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1 Introduction

Mean-variance efficient portfolio optimization, introduced by Markowitz (1952), is both a staple of

MBA curricula and a critical tool for most quantitative asset managers. When either the vector

of expected returns or the covariance matrix of returns is time-varying, a default solution is to

simply hold the conditional mean-variance efficient ‘Markowitz’ (CMVE) portfolio. However, there

are at least two reasons why it is not optimal for long-term investors to hold the CMVE portfolio:

first, as shown in the seminal papers by Merton (1969, 1971) and Cox and Huang (1989) it may be

optimal for long-term investors to deviate from the CMVE portfolio by tilting towards a portfolio

whose realized returns are negatively correlated with changes in the CMVE portfolio’s Sharpe ratio.

Intuitively, this portfolio hedges the investor against changes in the investment opportunity set.

Second, if there are transaction costs then it will not be optimal to continuously and fully

rebalance a portfolio in response to shocks. Early papers (e.g., Constantinides, 1986; Davis and

Norman, 1990; Dumas and Luciano, 1991) established that, with proportional transaction costs

and with i.i.d. returns, it is optimal to refrain from trading until positions deviate substantially

from the CMVE portfolio. More recently Litterman (2005) and Gârleanu and Pedersen (2013, GP)

show that when expected returns are time-varying and price impact is linear (i.e., when transaction

costs are quadratic), then it is optimal for investors to trade at a constant speed towards an aim

portfolio, which puts less weight on stocks for which shocks to expected returns are less persistent.1

The latter set of papers obtain closed-form solutions for the optimal aim portfolio and trading

speed, for arbitrary number of stocks and return forecasting factors, by relying on an ad-hoc

conditionally mean-variance (CMV) objective function that leads to a standard linear-quadratic

optimization problem, whose solution has been widely studied in mathematics and economics.

Specifically, for an investor with wealth process Wt, the CMV objective is to maximize

(⋆) E

[∫ ∞

0
e−ρt

{
dWt −

γ

2
dW 2

t

}]
,

where γ can be interpreted as an instantaneous variance aversion coefficient. In the absence of

transaction costs, this reduces to the myopic (instantaneous) mean-variance objective. Because it

is very tractable in the presence of transaction costs or portfolio constraints, CMV has been widely

used in the literature.2

While the CMV objective function has the advantage of tractability, it has the peculiar impli-

cation that agents with CMV preferences do not care about the correlation between stock returns

and the investment opportunity set and therefore display no hedging demands as defined in Merton

(1969, 1971) and Cox and Huang (1989). Capturing such non-myopic behavior requires longer-

term risk aversion, for example with a preference specification in which investors maximize their

1Collin-Dufresne, Daniel, and Sağlam (2020) extend these results to a model where price impact and volatility are
time-varying, and show how trading-speed and aim portfolio vary with volatility and transaction costs.

2In addition to the papers already cited, the CMV objective function is also used in Duffie and Zhu (2017); Du
and Zhu (2017); Vayanos and Vila (2021); Gourinchas, Ray, and Vayanos (2021); Greenwood and Vayanos (2014);
Malkhozov, Mueller, Vedolin, and Venter (2016); Danielsson, Shin, and Zigrand (2012).
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expected utility over their terminal wealth.

In this paper, we propose an objective function which is equal to the certainty equivalent

wealth of an agent with generalized recursive utility and with source-dependent constant absolute

risk-aversion. Specifically, as in Skiadas (2008) and Hugonnier, Pelgrin, and St-Amour (2012), the

agent exhibits differential risk aversion to shocks to prices and shocks to expected returns. We

show that this preference specification is equally as tractable as the CMV framework.

The preference specification facilitates comparison of the optimal dynamic portfolio choices that

arise from the different, nested, preference specifications. Specifically, in the finite horizon case,

when risk-aversion coefficients towards all sources of risk are equal, this preference specification

nests standard CARA (negative exponential) expected utility.

Interestingly, the stationary CMV specification used in the literature, summarized by the ob-

jective (⋆) above, also corresponds to maximization of certainty equivalent wealth for a source-

dependent recursive-utility investor in a setting where the horizon at which final wealth is evalu-

ated is drawn from an exponential distribution with parameter ρ, but in the limit where the agent

approaches risk-neutrality toward the risks driving expected returns and toward horizon risk.

We characterize the closed-form solution to the optimal portfolio choice problem with this gen-

eralized preference specification in a setting where the agent can trade a large number of securities

whose expected returns are a linear function of a vector of mean-reverting state variables and where

the agent faces quadratic trading costs. Doing so allows us to characterize how transactions costs

and hedging demands will affect an investor’s (optimal) trading decisions.

We show that, even for the general preferences considered, the agent’s optimal policy is to trade

towards an aim portfolio at a given trading speed.

As in GP, we find that for the agent with (myopic) CMV preferences the aim portfolio is a

trading-speed-discounted average of expected future CMVE portfolios where the optimal trading

speed matrix is entirely determined by the ratio of the stock volatility matrix to the price impact

matrix. Thus a CMV-investor will always optimally underweight a security with a mean-reverting

expected return relative to their weight in the CMVE portfolio, where by “underweight” we mean

that the weight is closer to zero.3 Further, the CMV-investor’s aim portfolio and trading speed

are independent of the correlation structure of signals. Indeed, a CMV-investor makes identical

portfolio choices whether signals are deterministic or stochastic.

Instead, when the agent is a long-term (CARA) expected utility investor, the ability to hedge

changes in the investment opportunity set can dramatically affect both the composition of the aim

portfolio and the trading speed. Both depend crucially on the correlation between realized stock

returns and shocks to expected returns. If this correlation is negative, then a long term CARA

investor will typically choose to overweight a stock relative to the CMVE benchmark, despite it

having high transaction costs and mean-reverting return. In fact, if the correlation is sufficiently

negative, we find that the long-term investor might even choose to overweight an asset relative to

her no-tcost optimal benchmark (which itself is typically overweight relative to the CMVE due to

3This weight is, however, entirely independent of the covariance matrix of signals.
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the classic Merton hedging demand).

Furthermore, the speed at which the agent will optimally trade towards the aim portfolio

depends on the correlation between shocks to expected returns and realized stock returns. In

particular, the trading speed is lower when realized stock returns are more negatively correlated

with shocks to expected returns. Intuitively, the more negative this correlation, the better the

ability of an asset to hedge future changes in expected return, and hence the lower the longer-horizon

volatility. Since transaction costs increase the long-term investor’s cost of hedging, this decreases

the optimal trading speed. Finally, since the aim portfolio is a trading-cost-discounted average of

future expected no-transaction-cost portfolios, a negative correlation also implies a smaller discount

between the no-transaction-cost optimum and the aim portfolio.

As an empirical application, we calibrate a model based on the findings of Boehmer, Jones,

Zhang, and Zhang (2021), who develop an algorithm to identify retail trades and find empirical

evidence that stocks with net retail buying outperform those with net selling over the following

week. In this setting, we explore the utility benefits of employing our approach with hedging

demands when compared to a CMV investor who fundamentally ignores the correlation between

the innovations in asset returns and predictors. We focus our analysis on the 25 largest U.S. stocks

from 2014 to 2019, finding that daily retail order flow positively predicts next-day returns for several

stocks with statistical significance. We observe that the predictive signal exhibits rapid mean

reversion, with an average half-life of 1.2 days, and there exists a significant negative correlation

between return innovations and predictor innovations, consistent with contrarian retail trading

behavior. Finally, we calibrate the transaction cost model using a large institutional large order

data set from the global execution desk of a large investment bank.

Using this realistically calibrated model, we compare the performance of CARA and CMV

strategies across various experiments, varying the number of stocks (2 to 25), investment horizons

(3 to 6 months), and risk aversion levels. Our results consistently show that the CARA strategy

that incorporates hedging demands, outperforms the CMV strategy that ignores the correlation

between innovations in asset returns and predictors. We find these utility gains to be both statis-

tically and economically significant, with improvements in certainty equivalent wealth of up to 7%

over the examined horizons. We find that the CARA strategy generally takes larger positions in

stocks that exhibit a stronger negative correlation between return and predictor innovations, higher

signal predictability (as indicated by its Sharpe ratio), and lower mean-reversion in the predictor

dynamics. Overall, our findings demonstrate substantial economic value in accounting for hedging

demands even in a problem with short-term investment horizon.

Related literature. Our paper is related to three strands of the dynamic portfolio choice

literature. First, there is a large literature on the theory and the empirical relevance of hedging

demand starting from Merton (1969, 1971). In particular, there are several studies examining how

return predictability affects long-term asset allocation (see, among others, Brennan, Schwartz, and

Lagnado, 1997; Brandt, 1999; Kim and Omberg, 1996; Campbell, 1999; Campbell and Viceira,

2002). In this literature, transaction costs are typically ignored, as the analytical solutions are

4



typically not available in the presence of transaction costs.

Second, there are several academic papers studying the effect of transaction costs on dynamic

portfolio choice but they typically focus on a very small number of assets (typically two) and limited

use of return predictability (typically none). Constantinides (1986), Davis and Norman (1990),

Dumas and Luciano (1991), Shreve and Soner (1994) study the two-asset (one risky and one risk-

free) case with i.i.d. returns. Balduzzi and Lynch (1999) and Lynch and Balduzzi (2000) use a

dynamic programming approach to investigate the impact of fixed and proportional transaction

costs on the utility costs and the optimal rebalancing rule in a setting with a single risky asset with

time-varying expected return. Longstaff (2001) studies a numerical solution in a setting with a

single risky asset where this asset’s returns have stochastic volatility, and when agents face liquidity

constraints that force them to trade absolutely continuously. Liu (2004) studies the multi-asset case

when agents have CARA preferences and when risky-asset returns are i.i.d.. Lynch and Tan (2010)

use a numerical procedure to solve for the optimal portfolio choice of an investor with access to

two risky assets under return predictability and proportional transaction costs. Brown and Smith

(2011) discuss the high-dimensionality of the problem and provide approximately optimal trading

strategies for a general dynamic portfolio optimization problem with transaction costs and return

predictability that can be applied to larger number of stocks.

Third, there is a growing literature utilizing the tractability of the linear-quadratic formula-

tion to derive closed-form solutions for the optimal investment portfolio in the presence of return

predictability and transaction costs. Litterman (2005) and GP introduced this framework. They

demonstrate that it is optimal to trade away from the current portfolio and towards an “aim”

portfolio which is a weighted average of the current and expected-future Markowitz portfolios on

all future dates. Thus, the aim portfolio puts a higher weight on high expected return assets when

that return is more persistent. In the GP setting, the speed at which the investor should move

toward the aim portfolio is constant.

Collin-Dufresne, Daniel, and Sağlam (2020, CDS) consider a similar objective function (CMV

utility with quadratic transaction costs) in a setting where expected returns, covariances and trans-

action costs are all stochastic. They find that the makeup of the aim portfolio and the trading

speed are state-dependent, and vary with the relative magnitudes of transaction costs and state

transition probabilities.4 Finally, Muhle-Karbe, Sefton, and Shi (2023) extend the GP framework

by adjusting its objective function to maximize the lifetime utility of consumption for an agent

with CARA preferences. Their primary focus is on the existence of a solution to the coupled Ric-

cati equations, and they provide a rigorous verification theorem that correctly identifies the value

function, along with the optimal consumption and trading policy. Interestingly, they show that

the resulting trading speed arises from the solution of an optimal execution problem (Almgren and

Chriss, 2001).

4It would be interesting to extend our model to study how hedging demands driven by stochastic shifts in second
moments affect their findings.
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2 The continuous time model with a finite horizon

Consider a continuous time economy where the N -dimensional vector of stock price processes St

has dynamics:

dSt = (µ0 + µxt)dt+ σsdZ
s
t (1)

dxt = −κxtdt+ σxdZ
x
t + σxsdZ

s
t (2)

We assume that the vector of expected return predictors xt is K-dimensional and, for simplicity,

that the risk-free rate is zero.5 Zs and Zx are vectors of independent Brownian motions that drive

the randomness in stock prices and the state variables.6 We define the instantaneous covariance

matrix of returns to be Σ and the instantaneous covariance matrix of the innovations in the vector

of state-variables to be Σx. Then, these covariance matrices are given by:

Σ = σsσ
⊤
s , (3)

Σx = σxσ
⊤
x + σxsσ

⊤
xs. (4)

Remark 1 Note that this specification nests the special case where each stock has an expected

return driven by M stock specific predictors (e.g, book-to-market, momentum, reversal) that have

different decay rates:

dSi(t) = (µ0,i +
M∑

m=1

µm,ixm,i(t))dt+ σidZ
s
i (t) for i = 1, . . . , N

dxj,i(t) = −κjxj,i(t)dt+ νj,idZ
j
i (t) for j = 1, . . . ,M.

To see this, set x to be the (NM, 1) stacked vector of firm specific predictors and the matrix κ to

be the (NM,NM) diagonal matrix whose diagonal coefficients cycle through the κm.7

The agent trades continuously by rebalancing the vector of number of shares nt at an absolutely

continuous rate θt, that is dnt = θtdt. When they rebalance they incur quadratic transaction costs

so that their wealth process is given by:

dWt = n⊤
t dSt −

1

2
θ⊤t Λθtdt (5)

= n⊤
t (µ0 + µxt)dt+ n⊤

t σsdZ
s
t −

1

2
θ⊤t Λθtdt (6)

5For ease of reference and brevity, we will use ‘returns’ to refer to ‘price changes’ throughout the paper, consistent
with many of the other papers in this literature. The zero risk-free rate assumption could easily be relaxed to constant
or affine in x.

6Since dZs
t is N × 1, σx is K ×K, σs is N ×N and σxs is K ×N .

7Other matrices need to be adjusted appropriately as well. For example, µ is the (N,NM) diagonal sparse matrix
which has row vector [µ1,i, µ2,i, . . . , µN,i] on the ith ‘diagonal.’
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where Λ is a symmetric positive definite transaction-cost matrix.8

We assume that the agent maximizes her certainty equivalent wealth Ht, which is a process

(Ht, σH,s, σH,x) which solves the following backward stochastic differential equation (BSDE):

Ht = Et

[
WT −

∫ T

t

{
1

2
γ||σH,s||2 +

1

2
γx||σH,x||2

}
du

]
(7)

Inspecting this equation we see that the solution Ht is the expected terminal wealth net of a risk-

penalty, which is linear in the two components of its own (expected future) variance that are due

to the orthogonal Zs and Zx shocks, respectively. The agent attaches different ‘source-specific’

risk-aversion coefficients, γ and γx, to the two sources of risk, in the spirit of Skiadas (2008), and

Hugonnier, Pelgrin, and St-Amour (2012). Our first result is to show that this certainty equivalent

formulation nests two well-known objective functions: the constant absolute risk-aversion (CARA)

expected utility and the conditional mean-variance (CMV) preferences.

Theorem 2 The solution Ht to the recursive equation (7) is the certainty equivalent of an agent

with source-dependent stochastic differential utility, who has a CARA coefficient γ towards Zs

shocks and γx towards Zx shocks. It nests two important special cases:

• When γx = γ, it is the certainty equivalent of an agent with negative exponential CARA

expected utility:

Ht = −1

γ
log(Et[e

−γWT ]). (8)

• When γxσx = 0 and σxs = 0, it reduces to the CMV objective function:

Ht = Wt + Et

[∫ T

t

{
dWu − 1

2
γdW 2

u

}]
. (9)

Proof. See Appendix A and Appendix B.

This theorem shows that the certainty equivalent Ht defined in equation (7) nests both CARA

and CMV preferences. Because of its analytical tractability, the CMV framework has been widely

used in the literature on dynamic portfolio choice with transaction costs (e.g., Litterman, 2005;

Gârleanu and Pedersen, 2013; Collin-Dufresne, Daniel, and Sağlam, 2020), with holding costs (e.g.,

Duffie and Zhu, 2017) and with portfolio constraints (e.g., Vayanos and Vila, 2021). The second

result of the theorem shows, that when expected returns are non stochastic (i.e., when σx = σxs =

0), then the optimal portfolio for CARA and CMV investors is identical. However, when the

expected returns are stochastic, the solutions diverge. In this latter setting, we can demonstrate

the following:

Corollary 3 For general xt process, the CMV objective function of equation (9) reduces to the

linear-quadratic framework used in Litterman (2005), Gârleanu and Pedersen (2013), and Collin-

8Assuming Λ is positive definite insures that transaction costs on any non-zero trade must be strictly positive.
Assuming it is symmetric is without loss of generality given the quadratic form of the transaction costs.
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Dufresne, Daniel, and Sağlam (2020):

Jt := Ht −Wt = Et

[∫ T

t

{
n⊤
u (µ0 + µxu)du− 1

2
θ⊤u Λθu − 1

2
γn⊤

uΣnu

}
du

]
s.t. dnt = θtdt. (10)

The optimal value-function of a CMV-investor is identical to that of an agent with source dependent

utility who maximizes the certainty equivalent (7), is risk-neutral to state-variable shocks (i.e.,

γx = 0), uses the correct covariance matrix for both stock returns (Σ) and state variables (Σx), but

assumes zero correlation between the two, that is σxs = 0. Further, the optimal portfolio choice of

a CMV-investor who maximizes (9) or equivalently (10) for arbitrary σx and σxs is independent of

σx and σxs and thus identical to that of a source-dependent utility agent who maximizes (7) with

γxσx = 0 and σxs = 0. In other words, the CMV-agent acts as if expected returns were

deterministic.

In the absence of transaction costs, it is optimal for the CMV agent to act myopically and con-

tinuously rebalance towards the conditional mean-variance efficient (CMVE) portfolio. However,

even in the absence of transaction costs, the CARA investor optimally deviates from the CMVE

portfolio in order to hedge shocks to the investment opportunity set (Merton, 1971).

When transaction costs are non-zero, Gârleanu and Pedersen (2013) show that it is optimal for

the CMV-investor to trade at a constant rate towards an aim-portfolio, that can be interpreted

as a discounted average of expected future CMVE portfolios (note that CMVE portfolios vary

stochastically as the expected returns are driven by xt).
9

Our contribution is to consider the optimal dynamic portfolio for an agent with long-horizon

preferences (e.g., a CARA investor) in a setting with a stochastic investment opportunities, and

where transaction costs are non-zero. Specifically, we characterize the optimal trading strategy

of the source-dependent utility agent (which nests both CMV and CARA) in the presence of

transaction costs. We would like to understand whether and how the seminal insight of Merton

(1971)—that a long-term investor should deviate from her myopic portfolio to take advantage

of stock predictability—is affected by the presence of transaction costs. Is it still possible to

characterize the optimal trading strategy of a non-myopic agent in terms of an aim-portfolio and

trading speed, as in GP? How do hedging demands affect the aim portfolio and trading speed?

The following theorem describes the solution to the optimal portfolio choice problem of the

agent with recursive utility with source-dependent risk-aversion.

Theorem 4 Suppose an agent maximizes her certainty equivalent Ht defined in equation (7) by

choosing her optimal position vector nt given wealth dynamics described by equation (6).

If there are no transaction costs (Λ = 0), then the maximum certainty equivalent is

Ht = Wt + J(xt, t) where

J(x, t) = c0(t) + c1(t)
⊤ x+

1

2
x⊤c2(t)x, (11)

9See Theorem 5 below for a precise restatement of this result in the context of our model.
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where the vector c1(t) and the symmetric matrix c2(t) solve the system of ODEs:

−.
c1 = (µ− γΣsxc2)

⊤ (γΣ)−1µ0 − {(µ− γΣsxc2)
⊤Σ−1Σsx + c2Ω+ κ⊤}c1 (12)

−.
c2 = c2

(
γΣ⊤

sxΣ
−1Σsx − Ω

)
c2 − c2(κ+Σ⊤

sxΣ
−1µ)− (κ+Σ⊤

sxΣ
−1µ)⊤c2 + µ⊤(γΣ)−1µ (13)

where

Ω = γσxsσ
⊤
xs + γxσxσ

⊤
x , (14)

Σsx = σsσ
⊤
xs, (15)

and the boundary conditions are given by c1(T ) = 0 and c2(T ) = 0. In particular, if µ0 = 0 then

c1(t) = 0 ∀t. c0(t) is given in equation (97) in Appendix E.

The optimal position (in the absence of transaction costs) is given by:

nt = (γΣ)−1(µ0 + µxt)− Σ−1Σsx(c1(t) + c2(t)x) (16)

In particular, if Σsx = 0 then it is optimal to hold the CMVE Markowitz portfolio:

CMV Et = (γΣ)−1(µ0 + µxt). (17)

If Λ is positive definite, then the maximum certainty equivalent is Ht = Wt + J(nt, xt, t)

where

J(n, x, t) = −1

2
n⊤Q(t)n+ n⊤(q0(t) + q(t)⊤x) + c0(t) + c1(t)

⊤x+
1

2
x⊤c2(t)x, (18)

where Q(t) and c2(t) are symmetric (respectively N- and K-dimensional) matrices, q(t) is a (K×N)

matrix, q0(t) and c1(t) are vectors that solve the system of ODEs:

−
.
Q = γΣ−QΛ−1Q+ q⊤Ωq + γ(Σsxq + q⊤Σ⊤

sx) (19)

− .
q⊤ = µ− q⊤κ−QΛ−1q⊤ − q⊤Ωc2 − γΣsxc2 (20)

− .
c2 = −(c2κ+ κ⊤c2) + qΛ−1q⊤ − c2Ωc2 (21)

− .
q0 = µ0 −QΛ−1q0 − q⊤Ωc1 − γΣsxc1 (22)

− .
c1 = −κ⊤c1 + qΛ−1q0 − c2Ωc1 (23)

subject to boundary conditions Q(T ) = 0, q(T ) = 0, q0(T ) = 0, c1(T ) = 0 and c2(T ) = 0. c0(t) is

given in equation (111) in Appendix F.

The optimal trading strategy is to trade at a deterministic (matrix valued) trading rate τt towards

9



an optimal aim portfolio such that:

dnt = τt(aim(xt, t)− nt) dt (24)

τt = Λ−1Q(t) (25)

aim(xt, t) = Q(t)−1(q0(t) + q(t)⊤xt) (26)

We note that the optimal aim portfolio corresponds to the position that maximizes the value

function, that is aim(t, x) = argmaxn J(n, x, t).

Proof. The derivation of the solution without transaction costs (Λ = 0) is in Appendix E. The

proof of the case with transaction costs is in Appendix F.

The optimal trading strategy for the agent with source dependent utility—summarized in equa-

tions (24)–(26)—takes a form similar to the solutions identified in GP or CDS: the strategy moves

away from the current portfolio nt towards an aim portfolio aim(xt, t) at a rate of τt.

In our generalized setting, there are at least two reasons why the aim-portfolio will deviate

from the GP/CDS solution in which the aim portfolio is a weighted average of expected future

MVE portfolios: a traditional “Merton” no-transaction-cost investment-opportunity-set-hedging

demand, and a transaction-cost specific hedging demand.

To understand both components, we next give a few analytical results that characterize the

solution to the CMV objective function (which corresponds to the case where γx = 0 and σxs =

0). In this case the system has a closed-form solution obtained in GP. In our continuous time

setting, it can be fully characterized in terms of the eigenvalue decomposition of the matrix γΛ−1Σ.

Specifically, we assume the following:

Assumption 1 The square matrix γΛ−1Σ has full rank and distinct real eigenvalues, so it can be

diagonalized:

γΛ−1Σ = FDηF
−1 (27)

where Dη is the N × N diagonal matrix with eigenvalue ηi on the ith diagonal, and F is the

corresponding square matrix of eigenvectors.

Then we have the following result:

Theorem 5 When γx = 0 and σxs = 0, the optimal trading speed matrix, τt = Λ−1Q(t), is given

by:

τt = FDh(t)F
−1

hi(t) =
√
ηi
1− e−2

√
ηi(T−t)

1 + e−2
√
ηi(T−t)

The optimal aim portfolio of the investor with CMV preferences given in equation (26) can be

interpreted as a Markowitz portfolio where we replace the expected return vector by a trading-speed

10



weighted average of future expected returns:

aim(x, t) = (γΣ)−1

∫ T

t
ωt,uµS(t, u)du (28)

ωt,u = (

∫ T

t
e−

∫ z
t τ⊤s dsdz)−1e−

∫ u
t τ⊤s ds (29)

where the expected future stock return is defined by

µS(t, u) =
1

dt
Et[dSu] = µ0 + µe−

∫ u
t κdsxt (30)

The CMV-agent portfolio is independent of the covariance matrix (σx, σxs) of the expected return.

Proof. The proof is provided in Appendix G.

We observe that the optimal aim portfolio of the investor with CMV-preferences has the same

form as the Markowitz portfolios, but where the loadings µ on the time-varying return predictors,

xt, are modified to account for the combination of (i) transaction costs (ωt,u) and (ii) persistence (κ

weights). Note that the ω weights only depend on the trading speed τt. Further, they are strictly

positive and integrate to one, that is
∫ T
t ωt,udu = 1. This can be interpreted as an ‘average trade

horizon’: the higher the trading speed is, the shorter the horizon and the more we discount the

future expected factor returns. In addition, since factors with higher κ are expected to revert faster

towards zero,10 the solution implies we should also underweight more, relative to the Markowitz

portfolio, factors which are less persistent (i.e., with a higher mean-reversion rate κ). In particular,

if factors are driven only by permanent shocks, that is κ = 0, then the optimal aim portfolio is the

Markowitz portfolio (since the ω-weights integrate to one by construction).

Below we will compare our general solution obtained for the non-myopic CARA agent in theo-

rem 4 with that of the CMV-agent in theorem 5 using specific cases, numerical examples, and one

specific empirical implementation, to illustrate the importance of hedging demands on portfolio

choices in the context of transasction costs.

But first, to avoid the explicit time-dependence introduced by the finite horizon setting, it

is useful to extend the setting to an infinite horizon discounted objective function. This is also

the choice made in GP, and CDS. For now we have worked in a finite horizon setting where the

link between the CARA normal setting and the instantaneous mean-variance framework used in the

literature is the most straightforward to demonstrate. We next show how to generalize this section’s

results to a stationary objective function with infinite horizon and demonstrate the connection to

the certainty equivalent wealth of a source dependent risk-aversion agent with a random horizon.

10Recall that Et[xu] = e−
∫ u
t κdsxt.
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3 The stationary model with a random horizon

It is natural to consider the stationary problem where we assume that the horizon T is drawn from

an exponential distribution with parameter ρ. In that case we assume that the agent maximizes

her certainty equivalent which is a process (Ht, σH,s, σH,x) which solves the following backward

stochastic differential equation (BSDE):

Ht = Et

[
WT −

∫ T

t

{
1

2
γ||σH,s||2 +

1

2
γx||σH,x||2

}
du

]
(31)

= Wt + Et

[∫ ∞

t
e−ρ(u−t)(dWu −

{
1

2
γ||σH,s||2 +

1

2
γx||σH,x||2

}
du)

]
(32)

One might think that this stationary version of equation (7) should correspond to the certainty

equivalent of a CARA agent who maximizes E[−e−γWT ] for γx = γ. However, we show in the

following theorem that this is not the case. Instead, the objective function (32) corresponds to

that of an agent with source dependent risk-aversion who is risk-neutral with respect to horizon

risk. When we add the risk of a random horizon arrival T to the Brownian risks, (Zs, Zx), the

CARA agent is also risk-averse to that new source of risk and requires an extra premium, as we

illustrate in Remark 7 below. As we show in the next theorem, the objective function in (31)- (32)

corresponds to an agent who does not require a premium for horizon risk. The following theorem

makes this explicit.

Theorem 6 On the filtered probability space generated by (Zs, Zx,1{T ≤t}), consider the process

(Ht, σH,s, σH,x) which solves the following backward stochastic differential equation (BSDE):

Ht = Et

[
WT −

∫ T

t

{
1

2
γ||σH,s||2 +

1

2
γx||σH,x||2 + ρ

(
Ws −Hs− − 1− e−γT (Ws−Hs− )

γT

)}
ds

]

Then Ht is the certainty equivalent of an agent with source-dependent constant absolute risk-

aversion, with CARA γ toward Zs shocks, γx towards Zx shocks, and γT towards the horizon

arrival shock, 1{T ≤t}, which triggers a jump in H. It nests the special cases:

• When γT = γx = γ, it is the certainty equivalent of an agent with negative exponential CARA

expected utility:

Ht = −1

γ
log(Et[e

−γWT ]). (33)

• When γT = 0, it reduces to the objective function (a stationary version of (7)) proposed

in (32).

• When γT = 0, γxσx = 0 and σxs = 0, it reduces to the discounted CMV objective function:

Ht = Wt + Et

[∫ ∞

t
e−ρ(u−t)

{
dWu − 1

2
γdW 2

u

}]
. (34)
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Proof. The proof is provided in Appendix D.

Remark 7 To understand why a CARA investor dislikes horizon risk, consider the simple case

where dWt = µdt+ σdZs
t , that is wealth is solely driven by one Brownian motion. Then, consider

the expected utility of the CARA agent

E[−e−γWT ] = −e−γW0

∫ ∞

0
ρe−ρt−γ(µ− 1

2
γσ2)tdt = − e−γW0

1 +
γ(µ− 1

2
γσ2)

ρ

.

Her expected utility of terminal wealth at the expected arrival time E[T ] = 1
ρ is given by:

E[−e−γW1/ρ ] = −e
−γ(W0+µ− 1

2 γσ2)

ρ

Since ez > 1+ z for all z ̸= 0 and in particular for z =
γ(µ− 1

2
γσ2)

ρ we see that for this CARA agent:

E[U(WT )] < E[U(WE[T ])] ⇐⇒
γ(µ− 1

2γσ
2)

ρ
̸= 0

This follows from Jensen’s inequality. We see that a risk-premium for horizon risk arises as

soon as the expected return on total wealth does not exactly compensate the investor for its diffusion

risk (in the example as long as µ− 1
2γσ

2 ̸= 0). If the agent’s terminal wealth were guaranteed and

independent of the horizon (i.e., µ = σ = 0 in the example) then, a consequence of time-separable

utility, is that the agent would not care about horizon risk. With CARA utility the risk-aversion

coefficient associated with the horizon risk T is the same as that associated to the Brownian motion

shocks Zs, Zx that drive financial wealth. Instead, with our source-dependent utility, the agent

can have different risk-aversion coefficients associated with the three different sources of risk. The

standard discounted CMV preferences used in GP, Litterman, and others correspond to an agent

who is risk-neutral towards horizon risk.

In the following we focus on the solution of the agent with preferences given in (32), which

corresponds to the stationary version of the problem considered in the previous section. The

following theorem describes the optimal solution, and is the analogue to Theorem 4 with an infinite

horizon.

Theorem 8 Suppose an agent maximizes her certainty equivalent Ht defined in equation (32) by

choosing her optimal position vector nt given wealth dynamics given in equation (6).

If there are no transaction costs (Λ = 0), then the maximum certainty equivalent is

Ht = Wt + J(xt) where

J(x) = c0 + c⊤1 x+
1

2
x⊤c2x, (35)

where the symmetric positive definite matrix c2 and the vector c1 solve the system of quadratic

13



equations:

ρc1 = (µ− γΣsxc2)
⊤ (γΣ)−1µ0 − {(µ− γΣsxc2)

⊤Σ−1Σsx + c2Ω+ κ⊤}c1 (36)

ρc2 = c2

(
γΣ⊤

sxΣ
−1Σsx − Ω

)
c2 − c2(κ+Σ⊤

sxΣ
−1µ)− (κ+Σ⊤

sxΣ
−1µ)⊤c2 + µ⊤(γΣ)−1µ. (37)

In particular, if µ0 = 0, then c1 = 0. The equation for c0 is provided in the Appendix.

The optimal position (in the absence of transaction costs) is:

nt = (γΣ)−1(µ0 + µxt)− Σ−1Σsx(c1 + c2x) (38)

Note that, in particular, if Σsx = 0, then it is optimal to hold the CMVE Markowitz portfolio.

If Λ is positive definite, the maximum certainty equivalent is Ht = Wt + J(nt, xt), where

J(n, x) = −1

2
n⊤Qn+ n⊤(q0 + q⊤x) + c0 + c⊤1 x+

1

2
x⊤c2x, (39)

where Q and c2 are positive-definite symmetric (respectively N × N and K ×K) matrices, q is a

N×K matrix, and q0, c1 are (respectively N− and K−dimensional) vectors that solve the following

system of quadratic equations:

ρQ = γΣ−QΛ−1Q+ q⊤Ωq + γ(Σsxq + q⊤Σ⊤
sx) (40)

ρq⊤ = µ− q⊤κ−QΛ−1q⊤ − q⊤Ωc2 − γΣsxc2 (41)

ρc2 = −(c2κ+ κ⊤c2) + qΛ−1q⊤ − c2Ωc2 (42)

ρq0 = µ0 −QΛ−1q0 − q⊤Ωc1 − γΣsxc1 (43)

ρc1 = −κ⊤c1 + qΛ−1q0 − c2Ωc1 (44)

and c0 is given in the Appendix.

The optimal trading strategy is to trade at a stock-specific constant trading rate (matrix) τ

towards an optimal aim portfolio such that:

dnt = τ(aim(xt)− nt) dt (45)

τ = Λ−1Q (46)

aim(x) = Q−1(q0 + q⊤x) (47)

We note that the optimal aim portfolio corresponds to the position that maximizes the value

function, that is aim(x) = argmaxn J(n, x).

Proof. The derivation of this solution (with Λ = 0) is given in appendix H. The derivation of the

solution of the case with non-zero transaction costs is given in appendix I.

Thus, as in the finite horizon case described in the previous section, the optimal trading strategy
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for the agent with source dependent utility has the same form as that obtained in GP or CDS.

Specifically, it is optimal to trade from the current position nt towards an aim portfolio aim(xt) at

a constant trading speed matrix τ .

To better understand the role of hedging demands in shaping the aim portfolio, we will compare

numerically in the following section the optimal solution for the CARA agent to that of the CMV

investor. Recall that in he absence of transaction costs, the CMV investor always holds the CMVE

portfolio. With transaction costs however, the solution of the CMV investor can be characterized

explicitly (setting γx = 0 and σxs = 0 in theorem 8), in terms of the eigenvalue and eigenfactor

decomposition (η, F ) of the matrix γΛ−1Σ.

Indeed, we have the following result, that is the infinite horizon stationary equivalent to theo-

rem 5:

Theorem 9 When γx = 0 and σxs = 0 then the optimal trading speed matrix τ = Λ−1Q is given

by:

τ = FDhF
−1

hi =
1

2
(
√
ρ2 + 4ηi − ρ)

The optimal aim portfolio of the GP investor of equation (47) can we written as a Markowitz

portfolio where we replace the instantaneous expected stock return µS(xt) =
1
dtEt[dSt] = µ0 + µxt

by the trading speed discounted value of the future stock expected returns:

aim(xt) = (γΣ)−1

∫ ∞

0
ωuEt[µS(xt+u)]du

ωu = (ρ+ τ⊤)e−(ρ+τ⊤)u

Proof. The proof is in appendix K

Note that by definition
∫∞
0 ωudu = 1, therefore we have that if κ = 0 then the optimal aim

portfolio is the CMVE-Markowitz portfolio. Only if there is some persistence in the factors that

predict returns, is it optimal to deviate from the Markowitz portfolio. Of course, in the case where

σxs ̸= 0 then this result will no longer hold, as the investor will want to aim towards a portfolio

that is also driven by its desire to hedge against variations in the investment opportunity set. The

next section explores quantitatively the importance of these hedging demands.

In the general case it is possible to express the aim portfolio as follows:

aim(xt) = Q−1(q0 + q⊤xt)

= (γΣ+ q⊤Ωq + 2γΣsxq)
−1

∫ ∞

0
ωu

{
µ0 + µe−κuxt − (γΣsx + q⊤Ω)(c1 + c2e

−κuxt)
}
du

ωu = (ρ+ τ⊤)e−(ρ+τ⊤)u
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This allows us to interpret the hedging demands in three scenarios. First, if σxs = 0 and

γx = 0, then Ω = 0, and we recover the CMV preferences. Second, if σxs = 0 and γx ̸= 0 then in

the absence of transaction costs it is optimal to hold the CMVE Markowitz portfolio (i.e., there are

no hedging demands). However, with transaction costs, we do deviate from both the Markowitz-

CMVE portfolio and the CMV aim portfolio. Further, if σxs ̸= 0 and there are no transaction

costs, then it is optimal to deviate from the Markowitz portfolio because of hedging demands. The

optimal portfolio becomes (γΣ)−1(µ0 + µxt) − Σ−1Σsx(c1 + c2x). In the presence of transaction

costs and with σxs ̸= 0, the equation is more difficult to interpret, especially in the multi-asset

case, because the covariance matrix of signals and returns affects trading speed and aim portfolios.

While the equation has a similar structure, which suggests that the intuition of discounting future

no-tcost optimal portfolios, that themselves contain a hedging demand, remains useful the actual

results are more complex (in particular, because the numerical values for the c1, c2 matrices are

different with and without t-costs). Therefore we turn to some specific examples and numerical

simulations to illustrate the predictions of the model.

4 Hedging Demand and Transaction Costs: Numerical Example

4.1 The one asset and one predictor case

To illustrate the model’s predictions we first focus on the one asset–one factor case (that is N =

K = 1) for the case where µ0 = 0, that is there is one single stock St and one single predictor

variable xt with dynamics:

dS(t) = µxt dt+ σ1dZ1(t) (48)

dxt = −κx(t)dt+ σx1dZ1(t) + σx2dZ2(t) (49)

where Zi(t) are independent Brownian motion.

We can first solve for the optimal portfolio of the non-myopic agent in the stationary case using

Theorem 8. If transaction costs are zero (if Λ = 0), the optimal portfolio is a combination of the

CMV E portfolio and a hedging portfolio HP :

nt = CMV Et +HPt (50)

CMV Et =
µ

γσ2
1

xt (51)

HPt = −
2( µ

σ1
)2 σx1

σ1

γ
(
2κ+ ρ+ 2 µ

σ1
σx1 +

√
(2κ+ ρ+ 2 µ

σ1
σx1)2 + 4γx

γ ( µ
σ1
)2σ2

x2

)xt (52)

As expected the non-myopic agent deviates from the CMVE portfolio if and only if innovations in

expected returns are correlated with the realized returns of the risky asset: that is if σx1 ̸= 0. If

σx1 < 0, then falls in the price of the risky asset generally lead to an increase in future expected
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returns, making it less risky from a long-term perspective. This will lead the agent to scale up her

investment in the risky asset.

In a setting where the agent has myopic CMV preferences, the agent will deviate from the

CMVE portfolio only if t-costs are positive. Applying Theorem 9 we can derive the optimal aim

portfolio and trading speed as follows:

aimCMV
t =

(
ρ+ τ

ρ+ τ + κ

)
µ

γσ2
1

xt (53)

τ =
1

2

(√
ρ2 + 4γ

σ2
1

λ2
− ρ

)
(54)

The CMV-agent’s aim portfolio is the CMVE portfolio only if κ = 0, otherwise her holdings are

strictly decreasing in κ and increasing in ρ+ τ . The trading speed τ ∈ (0,∞) is strictly increasing

in γ(σ1
λ )2.

Note that her optimal trading strategy, that is both the aim portfolio and trading speed, are

independent of the covariance matrix of xt, in that the CMV-agent would trade identically if xt

were deterministic (that is if σx1 = σx2 = 0).

Instead, if we consider the non-myopic agent with CARA with respect to both return and

expected return shocks, applying theorem 8 we find that her aim portfolio and trading speeds are

given by:

aimCARA
t =

ρ+ τ

ρ+ τ + κ

µ− (γσ1σx1 +Ωq)c2
γσ2

1 + q2Ω+ 2γσ1σx1q
xt (55)

τ =
1

2

(√
ρ2 + 4

{
γ(

σ1
λ

+
q

λ
σx1)2 +

q2

λ2
γxσ2

x2

}
− ρ

)
(56)

c2 =

√
(2κ+ ρ)2 + 4Ω q2

λ2 − ρ− 2κ

2Ω
(57)

where q is the constant that solves the following non-linear equation:11

c2 (γσ1σx1 +Ωq) + q(ρ+ κ+ τ) = µ (58)

We see that, unlike for the CMV-agent, the non-myopic agent’s optimal aim portfolio and

trading speed are affected by the covariance matrix of the expected returns. In particular, her aim

portfolio may actually hold more stock than the CMVE portfolio. We illustrate that with a few

figures.

In Figures 1-3 we compare trading strategies corresponding to different objective functions and

for different sets of parameters. We are particularly interested in how the hedging demand of

11Note that the equation admits a strictly positive solution for any µ > 0, since the left-hand side equals zero when
q = 0 and tends to infinity when q → ∞ (see Appendix J for details).
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Figure 1: Aim portfolios and trading speeds in low transaction cost regime.

Notes: In the left panel, we plot the aim portfolios for CMV and CARA agents in the presence and absence of

transaction costs as a function of the correlation between the innovations in stock and predictor dynamics. In the

right panel, we plot the trading speeds as a function of the same correlation for CMV and CARA agents in the

presence of transaction costs. Here, the correlation is given by σx1√
σ2
x1+σ2

x2

and we vary σx1 while keeping σx2 constant.

Parameters: µ0 = 0, µ = 1, κ = 0.1, σ1 = 0.3, σx2 = 0.1, Λ = 2× 10−11, γx = 10−9, γ = 10−9, x0 = 1, ρ = 0.8.

a non-myopic investor shapes her optimal trading strategy in the presence of transaction costs

(CARA-TC). Thus we report the trading strategy of a CMV investor (CMV-TC) who has the

objective function (used by GP and CDS among others) given in (34), which is known to be myopic

in the absence of transaction costs (CMV-NoTC), and compare it with that of a source dependent

risk-aversion investor with γx = γ who maximizes (32). That is, we examine a CARA investor

who is necessarily risk-averse with respect to changes in the investment opportunity set.12 We

also include the aim portfolio for a CARA agent in the absence of transaction costs, labeled as

CARA-NoTC.

Figure 1 reports the aim portfolio holdings of the risky-asset in the left panel and the trading

speed in the right panel as a function of the correlation between the innovations in stock and

predictor dynamics. Here the trading cost is low (Λ = 2 × 10−11) and the expected return is

positive (µx0 = 1). As expected, it shows that the CMV-TC investor’s optimal aim portfolio

is very close to the mean-variance efficient Markowitz portfolio, CMV-NoTC. Further, the CMV

investor’s strategy is independent of the correlation coefficient between the expected return signal

and price changes. Instead, we see that for low transaction costs the CARA-TC investor chooses

a portfolio very similar to that of the classic no-transaction-cost Merton solution, CARA-NoTC.

Specifically, she displays a very large and positive hedging demand for the asset when correlation

between x and dS becomes negative. This is because the investor invests for the long run and

perceives stock returns to be less risky for the long-run due to the negative correlation between

12Note that since we assume γT = 0, the investor we consider is risk-neutral with respect to horizon realization
risk.
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expected returns and stock price changes. With negative correlation, expected returns changes

offer a natural hedge for shocks to stock prices.
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Figure 2: Aim portfolios and trading speeds in high transaction cost regime.

Notes: In the left panel, we plot the aim portfolios for CMV and CARA agents in the presence and absence of

transaction costs as a function of the correlation between the innovations in stock and predictor dynamics. In the

right panel, we plot the trading speeds as a function of the same correlation for CMV and CARA agents in the

presence of transaction costs. Here, the correlation is given by σx1√
σ2
x1+σ2

x2

and we vary σx1 while keeping σx2 constant.

We use the following parameters: µ0 = 0, µ = 1, κ = 0.1, σ1 = 0.3, σx2 = 0.1, Λ = 2× 10−10, γx = 10−9, γ = 10−9,

x0 = 1, ρ = 0.8.

In Figure 2, all parameters are the same except the trading cost, which is now an order of

magnitude higher. In response to the higher t-costs, the CMV-TC investor now chooses an aim

portfolio that is uniformly lower than the Markowitz portfolio, CMV-NoTC. Intuitively, because of

transaction costs the investor has to trade slowly into her desired stock position. Because the signal

also decays at rate κ > 0, it follows from theorem 9, that it is optimal to aim for a smaller position,

as the effective expected return that will be earned over the ‘average’ horizon of the position is lower

than in the absence of transaction costs or with more persistent expected returns. This insight,

which was also at the heart of GP’s original paper, carries over for the non-myopic CARA-TC

investor, but only for positive correlation coefficients. Instead figure 2 shows that, surprisingly,

when the correlation between signal and price change is sufficiently negative, the hedging demand

can actually lead the investor to want to aim for a larger position in the risky asset than she

would have chosen in the absence of transaction costs. We see on the picture that the point where

the CARA-TC aim portfolio is larger than that of CARA-NoTC occurs for a correlation coefficient

(between dS and dx) around −60%. Panel two on the same figure also shows that this coincides

with a very steep drop in the trading speed. Instead, the CMV investor chooses the same constant

trading speed irrespective of the level of the correlation coefficient.

Our results suggest that if the correlation between stock returns and their expected growth

rates is sufficiently negative, then a long-term investor will want to hold more risky stocks in the
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presence of transaction costs than without, even though the expected return is decaying over time.

At the time the investor will want to trade at a much lower speed than if she were myopic.

Our intuition for this surprising result is that, because of the negative correlation, the investor

expects a lower expected return following a positive shock to stock prices and thus wants to trade out

of stocks. Conversely, she will want to trade into stocks following a negative price shock. The aim

portfolio is set so as to optimally trade-off the utility cost of deviating from the first-best portfolio

and the transaction costs. When evaluating the cost of additional trading, the long-term agent

weights these with her marginal utility. Thus costs paid following the negative stock price shock

will be weighted more. Therefore it can be optimal to aim for a higher stock position and trade

less to avoid paying the transaction costs in the high marginal utility states (following a negative

stock price shock). Note that this intuition suggests that, for a CARA agent, the weight on the

risky asset will be scaled down relative to the no-t-cost weight still further when the correlation is

positive. This is also observed in the Figure.
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Figure 3: Aim portfolios and trading speeds in high mean-reversion regime for the predictor.

Notes: In the left panel, we plot the aim portfolios for CMV and CARA agents in the presence and absence of

transaction costs as a function of the correlation between the innovations in stock and predictor dynamics. In the

right panel, we plot the trading speeds as a function of the same correlation for CMV and CARA agents in the

presence of transaction costs. Here, the correlation is given by σx1√
σ2
x1+σ2

x2

and we vary σx1 while keeping σx2 constant.

We use the following parameters: µ0 = 0, µ = 1, κ = 0.4, σ1 = 0.3, σx2 = 0.1, Λ = 2× 10−10, γx = 10−9, γ = 10−9,

x0 = 1, ρ = 0.8.

In Figure 3 we show the effect of having a less persistent signal. Here κ = 0.4, and all other

parameters are the same as in Figure 2. The expected return and variance are the same as in

Figures 1 and 2, so the Markowitz CMV-NoTC portfolio is unchanged, but since the expected

return will now decay faster the expected return earned over the life of the position will be lower,

so the aim portfolio of the CMV-TC investor is scaled down still further. Similarly, the CARA-

TC investor in the presence of transaction costs reduces her position relative to the CARA-NoTC

investor. Again, though, when the correlation between the shocks to price and expected return
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become sufficiently negative (close to -80% in this case), we see that because of hedging demands

the CARA-TC investor’s aim portfolio becomes larger than what she would choose in the absence

of transaction costs. So even for fast decaying parameters, when t-costs are large the hedging

demands affect the optimal position of the long-term investor significantly.

The hedging demand of a non-myopic investor leads to a significantly different trading strategy

than for a myopic investor in the presence of transaction costs. Below, we quantify with a realistic

calibration the utility-based cost for a long-term investor of not properly accounting for the hedging

demand in the presence of transaction costs.

4.2 The two asset and one predictor case

To further illustrate the role of hedging demands in shaping the optimal portfolio choice we consider

a very specific setup with two stocks, where one stock will optimally only be held by the non-myopic

agent. Specifically, we consider dynamics:

dS1(t) = µxt dt+ σ1dZ1(t) (59)

dS2(t) = σ2dZ2(t) (60)

dxt = −κx(t)dt+ σx2dZ2(t) (61)

where the Zi(t) are independent Brownian motions. We further assume that the transaction cost

matrix is diagonal with λ11 = λ2
1 and Λ22 = λ2

2.

This is a special case of our general framework. We can solve the optimal portfolio of the non-

myopic agent in the stationary case using Theorem 8. For the case where there are no transaction

costs, that is when Λ = 0, we find the optimal portfolio can be decomposed into the CMVE portfolio

that only loads on asset 1, and a hedging portfolio HP given by:

nt = CMV Et +HPt (62)

CMV Et = [
µ

γσ2
1

; 0]⊤ xt (63)

HPt = [0;− µ2σx2
γσ2

1σ2(ρ+ 2κ)
]⊤ xt (64)

We see that the myopic agent only trades asset 1, but has no demand for asset 2. Because asset

2 has zero expected (excess) return and positive variance its weight in the CMVE portfolio is always

zero. However, because asset 2 realized returns are correlated with shocks to asset 1’s expected

return, a non-myopic agent will hold asset 2 as a hedge against changes in asset 1’s expected return.

Indeed, we see that the hedging portfolio goes long asset 2 if it is negatively correlated with asset

1’s expected return and shorts it otherwise. Since asset 1’s realized returns have zero correlation

with shocks to its expected return, it is not useful as a hedge.

Our example is engineered such that each asset is uniquely associated with the CMVE and the
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HP portfolios respectively. We now turn to the case with transaction costs (with λi > 0 ∀i = 1, 2)

to see how the assets enter the aim portfolio.

We start with the CMV agent. From Theorem 9, the CMV agent’s aim portfolio and trading

speed are:

aimCMV
t = [

ρ+ τ11
ρ+ τ11 + κ

µ

γσ2
1

; 0]⊤ xt (65)

τ11 =
1

2
(

√
ρ2 + 4γ

σ2
1

λ2
1

− ρ) (66)

τ22 =
1

2
(

√
ρ2 + 4γ

σ2
2

λ2
2

− ρ) (67)

τ12 = τ21 = 0 (68)

Since the aim portfolio for a CMV-investor is the trading-speed discounted value of the future

expected CMVE portfolios and given that the latter only hold asset 1, we see that the aim portfolio

only comprises asset 1 as well. The trading speed matrix is diagonal, meaning that the weight on

asset 2 do not affect trading of asset 1. Instead, the optimal strategy is for the agent to trade out

of any initial position she might have in asset 2 at a constant trading speed and towards 0, the

optimal position for asset 2 in the CMVE portfolio. Thus for a myopic-CMV agent, trading in

asset 2 occurs only in as much as she would be endowed with a non-zero position in that asset.

Even when t-costs are positive, the CMV agent will again have a zero weight on asset 2 in their

aim portfolio; if endowed with a position, she would trade out of it. We also see, consistent with

our general results, that the CMV-agent’s optimal aim and trading speed are not affected by the

covariance matrix of the expected return variable xt.

We now turn to the optimal aim portfolio for a (non-myopic) CARA agent. Since a CARA

agent has a long investment horizon, the covariance of expected return shocks and realized returns

will affect both the makeup of her aim portfolio and the speed at which she will trade towards this

portfolio.

Solving the system for the optimal aim portfolio and trading speeds results in a system of

non-linear equations:

aimCARA
t = Q−1q xt (69)

Q = Λτ (70)

τ11 =
1

2
(

√
ρ2 + 4γ

σ2
1

λ2
1

+ 4γ
q21
λ2
1

σ2
x2 − 4

λ2
1

λ2
2

τ212 − ρ) (71)

τ22 =
1

2
(

√
ρ2 + 4γ(

σ2
λ2

+
q2
λ2

σx2)2 − 4
λ2
1

λ2
2

τ212 − ρ) (72)

τ12 =
λ2
2

λ2
1

τ21 =
λ2

λ1

γ σ2q1
λ2λ1

σx2 + γ q1q2
λ1λ2

σ2
x2

ρ+ τ11 + τ22
(73)
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and where the q1, q2, c2 solve

c2 =

−ρ− 2κ+

√
(ρ+ 2κ)2 + 4(

q21
λ2
1
+

q22
λ2
2
)γσ2

x2

2γσ2
x2

(74)

µ = q1(κ+ ρ+ c2γσ
2
x2 + τ11) + q2

λ2
1

λ2
2

τ12 (75)

−c2σ2γσx2 = q2(κ+ ρ+ c2γσ
2
x2 + τ22) + q1τ12 (76)

We solve this system numerically and show how aim portfolio changes with the parameters

of the model, and in particular with the diffusion coefficients of xt. We specifically compare the

optimal solution for the non-myopic CARA agent with the benchmarks examined earlier. Figure 4

plots the aim portfolio holdings of asset 1 (left panel) and asset 2 (right panel) as a function of σx2.

The aim portfolio weight on asset 1 is not affected by t-costs for either the CMV-TC or the

CARA-TC agent. The weight on asset 2 is zero for the myopic CMV-NoTC agent, but the non-

myopic CARA-TC takes a position in the asset which is positive or negative depending on the

correlation. Relative to her no-tc optimal solution, the CARA-TC agent down-weights asset 2 to

mitigate the impact of transaction costs.

Figure 5 illustrates the aim portfolio holdings of asset 1 (left panel) and asset 2 (right panel) as

a function of κ, for constant σx2 = −0.5. For asset 1, the aim portfolios are the same and constant

for CMV-NoTC and CARA-NoTC agents while CMV-TC and non-myopic CARA-TC reduce their

position in asset 1 as κ increases. Further, while the CARA-NoTC agent also reduces her position

in asset 2, non-myopic CARA-TC agent responds more dramatically as κ is increased.13

In the next section, we propose an empirical application of our approach using a real world setup,

to investigate in a more realistic setting the importance of hedging demands for the performance

of a dynamic trading strategy.

5 Empirical Application with Retail Order Imbalance

Boehmer, Jones, Zhang, and Zhang (2021, BJZZ) propose an easy algorithm to identify marketable

retail purchases and sales and find that individual stocks with net buying by retail investors outper-

form stocks with net sells over the following week. A trading strategy designed to take advantage

of such predictability would involve large transaction costs, given the short half-life of the signals.

In this section, we implement our methodology to determine optimal the optimal trading for such

a strategy. We calibrate transaction costs based on a large institutional order data. We illustrate

that there are economically significant utility benefits of utilizing our approach when compared to a

13We observe in both figures 4 and 5 that the aim portfolios for asset 1 are identical in this example for the CARA
and CMV agents, with or without t-costs. While this is clear from the equations in the case without t-costs, is is not
obvious in the case with t-costs and, in fact, we were unable to prove it analytically. However, it seems to hold for all
parameters we tried within this admittedly very special example, where asset 1’s return risk is perfectly orthogonal
to the shocks to expected returns that can be perfectly hedged with asset 2. Still, it is quite remarkable.
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Figure 4: Aim portfolios in two assets as a function of σx2.

Notes: We plot the aim portfolios in two assets for for CMV and CARA agents in the presence and absence of

transaction costs as a function of σx2, the correlation between the innovations of asset 2 and the predictor. Parameters:

µ0 = 0, µ = 1, κ = 0.5, σ1 = 0.3, σ2 = 0.1, σx = 0.2, Λ = 0.01Σ, γx = 10−6, γ = 10−6, x = 1, ρ = 1.

CMV investor who fundamentally ignores the correlation between the innovations in asset returns

and predictors.

We note that, in calculating the optimal CMV and CARA portfolios we will use the full sample

estimates for a number of parameters. Thus our results will overstate the extent to which we

can profit from this predictability we document here. However, the utility gains our methodology

provides should be valid even in a full out-of-sample exercise.

5.1 Predictability model

We begin by examining the relation between daily net retail order flow and subsequent daily returns

over the period from January 2014 through December 2019.

Let N b
i,t (N

s
i,t) be the estimated number of retail buy (sell) trades for stock i on day t, based on

the BJZZ retail trade classification algorithm. Our return predictor at the stock level is then given

by

xi,t =
N b

i,t −N s
i,t

N b
i,t +N s

i,t

.

Using the top 25 largest market capitalization US common stocks as of January 1, 2014, we estimate

the following stock-level regressions:

ri,t+1 = β0,i + βixi,t + ϵi,t+1 (77)

∆xi,t+1 = ϕ0,i − ϕixi,t + εi,t+1 (78)

Table 1 summarizes the regression results. We find that in 21 out of 25 regressions, β̂i is positive.

βi is statistically significant at 1% (5%) level for three (six) stocks. More importantly, the mean
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Figure 5: Aim portfolios in two assets as a function of κ.

Notes: We plot the aim portfolios in two assets for for CMV and CARA agents in the presence and absence of

transaction costs as a function of κ, the mean reversion speed of the predictor. We use the following parameters:

µ0 = 0, µ = 1, σ1 = 0.3, σ2 = 0.1, σx = 0.2, σx2 = −0.5, Λ = 0.01Σ, γx = 10−6, γ = 10−6, x = 1, ρ = 1.

estimate for β is highly statistically significant: β̂i = 0.0031, with a corresponding standard error

of 0.0005. For the majority of the stocks, β0,i is estimated to be statistically insignificant than zero.

For each of the 25 regressions, ϕ̂i is statistically significantly different from both zero and one

at 1% level. Specifically, the mean estimate is 0.45 with a corresponding standard error of 0.018.

This estimate corresponds to a half life of 1.2 trading days.

Table 1 also reports the estimated correlation between return innovations (ϵi,t+1) and inno-

vations in the predictive variable (εi,t+1) each stock (conditional on information up to t). The

estimated correlation is negative for every stock in the sample, and ranges from -0.13 to -0.42.

These estimates is consistent with a contrarian trading strategy at the aggregate retail level: on av-

erage, retail traders tend to sell (buy) a stock with positive (negative) daily excess returns. Overall,

despite relatively high mean-reversion rates, this analysis illustrates that this predictability model

is very appropriate for our framework with hedging demands.

5.2 Average utility and calibration of main parameters

We now run various experiments with different number of stocks (from the list in Table 1) and

different time horizons to quantify the utility benefits of following the optimal trading policy derived

for a non-myopic CARA agent in the presence of trading costs when compared to the policy derived

for a CMV agent. We use the finite horizon model developed in Section 2, and trade at the end of

each day based on the (daily) retail-order imbalance measure.

For an experiment with a finite horizon of T , we will compute average utility of each policy

from the maximum available non-overlapping samples between 2014 and 2019. For example, if the

investment horizon, T , is three months, then there will be 24 samples.

Let wj
t,k be the wealth of the agent j (CARA or CMV) at time t corresponding to sample k in
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the experiment. Then, the utility of each agent in this experiment is given by U j
k = −e−γwj

T,k and

the average utility across all sample paths is given by

U j
avg =

1

KT

KT∑
k=1

U j
k ,

where KT denotes the number of samples corresponding to an horizon of T .14

Finally, the total wealth net of transaction costs in sample k for an agent with type j is given

by

wj
T,k =

T∑
t=1

[(
xjt,k

)⊤
∆St,k −

1

2

(
∆xjt,k

)⊤
Λ
(
∆xjt,k

)]
where ∆St,k is the vector of realized price changes at time t and xjt,k is the vector of position

holdings for an agent with type j in sample path k.

Since both CMV and CARA agents use price-changes for asset returns, we now discuss the

calibration of the main inputs to the agent policies at the beginning of each sample path k. The

parameters are based on the statistics that we estimate from the full period.

Let V be the estimated full-sample variance-covariance matrix of the daily returns given by

V = Var(ϵ). Since both CARA and CMV need the variance of price changes, we use

Σ(k) = diag (S0,k)V diag (S0,k)

where S0,k is the price vector of the stocks at the beginning of sample k. We set µ0(k) to be

the zero vector as the intercept term in regression specified in equation (77) is estimated to be

insignificant from zero for the majority of the stocks. Finally, to convert to a price-change-based

expected return, µ(k) will equal the β scaled by the initial stock prices:

µ(k) = diag (S0,k) diag (β)

The parameters for the predictor dynamics do not require scaling. We set κ = diag(ϕ̂) and Σx =

Var(ε̂). These are held constant for every sample path k. Finally, Σsx(k) = diag (S0,k) Cov(ϵ, ε).
15

5.3 Calibration of the Price Impact Matrix

To calibrate the transaction cost multipliers of our model realistically, we use proprietary execu-

tion data from the historical order databases obtained from a large investment bank. The orders

primarily originate from institutional money managers who would like to minimize the costs of

executing large amounts of stock trading through algorithmic trading services. The data consists

of two frequently used trading algorithms, volume weighted average price (VWAP) and percentage

of volume (PoV). The VWAP strategy aims to achieve an average execution price that is as close

14There are 1510 trading days in this six year horizon so KT = ⌊ 1510
T

⌋.
15σx(k), σxs(k) and Ω(k) can be derived from these definitions.
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as possible to the volume weighted average price over the execution horizon. The main objective

of the PoV strategy is to have constant participation rate in the market along the trading period.

The execution data covers S&P 500 stocks between January 2011 and December 2012. Execution

duration is greater than 5 minutes but no longer than a full trading day. Total number of orders

is 81,744 with an average size of approximately $1 million. The average participation rate of the

order, the ratio of the order size to the total volume realized in the market, is approximately 6%.

This data set has been utilized in Bogousslavsky, Collin-Dufresne, and Sağlam (2021) to study the

impact of trading glitch at Knight Capital on institutional trading costs. We filter this data set

by focusing on large-order trades on the same set of 25 stocks listed in Table 1. The data set

has a large order execution on all of these stocks except one (BRKB). There are 9,405 large-order

executions on this subset.

A standard measure of institutional trading costs is the implementation shortfall (IS), which is

defined as the normalized difference between the average execution price and the mid-quote price

of the asset prior to the start of the execution. Formally, the IS of the ith parent-order is given by

ISi = Di
P avg
i − Pi,0

Pi,0
, (79)

where Qi is the order size (in shares) with Qi > 0 (Qi < 0) for buy (sell) orders, P avg
i is the

volume-weighted execution price of the parent-order, Di equals 1 (−1) if the order is buy (sell),

and Pi,0 is the mid-quote price of the security (arrival price) at the point in time when the parent

order execution begins.

We estimate the price impact coefficient θ by running the regression

ISi = αi + θ
Qi

V lmi
+ εi (80)

over all orders for our 25 firms. Here, Qi is the number of shares bought or sold, and V lmi is the

daily volume of the stock realized during the execution day. Thus, Qi

V lmi
measures the size of the

order as a fraction of the daily market volume.

Table 2 reports that θ is estimated to be 0.0465 (465 basis points). The reported standard

errors are double-clustered at the stock-day level. We find that θ is statistically significant at 1%

level. The economic magnitude is also large. That is an order that traded 1% of daily volume

resulted in a transaction cost of 4.65 bps.

According to our quadratic transaction cost model, trading ui,t shares of stock i on day t would

move its (average) price by
λiui,t

2 where λi is the stock’s price impact coefficient. On average, our

empirical model based on implementation shortfall would predict this price impact to be θui,tz̄i

where v̄i is the average ratio of the stock’s price to its volume, i.e., 1
Tmax

∑Tmax
t=1

Si,t

Vi,t
where Vi,t is the

daily volume of stock i on day t and Tmax is equal to the number of days in our six-year horizon

(1510 trading days). According to this relation, λi = 2θz̄i. The final column in Table 1 reports the

price impact coefficient for each stock in our sample. The highest price impact of trading one share
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is observed on AMZN, partially attributable to its high share price during our sample period.

For simplicity, we assume that there is no cross-price impact. Thus, we calibrate Λ to be diag (λ)

for every sample k.16

5.4 Insights from the one-asset and one-predictor experiments

To gain a better understanding of the differences between the trading policies of CARA and CMV

agents, we first examine the results from one-asset and one-predictor example for each stock in our

sample. We use the first sample (k = 1) corresponding to three-month horizon (T = 63) and set

γ = 10−9 which we can think of as corresponding to a relative risk aversion of 1 for an agent with

1 billion dollars under management. We compute the aim portfolio at t = 0 assuming that the

predictor is equal to 1, i.e., xi,t = xi,0 = 1.

Figure 6 illustrates the percentage deviation of the CARA aim portfolio from the CMV aim

portfolio as a function of the estimated model parameters, .17 Since the correlation between return

and factor innovations is negative for all stocks in our sample, we find that the aim portfolio of

the CARA agent is more aggressive when compared to that of the CMV agent. The percentage

difference is higher than 5% for T, XOM and VZ suggesting that there are economically significant

deviations from the CMV portfolio.

The top-left plot shows that the percentage difference is overall increasing in the Sharpe ratio

of the predictor as proxied by µ
σs
. When you consider the relation between t-statistics and Sharpe

ratio in the return predictability model, this also partially explains why the percentage difference

in aim portfolios is the highest for T, XOM and VZ as these stocks’ β estimates have the highest

t-statistics. This result is very striking suggesting that the Sharpe ratio of the predictor drives the

main difference in the resulting aim portfolios.

The top-right plot shows that the percentage difference is overall decreasing in the mean re-

version speeds of the predictor, κ. When the signal is more persistent, the hedging demand term

becomes more significant. Similarly, the bottom-left plot shows the CARA agent has higher hedg-

ing demand when the signal innovations has more negative correlation with the return innovations.

Finally, for the existing sample, λ is not highly correlated with the difference in the aim portfolios

of the CMV and CARA agents, as shown in the bottom-right panel.

Figure 7 illustrates the percentage difference between the trading speeds of the CARA and CMV

agents as a function of the estimated model parameters. Since the correlation between return and

factor innovations is negative for all stocks in our sample, we find on average that the CARA agent

trades slowly to the target aim portfolio to compensate the additional position size. We find that

the relative trading speed of the CARA agent decreases as the Sharpe ratio or the persistence of the

signal is higher, and the correlation between the predictor and return innovations is more negative.

16Our results are very similar if we define z̄i = 1
Tmax

∑Tmax
t=1

1
Vi,t

and Λ(k) = diag (S0,k) diag (λ) for every sample

path k.
17Formally, the percentage deviation is given by 100

(
aim(CARA-TC)
aim(CMV-TC)

− 1
)
. Note that the aim portfolio for the CARA

and CMV agent is negative for AAPL, PG, PFE and BAC as the estimated β is negative for these stocks as shown
in Table 1.
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Figure 6: The percentage differences between the aim portfolios of the CARA and CMV agents in the one-
asset and one-predictor experiment as a function of the estimated model parameters.

Notes: Formally, the percentage deviation is given by 100
(

aim(CARA-TC)
aim(CMV-TC)

− 1
)
. Note that the aim portfolio for the

CARA and CMV agent is negative for AAPL, PG, PFE and BAC as the estimated β is negative for these stocks.
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We again find that the main driver in the differences in trading speeds is the Sharpe ratio of the

asset.

5.5 Numerical experiments with multiple assets and predictors

In this section, we report the results of numerical experiments with various number of assets (N = 2,

N = 5 and N = 25), horizon (three-month, T = 63, and six-month, T = 126) and risk aversion

level. We use PFE and T (JPM, PM and T) [JNJ, JPM, KO, PG, and VZ] in the two-asset (three-

asset) [five-asset] experiments and use all the stocks in Table 1 in the case of N = 25. We consider

low and high risk aversion cases corresponding to γ = 5× 10−9 and γ = 10× 10−9, respectively. In

total, we assess the performance of CARA and CMV trading policies in 16 different experiments.

Table 3 summarizes these by reporting the average utility, certainty equivalent wealth and the

Sharpe ratios across all experiments.18

The first row of each experiment reports the average utilities achieved by the CARA and CMV

agents and the difference in the utilities. We test whether the difference is statistically different

than 0 by performing a two-tailed t-test. We find that in 14 out of 16 experiments, the difference is

statistically significant at 5% level indicating that there are statistically significant utility benefits in

following the CARA trading policy. In the second row of each experiment, we report the certainty

equivalent wealth (CE (wT )) achieved by each policy where

CE (wT ) = −1

γ
log

(
1

KT

KT∑
k=1

−e−γwT,k

)
.

In the third column, we report the percentage improved achieved by the CARA trading policy.

The difference in utility is highly significant in the four experiments with N = 3. Note that

this is expected as this set includes PM and T, which have high expected returns with low risk.

We find that the improvement in the certainty equivalent can reach as high as 7% indicating

economically significant benefits. In the third row of each experiment, we report the Sharpe ratios

and the percentage improvement achieved by the CARA agent. Since the Sharpe ratio of the

terminal wealth can also approximate our objective function (despite ignoring higher moments),

we find consistently that the CARA agent achieves higher Sharpe ratio in all experiments with

improvements up to 3%.

For robustness, we have also run 2,300 three-asset experiments (25 choose 3 combinations) for

three-month investment horizon and high-risk aversion. We find that the mean improvement in

CE (wT ) is 1.9% with a standard error of 0.13%. Further, we examine the top 100 portfolios having

the highest improvement over the CARA agent with regard to CE, and for this group the average

improvement goes up to 13%. In these portfolios, the most frequent stock is T with 84 occurrences

out of 300. This is anticipated partly due to its lowest σxs value across all stocks along with its

relatively high reward-to-risk ratio.

18Note that since the terminal wealth is not normally distributed, the Sharpe ratio does not align perfectly with
our objective function but we report it as it is a first-order measure of risk-adjusted performance in practice.
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Figure 7: The differences between the trading speeds of the CARA and CMV agents in the one-asset and
one-predictor experiment as a function of the estimated model parameters.

Notes: Formally, the percentage deviation in trading speeds is given by 100
(

τ(CARA-TC)
τ(CMV-TC)

− 1
)
.
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Figure 8: Average wealth and cumulative transaction cost on each day from the five-asset experiment with
three-month horizon and high risk aversion. The five asset experiment includes JNJ, JPM, KO, PG, and VZ
in the portfolio.

To further examine the trading policies in the multi-asset experiments, Figure 8 plots the average

cumulative wealth and transaction costs on each day in the five-asset experiment with three-month

horizon (i.e., 24 samples) and high risk aversion. Beginning approximately on day 25, the average

wealth of the CARA agent becomes significantly higher than that of the CMV agent. Overall, total

trading costs roughly account for 20% of the average wealth achieved for both agents, but compared

to the CMV agent, we find that the CARA agent pays slightly higher total trading costs. Despite the

potential lower trading speeds, the CARA agent may hold larger aim portfolio and end up paying

higher trading costs. We examine these issues in detail by focusing on the differences in trading

on a given single sample. Figure 9 plots the predictor, position and trading speeds (the diagonal

entries in the matrix) on PG and VZ on a single path. Here, we focus on PG and VZ as compared

to PG, VZ has higher Sharpe ratio, lower mean reversion speed and larger negative correlation

between its return and predictor innovations. Given these differences between two assets, we find

that the CMV and the CARA agent have roughly the same position and trading speed in PG but

they differ a lot in VZ. Specifically, the CARA agent has significantly larger position in VZ and

lower trading speed when compared to the CMV agent. Compared to the one-asset example, these

trading policies are also driven by other assets’ predictors and correlation structure but overall we

observe that our earlier insights extend into these multi-asset and multi-predictor experiments as

well.

32



0 10 20 30 40 50 60 70

Day

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
R

e
ta

il
 O

rd
e
r 

Im
b

a
la

n
c
e
 i
n

 P
G

0 10 20 30 40 50 60 70

Day

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
e
ta

il
 O

rd
e
r 

Im
b

a
la

n
c
e
 i
n

 V
Z

0 10 20 30 40 50 60 70

Day

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

P
o

s
it

io
n

 i
n

 P
G

10
5

CARA-TC

CMV-TC

0 10 20 30 40 50 60 70

Day

0

1

2

3

4

5

6

7

P
o

s
it

io
n

 i
n

 V
Z

10
6

CARA-TC

CMV-TC

0 10 20 30 40 50 60 70

Day

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
ra

d
in

g
 S

p
e

e
d

 i
n

 P
G

CARA-TC

CMV-TC

0 10 20 30 40 50 60 70

Day

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

T
ra

d
in

g
 S

p
e

e
d

 i
n

 V
Z

CARA-TC

CMV-TC

Figure 9: Predictor, position and trading speeds on PG and VZ in the five-asset experiment with three-
month horizon and high risk aversion.
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6 Conclusion

In the presence of time-varying expected returns, long-term investors with CARA utility who ignore

trading costs deviate from the conditional mean-variance efficient portfolio to hedge against the

negative impact of the time variation in expected returns on the marginal utility of the investor. In

the recent literature, the dynamic trading policy based on conditional mean-variance preferences

that incorporates transaction costs has been very popular. Surprisingly, this trading policy has no

hedging component. We propose a set of preferences based on stochastic differential utility with

source-dependent risk-aversion, which nest the widely used conditional mean-variance and CARA

utility.

We derive an explicit solution for the portfolio choice problem in the presence of quadratic

t-costs with arbitrary number of stocks and predictability in returns in terms of an optimal aim

portfolio and trading speed. We show that, for a non-myopic CARA investor, the hedging demand

has large effect on optimal aim portfolio and trading speed, especially when the correlation be-

tween stock return and predictor is negative. In a realistic calibration where we utilize the retail

order imbalance as a predictor at the stock-level, we find that hedging demands significantly affect

strategy performance.
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Rank Ticker β̂i t(βi) ϕ̂i t(ϕi) cor(ϵ̂i, ε̂i) λ̂i(×107)

1 AAPL -0.0018 -0.59 0.26 11.27 -0.21 8.09
2 XOM 0.0063 2.64 0.36 12.44 -0.41 7.07
3 MSFT 0.0053 1.37 0.55 19.12 -0.26 2.82
4 GE 0.0027 0.69 0.47 12.90 -0.14 0.58
5 JNJ 0.0060 2.09 0.47 13.91 -0.22 17.25
6 WMT 0.0039 1.51 0.56 15.13 -0.23 11.50
7 CVX 0.0029 0.80 0.36 10.91 -0.31 17.25
8 WFC 0.0024 0.87 0.34 14.42 -0.27 2.93
9 JPM 0.0037 0.94 0.54 18.00 -0.32 6.08
10 PG -0.0001 -0.04 0.38 13.27 -0.24 11.12
11 IBM 0.0055 1.32 0.50 14.68 -0.25 39.04
12 PFE -0.0008 -0.42 0.36 10.92 -0.16 1.53
13 T 0.0050 2.61 0.45 17.60 -0.42 1.41
14 AMZN 0.0014 0.18 0.42 12.55 -0.18 256.15
15 KO 0.0028 1.42 0.39 13.36 -0.32 3.55
16 BAC -0.0020 -0.59 0.54 17.75 -0.30 0.32
17 ORCL 0.0010 0.27 0.58 15.45 -0.13 3.35
18 C 0.0014 0.44 0.54 17.57 -0.27 3.54
19 MRK 0.0009 0.31 0.58 17.77 -0.21 6.51
20 VZ 0.0062 3.16 0.40 13.89 -0.38 3.52
21 BRKB 0.0039 1.57 0.34 11.13 -0.29 45.75
22 PM 0.0086 2.50 0.50 15.00 -0.21 19.94
23 DIS 0.0017 0.53 0.37 10.75 -0.14 14.25
24 INTC 0.0048 1.27 0.48 17.30 -0.24 1.61
25 PEP 0.0051 2.06 0.51 18.39 -0.24 24.88

Table 1: For the 25 largest US common stocks by equity market capitalization as of January 1, 2014, we
estimate equations (77) and (78) at the individual firm level using daily net retail order flow and subsequent
daily returns. We also estimate the price impact coefficient using an institutional large order data set.
Standard errors are adjusted for serial correlation and heteroscedasticity using Newey-West estimator with
a maximum lag of ten days. The calculation of the individual-firm price impact parameter λ̂i is described
in detail in Section 5.3.
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Dependent variable:

IS (bps)

θ (bps) 465.14∗∗∗

(95.56)

Constant (α) 0.58
(1.14)

Observations 9,405
Adjusted R2 0.001

Table 2: Estimation of the price impact coefficient, θ, from institutional order data set

Notes: We estimate the regression model specified in equation (80) using 9,405 large-order executions on the same

25-stock universe. The reported standard errors are clustered at the day and stock level.
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Low risk aversion High risk aversion
γ = 5× 10−9 γ = 10× 10−9

CARA-TC CMV-TC Diff CARA-TC CMV-TC Diff

(N,T ) Statistic (1) (2) (3) (1) (2) (3)

N = 2 Uavg −0.9781 −0.9794 0.0013∗∗∗ −0.9746 −0.9763 0.0017∗∗∗

T = 63 CE (wT ) ($M) 4.43 4.17 6.4% 2.57 2.40 7.1%
Sharpe ratio 1.13 1.11 1.5% 1.01 0.98 2.7%

N = 2 Uavg −0.9714 −0.9732 0.0018∗ −0.9666 −0.9688 0.0022∗

T = 126 CE (wT ) ($M) 5.79 5.43 6.7% 3.40 3.17 7.1%
Sharpe ratio 0.82 0.80 1.0% 0.77 0.76 1.8%

N = 3 Uavg −0.9643 −0.9658 0.0015∗∗∗ −0.9535 −0.9556 0.0020∗∗∗

T = 63 CE (wT ) ($M) 7.27 6.97 4.4% 4.76 4.54 4.7%
Sharpe ratio 1.83 1.80 1.4% 1.63 0.59 2.5%

N = 3 Uavg −0.9408 −0.9431 0.0023∗∗∗ −0.9225 −0.9256 0.0031∗∗∗

T = 126 CE (wT ) ($M) 12.20 11.70 4.2% 8.07 7.73 4.4%
Sharpe ratio 1.19 1.16 2.5% 1.10 1.07 2.8%

N = 5 Uavg −0.9772 −0.9782 0.0010∗∗ −0.9672 −0.9687 0.0015∗∗

T = 63 CE (wT ) ($M) 4.61 4.40 4.7% 3.34 3.18 5.0%
Sharpe ratio 0.97 0.95 1.6% 0.97 0.95 2.1%

N = 5 Uavg −0.9654 −0.9670 0.0017∗∗ −0.9494 −0.9519 0.0025∗∗

T = 126 CE (wT ) ($M) 7.05 6.71 5.1% 5.19 4.93 5.4%
Sharpe ratio 0.67 0.65 2.7% 0.67 0.65 2.9%

N = 25 Uavg −0.8729 −0.8753 0.0024∗∗ −0.8370 −0.8406 0.0036∗∗∗

T = 63 CE (wT ) ($M) 27.19 26.65 2.0% 17.79 17.36 2.5%
Sharpe ratio 1.00 0.98 1.9% 1.06 1.04 2.1%

N = 25 Uavg −0.7627 −0.7667 0.0040∗∗ −0.7003 −0.7059 0.0056∗∗

T = 126 CE (wT ) ($M) 54.19 53.14 2.0% 35.63 34.83 2.3%
Sharpe ratio 1.00 0.98 1.7% 0.67 0.65 1.9%

Table 3: Policy comparison across 16 numerical experiments with various number of assets (N = 2, N = 3,
N = 5 and N = 25), horizon (three-month, T = 63, and six-month, T = 126) and risk aversion level.
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APPENDIX

A Stochastic Differential Utility of Terminal Wealth

Consider an agent with a wealth process Wt who trades in a financial market, where the uncertainty

is generated by a vector of independent Brownian motion Z(t), and who has expected utility of

terminal wealth with twice-differential, increasing and concave utility function U(WT ). Note that

by definition Mt = Et[U(WT )] is a martingale and therefore we may write:

dMt = σ⊤
MdZt

Now define the certainty equivalent process Ht = U−1(Mt) which satisfies the boundary condition

HT = WT . Defining

dHt = µHdt+ σ⊤
HdZt (81)

Then we have

dU(Ht) =

(
1

2
U ′′(H)||σH ||2 + U ′(H)µH

)
dt+ U ′(H)σ⊤

HdZt

Since Mt = U(Ht) comparing the two processes we get:

µH = −1

2

U ′′(H)

U ′(H)
||σH ||2 (82)

It follows that we can define the certainty equivalent of an investor who has expected utility of

terminal wealth as the solution (Ht, σH) of a backward-stochastic differential equation:

Ht = Et[WT −
∫ T

t
µH(Ht, σH)dt] (83)

where the driver of the BSDE is given in equation (82) above.

To summarize, we have shown that, for an agent with an arbitrary wealth process Wt driven

by a vector of N Brownian motions, who has expected utility of terminal wealth E[U(WT )], we

can define his certainty equivalent Ht in two different ways. First, the traditional definition

Ht = U−1(Et[U(WT )]). Second, as the solution of the BSDE given in (82-83) above. Both are

equivalent.19 It turns out the BSDE definition lends itself naturally to a generalization where the

agent has source-dependent risk-aversion in that she attaches different risk-aversion to different

Brownian motions.

19We note that this also provides a direct constructive proof for the uniqueness of the solution to that particular
quadratic BSDE, a subject studied in more general settings in Kobylanski (2000) or Delbaen, Hu, and Richou (2011).
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B Source-Dependent SDU with Vanishing Risk Aversion to Ex-

pected return shocks

Specifically, consider the case of two vectors of independent Brownian motions Zs, Zx, then we

define the certainty equivalent of our “source-dependent stochastic differential utility” agent who

consumes only at maturity T , as the solution (Ht, σH,s, σH,x) of the following BSDE:

Ht = Et[WT −
∫ T

t
µH(Ht, σH,s, σH,x)dt] (84)

µH = −1

2

U ′′
1 (H)

U ′
1(H)

||σH,s||2 −
1

2

U ′′
2 (H)

U ′
2(H)

||σH,x||2 (85)

where two different (twice-differential, strictly increasing and concave) utility functions Ui i = 1, 2

apply to the different sources of diffusion risk. Of course, if we pick U1 = U2, then Ht is simply

the standard certainty equivalent of an agent that has expected utility of terminal wealth as shown

in the previous section. Otherwise, we define Ht as the certainty equivalent of an agent that has

source-dependent risk-aversion and applies different risk-aversion to different sources of diffusion

risk.

For CARA utility functions Ui(w) = −e−γiw ∀i = 1, 2, we obtain the following expression for

the BSDE satisfied by the certainty equivalent:

Ht = Et

[
WT −

∫ T

t

{
1

2
γ1||σH,s||2 +

1

2
γ2||σH,x||2

}
du

]
which is equation (7) in the main text with γ1 = γ and γ2 = γx.

For γx ̸= γ, this is the certainty equivalent of a source-dependent stochastic differential util-

ity agent as advocated in Skiadas (2008). We also give a recursive heuristic argument for the

construction of this certainty equivalent (following Skiadas (2008)) in the following section.

If we pick γ1 = γ2 = γ, then our derivation in Appendix A implies that Ht is the certainty equiv-

alent of a CARA agent with absolute risk-aversion coefficient γ. That is following the derivation

in the previous section we obtain:

If γ1 = γ2 = γ then Ht = −1

γ
log Et[e

−γWT ]

In general, with Wt dynamics given in (6) above, we look for a solution of the form Ht =

Wt+J(xt, nt, t). Plugging this guess into the BSDE, we find J(xt, nt, t) satisfies (note that this guess

also implies that the diffusion of H has two components σH,s = n⊤
t σs + J⊤

x σxs and σH,x = J⊤
x σx):

J(xt, nt, t) = Et

[∫ T

t
{dWu − 1

2
γ1n

⊤
u σsσ

⊤
s nudu− 1

2
J⊤
x (γ1σxsσ

⊤
xs + γ2σxσ

⊤
x )Jxdu− γ1n

⊤
u σsσ

⊤
xsJxdu

]
which is, indeed, the objective function we consider in equations (93) and (101) below with
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γ1 = γ and γ2 = γx.

Now, we also see that if γ2σx = 0 and σxs = 0, then the certainty equivalent indeed reduces to

the CMV objective function as claimed in Theorem 2, that is (with γ1 = γ):

J(xt, nt, t) = Et

[∫ T

t
dWu − 1

2
γdW 2

u

]
Now, let’s instead consider a CMV-agent that, for general xt, maximizes the objective function:

J(xt, nt, t) = max
θt

Et

[∫ T

t

{
n⊤
u (µ0 + µxu)du− 1

2
θ⊤u Λθu − 1

2
γn⊤

uΣnu

}
du

]
s.t. dnt = θtdt (86)

The HJB for that problem is as follows:

0 =max
θ

{
n⊤(µ0 + µx)− 1

2
θ⊤Λθ − 1

2
γn⊤Σn+ Jt + J⊤

n θ − J⊤
x κx+

1

2
Tr(JxxΣx)

}
This equation is identical to the HJB equation (105) of the recursive-utility-source-dependent agent

given in appendix F below when substituting the same Σx, but setting γx = 0 and σxs = 0 (and

thus Ω = 0). Further, the solution of this equation discussed in detail in G below shows that

portfolio strategy of the CMV agent is independent of σx (as well as σsx). Whence the corollary.

C Recursive Construction of the ‘Source-Dependent’ Stochastic

Differential Utility of Terminal Wealth

Following Skiadas (2008) and Hugonnier, Pelgrin, and St-Amour (2012), we consider a local ap-

proximation argument to show heuristically how to construct recursively the certainty equivalent

Ht of our agent who consumes only at maturity T and has source-dependent risk-aversion. We

assume wealth is driven by two independent Brownian motions Zx, Zs and one Poisson jump Nt

with an arrival intensity of ρ. We allow for a jump to deal with the possible random horizon model.

We also assume that prior to t, the certainty equivalent has dynamics given by:

dHt = µHdt+ σH,sdZ
s + σH,xdZ

x + ηH(dNt − ρdt). (87)

At any time t < T the certainty equivalent is defined by the following recursion

U(Ht, 0, 0, 0) = Et[U(Ht + µHdt, σH,sdZ
s, σH,xdZ

x, ηH(dNt − ρdt))] (88)

with the boundary conditionHT = WT , for some source-dependent risk-aversion function U(z0, z1, z2, z3).
Note that if U(z0, z1, z2, z3) = U(z0+ z1+ z2+ z3) we obtain the same recursive definition as in the

section B. Instead, here we assume the following function:
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U(z0, z1, z2, z3) = U1(z0 + z1) +
U ′
1(z0)

U ′
2(z0)

(U2(z0 + z2)− U2(z0)) +
U ′
1(z0)

U ′
3(z0)

(U3(z0 + z3)− U3(z0))

Using this we can rewrite the recursion (88), using the Itô rule for the right-hand side as:

U1(Ht) =U1(Ht) + U ′
1(Ht)µHdt+

1

2
U ′′
1 (Ht)σ

2
H,sdt+

U ′
1(Ht)

U ′
2(Ht)

1

2
U ′′
2 (Ht)σ

2
H,xdt

− U ′
1(Ht)

(
ηH − U3(Ht + ηH)− U3(Ht)

U ′
3(Ht)

)
ρdt

Simplifying and rewriting we obtain the driver µH of the BSDE which defines the source-dependent

SDU:

µH = −1

2

U ′′
1 (H)

U ′
1(H)

||σH,s||2 −
1

2

U ′′
2 (H)

U ′
2(H)

||σH,x||2 + ρ

(
ηH − U3(Ht + ηH)− U3(Ht)

U ′
3(Ht)

)
(89)

If we specialize to CARA utility functions Ui(x) = −e−γix, then the BSDE representation

becomes

Ht = Et

[
WT −

∫ T

t

{
1

2
γ1||σH,s||2 +

1

2
γ2||σH,x||2 + ρ(ηH − 1− e−γ3ηH

γ3
)

}]
(90)

When there are no jumps (i.e., ρ = 0) then this is the driver of the BSDE corresponding to

recursive preferences with source-dependent risk aversion that we introduced in (84). The jump

component is useful to understand the stationary case where the horizon is generated by the first

jump of the poisson process.

D Source-dependent SDU with a random horizon

We consider the generalization of our SDU definition where T is generated by the first jump of a

Poisson process with intensity ρ.

Then we define the certainty equivalent as the solution (Ht, σH,s, σH,x, ηH := Wt −Ht−) to the

recursive BSDE defined for t ≤ T :

Ht =Et

[
WT −

∫ T

t

{
1

2
γ1||σH,s||2 +

1

2
γ2||σH,x||2 + ρ

(
Ws −Hs− − 1− e−γ3(Ws−Hs− )

γ3

)}
ds

]
=Wt

+ 1{T >t}Et

[∫ ∞

t

e−ρ(s−t)

{
dWs −

[
1

2
γ1||σH,s||2+

1

2
γ2||σH,x||2+ρ

(
Ws−Hs−− 1−e−γ3(Ws−Hs− )

γ3

)]
ds

}]
(91)

The equality between the first and second line requires an additional transversality condition.20

20Note that Et

[∫ T
t

dXu

]
= Et

[∫∞
t

ρe−ρ(s−t)ds
∫ s

t
dXu

]
= Et

[∫∞
t

e−ρ(s−t)dXs − [e−ρ(s−t)(Xs −Xt)]
∞
t

]
. There-
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We prove equation 33 of theorem 6.

Theorem 6

When γ1 = γ2 = γ3 = γ then the solution to (91) is the certainty equivalent of a CARA in-

vestor with expected utility of terminal wealth generated at the random horizon T . That is

Ht =
1
γ log(Et[e

−γWT ]).

Proof. Note that the solution to (91) when γ1 = γ2 = γ3 = γ is a jump diffusion process, with the

property that HT = WT at the jump time. Therefore we posit the following dynamics for Ht on

T > t:

dHt = µHdt+ σH,sdZ
s + σH,xdZ

x + (Wt −Ht−)(d1{T ≤t} − ρdt) (92)

From the BSDE definition we can see that the drift µH (on τ > t) is given by:

µH =

{
1

2
γ||σH,s||2 +

1

2
γ||σH,x||2 + ρ

(
Ws −Hs− − 1− e−γ(Ws−Hs− )

γ

)}
Applying Itô’s lemma we find U(Ht) = −e−γHt has dynamics:

dU(Ht) ={−1

2
U ′′(H)(||σH,x||2 + ||σH,s||2) + U ′(Ht−)(µH − ρ(Wt −Ht−)}dt

+ U ′(H)σH,sdZ
s + U ′(H)σH,xdZ

x + (U(Wt)− U(Ht−))d1{T ≤t}

=U ′(H)σH,sdZ
s + U ′(H)σH,xdZ

x + (U(Wt)− U(Ht−))(d1{T ≤t} − ρdt)

where we have substituted the expression for µH to get the second equality.

Therefore we find that the solution to the BSDE is such that U(Ht) is martingale, which takes

on the value u(WT ) at T . I follows that at t < T and using the optional stopping theorem:

U(Ht) = Et[U(HT )] = Et[U(WT )]

which is the desired result.

Note that this investor has same risk-aversion to the three types of shocks Zs, Zx, T .

E Finite horizon solution without transaction costs

Without transaction costs (i.e., when Λ = 0), we optimize directly over the number of shares nt as

the wealth-dynamics simplifies and the optimal trading will have infinite variation. We look for a

solution of the form Ht = Wt + J(xt, t), which implies σH,s = n⊤σs + J⊤
x σxs and σH,x = J⊤

x σx. It

follows from equation (7) that the function J(x, t) must satisfy:

fore the transversality condition is limT→∞ E[e−ρTXT ] = 0.
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J(xt, t) = max
n

Et

[∫ T

t

{
dWu − 1

2
γn⊤

uΣnudu− 1

2
J⊤
x ΩJxdu− γn⊤

uΣsxJxdu

}]
(93)

where we define:

Ω = γσxsσ
⊤
xs + γxσxσ

⊤
x (94)

Σsx = σsσ
⊤
xs (95)

The corresponding Bellman-equation is:

0 = max
n

Et[dWt −
1

2
γn⊤

t Σntdt−
1

2
J⊤
x ΩJxdt− γn⊤

t ΣsxJxdt+ dJ(t, xt)] (96)

Using the definition of the wealth equation (with Λ = 0) we obtain

0 =max
n

{
n⊤(µ0 + µx)− 1

2
γn⊤Σn− 1

2
J⊤
x ΩJx − γn⊤ΣsxJx + Jt − J⊤

x κx+
1

2
Tr(JxxΣx)

}
and we have defined Jx and Jxx as respectively the gradient and hessian of J(x, t) with respect to

x, and Jt the partial derivative with respect to t.

The first order condition, with respect to n, is21

n = (γΣ)−1 (µ0 + µx− γΣsxJx)

Plugging back into the HJB equation we get:

0 =
1

2
(µ0 + µx− γΣsxJx)

⊤ (γΣ)−1 (µ0 + µx− γΣsxJx)−
1

2
J⊤
x ΩJx + Jt − J⊤

x κx+
1

2
Tr(JxxΣx)

We guess that the value function is of the form:

J(x, t) =c0(t) + c1(t)
⊤x+

1

2
x⊤c2(t)x

where c2(t) is a symmetric matrix, c1(t) is a K-dimensional vector and c0(t) a scalar (all

determinstic functions of time). Thus:

Jt =
.
c0 +

.
c1

⊤x+
1

2
x⊤

.
c2x

Jx = c1 + c2x

Jxx = c2

21The second order condition γΣ > 0 is always satisfied.
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Plugging into the HJB we obtain:

− .
c0 −

.
c1

⊤x− 1

2
x⊤

.
c2x =

1

2
(µ0 + µx− γΣsx(c1 + c2x))

⊤ (γΣ)−1 (µ0 + µx− γΣsx(c1 + c2x))

− 1

2
(c1 + c2x)

⊤Ω(c1 + c2x)− (c1 + c2x)
⊤κx+

1

2
Tr(c2Σx)

This equation is satisfied provided c0, c1, c2 solve the following system:22

− .
c0 =

1

2
(µ0 − γΣsxc1)

⊤ (γΣ)−1 (µ0 − γΣsxc1)−
1

2
c⊤1 Ωc1 +

1

2
Tr(c2Σx) (97)

− .
c1 = (µ− γΣsxc2)

⊤ (γΣ)−1 (µ0 − γΣsxc1)− c2Ωc1 − κ⊤c1

− .
c2 = (µ− γΣsxc2)

⊤ (γΣ)−1 (µ− γΣsxc2)− c2Ωc2 − c2κ− κ⊤c2

This system has to be solved subject to the boundary condition c0(T ) = 0, c1(T ) = 0 and

c2(T ) = 0 (where 0 is the matrix of zeros with appropriate dimension).

We note that the if µ0 = 0 then c1(t) = 0 and the trading strategy only depends on c2 which

solves an autonomous ODE of the Riccatti type:

− .
c1 = (µ− γΣsxc2)

⊤ (γΣ)−1µ0 − {(µ− γΣsxc2)
⊤Σ−1Σsx + c⊤2 Ω+ κ⊤}c1 (98)

− .
c2 = c⊤2

(
γΣ⊤

sxΣ
−1Σsx − Ω

)
c2 − c2(κ+ΣsxΣ

−1µ)− (κ+ΣsxΣ
−1µ)⊤c2 + µ⊤(γΣ)−1µ (99)

The solution is easily obtained numerically. In terms of the solution the optimal position is

given by:

nt = (γΣ)−1(µ0 + µxt)− Σ−1Σsx(c1(t) + c2(t)xt)

where we see that it can be decomposed into the CMVE Markowitz portfolio and a hedging

portfolio (Merton (1973)). In the absence of transaction costs the investor will choose to deviate

from the Markowitz portfolio as soon as Σsx ̸= 0.

In particular, we note that the GP investor (who effectively acts as if Σsx = 0 and with γx = 0,

see corollary 3) is myopic in the sense that, absent transaction costs (i.e., if Λ = 0), she would

choose to hold the CMVE instantaneous mean-variance efficient Markowitz portfolio at all times:

CMV Et = (γΣ)−1(µ0 + µxt) (100)

Remark 10 The fact that the solution of the HJB equation (if it exists) solves the optimization

problem at hand follows from a standard verification argument. Indeed, suppose there exists a

22Recall that for x⊤Cx = x⊤Bx it is sufficient that C = B+B⊤

2
, which insures that C is symmetric even if B is

not. In fact, it is well-known that for a matric A that is not symmetric, C = A+A⊤

2
is the unique matrix that is

symmetric and such that x⊤Ax = x⊤Cx ∀x.
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solution to the system of equation, from the definition of the HJB equation, it follows that

Et

[
dJ(xt, t) + {dWt −

1

2
γn⊤

t Σntdt−
1

2
J⊤
x ΩJxdt− γn⊤

t ΣsxJxdt}
]
≤ 0 ∀nt

with equality for the optimal strategy. Integrating, this implies (given that J(x, T ) = 0 ∀x) that

J(xt, t) ≥ E

[∫ T

t
{dWu − 1

2
γn⊤

uΣnudu− 1

2
J⊤
x ΩJxdu− γn⊤

uΣsxJxdu}
]

∀nu and ∀t

and with equality for the optimal n∗
u.

This proves that our value function (together with its attached optimal strategy) is indeed dynam-

ically optimal. However, given the recursive nature of the solution, it does not immediately follow

from the verification theorem that there cannot be another (e.g., non-quadratic) function J(x, t)

(attached to a different optimal strategy), that might solve the same dynamic optimization problem

and achieve a different (potentially higher) optimum (because the unknown J appears on both sides

of the equation). Unlike in the classic optimization problems (such as the standard Merton portfolio

problem), the uniqueness of the value function is not implied by the verification theorem. However,

for the cases that are of interest to us (namely γx = γ and γx = 0), then the uniqueness of the

solution can easily be proved (for γx = γ see footnote 19 and for γx = 0 the objective function is

not recursive as shown in corollary 3).

Of course, with transaction costs the optimal portfolio will deviate from the Markowitz port-

folio both for the GP investor and the non-myopic CARA agent. We now turn to the case with

transaction costs.

F Finite horizon solution with transaction costs

We now consider the case with transaction costs when Λ ̸= 0. We look for a solution of the form

Ht = Wt + J(nt, xt, t), which implies σH,s = n⊤σs + J⊤
x σxs and σH,x = J⊤

x σx. It follows that the

function J(n, x, t) must satifsy:

J(nt, xt, t) = max
θ

Et

[∫ T

t

{
dWu − 1

2
γn⊤

uΣnudu− 1

2
J⊤
x ΩJxdu− γn⊤

uΣsxJxdu

}]
(101)

where we define:

Ω = γσxsσ
⊤
xs + γxσxσ

⊤
x (102)

Σsx = σsσ
⊤
xs (103)

Thus J(n, x, t) satisfies the HJB equation:

0 = max
θ

Et[dWt −
1

2
γn⊤

t Σntdt−
1

2
J⊤
x ΩJxdt− γn⊤

t ΣsxJxdt+ dJ(t, nt, xt)] (104)
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Using the dynamics of the wealth process, we obtain the following equation:

0 =max
θ

{
n⊤(µ0 + µx)− 1

2
θ⊤Λθ − 1

2
γn⊤Σn− 1

2
J⊤
x ΩJx − γn⊤ΣsxJx + Jt + J⊤

n θ − J⊤
x κx+

1

2
Tr(JxxΣx)

}
(105)

and we have defined Jx and Jxx as respectively the gradient and hessian of J(n, x, t) with respect

to x, Jn the gradiant with respect to n, and Jt the partial derivative with respect to t.

The first order condition is23

θ = Λ−1Jn

Plugging back into the HJB equation we get:

0 =max
θ

{
n⊤(µ0 + µx) +

1

2
J⊤
n Λ−1Jn − 1

2
γn⊤Σn− 1

2
J⊤
x ΩJx − γn⊤ΣsxJx + Jt − J⊤

x κx+
1

2
Tr(JxxΣx)

}
We guess that the value function is of the form:

J(n, x, t) =− 1

2
n⊤Q(t)n+ n⊤(q0(t) + q(t)⊤x) + c0(t) + c1(t)

⊤x+
1

2
x⊤c2(t)x

where Q(t) and c2(t) are symmetric (respectively N- and K-dimensional) matrices, q(t) is a

(K ×N) matrix, q0(t) and c1(t) are vectors and c0(t) is a scalar (all of deterministic functions).

Jt = −1

2
n⊤ .

Qn+ n⊤(
.
q0 +

.
q⊤ x) +

.
c0 +

.
c1

⊤x+
1

2
x⊤

.
c2x

Jn = −Qn+ q0 + q⊤x

Jx = qn+ c1 + c2x

Jxx = c2

Thus HJB becomes:

0 =− 1

2
n⊤ .

Qn+ n⊤(
.
q0 +

.
q⊤ x) +

.
c0 +

.
c1

⊤x+
1

2
x⊤

.
c2x

+
1

2
(−Qn+ q0 + q⊤x)⊤Λ−1(−Qn+ q0 + q⊤x) + n⊤(µ0 + µx)− 1

2
γn⊤Σn

− 1

2
(qn+ c1 + c2x)

⊤Ω(qn+ c1 + c2x)− γn⊤Σsx(qn+ c1 + c2x)− (qn+ c1 + c2x)
⊤κx+

1

2
Tr(c2Σx)

23The second order condition is Λ > 0 and always satisfied.
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Rewriting:

0 =
1

2
n⊤(−

.
Q+QΛ−1Q− γΣ− q⊤Ωq − 2γΣsxq)n

+ n⊤(
.
q0 + µ0 −QΛ−1q0 − q⊤Ωc1 − γΣsxc1) + n⊤(

.
q⊤ −QΛ−1q⊤ + µ− q⊤κ− q⊤Ωc2 − γΣsxc2)x

+ x⊤(
1

2
.
c2 +

1

2
qΛ−1q⊤ − c2κ− 1

2
c2Ωc2)x

+ x⊤(
.
c1 + qΛ−1q0 − c2Ωc1 − κ⊤c1) +

.
c0 +

1

2
q⊤0 Λ

−1q0 −
1

2
c⊤1 Ωc1 +

1

2
Tr(c2Σx)

So we obtain the set of ODEs that our candidate solution should satisfy:24

−
.
Q = γΣ−QΛ−1Q+ q⊤Ωq + γ(Σsxq + q⊤Σ⊤

sx) (106)

− .
q⊤ = µ− q⊤κ−QΛ−1q⊤ − q⊤Ωc2 − γΣsxc2 (107)

− .
c2 = −(c2κ+ κ⊤c2) + qΛ−1q⊤ − c2Ωc2 (108)

− .
q0 = µ0 −QΛ−1q0 − q⊤Ωc1 − γΣsxc1 (109)

− .
c1 = −κ⊤c1 + qΛ−1q0 − c2Ωc1 (110)

− .
c0 =

1

2
Tr(c2Σx) +

1

2
q⊤0 Λ

−1q0 −
1

2
c⊤1 Ωc1 (111)

subject to boundary conditions Q(T ) = 0, q(T ) = 0, q0(T ) = 0, c0(T ) = 0, c1(T ) = 0, and

c2(T ) = 0. We note that if µ0 = 0 then c1(t) = 0 and q0(t) = 0, ∀t.
Also, if Ω = 0 (for example in the GP case, where there is no correlation Σxs = 0 and there

is vanishing risk-aversion to Zs risk, that is γx = 0) then the system for Q, q is autonomous and

does not depend on the solution for c2, whereas when there is a hedging demand γx > 0 then the

system for Q, q, c2 needs to be solved jointly. So c2 encodes the hedging demand component,as in

the case without transaction costs.

To interpret the optimal trading strategy, note that the value function is maximized with respect

to the position vector n at the optimal aim portfolio:

aim(xt, t) = Q−1(t)(q0(t) + q(t)⊤xt).

Since Jn = −Qn+ q0 + q⊤x the optimal trade can be written as:

θ = Λ−1Jn = Λ−1Q(aim(xt, t)− nt)

So with the definition of trade intensity τt = Λ−1Q(t) we get the optimal trading strategy:

dnt = τt(aim(xt, t)− nt)dt (112)

24See also footnote 22.
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G The finite horizon solution with CMV preferences

As discussed in corollary (3), the solution to the finite horizon model where agents have CMV

preferences (as in equation (10)) corresponds to the solution of the source-dependent risk-aversion

recursive utility agent with parameters restricted to σxs = 0 and γx = 0 (which implies Ω = 0).

To understand the optimal trading rule (aimt, τt) the relevant system of ODE we need to solve

becomes:

−
.
Q = γΣ−QΛ−1Q (113)

− .
q⊤ = µ− q⊤κ−QΛ−1q⊤ (114)

− .
q0 = µ0 −QΛ−1q0 (115)

Now, we can rewrite this system in terms of the trading speed matrix τ = Λ−1Q as:

− .
τ = γΛ−1Σ− ττ (116)

−
.
Q = γΣ− τ⊤Q (117)

− .
q⊤ = µ− q⊤κ− τ⊤q⊤ (118)

− .
q0 = µ0 − τ⊤q0 (119)

This system has an intuitive closed-form solution in terms of the eigenvector, eigenvalue de-

composition of the matrix γΛ−1Σ = FDηF
−1 defined in equation (27). Indeed, if we define

τt = FDhtF
−1 where Dht is the diagonal matrix with the deterministic function hi(t) on its ith

diagonal. Plugging into the ODE for τ we find that the solution separates into n individual ODEs

for the hi(t) functions, which solve:

−
.
hi = ηi − h2i s.t. hi(T ) = 0 (120)

The solution is then as given in the theorem. It follows that the trading speed matrix is given by

τt = FDh(t)F
−1 and the Q matrix is Q(t) = Λτ(t).

To solve for q(t), q0(t), we use the following lemmas.

lemma 1 Since τt is diagonalizable then so is its inverse:

τ⊤t = F̃DhtF̃
−1

(121)

where F̃ = F−⊤ is the inverse of the transpose of F (or equivalently the transpose of the inverse of

F ).

Proof. From its solution τ⊤t = (F−1)⊤DhtF
⊤. Thus F̃ = (F−1)⊤. It remains to show that

(F−1)⊤ = (F⊤)−1 for then F̃
−1

= F⊤ and the decomposition obtains. But note that (F−1)⊤F⊤ =

(FF−1)⊤ = I.

51



Clearly, if Σ and Λ have same eigenfactors or if either is a diagonal matrix, then F = F̃ . But in

general this need not be the case, as γΛ−1Σ (and therefore τt) need not be symmetric.

lemma 2 The following holds:

d

dt
e−

∫ t
0 τ⊤s ds = −τ⊤t e−

∫ t
0 τ⊤s dsdt = −e−

∫ t
0 τ⊤s dsτ⊤t dt (122)

Further, ∀t, u, T the following holds:

e−
∫ u
t τ⊤s dse−

∫ T
u τ⊤s ds = e−

∫ T
t τ⊤s ds (123)

Proof. Note that
∫ t
0 τ

⊤
s ds = F̃D∫ t

0 h(s)dsF̃
−1

. Therefore, from the properties of the matrix expo-

nential25 e−
∫ t
0 τ⊤s ds = F̃D

e−
∫ t
0 h(s)dsF̃

−1
. Now, taking the derivative we find:

d

dt
e−

∫ t
0 τ⊤s ds = F̃D

e−
∫ t
0 h(s)dsh(t)

F̃
−1

(124)

= F̃D
e−

∫ t
0 h(s)dsF̃

−1
F̃D−h(t)F̃

−1
(125)

= e−
∫ t
0 τ⊤s dsτt (126)

which proves the first equality of the first statement. The second equality of the first statement

follows immediately from using the fact that two diagonal matrices commute in the second line

above.

Now to prove the second statement, we proceed similarly to above and note:

e−
∫ u
t τ⊤s dse−

∫ T
u τ⊤s ds = F̃D

e−
∫u
t hsdsF̃

−1
F̃D

e−
∫T
u hsds

F̃
−1

(127)

= F̃D
e−

∫T
t hsds

F̃
−1

(128)

= e−
∫ T
t τ⊤s ds (129)

Now, we can use this lemma to solve the ODE system. We find:

25The matrix exponential is defined as eX =
∑∞

k=0
Xk

k!
. It follows that if XY = Y X then eX+Y = eXeY . Further,

if Y is invertible then eY XY −1

= Y eXY −1.
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lemma 3 The solution to the ODE system is given as follows;

q(t) =

∫ T

t
e−

∫ u
t τ⊤s dsµe−

∫ u
t κdsdu (130)

q0(t) =

∫ T

t
e−

∫ u
t τ⊤s dsduµ0 (131)

Q(t) =

∫ T

t
e−

∫ u
t τ⊤s dsduγΣ (132)

Proof. We prove only the first results as the other ones are proved similarly. Using lemma 2 we

have:

d

dt
e
∫ t
0 τ⊤s dsq(t)⊤e

∫ t
0 κds = e

∫ t
0 τ⊤s ds(τ⊤t q(t)⊤ +

.
q(t)⊤ + q(t)⊤κ)e

∫ t
0 κds (133)

= e
∫ t
0 τ⊤s dsµe

∫ t
0 κds (134)

Now integrating and using the boundary condition q(T ) = 0 we find:

e
∫ t
0 τ⊤s dsq(t)⊤e

∫ t
0 κds = −

∫ T

t
e
∫ u
0 τ⊤s dsµe

∫ u
0 κdsdu (135)

Now left-multiplying by e
∫ 0
t τ⊤s ds and right-multiplying by e

∫ 0
t κds and using lemma 2 we find the

desired expression.

The main result then follows from the definition of the aim portfolio aim(t, x) = Q(t)−1(q0(t)+

q(t)x).

H The infinite horizon portfolio problem without transaction costs

Without transaction costs (i.e., when Λ = 0), we optimize directly over the number of shares nt as

the wealth-dynamics simplifies and the optimal trading will have infinite variation. Different from

the finite horizon case, we now look for a stationary solution of the form Ht = Wt + J(xt), which

implies σH,s = n⊤σs + J⊤
x σxs and σH,x = J⊤

x σx. It follows from equation (32) that the function

J(x) must satisfy:

J(xt) = max
n

Et

[∫ ∞

t
e−ρ(u−t)

{
dWu − 1

2
γn⊤

uΣnudu− 1

2
J⊤
x ΩJxdu− γn⊤

uΣsxJxdu

}]
(136)

The corresponding Bellman-equation is:

0 = max
n

Et[dWt −
1

2
γn⊤

t Σntdt−
1

2
J⊤
x ΩJxdt− γn⊤

t ΣsxJxdt+ dJ(xt)− ρJ(xt)] (137)
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Using the definition of the wealth equation (with Λ = 0) we obtain

ρJ(xt) =max
n

{
n⊤(µ0 + µx)− 1

2
γn⊤Σn− 1

2
J⊤
x ΩJx − γn⊤ΣsxJx − J⊤

x κx+
1

2
Tr(JxxΣx)

}
and we have defined Jx and Jxx as respectively the gradient and hessian of J(x) with respect to x.

The first order condition, with respect to n, is26

n = (γΣ)−1 (µ0 + µx− γΣsxJx)

Plugging back into the HJB equation we get:

ρJ =
1

2
(µ0 + µx− γΣsxJx)

⊤ (γΣ)−1 (µ0 + µx− γΣsxJx)−
1

2
J⊤
x ΩJx − J⊤

x κx+
1

2
Tr(JxxΣx)

We guess that the value function is of the form:

J(x) =c0 + c⊤1 x+
1

2
x⊤c2x

where c2 is a symmetric positive definite matrix, c1 is a K-dimensional vector, and c0 a constant.

Jx = c1 + c2x

Jxx = c2

Thus the HJB equation becomes

ρ(c0 + c⊤1 x+
1

2
x⊤c2x) =

1

2
(µ0 + µx− γΣsx(c1 + c2x))

⊤ (γΣ)−1 (µ0 + µx− γΣsx(c1 + c2x))

− 1

2
(c1 + c2x)

⊤Ω(c1 + c2x)− (c1 + c2x)
⊤κx+

1

2
Tr(c2Σx)

This equation is satisfied if c0, c1, c2 solve the following system:27

ρc0 =
1

2
(µ0 − γΣsxc1)

⊤ (γΣ)−1 (µ0 − γΣsxc1)−
1

2
c⊤1 Ωc1 +

1

2
Tr(c2Σx) (138)

ρc1 = (µ− γΣsxc2)
⊤ (γΣ)−1 (µ0 − γΣsxc1)− c2Ωc1 − κ⊤c1

ρc2 = (µ− γΣsxc2)
⊤ (γΣ)−1 (µ− γΣsxc2)− c2Ωc2 − c2κ− κ⊤c2

We note that the if µ0 = 0 then c1 = 0 and the trading strategy only depends on c2 which solves

an autonomous ODE of the Riccatti type:

0 = (µ− γΣsxc2)
⊤ (γΣ)−1µ0 − {(µ− γΣsxc2)

⊤Σ−1Σsx + c⊤2 Ω+ κ⊤ + ρ}c1 (139)

0 = c2

(
γΣ⊤

sxΣ
−1Σsx − Ω

)
c2 − c2(ρ+ κ+ΣsxΣ

−1µ)− (κ+ΣsxΣ
−1µ)⊤c2 + µ⊤(γΣ)−1µ (140)

26The second order condition: γΣ > 0 is always satisfied.
27See also footnote 22.
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The solution is easily obtained numerically. In terms of the solution the optimal position is given

by:

nt = (γΣ)−1(µ0 + µxt)− Σ−1Σsx(c1 + c2 xt)

where we see that it can be decomposed into the CMVEMarkowitz portfolio and a hedging portfolio

(Merton (1973)). In the absence of transaction costs the investor will choose to deviate from the

Markowitz portfolio as soon as Σsx ̸= 0. In particular, we note that, as in the finite-horizon case,

the GP investor (who effectively acts as if Σsx = 0 and with γx = 0, see corollary 3) is myopic

in the sense that, absent transaction costs (i.e., if Λ = 0), she would choose to hold the CMVE

Markowitz portfolio at all times:

Mwzt = (γΣ)−1(µ0 + µxt) (141)

Remark 11 To apply a standard verification theorem we require in addition that the transversality

condition limT →∞ E[e−ρTJ(XT )] = 0 be satisfied. Indeed, suppose there exists a solution to the

system of equation that satisfies the transversality condition, then we have from the definition of

the HJB equation that

Et

[
de−ρtJ(xt) + e−ρt{dWt −

1

2
γn⊤

t Σntdt−
1

2
J⊤
x ΩJxdt− γn⊤

t ΣsxJxdt}
]
≤ 0 ∀nt

with equality at the optimal strategy. This implies that

J(xt) ≥ Et[e
−ρTJ(xT )]+E

[∫ T

t
e−ρu{dWu − 1

2
γn⊤

uΣnudu− 1

2
J⊤
x ΩJxdu− γn⊤

uΣsxJxdu}
]

∀nu and ∀t

and with equality for the optimal nu. Letting T → ∞ using the transversality condition establishes

the dynamic optimality of the value function (and of the of the associated trading strategy). As

discussed in the final horizon case (see remark 10) there is an issue regarding the uniqueness of the

value function. In fact, there appear to be several solutions to the system of (quadratic) equations

derived from the HJB equation. We focus on the solution (selecting the positive definite Q and c2

matrices) that is most economically sensible and consistent with the finite horizon solution. We

conjecture (but could not prove for the case where γx ̸= 0) that, as in the finite horizon case,

this is the unique solution consistent with some approriately defined transversality condition (e.g.,

resulting from the finiteness of the expected utility).

Of course, with transaction costs the optimal portfolio will deviate from the Markowitz portfolio

both for the GP investor and the non-myopic CARA agent. We now turn to the infinite horizon

case with transaction costs.
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I The infinite horizon portfolio problem with transaction costs

We now consider the optimal portfolio choice of a source-dependent utility agent with objective

function (32) for the case with transaction costs when Λ ̸= 0. We look for a solution of the form

Ht = Wt + J(nt, xt), which implies σH,s = n⊤σs + J⊤
x σxs and σH,x = J⊤

x σx. It follows that the

function J(n, x) must satifsy:

J(nt, xt) = max
θ

Et

[∫ ∞

t
e−ρ(s−t)

{
dWu − 1

2
γn⊤

uΣnudu− 1

2
J⊤
x ΩJxdu− γn⊤

uΣsxJxdu

}]
(142)

where we define:

Ω = γσxsσ
⊤
xs + γxσxσ

⊤
x (143)

Σsx = σsσ
⊤
xs (144)

Thus J(n, x) satisfies the HJB equation:

0 = max
θ

Et[dWt −
1

2
γn⊤

t Σntdt−
1

2
J⊤
x ΩJxdt− γn⊤

t ΣsxJxdt+ dJ(nt, xt)− ρJ(nt, xt)dt] (145)

Using the dynamics of the wealth process, we obtain the following equation:

0 =max
θ

{
n⊤(µ0 + µx)− 1

2
θ⊤Λθ − 1

2
γn⊤Σn− 1

2
J⊤
x ΩJx − γn⊤ΣsxJx + J⊤

n θ − J⊤
x κx+

1

2
Tr(JxxΣx)− ρJ

}
and we have defined Jx and Jxx as respectively the gradient and hessian of J(n, x, t) with respect

to x, and Jn the gradiant with respect to n.

The first order condition is:28

θ = Λ−1Jn

Plugging back into the HJB equation we get:

0 =max
θ

{
n⊤(µ0 + µx) +

1

2
J⊤
n Λ−1Jn − 1

2
γn⊤Σn− 1

2
J⊤
x ΩJx − γn⊤ΣsxJx − J⊤

x κx+
1

2
Tr(JxxΣx)− ρJ

}
We guess that the value function is of the form:

J(n, x) =− 1

2
n⊤Qn+ n⊤(q0 + q⊤x) + c0 + c⊤1 x+

1

2
x⊤c2x

where Q and c2 are symmetric positive-definite (respectively N- and K-dimensional) matrices,

28The second order condition Λ > 0 is always satisfied.
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q is a (K ×N) matrix, q0 and c1 are vectors and c0 is a scalar (all constant).

Jn = −Qn+ q0 + q⊤x

Jx = qn+ c1 + c2x

Jxx = c2

Thus HJB becomes

0 =− ρ(
1

2
n⊤Qn− n⊤(q0 + q⊤ x)− c0 − c1

⊤x− 1

2
x⊤c2x)

+
1

2
(−Qn+ q0 + q⊤x)⊤Λ−1(−Qn+ q0 + q⊤x) + n⊤(µ0 + µx)− 1

2
γn⊤Σn

− 1

2
(qn+ c1 + c2x)

⊤Ω(qn+ c1 + c2x)− γn⊤Σsx(qn+ c1 + c2x)− (qn+ c1 + c2x)
⊤κx+

1

2
Tr(c2Σx)

Rewriting:

0 =
1

2
n⊤(−ρQ+QΛ−1Q− γΣ− q⊤Ωq − 2γΣsxq)n

+ n⊤(ρq0 + µ0 −QΛ−1q0 − q⊤Ωc1 − γΣsxc1) + n⊤(ρq⊤ −QΛ−1q⊤ + µ− q⊤κ− q⊤Ωc2 − γΣsxc2)x

+ x⊤(
1

2
ρc2 +

1

2
qΛ−1q⊤ − c2κ− 1

2
c2Ωc2)x

+ x⊤(ρc1 + qΛ−1q0 − c2Ωc1 − κ⊤c1) + ρc0 +
1

2
q⊤0 Λ

−1q0 −
1

2
c⊤1 Ωc1 +

1

2
Tr(c2Σx)

So we obtain the set of ODEs that need to be satisfied by the solution.

ρQ = γΣ−QΛ−1Q+ q⊤Ωq + γ(Σsxq + q⊤Σ⊤
sx) (146)

ρq⊤ = µ− q⊤κ−QΛ−1q⊤ − q⊤Ωc2 − γΣsxc2 (147)

ρc2 = −(c2κ+ κ⊤c2) + qΛ−1q⊤ − c2Ωc2 (148)

ρc0 =
1

2
Tr(c2Σx) +

1

2
q⊤0 Λ

−1q0 −
1

2
c⊤1 Ωc1 (149)

ρq0 = µ0 −QΛ−1q0 − q⊤Ωc1 − γΣsxc1 (150)

ρc1 = −κ⊤c1 + qΛ−1q0 − c2Ωc1 (151)

We note that if µ0 = 0 then c1 = 0 and q0 = 0. Also, if Ω = 0 (for example in the GP case,

where there is no correlation Σxs = 0 and there is vanishing risk-aversion to x risk, that is γx = 0)

then the system for Q, q is autonomous and does not depend on the solution for c2, whereas when

there is a hedging demand γx > 0 then the system for Q, q, c2 needs to be solved jointly. So c2

encodes the hedging demand component, just like in the case without transaction costs.

To interpret the optimal trading strategy, note that the value function is maximized with

respect to the position vector n at the optimal aim portfolio aim(xt) = Q−1(q0 + q⊤xt). Since
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Jn = −Qn+ q0 + q⊤x the optimal trade can be written as:

θ = Λ−1Jn = Λ−1Q(aim(xt)− nt)

So with the definition of fixed trade intensity τ = Λ−1Q we get the optimal trading strategy:

dnt = τ(aim(xt)− nt)dt (152)

J The one asset one factor case

Here we analyze the solution for the simple special case of one-factor and one asset, that is

N = K = 1. We further set µ0 = 0.

J.1 The infinite horizon no-transaction-cost case

We note that the if µ0 = 0 then c1 = 0 and the trading strategy only depends on c2 which solves

the quadratic equation:

0 = c2

(
γΣ⊤

sxΣ
−1Σsx − Ω

)
c2 − c2(ρ+ 2κ+ 2ΣsxΣ

−1µ) + µ⊤(γΣ)−1µ (153)

Recall that Ω = γσ2
xs + γxσ

2
x and Σsx = σsσxs and Σ = σ2

s . Thus the equation simplifies:

0 = c22γxσ
2
x − c2(ρ+ 2κ+ 2

σxs
σs

µ) +
µ2

γσ2
s

(154)

The positive solution is given in the main paper.

J.2 The infinite horizon with tcost

We note that the if µ0 = 0 then c1 = q0 = 0 and the trading strategy only depends on c2, Q, q

which solve the equations:

ρQ = γΣ−QΛ−1Q+ q⊤Ωq + 2γΣsxq (155)

ρq⊤ = µ− q⊤κ−QΛ−1q⊤ − q⊤Ωc2 − γΣsxc2 (156)

ρc2 = −2c2κ+ qΛ−1q⊤ − c2Ωc2 (157)
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Recall that Ω = γσ2
xs + γxσ

2
x and Σsx = σsσxs and Σ = σ2

s . Thus the equations simplify:

ρQ = γΣ−QΛ−1Q+ q2Ω+ 2γΣsxq (158)

0 = µ− q(κ+ ρ)−QΛ−1q − qΩc2 − γΣsxc2 (159)

0 = −(ρ+ 2κ)c2 + q2Λ−1 − c22Ω (160)

We now express everything in terms of the trading speed: τ = Λ−1Q to get:

τ2 + ρτ = γΛ−1Σ+ q2Λ−1Ω+ 2γΛ−1Σsxq (161)

0 = µ− q(κ+ ρ)− τq − qΩc2 − γΣsxc2 (162)

0 = (ρ+ 2κ)c2 − q2Λ−1 + c22Ω (163)

To solve this problem, we see that the first equation has a unique positive root for τ(q) and the

last equation has a unique positive root c2(q), both given by:

τ(q) =
−ρ+

√
ρ2 + 4Λ−1(q2γxσ2

x + γ(σs + qσxs)2)

2
(164)

c2(q) =
−(ρ+ 2κ) +

√
(ρ+ 2κ)2 + 4Λ−1q2(γσ2

xs + γxσ2
x)

2Ω
(165)

The solution is then found by solving the second equation for q.

q(κ+ ρ) + τ(q)q + (qγxσ
2
x + γσxs(qσxs + σs))c2(q) = µ (166)

It is clear that this equation always admits a positive solution (since the left hand side is a continuous

function equal to zero when q = 0 and tending to infinity as q → ∞).

The optimal aim portfolio is given by

aim(x) = Q−1q x (167)

= τ−1Λ−1q x (168)

(169)

K The infinite horizon solution CMV preferences

As discussed in corollary 3, the solution to the finite horizon model where agents have CMV

preferences (as in equation (34)) corresponds to the solution of the source-dependent risk-aversion

recursive utility agent with parameters restricted to σxs = 0 and γx = 0 (which implies Ω = 0).

To understand the optimal trading rule (aim, τ) the relevant system of ODE we need to solve
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becomes:

ρQ = γΣ−QΛ−1Q (170)

ρq⊤ = µ− q⊤κ−QΛ−1q⊤ (171)

ρq0 = µ0 −QΛ−1q0 (172)

Now, we can rewrite this system in terms of the trading speed matrix τ = Λ−1Q as:

ρτ = γΛ−1Σ− ττ (173)

ρQ = γΣ− τ⊤Q (174)

ρq⊤ = µ− q⊤κ− τ⊤q⊤ (175)

ρq0 = µ0 − τ⊤q0 (176)

This system has an intuitive closed-form solution in term of the diagonalization of the matrix

γΛ−1Σ = FDηF
−1 defined in equation (27). Plugging into the system of equation we find that

τ = FDhF
−1 where the hi ∀i = 1, . . . , N are the positive roots of the quadratic equations:

ρhi = ηi − h2i (177)

The solution is:

hi =
1

2
(
√
ρ2 + 4ηi − ρ)

It follows that the trading speed matrix is given by τ = FDhF
−1 and the the Q matrix is Q = Λτ .

To solve for q, q0, we note that they can be expressed directly in terms of the trading speed and

using lemma 4 for the expression for q

Q = (ρ+ τ⊤)−1γΣ (178)

q0 = (ρ+ τ⊤)−1µ0 (179)

q⊤ =

∫ ∞

0
e−(ρ+τ⊤)tµe−κtdt (180)

lemma 4 Suppose A,B are (full rank) square matrices with strictly positive eigenvalues. Then the

matrix equation −AX −XB = −C has the solution X =
∫∞
0 e−AtCe−Btdt.

Proof. Note that:

e−ATCe−BT − C =

∫ T

0
d(e−AtCe−Bt) = −A

∫ T

0
e−AtCe−Btdt−

∫ T

0
e−AtCe−BtdtB

Taking the limit as T → ∞ and noting that, since all the eigenvalues of A,B are positive we have

limT→∞ e−ATCe−BT = 0, we obtain: −C = −AX −XC where X is as defined in the lemma.
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The main result then follows from the definition of the aim portfolio aim(x) = Q−1(q0 + qx).

61


