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1 Introduction

A �rm's incentive to invest in R&D depends on how much it can bene�t from competitors'

investments. If R&D outcomes, such as new technologies or mineral discoveries, are public,

�rms may free ride by imitating products or exploring near rivals' discoveries.When each

�rm would rather wait to observe the results of other �rms' research than invest in R&D

itself, the equilibrium rate of innovation can fall below the socially optimal level (Bolton and

Harris, 1999). On the other hand limiting information �ow between �rms, for example by

property rights on existing innovations, can slow research by causing ine�cient duplication

and preventing cumulative innovation (Williams, 2013). 1

In this paper, I quantify the e�ects of information externalities on R&D in the context

of oil exploration. Several features of this industry make it an ideal setting for studying

the general problem of information spillovers and the design of optimal property rights

regulation. When an oil �rm drills an exploration well it generates knowledge about the

presence or absence of resources in a particular location. Exploration wells can therefore be

thought of as experiments with observable outcomes located at points in geographic space.

Since oil deposits are spatially correlated, the result of exploration in one location generates

information about the likelihood of �nding oil in nearby, unexplored locations. The spatial

nature of research in this industry means that the extent to which di�erent experiments are

more or less closely related is well de�ned. Research is cumulative in the sense that the

�ndings from exploration wells direct the location of future wells and the decision to develop

�elds and extract oil.

Since multiple �rms operate in the same region, the results of rival �rms' wells provide

information that can determine the path of a �rm's exploration. If �rms can see the results of

each other's exploration activity, then there is an incentive to free ride and delay investment

in exploration until another �rm has made discoveries that can direct subsequent drilling.

However, if the results of exploration are con�dential then �rms are likely to engage in

wasteful exploration of regions that are known by other �rms to be unproductive.2 Using

1Policy that de�nes property rights over innovations plays an important role in controlling the e�ects
of information externalities and balancing the trade-o� between discouraging free riding and encouraging
cumulative research. For example, broader patents minimize the potential for free riding but increase the
cost of research that builds on existing patents, and may therefore direct research investment away from
socially e�cient projects (Scotchmer, 1991).

2This trade-o� between free riding and ine�cient exploration has been identi�ed as important for policy
making in the industry literature. For example, in their survey of UK oil and gas regulation, Rowland
and Hann (1987, p. 13) note that �if it is not possible to exclude other companies from the results of an
exploration well... companies will wait for other companies' drilling results and exploration will be deferred,�
but if �information is treated highly con�dentially... an unregulated market would be likely to generate
repetitious exploration activity.�
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UK o�shore drilling data from 1964-1990, I quantify these ine�ciencies and the extent to

which they can be mitigated by counterfactual property rights policies. The magnitude of

these e�ects depends on the spatial correlation of well outcomes, the extent to which �rms

can observe the results of each other's wells, and the spatial arrangement of drilling licenses

assigned to di�erent �rms.

I measure the e�ect of information externalities on equilibrium exploration rates and

industry surplus by estimating a structural model of the �rm's exploration problem. Firms

face a dynamic discrete choice problem in which, each period, they can choose to drill

exploration wells on the set of blocks over which they have property rights. At the end of

each period �rms observe the results of their exploration wells, observe the results of other

�rms' wells with some probability, α ∈ [0, 1], and update their beliefs about the spatial

distribution of oil. Firms face a trade-o� between drilling now and delaying exploration to

learn from the results of other �rms' wells that depends on the spatial arrangement of drilling

licenses and the probability of observing the results of other �rms' wells.

The model's asymmetric information structure complicates the �rm's problem. Firms

observe di�erent sets of well outcomes, and in order to forecast other �rms' drilling behavior

each �rm must form beliefs about the outcomes of unobserved wells and about other �rms'

beliefs. To make estimation of the model and computation of equilibrium tractable, I pro-

pose an equilibrium concept in which each �rm has beliefs about the rate of exploration of

blocks held by other �rms that are correct in expectation, conditional on the �rm's current

state. This idea is similar to the experience based equilibrium approach of Fershtman and

Pakes (2012). A further complication to estimating the model is that �rms' state variables

are not fully observable. In particular, the econometrician does not know which rival well

outcomes a �rm has observed at each point in time. I deal with this problem by presenting

a novel identi�cation argument leveraging the fact that choice probabilities are a mixture

over potential information states.

The estimated value of the spillover parameter, α, indicates that �rms observe the re-

sults of other �rms' wells with 64% probability. The presence of substantial but imperfect

information spillovers means that equilibrium exploration behavior could be a�ected by both

free riding and ine�cient exploration. I perform counterfactual simulations to quantify these

two e�ects. I �nd that removing the free riding incentive brings exploration forward in time

by about 1.5 years, substantially increasing total exploration and development and raising

industry surplus by 52%. Next, I allow for perfect information sharing between �rms, hold-

ing �rms' incentive to free ride �xed at the baseline level. Industry surplus is increased

by 24% due to an improvement in the e�ciency of exploration - since �rms can perfectly

observe each other's well results, cumulative learning is faster and exploration wells are more
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concentrated on productive blocks.

I use the estimated model to evaluate counterfactual information policy. Under UK

regulations, data from exploration wells is property of the �rm for around �ve years before

being made public. Weakening property rights by shortening the con�dentiality window

will increase the �ow of information between �rms, and is likely to increase the e�ciency of

exploration but may also increase the incentive to free ride. On the other hand, strengthening

property rights by extending the con�dentiality window will decrease the incentive to free ride

but slow cumulative learning and reduce the e�ciency of exploration. I simulate equilibrium

behavior under di�erent con�dentiality window lengths and �nd that industry surplus is

increased under both longer and shorter con�dentiality windows. Among simulated policies,

a 0-length con�dentiality period is optimal, increasing surplus by 28% over the baseline,

though a longer window of 7.5 years is also locally optimal.

Finally, I show how the spatial distribution of property rights a�ects exploration incen-

tives. I construct a counterfactual spatial assignment of property rights that clusters each

�rm's licenses together, holding the total number of blocks assigned to each �rm �xed. Under

the clustered assignment industry surplus increases by 4%.

The results highlight the tension between discouraging free riding and encouraging e�-

cient cumulative research in the design of property rights over innovations. Optimal policy

depends sensitively on the interplay of these two e�ects, and the design of information pol-

icy can have large e�ects on industry surplus. In this setting, there are ranges of the policy

space in which reducing information sharing leads to a marginal improvement in surplus

and ranges where reducing information sharing is optimal. This trade-o� applies in other

settings, for example in de�ning the breadth of patents, regulations about the release of

data from clinical trials, and the property rights conditions attached to public funding of

research. In these settings, the role of information externalities in policy design may interact

with the more commonly studied issue of property rights giving �rms monopoly power over

innovations.

This work contributes to the literature on �rms' R&D incentives (Arrow, 1971; Dasgupta

& Stiglitz, 1980; Spence, 1984), particularly building on studies of how intellectual property

rights impact innovation (Murray & Stern, 2007; Williams, 2013). I contribute to this

literature by quantifying the trade-o� between this e�ect on cumulative research and the free

riding incentive that has been discussed in the theory literature (Hendricks and Kovenock,

1989; Bolton and Farrell, 1990; Bolton and Harris, 1999). This paper di�ers from much

of the innovation literature by using a structural model of the �rm's sequential research

(here, exploration) problem to quantify the e�ects of information externalities and alternative

property rights policies.
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This paper also contributes to the literature on the e�ect of information externalities in

oil exploration, mostly focused on bidding in license auctions (Porter, 1995; Haile, Hendricks,

and Porter 2010; Nguyen, 2021). Less attention has been given to the post-licensing explo-

ration incentives induced by di�erent property rights policies. Notable exceptions include

Hendricks and Porter (1996), who show that the probability of exploration on tracts in the

Gulf of Mexico increases sharply when �rms' drilling licenses are close to expiry, and Lin

(2009) and Levitt (2016), who document �rms' drilling response to exploration on nearby

tracts.

Existing papers on oil and gas exploration that estimate structural models of the �rm's

exploration problem include Levitt (2009), Lin (2013), Agerton (2018), and Steck (2018).

The model I estimate in this paper di�ers from existing work by incorporating both Bayesian

learning with spatially correlated beliefs and information leakage across �rms. Steck (2018)

uses a closely related dynamic model of the �rm's decision of when to drill in the presence

of social learning about the optimal inputs to hydraulic fracturing. Steck's �nding of a

signi�cant free riding e�ect when there is uncertainty about the optimal technology is com-

plementary to the �ndings of this paper, which measures the free riding e�ect in the presence

of uncertainty about the location of oil deposits.

Other related papers in the economics of oil and gas exploration include Kellogg (2011)

and Covert (2015). Covert's methodology is particularly close to mine, as he also uses a

Gaussian process to model �rms' beliefs about the e�ectiveness of di�erent drilling technolo-

gies in di�erent locations. The results I present in Section 4, which show that �rms are more

likely to drill exploration wells in locations where the outcome is more uncertain, contrast

with the �ndings of Covert (2015), who shows that oil �rms do not actively experiment with

fracking technology when the optimal choice of inputs is uncertain.

Finally, the procedure used to estimate the structural model of the �rm's exploration

problem builds on the literature on estimation of dynamic games using conditional choice

probability methods, following Hotz and Miller (1993), Hotz, Miller, Sanders, and Smith

(1994), Bajari, Benkard, and Levin (2007), and Fershtman and Pakes (2012). In particular,

I extend these methods to a setting with asymmetric information in which the econometrician

is uninformed about each agent's information set. I propose a novel source of identi�cation

of conditional choice probabilities in the presence of this latent state variable that is di�erent

from the panel variation used by Kasahara and Shimotsu (2008).

The remainder of this paper proceeds as follows. Section 2 provides an overview of the

setting and a summary of the data. Section 3 presents a model of spatial beliefs about the

location of oil deposits. Section 4 presents reduced form results that provide evidence of

spatial learning, information spillovers, and free riding. In Section 5 I develop a dynamic
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structural model of optimal exploration with information spillovers, and in Section 6 I discuss

estimation of the model. Results and policy counterfactuals are presented in Sections 7 and

8. Section 9 concludes.

2 UK Oil Exploration: Setting and Data

I use data covering the history of oil drilling in the UK Continental Shelf (UKCS) from 1964

to 1990. Oil exploration and production on the UKCS is carried out by private companies

who hold drilling licenses issued by the government. The �rst such licenses were issued in

1964, and the �rst successful (oil yielding) well was drilled in 1969. Discoveries of the large

Forties and Brent oil �elds followed in 1970 and 1971. Drilling activity took o� after the oil

price shock of 1973, and by the 1980s the North Sea was an important producer of oil and

gas. I focus on the region of the UKCS north of 55°N and east of 2°W , mapped in Figure

1, which is bordered on the north and east by the Norwegian and Faroese economic zones.

This region contains the main oil producing areas of the North Sea and has few natural gas

�elds, which are mostly south of 55°N .3

2.1 Technology

O�shore oil production involves two investment phases. First, exploration wells are drilled

from mobile rigs or ships to locate oil reservoirs. It is important to note that the results of a

single exploration well provide limited information about the size of an oil deposit, and many

exploration wells must be drilled to estimate the volume of a reservoir. When a su�ciently

large oil �eld has been located, the �eld is developed. This second phase of investment

involves the construction of a production platform - a large static facility typically anchored

to the seabed.

I observe the coordinates and operating �rm of every exploration well drilled and devel-

opment platform constructed from 1964 to 1990. The left panel of Figure 1 maps exploration

wells in the relevant region. For each exploration well, I observe a binary outcome - whether

or not it was successful. In industry terms, a successful exploration well is one that encoun-

ters an �oil column�, and an unsuccessful well is a �dry hole�.4 In reality, although exploration

wells yield more complex geological data, the success rate of wells based on a binary wet/dry

classi�cation is an important statistic in determining whether to develop, continue explor-

3In the estimation of the structural model, I also use equivalent data from the Norwegian sector.
4Well classi�cation is based on well-level data that describes whether each well located oil. I classify

as successful all wells coded as �oil well� or �oil shows�. An underlying assumption is that the industry
classi�cation of wells did not change over time, for example with changing technology or prices.

5



ing, or abandon a region. See for example Lerche and MacKay (1995) and Bickel and Smith

(2006) who present models of optimal sequential exploration decisions based on binary sig-

nals. I observe each development platform's monthly oil and gas production in m3 up to the

year 2000.

2.2 Regulation

The UKCS is divided into blocks measuring 12x10 nautical miles (approx. 22x18 km). These

blocks are indicated by the grid squares on the maps in Figure 1. The UK government

holds licensing rounds at irregular intervals (once every 1 to 2 years), during which licenses

that grant drilling rights over blocks are issued to oil and gas companies. Unlike in many

countries, drilling rights are not allocated by auctions. Instead, the government announces a

set of blocks that are available, and �rms submit applications which consist of a list of blocks,

a portfolio of research on the geology and potential productivity of the areas requested, a

proposed drilling program, and evidence of technical and �nancial capacity. Applications

for each block are evaluated by government geoscientists. Although a formal scoring rubric

allocates points for a large number of assessment criteria including �nancial competency,

track record, use of new technology, and the extent and feasibility of the proposed drilling

program, the assessment process allows government scientists and evaluators to exercise

discretion in determining the allocation of blocks to �rms. Although the evaluation criteria

have changed over time, the discretionary system itself has remained relatively unchanged

since 1964.5

License holders pay an annual per-block fee, and are subject to 12.5% royalty payments

on the gross value of all oil extracted. Licenses have an initial period of 4 or 6 years during

which �rms are required to carry out a minimum work requirement. I refer to the end of this

period as the license's work date. Minimum work requirements are typically light, even in

highly active areas. During the 1970s �3 exploration wells per... 7 blocks became the norm�

in the main �contested� areas (Kemp, 2012a p. 58). Licenses in less contested �frontier�

areas often did not require any drilling, only seismic analysis.

I observe the history of license allocations for all blocks. I perform all analysis on a

region corresponding to the northern North Sea basin which contains almost all of the large

oil deposits discovered on the UK continental shelf.6 In assigning blocks to �rms I make two

5A few blocks were o�ered at auction in the early 1970s, but this experiment was determined to be
unsuccessful. According to a regulatory manager at the Oil and Gas Authority (OGA), the result of the
auctions was that �the Treasury raised a lot of money but nobody drilled any wells.� By contrast, the
discretionary system has �stood the test of time�. The belief among UK regulators is that auctions divert
money away from �rms' drilling budgets.

6Speci�cally, this region corresponds to the area north of 55N , east of 0◦W , and south-west of the UK
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Figure 1: Wells and License Blocks

Notes: Grid squares are license blocks. The left panel plots the location of all exploration wells drilled from
1964 to 1990. The right panel records license holders for each block in January 1975. Note that if multiple
�rms hold licenses on separate sections of a block, only one of those �rms (chosen at random) is represented
on this map.

important simplifying assumptions. First, I focus only on the �operator� �rm for each block.

Licenses are often issued to consortia of �rms, each of which hold some share of equity on

the block. The operator, typically the largest equity holder, is given responsibility for day

to day operations and decision making. Non-operator equity holders are typically smaller oil

companies that do not operate any blocks themselves, and are often banks or other �nancial

institutions. Major oil companies do enter joint ventures, with one of the companies acting as

operator, but these are typically long lasting alliances rather than block by block decisions.7

In the main analysis below, I will be ignoring secondary equity holders and treating the

operating �rm as the sole decision maker, with all secondary equity holders being passive

investors.8 Second, licenses are sometimes issued over parts of blocks, splitting the original

economic zone's border. For some of the descriptive exercises I restrict the data to 1970-1980, since the
location of early exploration before any oil discoveries is hard to rationalize.

7For example, 97% of blocks operated by Shell between 1964 and 1990 were actually licensed to Shell and
Esso in a 50-50 split. Esso was at some point the operator of 16 unique blocks, compared to more than 740
blocks that were joint ventures with Shell. Only 8.6% of block-months operated by one of the top 5 �rms
(who together operate more than 50% of all block-months) have another top 5 �rms as a secondary equity
holder. This falls to 2.8% among the top 4 �rms.

8Appendix Table A4 presents regressions of drilling probability on the distribution of surrounding licenses
that suggest this is a reasonable assumption. The number of nearby licenses operated by the same �rm as
block j has a consistent, statistically signi�cant positive e�ect on the probability of exploration on block j.
The number of nearby licenses with the same secondary equity holders as block j, on which the operator
of block j is a secondary equity holder, and on which one of the secondary equity holders on block j is the
operator, all have no statistically signi�cant e�ect on drilling probability.
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blocks into smaller areas that can be held by di�erent �rms. All of the analysis below will

take place at the block level. Therefore, if two �rms have drilling rights on the two halves of

block j, I will record them both as having independent drilling rights on block j. In practice,

88.2% of licensed block-months have only one license holder. 11.5% of block-months have two

license holders and a negligible fraction have more than two. Subject to these simpli�cations,

the right panel of Figure 1 maps the locations of licensed blocks operated by the 5 largest

�rms in January 1975. There are 73 unique operators between 1964 and 1990, but 90% of

block-months are operated by one of the top 25 �rms, and over 50% are operated by one

of the top 5. Appendix Figure A2 illustrates the distribution of licenses at the block-month

level across �rms.9

A �nal set of regulations de�nes property rights over the information generated by wells.

The production of development platforms is reported to the government and published on a

monthly basis. Data from exploration wells, including whether or not the well was successful,

is property of the �rm for several years after a well is drilled. After this con�dentiality period,

well data is reported to the government and made publicly available. For most wells in the

sample, the con�dentiality period was �ve years. However, well data is typically released by

the government in batches and is often delayed, so the average time from well completion

to data release is closer to 6 years. Appendix Figure A4 records the distribution of realized

con�dentiality periods. In reality there is likely to be information �ow between �rms during

this con�dentiality period for a number of reasons: �rms can exchange or sell well data,

information can leak through shared employees, contractors, or common equity holders across

blocks operated by di�erent �rms, and the activities associated with a successful exploration

well might be visibly di�erent than the activities associated with an unsuccessful exploration

well. The extent to which information �ows between �rms during this con�dentiality period

is an object of interest in the empirical analysis that follows.

9One additional complication is the case of an oil reservoir which crosses multiple blocks operated by
di�erent �rms. In these cases the oil reservoir is �unitized� by regulation, and pro�t is split proportionally
between operators of the blocks (Weaver and Asmus, 2006). This provision removes the �common pool�
incentive discussed by Lin (2013) and the incentive to develop an overlapping reservoir before a neighboring
rival. Consistent with this, the model presented below abstracts from common pools. On the other hand,
unitization means that a �rm can obtain revenue from a block without being observed to develop it in the
data, if a neighboring block on a common pool is developed. This channel is not present in the model.
In reality, blocks are large relative to most �elds and unitized shareholders are often small relative to the
operating �rm. In data on �rm shares of �elds, the median largest shareholder of a �eld has an 87% interest.
This data includes interests held by passive investors in addition to unitized operators
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2.3 Data

Table 1 contains summary statistics describing the data. Observations are at the �rm-block

level. That is, if a particular block is licensed multiple times to di�erent �rms, it appears

in Table 1 as many times as it is licensed. There are a total of 628 blocks ever licensed

and 1470 �rm-block pairs between 1964 and 1990. I focus on two actions - the drilling of

exploration wells and the development of blocks. I consider the development of a block as a

one o� decision to invest in a development platform. I record a block as being developed on

the drill date of the �rst development well. In reality, this would come several months after

construction of the development platform begins. I consider development to be a terminal

action, so any additional exploration activity on �rm-blocks that have been developed is

dropped from the data.10

Table 1: Summary Statistics: Blocks & Wells

Firm-Blocks All Explored Exp. &

Devel-

oped

Exp. &

Not Dev.

Not Exp.

N 1470 721 160 561 749

Share Explored .490 1.000 1.000 1.000 0.000

Share Developed .120 .222 1.000 0.000 .021

First Exp. After Work Date . .227 .280 .215 .

Own Share of Nearby Blocks:

Mean .199 .178 .181 .177 .219

SD .217 .199 .206 .197 .231

Exploration Wells per Block 2.002 4.082 10.138 2.355 0.000

Share Successful .199 .199 .444 .129 .

Notes: Table records statistics on all license-block pairs active between 1964 and 1990. In particular, if a
block is licensed to multiple �rms it appears multiple times in this Table. Each column records statistics
on subsets of license-blocks de�ned according to whether they are ever explored or developed. Own share
of nearby blocks is de�ned as the share of license-blocks that are at most third degree neighbors that are
licensed to the same �rm.

The second column of Table 1 records statistics on the set of �rm-blocks that are ever

explored - that is, those �rm-blocks where at least one exploration well was drilled - and the

10I associate output from a development platform with the block it is located on. In reality, �elds may
overlap multiple blocks although blocks are large relative to most �elds in this setting. When development
occurs on a �eld which overlaps multiple blocks, the overlapping sections of the blocks where the platform
is not located are typically split o� from their parent block. I treat the remainder of the parent block as a
continuation of the original undeveloped block. Exploration on already developed �rm-blocks accounts for
only 5% of exploration wells in the raw data, and likely represents activity related to the operation of the
existing development platform.
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third column records statistics for those �rm-blocks that are ever developed. 49% of �rm-

blocks are ever explored, and among these, 22% are developed. Note that the information

generated by a single well is insu�cient to establish the size of an oil reservoir, and �rms must

drill many exploration wells on a block before making the decision to develop. On average, 10

exploration wells are drilled before a block is developed, while 2.3 wells are drilled on blocks

explored but not developed. Table 1 shows a 44% well success rate on developed blocks, and

13% on non-developed blocks. The success rate of exploration wells on a block is correlated

with the size of any underlying oil reservoir. Thus, if an initial exploration well yields oil,

but subsequent wells do not, the block is likely to only hold small oil deposits and is unlikely

to be developed. Within blocks that are developed, there is a positive correlation between

exploration well success and estimated reserves, illustrated in Appendix Figure A3.11

Note that the work requirement policy leaves signi�cant scope for �rms to delay explo-

ration. The work requirement typically demands at most one exploration well be drilled

per block, but it is clear that many more than one exploration well must be drilled before

a block is developed. While the work requirement policy is therefore likely to hasten the

drilling of the �rst exploration well on a block, there are no requirements on the speed with

which the subsequent program of exploration must take place. The fourth row of Table

1 indicates that almost a quarter of blocks that are ever explored are �rst explored after

the work requirement date. These �ndings corroborate claims from industry literature that

indicate the terms of drilling licenses issued in the UK are considerably more generous than

those issued, for example, in the Gulf of Mexico, and provide considerable room for �rms to

�stockpile� unexplored and undeveloped acreage for many years (Gordon, 2015).

3 A Model of Spatially Correlated Beliefs

The e�ect of information externalities on �rms' exploration decisions depends on the spatial

arrangement of licenses, the extent to which �rms can observe the results of each other's

wells, and on the correlation of exploration results at di�erent locations. In Hodgson (2024)

I show that in a simple two-�rm, two-block model, spatial correlation in well outcomes

reduces the equilibrium rate of exploration below the social optimum. The magnitude of

this free riding e�ect is determined by the extent to which well results are correlated over

space. In particular, the more correlated are outcomes on neighboring blocks, the lower the

equilibrium rate of exploration.

In this section, I measure this spatial correlation by estimating a statistical model of

the distribution of oil that allows the results of exploration wells at di�erent locations to

11The methodology used to estimate reserves is outlined in Appendix C.5.
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be correlated. By �tting the model to data on the outcomes of all exploration wells drilled

between 1964 and 1990, I obtain an estimate of the extent to which this covariance of well

outcomes declines with distance. I interpret the estimated model as a Bayesian prior about

the distribution of oil

3.1 Statistical Model of the Distribution of Oil

I start by describing a statistical model of the distribution of oil over space. I model the

probability that an exploration well at a particular location is successful as a continuous

function over space drawn from a Gaussian process. This model assumes that the location

of oil is distributed randomly over space but allows spatial correlation - the outcomes of

exploration wells close to each other are highly correlated and the degree of correlation

declines with distance. A draw from this process is a continuous function that, depending

on the parameters of the process, can have many local maxima corresponding to separate

clusters of oil �elds (see Appendix Figure A5 for a one dimensional example). As I discuss

further below, such models are widely used in natural resource exploration to model the

spatial distribution of geological features. The estimation of these models is sometimes

known as Kriging in the geostatistics literature.12.

Formally, let ρ(X) : X → [0, 1] be a function that de�nes the probability of exploration

well success at locations X ∈ X. I model ρ(X) as being drawn from a logistic Gaussian

process G(ρ) over the space X.13 In particular, for any location X,

ρ(X) ≡ ρ(λ(X)) =
1

1 + exp(−λ(X))
, (1)

where λ(X) is a continuous function from X to R.
The function λ(X) is drawn from a Gaussian process with mean function µ(X) and

covariance function κ(X,X ′). This means that for any �nite collection of K locations

{1, ..., K}, the vector (λ(X1), ..., λ(XK)) is a multivariate normal random variable with mean

(µ(X1), ..., µ(XK)) and a covariance matrix with (j, k) element κ(Xj, Xk). The prior mean

12See Chapter 7.2 of Rasmussen and Williams (2006) for a discussion of the conditions required for consis-
tency of maximum likelihood estimates of a Gaussian Process with binary outcomes. For the case of Kriging
with spatial data see Mardia and Marshall (1984) and Cressie (1991). In general, estimates generated using
likelihoods of the form 3 are consistent under increasing-domain asymptotics. That is, �xing any set of lo-
cations X, every X ∈X is explored for a su�ciently large sample. This asymptotic framework is consistent
with the assumption that the data is generated by the model of license issuing and exploration outlined in
Section 5. Small sample bias due to the selection of explored blocks remains a concern, but such selection
should be limited since 91% of licensed blocks have been explored at least once by 1990.

13If well success rates were independent across locations j, a natural model would draw ρj ∈ [0, 1] from a
beta distribution. However there is no natural multivariate analogue of the beta distribution that allows me
to specify a covariance between ρj and ρk for j 6= k.
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function µ : X → R is assumed to be smooth and the covariance function κ : X ×X → R
must be such that the resulting covariance matrix for any K locations is symmetric and

positive semi-de�nite. One covariance function that satis�es these assumptions is the square

exponential covariance function (Rasmussen and Williams, 2006) given by

κ(X,X ′) = ω2exp

(
− |X −X ′|2

2`2

)
. (2)

The parameter ω controls the variance of the process. In particular, for any X, the

marginal distribution of λ(X) is given by λ(X) ∼ N(µ(X), ω). The parameter ` controls

the covariance between λ(X) and λ(X ′) for X 6= X ′. Notice that as the distance |X −X ′|
between two locations increases, the covariance falls at a rate proportional to `. As |X −X ′|
goes to 0, the correlation of λ(X) and λ(X ′) goes to 1, so draws from this process are

continuous functions.

I estimate the parameters, (µ(X), ω, `), of the Gaussian process model using data on

the binary outcomes of all well exploration wells drilled between 1964 and 1990. Let s =

(s1, s2, ..., sW ) be a vector of length W where W is the total number of exploration wells

drilled by all �rms and sw = 1 if well s was successful, and otherwise sw = 0. Let X =

(X1, ..., XW ) be a matrix recording the block centroid coordinates of each well. Then the

likelihood of well outcomes s conditional on well locations X is given by:

L(s|X,µ, ω, `) =

∫ ( W∏
w=1

ρ(Xw)1(sw=1)(1− ρ(Xw))1(sw=0)

)
dG(ρ;µ, ω, `) (3)

The integrand is the product of Bernoulli likelihoods for each well for a particular draw

of ρ, which encodes success probabilities at every location Xw. The integral is over draws of

ρ with respect to the distribution G(ρ), which is a function of the parameters. Note that I

assume a �at mean function, µ(X) = µ(X ′) = µ.

Table 2 records maximum likelihood estimates. The �rst column records the estimated

values of the three parameters of the Gaussian process, while the second column records

implied statistics of the distribution of ρ(X) at the estimated parameters - the expected

success probability, the standard deviation of success probability, and the correlation of

success probability between two locations one block (18 km) away from each other. The

parameters are identi�ed by the empirical analogs of these statistics in the well outcome

data. Most importantly, the estimated parameter ` captures the true spatial correlation of

exploration well outcomes.
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Table 2: Oil Process Parameters

Parameter Estimate Implied Statistics

µ -1.728 E(ρ(X)) 0.207

(0.202)

ω 1.2664 SD(ρ(X)) 0.179

(0.146)

` 0.862 Corr(ρ(0), ρ(1)) 0.471

(0.102)

Notes: The �rst column records parameter estimates from �tting the likelihood function given by equation
3 to data on the outcome of all exploration wells drilled between 1964 and 1990 on the relevant area of the
North Sea. Well locations are taken to be the centroids of corresponding blocks. Standard errors computed
using the Hessian of the likelihood function in parentheses. The second column records the implied expected
probability of success, the standard deviation of the prior beliefs about probability of success, and the
correlation of success probability between two locations one block (18 km) away from each other.

3.2 Interpretation as a Bayesian Prior

The estimated parameters, (µ, ω, `), can be thought of as describing primitive geological

characteristics that determine the distribution of oil deposits over space. If these parameters

are known by �rms and the Gaussian process model is a good approximation to the geological

process that generates the distribution of oil, then the estimated processG(ρ|µ, ω, `) describes
the rational beliefs that �rms should hold about the probability of exploration well success

at each location X prior to observing the outcome of any wells. The parameters of this

prior also determine how beliefs are updated according to Bayes' rule after well results are

observed.

In particular, �rms whose prior is described by G(ρ) update their beliefs over the entire

space X after observing a success or failure at a particular location X. Posterior beliefs at

locations closer to X will be updated more than those at more distant locations. Figure 2

illustrates how posterior beliefs respond to well outcomes at di�erent distances under the

estimated parameters. The solid purple line illustrates the �rm's constant prior expected

probability of success of around 0.2.14 The dotted yellow line represents the �rm's posterior

expected probability of success after observing one successful well at 0 on the x-axis. The

dashed red and blue lines correspond to posteriors after observing two and three successful

14The assumption of a constant prior mean could be relaxed to allow µ to depend on, for example, prior
knowledge of geological features. µ represents �rms' mean beliefs in 1964, before any exploratory drilling took
place. Brennand et al. (1998) emphasize that knowledge of subsea geology was extremely limited before
exploration began. Using a modern map of actual geological features as inputs to the prior mean would
therefore be inappropriate. For this reason, I believe it is not unreasonable to adopt a constant prior mean.
It may be possible to identify a location varying prior probability of success from �rms' initial exploration
choices, as recorded in the maps in Appendix Figure A12. However, this would mean that the two step
estimation approach described below, which uses beliefs as an input to policy function estimation, would be
infeasible. This would instead require a more computationally costly full solution estimation method.
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wells at the same location. Notice that the expected probability of success increases most at

the well location, and decreases smoothly at more distant locations.

The true spatial correlation of well outcomes, captured by the parameter `, determines

the rate at which belief updating declines with distance. In particular, the estimated value of

` implies that �rms should update their beliefs about the probability of success in response to

well outcomes on neighboring blocks and those two blocks away, but not in response to well

outcomes three or more blocks away. At these distances, the correlation in well outcomes

dies out and thus so does the implied response of beliefs to well outcomes.15

Figure 2: Response of Beliefs to Well Outcomes
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Notes: Figure depicts prior and posterior expected value of ρ(X) in a one dimensional space for posteriors
computed after observing one, two, and three successful wells at X = 0. The parameters (µ, ω, `) of the
logistic Gaussian process prior are set to the estimated values from Table 2.

Formally, let w ∈ W index wells, let s(w) ∈ {0, 1} be the outcome of well w, and let Xw

denote the location of well w. If prior beliefs are given by the logistic Gaussian Process G(ρ)

then the posterior beliefs G′(ρ) after observing {(s(w), Xw)}w∈W are given by

G′(ρ) = B(G(ρ), {(s(w), Xw)}w∈W ), (4)

where B(·) is a Bayesian updating operator. Since the signals that �rms receive are

binary, there is no analytical expression for the posterior beliefs given the Gaussian prior and

the observed signals. In particular, G′(ρ) is non-Gaussian. I compute posterior distributions

using the Laplace approximation technique of Rasmussen andWilliams (2006) which provides

a Gaussian approximation to the non-Gaussian posterior G′(ρ). I discuss the procedure used

15In Appendix Figure A5 I illustrate belief updating under di�erent values of ` in a numerical example.
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to compute B(·) in more detail in Appendix B. Using the Bayesian updating rule it is possible

to generate posterior beliefs for any set of observed well realizations. Appendix Figure A7

is a map of posterior beliefs for a �rm that observed the outcome of all exploration wells

drilled from 1964-1990, illustrating regions with di�erent posterior expected probability of

success and uncertainty. In general, the standard deviation of posterior beliefs is lower in

regions where more exploration wells have been drilled.

The Gaussian process model is a parsimonious approximation to more complex inferences

about nearby geology made by geologists based on exploration well results. The method of

spatial interpolation between observed wells that is achieved by computing the Gaussian pro-

cess posterior (known as Kriging) is widely applied in predicting the distribution of geological

features over space. The model of beliefs employed here corresponds to �trans-Gaussian Krig-

ing�, so called because of the use of a transformed Gaussian distribution (Diggle, Tawn, and

Moyeed, 1998). Whether or not we think these beliefs are a correct representation of how

oil deposits are distributed, the model of learning described above is representative of how

geologists (and presumably oil companies) think.

3.3 Beliefs and Development Payo�s

In what follows, I adopt the additional simplifying assumption that �rms have beliefs about

the probability of success at the block level. In particular, let ρj = ρ(Xj) where Xj are

the coordinates of the centroid of block j ∈ {1, ..., J}. When an exploration well is drilled

anywhere on block j, �rms update their beliefs as if the success of that well is drawn with

probability ρj. One way to rationalize this assumption is to assume that the locations of

exploration wells within blocks are drawn uniformly at random (see Appendix Figure A6 for

an illustration). The probability of success, ρj, then has a natural interpretation as the share

of block j that contains oil, and the observed success rate is an estimate of this probability

which becomes more precise as the number of wells on the block increases.

Formally, I assume that the potential oil revenue yielded by block j, πj, is drawn from a

distribution Γ(π|ρj, P ) where P is the oil price and
∂E(πj)

∂ρj
> 0. A higher exploration success

probability ρj corresponds to higher expected oil revenue. Beliefs about exploration well

success G(ρ) then imply beliefs about the potential oil revenue on block j given by:

Γ̃j(π|G,P ) =

∫
Γ(π|ρj, P )dG(ρ). (5)

This interpretation of block-level success rates is supported by a positive relationship

between the realized exploration success rate and estimated oil reserves on developed blocks,

illustrated by Appendix Figure A3. Note that the assumption that probability of success is
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a primitive feature of a block and within-block location choice is random implies that the

realized success rate on a block should be constant over time. This abstracts from the reality

of within block exploration - for instance success rates would not be constant if �rms continue

to drill near previous successful wells within the block. In Appendix Table A5 I present the

results of regressions that show that within blocks, the success rate is not signi�cantly higher

or lower for later wells than for earlier wells. This suggests that the assumption of constant

block-level success rates is a reasonable approximation for the purpose of studying the �rm's

exploration decision across blocks.

Let Jd be a set of blocks that have been developed and for which the oil revenue, πj, has

therefore been observed. Since the distribution of oil revenue is a function of ρj, it is possible

to de�ne a new Bayesian updating operator,

G′(ρ) = B(G(ρ), {(s(w), Xw)}w∈W , {πj, P}j∈Jd). (6)

That is, realizations of development payo�s a�ect �rms' posterior beliefs about ρ.

4 Descriptive Evidence

The estimated model of beliefs suggests that there is high degree of correlation between well

outcomes on neighboring blocks. This spatial correlation is estimated from data on well

outcomes at di�erent locations. In this section, I use data on �rms' drilling decisions to test

whether �rm behavior is consistent with the estimated model of rational beliefs.

4.1 Exploration Drilling Patterns

The estimated spatial correlation illustrated by Figure 2 suggests that �rms should make

inferences across space based on past well results. I test this prediction using data on

�rm behavior. Let Sucjdot be the cumulative number of successful wells drilled on blocks

distance d from block j before date t by �rms o ∈ {f,−f}, where −f indicates all �rms

other than �rm f (including exploration wells drilled on now-developed blocks). Failjdot

is analogously de�ned as the cumulative number of past unsuccessful wells. I estimate the

following regression speci�cation using OLS:

Explorefjt = αft + βj +
∑
d

∑
o∈{f,−f}

gdo (Sucjdot, Failjdot)) + εfjt. (7)
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Where gdo is a �exible function of cumulative successful and successful well counts for wells

of type (d, o). Explorefjt is an indicator for whether or not �rm f drilled an exploration

well on block j in month t. Notice that the speci�cation includes �rm-month and block �xed

e�ects. This means that the e�ects of past wells are identi�ed by within-block changes in

the set of well results over time, and not by the fact that some blocks have higher average

success rates than others and these blocks tend to be explored more.

Figure 3: Response of Drilling Probability to Cumulative Past Results
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Notes: Points are the estimated marginal e�ect of each type of past well on Explorefjt from the speci�cation
given by equation 7 where gdo(·) is quadratic in each of the arguments. In the left panel, marginal e�ects are
computed for the �rst well of each type. In the right panel, the marginal e�ects of same-�rm same-block wells
are reported for the nth well of each type. Error bars are 95% con�dence intervals computed using standard
errors clustered at the �rm-month level. Sample includes block-months in the relevant region before 1991.
I drop observations from highly explored regions where the number of nearby own wells (those on 1st and
2nd degree neighboring blocks) is above the 80th percentile of the distribution in the data.

The left panel of Figure 3 records the estimated marginal e�ect of the �rst well of each

type on the probability of subsequent exploration. I include three distance bands in the

regression - wells on the same block, those 1-3 blocks away, and those 4-6 blocks away. Solid

red circles indicate the e�ect on the probability of �rm f drilling an exploration well on

block j of an additional past successful well drilled by �rm f at each distance. Hollow red

circles record this e�ect for unsuccessful past wells drilled by �rm f . The results indicate

that additional successful wells on the same block and 1-3 blocks away signi�cantly increase

the probability of subsequent exploration, and additional unsuccessful wells signi�cantly

decrease the probability of subsequent exploration. These results suggest that �rms make

inferences across space at distances consistent with the spatial correlation of well results

illustrated by Figure 2, with the size of the drilling response declining with distance. These

e�ects also diminish with the total number of wells drilled - the right panel shows that the

marginal e�ect of a successful same-�rm well on exploration probability falls from around
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2.5 percentage points for the �rst well to 0 for the fourth well. This is consistent with the

diminishing marginal e�ect of exploration wells on beliefs illustrated by comparing the curves

in Figure 2.

Blue squares in the left panel indicate the e�ect of past wells drilled by other �rms on

�rm f 's probability of exploration. The e�ects are of the same sign but have magnitudes

between 20% and 50% of the same-�rm well e�ects. As with the same-�rm e�ects, the

other-�rm e�ects diminish with distance and lose statistical signi�cance at distances of 4-6

blocks.16 This suggests that information �ow across �rms is imperfect - consistent with the

con�dentiality regulations limiting observability of other �rm wells. Hypothesis tests reject

the equality of the same- and other-�rm e�ects for all pairs of coe�cients except those on

successful wells 4-6 blocks away which are both indistinguishable from zero.17

To test directly whether �rm behavior responds to changes in beliefs, I regress �rm explo-

ration decisions on model-implied posteriors. Since exploration wells generate information,

and their value is in informing �rms' future drilling decisions, a natural hypothesis is that the

probability of drilling an exploration well should be increasing in the expected information

generated by that well. For instance, the �rst exploration well drilled on a block should be

more valuable than the tenth because its marginal e�ect on beliefs is greater.

I compute the model-implied posterior beliefs for each block j, each month t, under the

assumption that �rms observe all wells drilled before that month according to the Bayesian

updating rule (4).18 I obtain Et(ρj), the posterior mean, and V art(ρj), the posterior variance

of beliefs about the probability of success on block j, ρj. To measure the expected information

gain of an additional well I obtain the expected Kullback-Leibler divergence, KLj,t, between

the prior and posterior distributions following an additional exploration well for each (j, t)

(Kullback, 1997).

Column 1 of Table 3 records the coe�cients from a regression of KLj,t on the com-

puted posterior variance and a quadratic in posterior mean at (j, t). There is an inverse

u-shaped relationship between expected KL divergence and Et(ρj) that is maximized when

16Since the regression includes block �xed e�ects, the e�ect of other �rm wells on the same block comes
from variation in the number of wells over time when multiple �rms hold licenses on the same block. See
Section 2.2 for discussion of how I assign blocks to �rms.

17I report a number of additional speci�cations in the Appendix. Appendix Table A6 reports analogous
results for di�erent sub-periods of the data. These results indicate that the ratio of the e�ect of wells 1-3
blocks away to the e�ect of wells on the same block is relatively constant over time. This is consistent
with the assumption that the �rms are learning about the location of oil, not about the true value of the
spatial covariance parameter ` which I assume is known to �rms ex-ante. Appendix Figure A1 shows that
�rm's response to the outcome of past wells that are no longer con�dential is signi�cantly greater than �rms'
response to wells in the con�dentiality period.

18In this section, I compute beliefs as if all �rms observe the results of all other �rms' exploration wells.
This assumption is relaxed in the structural model developed in Section 5.

18



Et(ρj) = 0.48. This re�ects the classic result in information theory (see for example MacKay,

2003) that the information generated by a Bernoulli random variable is maximized when the

probability of success is 0.5. There is a positive relationship between V art(ρj) and KLjt,

consistent with the information gain from an additional well increasing in variance.

The second column of Table 3 presents estimated coe�cients from a regression of Explorefjt

on V art(ρj), a quadratic in Et(ρj), and (f, j) level �xed e�ects. Note that the coe�cients

follow the same pattern as those in the �rst column: �rms are less likely to drill exploration

wells on blocks with very high or very low expected probability of success, and are more

likely to drill exploration wells on blocks with higher variance in beliefs. Firm behavior

aligns closely with the theoretical relationship between moments of the posterior beliefs and

the expected information generated by exploration wells. The third column shows that de-

velopment is more likely on blocks with high mean and low variance beliefs, consistent with

the correlation between exploration well success and oil reserves illustrated by Figure A3.

Table 3: Response of Drilling Probability to Posterior Beliefs and License Distribution

Dependent Variable: KL Divergence Exploration Well Develop Block

Posterior Mean 0.414*** 0.267*** 0.004

(0.001) (0.070) (0.003)

Posterior Mean2 -0.450*** -0.206** .

(0.001) (0.100) .

Posterior Variance 0.082*** 0.0199*** -0.002***

(0.000) (0.006) (0.001)

Own Share Nearby Blocks . 0.017** 0.000

. (0.008) (0.001)

R2 0.970 0.106 0.077

N 86,362 86,362 86,362

Firm-Month and Block FE No Yes Yes

Notes: Standard errors clustered at the �rm-month level. Mean, variance, and KL divergence of posterior
beliefs computed for each (f, j, t) as if all wells drilled by all �rms up to month t− 1 are observed. Sample
is all undeveloped �rm-block-months in the relevant region,. *** indicates signi�cance at the 99% level. **
indicates signi�cance at the 95% level. * indicates signi�cance at the 90% level. Standard errors are two-way
clustered at the �rm-month and block levels. Own share of nearby blocks is the number of nearby own
blocks as a share of all nearby licensed and undeveloped blocks, where nearby means at most third degree
neighbors. Sample includes block-months in the relevant region between 1970 and 1990.

The �nal row of Table 3 reports coe�cients on the share of nearby undeveloped blocks

belonging to the same �rm as block j. The results indicate that a �rm is more likely to explore

when a larger share of the surrounding blocks are owned by that �rm. This is consistent

with information spillovers across blocks driving �rms' exploration decisions. Since the

information generated by an exploration well on block j is informative about nearby blocks,

a �rm learns more about the distribution of oil on its own blocks when it holds licenses on

19



more of the block surrounding block j. On the other hand, when other �rms hold more of

the blocks surrounding block j, then a �rm may have a greater incentive to delay exploration

and learn from other �rms' results. 19

5 An Econometric Model of Optimal Exploration

To measure the extent to which information externalities a�ect industry surplus, I estimate

a structural econometric model of the �rm's exploration problem in which I assume that �rm

beliefs follow the logistic Gaussian process model of Section 3.2. I set up the �rm's problem

by specifying a full information game in which �rms observe the results of all wells. I then

extend the model to one of asymmetric information in which �rms do not observe the results

of other �rms' wells with certainty.

5.1 Full Information

I start by specifying a full information game played by a set of �rms F . Firms are indexed

by f , discrete time periods are indexed by t, and blocks are indexed by j. J is the set of

all blocks. Jft ⊂ J is the set of undeveloped blocks on which �rm f holds drilling rights at

the beginning of period t. J0t ⊂ J is the set of undeveloped blocks on which no �rm holds

drilling rights at the beginning of period t. Pt is the oil price.

Exploration wells are indexed by w, and each well is associated with an outcome s(w) ∈
{0, 1}, a block j(w), a �rm f(w), and a drill date t(w). The set of all locations and realizations

of exploration wells drilled on date t is given by Wt = {(j(w), s(w)) : t(w) = t}. The set of
all blocks that are developed on date t is Jdt.

The �rm's prior beliefs about the probability of exploration well success on each block

are given by the logistic Gaussian process G0 de�ned in Section 3.1. Gft is �rm f 's posterior

at the beginning of period t. Under the assumption of full information �rms observe the

results of all wells, so Gft = Gt for all �rms f ∈ F .
The industry state at date t is described by

St = {Gt, {Jft}f∈F∪{0}, Pt}. (8)

19An alternative explanation for this pattern is that �rms may obtain more leases in areas that they expect
to be productive, generating a correlation within each �rm between density of leases and exploration activity.
To provide additional support to the free riding hypothesis, Appendix Table A7 presents results indicating
that �rms' exploration rates fall signi�cantly after licensing rounds in which more new licenses are issued to
other �rms on nearby blocks, controlling for own licenses, supporting the hypothesis of strategic delay. An
ideal experiment would control for each �rm's license applications, but this data is not available.
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Each period, the �rm makes two decisions sequentially. First, in the exploration stage,

it selects at most one block on which to drill an exploration well. Then, in the development

stage, it selects at most one block to develop.

Drilling an exploration well on block j incurs a cost, c(j,St) − εftj. Developing block j

incurs a cost κ(j,St)− νftj. εftj and νfjt are private information cost shocks drawn iid from

Type I extreme value distributions with variance parameters σε and σν . Developing block

j at date t yields a random payo� πjt. Firms' beliefs about the distribution of payo�s on

block j are Γ̃j(π|Gt, Pt), de�ned in equation 5.

The timing of the game is as follows: Exploration Stage

1. Given state St, each �rm f observes a vector of private cost shocks εft.

2. Firm f chooses an exploration action, aEft ∈ Jft ∪ {0}. If aEft 6= 0, then �rm f incurs

an exploration cost.

Development Stage

1. Given state S ′ft = (St, aEft), each �rm f observes a vector of private cost shocks νft.

2. Firm f chooses a development action, aDft ∈ Jft ∪ {0}. If aDft 6= 0, then �rm f incurs a

development cost.

Well Outcomes Realized

1. Exploration well results Wt are realized.

2. If aDft = j then j ∈ Jdt, and �rm f draws oil revenue πjt.

3. The industry state evolves to St+1 = {Gt+1, {Jft+1}f∈F∪{0}, Pt+1}.Exploration well out-

comes and development payo�s are not realized until the end of the development phase.

Beliefs Gt are then updated based on exploration well results Wt and realized revenues

{πjt}j∈Jdtaccording to Gt+1 = B(G′t,Wt, {πj, Pt}j∈Jdt) , where B(·) is de�ned in equa-

tion 6.

Other state variables evolve at the end of the development stage as follows. I assume that

oil price follows an exogenous AR(1) process, so Pt+1 = δ0 + δ1Pt + ζt) where ζt ∼ N(0, σζ).

I assume that �rm licenses on undeveloped blocks are issued and surrendered according

to an exogenous stochastic process de�ned by probabilities P (j ∈ Jft+1|{Jgt}g∈F∪{0}, aDft).
Developed blocks are removed from �rms' choice sets, so P (j ∈ Jft+1|aDft = j) = 0 and

P (j ∈ Jft+1|j /∈ ∪{Jgt}g∈F∪{0}) = 0. This assumption eliminates any strategic consideration
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in the timing of drilling with respect to regulatory deadlines, the announcement of new

licensing rounds, and the �rm's decision to surrender a block.

The �rm's continuation values at the beginning of the exploration and development stages

(before private cost shocks are realized) are described by the following two Bellman equations:

V E
f (St) = Eεft

[
max

aEft∈Jft∪{0}

{
V D
f (S ′ft)− c(aEft,St) + εftj

}]
(9)

V D
f (S ′ft) = Eνft

[
max

aDft∈Jft∪{0}

{
Eπ

aD
ft
,St+1

[
βV E

f (St+1) + πaDft
|aDft,S ′ft

]
− κ(aDft,S ′ft) + νftj

}]
.

Where β is the one period discount rate.The inner expectation in the development Bell-

man equation is taken over realizations of other �rms' exploration and development actions,

development revenues {πjt}j∈Jdt and exploration results Wt which a�ect next period's s be-

liefs Gt+1, as well as the evolution of Pt+1 and Jt+1. There is no expectation inside the

exploration Bellman because beliefs are not updated until the end of the development phase.

De�ne choice-speci�c ex-ante (before private cost shocks are realized) value functions as,

vEf (aEt ,St) =ES′t
[
V D
f (S ′t)|aEt ,St

]
− c(aEt ,St)

vDf (aDt ,S ′t) =Eπ
aDt

,St+1

[
βV E

f (St+1) + πaDt |a
D
t ,S ′t

]
− κ(aDt ,S ′t). (10)

I assume that εftj and νftj are distributed type I extreme value with standard deviation

parameters σε and σν , yielding conditional choice probabilities (CCPs):

P (aEf = j|St) =
exp

(
1
σε
vEf (j,St)

)
∑

k∈Jft∪{0} exp
(

1
σε
vEf (k,St))

) . (11)

With a similar expression for the CCP of development action j, P (aDf = j|S ′t).
A Markov perfect equilibrium of this game is then de�ned by strategies aEf (S, ε) and

aDf (S,ν) that maximize the �rm's continuation value, conditional on the state variable and

the privately observed cost shocks,

aEf (S, ε) = arg max
aE∈Jf∪{0}

{
vEf (aE,S) + εtaE

}
(12)

aDf (S ′,ν) = arg max
aD∈Jf∪{0}

{
vDf (aD,S ′) + νtaD

}
,

where the �rm forecasts all �rms' actions conditional on the industry state using the true

conditional choice probabilities is equation 11.
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5.2 Asymmetric Information

The model described above assumes that �rms can perfectly observe the results of each

other's exploration wells as soon as they are drilled. In reality, industry regulation allows

for con�dentiality of well data for several years after an exploration well is drilled, and the

empirical evidence presented in Section 3 suggests imperfect spillover of information between

�rms. The extent to which information �ows between �rms before the end of the well data

con�dentiality period is a potentially important determinant of �rms' incentive to delay

exploration.

To allow for imperfect spillovers of information in the model, I make an alternative

assumption about when �rms observe the results of exploration wells. In particular, when a

well w is drilled by �rm f , I let each �rm g 6= f observe the outcome, s(w), with probability α.

s(w) is revealed to all �rms τw periods after the well is drilled, on expiry of the con�dentiality

window. The length of the con�dentiality window is drawn i.i.d. from the distribution

Fτ (τw).20

Formally, let of (w) ∈ {0, 1} be a random variable drawn independently across �rms after

the exploration stage of period t(w) where P (of (w) = 1|f(w) 6= f) = α and P (of (w) =

1|f(w) = f) = 1. The cumulative set of well results observed by �rm f in period t is

W o
ft = {(j(w), s(w)) : (of (w) = 1 and t(w) ≤ t) or (of (w) = 0 and t(w) ≤ t− τ(w))} .

(13)

In general, Gft 6= Ggt since �rms observe di�erent sets of well outcomes, so �rm f 's state

variable can now be written:

Sft = {Gft, {Jft}f∈F∪{0}, Pt,W u
ft}, (14)

where W u
ft is the set of locations and dates of all wells whose results are not observed by

�rm f at date t,

W u
ft = {(j(w), t(w)) : of (w) = 0 and t(w) ≥ t− τ(w)} . (15)

Note that I assume �rms know the distribution of end con�dentiality window lengths,

Fτ (τw), but not the con�dentiality end date, τ(w) for each well.

The introduction of this asymmetric information structure complicates the �rm's prob-

lem. In Markov perfect Bayesian equilibrium, each �rm f must form beliefs about every

20Note that unobserved exploration well outcomes are revealed after τw periods, even if the block is
developed before this date.
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other �rm g's beliefs, Ggt, in order to forecast the next period's state. The history of �rm

g's actions is informative about Ggt and about well outcomes unobserved by �rm f . For

instance, if �rm g drilled many exploration wells on block j, this should signal to �rm f

something about g's beliefs about the success probability on that block, even if �rm f did

not observe the outcome of any of those wells directly. In contrast to the full information

game, this means that the entire history of drilling and license allocations should enter the

�rm's state.

As discussed by Fershtman and Pakes (2012), the addition of these �informationally rele-

vant� but not �payo� relevant� state variables makes estimating the asymmetric information

game and �nding equilibria computationally infeasible. Because of these di�culties, dynamic

games with asymmetric information are rarely used in empirical work. Rather than include

all potentially informationally relevant observables in the �rm's state, I adopt an equilibrium

concept that conditions beliefs only on Sft. First, I de�ne belief functions that map a �rm's

current information, Sf , to perceived probabilities of other �rms' actions and well outcomes.

Assumption 1. Firm f believes that at every period t the probability of exploration by a �rm

g 6= f on block j ∈ Jgt is given by QE(g, j;Sft) ∈ [0, 1]. Likewise, beliefs over the probability

of development are QD(g, j;Sft) ∈ [0, 1].

Assumption 1 says that �rms' beliefs are speci�ed by functions QE and QD of their

current state Sft. For example, these functions could be the expected action probabilities

based on Bayesian posteriors about other �rms' states. Although this assumption allows for

Bayesian beliefs, it restricts the set of information that �rms can use to make forecasts about

other �rms' actions to the payo�-relevant state variables in equation 14.

Assumption 2. Firm f forecasts the outcomes of exploration and development wells using

beliefs QG(ρ;G(ρ),W u
ft).

Assumption 2 says that �rms adjust their beliefs about this distribution of oil based on

the number of wells with unobserved results on each block, W u
ft. Thus, beliefs depend on

observed actions, not just the observed outcomes which de�ne G(ρ). For instance, it might

be that E(ρj|G(ρ)) < E(ρj|G̃(ρ)) if there are many exploration wells on block j whose results

are unobserved. As with Assumption A1, I restrict the observable variables that enter QG.

For instance I do not allow beliefs to depend on the timing of past exploration.

The following equilibrium de�nition requires the belief objects QE, QD, and QG to be

consistent with �rm behavior.

De�nition 1. An equilibrium is a set of policies, aE(Sf , ε), aD(Sf , ε), beliefs about other
�rms' actions, QE, QD, and beliefs about the distribution of oil, QG such that:
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1. aE(Sf , ε) and aD(Sf , ε) solve the dynamic program described by equation 9, where

expectations over other �rms actions and well outcomes are described by Assumptions

A1 and A2.

2. QE(g, j;Sft), QD(g, j;Sft) are consistent with equilibrium policies. Let P (aEf,t = j|Sf,t)
and P (aDf,t = j|S ′f,t) be �rms' equilibrium CCPs.

QE(Sft, g, j) = E
[
P (aEgt = j|Sgt)|Sft

]
(16)

QD(Sft, g, j) = E
[
P (aDgt = j|Sgt)|Sft

]
.

Where the expectations are taken over states with respect to the equilibrium distribu-

tion of Sgt conditional on Sft.

3. QG(ρ;G(ρ),W u
ft) is the posterior distribution of ρ conditional on (G(ρ),W u

ft) consis-

tent with the equilibrium distribution of (G(ρ),W u
ft) conditional on ρ and the prior

distribution of ρ, G0(ρ).

Condition 2 means that in equilibrium, �rm f 's beliefs about the probability of exploration

and development by other �rms are correct in expectation, conditional on Sft. This as-

sumption is close in spirit to that made by Fershtman and Pakes (2012), whose Experience

Based Equilibrium (EBE) imposes consistency between �rm's beliefs about state transitions

conditional on its information set and the behavior of other �rms. The crucial di�erence

between this approach and Markov perfect Bayesian equilibrium is that beliefs are speci�ed

over actions or own-state transitions, not over other �rms' states.21 Similar assumptions

that require agents' beliefs about outcomes to be correct on average conditional on some

information set have been made in static models, for example by Doraszelski, Lewis, and

Pakes (2018), and Agarwal and Somiani (2018).

Condition 3 imposes a similar consistency requirement on �rms' beliefs about exploration

success rates. Firms beliefs G(ρ) are formed using well outcomes, as described in Section 3,

and then updated according to Bayes' rule using information on the set of unobserved wells

W u
ft and the equilibrium distribution of (G(ρ),W u

ft, ρ).

21One di�erence between EBE and the equilibrium concept used in this paper is that EBE imposes
consistency of beliefs on the set of recurrent states - those that are repeatedly visited in stationary equilibrium.
This means that EBE can be estimated by simulating a stationary environment for a long time using
reinforcement learning. In this paper's environment, any state will not be visited in�nitely often because,
for example, a developed block will never be returned to the set of undeveloped blocks. However, there still
exists an equilibrium distribution of states which can be computed by simulating the model many times
(rather than once for a long time). I use this distribution to de�ne consistency of beliefs. Computation of
beliefs is discussed further in Section 6 below.
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This equilibrium concept greatly simpli�es estimation and computation of equilibria rela-

tive to a Markov perfect Bayesian equilibrium. As discussed below, the functions QE(S, g, j)
and QD(S, , g, j) are CCP-like objects that can be estimated from simulated data in a

straightforward way. Notice that, like the �rm's choice probabilities, QE(S, g, j) andQD(S, g, j)
are equilibrium objects and will change in counterfactuals.

These assumptions preserve important behavioral implications of the model. The model

allows for free riding because �rms have expectations about the future exploration of other

�rms. The model also allows for the possibility of an �encouragement e�ect� discussed by

Dong (2017) because �rms anticipate that their actions may a�ect the probability of other

�rms drilling in future through the dependence of QE on Sft. This approach to modeling

beliefs is restrictive insofar as the variables that enter Sf do not include all informationally

relevant state variables that are potentially observed by the �rm. This can be thought of as a

bounded rationality assumption that restricts the set of objects on which �rms can condition

their beliefs.

6 Estimation & Identi�cation

6.1 Parameterization

I measure the oil price using the monthly West Texas Intermediate oil price in�ated to 2011

dollars using the UK Producer Price Index converted to dollars using the UK/US exchange

rate. The WTI price is highly correlated with the Brent crude price over the time period

studied, and data on Brent crude prices is not available before 1980. For years before 1980

where the Brent price is unavailable I use projected values from a regression of Brent on the

West Texas Intermediate price. I let a period be one month.22 I set the one month discount

rate to β = 0.992, which corresponds to a 10% annual discount.

I specify exploration and development costs according to equation 17.

c(j,Sft) = c0 (17)

κ(j,Sft) = κ0 + κ11(V arft(ρj) < v).

Development cost on block j is allowed to depend on the variance of �rm's beliefs about

ρj. In particular, I allow for lower (or higher) development costs on blocks where the �rm's

22The choice of a one month period imposes an implicit capacity constraint - each �rm can choose at most
one block to explore and one block to develop each month. In practice, in 94% of (f, t) observations where
exploration takes place, only one exploration well is drilled. I never observe more than one block developed
by the same �rm in the same month. In my detailed discussion of the estimation routine in Appendix C, I
describe how I deal with observations where there are multiple exploration wells in a month.
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posterior variance is below a threshold v. This captures the fact that development cannot

take place until the �rm has extensively studied the target �eld through exploratory drilling,

which provides additional technical information that I do not model directly, beyond the

presence of oil. Empirically, this speci�cation helps rationalize the concentration of develop-

ment on low-variance blocks. I set v = 0.5, which is greater than the posterior variance for

86% of developed blocks.23. I do not adopt a more �exible speci�cation because of the small

number of development actions in the data (50).

The model parameters are therefore {θ1, θ2, α, δ, σζ}, where θ1 = {µ, ω, `} are the parame-

ters of the �rm's beliefs de�ned in Section 3, θ2 = {c0, κ0, κ1, σc, σκ} are the cost parameters,

α is the probability of observing another �rm's well outcome before it is made public, and

(δ, σζ) are the parameters of the oil price process. Other objects to be estimated are the

transition probabilities of the license issuing process P (j ∈ Jft+1|Jt, {Jgt}∀g∈F ), the distri-

bution of development pro�ts, Γ(π; ρj, Pt), and �rm beliefs about other �rms' actions, QE,

QD, and QPast.

6.2 Estimation

Parameters θ1 are taken from the estimation procedure described in Section 4.1. I estimate

σζ with the variance of monthly changes in the log oil price. I estimate Γ(·) using data on

realized oil �ows from all developed wells. I detail this part of estimation in Appendix C.4.

Probabilities P (j ∈ Jf,t+1|Jt, {Jg,t}∀g∈F ) that are used by �rms to forecast the evolution of

license assignments are estimated using a logit regression of the licenses issued in period t+1

on the period t license assignment. The distribution of con�dentiality deadlines, Fτ (τw), is

estimated using the empirical CDF. I detail this part of estimation in Appendix B.5.

The remaining parameters are estimated using a two step conditional choice probability

method related to those described by Hotz, Miller, Sanders and Smith (1994) and Bajari,

Benkard and Levin (2007). In the �rst step, I obtain estimates of the conditional choice

probabilities (CCPs) given by equation 11 and the parameter α. First step estimates of the

CCPs are then used to simulate data which I use to estimate the belief functions QE, QD,

and QPast.

Using the estimated CCPs and belief functions, I compute the �rm's state-speci�c con-

tinuation values (9) as functions of the remaining parameters θ2 by forward simulation. I

then �nd the value of θ2 that minimizes the distance between the �rst step estimates of the

CCPs and the choice probabilities implied by the simulated continuation values. I describe

this two step procedure in detail in Appendix C.

23See Appendix Figure A8
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Estimation of Conditional Choice Probabilities If the state variable were observable

in the data, then CCPs P̂ (aEf = j|S) and P̂ (aD = j|S) could be estimated directly using the

empirical choice probability conditional on the state. However, the asymmetric information

structure of the model means that the true state is not observed by the econometrician. In

particular, the econometrician knows the outcome of every well, but does not know which

outcomes were observed by each �rm. Formally, the data does not include the vector of

that records which other-�rm well outcomes were observed by �rm f . Di�erent realizations

of of imply di�erent states through the e�ect of observed well outcomes on Gft. The data

is therefore consistent with a set of possible states S̃f for each �rm.24

To recover CCP estimates, observe that di�erent values of the parameter α de�ne distri-

butions P (Sf |S̃f , α) over the elements of S̃f . For example, suppose at date t there was one

other-�rm well w that may have been observed by �rm f . The data is consistent with two

possible states: let S1
ft be the state if of (w) = 1 and S0

ft be the state if of (w) = 0. From the

econometrician's perspective, P (S1
ft|{S1

ft,S0
ft}, α) = α. I provide a formal de�nition of the

distribution P (Sf |S̃f , α) in Appendix C.

Given this distribution over states, the likelihood of a sequence of exploration and devel-

opment choice observations is:

Lf =
∑
Sf∈S̃f

 T∏
t=1

∏
j∈Jft∪{0}

P (aE = j|Sf )1(a
E
ft=j)P (aD = j|Sf )1(a

D
ft=j)

P (Sf |S̃f , α)

 . (18)

I maximize this likelihood to obtain estimates of the conditional choice probabilities

P̂ (aEf = j|Sft) and the information spillover parameter, α̂, which controls the probability

weight placed on each of the di�erent states Sf ∈ S̃f that could have obtained given the

data.

Since the state variable is high dimensional, I use the logit structure of P̂ (aEf = j|Sft)
implied by equation 11 and approximate the choice-speci�c value functions vEf (j,Sft) for each
alternative j with a linear equation in elements of the state variable. For the exploration

choice, this approximation to the state variable includes a third order polynomial in the mean

and variance of beliefs Gft on each block, interactions with the oil price, counts of nearby

own- and other-�rm licenses for each block, and the number of nearby exploration wells with

unobserved outcomes. Denote these lower dimensional statistics of the state variable sft.

This approach involves both dimension reduction - projecting value functions onto lower

dimensional statistics of the state variable - and approximation - estimating the value func-

24More precisely, and element of S̃f is a particular sequence of �rm-f states Sf = {Sft}Tt=1. See Appendix

B for a formal de�nition of S̃f .
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tion using a �exible polynomial. The use of �exible functional forms to estimate value

functions is common in the applied literature that estimates dynamic discrete choice models

with conditional choice probability methods.25 Dimension reduction requires the additional

assumption that �rms make decisions and form beliefs based on lower dimensional statistics

sft, and that value functions are averaged over the equilibrium distribution of the full state

variable Sf conditional on sf . That is, �rms' choice-speci�c value functions take the form

vEf (j, sft) = E
[
vEf (j,Sft)|sft

]
. (19)

This approach is similar to the dimension reduction techniques introduced by Ifrach and

Weintraub (2017) and Gowrisankaran et al. (2024). Full details are provided in Appendix

B.

Estimation of Belief Functions The estimated choice probabilities, prior distribution

of oil, G0(ρ), and spillover parameter α can be used to simulate drilling histories for the

entire market. Under the assumption that CCPs re�ect equilibrium policy functions, the

data generated by these simulations is drawn from the equilibrium distribution of states.

These simulations can be used to estimate empirical analogs Q̂E(Sft, g, j) and Q̂D(Sft, g, j)
of equation 16, since in the simulated data each �rm's state is fully observed. Similarly,

since the true productivity of each block, ρj, is observed in the simulations, it is possible

to estimate adjusted beliefs about the oil distribution, Q̂G(ρ;G(ρ),W u
ft), that are consistent

with the equilibrium distribution of states.

I parameterize Q̂E(Sft, g, j) using a linear equation in sft, similar to that used to estimate

the CCPs. I run a logit regression of other �rms' exploration choices on �rm f 's state, pooling

data across all �rms. Q̂D(Sft, g, j), and Q̂Past(Sft, g, j) are estimated analogously. I also use

this simulated data to estimate Q̂G(ρ;G(ρ),W u
ft) by regressing the true exploration well

success, ρj, on the mean and variance of G(ρj) and �xed e�ects for the number of nearby

unobserved wells in W u
ft. Details on these procedures are provided in Appendix C.2.

Firm f 's estimated beliefs about the actions of other �rms are therefore set equal to ex-

pected actions under equilibrium play, conditional on state sft. This approach to estimating

equilibrium beliefs extends the logic of the CCP approach of Hotz and Miller (1993). If equi-

librium policy functions can be recovered directly from the data, then equilibrium beliefs can

be recovered by simulating data using these policy functions. This approach does not require

solving for optimal policy functions or equilibrium beliefs using value function iteration and

is an alternative to the reinforcement learning algorithm of Fershtman and Pakes (2012).

25For example, see Ryan and Tucker (2011), Collard-Wexler (2013), and Agarwal et al. (2020). See
Aguirregabiria et al. (2021) for a discussion.
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Norwegian Drilling The region covered by the data is adjacent to the Norwegian eco-

nomic zone where several signi�cant oil discoveries were made between 1970 and 1990. To

account for the fact the �rms operating in the UK sector might be able to learn from the re-

sults of Norwegian drilling, I allow �rms' beliefs G(ρ) to depend on the results of exploration

wells drilled in the Norwegian zone. In particular, I estimate an average block-month-level

drilling rate in Norway using analogous data to the main UK sample, and assume that blocks

in Norway are drilled at this exogenous rate. Firms observe the results of Norwegian wells

immediately with probability α + (1 − α)αn, where αn is the empirical probability that a

Norwegian well is drilled by a �rm with a presence in the UK. All Norwegian wells are made

public after 2 years of con�dentiality.

6.3 Identi�cation

Identi�cation of CCPs The �rst step of the estimation procedure recovers the parameter

α and conditional choice probabilities P̂ (a = j|S) at each state S from data in which each

observation is consistent with a set of states S̃. The model's information structure means

these objects are separately identi�ed despite the fact that the econometrician does not

observe the full state. In particular, I claim that the list of choice probabilities P (a =

j|S̃) for each set of states S̃ that it is possible to observe in the data can be inverted to

uniquely identify choice probabilities conditioned on the unobserved states P (a = j|S) and

the information spillover parameter α.

To illustrate identi�cation, consider the following simpli�ed example. Suppose that a

state is described by a triple, S = (suc, fail, unobs), where suc is the number of successful

wells observed, fail is the number of unsuccessful wells observed, and unobs is the number of

wells with unobserved outcomes. Consider data that contains observations consistent with

the following sets of states:

S̃A = {(1, 0, 0)}, S̃B = {(0, 1, 0)}, S̃C = {(1, 0, 0), (0, 0, 1)}, S̃D = {(0, 1, 0), (0, 0, 1)} (20)

S̃A and S̃B are observed by the econometrician when there is one own-�rm well outcome.

The econometrician then knows the state with certainty since the �rm always observes their

own well outcome. S̃C and S̃D are observed by the econometrician when there is one other-

�rm well outcome. In this case, the econometrician knows whether the well was successful

or unsuccessful, but not whether the �rm observed the outcome or not. Given a value of the
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parameter α, choice probabilities conditional on the observed set of states can be written as:

P (a = j|S̃A) = P (a = j|S = (1, 0, 0)) (21)

P (a = j|S̃B) = P (a = j|S = (0, 1, 0))

P (a = j|S̃C) = αP (a = j|S = (1, 0, 0)) + (1− α)P (a = j|S = (0, 0, 1))

P (a = j|S̃D) = αP (a = j|S = (0, 1, 0)) + (1− α)P (a = j|S = (0, 0, 1)).

The left hand side of each equation is a probability that is observable in the data. Notice

that there are four equations and four unknowns - three conditional choice probabilities and

the parameter α. The �rst two equations yield estimates of P (a = j|S = (1, 0, 0)) and

P (a = j|S = (0, 1, 0)) directly. Rearranging the third and fourth equations yields:

α =
P (a = j|S̃C)− P (a = j|S̃D)

P (a = j|S̃A)− P (a = j|S̃B)
. (22)

This says that α is identi�ed by the di�erence between how much the �rm responds

to other �rm wells (the numerator) and how much the �rm responds to its own wells (the

denominator). As documented in Figure 3, �rms' exploration choices respond more to the

results of their own wells than to those of other �rm wells, implying 0 < α < 1.26 P (a =

j|S = (0, 0, 1)) is then identi�ed by the level of P (a = j|S̃C) or P (a = j|S̃D).

This identi�cation argument relies on two features of the model's information structure.

First, the belief updating rule (4) treats own-�rm and other-�rm well results identically. This

means that we can use the �rm's response to their own wells to infer how they would have

responded if they had observed another �rm's well. Second, if �rm f does not observe the

outcome s(w) of well w at date t, then the s(w) does not enter Sft. This means that if a well

was not observed, then the �rm's actions should not depend on the well's outcome. Relaxing

either assumption would break identi�cation by introducing an extra free parameter.

This argument extends to states with multiple well results and well results at di�erent

distances and dates. In Appendix D I provide a proof that shows, in general, how P̂ (a = j|S)

can be identi�ed from observable quantities for any S.
This approach to identi�cation exploits a di�erent source of variation than existing lit-

erature on the identi�cation of unobserved heterogeneity in dynamic discrete choice (Berry

and Compiani, 2021). Kasahara and Shimotsu (2008) show that mixture models with per-

26This argument could be extended to identifying �rm pair speci�c spillover parameters, αfg. For instance,
if �rm f responds more to �rm g's well results than to �rm h's well results, this would suggest αfg > αfh.
One might allow these terms to depend on covariates, such as the overlap in equity holders between blocks
operated by f and g. I opt not to estimate these �rm-speci�c parameters because this would increase the
computational cost of estimation considerably and my counterfactuals focus on aggregate outcomes.
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sistent �rm types are identi�ed by time series variation within each �rm. Estimation of

a model with this type of persistent unobservable heterogeneity can be achieved using the

iterative expectation-maximization procedure proposed by Arcidiacono and Miller (2011).

In contrast, my approach to identi�cation relies on cross-sectional variation in the econo-

metrician's information about the �rm's state and the mixture distribution over possible

information states, and estimation of the CCPs and mixture parameter α is performed in a

single step.27

Identi�cation of Cost Parameters The cost parameters are estimated in the second

step of estimation, which minimizes the distance between the �rst step CCPs and model-

predicted choice probabilities, detailed in Appendix C. Intuitively, cost parameters c0, κ0,

and κ1 are identi�ed by the average probability of exploration and development. Additional

identifying variation comes from the di�erence in the response of drilling probability to

nearby own-�rm and other-�rm licenses. Higher exploration drilling costs, c0, imply that

�rms have more of an incentive to free ride and should have a lower exploration probability

when the surrounding blocks are owned by other �rms than when they are owned by the

same �rm. The variance parameters σε and σν are identi�ed by the extent to which �rms

are more likely to explore blocks for which the expected future revenue stream conditional

on exploration is higher.28

7 Results

7.1 Estimates

Appendix Table A2 reports coe�cients from the estimated conditional choice probabilities

(CCPs) P̂ (aE = j|Sft) and P̂ (aD = j|Sft). Figure 4 illustrates the predicted probability

of exploration and development for di�erent values of the state variables. The left panel

shows that the probability of exploration is greatest on blocks with high posterior mean

and high posterior variance (Appendix Figure A9 shows this pattern for other variance

levels). Exploration probability is also lower when there are more unobserved wells nearby,

consistent with the free riding incentive. The right panel shows that development probability

is increasing in posterior mean and decreasing in posterior variance.

27This suggests that it may be possible to identity and estimate a model with both unobserved asymmetric
information and persistent unobserved �rm types by combining these two sources of variation.

28As discussed by Bajari, Benkard, and Levin (2007), the two step procedure obtains consistent estimates
of the model parameters if the data is generated by a single equilibrium. I assume this here since I cannot
guarantee that there is a unique equilibrium of the asymmetric information game.
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Figure 4: Estimated CCPs

Notes: Simulated exploration and development probabilities using the estimated CCPs. Probabilities are
simulated for a �rm with a single block and one neighboring block held by another �rm. Oil price is set to
the average value in the data.

Table 4 reports estimated model parameters. The spillover parameter α which is es-

timated simultaneously with the CCPs indicates that �rms behave as if they observe the

results of 64% of other �rm wells before they are made public. This �nding is in line with

the descriptive results reported in Figure 3, which suggest imperfect information spillover

across �rms. A likelihood ratio test comparing the estimated �rst stage CCPs to those es-

timated under the restriction α = 1 strongly rejects the full information model, suggesting

asymmetry in observability of well outcomes between own-�rm and other-�rm wells.29

Cost parameters are reported in billions of 2015 dollars. As expected, exploration costs

are lower after the �rst exploration well on a block, and increasing in the variance of �rms'

beliefs. Similarly, development costs are increasing in the variance of �rms' beliefs. The last

row of Table 4 records average realized costs including the cost shocks ε and ν computed

from simulations. The average marginal cost of an exploration well is $36 million. The

average marginal cost of development is $870 million. These average realized costs are close

to estimates of the capital costs of exploration and development from auxiliary data on

capital expenditure provided by the regulator that was not used in estimation. The average

capital expenditure per exploration well from this auxiliary data is $20.9 million. The capital

expenditure per development platform is $1.26 billion.

29As discussed in Section 6 above, α is identi�ed if �rms interpret information from same- and other-�rm
wells identically and �rms either observe well outcomes perfectly or not at all. An alternative model might
have �rms observe noisy signals of the results of other �rms' wells before the con�dentiality window ends.
Under such a model, the signal to noise ratio would be identi�ed in a similar way to α. The same externalities
are present in both models, and the counterfactual policy analysis presented in Section 8 would likely be
similar under this alternative model. A model with noisy signals and some probability of non-observation
(i.e. α < 1) would not be identi�ed.

33



Table 4: Parameter Estimates

Parameter Estimate SE Parameter Estimate SE

α 0.64 0.017 Oil Price Process

Exploration Cost 0.141 0.054 Intercept 0.302 0.208

σc 0.036 0.017 Pt−1 0.988 0.008

Development Cost Variance of Shock 3.323 1.147

High Variance Locations 2.022 0.651

Low Variance Locations 1.043 0.4148

σκ 0.252 0.111

Average Realized Costs

E(c(j,Sft)|aEt = j) 0.036 E(κ(j,Sft)|aEt = j) 0.870

Comparison to α = 1 Model

λLR 53.054 C0.95 3.841

Notes: Cost parameters are in billions of 2015 dollars. Standard error of α is computed using the inverse
Hessian of the likelihood function given by equation 18 at the estimated parameter values. Standard errors for
the remaining (cost) parameters are computed using 200 bootstrap draws from the �rst step CCP estimates.
Average realized costs are computed by simulating exploration and development behavior using the estimated
�rst step CCPs and taking the average realized costs, including the cost shocks, ε and ν, over 40 simulations.
The LR test is a comparison of the 1st step likelihoods (equation 29) under the restricted and baseline
models. The test statistic λLR has a χ2

1 distribution with 95% critical value C0.95.

The estimates of the price process imply a stationary mean price of $26.16. The variance

of monthly cost shocks is $3.32. Combined with a high persistence parameter, this process

generates large swings in oil prices, consistent with the trajectory of realized prices in this

period (see Appendix Figure A10). Appendix Table A8 shows a comparison of equilibrium

simulations to the data. The simulated number of exploration wells is a close match to

the data. The simulations predict fewer development wells than in the data, likely due

to estimation error from the small number of development observations and the restrictive

functional form used for the �rst step development CCPs.

7.2 Quantifying the E�ects of Information Spillovers

To illustrate how information spillovers a�ect the equilibrium speed and e�ciency of ex-

ploration, I simulate counterfactual exploration and development decisions. I separately

quantify the e�ects of free riding and wasteful exploration on the equilibrium rates of explo-

ration and development and on industry surplus by removing these sources of ine�ciency

from the model.

First, I remove the free riding incentive by computing �rm's optimal policy functions

assuming that �rms believe QE = 0 and that wells remain con�dential forever. That is, I

ask how �rms would behave if, at each period, they believed that no new exploration wells
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would be drilled by other �rms at any period in the future and no past wells with unobserved

outcomes would ever be revealed. Under this assumption there is no incentive to strategically

delay exploration.30 This counterfactual is not an equilibrium since �rms beliefs about the

average exploration probability are inconsistent with the actual probability of exploration.

Simulation of �rm behavior under these non-equilibrium beliefs isolates the direct e�ect of

free riding on �rm behavior since I allow �rms to learn the results of past wells as in the

baseline, but I remove the forward-looking incentive to delay.

The e�ect of eliminating the incentive to free ride on industry outcomes is illustrated

by comparing the simulation results in the �rst and second columns of Panel A in Table 5.

Removing the free riding incentive brings exploration and development forward in time. The

average number of exploration wells drilled up to 1990 increases by 7.7% and the number of

blocks developed increases by almost 70%. The large increase in development is both due

to faster learning from exploration and less strategic delay of development. The fourth and

�fth rows record the 1964 present total surplus, computed as oil revenue less exploration and

production costs. Eliminating free riding increases total surplus by $22.11 billion, or about

52%, and discounted revenue by about 73% by increasing the number of developed blocks

and bringing development forward in time.

These e�ects are also illustrated by comparing the solid and dotted lines in the left panel

of Figure 5, which records the average number of exploration wells and blocks developed

each month from 1975 to 1990. Removing the free riding incentive shifts exploration back

in time by around 1.5 years.

The second exercise removes wasteful exploration due to imperfect information spillovers.

I simulate the model at the baseline equilibrium choice probabilities but allow �rms to observe

the results of each other's wells with certainty. That is, I set α = 1. I hold �rms' choice

probabilities �xed at the baseline level. This means that �rms behave as if they expect the

results of other �rms' wells to be revealed with probability equal to the estimated value of

α. This isolates the direct e�ect of increased �ow of information from the equilibrium e�ects

on �rms' drilling decisions.

The third column of Table 5 records drilling, revenue, and pro�t statistics for this infor-

mation sharing simulation. Allowing for perfect information �ow without changing �rms'

policy functions increases the number of exploration wells drilled before 1990 by 1.3% rela-

tive to the baseline, but increases the number of blocks developed by 16.4%. The e�ciency

of exploration improves substantially, re�ecting a reduction in duplicative exploration - the

30One only additional e�ect of setting QE = 0 is that it changes �rm's expectations about future de-
velopment (since if other �rms do not explore they are unlikely to develop), and therefore also changes
expectations about the future distribution of licenses. Because development is infrequent, so any change in
the distribution of future licenses due to this e�ect is likely to be small.
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Table 5: Outcomes of Counterfactual Simulations

Baseline No Free Riding Info Sharing
No Info 
Sharing

Info Sharing 
(Equilibrium)

No Price 
Shocks Monopoly Clustered

Exp. Wells 1554.35 1674.65 1574.45 1539.85 1556.60 1553.95 2202.30 1553.95
[6.46] [14.68] [7.98] [6.92] [9.65] [6.50] [10.17] [6.50]

Blocks Dev. 33.70 56.15 39.25 26.50 36.85 38.55 89.40 38.55
[1.19] [2.27] [1.99] [1.69] [1.74] [2.09] [2.89] [2.09]

Exp. Wells/Dev. 47.42 30.81 42.12 63.89 44.73 42.94 25.26 42.94
[1.91] [1.28] [2.06] [4.95] [2.82] [2.57] [0.99] [2.57]

Total Surplus
Discounted 5.35 9.27 6.96 3.23 4.72 5.57 13.02 5.57

[0.37] [0.77] [0.59] [0.35] [0.44] [0.55] [0.86] [0.55]
Not Discounted 42.41 64.52 52.27 30.16 39.79 44.87 81.56 44.87

[2.44] [4.66] [3.75] [2.60] [2.90] [3.86] [4.70] [3.86]

Notes: Results are averages over 40 simulations that cover 1964-1990. The assignment of blocks to �rms
and the oil price are set at their realized values. Well outcomes and development revenue are drawn from
the posterior of the estimated Gaussian process using all observed wells. Revenue and pro�ts are in billions
of 2015 dollars. Total surplus is �rm and government revenue less costs, including the value of cost shocks
for every period. PDV revenue and pro�t are 1964 values where the annual discount factor is 0.9.
Simulation standard errors are in square brackets.

number of exploration wells drilled per block developed is reduced to 42.12 from 47.42 in the

baseline.

Perfect information �ow increases discounted industry surplus by 30%. This e�ect is

about 40% of the the e�ect of removing free riding. This change in industry surplus is the

result of two e�ects. First, perfect information �ow increases industry surplus by reducing

wasteful exploration of unproductive areas and per-development costs, thereby reducing

expenditure on exploration wells. Second, increased information �ow allows �rms to identify

productive areas faster, bringing development forward in time. The dashed lines in the

left panel of Figure 5 show that perfect information �ow brings development forward in

time modestly but substantially increases the speed of development, re�ecting the increased

e�ciency of exploration.

The improved e�ciency of exploration from information sharing can also be observed in

the right panel of Figure 5, which records the cumulative exploration success rate between

1975 and 1990 in the baseline simulation, the information sharing simulation, and a no

information sharing counterfactual in which well information is never shared and the �rms

follow their baseline equilibrium policy functions. In all three simulations, the success rate

increases over time until around 1983, after which it starts falling. This is a result of �rms

identifying productive blocks and then those productive blocks becoming developed, reducing
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Figure 5: Exploration Paths
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Notes: The left panel plots the cumulative number of exploration wells drilled and blocks developed for
each month from 1975 to 1990 for three simulations. Thick red lines plot the number of blocks developed
and correspond to the right axis. Thin blue lines plot the number of exploration wells and correspond to
the left axis. The solid lines are the average of 40 simulations using the baseline equilibrium choice
probabilities. The dashed lines are the average of 40 simulations under the information sharing
counterfactual. The dotted lines are the average of 40 simulations under the no free riding counterfactual.
The right panel plots the cumulative success rate of exploration wells under the baseline,information
sharing, and no information sharing counterfactuals.

the success rate of the remaining undeveloped blocks. The success rate under information

sharing is around 1 percentage point higher than the baseline success rate at its maximum.31

The �fth column of of Table 5 records the results of an information sharing counterfactual

that uses equilibrium choice probabilities and belief functions. Comparing the third and

�fth columns illustrates how the surplus gains from information sharing are diminished by

increased free riding. When information is shared perfectly, �rms have more incentive to

delay exploration in equilibrium. This countervailing e�ect reduces discounted surplus by

around 12.8%.

The sixth and seventh columns of Table 5 record outcomes from benchmark simulations.

In the sixth column, I report the results of a simulation in which �rms believe that prices

will remain constant at all periods in the future. This removes the incentive to delay drilling

due to the option value of waiting for higher prices, which is potentially important in this

era because of the volatility of prices (for instance, see Kellogg (2014)). Removing strategic

delay due to oil price volatility brings development forward in time and increases discounted

31Statistics from the no information sharing counterfactual are also recorded in the fourth column of
Table 5, which indicate that stopping all information �ow between �rms reduces the e�ciency of exploration
substantially, increasing the number of exploration wells per developed block by around 20% relative to the
baseline.
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surplus. Despite the high volatility of prices, the surplus loss from delays due to oil price

volatility are signi�cantly smaller than the surplus losses from free riding or imperfect infor-

mation �ow.32 The seventh column reports outcomes from a collusive simulation in which

information is shared between �rms and �rms optimize total industry pro�t, approximating

a monopoly's (or social planner's) problem. I use a collusive scenario rather than a monopoly

to facilitate comparison with the other simulations: each �rm's drilling capacity and block

assignment are as in the baseline simulation. Collusion allows �rms to fully internalize the

information externalities generated by information sharing, increasing discounted pro�t by

$7.6 billion from the baseline. The simulations which eliminating free riding and allow per-

fect information sharing achieve 50% and 21% respectively of this total potential increase in

surplus.33

8 Counterfactual Property Rights Policy

The gains in industry surplus from removing free riding and increasing information �ow are

substantial, but are not necessarily achievable in equilibrium. In this section I ask how much

of industry surplus could be increased in equilibrium through alternative design of property

rights that minimize the ine�ciencies resulting from information spillovers.

Con�dentiality Window Well outcome data is property of the �rm that drilled the well

until the con�dentiality deadline, after which it becomes public knowledge. By changing the

con�dentiality deadline, the government can increase or decrease the speed with which infor-

mation �ows between �rms and manipulate �rms' incentive to delay exploration. Changing

the length of the well data con�dentiality period has two potential e�ects on �rms' equilib-

rium drilling behavior. First, increasing the con�dentiality period decreases the incentive

to free ride. If the release of well data is pushed further into the future, then the cost of

delaying exploration is increased due to the discounting of future pro�ts, and the equilibrium

32To examine the sensitivity of the results in Table 5 to the particular path of oil prices realized in reality,
Appendix Table A9 records the results of simulations where prices are held �xed at the long run average of
the estimated AR process. The qualitative patterns across columns are similar, but the level of surplus is
lower because prices do not reach the high level realized in the early 1980s.

33The large gains from information sharing raise the question of why �rms do not engage in more exchange
of information before the con�dentiality windows expires (per the Coase theorem). The empirical evidence
indicates that this e�cient exchange of information does not take place in reality, and anecdotal evidence
(Moreton, 1995) describes a culture of secrecy around exploration outcomes. There are several potential
sources of transaction costs that might limit e�cient trade. First, sharing well data is not costless to the
�rm because it may be valuable in future competitive license applications. Second, �rms have asymmetric
information about the value of additional well data, preventing e�cient trade (Myerson and Satterthwaite,
1983; Farrell, 1987; Bessen, 2004).There is an additional set of barriers to e�cient trade when the object
being traded is information (Anton and Yao, 2002, Ali, Chen-Zion, and Lillethun, 2017).
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probability of exploratory drilling should increase. On the other hand, lengthening the con-

�dentiality window will reduce the e�ciency of exploration by increasing wasteful drilling.

The regulatory problem of setting the optimal con�dentiality window is therefore a case of

trading o� these two e�ects.

To determine the e�ect of changing the con�dentiality window on surplus, I run counter-

factual simulations of the model under di�erent window lengths. For each window length, I

�rst compute the equilibrium choice probabilities implied by the estimated model parameters.

I then simulate the model using these choice probabilities, imposing the relevant con�den-

tiality window lengths. The left panel of Figure 6 records the average present discounted

revenue under con�dentiality windows of 0, 2.5, 5 (the baseline), 7.5, and 10 years.

Figure 6: Con�dentiality Window
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Notes: The left panel records the 1964 present discounted value of 1964-1990 industry surplus in
counterfactual simulations with di�erent con�dentiality window lengths. In the right panel, the blue line,
corresponding to the left y-axis, records the average number of developed blocks per exploration well
evaluated using baseline choice probabilities under di�erent con�dentiality window lengths. The dashed red
line, corresponding to the right y-axis, records the average number of exploration wells evaluated at
counterfactual equilibrium choice probabilities under baseline information �ow. Surplus is in billions of
2015 dollars. All �gures are average over 40 simulations.

Industry surplus would be increased both by shortening the con�dentiality window to 0,

or increasing the con�dentiality window to 7.5 years. Among the policies studied reducing

the con�dentiality window to 0 and enforcing full information achieves the maximum surplus

of $6.85 billion, 28% higher than the baseline policy of 5 years.

The non-monotonicity of surplus in window length results from the interaction of the

e�ect of limiting information �ow on the free riding incentive and the e�ect on the speed

of learning and e�ciency of exploration. The right panel of Figure 6 illustrates these two

e�ects separately. The dashed red line records the average number of exploration wells in

simulations that hold information �ow �xed but use counterfactual choice probabilities, and
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the blue line records exploration e�ciency from simulations that hold choice probabilities

�xed but vary information �ow.

As expected, the rate of exploration decreases and the e�ciency of exploration increases

with shorter window lengths. For instance reducing the con�dentiality window from 5 to 0

years reduces the number of exploration wells by about 2.5%. Countervailing this free riding

e�ect, exploration e�ciency increases by 11.6%.

Increasing the con�dentiality window to 7.5 year leads to a signi�cant reduction in free

riding and an increase in industry surplus. However, for further increases in window length

the loss in e�ciency dominates, resulting in a local optimum around 7.5 years. The marginal

e�ect of increasing the con�dentiality window on the exploration rate diminishes with win-

dow length, and the size of the free riding e�ect is small relative to the full elimination of free

riding recorded in Table 5. This is explained by the fact that α = 0.64, and there is a signif-

icant degree of information sharing that does not respond to changes in the con�dentiality

window.34

Spatial Arrangement of Licenses In addition to manipulating the �ow of information

between �rms, the regulator can change the spatial arrangement of property rights. If, as

suggested by the results in Table 5, the potential to learn from the results of other �rms'

wells reduces the exploration rate in equilibrium, then the regulator should take this e�ect

into account when assigning blocks to �rms. In particular, spatial arrangements of property

rights in which each �rm's blocks are clustered together should minimize the free riding

problem and improve the speed at which each �rm learns about its blocks.

To quantify the e�ect of spatial reallocation of licenses, I construct an alternative license

allocation for each month in the data using an algorithm that maximizes the spatial clustering

of �rms' licenses. The new assignment holds �xed the number of blocks assigned to each

�rm in each year. The drilling capacity of the industry (one well per �rm per month in

the model) is therefore held �xed relative to the baseline, and only the location of each

�rm's licenses changes. Details of the license clustering algorithm are available on request.

Appendix Figure A11 illustrates the true and counterfactual license assignments in January

1975, note that each block is more likely to neighbor blocks held by the same �rm in the

clustered allocation. In particular, the average number of own-�rm neighbors increases from

1.64 in the baseline assignment to 2.01 in the clustered assignment.

The �nal column of Table 5 records the results of the clustered simulation. Clustering

34Kemp's (2012a) account of the process by which the regulations were designed indicates that the 5-year
window was arrived at through negotiations between the government and the major oil companies, who were
resistant to any regulation that diminished their property rights over well data. Although not optimal, the
settlement the parties arrived at improved industry surplus over full con�dentiality.
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�rms' licenses increases the number of blocks developed by 14%. The discounted value

of pro�t increases by 4% and the e�ciency of exploration improves, with the number of

exploration wells per developed block falling from 47.42 to 42.94.

The results suggest that the government could substantially increase revenue and industry

surplus through a simple rearrangement of the spatial allocation of blocks to �rms. Note

that there is no sense in which this particular allocation is optimal, and it may be that

other allocations would result in faster learning and a higher surplus. These results therefore

provide a lower bound on the potential gain from spatial reassignment of licenses.35

9 Conclusion

In many industries the creation of new knowledge through R&D is carried out in a decen-

tralized manner by competing �rms. The growth of the industry-wide stock of knowledge

depends on the extent to which �rms can observe and build on each other's innovations.

Allowing information spillovers between �rms can improve the speed of cumulative research

and reduce duplicative or socially ine�cient investments. On the other hand, information

spillovers can diminish �rms' individual incentives to innovate by enabling free riding on the

innovations of other �rms. The design of property rights over innovations plays an important

role in balancing these e�ects.

I study the e�ects of information spillovers on R&D in the context of oil exploration, using

historical data from the UK North Sea. Oil exploration by individual �rms can be thought of

as a process of cumulative learning about the location of oil deposits. Exploration wells are

experiments located in geographical space with observable outcomes. If �rms can learn from

the results of other �rms' wells they face an incentive to delay exploration. However, if other

�rms' well outcomes are unobserved, �rms are likely to make ine�cient drilling decisions,

for example exploring regions that are known by other �rms to be unproductive.

To quantify the e�ects of information spillovers, I build and estimate a model of the

�rm's dynamic exploration problem with spatial learning and information spillovers across

�rms. The estimated model indicates that there is imperfect information �ow between

�rms. In counterfactual simulations, I show that removing the incentive to free ride brings

35As with the con�dentiality window, it is worth asking why the actual allocation of licenses to �rms does
not appear to fully take into account information externalities. One reason that �rms may not apply for a
large number of licenses close together is that this type of clustered allocation increases the risk borne by
each individual �rm. Because of the spatial correlation of oil deposits, a risk averse �rm with a constant
prior mean would prefer to be allocated licenses that are spread over a wide area. One alternative policy
that could achieve some of the gain from license clustering would be to require �rms to apply for licenses at
a regional rather than block level, with the government determining the exact allocation of blocks to �rms
within the region.
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exploration and development forward in time, increasing industry surplus in the same time

period by 52%. Holding the free riding incentive �xed and allowing perfect information

�ow between �rms increases surplus by 23% by increasing the speed of learning, increasing

the cost e�ciency of exploration by reducing the number of development wells drilled per

developed block, and increasing the concentration of development on productive blocks.

Equilibrium simulations under counterfactual property rights policies highlight the trade-

o� between free riding and e�cient cumulative research. Strengthening property rights by

extending the well data con�dentiality period increases industry surplus by increasing the

rate of exploration, while weakening property rights by limiting the con�dentiality period

increases industry surplus by increasing the speed of learning and e�ciency of exploration.

Over the range of policies I examine, reducing the con�dentiality window to 0 achieves the

highest industry surplus.

Notice that the gains from strengthening property rights here are due to the e�ect of

limiting inter-�rm information �ow on the incentive to free ride on other �rms' discoveries.

This di�ers from the more commonly discussed motive of allowing �rms to capture the

surplus from their innovations.There is a substantial body of recent work quantifying the

extent to which property rights limit follow-on research in a number of settings (Murray and

Stern, 2007; Williams, 2013; Murray et al., 2016), but little empirical work on the potential

for weaker property rights to encourage free riding. The policy results in this paper suggest

that the question of the optimal generosity of property rights is subtle, even in the absence

of an e�ect of stronger property rights on �rms' ability to extract rent from their discoveries.

In some settings it may be optimal to strengthen property rights to reduce the free riding

incentive even though stronger property rights hinder cumulative research.

Methodologically, this paper makes two contributions that are applicable to other set-

tings. First, the model of beliefs and learning can be used to study other industries where

research takes place in a well de�ned space. For example, measures of molecular similarity are

important metrics in the exploratory phase of pharmaceutical development, and measures of

the distance between molecular structures are increasingly used in the economics literature

on pharmaceutical R&D (Krieger, Li, and Papanikolau, 2017; Cunningham, Ederer, and Ma,

2018). An application of this model to research in chemical space might be able to inform the

design of property rights, for example the disclosure of clinical trial results, in that industry.

Second, the estimation approach developed in this paper is potentially applicable to other

settings in which agents have asymmetric information and the econometrician is not fully

informed about each agent's information set.

42



References

Agerton, M. 2018. �Learning Where to Drill: Drilling Decisions and Geological Quality in the Haynesville

Shale.� Working Paper.Agarwal, N. and P. Somaini. 2018. �Demand Analysis Using Strategic Reports:

An Application to a School Choice Mechanism.� Econometrica. 86 (2) 391-444.

Ali, S. N., A. Chen-Zion, and E. Lillethun. 2017. �Reselling Information.� Working Paper .

Anton, J. J., and D. A. Yao. 2002. �The Sale of Ideas: Strategic Disclosure, Property Rights, and Contract-

ing.� Review of Economic Studies. 69, 513-531.

Arcidiacono, P., and R. A. Miller. 2011. �Conditional Choice Probability Estimation of Dynamic Discrete

Choice Models with Unobserved Heterogeneity.� Econometrica. 79 (6), 1823-1867.

Arrow, K. J. 1971. �Economic Welfare and the Allocation of Resources for Invention.� in Essays in the

Theory of Risk Bearing. Chicago: Markham.

Bajari, P., C. L. Benkard, and J. Levin. 2007. �Estimating Dynamic Models of Imperfect Competition.�

Econometrica. 75 (5), 1331-1370.

Berry, S. and G. Compiani. 2021. �Empirical Models of Industry Dynamics with Endogenous Market

Structure.� Annual Review of Economics. 13 11.1-11.26.

Bessen, J. 2004. �Holdup and Licensing of Cumulative Innovations with Private Information.� Economics

Letters. 82 (3), 321-326.

Bickel, J. E., and J. E. Smith. 2006. �Optimal Sequential Exploration: A Binary Learning Model.� Decision

Analysis. 3 (1), 1-59.

Bolton, P., and C. Harris. 1999. �Strategic Experimentation.� Econometrica. 67 (2), 349-174.

Bolton, P., and J. Farrell. 1990. Decentralization, Duplication, and Delay.� Journal of Political Economy.

98 (4), 803-826.

Brennand, T. P., B. Van Hoorn, K. H. James, and K. W. Glennie. 1998. �Historical Review of North Sea

Exploration.� in Petroleum Geology of the North Sea. Oxford: Blackwell.

Collard-Wexler, A. 2013. �Demand Fluctuations in the Ready-Mix Concrete Industry.� Econometrica. 81

(3), 1003-1037.

Covert, T. R. 2015. �Experimental and Social Learning in Firms: The Case of Hydraulic Fracturing in the

Bakken Shale.� Working Paper.

Cressie, N. 1991. �Statistics for Spatial Data.� New York: Wiley.

Cunningham, C., F. Ederer, and S. Ma. 2018. �Killer Acquisitions.� Working Paper.

Dasgupta, P., and J. Stiglitz. 1977. �Industrial Structure and the Nature of Innovative Activity.� Economic

Journal . 90 (358), 266-293.

Diggle, P. J., J. A. Tawn, and R. A. Moyeed. 1998. �Model-based Geostatistics.� Applied Statistics. 47 (3)

299-350.

Dong, M. 2018. �Strategic Experimentation with Asymmetric Information.� Working Paper.

Doraszelski, U, Lewis, G., and A. Pakes. 2018. �Just Starting Out: Learning and Equilibrium in a New

Market.� American Economic Review. 108 (3) 565-615.

Farrell, J. 1987. �Information and the Coase Theorem.� Journal of Economic Perspectives. 1 (2) 113-129.

Fershtman., C. and A. Pakes. 2012. �Dynamic Games with Asymmetric Information: A Framework for

Empirical Work.� Quarterly Journal of Economics 127 (4) 1611-1661.

Gordon, G. W. 2015. �Production Licensing on UK Continental Shelf: Ministerial Powers and Controls.�

LSU Journal of Energy Law and Resources. 4 (1), 75-95.

43



Haile, P., K. Hendricks, and R. H. Porter. 2010. �Recent U.S. O�shore Oil and Gas Lease Bidding: A

Progress Report.� International Journal of Industrial Organization. 28 (4), 390-396.

Hendricks, K., and D. Kovenock. 1989. �Asymmetric Information, Information Externalities, and E�ciency:

The Case of Oil Exploration.� RAND Journal of Economics. 20 (2), 164-182.

Hendricks, K. and R. H. Porter. 1996. �The Timing and Incidence of Exploratory Drilling on O�shore

Wildcat Tracts.� American Economic Review. 86 (3), 388-407.

Hodgson, C. 2024. �Information Externalities in Oil Exploration - Theoretical Note.� Working Paper

Hohn, M. E. 1999. �Geostatistics and Petroleum Geology.� Dordrecht: Kluwer Academic Publishers.

Hotz, V. J., and R. A. Miller. 1993. �Conditional Choice Probabilities and the Estimation of Dynamic

Models.� The Review of Economic Studies. 60 (3), 497-529.

Hotz, V. J., R. A. Miller, S. Sanders, and J. Smith. 1994. �A Simulation Estimator for Dynamic Models of

Discrete Choice.� The Review of Economic Studies. 61 (2) 265-289.

Hunter, T. 2015. �Regulation of the Upstream Petroleum Sector.� Cheltenham: Edward Elgar.

Ja�e, A, M. Trajtenberg, and R. Henderson. 1993. �Geographic Localization of Knowledge Spillovers as

Evidenced by Patent Citations.� Quarterly Journal of Economics. 113 (4), 1137-1167.

Jahn, F., M. Cook, and M. Graham. 1998. �Hydrocarbon Exploration and Production.� Amsterdam:

Elsevier.

Kasahara, H., and K. Shimotsu. 2008. �Nonparametric Identi�cation of Finite Mixture Models of Dynamic

Discrete Choices.� Econometrica. 77 (1) 135-175.

Kellogg, R. 2011. �Learning by Drilling: Inter�rm Learning and Relationship Persistence in the Texas

Oilpatch.� Quarterly Journal of Economics. 126 (4), 1961-2004.

Kellogg, R. 2014. �The E�ect of Uncertainty on Investment: Evidence from Texas Oil Drilling� American

Economic Review . 104 (6), 1698-1734.

Kemp, A. 2012a. �The O�cial History of North Sea Oil and Gas Vol. I: The Growing Dominance of the

State.� New York: Routledge.

Kemp, A. 2012b. �The O�cial History of North Sea Oil and Gas: Vol. II: Moderating the State's Role.�

New York: Routledge .

Krieger, J., D. Li, and D. Papanikolaou. 2017. � Developing Novel Drugs.� Working Paper.

Kullback, S. 1997. �Information Theory and Statistics.� New York: Dover.

La�ont, J. J., H. Ossard, and Q. Vuong. 1995. �Econometrics of First-Price Auctions.� Econometrica. 63

(4), 953-980.

Lerche, I, and J. A. MacKay. 1995. �Economic Risk in Hydrocarbon Exploration.� San Diego: Academic

Press.

Levitt, C. J. 2009. �Learning Through Oil and Gas Exploration.� Working Paper.

Levitt, C. J. 2016. �Information Spillovers in Onshore Oil and Gas Exploration.� Resource and Energy

Economics. 45, 80-98.

Lin, C.-Y. C, 2009. �Estimating Strategic Interactions in Petroleum Exploration.� Energy Economics. 31

(4), 586-594.

Lin, C.-Y. C., 2013. �Strategic Decision Making with Information Externalities: A Structural Model of

the Multistage Investment Game in O�shore Petroleum Production.� The Review of Economics and

Statistics. 95 (5), 1601-1621.

MacKay, D. J. C. 2003. �Information Theory, Inference, and Learning Algorithms.� Cambridge: Cambridge

University Press.

44



Mardia, K. V., and R. J. Marshall. 1984. �Maximum Likelihood Estimation of Models for Residual Covari-

ance in Spatial Regression.� Biometrika. 71 (1), 135-146.

Murray, F., P. Aghion, M. Dewatripont, J. Kolev, and S. Stern. 2016 �Of Mice and Academics: Examining

the E�ect of Openness on Innovation.� American Economic Journal: Economic Policy . 8 (1) 212-252.

Murray, F. and S. Stern. 2007. �Do Formal Intellectual Property Rights Hinder the Free Flow of Scienti�c

Knowledge? An Empirical Test of the Anti-commons Hypothesis.� Journal of Economic Behavior and

Organization. 63 (4), 648-687.

Moreton, R. 1995. �Tales from Early UK Oil Exploration: 1960-1979.� Croydon: Petroleum Exploration

Society of Great Britain.

Myerson, R. B, and M. A. Satterthwaite. 1981. �E�cient Mechanisms for Bilateral Trading.� Journal of

Economic Theory . 29, 265-281.

Porter, R. H. 1995 �The Role of Information in U.S. O�shore Oil and Gas Lease Auctions.� Econometrica.

63 (1). 1-27.

Rasmussen, C. E., and C. K. I. Williams. 2005. �Gaussian Processes for Machine Learning.� Cambridge:

The MIT Press.

Rowland, C., and D. Hann. 1987. �The Economics of North Sea Oil Taxation.� London: Palgrave Macmillan.

Ryan, S. P., and C. Tucker. 2011. �Heterogeneity and the Dynamics of Technology Adoption.� Quantitative

Marketing and Economics. 10, 63-103.

Scotchmer, S. 1991. �Standing on the Shoulders of Giants: Cumulative Research and the Patent Law.�

Journal of Economic Perspectives. 5 (1), 29-41.

Spence, M. 1984. �Cost Reduction, Competition, and Industry Performance.� Econometrica. 52 (1), 101-122.

Steck, A. 2018. �Industry Dynamics with Social Learning: Evidence from Hydraulic Fracturing.� Working

Paper.

Weaver, J. L., and D. F. Asmus. �Unitizing Oil and Gas Fields Around the World.� Houston Journal of

International Law. 28 (1), 1-197.

Williams, H. 2013. �Intellectual Property Rights and Innovation: Evidence from the Human Genome.�

Journal of Political Economy . 121 (1), 1-27.

45



Appendix

A Details of Logistic Gaussian Process Model

This section describes the Bayesian updating rule for the logistic Gaussian process model

and relies heavily on Section 3 of Rasmussen and Williams (2006). The code that I use to

implement the numerical Bayesian updating rule is a modi�ed version of the Matlab package

made available by Rasmussen and Williams.36

The latent variable, λ(X) is assumed to be distributed according to a Gaussian pro-

cess. That is, λ(X) is a continuous function, and any �nite collection of K locations

{1, ..., K}, the vector (λ(X1), ..., λ(XK)) is a multivariate normal random variable with mean

(µ(X1), ..., µ(XK)) and a covariance matrix with (j, k) element κ(Xj, Xk) where κ(Xj, Xk)→
κ(Xj, Xj) as |Xj −Xk| → 0.

I assume a constant prior mean and a covariance speci�cation given by equation 2. The

prior distribution is therefore de�ned by three parameters, (µ, ω, `). Denote the density func-

tion of prior distribution of λ by p0(λ). Observed data is described by y = {(s(w), Xw)}w∈W
for a set of wells, W . The Bayesian posterior distribution of λ conditional on y is given by:

p1(λ|y) =
p0(λ)p(y|λ)

p(y)
(23)

p(y|λ) =
∏
w∈W

(1(s(w) = 1)ρ(λ(Xw)) + 1(s(w) = 0) (1− ρ(λ(Xw))))

p(y) =
∏
w∈W

(
1(s(w) = 1)

∫
ρ(λ(Xw))p0(λ)dλ+ 1(s(w) = 0)

(
1−

∫
ρ(λ(Xw))p0(λ)dλ

))

Where ρ(λ(X)) is de�ned by equation 1. This posterior distribution is di�cult to work

with. In particular, in order to compute the posterior E(ρ(X)|y) for some location X I must

�rst compute the marginal distribution of λ(X), which is given by:

p(λ(X) = λ̃|y) =

∫
1(λ(X) = λ̃)p1(λ|y)dλ (24)

Then the expected value of ρ(X) is given by:

E(ρ(X)|y) =

∫
ρ(λ̃)p(λ(X) = λ̃|y)dλ̃ (25)

The posterior marginal distribution of λ(X) given by equation 24 is non-Gaussian and has

36Available at http://www.gaussianprocess.org/.
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no analytical expression. This means that it is computationally costly to compute E(ρ(X)|y).

To solve this problem I use a Gaussian approximation to the posterior p1(λ|y) computed

using the Laplace approximation technique detailed in Section 3.4 of Rasmussen andWilliams

(2006), based on Williams and Barber (1998). This method is widely used for Bayesian

classi�cation problems in computer science and in geostatistics (Diggle, Tawn, and Moyeed,

1998)..

Denote the Gaussian approximation to p1(λ|y) by q1(λ|y). Since q1(λ|y) is Gaussian, the

posterior distribution over any �nite collection of K locations can be written as a N(µ1,Σ1)

where µ1 is K×1 and Σ1 is K×K. In particular, the marginal distribution given by equation

24 is a Normal distribution.

Notice that, since q1(λ|y) is itself a Gaussian process, it is straightforward to update beliefs

again given a new set of data, y′, following the same procedure. This updating procedure

de�nes the operator B(·) in equation 4, where G(ρ) is the distribution of ρ implied by the

prior Gaussian distribution of λ and the logistic squashing function 1, and G′(ρ) is the

distribution over ρ de�ned by the Gaussian approximation to the posterior distribution of λ.

B Estimation Details

B.1 Estimation of Development Payo�s

Firms decide to develop blocks based on the expected payo� from the block, πj and the �xed

cost of developing the block, κj. πj is drawn from a distribution Γ(π;λj, P ). Recall that the

relationship between ρj and λj is de�ned in equation 1.

I assume that πj = π(Rj, P )(1 − µ), where Rj are the reserves on block j and P is the

oil price at development. I do not observe Rj directly in the data, but I do observe the

realized �ow of oil from all production wells drilled from a development platform up to 2000.

I cannot use the total oil produced from each block to measure Rj because most �elds were

still producing in January 2000, the last month in my data, and the sum of all oil produced

is therefore less than the total reserves.

A classic production pro�le involves a pre-speci�ed number of wells being drilled, over

which time the production �ow of the �eld ramps up. Once the total number of wells

is reached, production peaks and then begins to fall o� (Lerche and MacKay, 1999). To

estimate the volume of reserves, I use data on the set of wells that were drilled before

production peaked on each block, and extrapolate into the future using an estimate of the

rate of post-peak decline in production. Let t0(j) be the month that production began on

block j and let t∗(j) be the month of peak production. Let rj(t) be the observed �ow of
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oil from block j in month t. I estimate a parameter bj that measures the rate of post-peak

decline in production separately for each block j by applying non-linear least squares to the

following speci�cation:

rj(t) = rj(t
∗(j))exp(−bj(t− t∗(j))) + εjt (26)

Where the estimation sample includes all months after t∗(j) for all developed blocks, j.

Estimated initial reserves are then given by:

Rj =

t∗(j)∑
t=t0(j)

rj(t) +
∞∑
t=0

rj(t
∗(j))exp(−b̂jt) (27)

Where the �rst term is the realized pre-peak production, and the second term is the ex-

trapolated post-peak production. Note that the oil �ow used to estimate the block-speci�c

rate of decline bj includes data from future redevelopments (so-called �enhanced oil recov-

ery,� see Jahn, Cook, and Graham, 1998). Thus, I assume that �rms anticipate future

improvements in technology that extend the life of the �eld.

Figure A3 illustrates the relationship between exploration success rate and log estimated

reserves. Notice that the expected size of the reserves is increasing in the success rate of

exploration wells on the same block. I assume that reserves are drawn from a log normal

distribution: Rj ∼ logN(αR+µRλj, σR) and estimate via MLE where I integrate out the pos-

terior distribution of λj conditional on all wells drilled up to 1990.The estimated parameters

are reported in Table A1.

Finally, note that πj = π(Rj, P )(1−µ) This function converts the total reserves in barrels

to the expected present discounted value of revenue taking into account the future evolution

of prices, less the 12.5% royalty paid to the government, where oil is assumed to �ow at

a constant rate for 30 years at which point the reserves, Rj are exhausted. µ ∈ [0, 1] is a

pro�t margin parameter that represents the share of revenues after the royalty tax that are

captured by operating costs. This parameter is not identi�ed by the data, and I normalize it

to 50%. Changing this parameter would change the estimated cost parameters proportionally

and have no e�ect on �rm choices.
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Table A1: Distribution of Development Payo�s

Parameter Estimate SE
αR 3.903 0.167
µR 0.753 0.226
σ2
R 1.493 0.109

N 111

Notes: Reported coe�cients are from OLS estimation of regression speci�cation given by equation ??. Sample
includes one observation for each of the 111 blocks developed before 2000 in the area north of 55◦N and east
of 2◦W . Left hand side variable is the log of the predicted oil reserves on block j, measured in millions of
barrels. Right hand side variable is the observed exploration well success rate for block j calculated using
all exploration wells drilled on block j before development.

B.2 Estimating Conditional Choice Probabilities

In the �rst step, I estimate CCPs P̂ (aE = j|Sft) and P̂ (aD = j|Sft) - the probabilities that
a �rm takes an action j in the exploration and development stages of the game conditional

on its state Sft and the information spillover parameter α. It is not possible to obtain a

consistent estimator of the CCPs conditional on the full state, Sft, because states are not

recurrent. For instance, once a block is developed it is removed from the set of blocks for

which licenses can be issued. As discussed in Section 6, I instead assume that �rms condition

their choices on a set of lower dimensional statistics, sft. In particular, I impose the following

additional structure on �rms' CCPs. Consider �rst the exploration decision. Notice that

equation 11 can be rewritten as

P (aEf = j|Sft) =
exp

(
ṽEf (j, sft)

)
1 +

∑
k∈Jft exp

(
ṽEf (k, sft))

) (28)

where ṽEf (j, sft) = 1
σε
vEf (j, sft)− 1

σε
vEf (0, sft).

I approximate ṽf
E(j, s) with a linear equation with the following terms (components of

s):

� A cubic function of the mean and variance of the �rm's beliefs: E(ρj|Gft), V ar(ρj|Gft).

� The number of licenses held near block j by �rm f and by other �rms: |{k : k ∈
Jft and d(j, k) ≤ 3}|, |{k : k ∈ ∪{Jgt}g 6=f and d(j, k) ≤ 3}|, and |{k : k ∈ ∪{Jgt}g 6=f and d(j, k) =

0}|, where d(j, k) = 1 if j and k are neighbors, d(j, k) = 2 if j and k are second degree

neighbors etc.

� The number of nearby unobserved well outcomes|{w ∈ W u
ft : d(j, jw) ≤ 3}| wherejw is

the location of well j,
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� The number of �rms operating near block j: |{g : ∃k ∈ Jgt : d(j, k) ≤ 3}|.

� A quadratic in the price level: Pt and P
2
t .

� Interactions of these variables (listed in Table A2).

The approximation to ṽf
D(j, sft) contains fewer terms because of the limited number of

development actions observed in the data.

Estimating P̂ (aEf = j|sft) is then a case of estimating the parameters of this approximation

to ṽf
E(j, sft). Notice that I assume that s depends on the distribution of licenses and beliefs

�near� block j, rather than on the entire set of licenses ∪{Jgt} and the entire distribution

Gft. Intuitively, the di�erence between the value of drilling on block j and taking no action

should depend more on the local distribution of licenses and wells than the distribution at

distant locations. This �local state� is recurrent and ṽf
E(j, sft) can be estimated consistently.

If the state variable were observable in the data, then P̂ (aEf = j|sft) could be estimated

using the likelihood function implied by equation 28. However, the asymmetric information

structure of the model means that the true state is not observed by the econometrician.

The data does not include the vector of that records which other-�rm well outcomes were

observed by �rm f . Di�erent realizations of of imply di�erent states through the e�ect of

observed well outcomes on Gft. The data is therefore consistent with a set of possible states

S̃f for each �rm.37

To recover CCP estimates, observe that di�erent values of the parameter α de�ne dis-

tributions P (Sf |S̃f , α) over the elements of S̃f . For example, suppose at date t there was

one other-�rm well w that may have been observed by �rm f . Let S1
ft be the state if

of (w) = 1 and S0
ft be the state if of (w) = 0. From the econometrician's perspective,

P (S1
ft|{S1

ft,S0
ft}, α) = α. I provide a formal de�nition of the distribution P (Sf |S̃f , α) in

subsection C.4 below.

Given this distribution over states, the likelihood of a sequence of exploration choice

observations is:

LEf =
∑
Sf∈S̃f

 T∏
t=1

∏
j∈Jft∪{0}

P (aEft = j|Sf )1(a
E
ft=j)P (aDft = j|Sf )1(a

D
ft=j)

P (Sf |S̃f , α)

 . (29)

I maximize this likelihood to jointly estimate the coe�cients of the approximations

ṽEf (j, sft) and ṽDf (j, sft), and the parameter α. Since I sometimes observe multiple ex-

ploration wells for the same (f, t) I treat these as separate observations inside the brackets

37More precisely, and element of S̃f is a particular sequence of �rm-f states Sf = {Sft}Tt=1. See the

subsection below for a formal de�nition of S̃f .
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in equation 29. The estimated coe�cients imply conditional choice probability estimates,

P̂ (aE = j|Sft) and P̂ (aD = j|Sft).
Logit coe�cients for the estimated CCPs are recorded in Table A2.

Table A2: Conditional Choice Probabilities: Logit Coe�cients

Exploration Development

Coe�cient SE Coe�cient SE

E(ρj) -16.840 6.061 2.010 1.205

E(ρj)
2 25.862 11.113

E(ρj)
3 -13.721 8.722

V ar(ρj) -12.073 2.859 -5.454 0.852

V ar(ρj)
2 7.057 1.948

V ar(ρj)
3 -1.845 0.582

E(ρj)V ar(ρj) 11.097 2.080

Oil Price 0.107 0.025 0.309 0.119

Oil Price2 -0.001 0.000 -0.005 0.002

Oil Price * V ar(ρj) -0.004 0.008

Oil Price * E(ρj) -0.029 0.022

Own Blocks Nearby 0.188 0.043

Other Blocks Nearby -0.024 0.018

Unobserved Wells -0.077 0.028

Count of Other Firms Nearby 0.087 0.015

Unobserved Wells ∗ Own Blocks Nearby -0.001 0.001

Unobserved Wells ∗ Other Blocks Nearby 0.001 0.000

E(ρj) ∗ Own Blocks Nearby -0.195 0.054

E(ρj) ∗ Other Blocks Nearby 0.004 0.025

V ar(ρj) ∗ Own Blocks Nearby -0.129 0.026

V ar(ρj) ∗ Other Blocks Nearby 0.002 0.010

E(ρj) ∗ Unobserved Wells 0.007 0.030

V ar(ρj) ∗ Unobserved Wells 0.040 0.015

Intercept 1.067 -8.910 1.781

LR Test of α = 1 λLR = 3924.8 C0.99 =6.635

Notes: Table records logit coe�cients on state variable summary statistics the enter the approximation to
the state for the �rm's exploration and development decisions. Standard errors are computed using the
inverse hessian of the likelihood function. The lower panel reports the results of an LR test is a comparing
of the maximized 1st step likelihoods (equation 29) of the baseline model to a restricted model with α = 1.
The test statistic λLR has a χ2

1 distribution with 95% critical value C0.95.
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B.3 Estimating Belief Functions

Beliefs about Other Firms Actions I use P̂ (aE = j|Sft) and P̂ (aD = j|Sft) to generate
simulated data sets that can be used to estimate �rms' equilibrium beliefs about other �rms'

actions.

Starting at the date when the �rst licenses were issued, I draw exploration and develop-

ment decisions for each �rm using P̂ (aE = j|Sft) and P̂ (aD = j|Sft). Well outcomes on

block j are generated using �true� success probabilities ρj that are drawn from the estimated

Gaussian process, as discussed in Section 3.

Every period, for every well that is drilled by �rm f in a period, I allow each other �rm

to observe the outcome with probability α̂, with unobserved wells revealed at the end of the

con�dentiality period drawn from from Fτ (τw). At the end of each period, I update each

�rm's state variable according to the new observed well outcomes and allow the price to

evolve according to the estimated process. Each period, �rm licenses are set to the observed

licenses in the data, unless a �rm-block has been developed, in which case the license is

removed.

This simulation procedure generates a data set which records each �rm's state Sft and
actions (aEft, a

D
ft) at each date. I simulate this data 20 times using di�erent seeds for the

random number generator. Each simulation is run for 316 months, corresponding to the

period of the data from the issuing of the �rst license up to the end of 1990. This means

that �rms' beliefs are consistent with the equilibrium distribution of states and actions over

this time period. Let r index simulations. I estimate the following equations on the simulated

data using logistic regression:

1(aErgt = j) = qE(srft, g, j) + εftrj (30)

1(aDrgt = j) = qD(srft, g, j) + εftrj

Where εftrj is i.i.d. logistic. These speci�cations are regressions of �rm g's action on �rm

f 's state. Data is pooled across simulations r, dates t, pairs of �rms (f, g), and locations

j ∈ Jgt. In practice, I estimate these speci�cation on a random 20% sub-sample of this

pooled data set which has around 20 million (f, g, j, t) observations.

The functions qE(srft, g, j), q
Past(srft, g, j), and qD(srft, g, j) are linear in elements of

srft. In particular, qPast(Srft, g, j), and qD(Srft, g, j) have the same speci�cation as ṽf
E(j, s)

outlined in Appendix B.1 above, where the counts of �own� and �other� blocks now refer to

�rm g. That is, the functions summarize �rm f 's beliefs about the well success probability

on block j and counts of �rm g and other �m's licenses near block j. Likewise, qD(srft, g, j)

52



has the same speci�cation as ṽf
D(j, s).

Estimates of �rms' equilibrium beliefs about other �rms actions, de�ned in equations16

are then given by

Q̂E(Srft, g, j) =
exp(q̂E(srft, g, j))

1 + exp(q̂E(srft, g, j))
, (31)

and analogously for Q̂D.

Adjusted Beliefs about the Distribution of Oil As discussed in Section 5.2, equilib-

rium condition 3 requires �rms to forecast well outcomes using the distributionQG(ρ;G(ρ),W u
ft)

which is the posterior distribution of ρ conditional on G(ρ), the which depends on observed

well outcomes, and W u
ft, the set of wells with unobserved results. Recall from Appendix

A that G(ρ) is a transformation of the Gaussian posterior of λ, denoted by p1(λ|y) (equa-

tion 23). Denote pQ(λ|y,W u
ft) the equivalent transformation of QG(ρ;G(ρ),W u

ft). Under the

assumption that pQ(λ|y,W u
ft) is Gaussian, I need to recover an expectation EpQ(λj) and a

variance V arpQ(λj) in order to forecast binary exploration well outcomes and development

payo�s (equation ??) I need to

To compute these adjusted beliefs I use the simulated data described above and run the

following regression:

λj = βGEp1(ρj) +
5∑

n=0

βn1(|W u
ft| ≥ n)|+

5∑
n=0

βGn1(|W u
ft| ≥ n)|)Ep1(ρj) + εjft. (32)

Where an observation is (j, f, t). The �tted values from this regression are then used as

EQG(ρ). Intuitively, equation 32 estimated the expected value of λj conditional on p1(λ|y)

and |W u
ft|, restricted to a particular linear model. I then obtain residuals ε̂jft and run another

regression,

ε̂2jft = δGV arp1(ρj) +
5∑

n=0

δn1(|W u
ft| ≥ n)|+

5∑
n=0

δGn1(|W u
ft| ≥ n)|)V arp1(ρj) + ηjft. (33)

The �tted values from this equation are estimated of the expected value of ε̂2jft; i.e. the

estimated of the variance of λj conditional on p1(λ|y) and |W u
ft|.

B.4 Estimating Dynamic Parameters

In the second step, I use the estimated conditional choice probabilities P̂ (aE = j|S) and

P̂ (aD = j|S), estimated beliefs Q̂E(Sft, g, j) and Q̂D(Sft, g, j), and estimated spillover pa-

rameter, α̂, to estimate the cost parameters θ2. The �rm's value functions (9) can be written
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in terms of the expected sum of future payo�s and costs as

V E
ft0

(S, θ2) = E

 ∞∑
t=t0

βt
∑
j=Jft

(
1(aDft = j) (πj − (κ(j,Sft)− νftj))− 1(aEft = j) (c(j,Sft)− εftj)

) .
(34)

Where the expectations are taken over all future cost shocks, �rm actions, and realiza-

tions of s(w), of (w), and πj with respect to the �rm's beliefs at state S. To estimate this

expectation, I forward simulate the model from initial state S.38 Simulation proceeds as

follows:

1. Draw an exploration action using probabilities P̂ (aEft = j|Sft). Compute expected

cost shock εftaE , given realized action. If a well is drilled, let it be successful with

probability corresponding to �rm f 's beliefs at state Sft.

2. Draw other �rms' exploration actions using Q̂E. Let wells be successful with probability

corresponding to �rm f 's beliefs at state Sft.

3. Draw of (w) for wells drilled by other �rms using α̂. If of (w) = 0 the draw deadline

τ(w) from Fτ (τw)

4. Reveal wells at the end of their con�dentiality period: if t− t(w) = τ(w) set of (w) = 1.

5. Update state to S ′ft = (Sft, aEft).

6. Draw a development action using P̂ (aDft = j|S ′ft). Compute expected cost shock νftaE ,

given realized action. If block j is developed draw development revenue πj from the

distribution corresponding to �rm f 's beliefs QG(ρ;G(ρ),W u
ft).

7. Draw other �rms' development actions using Q̂D. Draw development revenue πj from

QG(ρ;G(ρ),W u
ft).

8. Update state to Sft+1. Beliefs Gt are updated based on exploration well results Wt

and realized revenues {πjt}j∈Jdt . Price and licenses evolve according to estimated

processes.39

38Hotz and Miller (1993) obtain estimates of the �rm's value function using �nite dependence by normal-
izing one state to have a continuation value of 0. This approach is complicated here since the �absorbing
state� of developing all blocks is the result of a series of choices, rather than a single choice that is available
at every state (for example exit in a standard dynamic oligopoly model).

39Notice that since cost parameters θ2 enter equation 34 linearly, I only need to perform the simulation step
once. Simulated continuation values can be obtained under di�erent parameter vectors θ2 by multiplying
the simulated costs and revenues by the relevant elements of the parameter vector (Bajari, Benkard, and
Levin, 2007).
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Let r index simulation runs and V E
fr(Sft, θ2) be the present discounted sum of �rm f 's payo�s

and costs from run r. This sum includes incurred costs and oil revenue as well as the sum of

future cost shocks, εftj and νftj. I normalize the means of εftj and νftj so that the expected

cost of no action is 0. That is, E(εft0|aEft = 0, Sft) = 0 and E(νft0|aEft = 0, Sft) = 0. Given

R simulations from state Sft, estimates of the value functions given by equation 34 are:

V̂ E
f (Sft, θ2) =

1

R

R∑
r=1

[
V E
fr(Sft, θ2)

]
. (35)

A similar procedure is used to compute estimates of development stage value functions

V̂ D
f (Sft, θ2) where the simulation algorithm is started at step 5. Simulated choice-speci�c

value functions, de�ned relative to the value of choosing not to drill, are:

v̂Ef (j,Sft, θ2) =
1

R

R∑
r=1

[
V E
fr(Sft, θ2)|aEft0 = j

]
− 1

R

R∑
r=1

[
V E
fr(Sft, θ2)|aEft0 = 0

]
(36)

I simulate these choice-speci�c value di�erences for 500 �rm-date-block observations

drawn from the data. For each observation I run R = 100 simulations with aEf0 = j and 100

simulations with aEf0 = 0, and then compute the di�erence in expected continuation values

as a function of θ2. Each simulation is run for 360 periods (30 years). A similar procedure

generates v̂Df (j,S, θ2).
I then �nd the cost parameters, θ2, that minimize the di�erence between the �st step

estimated choice-speci�c value functions, ṽEf (j, sft) and ṽDf (j, sft), and the model-implied

choice-speci�c value functions, v̂Ef (j,Sft, θ2) and v̂Df (j,Sft, θ2), using the objective function

given by equation 37.

θ∗2 = arg min
θ2

∑
f

∑
t

∑
k∈{E,D}

(
ṽkf (j, sft)− v̂kf (j,Sft, θ2)

)2
(37)

Where the sum is over the set of 500 �rm-date-blocks drawn from the data. Notice

that ṽkf (j, sft) is a function of the lower dimensional state variable sft. Since the sampled

states are drawn from the equilibrium distribution (i.e. the data), this regression imposes the

assumption in equation 19 that �rms' choice-speci�c values are averages over the distribution

of Sft conditional on sft within the time period of the data.

Standard errors for θ2 are obtained by repeating the second step estimation procedure

for 200 bootstrap draws from the �rst step CCP estimated in Table A2 and taking the

standard deviation of the estimated parameters. Because the simulation of value functions

is computationally intensive, I only use 50 simulations for each bootstrap draw.
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B.5 Technical Details on Distribution of States

De�ne a period t observation as

Xt = {{(j(w), s(w), f(w)) : t(w) < t}, {Jft}f∈F∪{0}, Pt}, (38)

the set of wells, the set of licenses, and the oil price. The data consists of T such observa-

tions, X = {Xt}Tt=1. If the states {Sft}f∈F were uniquely identi�ed by Xt, then P̂ (aEf = j|S)

could be estimated using a straightforward logit. This is not possible since the econometri-

cian does not observe the vector of . That is, the econometrician does not know which well

outcomes each �rm observed in reality. Di�erent realizations of of imply di�erent states

through the e�ect of observed well outcomes on Gft. The state variable Sft is therefore not
directly observed in the data, and for every (f, t), the data is consistent with a set of states.

Formally, denote a sequence of �rm f states as Sf = {Sft}Tt=1. There exists a function s(·)
such that Sf = s(of |X). De�ne S̃f (X) as the range of this function. That is, S̃f is the set of
�rm f states that are consistent with the data. There also exists an inverse correspondence

s−1(Sf |X) that maps states to (possibly multiple) vectors of that imply those states.

To recover CCP estimates, observe that di�erent values of α de�ne distributions over the

elements of S̃f . In particular, the probability of sequence of states Sf ∈ S̃f , conditional on
the data is:

P (Sf |X,α) =
∑

o∈s−1(Sf |X)

(
α
∑
w o(w)(1− α)

∑
w(1−o(w))

)
. (39)

Given this distribution over true states, the likelihood of a sequence of exploration choice

observations conditional on (X,α) is given by:

LEf =
∑

Sf∈S̃f (X)

 T∏
t=1

∏
j∈Jft∪{0}

P (aEft = j|Sf )1(a
E
ft=j)P (aDft = j|Sf )1(a

D
ft=j)

P (Sf |X,α)

 .
(40)

Note that the summation in equation 40 is an expectation. In practice, it is computationally

infeasible to compute the action probabilities at every possible state sequence Sf ∈ S̃f . I

approximate this expectation for di�erent values of α using importance sampling.

B.6 Estimation of License Issuing Process

New drilling licenses are issued by the government in rounds that occur irregularly every two

to three years. To model this process, I assume that licensing rounds happen each month

with a probability 1/24, so that every two years there is one round in expectation. When a
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round takes place, new licenses are issued and existing licenses may be revoked. Firm f has

correct beliefs about this process

In a given round, one license can be issued on each block j. The probability that a new

license on block j is issued to a �rm f is given by:

P (j ∈ Jft) =
exp(βZfjt)

1 +
∑

g:j /∈Fjt exp(βZgjt)

That is, a new license can be issued to any �rm that does not already have a license on

that block. The probability of receiving the license depends on covariates Zfjt which include

whether any �rm has a license on the block at date, whether any neighboring blocks are

licensed at date, and whether any neighboring blocks are licensed to �rm f .

After new licenses are issued, existing licenses are revoked at random with probability ω.

I estimate this licensing process by running a regression of licenses at date t on covariates

Zfjt−24. That is, I estimate the probability that a new license is issued in today as a function

of the license distribution two years ago. Similarly, I estimate ω as the probability that a

license at date t is revoked by date t+ 24. The estimated parameters recorded in Table A3.

The average probability that a new license is issued on a block in a given round is 4.8%.

The probability that a license on a particular block is issued to a particular �rm is 0.06%.

Marginal e�ects of the covariates Zfjt on this probability, evaluated at the mean values of

the covariates, are recorded in Table A3.

Table A3: License Issuing Process

Probability of New License Probability of Revoked License

Parameters Marginal E�ect

(percentage points)

Constant -7.808 ω 0.129

(0.010) (0.000)

Licensed in t− 24 0.660 0.025

(0.018)

Neighbors Licensed

to g 6= f in t− 24 -0.579 -0.022

(0.072)

to f in t− 24 2.120 0.080

(0.024)

Notes: Marginal e�ects on probability are computed at the mean value of the independent variables.
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C Identi�cation Details

In this section I provide a proof of identi�cation of the exploration conditional choice proba-

bilities (CCPs) P (aEf = j|S) and the information spillover parameter, α. Identical reasoning

applies to development choice probabilities. Let X be the space of possible data points,

where X ∈X is an observation as de�ned by equation 38.

Proposition 1. Suppose P (aEf = j|S̃f (X)) is observed for all f and all X ∈ X. These

observed probabilities are consistent with a unique value of α and a unique value of P (aEf =

j|Sf ) for every possible state Sf .

Proof. First, suppose that α is known.

Let wt be a vector of length W = |{w : t(w) < t}| indexed by i ∈ [1, ...,W ] is an index

which contains the identity w of each well w ∈ {w : t(w) < t} in some order such that we

can refer to well identities by, wt(i) . Let γft be a vector of length W with ith element

γft(i) = 1(f(wt(i)) = f). γft is a vector of indicators for whether each well w was drilled

by �rm f .

We can then rewrite the observable data Xt as Xt = {xt, {γft}f∈F}. Where

xt = {{(j(w), s(w)) : t(w) < t}, {Jft}f∈F∪{0}, Pt}.

xt describes the location and outcome of all wells drilled up to date t, the date t distribution

of licenses, and the oil price.

De�ne oft as a vector of length W with ith element given by oft(i) = of (wt(i)). oft

is just an ordered vector of containing indicators for whether �rm f observed each well

w ∈ {w : t(w) < t} (a subset of the elements of of ).

Suppose for simplicity that all wells w, t − t(w) < τ , so no wells are older than the

con�dentiality period τ . This assumption simpli�es notation, and the following argument

easily generalizes. I now drop the t subscript for simplicity.

Firm f 's state is uniquely de�ned by the pair (of , x). That is, there exists a function

Sf = s(f,of , x). The set of states that are consistent with the objects observed in the data

is de�ned by a correspondence S̃f = s̃(f,γf , X). In particular:

s̃(f,γf , x) = {s(f,of , x) : γf (i) = 1⇒ of (i) = 1∀i ∈ [1, ...,W ]}.

So s̃(f,γf , x) contains states implied by all possible values of of . In particular, each well

drilled by a �rm other than f may or may not have been observed.

Now �x a value of x. There are 2W possible values of γf and therefore of S̃f = s̃(f,γf , x).

There are also 2W possible values of of and therefore of Sf = s(f,of , x). Let Sf (x) be the
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set of possible values of Sf and S̃f (x) be the set of possible values of S̃f . For any action

choice j ∈ Jf and any S̃f ∈ S̃f (x) we can write:

P (aEf = j|S̃f ) =
∑

Sf∈Sf (x)

P (aEf = j|S)P (Sf |S̃f ).

Where P (Sf |S̃f ) is a function of α given by equation 39 if Sf ∈ S̃f and P (S|S̃f ) = 0 if

Sf /∈ S̃f .
There are 2W such equations which de�ne a linear system P̃ = AP where P̃ is a 2W × 1

vector which stacks the probabilities P (aEf = j|S̃f ), P is a 2W × 1 vector which stacks the

probabilities P (aEf = j|S), and A is a 2W ×2W matrix containing the probabilities P (Sf |S̃f )
which are known functions of α. P̃ is observed in the data. A is a known function of the

single parameter α. P is an unknown vector for which we would like to solve.

The vector of true CCPs P can be recovered from the observed probabilities, P̃ when

A has full rank. This is the case here because the system of equations can be written such

that A is lower triangular with non-zero diagonal elements. I show this by providing an

algorithm to solve the system by forward substitution, which is only possible in a triangular

system of equations. The algorithm proceeds as follows:

1. Denote the vector with all entries equal to 1 by 1 Start with γ1
f = 1. Let S̃1

f = s̃(f,1, x)

and S1
f = s(f,1, x) . Notice S̃1

f = S1
f . If all wells were drilled by �rm f , then they are

all observed. Therefore

P (aEf = j|S̃1
f ) = P (aEf = j|S1

f ).

P (aEf = j|S1
f ) is uniquely identi�ed.

2. Denote the vector with all entries except the ith equal to 1 and the ith equal to 0

by 1{i}. Let γ2
f = 1{i}. Let S̃2

f = s̃(f,1{i}, x) and S2
f = s(f,1{i}, x) . Notice that

S̃2
f = {S1

f ,S2
f}. The �rm either did or did not observe the ith well. Therefore

P (aEf = j|S̃2
f ) = αP (aEf = j|S1

f ) + (1− α)P (aEf = j|S2
f ).

Since the other terms are already known, P (aEf = j|S2
f ) is uniquely identi�ed.

3. Repeat step 2 for each index ∀i ∈ [1, ...,W ].

4. Proceed to vectors γf with two entries equal to 0 and repeat step 2.
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5. Continue iterating through vectors with increasingly more entries equal to 0 until

P (aEf = j|Sf ) has been solved for for all Sf ∈ Sf (x).

This algorithm generates the unique solution P of the system of equations P̃ = AP . This

can be repeated for any value of x.

Now I argue that α is uniquely identi�ed. Fix a pair (x, x′) where x and x′are identical

except for the outcome of the ith well. The following four equations hold:

P (aEf = j|s̃(f,1, x)) = P (aEf = j|s(f,1, x))

P (aEf = j|s̃(f,1, x′)) = P (aEf = j|s(f,1, x′))

P (aEf = j|s̃(f,1{i}, x)) = αP (aEf = j|s(f,1, x)) + (1− α)P (aEf = j|s(f,1{i}, x))

P (aEf = j|s̃(f,1,{i} x′)) = αP (aEf = j|s(f,1, x′)) + (1− α)P (aEf = j|s(f,1{i}, x′))

The left hand side of each equation is observed. Notice that P (aEf = j|s(f,1{i}, x)) =

P (aEf = j|s(f,1{i}, x′)) since when the ith well is unobserved the two states are identical to

the �rm. There are therefore three unknown choice probabilities and the parameter α on

the right hand side. α can be solved for in terms of observed quantities.

D Simulation Details

In this section, I describe the simulation algorithm used to compute counterfactual equilibria

of the estimated model. Inputs to the simulation are a vector of model parameters, θ, a

con�dentiality window, τ , a license assignment{Jft}f∈F for each period, �rst step conditional

choice probability (CCP) estimates, P̂ (aE = j|Sft) and P̂ (aD = j|Sft), and belief functions

Q̂E, Q̂D, and Q̂G. The output of the simulation are equilibrium CCPs, P ∗(aE = j|Sft) and
P ∗(aD = j|Sft).

The algorithm works by taking a set of CCPs as input and forward simulating those

probabilities to obtain model-implied choice-speci�c continuation values (given by equation

35). This is the same procedure as used in the second step of estimation, as described in

Appendix C.3.

These value functions imply new choice probabilities that can be used to generate simu-

lated data, from which new belief functions can be estimated (using the procedure described

in Appendix C.2). The procedure can then be iterated until choice probabilities converge to

a �xed point.

The algorithm proceeds as follows:

1. Draw a set of states S1 from the data.
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2. Use �rst step CCPs P̂ (aE = j|S) and P̂ (aD = j|S) and �rst step estimates of Q̂E, Q̂D,

and Q̂G to perform the forward simulation described in Appendix C.3 for each S ∈ S1.

This procedure generates model implied exploration and development probabilities,

P̂ 1(aEf = j|S, θ2) and P̂ 1(aDf = j|S, θ2).

3. Simulate data using P̂ 1(aEf = j|S, θ2) and P̂ 1(aDf = j|S, θ2), and use this data to

estimate belief functions, Q̂E1, Q̂D1, and Q̂G1 .

4. Draw a new set of states S2 from the simulated data.

5. Go back to step 2 and repeat using new exploration CCPs and belief functions. Repeat

for k iterations until∑
S∈S

(
P̂ k(aEf = j|S, θ2)− P̂ k+1(aEf = j|S, θ2)

)2
≈ 0

and ∑
S∈S

(
P̂ k(aDf = j|S, θ2)− P̂ k+1(aDf = j|S, θ2)

)2
≈ 0.

Note that by drawing a new set of states from the simulated data on each iteration I ensure

that the equilibrium values functions are consistent with equation 19. In practice I modify

this algorithm by terminating the forward simulation in iteration k after 100 months and

assigning terminal continuation values V̂ k−1(S, θ2) from the k − 1th iteration, extrapolated

across states using a linear regression in elements of S. This greatly reduces the time it

takes to perform one iteration (from > 10 hours to ∼ 1 hours). This method is intermediate

between full simulation of value function and iteration of the bellman equation. Shorter

simulations are faster, but may be sensitive to the functional form used to approximate

continuation values and may take more iterations to converge. Longer simulations are slower

but likely converge in fewer iterations. The approach I take here uses the longest forward

simulations that are practical given the computational constraints, and a �exible functional

form for V̂ k−1(S, θ2).
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E Additional Tables and Figures

Figure A1: Response of Drilling Probability to Exploration Well Data Release
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Notes: Points are the estimated marginal e�ect of each type of past well on Explorefjt from a speci�cation
similar to equation 7, that also includes the number of wells for which data has been released (i.e. the
con�dentiality period has expired) of each type as independent variables. Error bars are 95% con�dence
intervals computed using standard errors clustered at the �rm-month level. Sample includes block-months
in the relevant region before 1991. I drop observations from highly explored regions where the number
of nearby own wells (those on 1st and 2nd degree neighboring blocks) is above the 80th percentile of the
distribution in the data.

Table A4: Regressions of Exploration Probability on Equity Holders' Nearby Licenses

Exploration Well

BlocksOwnfjt 2.467*** 2.479*** 2.505*** 2.401***

(.875) (0.858) (.851) (.868)

BlocksOpEquityfjt -.514 . . -1.026

(1.277) . . (1.304)

BlocksEquityOpfjt . 1.351 . 1.220

. (0.824) . (.816)

BlocksEquityEquityfjt . . .846 .902

. . (.617) (.623)

N 80562 80562 80562 80562

Firm-Block, and Month FE Yes Yes Yes Yes

Coe�cients Scaled by 103 Yes Yes Yes Yes

Notes: Each column records OLS estimates of the coe�cients from a regression of Explorefjt on counts
on of nearby licenses (1st and 2nd degree neighbors). BlocksOpEquityfjt is the number of blocks nearby
block j at month t on which �rm f , the operator of block j, is an equity holder but not an operator.
BlocksEquityOpfjt is the count of blocks nearby block j at date t for which one of the non-operator �rms
with equity on block j is the operator. BlocksEquityEquityfjt is the count of blocks nearby block j at date
t for which one of the non-operator �rms with equity on block j is a non-operator equity holder. Regressions
also include controls for past well results as in equation 7 Standard errors clustered at the �rm-block level.
*** indicates signi�cance at the 99% level. ** indicates signi�cance at the 95% level. * indicates signi�cance
at the 90% level.
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Table A5: Block Level Success Rates Over Time

Dependent Variable: Well Success

Well Sequence Number .025*** -.001 .003 Well 2 -0.020 Well 7 -0.043

(.002) (.003) (.003) (0.029) (0.047)

Well 3 0.017 Well 8 0.026

Year -.005*** .005** . (0.032) (0.052)

(.001) (#3#) . Well 4 -0.014 Well 9 0.077

(0.035) (0.058)

Well 5 -0.038 Well 10 0.017

(0.039) (0.042)

Well 6 0.026

(0.043)

N 2105 2105 2105 2105

Block FE No Yes Yes Yes

Notes: Sample includes all exploration wells drilled before 1991 on the region north of 55◦N and east of
2◦W . Left hand side variable is an indicator for whether the well was successful. Well sequence number
records the order in which wells were drilled on a block. The �rst well on block j has well sequence number
1, the second well has well sequence number 2, etc. *** indicates signi�cance at the 99% level. ** indicates
signi�cance at the 95% level. * indicates signi�cance at the 90% level.

Table A6: Ratio of Response to Nearby Wells to Response to Same-Block Wells

Successful Wells Unsuccessful Wells

Years Ratio SE Ratio SE

1966-1980 0.160 0.118 0.090 0.030

1971-1985 0.103 0.066 0.048 0.036

1976-1990 0.124 0.057 0.078 0.045

1981-1995 0.090 0.067 0.082 0.040

1986-2000 0.131 0.168 0.049 0.029

Notes: Table reports the ratio of the estimated marginal e�ect of past wells on nearby blocks (1-3 blocks
away) to past wells on the same block on Explorefjt from the speci�cation given by equation 7 where
gdo(·) is quadratic in each of the arguments. Marginal e�ect is computed for the �rst well of each type.
Sample includes block-months in the relevant region up for the time period indicated in the �rst column.
An observation, (f, j, t) is in the sample if �rm f had drilling rights on block j in month t, and block j had
not yet been developed. I drop observations from highly explored regions where the number of nearby own
wells (those on 1st and 2nd degree neighboring blocks) is above the 95th percentile of the distribution in the
data. Robust standard errors are reported.
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Table A7: Regressions of Drilling Probability on Nearby Licenses

Exploration Well

log(BlocksOwnfjt) 0.002 0.009 0.028**

(0.002) (0.014) (0.014)

log(BlocksOtherfjt) 0.015*** -0.008* -0.013***

(0.002) (0.005) (0.004)

N 21,618 21,618 21,618

Licensing Round Fixed E�ects No Yes Yes

Well Outcome Controls No No Yes

Notes: Standard errors clustered at the �rm-block level. Observations are at the (f, j, t) level. Sample
includes all (f, j, t) observations that are within 4 months of a licensing round, for which the �rm f has held
a license on block j for at least 6 months. Licensing rounds are identi�ed as (f, j, t) observations for which
the total number of licensed blocks neighboring block j increases from the previous month. Block counts
are of all licenses on block j and neighboring blocks on date t. Well outcome controls are the same as in
speci�cation 7. *** indicates signi�cance at the 99% level. ** indicates signi�cance at the 95% level. *
indicates signi�cance at the 90% level.

Figure A2: Top 25 Firms
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Notes: Figure plots the number of block-month pairs for 1964-1990 licensed to each of the top 25 �rms, and
the set of all other �rms.
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Figure A3: Estimated Reserves
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Notes: Figure records the distribution of estimated oil reserve volume, measured in log millions of barrels,
across all developed blocks in the relevant area. The line is a local polynomial regression with a 95%
con�dence band. A regression of log estimated reserves on success rate has a slope coe�cient of 5.990 with
a standard error of 0.964.

Figure A4: Con�dentiality Periods
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Notes: Histogram of the time from well completion to data release for all exploration wells. 27 observations
with con�dentiality periods less than or equal to 0 or greater than 10 years are dropped.

65



Figure A5: Gaussian Process Learning
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Notes: The x-axis of both panels represents the one dimensional space [0, 1] on which the Gaussian process
is de�ned. The dashed yellow line in the left panel plots the expected value of ρ(X) for X ∈ [0, 1] under
prior beliefs represented by a logistic Gaussian process de�ned according to equations 1 - 2 with µ(X) = 1
and ω = 5. The solid blue line in the left panel represents the posterior expectation of ρ(X) after observing
a successful well at X = 60 and an unsuccessful well at X = 30 when ` = 15. The dotted red line represntes
the posterior expectation when ` = 5. The right panel plots the standard deviation of ρ(X) under the same
prior (red dashed line) and posterior (solid blue line) beliefs.

Figure A6: Success Rate and Reserve Size

ρj = 0.333 ρj = 0.2

Notes: Stylized example. Each panel represents a block. The points are oil wells and the shaded area
is the oil �eld. Green wells are �successful� (that is, they encountered an oil column), and red wells are
�unsuccessful�. The probability of exploration well success, ρj ,on each block corresponds to the share of that
block occupied by the oil �eld.
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Figure A7: Posterior Oil Well Probabilities

Notes: The left panel is a map of the posterior expected probability of success of a �rm with prior beliefs
given by the parameters in Table 2 that observes every well drilled between 1964 and 1990. The right panel
is a map of the posterior standard deviation of beliefs for the same �rm. In the left panel, lighter regions
have a higher posterior expected probability of success, and correspond to areas where more successful wells
were drilled. Darker regions indicate lower posterior expected probability of success, and correspond to
areas where more unsuccessful wells were drilled. The right panel records the posterior standard deviation
of beliefs, with darker regions indicating less uncertainty.

Figure A8: Distribution of Posterior Variance on Developed Blocks
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Notes: Figure plots the distribution of the posterior variance (assuming full information) on block-dates for
which a development action is observed. There are 50 such observations in the data. 86% of development
actions take place at posterior variances below 0.5, indicated by the vertical line.

67



Figure A9: Estimated CCPs

Notes: Simulated exploration probabilities using the estimated CCPs. Probabilities are simulated for a �rm
with a single block and one neighboring block held by another �rm. Oil price is set to the average value in
the data.

Figure A10: True and Simulate Prices

True Prices Three Simulated Paths

Notes: Price is WTI price converted to 2011 $ using the UK production price index for manufacturing and
the UK/US exchange rate.

Table A8: Model Fit

Data Simulation

First Step Probabilities Equilibrium Probabilities

Baseline Model

Exploration Wells 1608 1774.4 1544.4

Blocks Developed 45 54.7 33.7

Exp. Wells/Dev. 35.7 30.8 46.1

Notes: Data column excludes multiple wills on same block on same date. Column 1 records statistics from
the data covering 1964-1990 for the relevant region. Columns 2 and 3 are averages over 50 simulations that
cover 1964-1990. For each month the assignment of blocks to �rms and the oil price in the simulations
are set at their realized values. Simulations in column 2 draw �rm actions using the �rst step estimates of
the conditional choice probabilities. Well outcomes and development revenue are drawn from the estimated
Gaussian process. Simulations in column 3 use equilibrium conditional choice probabilities at the estimated
parameter values.
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Figure A11: Clustered Licenses

Notes: Left panel illustrates the location of drilling licenses for the �ve largest �rms in January 1975 on the
region of the North Sea used for structural estimation. Orange corresponds to Total, green to Conoco,
yellow to Shell, purple to BP, and light blue to Amoco. Red blocks are licensed to other �rms, and dark
blue blocks are unlicensed. The right panel illustrates the counterfactual license assignment constructed
using the clustering algorithm discussed in Appendix F. Table records statistics averaged over 40
simulations.

Table A9: Simulations: No Price Volatility

Baseline No Free Riding Info Sharing
No Info 
Sharing

Info Sharing 
(Equilibrium)

No Price 
Shocks Monopoly Clustered

Exp. Wells 1556.35 1660.00 1575.90 1540.75 1566.35 1549.40 2030.25 1555.15
[7.74] [10.42] [7.88] [10.89] [7.28] [8.74] [9.87] [7.39]

Blocks Dev. 27.30 48.80 35.10 23.55 36.45 31.30 68.85 34.40
[1.21] [2.96] [7.88] [1.19] [1.53] [1.24] [3.48] [1.82]

Exp. Wells/Dev. 59.47 37.43 46.65 69.97 44.56 51.23 31.06 47.83
[2.90] [3.23] [46.65] [4.66] [1.96] [2.27] [1.64] [2.65]

Total Surplus
Discounted 2.97 6.58 4.61 1.66 37.48 3.05 10.02 3.52

[0.35] [0.73] [4.61] [0.19] [3.39] [0.29] [1.14] [0.44]
Not Discounted 27.63 48.62 46.65 20.09 4.27 28.98 60.78 31.95

[2.20] [4.59] [46.65] [1.56] [0.45] [2.00] [5.74] [2.94]

Notes: Results are averages over 40 simulations that cover 1964-1990. The assignment of blocks to �rms
are set at their realized values. Price is held �xed at the long run average of the AR process. Well
outcomes and development revenue are drawn from the posterior of estimated Gaussian process using all
observed wells. Revenue and pro�ts are in billions of 2015 dollars. Total surplus is �rm and government
revenue less costs, including the value of cost shocks for every period. PDV revenue and pro�t are 1964
values where the annual discount factor is 0.9. Simulation standard errors are in square brackets.
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Figure A12: Maps of Early Exploration

1969 1970

1971 1972

Notes: Each map plots the location of exploration wells drilled that year. Red points are unsuccessful wells
and green points are successful wells.
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