
; that is, by subtracting off the squared standard error from

the plugin estimate. Likewise, an unbiased estimate of the variance of firm wage effects θψ = Vn
[
ψj(i,t)

]
=

En
[
ψ2
j(i,t)

]
− En

[
ψj(i,t)

]2
can be obtained from its debiased analogue

θ̂ψ = En
[
ψ̂2
j(i,t) − V̂ε

[
ψ̂j(i,t)

]]
−
{
En
[
ψ̂j(i,t)

]2
− V̂ε

[
En
[
ψ̂j(i,t)

]]}
. (5)

Krueger and Summers (1988) implemented a bias correction of this form when computing the variance of

industry wage fixed effects. Replacing ψ̂j(i,t) with α̂i in the above formula yields a bias-corrected variance of

person effects θ̂α. The bias-corrected covariance between person and firm effects can be obtained from the

formula θ̂α,ψ = En
[
α̂iψ̂j(i,t) − Ĉε

[
α̂i, ψ̂j(i,t)

]]
.

Andrews et al. (2008) proposed a correction for the AKM variance and covariance components under the

assumption that the εit are iid. However, these corrections yielded small changes in the variance components,

corrections that appeared to be too small given the magnitude of the biases found in the subsampling exercises
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reported in Andrews et al. (2012). Card, Heining, and Kline (2013, Online Appendix 3) conjectured that this

under-correction was likely a result of unmodeled heteroscedasticity and serial correlation in wage innovations,

properties that had been well documented in the literature on earnings dynamics (e.g., MaCurdy 1982;

Abowd and Card 1989; Meghir and Pistaferri 2004).

It is tempting to use conventional heteroscedasticity-consistent standard errors to estimate and remove

the bias. However, these “standard standard errors” and their bootstrap analogues are known to exhibit

bias when the number of parameters being estimated is proportional to the number of observations (Bickel

and Freedman 1981; MacKinnon and White 1985; Mammen 1993; Cattaneo, Jansson, and Newey 2018; El

Karoui and Purdom 2018). Kline, Saggio, and Sølvsten (2020) proposed replacing the usual heteroscedasticity

consistent standard errors (e.g., White 1980; MacKinnon and White 1985) with heteroscedasticity unbiased

variance estimates derived from cross-fitting that are robust to arbitrary heteroscedasticity.

4.2 Cross-fitting and bias correction

Cross-fitting can be thought of as a version of sample splitting designed to remove overfitting biases while

making maximally efficient use of the data (Newey and Robins 2018).15 To understand the logic behind this

approach, it is useful to rewrite (1) in the notation

Ym = Dmα+ Fmψ + εm, (6)

where Ym is a vector of all of the wages in worker-firm match m ∈ {1, . . . ,M} ≡ [M ]. For example, if a

worker spends three years at a job, then that match yields a 3 × 1 vector of wages. The matrix Dm is

comprised of worker dummies; it has as many rows as there are time periods in match m and N columns,

one for each worker in the sample. The vector α collects the person effects. The matrix Fm is comprised of

firm dummies. We assume one firm effect has been normalized to zero so that Fm has J − 1 columns and

the vector ψ collects J − 1 firm effects. I have again abstracted from the time varying covariates, which can

be partialled out in a first stage. Throughout this discussion, we will treat the {Dm,Fm}m∈[M ], along with

(α,ψ) as fixed, leaving εm as the only source of randomness in the model. The {εm}m∈[M ] are assumed to

be mutually independent and to exhibit mean zero.

We will write Vε [εm] = Ωm which conveys both that the noise level may vary from match to match and

that arbitrary within match correlation of the errors εm is permitted. The variance of least squares estimates

15Sorkin (2018), Drenik et al. (2023), and Card, Rothstein, and Yi (2024) estimate vectors of firm effects using two independent
half samples of workers. The covariance between the two samples provided an unbiased (and transparent) estimate of the variance
of the latent firm effects. Unfortunately, the connected set can grow much smaller when the sample is split and randomness in
how the split was chosen contributes to the variability of the estimator.
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of firm effects takes the usual “sandwich” form

Vε
[
ψ̂
]
=

 ∑
m∈[M ]

F̃
′
mF̃m

−1 ∑
m∈[M ]

F̃
′
mΩmF̃m

 ∑
m∈[M ]

F̃
′
mF̃m

−1

,

where F̃m is the matrix of firm dummies that results after partialling out the worker dummies – i.e., after

deviating the firm indicators from their worker specific means. Hence, if we knew the {Ωm}m∈[M ], we could

compute “match clustered” standard errors that allow us to bias correct the square of each firm effect by

subtracting off its squared standard error.

Let ψ̂−m denote the vector of firm effects derived from fitting (1) by least squares when leaving out the

observations for match m and α̂−m the corresponding vector of person effects. For α̂−m to exist, we need

that every worker has at least two worker-firm matches. Assume for the moment then that the sample has

been restricted to job switchers so that α̂−m exists. This assumption is without loss of generality since job

stayers do not contribute to estimation of the firm effects but only to the firm weights used to define the

variance of interest. Another option is to consider long differences – i.e., to omit all but the first and last

periods – and to treat the first and last wage error of job stayers as independent, which may be plausible in

longer panels.

Define the cross-fit residual as

ε̂m = Ym −Dmα̂−m − Fmψ̂−m = εm + ξ−m,

where ξ−m ≡ Dm (α− α̂−m) + Fm

(
ψ − ψ̂−m

)
is a mean zero vector of noise arising from estimation error

in the coefficients
(
α̂−m, ψ̂−m

)
. Note that Eε

[
εmξ

′
−m
]
= 0 because the noise is independent across matches.

Hence, unlike traditional regression residuals, which tend to be too small due to overfitting, the cross-fit

residuals are generally too large, as Eε [ε̂mε̂′m] = Ωm + Eε
[
ξ−mξ

′
−m
]
.

Kline, Saggio, and Sølvsten (2020) propose multiplying the cross-fit residual by the outcome, which yields

the unbiased estimator

Ω̂m = Ymε̂
′
m = (Dmα+ Fmψ + εm) (εm + ξ−m)

′
.

Unbiasedness of Ω̂m for Ωm follows from the observation that Dmα+Fmψ is a matrix of constants and the
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presumed independence of εm from ξ−m.16 Hence, an unbiased estimator of Vε
[
ψ̂
]
is

V̂ε
[
ψ̂
]
=

 ∑
m∈[M ]

F̃
′
mF̃m

−1 ∑
m∈[M ]

F̃
′
mΩ̂mF̃m

 ∑
m∈[M ]

F̃
′
mF̃m

−1

. (7)

Note that unlike the classic HC2 and HC3 estimators of MacKinnon and White (1985), the cross-fit variance

estimator is unbiased for any sample size. A corresponding formula for the covariance between person and

firm effects is provided in the appendix.

Unbiasedness does not guarantee that the variance estimate for any particular firm effect will be accurate.

In fact, a necessary consequence of unbiasedness is that there must be some probability that the realized

variance estimate for each of the diagonal terms V̂ε
[
ψ̂j

]
is negative. However, Kline, Saggio, and Sølvsten

(2020) show that weighted averages of the estimated variances, such as the average estimated noise level

En
[
V̂ε
[
ψ̂j(i,t)

]]
are guaranteed to converge to En

[
Vε
[
ψ̂j(i,t)

]]
as the sample size grows large. If we have re-

stricted estimation to the firm movers, we can also compute the weighted average noise level, which reweights

the firms according to their share of all person-year observations including the firm stayers. Consequently,

unbiased estimation of the variance of firm effects does not require taking a stand on the serial correlation

of the stayer wage errors. Bias-corrected estimates of firm variance components can often be measured quite

precisely. For instance, Kline, Saggio, and Sølvsten (2020) obtain a bias-corrected point estimate of the

person-year weighted variance of firm effects of 0.024 (which we will replicate shortly) with a corresponding

standard error of only 0.0006.

4.2.1 Leave-out connectedness

An important requirement of cross-fitting methods is that the model must be estimable after leaving out any

particular observation. Within a given connected set, many firms may be connected by only a single move,

implying their ψj would not be estimable if that worker’s wage observations were dropped. Kline, Saggio,

and Sølvsten (2020) find when using only two periods of data that 43% of the firms in the largest connected

set are “just-connected” in this manner. Workers who move to or from such firms have no residual associated

with their wage change, prohibiting an assessment of the level of noise in their wages and consequently a bias

correction. Fundamentally then, the variance of firm effects is only identified within the leave-out connected

set that prunes the just-connected firms.

To assess how this pruning might change estimands, Kline, Saggio, and Sølvsten (2020, Table IV) report

16As mentioned earlier, one typically preadjusts log wages for time varying covariates in a first step, which introduces a small
higher order bias due to estimation error β̂ − β influencing both ym and ε̂m. Even so, it is often wise to ensure ym has mean

zero before applying cross-fitting in order to reduce the variability of Ω̂m and we will do so in our empirical example below.
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the results of further restricting the set of firms under study to be connected when any two matches are left

out. Requiring that each firm effect be estimable when any two matches are left out further reduces the

number of estimable firm effects by 43%. Surprisingly, the effect of this restriction turns out to be negligible,

nudging the point estimate of the variance of firm effects from 0.240 to 0.238. Similar insensitivity to these

leave out requirements is found for subsamples of older and younger workers. One reason for this insensitivity

is that weakly connected firms typically employ few workers and hence make a small contribution to the

overall (person-year weighted) variance of firm effects. Another is that in finite samples, there is a large

degree of randomness in which firms happen to be connected, a phenomenon consistent with standard

random search models exhibiting Poisson arrival of mobility events.

4.2.2 Bounding and imputation

Existing applications of the cross-fitting correction report variance components describing heterogeneity

within the leave-out connected set of workers and firms. Moving the goalposts to estimate whatever target

parameter is identified by a research design is standard fare in empirical economics (Crump et al. 2009;

Imbens 2010). It is nonetheless prudent to examine the extent to which the leave-out connected set might

differ from the broader population of workers and firms. Fortunately, it is relatively straightforward to

compute bounds on variance components describing the broader connected set of firms.

The key insight that allows the construction of bounds is to note that the noise level Ωm in any match

must obey the bound: 0 ≤ Ωm ≤ Eε [YmY ′
m]. The upper bound follows from observing that

Eε [YmY ′
m] = (Dmα+ Fmψ) (Dmα+ Fmψ)

′
+Ωm.

The first term in this sum is the outer product of a vector and therefore must be positive semi-definite.

Consequently, the upper bound is sharp, arising when Dmα+ Fmψ equals a vector of zeros.

Intuitively, the wages associated with a just-connected match could be pure noise, in which case Ωm =

Eε [YmY ′
m], or they could be entirely noiseless, in which case Ωm = 0. This observation suggests estimating

bounds on Vε
[
ψ̂
]
using Ω̂m=YmY

′
m as an upper bound and Ω̂m=0 as a lower bound on the noise contribution

of just-connected matches. As before, we use the leave-out estimator Ω̂m = Ymε̂
′
m for leave-out connected

matches. Denote the resulting estimated upper and lower bounds by V̂+
ε

[
ψ̂
]
and V̂−

ε

[
ψ̂
]
respectively.

Plugging these bounds on the noise level into (5) yields a corresponding lower bound estimate θ̂−ψ and upper

bound estimate θ̂+ψ on the variance of firm effects θψ = Vn
[
ψj(i,t)

]
:

θ̂−ψ = En
[
ψ̂2
j(i,t) − V̂+

ε

[
ψ̂j(i,t)

]]
−
{
En
[
ψ̂j(i,t)

]2
− V̂+

ε

[
En
[
ψ̂j(i,t)

]]}
,
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θ̂+ψ = En
[
ψ̂2
j(i,t) − V̂−

ε

[
ψ̂j(i,t)

]]
−
{
En
[
ψ̂j(i,t)

]2
− V̂−

ε

[
En
[
ψ̂j(i,t)

]]}
.

These bounds, which are consistent for the corresponding population bounds under conditions that par-

allel the case where all observations are leave-out connected, may be especially useful in thin samples

or environments characterized by low mobility. A corresponding approach to bounding the covariance

θα,ψ = Cn
(
αi, ψj(i,t)

)
is detailed in the appendix.

4.2.3 An empirical example

To illustrate these ideas, we now return to the benchmark VHW sample introduced in Section 3.2. With two

years of data, estimating the firm effects in levels and first differences is numerically equivalent, which implies

that we can think of Ym as a scalar measuring wage changes without loss of generality. As shown in the top

panel of Table 2, roughly 83% of movers in the largest connected set are also in the leave-out connected set.

These leave-out connected workers exhibit mildly higher average wages that are slightly less dispersed. The

lower panels of the table report estimates of the AKM variance decomposition in each sample.

Squaring the plug-in and bias-corrected standard deviations of firm effects reported in the second column

of Table 2 reproduces the firm effect variances reported in Table II of Kline, Saggio, and Sølvsten (2020).

The cross-fitting bias correction has substantial bite in the leave-out sample, cutting the estimated standard

deviation of firm effects from 18.9 to 15.5 log points. It is natural to worry, however, that this bias reduction

constitutes a pyrrhic victory, as the roughly 40% of connected firms that are not leave-out connected may

differ from those that are connected. How large of a bias correction would we have obtained if we knew the

error variances in the original connected set?

The first column of the bottom panel of Table 2 sheds light on this question. The upper bound on the

variance of firm effects assumes that the matches at just-connected firms have error variance zero, yielding

an upper bound on the standard deviation of firm effects of 18.5 log points. Coincidentally, this upper bound

is very near the plug-in estimate of the standard deviation of firm effects in the leave-out connected sample.

Conversely, if we assume matches at each just-connected firm have error variance equal to the squared wage

change involving that firm, then we attain a lower bound standard deviation of 14.2 log points. Finally,

if the just-connected matches exhibit a noise level equal to the average of the leave-out connected matches

– an assumption that I will term “connected at random” (CAR) – then we can form a bias correction by

imputing for every just-connected match the average cross-fit noise level of wage changes of movers in the

leave-out connected set.17 The CAR imputation yields an estimated standard deviation of firm effects of

16.4 log points.

17One could argue that this assumption should be termed “connected completely at random” (CCAR) as the imputation is
not conditioned on any covariates.
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Table 2: Sample Composition and Variance Components in Veneto, Italy

Connected Set Leave-Out Connected Set

Number of Person Year Observations 1,859,459 1,319,972
Number of Movers 197,572 164,203
Number of Firms 73,933 42,489

Mean Log Wage 4.7507 4.8066
Standard Deviation of Log Wage 0.4455 0.4293

Standard Deviation of Firm Effects
Plug-in 0.2161 0.1892
Bias-Corrected [0.1421, 0.1847] 0.1549
Connected at Random 0.1643

Standard Deviation of Person Effects
Plug-in 0.3712 0.3634
Bias-Corrected [0.3216, 0.3423] 0.3345
Connected at Random 0.3320
Impute Stayer Noise Level [0.3138, 0.3353] 0.3267
CAR (Impute Stayer Noise) 0.3245

Covariance of Firm and Worker Effects
Plug-in -0.0053 0.0039
Bias-Corrected [0.0063, 0.0188] 0.0146
Connected at Random 0.0128

Notes: This table reports properties of the connected and leave-out connected sets in a panel comprised of the 1999 and 2001
waves of the Veneto Work Histories dataset developed by the Economics Department in Università Ca’ Foscari Venezia under
the supervision of Giuseppe Tattara. The standard deviation of firm effects refers to the person-year weighted standard
deviation of firm effects in a regression of log daily wages on worker fixed effects, firm fixed effects, and a year fixed effect.
“Plug-in” refers to the OLS estimates. “Bias-corrected” estimate uses the cross-fit bias correction. Intervals correspond to
bounds on the variance component in question resulting from the assumption that the noise levels of just-connected movers
equal either zero or that mover’s squared wage change. “Connected at random” bias corrects by imputing the average error
variance of leave-out connected movers to just-connected movers. “Impute Stayer Noise Level” bias corrects assuming that
workers who don’t switch jobs have the average noise level of leave-out connected movers. Intervals again correspond to
bounds on the variance component in question resulting from the assumption that the noise levels of just-connected movers
equal either zero or that mover’s squared wage change. “CAR (Impute Stayer Noise)” bias corrects assuming that both
just-connected movers and job stayers exhibit the average noise level of leave-out connected movers.

Evidently, the bias-corrected standard deviation estimate in the leave-out connected sample is almost

exactly halfway between the lower bound and CAR estimates in the broader connected sample. Moreover,

the range of estimates is relatively narrow. Little seems to have been lost here by restricting to the leave-out

connected set. If the CAR estimate had been very different from the bias-corrected estimate, however, we

might have come away more concerned about selection bias. Hence, the CAR estimate seems like a useful

diagnostic to report in addition to the standard bias-corrected estimates describing the leave-out connected

set.

An equivalent exercise can be conducted with the variance of person effects and the covariance between

person and firm effects. Bias correcting the standard deviation of person effects in the leave-out connected

set reduces its magnitude by about 3 log points, which is comparable to the effects of bias correction on

the standard deviation of firm effects. In the broader sample of connected workers, the bounds on the
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standard deviation are quite narrow, ranging from 32.2 to 34.2 log points. Like the bias-corrected estimate

in the leave-out connected set, the CAR estimate of the standard deviation of person effects in the broader

connected set is 33 log points.

As was noted earlier, it is possible that the noise level of job stayers has been underestimated by neglecting

serial correlation. While job stayers do not contribute to estimation of firm effects, they are essential for the

estimation of person effects. Underestimation of job stayer noise levels could therefore lead to overestimation

of the variance of person effects. To assess this possibility, we also report the person effect standard deviation

that would result if job stayers had the same average noise level as job movers. Doing so in the leave-out

connected set yields a marginally smaller person effect standard deviation of 32.7 log points. In the broader

connected sample, this imputation lowers both the upper and lower bounds on the person effect standard

deviation by slightly less than a log point. Likewise, the CAR estimate in the connected sample falls by

nearly a log point and is essentially indistinguishable from the estimate in the leave-out connected sample.

Finally, bias correcting the covariance between worker and firm effects in the leave-out connected set

yields small increases. Fortunately, bias correcting the covariance does not require recovering the noise level

of stayers because the covariance must reflect estimation error in firm effects, which depend entirely on

movers. In the broader connected sample, the bounds are again fairly narrow. Moreover, the CAR estimate

of covariance is close to the bias-corrected covariance in the leave out connected set.

Using the bias-corrected estimates in the leave out connected sample yields a correlation coefficient of

0.28. If we ascribe to the stayers the noise level of the movers, the correlation rises negligibly to 0.29 because

the person effect variance falls. In the broader connected set the correlation is an increasing function of

the unknown noise level of the just-connected movers. Consequently, we can obtain lower bound under the

assumption that the noise level is zero and an upper bound under the assumption that the noise level is

given by the squared wage change. It turns out that this yields a non-trivial range of possible correlation

coefficients [0.09, 0.40]. However, these bounds entertain the implausible possibility that the wage changes of

just-connected movers are either all noise or all signal. The CAR estimate of correlation is 0.23 and imputing

the mover noise level to the stayers raises this correlation negligibly to 0.24. These estimates are quite close

to our bias-corrected estimate in the leave out connected sample, suggesting that selection is probably not

a major concern here.

In sum, we can be relatively confident that trimming has little effect on the person-year weighted variance

of worker or firm effects. More ambiguity is present regarding the correlation between worker and firm effects

but the agreement between CAR estimates and estimates in the leave-out connected set suggest selection

bias is also likely to be mild in this dimension. Future research in this area could consider more sophisticated

imputation schemes that allow noise levels of just-connected workers to be estimated based upon features of
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the worker-firm mobility network. Finally, our experimentation with imputation schemes for the noise levels

of job stayers suggests that person effect variances are unlikely to be dramatically overstated by cross-fitting

approaches neglecting the serial correlation of job stayers. In settings where serial correlation is a known

concern, the proposed imputation strategy based on the average estimated noise level of movers offers a

potentially attractive way of circumventing the problem.

4.3 Clustering approaches

Bonhomme, Lamadon, and Manresa (2019) analyze a version of the AKM model in which firm heterogeneity

is restricted to be discrete. They assume the firm effects can be represented in a lower dimensional space

via the relation

ψj =

K∑
k=1

Tjkψ̄k, (8)

where the {Tjk}Kk=1 are indicators for the latent type of the j’th firm effect obeying
∑K
k=1 Tjk = 1 and the{

ψ̄k
}K
k=1

are the wage effects of those firm types. In their baseline specification, they work with K = 10

types, a choice that has been focal in the subsequent literature.

Directly imposing (8) and optimizing jointly over the indicators Tjk and the locations ψ̄k via nonlinear

least squares is a non-convex and often intractable computational problem. To circumvent this obstacle,

Bonhomme, Lamadon, and Manresa (2019) propose a two step approach. First, they apply a variant of

K-means clustering (Forgy 1965; Lloyd 1982) to firm wage distributions to obtain firm type assignments

T̂jk. These type assignments are then treated as regressors in second step estimation of the model

Yit = αi +

K∑
k=1

T̂j(i,t)kψ̄k +X ′
itβ + εit.

Rather than estimate this equation by OLS, they treat the αi as normal mixtures with means that depend

on T̂jk, which further reduces the number of parameters to be estimated, and maximize the likelihood via the

EM algorithm (Dempster, Laird, and Rubin 1977). Once the type specific parameters have been estimated,

the type estimates can (in principle) be updated, yielding reclassified firm and worker type assignments that

provide approximations to one step maximum likelihood estimates of the full model.

In some respects, the clustering approach mirrors the earlier literature on industry wage differentials

(e.g., Krueger and Summers 1988). Rather than using as regressors indicators for 20 or so 2-digit industries,

the “industries” are treated as latent random variables to be reconstructed via clustering of firm wage

distributions. By reducing the high dimensional AKM specification down to a low dimensional model, the

clustering approach sidesteps the usual incidental parameters problem, substantially reducing the biases
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associated with squaring estimated parameters. Clustering also circumvents the requirement to limit the

analysis to the largest connected set of firms, as one only needs the estimated firm types T̂jk, rather than each

individual firm, to be connected by worker mobility for the second step model to be estimable. Interactions

between estimated worker and firm types can also be treated as regressors, allowing estimation of non-

separable models. These interactions turn out to be negligible in Swedish data, however, raising the estimated

R2 of the model from 74.8% to 75.8%, leading Bonhomme, Lamadon, and Manresa (2019) to conclude that

“complementarities explain only a small part of the variance of log-earnings.”18

The advantages of the clustering approach come at the cost of strong assumptions on the data generating

process. For one thing, it seems implausible that there exist large groups of firms that offer exactly the

same wage premiums. The restriction in (8) is at best an approximation and one that inevitably leads to

understatement of firm effect variances by neglecting within-type variability. Neglected covariances between

any within firm type employer heterogeneity and worker heterogeneity can also lead to bias in the estimates of

worker-firm sorting. Card, Rothstein, and Yi (2023) note both of these problems when revisiting the industry

wage differential literature, where they find substantial variation in employer wage premiums within industry

along with significant worker-firm sorting. It seems unlikely that any partition of firms into 10 or even 10,000

groups would entirely resolve these problems.

Even if (8) were to hold exactly, the type assignments T̂jk will be noisy for small firms, which can generate

bias in the estimated locations parameters
{
ˆ̄ψk

}K
k=1

. Indeed, the formal assumptions used by Bonhomme,

Lamadon, and Manresa (2019) to establish consistency of the two step clustering approach require that

the number of wage observations at the smallest firm grow with the number of firms. This potential for

bias that arises with finite sized firms is a cost of having to estimate a regressor instead of relying on a

predetermined grouping such as industry, firm size, or geography. Another cost concerns interpretability.

While some judgement calls are involved in choosing industry and geographic categories, variation across

them is substantially easier to interpret than variation across firm groups determined via K-means clustering

of wage distributions.

A related conceptual difficulty is that the type assignments are determined based on cross-sectional

wage distributions rather than worker mobility. However, any cross-sectional distribution of wages could

be driven by worker sorting rather than firm heterogeneity. The ability to separate the two comes only

from the assumption that the economy possesses a finite number of well separated firm types. Parametric

identification of this nature is contrary to the ethos of the AKM approach, which relies entirely on worker

18In fact, their estimated interactions are smaller than those reported by Card, Heining, and Kline (2013, Table III) for
German data, who find that allowing for unrestricted worker-firm match effects raises the adjusted R2 by roughly 2 percentage
points. In a recent analysis of US earnings data, Lamadon, Mogstad, and Setzler (2022, Table A6) report that adding worker-firm
interactions to an additive group fixed effects model fit to raises the R2 by less than one percentage point.
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mobility to separate worker and firm heterogeneity.

The robustness exercises reported in Bonhomme, Lamadon, and Manresa (2019, Table III) reveal that

the estimated variance of firm effects can, in fact, be quite sensitive to the details of the procedure used to

form the type assignments. They find that clustering firms into ten groups based on their cross-sectional

wage distributions yields a variance of firm effects that accounts for 2.6% of the overall variance of earnings

in Swedish administrative data. Splitting those groups by firm value added raises the share of wage variance

explained by firms to 3.4%. Reclassifying the firm types – which can be thought of as choosing the firm

groups to directly approximate the firm effects of the movers – raises the estimated contribution of firm

effects to 4.1% of the variance.

A recent paper by Bonhomme, Holzheu, et al. (2023) relaxes (8) by assuming

ψj =

K∑
k=1

Tjk
(
ψ̄k + υk

)
, (9)

where each {υk}Kk=1 is a mean zero normally distributed random effect with a different variance. By allowing

for within firm type dispersion, this correlated random effects (CRE) approach generally picks up a greater

degree of firm dispersion. For instance, Lamadon, Mogstad, and Setzler (2022, Table A6) find that firm

effects explain only 3.2% of annual earnings variance in US tax data when using the two-step estimator

imposing (8), whereas Bonhomme, Holzheu, et al. (2023, Table F2) estimate that share at 6.2% in a six year

panel of the same data using the CRE estimator predicated on (9). However, the CRE estimator still relies

on functional form assumptions to separate worker and firm types. In particular, the estimator is predicated

on moment conditions imposing that αi − E [αi|Tjk] is independent of υk, which implies there is no worker

firm sorting within firm types, while the type assignments T̂jk are still based on a first step clustering routine

applied to the cross-sectional wages of job stayers.

Bonhomme, Holzheu, et al. (2023) find in both Monte Carlo exercises and real datasets that both their

CRE estimator and the cross-fitting estimator of Kline, Saggio, and Sølvsten (2020) successfully address

limited mobility bias. On average the parametric CRE estimator yields modestly smaller firm effect estimates

than the bias-corrected estimator based on cross-fitting. It is difficult to assess the extent to which these

differences arise from violations of the functional form assumptions baked into the CRE model. A traditional

justification for CRE methods is that, by exploiting additional restrictions, they can offer more efficient

(albeit less robust) estimates (Chamberlain 1982; Angrist and Newey 1991). Monte Carlo evidence suggests

that the CRE estimates of variance components are indeed likely to be more efficient than the cross-fitting

estimator when the CRE assumptions hold. Hence, the CRE approach may be useful in small samples where

precision is a practical concern. Another potentially important use case for the CRE estimator is settings
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with extremely limited mobility, where restricting to the leave-out connected set would drop an unacceptably

large share of the units under study (e.g., Fenizia 2022). When using such approaches, it may be worthwhile

to pursue iteratively updated versions of the estimator, which have been found to yield improved performance

in some settings (Bonhomme, Lamadon, and Manresa 2019; Lentz, Piyapromdee, and Robin 2022).

4.4 How variable are worker and firm effects?

Bias-corrected estimates of worker and firm contributions to wage inequality have now been reported in many

countries. The figure below depicts bias-corrected estimates of worker and firm effect variability drawn from

nine recent studies utilizing the cross-fitting correction of Kline, Saggio, and Sølvsten (2020). Rather than

focus on variances or variance shares, I compare the standard deviation of person effects to the standard

deviation of firm effects, the units of which are directly interpretable in log points. When reported, multiple

specifications from the same study are included to illustrate the sensitivity of estimates to the sample period

and population. The list of studies depicted is provided in Appendix Table A.1. Some studies that used bias

corrections could not be included because they failed to report the magnitude of the variance components,

relying on variance shares without reporting the marginal variance.

The 45 degree line through the origin of Figure 3 gives what one should expect if worker and firm

components are equally important and scale with the overall level of inequality in an economy. Perhaps

surprisingly, many of the estimates lie very near this line. As expected, the scale of inequality appears most

pronounced in middle income countries such as Mexico, South Africa, and Brazil, while Italy, the US, and

Sweden are relatively more equal in both dimensions. The estimates falling below the 45 degree line come

predominantly from high income countries and from Brazil. Interestingly, these studies all find comparable

standard deviations of firm effects near 0.25. However, the standard deviations of worker effects vary widely

from sample to sample.

To some extent, this variability of person effect variances is to be expected given that many of the

estimates partition by race or sex, groups within which we expect person effects to be less dispersed. For

example, four of the Brazilian estimates are from Gerard et al. (2021), who report estimates separately by

race and sex using a 12 year panel, which accounts for some of the lowest worker effect standard deviations

in that country. However, person effect variances also seem to vary with other features of the data including

the time horizon studied.

Abowd and McKinney (2023), for example, find a nearly identical standard deviation of firm effects in

3 year and 24 year extracts of annualized earnings records from the LEHD. However, in the 3 year panel,

the bias-corrected standard deviation of person effects is roughly 50% larger than the standard deviation of
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Figure 3: Bias-corrected standard deviations of firm and worker fixed effects by country

firm effects, while in the 24 year panel, the person effects exhibit a standard deviation roughly 33% below

that of the firm effects. Likewise, Lachowska, Mas, Saggio, et al. (2023) find using hourly wage data from

Washington state that person effects are substantially more dispersed in a 2 year panel than a 12 year

panel. While it is tempting to conclude that this sensitivity to time scale reflects drift in the person effects,

Lachowska, Mas, Saggio, et al. (2023) demonstrate that person effect estimates remain strongly correlated

across decades.

Recall that the variance of person effects among firm stayers cannot be estimated by cross-fitting at the

match level. A majority of the studies considered include firm stayers and it is reasonable to assume that

these studies treat the errors of firm stayers as serially independent, as this is the default option provided in

the most widely used software package used to implement the cross-fitting correction.19 The estimated person

effect variances may therefore be subject to an upward bias stemming from neglected serial correlation, albeit

19See https://github.com/rsaggio87/LeaveOutTwoWay for details.
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a smaller one than if no correction were implemented. It seems likely then that the tendency for shorter panels

to yield larger person effect variances reflects this tendency to under-correct, as adjacent observations are

more strongly correlated. If the person effect variances are in fact upwardly biased due to serial correlation,

then it is even more surprising that so many studies yield estimates near the 45 degree line.

Though the estimated person effect variances appear sensitive to sample composition, the firm effect

standard deviations are remarkably resilient. Among the estimates depicted here, the firm effect standard

deviations all exceed 0.15 and for high income countries cluster around 0.20. A potentially useful comparison

comes from Bonhomme, Holzheu, et al. (2023), who estimate variance decompositions in five high income

countries (Austria, Italy, Norway, Sweden, and the U.S.). While they do not report person effect variances,

averaging their cross-fitting based estimates of the standard deviation of firm effects across countries and

samples yields a mean value of roughly 0.14, which is a bit below the estimates reported for rich countries in

the figure above.20 Some of this discrepancy is likely attributable to their procedure for harmonizing samples

across countries with different earnings measures. In the U.S., data limitations require them to study annual

earnings. Bonhomme, Holzheu, et al. (2023, Appendix Figure F10) show in Norwegian data that using annual

rather than hourly earnings substantially lowers estimated firm effect variances. To facilitate comparisons

between the U.S. and European countries, they impose on all samples a minimum annual earnings threshold

of 32.5% of the national average, which in the U.S. approximates the full time earnings of minimum wage

workers. Selecting on the dependent variable reduces its variability and Bonhomme, Holzheu, et al. (2023,

Appendix Figure F2) document in U.S. data that imposing higher minimum earnings thresholds yields lower

firm effect variances.

A reasonably informed guess then, is that across a wide range of high income countries, the standard

deviation of firm effects in average daily or hourly wages typically ranges between 15 and 20 log points. For

middle income countries, the standard deviation of firm effects appears to be higher, perhaps as high as

0.4 in some cases. It is plausible that firm effects are more important in developing countries, where search

frictions and misallocation have been argued to be more prevalent (Hsieh and Klenow 2009). However, many

of these studies are very recent and have yet to clear peer review. It will be important to see estimates

from more countries and research teams before drawing strong conclusions about the relationship between

economic development and the dispersion in firm pay components.

The median firm effect standard deviation estimate among all those pictured in Figure 3 is 0.26 and an

unweighted average of them is 0.30. If, in high income countries, the standard deviation of firm wage effects

is somewhere between 15 and 20 log points, then switching to a standard deviation higher firm yields wages

20Bonhomme, Holzheu, et al. (2023) report the match weighted variance of firm effects rather than the person-year weighted
variance.
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16-22% higher – a very substantial effect size. For comparison, Chetty, Friedman, et al. (2011) estimate

that a standard deviation increase in kindergarten classroom quality in the Project STAR experiment raises

adult earnings by 13 percentage points. These findings suggest workplace heterogeneity is an important

contributor to wage inequality.

5 Regressing firm effects on observables

Examining how fixed effects covary with observables can help to demystify the nature of these fundamentally

unobservable objects. Many of the empirical findings summarized in Section 2 were derived from regressing

estimated firm fixed effects on observed features of workers and firms. Besides greater robustness to mod-

eling assumptions, an important advantage of fixed effects methods over more structured random effects

approaches (e.g. Hanushek 1974; Amemiya 1978) is that fixed effect estimates can be shared with different

research teams, who can subsequently use them to examine different downstream hypotheses via “second

step” regressions. I will now review the logic of these downstream regressions and discuss the subtleties of

inference on second step projection coefficients. These ideas will be illustrated with an example to the firm

size wage premium in the VHW data.

5.1 One step vs two

Suppose we are interested in the relationship between the vector of population firm effects ψ and a set of firm

covariates such as firm size and the average education level of the firm’s employees. Descriptive relationships

of this nature are often summarized with linear projections of the form

ψ = Zθ + v,

where Z is a matrix of firm covariates and the parameter of interest is θ = (Z′Z)
−1

Z′ψ. By construction,

the projection error v obeys Z′v = 0. Plugging this relationship into (6) yields:

Ym = Dmα+ FmZθ + Fmv + εm.

Since the projection error v is orthogonal to Z, one might be tempted by this representation to estimate θ

from a least squares regression of Ym on (Dm,FmZ) – i.e., on person dummies plus the firm characteristics.

There are two difficulties with this logic. The first objection, which is largely pedantic, has to do with

weighting. The cross product
∑
m∈[M ] (FmZ)

′
Fmv =

∑
m∈[M ] Z

′F ′
mFmv will not, in general, equal zero
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unless all firms are the same size. Hence, orthogonality need not hold in the microdata even if it holds across

firms. Of course, if we had initially defined the estimand θ as the firm size weighted projection, then the

relevant v would satisfy orthogonality in the microdata.

A more significant objection is that even if Fmv is uncorrelated with FmZ, it is still likely to be correlated

with Dm. The fact that higher wage workers tend to work at higher wage firms suggests
∑
m∈[M ] D

′
mFmv >

0, which violates the exogeneity requirements of least squares. This violation will not only tend to generate

bias in the estimated person effects but also in estimates of θ because FmZ is correlated with Dm. Hence,

unless one has a strong reason to suspect that the elements of Z account for all of the correlation between

worker and firm wage effects, dropping the firm dummies as controls (i.e., treating v as an uncorrelated

random effect) will tend to generate bias.

The two step approach is to first compute the fixed effects ψ̂ and then regress them on Z to obtain

the projection coefficient θ̂ = (Z′Z)
−1

Z′ψ̂ . Under strict exogeneity, the firm effects are unbiased. The

projection coefficient, which is just a linear combination of the estimated firm effects, inherits this property,

obeying Eε
[
θ̂
]
= θ. Hence, the two step estimator provides robust estimates of the projection regardless of

the dependence between worker and firm effects.

Another advantage of the two step estimator is that it can foster scientific cooperation: the research team

that produces ψ̂ need not be the team that has access to Z. Fixed effects estimates are often computed once

on population microdata by expert researchers and then made available to outside teams who do may not

have access to the same microdata files (e.g., Bellmann et al. 2020). These sorts of data sharing arrangements

enable a broader range of hypotheses and external data sources to be brought to bear on questions of scientific

interest.

5.2 Variance estimation

The variance of the estimated projection coefficient is

Vε
[
θ̂
]
=
(
Z ′Z

)−1
Z ′Vε

[
ψ̂
]
Z
(
Z ′Z

)−1
.

While second step regressions will yield unbiased estimates of linear projection coefficients, the standard

errors produced by conventional software packages will mistakenly assume that the noise ψ̂−ψ in the second

step regressand is independent across firms -- i.e., that Vε
[
ψ̂
]
is diagonal. Neglecting correlation between

the estimated firm effects can lead to severe understatement (or overstatement) of the uncertainty in second

step regression coefficients.

The sign of this bias in the estimated standard errors is theoretically ambiguous because the residuals
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from the second step regression will tend to overstate the intrinsic noise level of each estimated fixed effect.

To take an extreme example, suppose that the wage disturbances εit in (1) are exactly zero. In such a case,

the first step regression will fit perfectly, yielding ψ̂ = ψ. However, a second step regression of firm fixed

effects on observed firm characteristics will nonetheless yield residuals capturing unexplained variation in the

vector ψ of true firm effects. Consequently, conventional software packages will produce a positive standard

error estimate despite the fact that the true firm effects are fixed and exhibit no uncertainty.

Standard errors reflecting only the uncertainty associated with the εit are easily computed by using the

cross-fit variance estimates introduced in (7). For example, Kline, Saggio, and Sølvsten (2020) considered a

second step regression wherein Z included a constant, the share of workers over age 35, firm size, and their

interaction. Note that, as in our earlier discussion of cross-fitting, interest centers on the finite population

of J firms actually measured in our dataset rather than an abstract “super-population” from which those

firms were drawn. Replacing the unknown Vε
[
ψ̂
]
with V̂ε

[
ψ̂
]
yields an unbiased estimate of the variance

of the second step regression coefficient that can be used for inference. Fortunately, computation does not

require that the entire V̂ε
[
ψ̂
]
matrix be computed or stored.21

While it is straightforward for research agencies to release fixed effect estimates to the public and their

(squared) standard errors, it is not feasible to release entire variance matrices. In principle, one could

conduct inference relying only on the fixed effect standard errors by considering worst case correlation

patterns. However, doing so could lead to extremely conservative inferences. An interesting area for future

work is understanding what low dimensional features of V̂ε
[
ψ̂
]
can be reported that would enable accurate

inference on projection coefficients without knowledge of the Z under consideration by the research team.22

5.3 Revisiting the firm size wage premium

Figure 4 illustrates the use of these methods by studying how the relationship between firm effects and firm

size varies by province in Veneto. Returning to the firm effect estimates studied in Table 2, the matrix Z

is chosen to include indicators for the firm size categories utilized by Bloom et al. (2018) interacted with

indicators for which of Veneto’s seven provinces contains the firm in question. As a normalization, the

smallest firm size category of 1-10 employees has been set to zero in each province, so that each of the

included estimates represents a within province firm size “premium.” To reduce clutter, we have dropped

the province of Rovigo which is so small that it lacks any firms in the largest two size categories. By contrast,

more than one thousand firms are present in each size category of the pictured provinces.

21A computationally efficient approach to estimation of Vε

[
θ̂
]
is automated and detailed in the LeaveOutTwoway package

available at https://github.com/rsaggio87/LeaveOutTwoWay.
22For example, in a lower dimensional context, Firth and De Menezes (2004) propose reporting “quasi-variances” that can

be used for inference on unknown contrasts.
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Figure 4: Mean firm effects by firm size and province

Notes: Sample comprised of firms in leave-out connected set described in Table 2. Bar height gives coefficient from second step

regression of firm effects onto province indicators plus interactions with indicators for firm size category. Omitted firm size category in

each province is 1-10. Both confidence intervals derived by adding ±1.96 standard errors to the point estimate. Outer confidence

interval (depicted in black) relies on
(
Z′Z

)−1 Z′V̂ε

[
ψ̂
]
Z

(
Z′Z

)−1 as estimator of the asymptotic variance. Inner confidence interval

(depicted in red) relies on J
J−k

(
Z′Z

)−1 Z′
{
diag

(
MZ ψ̂

)}2
Z

(
Z′Z

)−1 as estimator of the asymptotic variance, where

MZ = I − Z
(
Z′Z

)−1 Z′.

Confidence intervals based on naive heteroscedasticity-robust standard errors computed via a second step

regression are shown alongside those based on the cross-fit variance matrix V̂ε
[
ψ̂
]
. The cross-fit standard

errors reflecting uncertainty attributable to ε turn out to be about 75% larger than the naive standard errors

on average. As a result the 95% confidence intervals based on cross-fitting turn out to bracket those based

on naive standard errors in all cases. Evidently, the downward bias in naive standard errors attributable to

neglecting correlation among the estimated firm effects outweighs the upward bias attributable to treating

the firm effects as random draws from a broader population.

In all six pictured provinces, firm effects tend to increase with firm size. However, the size profiles differ

substantially across provinces and in some cases appear non-monotone. In Verona and Padova the largest

firms exhibit fixed effects averaging approximately 40 log points more than the smallest firms, while in Venice

the corresponding gap in firm wage effects is only about 9 log points. These orderings reverse, however, in

the next largest firm size category. In Venice, for example, firms with 1,000-2,500 employees are estimated

to pay roughly 22 log points more than firms with 1-10 employees, while in Verona the premium is only 13
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log points.

While the premiums relative to the base firm size category are precisely estimated in each province, it

is not completely obvious which of these premiums differ from one another given that the estimates are

all correlated. A useful rule of thumb is that we can conclude that the estimands are different from one

another if their confidence intervals do not overlap.23 Based on this heuristic, we can safely infer that in

both Venice and Treviso the firm size premium in the 1,000-2,500 employee category exceeds the premium

in the 2,500-10,000 employee category, indicating that the firm size premiums are not monotone in these

regions.

We can also infer that size premiums tend to differ by region, though our visual rule of thumb becomes

less decisive in smaller firm size categories. To obtain a more accurate assessment of regional differences

in the average premium for firms with 10-50 employees, I reparameterize Z to include interactions between

province and firm size categories. The resulting standard error estimates reveal that it is possible to reject

at the 5% level the null hypothesis that the premiums in the 10-50 employee category are equal in Venice

and Vicenza. By contrast, the premiums in Vicenza and Treviso cannot be distinguished from each other

even at the 10% level.

6 Hiring origins and state dependence

The basic AKM specification views wage determination as fundamentally static: the expected wage arising

from a match between a worker and firm depends only on their underlying (time-invariant) types. Search

theoretic models, by contrast, often predict that wages should be influenced by the circumstances surround-

ing how the match was formed – e.g., whether the worker was “poached” from another firm or hired from

unemployment, as unemployed workers typically have worse outside options than their employed counter-

parts. Consistent with this view, Faberman et al. (2022) provide survey based evidence that job offers

received by currently employed workers pay higher wages than those received by unemployed workers with

similar characteristics.

An influential framework for modeling such state dependence comes from the class of sequential auction

models pioneered by Postel-Vinay and Robin (2002a) and Postel-Vinay and Robin (2002b), where on the job

23For any two estimators θ̂1 and θ̂2, we have V
(
θ̂1 − θ̂2

)
= V

(
θ̂1

)
+V

(
θ̂2

)
−2C

(
θ̂1, θ̂2

)
≤

{
V
(
θ̂1

)1/2
+ V

(
θ̂2

)1/2
}2

, where

the upper bound binds with equality when the two estimators are perfectly negatively correlated. Consequently, V
(
θ̂1

)1/2
+

V
(
θ̂2

)1/2
provides a conservative standard error on the difference between the estimators. A test that evaluates whether∣∣∣θ̂1 − θ̂2

∣∣∣ > c ·
[
V
(
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)1/2
+ V

(
θ̂2

)1/2
]

for some critical value c (e.g., 1.96 as in Figure 4) amounts to evaluating whether[
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= ∅.
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search gives rise to a series of bilateral competitions between firms for workers. These competitions mirror

first price auctions, with firms tailoring their wage bids based upon the willingness to pay of the rival they

face. Consequently, the wages offered to new hires differ based on where a worker is hired from and which

firm is hiring them. Tailoring of this nature can, in principle, contribute greatly to cross-sectional inequality

by amplifying the role of luck: an early job displacement can lower wages throughout a worker’s career by

persistently degrading their outside options.

Di Addario et al. (2023) study the empirical predictions of sequential auction models for hiring wages

using an extension of the AKM model, in which a separate fixed effect is allowed for each possible hiring

origin. These hiring origin fixed effects are meant to proxy for the worker’s outside option. Letting yim

denote the log hiring wage of the ith worker at their m’th job, they consider a linear model taking the form:

Yim = αi + ψj(i,m)︸ ︷︷ ︸
destination effect

+ λh(i,m)︸ ︷︷ ︸
origin effect

+X ′
imδ + εim, for i ∈ [n] ,m ∈ [Mi]. (10)

Here, the function j : [n] × [Mi] → [J ] returns the identity of the firm hiring the worker at their m’th job.

The function h : [n]× [Mi] → [J ] ∪ {U} returns the origin of the new hire, which can either be the identity

of a prior employer from which the worker was “poached” or unemployment (denoted as “U”). Thus, each

firm j has a pair (ψj , λj) of fixed effects.

Di Addario et al. (2023) term the specification in (10) a “dual wage ladder” (DWL) model because hiring

wages depend on two dimensions of firm heterogeneity. As in the AKM model, αi is a person fixed effect that

can be ported from employer to employer, while the vector Xim includes time varying covariates, including

work experience and indicators for the year that the match was formed. The term ψj(i,m) is a destination firm

fixed effect that, like the traditional AKM firm effect, must be forfeited upon separating from the employer.

The distinctive feature of the DWL specification is the origin firm fixed effect, λh(i,m), which captures a

form of state dependence in wage setting. According to the DWL model, two workers with the same αi,

hired by the same firm from two different origins – e.g., non-employment and the most productive firm in

the economy – will be paid different wages.

The error εim measures omitted factors that vary across matches at the time of hiring. Each of these

errors is assumed to have mean zero, which is a version of the traditional exogenous mobility assumption

used to justify least squares estimation. An important feature of standard sequential auction models is that

bilateral competitions are presumed to be efficient: i.e., the more productive firm always wins the auction. If

firm productivity is time invariant, then conditioning on j (i,m) and h (i,m) is equivalent to conditioning on

the productivity of the origin and destination firm, which given log-linear wage contracts implies the errors
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{εim}i∈[n],m∈[Mi]
are strictly exogenous.

6.1 Structural interpretation

Di Addario et al. (2023) show formally that the model of Bagger, Fontaine, et al. (2014), which nests the

seminal model of Postel-Vinay and Robin (2002a) when consumption utility is assumed to be logarithmic,

yields (10) as the reduced form for hiring wages. It is useful to review this argument both to understand the

structural interpretation of the origin and destination fixed effects and the justification for the exogenous

mobility assumption on the reduced form errors. The Bagger, Fontaine, et al. (2014) model implies that

the log hiring wage offered by a firm of productivity level p, to a worker of productivity type ϵ, with labor

market experience X , who is currently employed at a firm of productivity q can be written as the generalized

linear function

α (ϵ) + g (X ) + ψ (p) + λ (q) + E .

Hires from unemployment follow the same equation with the productivity of the incumbent firm q set equal

to the flow value of leisure b, which is assumed to be common for all workers.

The term α (ϵ) is a worker fixed effect capturing general human capital, which is rewarded equally by all

employers. Likewise, g (X ) captures the returns to experience, while the error term E captures idiosyncratic

innovations to the worker’s general human capital. By assumption, neither of these terms influence worker

mobility, which depends solely on the firm productivities p and q. The destination firm effect, ψ (p), equals

β ln p+ I (p, β), while the hiring origin effect, λ (q), is given by (1− β) ln q− I (q, β), where β ∈ [0, 1] indexes

worker bargaining strength. The function I (p, β), which is decreasing in both its arguments and obeys

I (p, 1) = 0, captures the expected utility of the wage growth associated with moving from a firm with

productivity p to the most productive firm in the economy. Hence, the difference I (p, β)− I (q, β) captures

the expected utility of the wage growth associated with moving from an incumbent firm with productivity

q to a poaching firm with productivity p.

Inspection of these equations reveals that when β is small, the destination effect ψ (p) will be decreasing

in p, which can be interpreted as a compensating differential for the anticipated wage growth associated

with moving. By contrast, for any value of β < 1, λ (q) will be increasing in q, which reflects that it is more

difficult to poach workers from firms that can afford to pay them more. When β = 1, the term λ (q) becomes

zero and the model reduces to a version of the AKM model with only destination firm effects. Remarkably,

ψ (p) + λ (p) = ln p for any value of β, implying that a firm’s productivity can be recovered by summing its

origin and destination effects. Since workers view more productive firms as fundamentally more desirable

than less productive firms, this sum recovers the ordering of the underlying “job ladder” in expected utility
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governing worker flows.

6.2 Testable restrictions

In the Bagger, Fontaine, et al. (2014) model, firms are differentiated only by productivity. Consequently,

the origin and destination effects are deterministic functions of one another. Di Addario et al. (2023) show

that it is possible to exploit this feature of the model to bound the bargaining power of workers using the

excess variance of the destination effects over the origin effects. Letting Vp denote the variance across firms,

the following bound on β is obtained by exploiting the fact that ∂
∂ ln pI (p, β) ∈

[
− (1− β)

2
/β, 0

]
:

β ≥ 1/2 +
Vp [ψ (p)]− Vp [λ (p)]
2Vp [ψ (p) + λ (p)]

. (11)

As discussed earlier, if β were very close to 1, we should expect the origin effects to be negligible and for

destination effects to be large as workers extract from firms the greatest wage they can afford: ln p. This

bound formalizes the converse idea that when destination effects are large relative to origin effects, worker

bargaining power must be strong. When β > 1/2, the following lower bound can be shown to hold on the

correlation between the two dimensions of firm heterogeneity:

corr (ψ (p) , λ (p)) ≥

√
Vp [ψ (p)]

Vp [ψ (p) + λ (p)]

(
1− 3

10

√
Vp [λ (p)]

Vp [ψ (p) + λ (p)]

)
.

Intuitively, when β is large, both the origin and destination effects must be strongly increasing in produc-

tivity, yielding a high correlation. However, a large β also yields relatively larger destination effects than

origin effects. The correlation bound formalizes this link, effectively providing a test of the presence of a

unidimensional firm hierarchy.24

6.3 It ain’t where you’re from, it’s where you’re at

Di Addario et al. (2023) fit (10) to Italian social security data using the average daily wage of each worker in

their first year of employment with a firm as a proxy for their hiring wage. A poaching event is presumed to

have taken place whenever a worker resigns from their job as opposed to being laid off or fired for cause. If

the worker did not resign from their previous job, they are assumed to have been hired from unemployment.

While there are reasons to suspect that stated resignations provide an imperfect proxy of when bilateral

competition between firm pairs is taking place (McLaughlin 1991; Postel-Vinay and Turon 2014), Italian

24Roussille and Scuderi (2023) reject a unidimensional model of firm valuations in favor of a mixture model with three distinct
hierarchies using data from an online job board for software engineers.
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workers poached according to this criterion turn out to have much shorter durations of non-employment

between jobs than workers involved in other sorts of separations and to exhibit lower chances of experiencing

a wage cut when switching jobs.

Di Addario et al. (2023) find a roughly 3.5 log point gap between the estimated value of λU (the origin ef-

fect associated with unemployment) and the average origin effect of poached workers, En
[
λh(i,m) | h (i,m) ̸= U

]
,

implying a modest penalty for being hired from unemployment. The bias-corrected variance of origin effects,

Vn
[
λh(i,m)

]
, turns out to be extremely small, accounting for less than 1% of the variance of hiring wages

across job movers. By contrast, the variance of destination effects, Vn
[
ψj(i,m)

]
, explains 24% of the variance

of hiring wages.

As mentioned in section 4, variance shares can be somewhat difficult to interpret given that noise levels

vary across samples. The estimated standard deviation of destination effects in their sample of job movers is

roughly 0.26, which is only slightly above the typical bias-corrected standard deviation of AKM firm effects

reported for the US and Italy in Figure (3). By contrast, the origin effects have a standard deviation among

all job movers of 0.04 and a standard deviation of 0.08 among the roughly 1/3 of job transitions that involve

poaching a worker from another firm.

While an 8% wage change is not negligible, this standard deviation of origin effects turns out to be far less

than would be predicted by the Bagger, Fontaine, et al. (2014) model. The standard deviation across firms of

the destination effects, Vp [ψ (p)]
1/2

, is 0.26 (the same as was found across workers), while the corresponding

standard deviation of origin effects, Vp [λ (p)]1/2, is only 0.07. Applying the formula in (11) implies that

β ≥ 0.88. In addition to being intuitively implausible, this value of β would require an extremely high

correlation between the origin and destination effects of 0.84. In practice, the bias-corrected correlation is

only 0.25, indicating that the model cannot rationalize the covariance structure of the origin and destination

effects under any distribution of firm productivities.

6.4 Information and conduct

The order of magnitude difference in scale between firm origin and destination effects suggests either that

the identity of one’s current employer doesn’t convey much information about outside options at the time of

a poaching attempt or that firms are unable (or unwilling) to tailor offers to those outside options. To assess

the former hypothesis, one could collect more granular proxies of outside options. Perhaps interacting the

identity of the incumbent firm with detailed job titles or tenure would be more predictive of hiring wages?

The second possibility, that firms are not able or willing to tailor wage offers, is more difficult to evaluate.

Firms often report having some latitude to tailor wages to worker circumstances and Caldwell, Haegele, and
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Heining (2024a) provide evidence that wages are strongly related to previous firm pay among those firms

that engage in bargaining. On the other hand, survey evidence suggests offer matching is rare empirically

(Faberman et al. 2022; Caldwell, Haegele, and Heining 2024a). Moreover, receiving an outside offer does not

seem to be associated with large wage gains on average (Guo 2023).

Even if firms typically do have the ability to tailor wages, the informational requirements of tying wage

offers to best predictors of outside options are formidable. Sequential auction models are predicated on a

perfect information benchmark where each firm knows the willingness to pay of the rival firm for the worker

in question, leading them to offer a rival dependent wage.25 By contrast, the famous Burdett and Mortensen

(1998) model effectively assumes that firms know nothing about workers’ outside options, which is why they

offer the same wages to unemployed workers and workers searching on the job. As Postel-Vinay and Robin

(2002b) acknowledge “reality lies somewhere in between our complete information story and Burdett’s and

Mortensen’s incomplete information assumption.”

How to think about this middle ground between wage posting and sequential auction models remains a

frontier area of research. One approach is to view the economy as comprised of a mixture of wage posting

firms ala Burdett and Mortensen (1998) and tailoring firms ala Postel-Vinay and Robin (2002a). While

coherent models of this nature have been proposed (Postel-Vinay and Robin 2004; Flinn and Mullins 2017),

empirical evidence on how wage setting conduct varies across employers remains in its infancy. A recurrent

finding from estimation of these models is that counter offers and negotiation are more common among

higher skilled workers (Caldwell and Harmon 2019; Flinn and Mullins 2021). This finding likely resonates

among academic economists, many of whom have experienced the majority of their salary growth by receiving

outside offers. Indeed, the sequential auction paradigm of bilateral competition appears to be a good one for

academia, which is a hierarchical industry where employers have good information about the ability of rival

institutions to compete for talent. It is unclear how many other labor markets are characterized by this sort

of competition.

Breaking their variance decompositions down by industry, Di Addario et al. (2023) find that destination

effects are orders of magnitude more variable than origin effects in most sectors of the Italian economy. The

key exceptions are finance/banking and the legal sector, where origin and destination effects exhibit compa-

rable variability. Both of these sectors are hierarchical and plausibly exhibit more information regarding the

ability of firms to pay to retain workers than other sectors. The finance/banking industry is the only sector

where the correlation bound is satisfied, suggesting perhaps that it too exhibits the sort of unidimensional

competition described in sequential auction models. In less skilled sectors, by contrast, employers are likely

25Workers are also assumed to be fully informed about the match surplus available at the two rival firms. Jäger et al. (2024)
provide evidence suggesting that workers at low wage firms tend to underestimate their outside options.
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more difficult to rank. As a result, less information may be conveyed by the identity of one’s previous

employer. In these settings, worker outside options seem more likely to be private information, an idea that

is central to the idea of monopsonistic models of wage setting.

7 Conclusion

While much has been learned about which firms pay high wages and their contribution to wage inequality,

plenty of work remains. Some questions this review has touched upon that appear particularly ripe for

exploration include:

1. Dispersion and Development: Why are firm wage effects more dispersed in less developed coun-

tries? One possibility is that labor market frictions are more pronounced in these economies, leading to

greater misallocation. Another is that measurement differences, especially the prevalence of informal work,

play a confounding role.

2. Accounting for Cycles: What accounts for the cyclic component of edge effects? Cycles could

reflect either economic shocks shared by closely connected firms or differences in the sorts of workers moving

along different parts of the mobility network. The former view has difficulty explaining the documented

stability of firm effects. The latter interpretation suggests important dimensions of heterogeneity may have

been missed by existing models of non-separable wages, estimates of which typically exhibit small departures

from linearity.

3. Intransitive Firms: To what extent do firm rankings, in both wages and desirability, vary with

worker and job characteristics? Does accounting for this heterogeneity amplify or mute the total contribution

of firms to inequality?

4. Hiring Origins and Conduct: When and where do hiring origins matter for wage determination?

Do markets where the dispersion of origin effects is larger exhibit greater wage effects of receiving outside

offers? How does the reason for separation (e.g., ostensible quits vs layoffs) influence the degree of state

dependence in wages?

5. Worker Mobility Post-Layoff : Why do mass layoffs sometimes lead workers to move to higher-wage

firms? Does the prevalence of this behavior vary with labor market institutions?

6. Understanding Network Structure: What network formation models produce realistic mobility

patterns? How effective are these models at predicting the next firm that will employ a worker? How do

network-based definitions of labor markets align with workers’ perceptions as measured in surveys?

7. Reproducibility: How can fixed effect estimates be shared most effectively? Transparency and

replicability are crucial components of the data science revolution (Donoho 2024). Future work could en-
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able wider access not only to point estimates but also to measures of uncertainty, lowering the barriers to

downstream inference and prediction.
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Appendix: Covariance between person and firm effects

Here, I detail how to construct an unbiased estimator of Cε
[
α̂i, ψ̂j

]
for each (i, j) pair in [N ]× [J − 1] that

can be used to bias correct the covariance. I then discuss how bounds can be formed on the covariance.

From (6), we can write the OLS estimators

α̂ = α+

 ∑
m∈[M ]

D̃
′
mD̃m

−1 ∑
m∈[M ]

D̃
′
mεm,

ψ̂ = ψ +

 ∑
m∈[M ]

F̃
′
mF̃m

−1 ∑
m∈[M ]

F̃
′
mεm,

where D̃m is the matrix of worker indicators after having partialled out the matrix of firm indicators. Hence,

(α̂− α)
(
ψ̂ − ψ

)′
=

 ∑
m∈[M ]

D̃
′
mD̃m

−1 ∑
m∈[M ]

D̃
′
mεm

 ∑
m∈[M ]

F̃
′
mεm


′  ∑

m∈[M ]

F̃
′
mF̃m

−1

=

 ∑
m∈[M ]

D̃
′
mD̃m

−1 ∑
m∈[M ]

D̃
′
mεmε

′
mF̃m

 ∑
m∈[M ]

F̃
′
mF̃m

−1

+

 ∑
m∈[M ]

D̃
′
mD̃m

−1 ∑
m∈[M ]

∑
l ̸=m

D̃
′
mεmε

′
lF̃ l

 ∑
m∈[M ]

F̃
′
mF̃m

−1

.

Independence across matches implies that the final line has expectation zero, allowing us to write

Eε
[
(α̂− α)

(
ψ̂ − ψ

)′]
=

 ∑
m∈[M ]

D̃
′
mD̃m

−1 ∑
m∈[M ]

D̃
′
mΩmF̃m

 ∑
m∈[M ]

F̃
′
mF̃m

−1

.

We can estimate this covariance matrix with

Êε
[
(α̂− α)

(
ψ̂ − ψ

)′]
=

 ∑
m∈[M ]

D̃
′
mD̃m

−1 ∑
m∈[M ]

D̃
′
mΩ̂mF̃m

 ∑
m∈[M ]

F̃
′
mF̃m

−1

.

The lower triangle of this estimated matrix gives the relevant unbiased estimators Ĉε
[
α̂i, ψ̂j

]
of Cε

[
α̂i, ψ̂j

]
.

The debiased estimator of covariance between person and firm effects is:

θ̂α,ψ = En
[
α̂iψ̂j(i,t) − Ĉε

[
α̂i, ψ̂j(i,t)

]]
.

To bound this covariance in the broader connected sample that is not leave out connected, we can
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again apply the bound 0 ≤ Ωm ≤ E [YmY
′
m]. Upwardly and downwardly biased estimators of the relevant

covariances Eε
[
(α̂− α)

(
ψ̂ − ψ

)′]
are obtained by replacing Ω̂m with YmY

′
m or zero, respectively, in just-

connected matches contributing to Êε
[
(α̂− α)

(
ψ̂ − ψ

)′]
. One then applies the bias correction formula

above replacing Ĉε
[
α̂i, ψ̂j(i,t)

]
with either its upwardly or downwardly biased estimate.
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