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ABSTRACT
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discontinuity design. On the borders of municipalities with larger minimum lot sizes, lots are 3,000 
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induced by these discontinuities to estimate price effects. We then connect these estimates to a 
structural hedonic model of housing choice to retrieve individuals’ preferences for density. Overall, 
we find an average welfare loss among incumbent homeowners from a 1/2 unit per acre increase in 
density (which is equivalent to a 0.3 standard deviation in density) of about $9,500, with 
significantly larger losses under counterfactual increases solely from rental units. There is other 
noteworthy heterogeneity in these preferences, too. Most households have only a moderate 
preference over density. The median welfare loss is only 55% of the average, implying a long, left 
tail of those with more extreme aversions to density. This tail disproportionately contains 
households in affluent, low density neighborhoods. In sum, our results document an important 
foundation of the demand for density regulation across U.S. suburbs that we hope serves as a 
valuable input into future research into the considerable costs of that policy.
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1. Introduction

Real constant-quality house prices are at all-time highs in many markets, sparking widespread

concern about housing affordability.1 A large literature in economics points to the impact of state

and local government restrictions on building activity and housing supply to help explain this

phenomenon (Glaeser and Gyourko, 2018). Easing housing unit density limits has become an

important policy focus for affordability advocates, with a few jurisdictions changing zoning rules

to allow more dense development.2 That there are not many more communities implementing

such an obvious policy response begs the question of why not. A straightforward answer is that

local residents do not favor the policy and are able to stop most densification through the political

process. Recent survey responses indicate that a majority of Americans prefer less dense housing,

and while there are many examples of local opposition to new development on the basis of its

supposed negative impacts, the extent of their associated costs has not been quantified.3

In this paper, we provide an analysis of the external costs and benefits of housing unit density

to local homeowners. By estimating the preference for density at a household level, we can

characterize the distribution of preferences, and document heterogeneity across neighborhoods.

Our empirical strategy to quantify individuals’ preferences for housing density combines a

boundary discontinuity design with a structural hedonic model. We build on our previous

work (Gyourko and McCulloch, 2023) that documents and analyzes discontinuities in lot size

and other housing characteristics across jurisdiction borders. We then construct a novel measure

of how exposed a house is to density. Starting with precisely geocoded micro data on the location

of each owner-occupied, single-family housing unit in a border area, we then count how many

other housing units are within 500 meters of each home based on information in Census block

data from the 2010 decennial census. This calculation gives us an explicit house-level measure of

density, which can be used to evaluate differences in density within the small geographic areas

abutting the borders in our sample.

A discontinuous increase in lot size at a border induces variation in nearby houses’ density

exposures, as the houses that are in one municipality but are closer to its boundary are more

exposed to the size of houses in the other municipality. On average, we find house prices are

nearly $40,000 more expensive and lot sizes are over 3,000ft2 larger on the side of the border

with a more restrictive (i.e., a higher) minimum lot size restriction. This jump in lot size creates

variation in density exposure that evolves continuously through the administrative boundary. The

1See the plot of the S&P CoreLogic Case-Shiller National Home Price Index in the FRED files at
https://fred.stlouisfed.org/series/CSUSHPINSA for the underlying index itself. It shows real, constant-quality prices
to have roughly doubled since the middle of the 2010s, and to be well above their pre-global financial crisis peaks.

2See Gyourko and McCulloch (2023) for a discussion of the handful of such efforts made across the country. On the
political front, even though housing regulation primarily is the responsibility of state and local government, the issue
has been ’nationalized’ via various policy proposals of the candidates in the current Presidential campaign.

3In a survey conducted by Pew Research Center, 57% of Americans said they would prefer to live in a community
where “houses are larger and farther apart, but schools, stores and restaurants are several miles away.” PewSurvey.

2

https://www.pewresearch.org/short-reads/2023/08/02/majority-of-americans-prefer-a-community-with-big-houses-even-if-local-amenities-are-farther-away/


boundary discontinuity design allows us to use this variation in density exposure coming from

a known source to estimate the price effects of density exposure while still forming comparisons

within a small geographic area.

The empirical strategy is completed by connecting the estimated price effects to a structural

hedonic model of housing choice (Rosen, 1974, Bajari and Benkard, 2005). The hedonic model

views housing demand as a continuous choice of housing and neighborhood characteristics.

In this context, a homeowner’s marginal willingness-to-pay (MWTP) is recoverable from the

derivative of the estimated hedonic price function. Further welfare analysis can then be conducted

with assumptions on the form of homeowners’ utility.

Recovering the preference for density from the structural hedonic model reveals a general

distaste for density, but one which is far from uniform. Overall, about two-thirds of households

have at least a moderate dislike for more density, but a few have an intense dislike and about

one-third positively value density. In our baseline specification, the average welfare loss if all

homeowners in our sample are exposed to a 1/2 unit per acre increase in density (which is

equivalent to a 0.3 standard deviation increase in density) in their surrounding area is about

-$9,500, with the skewness in the distribution evidenced by the fact that the median welfare loss

is only about -$5,200. For context, this counterfactual 1/2 unit per acre increase amounts to adding

just under 100 units in the 194 acres of surrounding land within 500 meters of a homeowner’s

parcel.

Those results are for an increase in density arising from any housing tenure—owned or rented.

Using data on the composition of census blocks from the 2010 Census, we are able to provide

breakdowns on welfare costs by whether the increase in density arises from additional owner-

occupied homes or from renter-occupied units. Stark heterogeneity is evident here, with far

higher welfare losses associated with exposure to more rental unit density. The results for the

same increase in density arising solely from more owner-occupied homes is similar to that just

reported for housing units of any type. In contrast, the mean welfare loss if the density increase

is only due to more renter occupied units is more than five times larger, at just over -$56,000. The

median is -$12,700.

Section 7.C shows that these two key conclusions—that the typical welfare loss is economically,

not just statistically, meaningful and that the distaste for rental-related density is far greater than

that for owner-occupied related density—are robust to a host of sensitivity analyses including

alternative hedonic specifications, different measures of density exposure, and more narrowly

defined border areas. These results also hold if we treat each side of a border pair as a distinct

market and estimate separate hedonic regressions using only observations on each side of the

border. By only forming comparisons between houses within the same municipality, this specifi-

cation addresses the potential concern that provision of unobserved public goods is driving our

estimates. Finally, experimentation with different utility parametrizations (Bishop and Timmins,

2019) indicates that our estimates are conservative in nature.
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Our research design and the richness of the CoreLogic microdata also allow us to characterize

heterogeneity in preferences across different kinds of neighborhoods. We find larger welfare

losses from an increase in housing density in neighborhoods that are both low density and

affluent. Households in both the bottom density quartile and the highest income quartile lose

an average of about $30,000 from a 1/2 unit per acre increase in total housing unit density, while

households in both the highest density quartile and the lowest income quartile lose only $2,000

on average. Estimates of losses from increasing the number of rental units are more extreme.

Households in both the bottom density quartile and the highest income quartile lose an average

of $263,000 from the equivalent increase in rental unit density, while households in both the

highest density quartile and the lowest income quartile lose only $5,000 average on average.

All estimates considered thus far are under a counterfactual in which households must con-

tinue to live in the (now) higher density neighborhood. In the medium or long run, households

with a strong preference against density may adjust their housing consumption by moving to a

lower density neighborhood. If they do, allowing households to move at a cost proportional to

their house value has only a modest impact on the typical welfare loss associated with increasing

owner occupied-related density, but dramatically decreases the magnitude of the average welfare

loss from increasing the number of rental units per acre. For example, if households are able to

move at a cost equal to 15% of their house value, nearly one-fifth of households in our sample

choose to do so, and the average welfare loss from increasing rental unit exposure falls from

$56,000 to $9,000. In general, moving at moderate cost limits the influence of the small share of

households who suffer extremely high welfare losses under higher rental unit exposure. That

said, it is not clear that the minimum cost strategy will be to move. As we discuss below, it could

be optimal to fight densification through the local political process, as our results on the nature

of the distribution of household-level welfare losses suggest there is a ready coalition to contest

and win such a battle.

These estimates of the existing owners’ average welfare loss reflect a total willingness-to-pay

(WTP) to avoid housing density that may encompass many possible factors. For example, the

demand for low housing density may be driven by a preference over neighbors or valuation of

the changes in other local amenities such as crime, pollution, traffic flow, noise, etc. The full

decomposition of this total WTP into its underlying drivers is an important next step for research

on this issue. Given the already long length of this paper, we conclude with a brief analysis that

shows how important just one of those potential factors could be. Specifically, we examine the

role of preferences over neighbors in mediating our estimate of the distaste for density. We do so

by augmenting our hedonic specification with demographic controls for race, income, education,

and family structure. Including these controls explains little of the welfare loss associated with

increased owner occupied density, but accounts for nearly two-thirds of the loss from an increase

in rental density exposure. Thus, neighbor preferences appear to explain some—but not all—of

the aversion for housing density, and this factor looks to be be especially important for density
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arising from rental units.

Finally, it is important to delineate what is and is not accounted for in our welfare calculations.

The characterization of the preferences of incumbent local homeowners help us understand a

strong demand for the regulation of density, but it is noteworthy that their losses may reflect a

strong NIMBYism that does not account for the welfare of non-residents or of overall efficiency.

Moreover, the distribution of those preferences helps us recognize why this issue has proven so

hard to address though a political system characterized by strong local control of land use. That

conclusion begs the question of whether a new approach that limits local control is needed. We

hope our findings provide a first step towards examining that question, which clearly will require

insights from political economy, not just urban economics. That collaboration across fields will

be necessary also is suggested by the highly regressive nature of any compensation scheme that

might be introduced to mitigate opposition to densification efforts. In addition, we hope that our

results are a stepping stone to develop solutions to the large negative externalities of binding land

use regulation at a macro level identified by Hsieh and Moretti (2019), and Duranton and Puga

(2023). If, for example, a highly productive labor market area is inefficiently small, the optimal

way to change regulatory strictness within that area needs to be informed by results such as ours.

Thus, one other direction for future research is to account for the full general equilibrium effects

of densification, with our results being an important input into that analysis.

A Relation to the Literature

This paper contributes to a large literature on land use regulation. Recent research has focused

on how regulations such as density limits increase the cost of housing by restricting local market

housing supply (Glaeser and Gyourko, 2018, Gyourko and Krimmel, 2022) or decrease aggregate

output at the national level by limiting the size of the overall stock in a market (Hsieh and

Moretti, 2019, Duranton and Puga, 2023). While there is now significant evidence on the cost of

land use regulation at the market or national levels, there is relatively little evidence on land use

regulation’s benefits, which mostly occur at the local level.4 Baum-Snow (2023) discusses the role

of local land use regulations in driving house price growth in productive U.S. cities, and notes

the absence of evidence about how amenities in neighborhoods would be affected if these areas

did experience densification. He further comments that quantifying any potential externalities

associated with increasing density should be an important input into policies that seek to reduce

housing costs through removal of density restrictions. We are able to address this latter concern

by providing estimates of the economic cost of density to existing homeowners, as well as by

characterizing the nature of that distribution.

4An older hedonic literature has interpreted higher house prices from regulations as welfare enhancing. For
example, McConnell and Walls (2005) study open space provisions and review reduced form hedonic estimates about
the value for proximity to open spaces.
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Within the land use regulation literature, several articles exploit variation in zoning around

geographic boundaries to study the effects of regulation (e.g., Turner et al. (2014), Kulka et al.

(2024), and Song (2024)). Turner et al. (2014)) provides a theoretical framework to understand

the price effects of zoning on vacant land sales around a municipal boundary by decomposing

zoning’s overall welfare effect into three parts: (a) an own lot effect, which reflects the direct cost

of a land use constraint on the owner of a parcel; (b) an external effect, which reflects the spatial

spillovers of land use constraints on neighboring parcels; and (c) a supply effect, which reflects

regulation’s impact on the scarcity of developable land. Kulka et al. (2024) present a similar

decomposition of the pricing gradient for house rather than land sales.5 While Kulka et al. (2024)

focus on the own lot effect, in this paper we estimate the external effect of density restrictions.

Few other papers have estimated land use regulation’s external effects or the spillovers from

land use regulation on other nearby parcels, which varies in relation to the boundary. In the

framework of Turner et al. (2014), the external effect represents the only channel by which land

use regulation can increase welfare. Turner et al. (2014) find a negative external effect which

suggests an unambiguous welfare loss from more restrictive land use regulation, but note that

their estimates are imprecise.6 In this paper, we construct an explicit measure of an externality

(i.e., exposure to density) that varies in relation to the municipal boundary, and show how the

boundary discontinuity generates systematic variation in this measure. We suspect several other

neighborhood characteristics of interest to urban economists may follow similar dynamics in

relation to municipal boundaries where there are shifts in town policy or provision of public

goods.

We use house sales rather than land sales to evaluate residents’ welfare changes. An advantage

to working with home sales is that the number of observations is much greater and they are

not concentrated near the urban fringe. While Turner et al. (2014) exploit the direct connection

between land value and welfare that arises in the seminal Alonso-Mills-Muth urban model,

the link between house values and welfare is less direct because a house sale is a result of an

individual selecting their house based on its physical and neighborhood characteristics. This

necessitates a model that can accommodate a consumer maximizing their utility by choosing

their house based on its differentiated product characteristics. Hence, we embed a boundary

discontinuity design in a structural hedonic model of housing demand (Rosen, 1974, Bajari and

Benkard, 2005).

Boundary discontinuity designs have been used to identify individual structural demand

5In Kulka et al. (2024), the own lot effect is termed the direct effect and the external effect is termed the neighbor
effect.

6Another study estimating the external effects from regulation by a different research design is Davidoff et al.
(2022), which finds negative price effects from adding accessory dwelling units on neighboring houses’ property
values following a zoning reform in Vancouver. Like Davidoff et al. (2022), we find evidence of negative price effects
from higher density, suggesting a positive external effect from more restrictive zoning that limits density. Blanco and
Sportiche (2024) also find negative spillover price effects from higher density housing development bypassing zoning
regulation via Massachusetts 40B, but only around larger developments.
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parameters in a discrete choice framework (Bayer et al., 2007), but to our knowledge no paper

in housing or urban economics has used a boundary discontinuity design to identify demand

parameters in a hedonic model. In general, uses of the hedonic model to retrieve demand

primitives have been relatively rare in applied work (Greenstone, 2017). We add to the set of

articles estimating nonmarginal changes in hedonic models, including Bajari and Kahn (2005),

Bishop and Timmins (2019), and notably Diamond and McQuade (2019).7 The latter apply the

methodology from Bajari and Benkard (2005) to estimate homeowners’ preferences for proximity

to affordable housing projects, identifying price effects through a spatial difference-in-differences

strategy. In contexts in which there is a continuous choice of housing characteristics, such as a

spatial spillover that varies continuously across administrative boundaries, a hedonic model may

be a more natural modeling choice than a discrete choice framework.

Finally, as the discussion of our results above suggests, by using a structural hedonic model

to estimate individual preference heterogeneity over housing density, we are able to recover

preferences and estimate welfare impacts over density by neighborhood type and demographic

category, something that has not been done in previous research.

The plan of the paper is as follows. Section 2 provides a simple model of a border with a

minimum lot size restriction. Section 3 describes our data sources and reports summary statistics.

Section 4 presents reduced form evidence of discontinuities in lot size and sale price at boundaries

where minimum lot size restrictions change. Section 5 details the structural hedonic model used

to estimate demand parameters. Section 6 describes the specifications of the hedonic regressions.

Section 7 presents estimates of preferences and the welfare change under counterfactual levels of

density exposure. Section 8 concludes and discusses directions for future research.

2. Stylized model of a border with a minimum lot size restriction

In this section, we present a stylized model that describes how lot sizes, housing density, and

house prices vary around a municipal border where the minimum lot size increases. There is one

border between two municipalities in 1-dimensional space x where the boundary is at x = 0. The

right side of the border is more highly regulated than the left side. On the left, all houses have

lot size
¯
l, while on the right a minimum lot size constraint l̄ is binding so all houses have lot size

l̄ >
¯
l. Figure 1 (a) plots houses’ lot sizes as a function of distance to the border where lot size

jumps discontinuously at the border.

Next, we define a measure for how exposed a house is to neighborhood housing density at

each location x, which we term the density exposure D(x). Let R be a constant bounding the

spatial extent at which spillovers from housing density are relevant to individual homeowners. A

measure of density exposure for a house at location x′ is D(x′) = 2R/lavg(x′), where lavg(x′) is

the average lotsize for houses within R distance of the house. Equivalently, in this simple model,

7Another recent example is Uribe (2022) who exploits notches in housing tax subsidies to retrieve structural
parameters in a hedonic model.
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D(x′) is the number of housing units within R distance of x′. For example, D(x′) could be the

number of housing units within R = 500 meters of the house at location x′. Solving first for

lavg(x′),

lavg(x
′) =

1
2R

∫ x′+R

x′−R
ldx =

¯
l if x′ < −R,
l̄ if x′ > R,

1
2R [

∫ 0
x′−R ¯

ldx+
∫ x′+R

0 l̄dx] if x′ ∈ (−R,R),

where

1
2R

[
∫ 0

x′−R ¯
ldx+

∫ x′+R

0
l̄dx] =

1
2R

[−(x′ −R)
¯
l+ (x′ +R)l̄] =

1
2R

[x′(l̄−
¯
l) +R(l̄+

¯
l)]

Then, the density exposure as a function of x is given by the following,

D(x′) =


2R/

¯
l = D̄ if x′ < −R,

2R/l̄ =
¯
D if x′ > R,

4R2/[x′(l̄−
¯
l) +R(l̄+

¯
l)] if x′ ∈ (−R,R).

Panel (b) of Figure 1 plots the relationship of density exposure on x. Density exposure is

mechanically related to the lot size, and the discontinuity at x = 0 induces changes in D(x).

Density exposure is flat until x ∈ (−R,R) where exposure to the other side of the border induces

a slope change. Moving from left to right, density exposure declines as houses are located closer

to and then further into the municipality with the higher minimum lot size. Additionally, the

density exposure can be converted to more common metrics of housing density such as the

number of units per acre by dividing by the geographic area within R distance of a location.

Individuals value houses based on a unit’s lot size, density exposure, and other property

and neighborhood characteristics. Individuals’ valuation of housing characteristics are then

capitalized into house prices. Assume for exposition that households prefer larger lots and

lower neighborhood density. Figure 1 (c) plots a possible relationship between house price

and distance to the border. House price jumps discontinuously at the border because of the

discontinuous increase in lot size from regulation, but decreasing exposure to density induces a

positive relationship between house price and x even before reaching the border.
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Figure 1: Stylized border in 1-d space.
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Note: This figure illustrates the relationship between lot size, density exposure, and house prices over space around a
municipal boundary with a binding minimum lot size constraint. Panel (a) plots lot size as a flat gradient that
increases discontinuously at the boundary entering the more regulated municipality. Panel (b) shows density
exposure as a function of the lot size evolving continuously through the municipal boundary. Panel (c) plots the
house price gradient if homeowners prefer larger lots and lower density exposure.
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This simple model illustrates what we seek to exploit in our boundary discontinuity design in

terms of a discontinuous increase in lot size at a border inducing variation in how exposed those

individual homes are to density within a small geographic area. Using comparisons only within a

small geographic area limits the confounding effects of unobserved neighborhood characteristics.

In the case of density, this exposure is directly related to lot size, although similar reasoning could

be applied to other externalities resulting from discontinuous changes. Despite the simplicity

of this model, we report below strong visual evidence of similar relationships between these

three outcomes and x in the data. For completeness, in Appendix D we present a more formal

framework following Turner et al. (2014) and Kulka et al. (2024) that describes the pricing gradient

as a function of distance to the border. For the special case in which lot size and density exposure

are the only relevant housing characteristics, it is straightforward to show that the former trait

encompasses the own lot effect and the latter encompasses the external effect.8 Furthermore,

a Turner et al. (2014)-type model in which housing prices vary by distance to the boundary is

equivalent to a hedonic model, but with the variation in housing characteristics also operating

through distance to the border. More details are provided in the appendix.

3. Data

Our empirical strategy requires data on land use regulations, maps of administrative boundaries,

house prices, and characteristics such as lot and physical structure size, as well as house age.

We then construct the measure of density exposure using the housing unit counts of nearby

U.S. census blocks. Additionally, in the hedonic regressions we include controls for parcel level

measures of slope and elevation, the distance to a variety of other amenities, and neighborhood

demographics. We also merge in data on school district reading test scores to control for school

quality, which may also change discretely at the border.

A The Wharton Surveys and Administrative Boundaries

We use regulation data from both the 2006 and 2018 WRLURI surveys (Gyourko et al., 2008,

2021). Each contains responses from over 2,000 primarily suburban jurisdictions to an array of

questions covering the myriad restrictions local governments use. Following the practice in our

2023 working paper (Gyourko and McCulloch, 2023), we focus on density restrictions in the form

of minimum lot size restrictions that exist anywhere within the community and how restrictive

8In Turner et al. (2014), Kulka et al. (2024) and in this paper, the own lot effect is captured by the discrete jump in
housing prices at the boundary, while the external effect is captured by the slope of the pricing gradient around the
boundary. In Turner et al. (2014), the supply effect is captured by a parallel vertical shift in the land rent gradient.
As we show below, it is the slope of the pricing gradient which drives our welfare calculations. Hence, we interpret
our estimates as an external effect. The potential for a local supply effect is discussed in Section 7.C and at the end of
Appendix D, but we conclude this is unlikely to play an economically important role in our estmated welfare effects
given the patterns in the data.
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they are. The range of possible answers varied across the two surveys, which requires us to adopt

a standardized set of ranges for density restrictions.

Both surveys asked if there was at least one neighborhood within the community’s political

boundaries that was in one of the following categories: (a) either no minimum lot size or the

most stringent one is less than one-half acre; these are the least strictly regulated places in the

sample and possess what we call a “low density restriction index"; (b) those in which the largest

minimum lot size ranges from one-half acre to (just under) one acre are moderately regulated

and possess a “medium density restriction index" in the analysis below; or (c) those in which the

largest minimum is either from 1-2 acres or for 2+ acres; because there were so few communities

that reported a 1-2 acre minimum, we group these two categories into a single one for 1+ acre

minimums; these places are the most strictly regulated in the sample and are said to possess a

“high density restriction index".9

Because our research design relies on exploiting variation across administrative boundaries,

we restrict our sample to WRLURI survey respondents sharing a border. The U.S. Census

provides maps of the administrative boundaries used in our analysis.10 Along these boundaries,

we construct 2 kilometer wide border areas and remove any area covered in water. We then

separate each border area into its two administrative sides so that we capture any parcels within

1 kilometer of the boundary on either side. While we begin with fairly large areas around the

boundaries to assess the empirical relationships of the outcomes across space, we also present

estimates for samples using only closer in parcels.

9Each survey question is reproduced in Appendix Figure A1. Density restrictions of some kind exist in almost all
WRLURI responding communities, as evidenced by the fact that 94% of all communities responding to the 2018 survey
reported having some minimum lot size restriction; 25% reported a 2+ acre restriction somewhere in their jurisdiction.
For more detail see Gyourko et al. (2008, 2021)

10In the WRLURI data, local governments are typically at the Census Place level, and less frequently at the County
Subdivision, or County level. Shapefiles for these geographies and bodies of water were downloaded from the U.S.
Census Tiger/Line site at https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html.
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Figure 2: Border example from the Cincinnati, OH, metropolitan area

Note: This figure shows a border between two WRLURI-responding municipalities in the Cincinnati, Ohio,
metropolitan area. The red line is the boundary between the two municipalities. On the left side of the border is Golf
Manor and on the right side is Amberley village. Golf Manor has a low density restriction index while Amberley
village has a high density restriction index. Lot and physical structure sizes are immediately larger for houses on the
Amberley village side of the border compared to houses in Golf Manor. Basemap by ©OpenStreetMap ©CARTO.

The boundaries between municipalities with measured minimum lot size restrictions form the

foundation of our empirical strategy, as is discussed more fully below. As an example, Figure 2

depicts one border pair for the towns of Golf Manor and Amberley village in the Cincinnati (OH)

metropolitan area. The red line marks the boundary between the two municipalities. The left side

of the border is Golf Manor and the right side is Amberley village. Golf Manor has a low density

restriction index and Amberley village has a high density restriction index. Lot and physical

structure sizes are immediately larger on the Amberley village side of the border. Municipality-

level summary statistics suggest strong evidence of sorting. In terms of demographics, the typical

income in the whole of Golf Manor is below the CBSA median at $39,360, while Amberley village

is affluent with a typical household income of $145,893. In Amberley, a significantly higher
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share of households are white and have children.11 While these statistics suggest that the types of

households on either side of the border and their housing preferences may differ, by only forming

comparisons within a small border area we can limit confounding of hedonic price estimates

coming from correlation between density and unobserved neighborhood quality.

The Wharton surveys contain responses from 1,118 pairs of bordering municipalities across

39 metropolitan areas, with the full distribution reported in the first column of Appendix Table

A1. Importantly, not all of these borders represent an area where minimum lot size restrictions

and, as a result, lot sizes actually changed at the border. In the analysis sample, we restrict the

observations to border areas where there is a change both in the regulatory strictness as measured

in the survey and lot size based on the housing transaction microdata. These sample restrictions

are detailed below in Section 3.E.

B Housing and parcel characteristics

We use parcel-level data from the CoreLogic tax assessment files to measure single family unit

density, lot size, sales price, physical structure size and age. These parcels are precisely located

by geographic coordinates, allowing us to restrict observations to the parcels within the relevant

WRLURI jurisdiction border area. Because of outliers and potentially faulty observations, we

winsorize the housing characteristic data at the top (99th) and bottom (1st) percentile. For all

border areas in jurisdictions for which regulation data come from the 2018 WRLURI survey, we

use housing traits reported as of the 2019 CoreLogic files in our empirical analysis. For those

whose regulation data come from the 2006 survey, we exclude all homes built after 2007 in our

calculations and analysis. This further reduces the micro samples of homes across all border areas

by 3%.

CoreLogic micro data on single-family house sales from 1990-2019 allow us to observe sales

prices for virtually all such transactions in each border area. Because relatively few houses sell

each year, we construct real 2021 values using the Federal Housing Finance Agency House Price

Index (FHFA HPI ®) to adjust nominal values from different sales years.

While the CoreLogic data are known to have good coverage with respect to single-unit homes,

there is reason to believe it does not capture all rental units, especially those in structures

with multiple units. Hence, we turn to census block data from the 2010 decennial census for

information on the total number of units in the relevant area (which include vacant units), as well

as a breakdown of the type of unit by whether it is owned or rented (if occupied). These data are

used to construct our measure of density exposure discussed below.

11Demographic estimates from the American Community Survey 2016-2020 estimates, https://data.census.gov/

profile/.
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a Elevation and slope

Additionally, we augment our housing trait information with additional controls for the elevation

and slope at each house’s location. To measure the local topography, we download digital

elevation maps (DEMs) from NASA. Specifically, we use maps derived from the Shuttle Radar

Topography Mission (SRTM) Global 1-arc second data collection.12 These data report the elevation

for most of the Earth’s surface at a spatial resolution of about 30 meters. We also construct maps

of the local terrain’s slope by translating these elevation maps using GDAL’s slope function.13 We

then assign elevation and slope values according to each parcel’s location in these maps using the

precise geographic coordinates of parcels reported by CoreLogic.

C Constructing a measure of density exposure

To create a measure of every individual house’s exposure to housing density, around each house’s

location in the relevant border area, we initially count the number of housing units within 500

meters. We then convert this count to the number of units per acre by dividing by the area of

a circle with a 500 meter radius (π500
2 square meters) and then translate that to acres. Figure

3 shows the construction of the density exposure for one house very close to the Golf Manor-

Amberley border. The red line again represents the boundary between the two municipalities.

The blue dot is the location reported by CoreLogic for this particular house. The blue circle

is centered at that house and has a 500 meter radius. The 2- or 3-digit numbers in black are

the counts of total housing units in each census block. The location of a block is given by a

single set of GPS coordinates at its interior point as reported by the Census. If the number is

within the blue circle, all units within the block are considered within the 500 meter radius; if the

number is outside the blue circle, none of the units count towards the density exposure measure,

no matter how close the block coordinates are to the boundary. After repeating this process

on every house within 1 kilometer of our sample borders, each house is endowed with a new

housing characteristic: the number of housing units per acre in its immediate 500 meter vicinity.

In addition, we construct analogous measures that can differentiate between owner versus renter

occupied units using the same counts by housing tenure.

12Description and downloading of the SRTM data is available at https://lpdaac.usgs.gov/products/

srtmgl1v003/.
13GDAL is a translator library for raster and vector geospatial data. More detail can be found here https://gdal.

org/.
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Figure 3: A measure of a border parcel’s density exposure

Note: This figure shows the construction of a density exposure measure for one parcel close to the Golf
Manor-Amberley border in the Cincinnati, OH metropolitan area. The blue dot is the location reported by CoreLogic
for the parcel of interest and the blue circle shows the area within 500 meters of that parcel. The black numbers are
counts of the total number of housing units in a given census block plotted at its interior point as reported by the
U.S. Census. To construct a measure of density we total the counts of all census blocks with internal points within
the blue circle and divide by the circle’s geographic area (π5002 square meters). We then convert from square meters
to acres. We apply this process to every single family parcel in the border areas in our sample. Basemap by
©OpenStreetMap ©CARTO.

Figure 4 reports the cumulative probability distribution and summary statistics of the density

exposure variable among all houses within 1 kilometer of bordering WRLURI municipalities. The

mean (median) number of total units per acre, which included owner-occupied, renter-occupied

and vacant units, is 3.4 (3.0) with a standard deviation of 2.5. The interquartile range for our

density measure runs from 1.8 units per acre to 4.3 units per acre. Note that there are typically

some renter-occupied units in most border areas, although it is quite rare for them to be the

dominant tenure type. Some vacancy is common, too.
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Figure 4: Distribution of density exposures
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Note: This figure plots the empirical CDF of the total density exposure measure constructed following the process
outlined in Section 3.C. The x-axis is the density exposure measured by the number of housing units per acre within
500 meters of a house. The y-axis is the cumulative proportion of observations occurring in each density exposure
bin. The colored areas show the typical share of housing units by tenure status across the total housing unit density
exposure CDF. The average number of owner occupied, renter occupied, and unoccupied housing units per acre were
calculated over 200 bins equally spaced across the y-axis measured by the horizontal distance in each shaded region.
A density exposure of 1.81 units per acre and 4.34 units per acre represent the 25th and 75th percentiles respectively
among all parcels within 1 kilometer of bordering WRLURI municipalities.

For reference, returning to the Golf Manor-Amberley border pair example, the typical house

toward the interior of Golf Manor (houses 250 to 500 meters away from the border) has a density

exposure of 5.4 units per acre, which is at the 87th percentile of the overall distribution. For

houses located closer to the border, the density exposure drops—the average within 250 meters

of the border is 4.2 units per acre, which is at the 73rd percentile of the distribution. Finally 250

to 500 meters away from the border on the Amberley side, density exposure falls to 1.57 units

per acre or the 21st percentile. Thus, moving from the interior of Golf Manor to the interior

of Amberley Village reduces the average density exposure from the 87th to the 21st percentile

of the overall distribution. While the Golf Manor-Amberley border pair is an example with a

particularly large lot size discontinuity, we find similar qualitative patterns when pooling all the

border areas where density restrictions changed. These results are described further in Section 4.
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D Additional controls

We also control for a number of other factors in our specifications. Some, such as distance to local

amenities that also vary with distance to the border, are potential confounders of our density

preference estimate. Others such as school quality often change discretely at the administrative

border, but do not vary with distance from the border. Still others such as the racial or demo-

graphic composition of the area are included to help us better understand how one’s preference

for density might be mediated by a preference over neighbors.

a Distance to local amenities

We always include controls for the distance to various local amenities in the hedonic regressions.

We expect density exposure to vary across space as houses approach the boundary. If other local

amenities also vary systematically relative to the boundary, these variables could confound our

price effect estimates. For example, if more highly regulated municipalities tend to have more

public parks, we could be capturing the value of proximity to parks rather than the value of lower

density exposure per se. In response, we include controls for distance to the nearest green space,

highway, body of water, public and private school, and the center of the CBSA’s central business

district.

Shapefiles for these geographic features were retrieved from the following sources:

• Green spaces are collected from the OpenStreetMap’s API by selecting ’parks’ features.14

• Highways are also collected from the OpenStreetMap’s API by selecting ’motorway’, ’trunk’

and ’primary’ features.

• Bodies of water are from the Census 2019 TIGER/line shapefiles for water area.15

• Locations of public and private schools are defined by the Common Core Data (CCD) for

the Homeland Infrastructure Foundation-Level Data (HIFLD).16

• CBSA centers are based on the coordinate location from searching the central city of the

metropolitan area on Google Maps.

For every parcel in our border areas, we calculate the distance to the nearest shape for each of the

categories listed above.

14OpenStreetMap features were retrieved using the Python package OSMnx. More detail can be found at https:
//github.com/gboeing/osmnx.

15Water shapefiles were retrieved from the U.S. Census’ FTP site at https://www2.census.gov/geo/tiger/

TIGER2019/AREAWATER/.
16These data can be downloaded from HIFLD’s open data website at https://hifld-geoplatform.opendata.

arcgis.com/search?collection=Dataset&groupIds=f16c582f00184cb094affff556fe57ee.
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b School district test scores

Because school district boundaries often coincide with administrative boundaries, school quality

is a potential confounder of the impact of regulation. Access to high quality schools likely affects

housing characteristics and could be correlated with regulation itself. To address this issue, we

include controls for school quality by matching school district test score data from the Stanford

Education Data Archive (SEDA) to each side of a border.17 Specifically, we measure a border

side’s school quality by the standardized average 3rd grade reading score in its respective school

district. By construction, every parcel on the same side of the border is associated with the same

school district.

We discretize our school quality measure as follows. Each border area is assigned its jurisdic-

tion’s 3rd grade reading score for 2018 or the most recent year available. We then assign each

border area to one of three categories: (a) ‘Lowest School Quality’, which is comprised of those

with scores in the bottom quartile of the sample distribution; (b) ‘Average School Quality’, which

is comprised of those with scores in the interquartile range of the distribution; or (c) ‘Highest

School Quality’, which is comprised of those with scores in the top quartile of the distribution.

c Demographics

Finally, we collect data on local demographics from 2010 U.S. Census block and block group

data. Specifically, we collect counts on race, age, marital status, and presence of children in

nearby census block and we retrieve the median household income and share of the population

over 25 with 4+ years of college education in each parcel’s block group. For demographic

variables available at the census block level, we construct exposure measures similar to the density

exposure measure. For example, we construct race exposure variables for the share of nearby

households that are Black or Hispanic. For the Black exposure measure, we sum the counts of

people identifying as Black in census blocks within 500 meters of a parcel and divide by the total

population in these census blocks. For each house in our sample this process creates a measure

of the share Black within 500 meters. We perform an identical process for the share Hispanic,

middle aged, married, and with children.

E Summary statistics

We define two distinct subsamples of the borders of contiguous WRLURI municipalities that are

used in the analyses. First, for the regression discontinuity analysis, we restrict the estimation

sample to borders where the density restrictions actually changed. For over half of all bordering

municipalities, we do not find a change in the reported density restriction index. This occurs

when both municipalities report the same density restriction index (e.g., both municipalities could

17These data may be downloaded at http://purl.stanford.edu/db586ns4974 from the Stanford Education Data
Archive (Version 4.1), Reardon, S.F., et. al.
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report low density restrictions). At these borders, we do not expect to find a discontinuity in lot

size because there was no change in regulatory strictness.18 Ordering our border pairs from

lower to higher density restriction index, we only include pairs with one of the following density

restriction index patterns: (1) Low to Medium Density Restriction Indexes; (2) Low to High

Density Restriction Indexes; or (3) Medium to High Density Restriction Indexes. Additionally,

we drop borders that do not have at least 100 single-family houses within 1 kilometer with non-

missing sales price information, as well as borders that follow a highway or river.19 We call the

subsample resulting from these restrictions “∆DRI" because there is a measured change in the

level of density restriction index at these borders.

Second, for the hedonic regression analysis we further restrict the ∆DRI border areas to those

where we find a measurable increase in lot size as one moves across the border from left to right

(i.e., from the lower Density Restriction Index community to the higher Density Restriction Index

community). Specifically, we restrict the sample of borders in ∆DRI to those where we find a

regression discontinuity estimate for lot size greater than +500 ft2. While on average we find

significant discontinuities in lot size and sale price pooling together all the ∆DRI borders, it is

not the case that every border with a reported change in density restriction also has a change

in lot size at the border. This could be because density restrictions are nonbinding in that area,

for example if developers would have built large lots regardless of the regulation, or because

the survey instrument may reflect a density restriction somewhere else in the municipality. We

call the subsample of borders where we find a measurable discontinuity in lot size ∆Lot. To

estimate a hedonic regression with this subsample, we must have sufficient parcels with sale

price information. In that regard, we restrict the estimation sample to border areas that have at

least 25 observations on both sides of the boundary, in addition to having at least 100 observations

in total.

Table 1 provides summary statistics on our underlying data by the subsample of borders.

The first column provides information on all potential observations from any jurisdiction that

responded to either of the WRLURI surveys, with parcel level data from Corelogic included on

any home within 1,000 meters of the border. This clearly is a suburban-dominated sample, as

the typical lot size is over one-quarter acre, with constant $ 2021 price just over $468,000. This is

reinforced by the fact that there are only 24 central cities of CBSAs in these data, and they only

constitute 47 distinct border pairings with suburban jurisdictions. The other 4/5ths of the pairs

compare a border area of one suburban jurisdiction with that of another suburban jurisdiction.

Finally, there are millions of housing observations within the communities on either side of the

1,118 borders.

18In the left column of Appendix Figure A3 we show plots for this set of borders and do not find evidence of
discontinuities in lot size or house prices, nor systematic variation in density exposure around these borders.

19Specifically, we drop any border where 25% or more of the parcels within 100 meters of the border are also within
100 meters of either a highway or body of water.
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The remaining columns restrict the sample in various ways, with the final one containing the

hedonic analysis sample. The second column imposes the restriction that there be a change in

the density restriction index (labeled ∆DRI in the table) at the border. This cuts the number

of borders and municipalities by more than half, but still contains well over 850,000 housing

observations with non-missing sales prices. Relatively little else changes significantly in terms

of house quality, or demographics such as race. The third column further restricts the border

depth to 500 meters. This reduces the sample size substantially, but does not affect the averages

very much. The final column restricts to borders with an increase in lot size (∆Lot). This yields

the final sample used in the hedonic analysis below that still contains over one-quarter million

house price observations from 217 borders and 325 jurisdictions, which reflects the fact that some

municipalities have multiple borders with different communities.

Comparing housing traits across the samples, most characteristics are fairly similar with the

exception of the rental unit density. Restricting observations to areas with binding minimum

lot sizes and sufficient single family housing sales skews the sample toward areas that are

more single family. That said, suburban, predominantly single family neighborhoods are the

primary neighborhood type of interest concerning density restrictions, and the other observable

characteristics do not suggest our results are otherwise based on a highly selected sample.

In the final hedonic sample, the 217 border pairs (implying 434 sides) are distributed across

the 32 metropolitan areas with nonzero border pairs listed in column 3 of Appendix Table A1.

The Chicago metro area makes up the highest percentage of border pairs at over 15%, Cincinnati

contains nearly 10% and Detroit 9%. The other two-thirds of the pairs come from a wide array

of other markets. The interquartile range for the number of observations in a border area for this

depth runs from 476 to 1,458 parcels.

Note also that density exposure differs materially depending upon the underlying set of

housing units being counted. For total units (row 2 of Table 1), there are 2.75 housing units

per acre on average in the exposure area. There are 194 acres in our exposure circles, which

implies about 534 housing units in the circle with a 500 meter radius (row 2 of Table 1).20 For

owner-occupied units, the density exposure in the regression sample is just under 2 units per acre

(row 3 of Table 1). There are only 0.64 rental units in the exposure area on average (row 4 of Table

1).

20The area of circle is given by π500
2 square meters, which amounts to 786,148 square meters or 8,462,018 square

feet. Dividing that number by the 43,560 square feet in an acre yields approximately 194 acres.
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Table 1: Summary statistics

(1) (2) (3) (4)
All <

1,000m
< 1,000m,
∆DRI

< 500m,
∆DRI

< 500m,
∆Lot

Lot size (ft2) 12,574 12,566 12,549 12,527
(17,453) (15,808) (15,797) (14,147)

Density exposure, total units per acre 3.31 3.02 2.97 2.75
(2.21) (1.86) (1.84) (1.61)

Density exposure, owner occ. units per acre 2.09 2.02 2.00 1.96
(1.09) (1.00) (1.00) (0.97)

Density exposure, renter occ. units per acre 0.98 0.79 0.77 0.64
(1.32) (1.06) (1.03) (0.88)

Sale price ($ 2021) $468,798 $459,657 $458,361 $424,224
($449,452) ($440,324) ($436,339) ($369,507)

Living area (ft2) 1,864 1,908 1,908 2,019
(864) (867) (861) (896)

House age (years) 55 52 51 48
(26.3) (25.8) (25.4) (25.3)

Share black < 500m 0.11 0.10 0.10 0.08
(0.20) (0.18) (0.18) (0.14)

Household income ($ 2021) $91,148 $93,453 $93,289 $98,196
($43,524) ($43,276) ($42,987) ($43,638)

Num. parcels 2,989,361 1,360,558 719,181 263,340
Num. parcels (sale price) 1,869,071 856,294 454,035 263,340
Num. borders 1,118 425 425 217
Num. municipalities 1,052 560 558 325

Note: This table reports means and standard deviations of housing characteristics for single family parcels near the borders of
adjacent WRLURI municipalities. Col. (1) reports summary statistics for all parcels within 1 kilometer of any border between
WRLURI municipalities. Col. (2) reports on parcels within 1 kilometer of borders between municipalities where the reported
Density Restriction Index increased (∆DRI) after removing borders following a major highway or a river. Col. (3) reports on
parcels in a similar sample but shortening the border area depth to 500 meters. Col. (4) shows summary statistics on the parcels
used in the hedonic regressions, which represent parcels with sale price information in border areas where there is a measured
discontinuous increase in lotsize (∆Lot). Housing traits are winsorized at the 1% level.
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4. Discontinuities and density exposure at municipal boundaries

Figure 5: Distance gradients in ∆DRI borders
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Note: This figure presents binned scatter plots of the three outcomes lot size, density exposure, and sale
price on distance to the municipal boundary pooling together the border areas in the ∆DRI sample. The
plotted relationships between the outcomes and distance to the boundary adjust for border pair specific
fixed effects following Cattaneo et al. (2024a,b). The top panel is the plot for lot size, the middle panel is
for density exposure, and the final panel is for sale price. The first two panels are calculated using
1,360,558 parcels spread throughout 425 border areas. The final panel is calculating using the 856,294
parcels with sale price information.
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Figure 5 depicts binned scatter plots of the data on lot size, density exposure and sale price

against distance to the relevant municipal boundary using the ∆DRI subsample of borders where

there was a change in density restrction. The top panel shows that lot size jumps discretely at

the border by about 3,000ft2. Density exposure (middle panel) starts to drop in the lower Density

Restriction Index community well before the border, as expected. Finally, the third panel shows

a sharp increase in sales price of over $40,000 at the border. Empirically, our data are quite

consistent with the predictions of our stylized model of the border discussed above in Section 2.

Table 2 presents regression discontinuity estimates by bandwidth for lot size and sales price

comparable to the top and bottom panels in Figure 5. The estimates almost always are highly

statistically significant, with the exception of sales price within 50 meters of the border. Using

smaller border area depths provides better comparison groups because the homes are all very

close to the border. However, there is an inevitable tradeoff in statistical precision because effective

sample sizes become much smaller.21 More generally, the impact on both lot size and sales

price decreases as the bandwidth narrows, but the changes remain economically meaningful for

samples of homes within 175 meters of the border.

Table 2: Regression discontinuity estimates by border area depth (bandwidth)

1000m 500m 425m 300m 175m 50m

Lot size (ft2) 3,686∗∗∗ 3,454∗∗∗ 3,312∗∗∗ 2,937∗∗∗ 2,684∗∗∗ 3,662∗∗∗

(462) (442) (447) (446) (547) (1,050)

Sale price ($ 2021) 45,809∗∗∗ 39,891∗∗∗ 38,621∗∗∗ 34,785∗∗∗ 28,848∗∗∗ 11,085
(8,107) (7,167) (6,821) (6,021) (5,951) (11,243)

Num obs 1,463,632 742,978 629,957 437,785 244,666 53,475
Num obs (sale price) 919,858 468,908 398,096 277,524 155,249 33,150
Num borders 425 425 425 425 425 414

Note: This table presents regression discontinuity estimates at various choices of border area depth (bandwidth) using local linear
regression with a uniform kernel. Like in Figure 5, these specifications adjust for border pair specific fixed effects. Each cell
represents an RD estimate using only parcels within the distance to the boundary displayed at the top of that column. In the first
row, the outcome is lot size. In the second row, the outcome is sale price. Standard errors, clustered by border area, are reported in
parentheses. Significance stars * p < 0.10 ** p < 0.05 *** p < 0.01.

While we presented the regression discontinuity results using the ∆DRI border sample to

show that minimum lot size restrictions are often binding, we can further refine our sample to

the border areas where we confirm there is a lot size discontinuity (∆Lot) because we also observe

21In our application, 50 meters is a very small geographic distance. For the typical lot size in our sample, the length
of just one parcel is roughly 30 meters (1/4 acres ∼ 1012 meters2 and

√
1012 meters2 ∼ 30 meters) and municipal

boundaries also typically sit on roads. Taken together, a depth of 50 meters will often only accommodate one house
on either side of a boundary. Hence, we are skeptical of estimates based on such a narrow range because of relatively
small sample sizes and the possibility that homes right on the border just are different from the average in the broader
border area.
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lot size at these boundaries. In Appendix Figure A3, we compare the three outcome gradients

in borders with no change in minimum lot size restrictions versus the ∆DRI borders (Figure 5

above) versus the ∆Lot borders. The left column of this figure serves as a useful placebo test.

In borders without a change in density restriction, we do not observe discontinuities in lot size

or house prices, and there is no systematic downward gradient in the density exposure. The

next two columns compare the regression discontinuity sample ∆DRI to the borders used in

hedonic estimation, ∆Lot. The final column shows the relationships in Figure 5 are made even

sharper by restricting to the borders where we actually observe a discontinuous increase in lot

size. Finally, Appendix Figure A4 shows the analogous plots using only the observations used

in the estimation sample for the hedonic regressions, i.e. restricting to houses with sales price

information within 500 meters of the boundary.22

5. Structural hedonic model of housing choice

A Review of equilibrium in the hedonic model

To describe equilibrium in a hedonic model, we follow Greenstone’s (2017) recent review of the

hedonic approach. In Rosen (1974)’s classic model, a differentiated good is described by a vector

of product characteristics, zzz = (z1, z2, . . . , zK). For a house, these characteristics may consist of

structural attributes such as the lot size and the number of bedrooms or neighborhood qualities

such as distance to schools, open spaces, or the density of nearby housing. The market price for

a house j is a function of the product characteristics:

pj = pj(zj,1, zj,2, . . . , zj,K) = pj(zzz).

The equilibrium matchings of consumers and producers leads to the observed function between

house prices and characteristics, termed the hedonic price schedule. Consumers’ utility depends

on their house’s characteristics and consumption of a numeraire good, c.

u(c,zzz) s.t. w− p(zzz)− c = 0.

Maximization of the utility function naturally implies that consumers choose characteristics to

satisfy
∂u

∂zj,k

∂u
∂c

=
∂p

∂zj,k
. (1)

Thus, a consumer’s marginal willingness to pay (MWTP) for characteristic zj,k is related to the

partial derivative of the hedonic price function at her equilibrium product choice.

22We perform several other visual checks of the validity of our research design. In Appendix Figure A5, we plot
alternative measures of the density exposure on distance to the municipal boundary (middle panel in Figure 5). All
density exposure measures have a shape similar to the prediction of the simple model in Section 2 that is kinked at -500

meters and declines continuously through the municipal boundary. In Appendix Figure A6, we separate the sample
by whether the change in density restriction was low to high, low to medium, or medium to high. In all cases we find
similar relationships over the three outcomes. Hence, we do not think that pooling these three subgroups is affecting
our estimation.
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It is useful to reformulate the consumer’s utility function in terms of a bid (indifference)

curve. To do so, substitute the budget constraint into the utility function and fix utility, ũ =

u(w − p(zzz),zzz). By inverting this equation to solve for the price, we can define the bid curve

θ(zzz;w, ũ). Then, holding the other housing characteristics fixed, θ(zk;z∗−kz∗−kz∗−k,w, ũ) expresses the

largest amount a consumer would pay for alternative values of zk at the same level of utility.

In equilibrium, individuals maximize utility by choosing the bundle of product characteristics

at which their bid curve is tangent to the hedonic price schedule. Heterogeneity in individuals’

bid curves stemming from different preferences over product characteristics leads to the different

housing purchases observed along the hedonic price schedule.

Figure 6 plots the hedonic price schedule considering density exposure as a negative product

characteristic (zk = D) and a bid curve for one consumer type. A homeowner has purchased a

house at D∗ for the price P0. In the original equilibrium at D∗, the resident’s bid curve function θ

is tangent to the hedonic price schedule. Consider a consumer of the same type who has not yet

purchased her house. For this resident to achieve the same utility at a higher density exposure

D′, she would need to pay the below equilibrium price P2 allowing her to afford a high enough

consumption of the numeraire good c to offset losses from the change in density exposure.

Figure 6: Monetary measure of the welfare change.

House price

Density exposure

P0

θ

D*

P(D)
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Note: Diagram of the hedonic price schedule as in Rosen (1974). The red line plots housing prices as a function of
the density exposure. For one consumer type, we plot her bid curve θ and its tangency point in equilibrium at the
density exposure D∗. The partial derivative of p(D) at D∗ characterizes that consumer’s Marginal Willingness to
Pay (MWTP) for density exposure. If θ is known, the welfare change under counterfactual levels of density exposure
can be estimated.

If we know consumers’ bid curves, we can calculate monetary measures of the welfare change
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under counterfactual choices of D. Consider the same consumer who owns a house at D∗ being

suddenly forced to live under the higher density exposure D′. Because the consumer now

owns their house, she loses welfare from two channels: the price loss from moving down the

hedonic price schedule and the utility change from having to consume a different level of density

exposure.

∆p = P1 − P0, ∆u = P2 − P0. (2)

The total welfare loss in monetary terms is then the sum of these two components: ∆Welfare =

∆p + ∆u. Because ∂θ
∂w = 1, an alternative way to consider ∆Welfare is as the compensation

necessary for the homeowner to accept living under the higher density exposure.

B Recovering demand parameters

In the model above, Equation (1) relates each individual’s MWTP with the derivative of the

hedonic price function at the chosen equilibrium bundle. However, in order to conduct nonlocal

welfare analysis, we need to characterize individuals’ entire bid curves. Bajari and Benkard

(2005) suggest making a parametric assumption on individuals’ utility functions. Then for each

individual, her entire bid curve is recoverable from the one product choice made in equilibrium.

In particular, they use a utility function that is log linear in the product characteristics.

Following those authors, let j ∈ J be a house consisting of zj,k housing characteristics and

ξj unobservable characteristics. Let D̄ be the highest density exposure in the market and set

zj,1 = D̄ −Dj the inverted density exposure.23 pj is the price of house j. wi is the wealth of

individual i. For individual i that considers density exposure a disamenity, assume:

uij = βi,D log(D̄−Dj) + βi,2 log(zj,2) + ... + βi,k log(zj,k) + βi,ξ log(ξj) + c

s.t. pj + c ≤ wi

(3)

Then individual i’s taste parameter for density βi,D can be solved by

βi,D = −(D̄−Dj)
∂p

∂D
(Dj). (4)

For the majority of individuals in our data we observe a negative price derivative, indicating

density exposure is a negative product characteristic. However, there is significant heterogeneity

in individuals’ preferences for density based on our estimates. For individuals that instead

consider density exposure an amenity assume:

uij = βi,D log(Dj) + βi,2 log(zj,2) + ... + βi,k log(zj,k) + βi,ξ log(ξj) + c

s.t. pj + c ≤ wi

(5)

23Flipping the axis of density exposure D̄ −Dj ensures concavity of uij when density exposure is a disamenity.
Concavity of the utility function is necessary for equilibrium in the hedonic model. In Appendix B, we show the bid
curve using a log linear utility function with a negative product characteristic where the characteristic is not flipped.
The resulting bid curve is convex and there is no equilibrium along the hedonic price schedule.
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Then βi,D can be solved by

βi,D = Dj
∂p

∂D
(Dj). (6)

We can therefore estimate individuals’ structural demand parameters βi,D from the data using the

estimated price derivative with respect to density exposure and the observed density exposure

Dj .

Using these estimates and the parametric assumption, we can now recover individuals’ whole

bid curves. For an individual i, rewrite uij in terms of her bid curve. First, plug in the budget

constraint and fix the level of utility:

ũij = βi,D log(D̄−Dj) + βi,2 log(zj,2) + ... + βi,k log(zj,k) + βi,ξ log(ξj)

+wi − p
(7)

Then, holding all other product characteristics constant and inverting the equation for the price,

we get individual i’s bid curve along D

θi(D;z∗−kz∗−kz∗−k,w, ũ) = βi,D log(D̄−Dj) + βi,2 log(z∗j,2) + ... + βi,k log(z∗j,k) + βi,ξ log(ξ∗j )

+wi − ũij
(8)

And, we can consider changes along the bid curve at different levels of density exposure.

Consider the change from D to D′.

∆θi = θi(D
′;z∗−kz∗−kz∗−k,w, ũ)− θi(D;z∗−kz∗−kz∗−k,w, ũ)

= βi,D log(D̄−D′
j)− βi,D log(D̄−Dj) = βi,D log(

D̄−D′
j

D̄−Dj
)

(9)

∆θi is the utility change ∆u from having to live at a higher density exposure, or the utility loss

in Equation (2). By similar arguments for individuals that consider density exposure an amenity,

the change along the bid curve is

∆θi = βi,D log(
D′

j

Dj
). (10)

We can now express the welfare change for individual i in terms that can be estimated from

the data. For density exposure as a disamenity,

∆Welfarei = ∆p+∆θi = ∆p+ βi,D log(
D̄−D′

j

D̄−Dj
)

= ∆p− (D̄−Dj)
∂p

∂D
(Dj) log(

D̄−D′
j

D̄−Dj
).

(11)

The terms Dj ,D′
j and D̄ are observed directly, while ∆p and ∂p

∂D (Dj) can be estimated by hedonic

regression. Lastly, the welfare change if density exposure is considered an amenity is given by

∆Welfarei = ∆p+∆θi = ∆p+ βi,D log(
D′

j

Dj
)

= ∆p+Dj
∂p

∂D
(Dj) log(

D′
j

Dj
)

(12)

in which, again, all the terms are either directly observed or can be estimated by the data.
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6. Hedonic regressions

We estimate the relationship between density exposure and house price for each border area

in our sample under many different specifications. Thus, we treat each combined border area

as a distinct market and run a separate hedonic regression for it. We then repeat this process

varying the set of controls included in the regressions. This strategy lets us control flexibly for

potential confounding variables and characterize heterogeneity across neighborhoods by allowing

for different relationships between the price, density exposure, and relevant covariates in each

neighborhood.

In particular, we consider the following hedonic pricing model. The market price is a function

of the density exposure using the observations in a market l. We regress the price pj,l of house j

in market l on the density exposure Dj and a set of covariates Xj . In general form,

pj,l = fl(Dj) +X ′
jθ+ ϵj,l for l ∈ {1, 2, . . . ,L}. (13)

where l is a border area and fl(Dj) is a nonlinear function of the density exposure. The controls

included in Xj are described in more detail below.

A key assumption of the hedonic model is that comparisons are made in a market that satisfies

the law of one price. This is appropriate if the prices of identical homes on different sides of the

border area in (say) Figure 2 are the same, ceteris paribus. Given the small geographic size of each

border area, we believe this is a reasonable assumption.24

As our primary specification, we consider a semiparametric model following Robinson (1988)

where fl(Dj) is estimated nonparametrically by local linear kernel regression. This model does

not impose any functional form assumptions on the the relationship between density exposure

and price while assuming the remaining controls enter linearly.25 A semiparametric model allows

relatively flexible estimation of the relationship of interest while avoiding issues related to the

curse of dimensionality in nonparametric models.26

After fitting these regressions, f̂l(d) is used to estimate the price derivative ∂̂p
∂Dj

for each market

and each value of Dj in the data. Identification of the price derivatives relies on a conditional

independence assumption: within a market, conditional on Xj , density exposure is unrelated

to the error term. In our hedonic regressions, comparisons are always made within a small

24However, to check for the possibility that market or supply conditions change at the border, for robustness we also
estimated results using separate hedonic specifications for each side of the border. Essentially, this treats each side of
the border as a separate market and price comparisons are only made between houses within the same municipality.
Those findings are not materially different from our baseline estimates reported in Table 3 and are discussed further
in Section 7.C.

25In Robinson (1988)’s 2-step procedure, control and outcome variables are first residualized on density exposure
nonparametrically. These residuals are then used to estimate the linear component of the model by OLS. After
subtracting the linear component due to the other housing characteristics, fl(Dj) can be estimated by standard local
polynomial regression.

26As a robustness check, in the appendix we re-estimate all the results under two completely parametric specifica-
tions, a simple linear model and a model in which all variables are log transformed.
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geographic area and, as is discussed more fully in the next section, we include specifications with

a large number of controls to help mitigate potential omitted variable bias.

We also consider specifications in which the density exposure related to renter-occupied hous-

ing units is considered separately from density exposure arising from owner-occupied units. Let

Dj,rent be the rental units per acre in the immediate area of house j and Dj,own the owner-occupied

units per acre. In this case, we include both terms but treat Dj,rent as the nonparametric object of

interest while Dj,own is treated as a linear term. The augmented specification is

pj,l = fl(Dj,rent) + γownDj,own +X ′
jθ+ ϵj,l for l ∈ {1, 2, . . . ,L}. (14)

The price derivatives are then estimated by ˆ∂fl
∂D (Dj,rent) for the renter occupied density exposure

and γ̂own for the owner occupied exposure.

A Recovering preference estimates

We estimate individual MWTPs, taste parameters, and welfare changes by plugging in the

empirical price derivative estimates from the hedonic regressions into the consumer’s first order

condition (1), and equations (4), (6), (11) and (12). In our dataset, there is an individual i who

purchased each house j in our sample to maximize her utility. For this individual i, her MWTP

is estimated by the derivative of the price function at Dj .

ˆMWTPi =
∂̂p

∂D
(Dj) =

∂̂f

∂D
(Dj).

where f(D) is the function in equation (13) estimated by hedonic regression.

For the taste parameters, if the price derivative is negative at Dj , implying she considers

density a disamenity, we estimate her individual preference parameter βi,D by

β̂i,D = −(D̄−Dj)
∂̂p

∂D
(Dj) = −(D̄−Dj)

∂̂f

∂D
(Dj).

If the price derivative is positive, we estimate βi,D by

β̂i,D = Dj
∂̂p

∂D
(Dj) = Dj

∂̂f

∂D
(Dj).

With these estimates we can then characterize the aggregate distribution of preferences for

housing density in our sample.

Using the preference parameters, we estimate welfare changes for individuals under counter-

factual levels of density exposure D′. If the price derivative is negative,

∆ ˆWelfarei = ∆̂p+ β̂i,D log(
D̄−D′

D̄−Dj
)

= ∆̂p− (D̄−Dj)
∂̂p

∂D
(Dj) log(

D̄−D′

D̄−Dj
)

= f̂(D′)− f̂(Dj)− (D̄−Dj)
∂̂f

∂D
(Dj) log(

D̄−D′

D̄−Dj
).
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And, if the price derivative is positive,

∆ ˆWelfarei = f̂(D′)− f̂(Dj) +Dj
∂̂f

∂D
(Dj) log(

D′

Dj
).

We also retrieve estimates of the MWTPs, preference parameters, and welfare changes by

owner versus renter occupied housing density. These can be solved in exactly the same way

using the price derivatives estimated by Equation (14).

7. Results

A Empirical hedonic price schedule

In this section, we first return to the example of the Golf Manor-Amberley Village border to

illustrate how we empirically estimate a hedonic price schedule for one market. We then present

aggregate results on preferences and welfare changes using all the border areas.

Figure 7: Hedonic price schedule in Golf Manor-Amberley border area, Cincinnati, OH
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Note: This figure plots the relationship between sale price and the density exposure in the Golf Manor-Amberley
border area after controlling for observable characteristics. The red line is the fit line from a nonparametric local
polynomial regression of the (nonparametrically) residualized outcome on the inverted density exposure. Covariate
adjustment was carried out following Robinson (1988). Results are plotted after adjusting for: a house’s lot size,
living area, and age; the parcel’s elevation and slope; the average 3rd grade reading score in its school district; and
the distance to the nearest body of water, park, highway, public school, private school, and to the city center.
Bandwidths for the local polynomial regressions in Robinson (1988)’s 2-step procedure were selected to minimize the
integrated mean square error using Calonico et al. (2019), and all local polynomial regressions used a Gaussian
kernel. The shaded area plots the bias-corrected confidence interval.
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Figure 7 plots the relationship between sale price and the density exposure in the Golf Manor-

Amberley Village border area after adjusting for numerous house-level covariates identified in

the notes to the figure using only observations with this one border area.27 The red line plots

the local polynomial fit following Robinson (1988); the shaded region plots the bias corrected

confidence interval following Calonico et al. (2019). The estimated derivatives at each point of

the red line is our estimate of homeowners’ MWTPs used to estimate individual taste parameters

β̂i,D following equations (4) and (6). Using the intuition from Rosen (1974), the negative slope of

the pricing function indicates the typical homeowner in this border area dislikes higher housing

density. After recovering β̂i,D, we can then estimate welfare changes for these homeowners under

counterfactual levels of density exposure.

We repeat this process for each border area, estimating a separate hedonic price schedule

(e.g., the red line in Figure 7) and its derivative at each homeowners’ density exposure. These

derivatives are then used to estimate individuals’ taste parameters and welfare changes for

different levels of density exposure according to the equations in Section 6.A.

B Welfare counterfactuals

Table 3 reports our estimates of the mean welfare change based on results from the semipara-

metric specification discussed above if every homeowner in our sample were exposed to a 1/2

unit per acre increase in density exposure. This is about a 0.3 standard deviation increase

in density for our hedonic regression sample.28 Welfare impacts are reported by row for the

three different exposures discussed above: to total housing units, to owner-occupied housing

units (holding constant renter-occupied exposure), and to renter-occupied housing units (holding

constant owner-occupied exposure).

The table reports results from our baseline specification that includes hedonic controls for

housing traits, local geography (slope and elevation), distance to local amenities and our reading

test score proxy for school quality. Thus, this model controls for house and neighborhood

quality differences that might confound our estimate of the preference for density.29 Mean

welfare changes are always negative and highly statistically significant. For example, $9,462

is required on average to compensate an existing owner for a 1/2 unit per acre increase in density,

corresponding to nearly a 100 unit increase within a circle with a 500 meter radius centered

27Figure A7 also recreates binned scatter plots analogous to the gradients in Figure 5 using only observations within
500 meters of the Golf Manor-Amberley Village border. For this border area, the relationships between each outcome
and the distance to the border follow patterns similar to those seen above in Figure 5, although they are estimated
with less precision because they only use observations in this one border area.

28See column 2 of Table 4 above: 0.5/1.61=0.31, which is a bit less than a one-fifth increase in the sample mean density
(0.5/2.75=0.18). Finally, results for the two other specifications estimated–the linear and log models are included in
Appendix Table A2.

29These controls work as expected. For example, not controlling for distance to amenities and school quality
moderately increases the estimated average welfare loss associated with a 1/2 unit per acre increase in All Housing
Units from -$9,500 to -$11,000. That is as we expected: if house values in the less regulated, low density community
border area are being bid up because they also happen to be closer to attractive amenities such as (say) nice parks, the
price estimate will be biased up because of the uncontrolled for amenity.
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on her home. The second and third rows of the table highlight how different the welfare loss

is if that increase arises from more owner-occupied versus rental units. Not surprisingly, the

mean welfare loss for an increase in owner-occupied units is close to that for All Housing Units,

as owner-occupied units are the dominant type of housing in our suburban sample. However,

the average required compensation is 5-6 times larger if the exposure increase is due to added

renter-occupied units.30 In our specific case, the heightened distaste for density could arise

because a roughly 100-apartment unit increase is likely to involve a high rise complex that some

people may view as fundamentally changing the nature of the area.31

Table 3: Average ∆Welfare estimates by housing tenure

Tenure Baseline

All housing units -$9,462
($1,457)

Owner occupied -$10,366
($3,053)

Renter occupied -$56,392
($12,552)

Housing traits Y
Elevation/slope Y
Distance to amenities Y
School test score Y

Note: This table presents estimates of the average change for individual homeowners from increasing their density exposure by 1/2

unit per acre by housing tenure. All regression estimates were retrieved separately by border area using 263,340 houses spread
throughout the 217 border areas. Standard errors are calculated by cluster resampled bootstrap. The 217 border areas were
resampled with replacement for 1,000 bootstrap replications.

C Robustness Analysis

In this subsection, we show that our key conclusions are robust to a variety of different as-

sumptions. We begin by estimating different specifications of the hedonic price function. We

also explore the implications of using smaller border depths and smaller circles for measuring

density exposure. Next, we show results assuming each side of the border is a separate market

and then discuss the extent to which hyperlocal supply effects could be affecting our results.

Finally, we discuss estimates under alternative parametrization assumptions to homeowners’

utility functions.

30Note that the result for All housing units is slightly outside the range for Owner occupied and Renter occupied.
Slightly different samples explain that. That is, the sample for All housing units is not the same as for the sum of
Owner-occupied and Renter occupied. It is larger because it includes vacant units. An increase in vacant units appears
to be modestly less distasteful than an increase in an occupied unit.

31This general pattern of results is not dependent upon the specific functional form assumption we make on the
underlying hedonic estimation. However, we do find larger absolute welfare losses on increased rental density
exposure with non-linear specifications (i.e., the log and semiparametric ones) compared to a simple linear hedonic.
See the discussion in Section 7.C directly below.
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Appendix Table A2 reports results from two alternative hedonic specifications. In both the

linear and log models, our key conclusions still hold. That is, we always find an economically

meaningful average welfare loss and substantially larger losses associated with increased renter

occupied density. A key difference between the fully linear hedonic model’s results and those

from our preferred semiparametric specification is in the smaller absolute welfare loss from a

increase in density due to more renter-occupied units.32 The linear model’s estimated welfare

loss strictly from more apartments is less than half that we reported from the semiparametric

model (-$26,736 versus -$56,392). Note that this is not the case with the log model. Its estimated

loss from a purely renter-occupied increase in density is a much larger -$107,475. While there is

a large range in the rental unit density estimates across different functional forms, our preferred

semiparametric specification, which makes no functional form assumptions on the object of

interest and is consistent with the recommended best practice that suggests nonlinear flexible

estimation of the hedonic price function (Bishop et al., 2020), still does not result in an estimate

larger in magnitude than the standard log-log parametric specification.

The first column of Appendix Table A3 then shows that these key conclusions are robust to

assuming smaller border depths (using the baseline semiparametric specification). Those results

are based on border depths of only 250 meters (as opposed to 500 meters in our baseline). The

results in column 1 are similar to, but not identical, to our baseline results in Table 3. The welfare

loss associated with a general increase in density is smaller, at about -$8,000 while the estimates

for purely owner-occupied and purely renter-occupied increases in density are each greater. Thus,

estimation using shorter border depths certainly does not yield findings suggestive that there is

no distaste for density, and it confirms a strong dislike of rental unit-generated density.

The second column of Appendix Table A3 provides welfare loss estimates based on density

exposure being created using circles with a smaller 250 meter radius. Here, we find qualitatively

similar results but the estimates are smaller in magnitude. Note that the standard errors also

shrink, implying a similar confidence level in a negative average effect. This decline in magnitudes

is at least partially due to the use of smaller circles to measure the density exposure changes the

underlying counterfactual. In our baseline model with a 500 meter radius, the area of the circle

was about 785,000 square meters or about 194 acres. Hence, a 1/2 unit increase per acre implies

about 97 more housing units. With the smaller radius of 250 meters, the area of the circle is only

49 acres, which is nearly three-quarters smaller than the area of the circle with a 500 square meter

radius. For 49 acres, a 1/2 unit per acre increase in housing amounts to about 24 units. That is

barely one-quarter of the unit increase in our baseline estimation. Hence, it is not surprising to

find smaller absolute impacts. Even so, the pattern of sharply higher welfare losses arising from

renter-occupied density relative to owner-occupied density still is apparent.

For completeness, we also estimate average welfare losses using only the single family units

32The differences in estimated welfare costs from more total housing units and for only more owner occupied units
are relatively minor.
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from CoreLogic. An advantage of this measure is that it is constructed using more granular

location data; however, it does not account for rental units. The average losses reported in the

third column of Appendix Table A3 are similar in size to reports for density increases associated

solely with more owner-occupied units in Table 3. That consistency is comforting, but we much

prefer our main sample using census block data that allows us to break out impacts for owner-

occupied versus renter-occupied increases in density, as that heterogeneity clearly is important.

Our next robustness test estimated separate hedonic specifications for each side of a border

area. Conceptually, this is akin to treating each side as a distinct housing market. Even if one does

not literally believe they are separate housing markets, this robustness analysis helps control for

the potential impact of unobserved publicly provided services, such as as trash collection, police

services, etc., by only using observations in a single municipality to estimate the underlying

hedonic specification.33 The fourth column of Appendix Table A3 reports results analogous those

in Table 3. Note that they are not materially different from our baseline findings. Statistically

speaking, one cannot reject the null that the coefficients in column 4 of Appendix Table A3 are

the same as those in Table 3. The heterogeneity by tenure is readily apparent, too, with the distaste

for renter-occupied density still at least five times larger than that for owner occupied density.

The modestly lower estimates for All housing units and owner occupied units might be consistent

with an impact of omitted locally produced services and amenities in our baseline specification,

but even if so, the influence cannot be very large. Moreover, a reduction in magnitude is not

observed in the moderately higher renter occupied density estimate. In sum, treating the border

area as two separate markets does not change our key conclusions in any material way.

Another potential concern is that our results are being driven by hyperlocal supply effects

rather than preferences over amenities, either because of the discontinuity in housing types

crossing the border or from supply conditions decaying across space similar to how a preference

over proximity to a disamenity may decay across space. The former is tested by the previous

robustness check noted above, which estimated hedonic pricing functions using comparisons

only between houses in the same municipality within 500 meters of the border.

Regarding the latter issue, the literature (Hartley, 2014, Anenberg and Kung, 2014, Pennington,

2021, Li, 2022, Asquith et al., 2023) notes that if supply effects decay across space in a small

geographic area, then it is very difficult to disentangle disamenity effects from supply effects.

However, we argue that the patterns in our results are hard to rationalize as coming primarily

from a supply effect, but readily explained when interpreted as preference estimates. That

conclusion is based on a rationale similar to that in Hartley (2014), who decomposes the local

price effects of home foreclosures by placing assumptions on the segmentation between the

single family and multifamily housing markets. In our case, the intuition is as follows: if the

observed price effects on density are primarily from supply effects, an increase in the single

33This sample is slightly smaller at 178 versus 217 border areas because we further restrict to those areas where each
side contains at least 100 usable observations for our hedonic models.
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family housing stock (all else constant) should lower single family housing prices more than a

similar quantity increase in the multifamily stock because additional single family stock is more

directly substitutable with single family houses. In Equation (14) above, we consider an equal

quantity increase in renter occupied housing, holding owner occupied quantity constant and vice

versa. But, in our willingness-to-pay estimates for housing density in Table 3, we find 5 times

larger welfare losses from increases in rental unit density than in owner occupied density.

Another way to look at this is to let our willingness-to-pay estimates by tenure be driven in

part by preferences over disamenities and in part by a supply effect,

∆Welfareown = Disamenityown + Supplyown = −$10,366

∆Welfarerent = Disamenityrent + Supplyrent = −$56,392,

in which the monetary amounts are based on the average welfare change estimates in Table

3. Per the argument above, a weak assumption is that Supplyown ≤ Supplyrent. That is, the

reduction in single family house prices from adding owner occupied stock, which is more directly

substitutable with single family housing, is the same or larger in magnitude than the reduction

from adding the same quantity of renter occupied stock. The most extreme case is to assume

supply effects explain all of the owner occupied welfare change. Even if so, supply effects can

explain at most −$10,366 / − $56,392 = 18% of the rental welfare change. While we can not

rule out supply effects totally, it is hard to imagine that supply effects drive 100% of the owner

occupied estimate and just 18% of the renter occupied estimate.34 In sum, while we can not

completely rule out hyperlocal supply effects like those advanced in the papers referenced above,

the patterns in our willingness-to-pay estimates are not consistent with a large supply effect, but

are well explained as a reflection of preferences and sorting across neighborhoods.35

34Additional support that our estimates primarily capture a preference estimate emerges when we look at the
patterns in average willingness-to-pay splitting the sample across different neighborhoods (shown in Table 4 below).
For example, this same pattern by housing tenure is even more pronounced in neighborhoods that are predominantly
white. For those areas, the average owner occupied welfare loss is even smaller in magnitude while the rental occupied
welfare loss is even larger (-$4,748 versus -$70,896). Based on the same heuristic argument, this would imply supply
effects can explain at most 7% of the rental welfare change estimate in these neighborhoods. On the other hand, it it
would be very easy to explain this pattern as a reflection of differing preferences across demographic groups based on
differential rates of homeownership. For example, data from the St. Louis Federal Reserve Bank’s FRED files in the
fourth quarter of 2020 shows the homeownership rate for Whites alone, was 74.5%, while that for Blacks and Hispanics
was 44.5% and 49.1%, respectively.

35Finally, we note there is currently no consensus in the literature on how to disentangle these effects, nor is there
formal modeling of the frictions required to generate these hyperlocal supply effects (see Furth (2024) for a review).
Asquith et al. (2023) studies local effects of new apartment buildings and illustrates in a simple geometric exercise that
if renters only look for housing in small geographic areas, this search friction can create differences in the probability a
given housing unit is in competition with the new apartment building even across a small distance of space. However,
in the model of Rosen (1974), it is the joint matchings of suppliers and consumers that generate the pricing function.
In equilibrium, homeowners lie tangent to the pricing function based on their preferences for utility-bearing housing
characteristics, and so the slope of the pricing function reflects those preferences according to Equation (1). In this
way, supply conditions will determine what pricing function emerges in equilibrium and who chooses to live in that
market, but the pricing function still identifies preferences for those homeowners who do choose to live there. This
suggests that formal modeling of the frictions needed for local supply shocks to cause departures from the hedonic
model’s ability to capture individuals’ preferences is needed.
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Thus far, all estimates presented have relied on the parametric assumption of a log linear utility

function following Bajari and Benkard (2005). In Appendix C, we explore how the average welfare

loss estimates are affected by alternative restrictions on homeowners’ utility. Appendix Table C1

first shows that assuming log linear utility yields a welfare loss estimate that is only modestly

larger in magnitude than simply extrapolating linearly based on the observed MWTP. We then

compare these estimates to an estimate retrieved following the maximum likelihood procedure

detailed in Bishop and Timmins (2019). This approach yields a mean welfare loss estimate of

-$33,984, or more than three times that from following Bajari and Benkard (2005). This pattern

is very similar to that observed in Bishop and Timmins (2019)’s application, which suggests

that traditional methods will tend to underestimate the willingness to pay to avoid increases

in disamenities. However, because there is currently no consensus in the literature for which

approach is the best practice for nonmarginal hedonic demand estimation (Bishop et al., 2020),

we opt for the more conservative approach of Bajari and Benkard (2005), which yields estimates

smaller in magnitude and stays closer to the price derivatives observed in the data, to generate

our baseline results.

In sum, a host of robustness analyses yields results quite similar to our main findings which

are: (a) average welfare losses are non-zero and economically meaningful; and (b) there is an

especially strong distaste for density associated with rental units.

D Preference heterogeneity

While the typical individual in our sample dislikes housing density and loses welfare under

the counterfactual higher density, there is significant heterogeneity in people’s tastes according

to our estimates. Figure 8 plots the empirical distributions of welfare changes based on the

semiparametric specification estimated in Table 3.36 The plot in the top panel for changes in total

housing units shows that about two-thirds (65%) suffered a welfare loss with respect to a 1/2

unit per acre increase in total housing units, with one-third (35%) being indifferent or actually

preferring more density. It is noteworthy that this distribution is skewed by those who have a

particularly intense dislike for density. The median of -$5,164 is only 55% of the mean of -$9,462.

The plot shows that this is driven by a longer and thicker left tail of those who dislike density. A

few require nearly $150,000 in compensation for the hypothetical density increase.

36See Appendix Figures A8 and A9 for the analogous preference heterogeneity results for the linear and log
specifications.
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Figure 8: Distribution of ∆Welfare estimates
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Note: This figure shows distributions of welfare change estimates under a counterfactual increase of 1/2 unit per acre
by housing type based on the baseline specification controlling for parcel characteristics, school test scores, and
distance to local amenities (as in Table 3). The top panel plots the empirical distribution for the total housing unit
density exposure from the 1st through 99th percentile. The bottom left panel plots the distribution of welfare changes
from increasing owner occupied density exposure. The bottom right panel plots the distribution of welfare changes
for increasing the renter occupied density exposure. Measures of central tendency for each distribution are reported
in the accompanying text boxes.

The bottom two plots in Figure 8 show the analogous distributions for increases in owner-

occupied and renter-occupied density, respectively. They share important similarities with the

top plot. The share of those experiencing welfare losses from the relevant density exposure

increase are close to the 65% for total housing units. Hence, there are households who have

a positive preference for renter-occupied density. However, both distributions are skewed by

similarly longer and thicker tails of those who dislike density arising from any type of housing

units. The coefficient of variation of the welfare losses associated with more renter-occupied

density is far greater than that for the same amount of increased owner-occupied density. This
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reflects the fact that some people have an extremely strong dislike of rental density. The median

distaste for density associated with more owner-occupied units drops to just under -$3,000. The

median distaste associated with more renter-occupied units is less than one-quarter of the mean

value, but even so, it still is a healthy -$12,700.

Overall, most homeowners have a moderate preference against density, some have a strong

preference against density, and some moderately prefer density. In addition, the distaste for

density associated with renter-occupied housing is much greater than that for owner-occupied

housing on average.

Heterogeneity in the distaste for density clearly is important, and our empirical methodology

allows us to compute estimates of average welfare change splitting the sample by differing neigh-

borhood types and demographic breakdowns. Panel (a) of Table 4 reports summary statistics on

density preference estimates by quartile of density exposure. Presuming that households will sort

across neighborhoods based on their preferences, we would expect people living in low density

areas to have stronger preferences against density. The results in the top panel are consistent with

such sorting. While there are not stark differences between more or less dense neighborhoods

in the share who have at least some dislike for density (i.e., it ranges from 62% to 70% in Panel

(a)), there is a marked difference in the typical degree of dislike. The average welfare loss for our

standard increase in the density of all housing units is nearly 5 times greater in the 25% least dense

border areas compared to the 25% most dense border areas (i.e., -$18,257 versus -$3,696). That

gap widens to 20x when comparing welfare losses associated with a density increase arising from

more renter-occupied units. The results from this top panel of Table 4 shows that the -$150,000

compensation for more rental-related density is coming from relatively low density areas.

Panel (b) of Table 4 shows similar summary statistics, but now splitting the data into sub-

samples based on the median household income of a house’s census tract. Individuals in higher

income neighborhoods tend to have much larger welfare losses under the counterfactual higher

density exposure. Moving from the first quartile (low income) to the fourth quartile (high income),

average welfare losses increase sharply in magnitude from -$4,494 to -$19,003 for the all housing

units case. As with density, the range widens considerably for changes associated with increased

rental density.37

Panel (c) splits the sample by quartile of the share of the population that is white in census

blocks within 500 meters of the focal house. Here, we find less evidence of a clear link between

preferences for density and race arising from the total or owner occupied housing units. The

top and bottom quartiles by share white have almost identical mean welfare losses from our

standard increase in density via ’all housing units’. However, there is a big difference for the loss

37In Appendix Table A4, we split the sample by the share of the 25 year old+ population possessing a bachelor’s
degree or higher. As was the case with high income areas, we find large shares of people with preferences against
density in neighborhoods where most of the population has completed higher education. This is unsurprising if the
high income neighborhoods are also the highly educated neighborhoods, which tends to be the case.
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associated with higher density driven by more renter-occupied units, with predominantly white

neighborhoods disliking such density much more.38

Table 4: Preference estimates by neighborhood type

Q1 Q2 Q3 Q4
Panel (a) Avg. density exposure (total units per acre) 0.99 2.07 3.07 4.91

Share who dislike density 0.65 0.70 0.65 0.62
Avg. ∆Welfare, All -$18,257 -$8,873 -$6,967 -$3,696
Avg. ∆Welfare, Owner -$18,850 -$9,698 -$7,947 -$4,920
Avg. ∆Welfare, Renter -$151,842 -$44,347 -$21,419 -$7,409

Q1 Q2 Q3 Q4
Panel (b) Avg. household income ($ 2021) $50,972 $78,998 $105,680 $157,261

Share who dislike density 0.65 0.65 0.64 0.68
Avg. ∆Welfare, All -$4,494 -$6,936 -$7,423 -$19,003
Avg. ∆Welfare, Owner -$6,092 -$8,377 -$9,759 -$17,246
Avg. ∆Welfare, Renter -$10,038 -$27,849 -$44,834 -$142,957

Q1 Q2 Q3 Q4
Panel (c) Avg. share white (< 500 meters) 0.55 0.80 0.89 0.95

Share who dislike density 0.65 0.68 0.68 0.61
Avg. ∆Welfare, All -$6,762 -$12,991 -$11,266 -$6,830
Avg. ∆Welfare, Owner -$9,415 -$17,454 -$9,846 -$4,748
Avg. ∆Welfare, Renter -$24,478 -$52,476 -$77,724 -$70,896

Note: This table shows summary statistics on individual preference estimates by quartile subgroup using the baseline specification
of Table 3. Panel (a) shows the share of individuals who dislike density (MWTP < 0) and the average welfare changes from
increasing density exposure 1/2 unit per acre splitting the sample by quartile of density exposure. Panel (b) shows the same
summary statistics but splitting the sample into quartiles by the median household income of a house’s census block group. Panel
(c) splits the sample by quartile of the share of people identifying as white in nearby census blocks.

Given the strong correlation between the the preference for density with density itself and

household income, Figure 9 delves more deeply into the intersection of that heterogeneity. It

presents a breakdown by both density exposure and household income quartile. The y-axis

measures the income quartile and the x-axis the density exposure quartile such that household

income decreases as one moves down the y-axis and density increases moving right along the x-

axis. Regardless of whether one is measuring welfare losses from more units in total, only owner-

occupied units or only renter-occupied units, the largest welfare losses always are concentrated

in high income, low density areas.

38In Appendix Table A4, we further split the sample by the share of households with children. As with race, we do
not observe much of a pattern between family structure and preference for density for total or owner occupied but a
pattern emerges looking at rental unit density.
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Figure 9: ∆Welfare estimates by density and income quartile
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Note: This figure shows the average welfare change from a 1/2 unit per acre increase in density exposure by both
census block group household income quartile and a house’s density exposure quartile. The y-axis is the income
quartile and the x-axis is the density exposure quartile. Household income decreases moving down the y-axis and
density increases moving right along the x-axis, so the top left quadrant represents houses in high income and low
density areas, while the bottom right quadrant represents houses in low income and high density areas. Each cell
represents an average welfare change estimate for a given income quartile and density quartile. Cells are colored by
the magnitude of the welfare change estimate with darker red cells indicating a larger welfare loss and whiter cells
indicating a smaller or positive welfare change. The first grid shows the welfare changes from a 1/2 unit per acre
increase in total housing unit density exposure. In the second row, the left and right grids tabulates the analogous
averages for owner occupied and renter occupied density increases respectively. All grids are plotted on the same
color scale shown at the bottom.
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With respect to increased density due to more owner-occupied units, individuals in places that

are in both the top income quartile (Q4 in the figure) and the most dense quartile (Q1 in the

figure) have average welfare losses of nearly -$28,000, while those in places that are in the lowest

income quartile and least dense quartile have average welfare losses below -$5,000. The aversion

by the highest income people living in the least dense areas is particularly extreme with respect

to density arising from more rental units. Their welfare loss from increased apartment density

is over one-quarter million dollars, while those in the lowest income and highest density places

have welfare losses of just under -$5,000.

E Moving to avoid density

Thus far we have assumed all households are forced to live under the counterfactual 1/2 acre

increases in housing unit density. In reality, local homeowners could move to avoid neighbor-

hood change, but changing houses can impose significant costs due to a variety of factors well

documented in the literature (Quigley, 2002). Hence, we augment our counterfactual to allow

homeowners to move at a cost that is proportional to their house value. If homeowners choose

to move, they get to consume their original bundle but must pay a moving cost. They no longer

bear the utility change from the increase in density and instead only experience the price change

and a moving cost.

Table 5 presents welfare change estimates analogous to Table 3’s, but homeowners can move

at a cost proportional to their house’s value. Panel (a) repeats the results from the baseline

specification while Panel (b) reports the average welfare change if homeowners can move at 15%

of house value.39 The biggest impact of mobility is associated with a density increase due to more

renter-occupied units. With moving costs equal to 15% of house value, 17% of homeowners in

our sample choose to move at a typical cost of roughly -$56,000. Allowing these moves reduces

the average welfare loss by about 85%, from -$56,392 to -$8,808. Obviously, the outliers with the

most extreme aversion to more apartment units avoid that cost by moving in this counterfactual,

and the largest outliers involve changes in rental density exposure. In contrast, there is not much

reduction in the average welfare loss due to increases in total or owner occupied housing density

because only 3%-4% of homeowners sustain a utility loss from the density increase that exceeds

the cost to move.
39In Appendix Table A5, we also report results for higher and lower moving costs equal to 10% and 20% of house

value.
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Table 5: Average ∆Welfare estimates with household mobility

Tenure Avg. ∆Welfare % move Avg. moving
cost

Panel (a): Baseline, no moving allowed

All housing units -$9,462 0% .
Owner occupied -$10,366 0% .
Renter occupied -$56,392 0% .

Panel (b): Moving costs 15% of house value

All housing units -$8,151 3% -$40,995
Owner occupied -$9,147 4% -$35,202
Renter occupied -$8,808 17% -$55,582

Note: This table presents estimates of the average welfare change for individual homeowners from increasing their density exposure
by 1/2 unit per acre depending on if homeowners can avoid utility loss by moving. The first panel repeats the mean welfare change
using the baseline specification with no moving allowed (corresponding to the estimates in Table 3). Panel (b) display the average
welfare losses when homeowners can move by paying a price at 15% of their home value. The first column displays the average
welfare change estimates. The second column shows the percent of homeowners that move under each counterfactual increase. The
third column shows the average moving cost among the homeowners who move.

Finally, Figure 10 tabulates the average welfare change from a 1/2 unit per acre increase in

rental unit density allowing moving at 15% of house value by both household income and density

quartile (analogous to Figure 9). Although the same qualitative patterns hold as before, namely

that high income, low density areas sustain the largest welfare losses, we again observe large

reductions in the size of these welfare losses by allowing homeowners to move. Saliently, the

average welfare loss in the highest income quartile and lowest density quartile falls by an order

of magnitude from -$260,000 to -$29,000, with similarly large reductions in the size of the average

welfare loss across quartile groups. This large reduction in the average welfare loss is due to

nearly 1/3 of homeowners in that quartile group choosing to move.
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Figure 10: Renter exposure ∆Welfare estimates by density and income quartile, moving costs 15%
of house value
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Note: This figure shows the average welfare change from a 1/2 unit per acre increase in rental unit exposure when
households are allowed to move at 15% of their house value by both census block group household income quartile
and a house’s density exposure quartile. The y-axis is the income quartile and the x-axis is the density exposure
quartile. Household income decreases moving down the y-axis and density increases moving right along the x-axis,
so the top left quadrant represents houses in high income and low density areas, while the bottom right quadrant
represents houses in low income and high density areas. Each cell represents an average welfare change estimate for
a given income quartile and density quartile. The percentage of homeowners that move is shown in parantheses.
Cells are colored by the magnitude of the welfare change estimate with darker red cells indicating a larger welfare
loss and whiter cells indicating a smaller or positive welfare change. The color scale is shown at the bottom.

F Discussion: Implications for Regulatory Change

That increased density decreases local homeowners’ welfare considerably is driven by a majority

of homeowners at least moderately disliking density, with a small proportion having a very

large willingness to pay to avoid density. Homeowners with these extreme preferences are

disproportionately represented in affluent neighborhoods.
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This has a number of potential implications for policy makers as they consider ways to

persuade citizens to allow more building. We have shown in principle that household mobility

can limit the more extreme preferences observed against rental density, but it well could be that

existing owners will decide the minimum cost strategy is to fight prospective densification via

the political process. Although one should not literally generalize our results to the broader

community, as we rely on comparisons within a small area to justify the reliability of our density

preference estimates, the distribution of preferences suggests that as a likely outcome. The

combination of economically meaningful average losses combined with heterogeneity resulting

in more negative outliers than positive ones seems ripe to create an organized opposition. Under

the current political system which tends to locate control over zoning and land use regulation at

the individual community level, these results raise the possibility that there may be no reason we

should expect the typical suburb to densify of its own accord.

Furthermore, under purely local control the option for some type of Coasian bargain looks

unlikely. Based on our results, a government transfer policy seeking to compensate incumbent

homeowners to allow higher density would be both expensive and highly regressive. Recent

policy actions have sought to increase housing supply by arresting control from the local level

and moving it to the state level. Our results suggest this may be one of the few feasible policy

recourses toward solving issues of housing supply in built-up areas.40

While we reiterate that our results only capture the changes to incumbent homeowners’

welfare, we have shown their losses are not insignificant and there is heterogeneity across

neighborhoods. From the perspective of place-based policy, neighborhoods with lower welfare

losses are arguably better candidates for densification. However, this tradeoff is complicated

by the regressivity of such a policy and the potential gains to lower income people being able

to move into the new units in high opportunity areas. Deriving a rule for optimal allocation

of densification that balances enhancing affordability, protecting amenities, and social marginal

utility in a unified way constitutes yet another direction for future research.

G What Mediates the Distaste for Density? A First Look at Neighbor Preferences

Another obvious next step for research is to identify how the preference for density is mediated.

There are a number of potential factors, including crime, traffic, noise, pollution, neighbor

preferences, etc., and a deeper understanding of them is important economically and socially.

In this subsection, we study one of these potential factors–neighbor preference. We explore this

potential mechanism by augmenting our hedonic specification with demographic controls for

race, income, education, and family structure.

40Reassigning control to the state level could create the opportunity for more Coasian exchange. As
an example, when California’s state housing mandate demanded that Atherton, CA, an affluent sub-
urb of San Francisco, build town houses, many residents advocated paying a $9 million fine for viola-
tion of the mandate rather than build denser housing. https://www.sfchronicle.com/bayarea/article/

Atherton-to-consider-building-town-homes-to-avoid-17169242.php
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Table 6 presents results analogous to those in Table 3 that also include the neighborhood

demographic variables in the hedonic regressions. Column (1) repeats the baseline set of results

already presented in Table 3. Column (2) adds controls for neighborhood race. Specifically, we

control for the share of people that are Black and Hispanic in nearby census blocks using exposure

measures constructed analogously to the density exposure. Adding these controls moderately

reduces the magnitude of the estimate for total housing unit density from -$9,462 to -$7,771

and rental unit density from -$56,392 to -$48,593 and moderately increases the owner occupied

density estimate. Column (3) includes additional controls for median household income in a

parcel’s block group. Again, inclusion of more demographic variables moderately reduces the

magnitude of total and rental occupied density estimates while increasing the magnitude of the

owner occupied estimate. Finally in Column (4), we add controls for the share of people who are

married, with child, and middle aged in nearby census blocks and the share of adult individuals

with a college degree or more in a parcel’s block group. Collectively, this portfolio of added

controls is associated with large changes in our estimated average welfare effects. The mean

change associated with our hypothetical 1/2 unit increase in total housing units falls by just over

one-half from our baseline estimate of -$9,462 to -$4,648. The required compensation for a pure

rental density increase falls by even more—by 63% to $20,998. On the other hand, the implied

welfare change for a pure owner-occupied density increase is 23% greater than our baseline result

in column 1.41

This admittedly simple mediation analysis still highlights that some—but not all—of the

preference against housing density (particularly from rental units) is explained by neighbor

preference. It further suggests that controls for family structure, age and education are similarly

influential drivers of the distaste for density as race and income. That said, there certainly could

be other externalities such as those noted above mediating the preference for low housing density.

Evaluating the contribution of these other potential factors in a more formal mediation analysis

(e.g., Gelbach (2016)), and how they interact, is an important direction for future research.

41The increase in the owner occupied welfare loss estimate may be due to differential ownership propensities by
demographic groups. For example, data from the St. Louis Federal Reserve Bank’s FRED files shows the overall
homeownership rate in the fourth quarter of 2020 to be 65.6%. For Whites alone, it was 74.5%, while that for Blacks
and Hispanics was 44.5% and 49.1%, respectively.
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Table 6: Average ∆Welfare estimates by housing tenure, Mediation analysis

Tenure (1) (2) (3) (4)

All housing units -$9,462 -$7,771 -$6,820 -$4,648
($1,457) ($1,515) ($1,547) ($1,664)

Owner occupied -$10,366 -$11,777 -$11,821 -$12,748
($3,053) ($2,958) ($2,986) ($2,494)

Renter occupied -$56,392 -$48,953 -$43,201 -$20,998
($12,552) ($11,979) ($11,506) ($10,848)

Housing traits Y Y Y Y
Elevation/slope Y Y Y Y
Distance to amenities Y Y Y Y
School test score Y Y Y Y
Race Y Y Y
Income Y Y
Other demographics Y

Note: This table presents estimates of the average change for individual homeowners from increasing their density exposure by 1/2

unit per acre by housing tenure. Each column shows average welfare change estimates under a different set of controls included in
the hedonic regressions. All regression estimates were retrieved separately by border area using 263,340 houses spread throughout
the 217 border areas. Standard errors are calculated by cluster resampled bootstrap. The 217 border areas were resampled with
replacement for 1,000 bootstrap replications.

8. Conclusions and Next Steps

Using data on density restrictions in the form of minimum lot sizes combined with micro data

on house prices, we provide the first estimates of the value homeowners place on exposure to

density. We do so by creating a novel measure of density exposure that varies across the border

of contiguous communities with different minimum lot size restrictions. We find that house

prices are about $40,000 more costly and lots are 3,000ft2 larger on the side of the border with a

more restrictive minimum lot size regulation. Price effects of exposure are estimated in narrowly

defined border areas using the variation from the discontinuities in lot size. These price effects

are connected to a structural hedonic model of housing choice suggested by Bajari and Benkard

(2005).

This empirical strategy is used to establish a set of stylized facts about the preference for

density. First, the distaste for density is widespread. Nearly two-thirds of existing owners in our

border areas suffer a loss from densification; only one-third are indifferent or benefit from higher

density. The average owner suffers around a $9,500 welfare loss if density exposure increases by
1/2 unit per acre, but that average masks interesting and important heterogeneity. The median loss

is roughly half that amount, but there is a longer and thicker tail of those suffering much larger

losses than there is for those experiencing welfare gains from higher density. Across individuals,

some have a severe distaste for density and require much higher compensation for the same
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increase in exposure. However, more have only a modest distaste, while another group has a

slight preference for density.

We also find a much larger distaste for density associated with more multifamiliy housing. The

average distaste for the same 1/2 unit per acre increase arising from more renter-occupied units is

5-6 times greater than if it arises from more owner-occupied homes. The impacts of sorting are

evident in the heterogeneity across types of neighborhoods, too. There is a far higher distaste for

density in places that are both in the top quartile of the income distribution and bottom quartile

of the density distribution. People who live in such areas have systematically higher aversion to

densification.

An obvious implication of our findings is that the distaste for density provides a clear un-

derpinning of the demand for regulation. There certainly can be other other motivations, but

the combination of an economically meaningful average welfare loss plus a long left tail of those

with an extreme aversion to density indicates this is an important one. Second, and related,

the compensation per household needed to ameliorate those who dislike density is quite large

compared to the costs of other housing policies such as the Low Income Housing Tax Credit

program or the voucher program. One way to try to encourage higher density is for government

to provide compensation to those communities allowing more building. Our estimates suggest

any such intervention will have to be large to be effective. It is also likely to be highly regressive,

as indicated by the largest welfare losses reported for increasing density in high income and low

density neighborhoods. Third and finally, the mean loss and the nature of the distribution about

that mean seem ripe for generating local coalitions to fight densification. Most people do not like

it, and some are extremely harmed by it. This may go a long to helping us understand why it

so difficult to change building conditions on the ground in American communities. That is an

important local political economy issue that we hope our research can inform going forward.
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