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1 Introduction

Over the last decade, a growing body of empirical evidence has documented that intergen-

erational income mobility varies across neighborhoods—in other words, that children from

the same parental income background have vastly different predicted later-life income based

on their neighborhood of residence during childhood. Although there is a general agreement

among scholars that different neighborhoods possess varying levels of mobility, there is no

consensus on the reasons behind why some neighborhoods have high mobility while others

have low mobility. Understanding the sources of heterogeneity in neighborhood mobility is

the focus of this paper.

We employ rich administrative data to estimate a generalized model of intergenerational

income mobility. First, we decompose our neighborhood mobility estimates into two under-

lying components: selection and location effects. By “selection,” we refer to the idea that

the composition of observed and unobserved (to the analyst) family characteristics within

a neighborhood can produce heterogeneity in neighborhood-level mobility when an analyst

does not condition on these factors. In contrast, “location effects” refer to the remaining

neighborhood mobility that is not explained by selection. We examine the extent to which

these effects vary across neighborhoods and their relative contributions to neighborhood mo-

bility, accounting for estimation error. Next, we analyze which location characteristics (e.g.,

urbanicity) explain heterogeneity in location effects purged of selection. By doing so, we are

able to isolate what we call “irreducible heterogeneity”—variation in the remaining residual

mobility parameters that cannot be explained by either selection or location characteristics.

We then examine this irreducible heterogeneity to determine if it reveals any discernible

patterns. Here we find evidence of distinct types of neighborhoods.

Formally, our work represents a generalization of the standard, workhorse model of neigh-

borhood mobility,

Y c
i = αn + βnY

p
i + εi, (1)

where i indexes family dynasties, n indexes neighborhoods, and Y p
i and Y c

i are, respectively,

measures of parental income and child income measured in adulthood (e.g., log levels, ranks

within national income distributions). The parameters αn and βn denote neighborhood-

specific intercepts and slopes, respectively, which form the basis of popular measures of

neighborhood mobility such as the intergenerational elasticity of income (IGE) or absolute

upward mobility (AUM). To gather preliminary evidence regarding the sources of hetero-

geneity in mobility across neighborhoods, a common approach in empirical research involves

first calculating mobility estimates using Equation (1) and then correlating these estimates

with various location characteristics as a second-stage exercise.
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Our approach instead follows the logic of intergenerational mobility theories (Cholli and

Durlauf 2022) by incorporating both family and social variables into a unified model of child

income. This model takes the form:

Y c
i = α(Xi,S−in, n) + β(Xi,S−in, n)Y

p
i + εi. (2)

In this model, the mobility parameters α(·) and β(·) are influenced by three factors: neigh-

borhoods n as in Equation (1); individual family characteristicsXi; and social characteristics

S−in, which are derived from the characteristics of other families within social groups in the

neighborhood. Conditioning on these characteristics, as well as control functions to account

for selection on unobservables captured in the error term εi, is crucial for accounting for

sorting that may drive heterogeneity across neighborhoods.

A key challenge of studying Equation (2) is its data demands: It requires linking not

only the income of parents with their children, but also a host of family characteristics that

form the basis of Xi and S−in. We overcome this challenge by leveraging rich administrative

data from Denmark. This dataset provides detailed information on families for cohorts born

between 1973 and 1983. It includes key characteristics including wealth, education, house-

hold structure, health, and crime. Using this rich data, we analyze how intergenerational

mobility varies across 273 municipalities and nearly 2,000 parishes, which represent larger

and smaller neighborhood units.

Our analysis proceeds in three parts. In the first part, we begin by estimating the

workhorse mobility model of Equation (1) to provide baseline results of the heterogeneity of

neighborhood mobility estimates. We conduct statistical hypothesis tests to assess how much

neighborhood mobility varies. We then break down the observed distribution of mobility

estimates into two parts: a “signal” component representing real differences in mobility, and

a “noise” component caused by sampling error. This helps us distinguish between actual

variations in mobility and random fluctuations in our data. Even among baseline estimates

that exclude any controls, we find that at least 71% of municipalities and 88% of parishes

have statistically indistinguishable AUM estimates from one another and that a significant

fraction of variation is explained by noise.

We then demonstrate that the results of standard second-stage correlation exercises are

sensitive to controlling for family or social characteristics in Equation (1). This dramatically

affects interpretations of the mechanisms that drive neighborhood variation in mobility and

motivates studying a generalized mobility model. For example, the share of non-Western

immigrants in neighborhoods—the largest negative correlate of neighborhood AUM estimates

from Equation (1)—is no longer associated with neighborhood AUM after controlling for the
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share of intact families among neighborhood social groups. The fragility of these exercises,

coupled with the presence of large sampling error, motivates our ensuing analysis.

In the second part of the paper, we estimate linear specifications of Equation (2) that

explicitly account for selection. We estimate Equation (2) using two alternative methods.

The first employs a selection on observables assumption;1 i.e., that controlling for family and

social characteristics (Xi,S−in) is sufficient to recover the neighborhood’s location effects

captured by the location-specific parameters. Though this method is simple to implement

and analyze, families’ selection into neighborhoods may depend on unobservable family-

level preferences or the neighborhood’s idiosyncratic features. We, therefore, also estimate

Equation (2) accounting for selection on unobservables.2 We construct control functions

for neighborhood membership based on the residential histories of families that extend the

method proposed by Dahl (2002).

These regressions allow us to assess the extent to which families’ selection is the source

of the neighborhood mobility differences relative to pure (residual) location effects. Specifi-

cally, we conduct a decomposition exercise to quantify the relative contributions of selection

and location effects to variation in mobility found in our population and distinguish the role

that sampling error may play in each of these components. Under either the selection on ob-

servables or unobservables approach, we find that selection explains the vast majority of the

overall population distribution of mobility estimates. Meanwhile, the signal of municipality

and parish location effects make up at most 4.3% and 2.9% of the overall variance, respec-

tively. With respect to the between-neighborhood variance in mobility, observed family and

social characteristics contribute at least 1.8–3.2 times more than location effects.

We also examine the spatial landscape of mobility from the baseline model (Equation 1)

and our location effects from the generalized model (Equation 2). We find a surprising con-

trast between urban and rural areas. Urban areas that seemed to have low mobility according

to the baseline model actually show high mobility when we look at the location effects from

our generalized model. This reversal reflects the spatial autocorrelation of selection. We also

find that residual location effects are extremely noisy: Hypothesis tests indicate that nearly

all location effects of neighborhood-level AUMs are statistically indistinguishable from the

AUM predicted by a counterpart population-level model. However, we find that there is

still some meaningful variation in these location effects, even if it is small. This indicates

that where a child grows up still influences their outcomes, but less than what traditional

mobility analyses might suggest.

Third, we examine the association between the residual location effects obtained in the

1. See, e.g., Heckman and Navarro (2004).
2. See Heckman and Robb (1985)
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second part of our analysis and location characteristics such as school quality, labor market

structure, and rurality. This comparison helps us understand how model specification affects

the interpretation of the sources of neighborhood heterogeneity. We find that many factors

strongly linked to mobility in the baseline model, such as average home value, are no longer

significantly associated with our location effects. This suggests that the associations in

the baseline model are largely due to selection. In contrast, characteristics related to how

rural or urban an area is are the strongest predictors of location AUM effects. This implies

that in Denmark, the difference in mobility between locations is primarily explained by the

different amenities available in urban versus rural areas. To account for estimation error,

we implement empirical Bayes shrinkage methods using the neighborhood characteristics to

attain more precise location effect estimates.

After completing these three steps, we have reached the limits that our linear specifica-

tions of the generalized mobility model can explain neighborhood heterogeneity in mobility,

and any remaining unexplained differences in location effects is “irreducible.” Our next task

is to explore the properties of this irreducible heterogeneity. Here, we move in two direc-

tions. First, we examine the clustering properties of the irreducible location effects. We find

evidence of the presence of two neighborhood “types”: one with low location intercepts and

steep location slopes in parental income, and one with the opposite features. Second, we

argue that these irreducible location effects are suggestive of the need to more systematically

explore nonlinearities in mobility dynamics than is conventional. Equation (2) posits that

α(·) and β(·) are general functions that may depend nonlinearly on family characteristics Xi

and social characteristics S−in, as argued by Becker et al. (2018) and Durlauf and Seshadri

(2018). Thus, the irreducible location effects derived from our linear specifications might

reflect neighborhood averages of nonlinearities present in the mobility process (White 1980).

We find evidence that parental income and mothers’ labor force participation are strongly

correlated with irreducible AUM, suggesting they nonlinearly affect child income.

In conclusion, this study offers a systematic examination of the heterogeneity in mobil-

ity across neighborhoods. While we find that the degree of variation in certain mobility

measures, as defined in Equation (1), is comparable to that observed in other countries, we

recognize that our findings may not be directly applicable to countries outside of Denmark.

Nonetheless, we propose our methodological approach as a valuable model for investigating

neighborhood mobility in other contexts. By developing a generalized mobility model and

analyzing the structure of irreducible heterogeneity, we demonstrate how a more integrated

approach combining economic theory and empirical analysis can shed light on the factors

contributing to disparities in mobility across neighborhoods.
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Relation to Existing Literature. Our analysis complements and extends a range of

previous efforts to evaluate the sources of neighborhood mobility differences. While this

paper addresses selection as an explanation for neighborhood heterogeneity in mobility, most

of the empirical literature is purely descriptive and documents results similar to the first

part of our paper. Chetty et al. (2014) and Chetty et al. (2018) estimate mobility in U.S.

commuting zones and Census tracts using variants of Equation (1) and engage in second-stage

correlation exercises on a range of location characteristics. They conclude that neighborhood

levels of inequality, racial segregation, and family structure are strongly associated with

mobility. This approach has been followed by a number of authors for different countries

and continents, including Africa (Alesina et al. 2021), Australia (Deutscher and Mazumder

2020), Brazil (Britto et al. 2022), Canada (Corak 2020), Denmark (Eriksen and Munk 2020),

France (Kenedi and Sirugue 2023), Germany (Dodin et al. 2024), Great Britain (Bell et

al. 2022), Italy (Güell et al. 2018; Acciari et al. 2022), Sweden (Heidrich 2017), Switzerland

(Chuard and Grassi 2020), and Turkey (Aydemir and Yazici 2019).

A recent literature initiated by Chetty and Hendren (2018a, 2018b) employs a “movers

exposure” research design that compares outcomes of children who move to a given neigh-

borhood at different points of childhood.3 Under the assumption that selection effects do

not vary by the age the child moves, this strategy identifies causal effects (among movers

only) of the bundle of factors associated with neighborhoods. In particular, these identified

effects may be driven by the composition of the self-selected population of permanent resi-

dents or place-based location characteristics. Deutscher (2020) and Laliberté (2021) employ

additional quasi-experimental designs to identify the contribution of peer effects and school

quality toward these neighborhood effects. In contrast to this body of work, the second

part of our paper employs a unified modeling framework that allows us to decompose the

competing roles of selection and location effects among the full population.4

With respect to the clustering of mobility estimates pursued in the final part of our

paper, Connolly et al. (2019) and Corak (2020) are important predecessors of our analysis,

which classify neighborhoods in the U.S. and Canada using a myriad of mobility statistics.

Importantly, however, these authors cluster neighborhoods without accounting for selection,

while we only cluster the irreducible location effects after exhausting our set of explanatory

sources of neighborhood heterogeneity.

3. Papers employing this strategy include Alesina et al. (2021), Britto et al. (2022), Chetty et al. (2018),
Chetty et al. (2020), Deutscher (2020), and Laliberté (2021).

4. Rothbaum (2016), Gallagher et al. (2019), Chetty et al. (2020), and Dodin et al. (2024) consider
controlling for select family characteristics to address selection on observables into neighborhoods.
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Organization. The paper progresses as follows. Section 2 describes our data and neigh-

borhood sorting patterns that motivate our analysis. Section 3 estimates the baseline mo-

bility model (Equation 1). Here, we assess the degree of heterogeneity of neighborhood

mobility and the interpretation of second-stage correlation exercises. Section 4 estimates

specifications of the generalized mobility model (Equation 2), the contributions of selection

and location effects, and re-examines second-stage correlations with these location effects.

Section 5 analyzes the structure of remaining irreducible heterogeneity. Section 6 concludes.

2 Data

Our study uses administrative data covering the full population of Denmark between 1980

and 2018. Unique individual identifiers allow us to link children with their parents and link

families to a wide range of characteristics across time. In addition, individuals are linked with

anonymized address identifiers each year, allowing us to measure neighborhood of residence.

Appendices B.1 and B.2 describe the data and variables in detail.

2.1 Main Sample and Key Variables

We use the 1973–1983 birth cohorts to form our base sample. As mentioned above, children

are linked with their parents (birth or adoptive). We exclude observations with missing

parent identifiers, missing data before age 17, insufficient number of years or low levels of

child or parent income, and children who are first- or second-generation immigrants.5 Based

on our neighborhood assignments (described below), we also exclude parishes with fewer

than 25 families since they are prone to large estimation error in our analyses. This leaves

us with over 560,000 parent-child dyads in our main sample.

Income. We link the sample to information on income. Most of our analyses focus on

gross market income (earnings, self-employment income, and capital income), though we

also consider income after transfers and after taxes in our robustness checks.

We use income registers between 1980–2018. Our preferred definition of child income

is the log average income between ages 30–45 whenever income is available in the income

registers; parent income is the log average sum of father and mother income when the child

5. Appendix Table B.1 summarizes how these restrictions affect our sample size. We restrict our sample
to parents and children with mean income of at least $1,000. We also restrict our sample to native Danes
since first-generation immigrants are not observed during their entire childhood while key variables (e.g.,
education) are subject to substantial measurement error for second-generation immigrants’ parents; this
reduces our sample by about 5%.
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is ages 0–17 whenever available.6 While log incomes are our primary focus given their ease

of interpretation, we also consider other measures of socioeconomic status in our robustness

checks. To mitigate the influence of outliers, we winsorize the upper 0.5% tails of the child

and parent income distributions. All monetary values are expressed in 2010 U.S. dollars.

Neighborhoods. Using information on residential addresses, we link the sample to broader

areas of residence. We consider two types of neighborhoods: parishes and municipalities.

Parishes are administrative geographic units historically established by the Church of Den-

mark. There are over 2,100 parishes in Denmark, but due to our sample restrictions, our

analysis considers 1,949 parishes. On average, a parish is home to about 2,500 residents

(comparable to a small U.S. Census tract). Municipalities are larger governing bodies that

manage local tax rates, school budgets, and social welfare programs. There are over 270

municipalities (before the 2007 municipal reform) that typically nest groups of parishes.7

These units benefit from larger statistical power, providing an attractive way to examine if

our results may be spuriously driven by small sample sizes of parishes. Children are assigned

to the parish they lived in for the longest duration between ages 0–17; the municipalities

containing the assigned parish determines municipality assignments.8

Family Characteristics. We also link children to a rich set of individual-level family back-

ground characteristics measured when the child is between ages 0–17, including education,

household structure, marital status, labor market participation, assets, hospitalizations, and

crime. Appendix B.2.3 provides a detailed description of all family characteristics used in

our analysis.

Social Characteristics. Using these family characteristics and the neighborhood assign-

ments, we construct social characteristics by taking averages of characteristics of other fami-

lies in our sample that are members of the same social group within a parish or municipality.

6. This means child income for the 1973 birth cohort is defined as the log average between ages 30–45,
while child income for the 1983 birth cohort is defined as the log average between ages 30–35. Similarly,
parent income for the 1973 birth cohort is defined as the log average between ages 7–17, while parent income
for the 1983 birth cohort is the log average between ages 0–17. We prefer using as many years of income
available to mitigate issues on measurement errors arising from life-cycle bias (see, e.g., Mazumder 2005),
though we also consider estimates of income over the same age ranges. Nevertheless, Appendix Figure
B.1 demonstrates that there is roughly even distribution of birth cohorts across neighborhoods, suggesting
life-cycle bias does not appear to be a major concern for our analysis.

7. Eriksen and Munk (2020) use 98 municipalities demarcated after the 2007 reform.
8. Since administrative records begin in 1980, our earliest birth cohort have data beginning only at age 7.

Appendix Figure B.2 illustrates how families sort to the assigned parishes and municipalities over the child’s
life-cycle. It demonstrates that residential neighborhoods largely stabilize by age 7, giving confidence that
there are no significant bias arises in our neighborhood assignment methodology across birth cohorts.
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These “leave-out means” proxy for social influences and are customarily employed in the so-

cial interactions literature (Blume et al. 2011). Our specifications use social characteristics

of two types of social groups. The first is school cohorts within a parish or municipality.

Families are assigned to school cohorts based on the time their child enters 8th grade, which

proxies their peers from schools and their own neighborhood. The second social group is

small blocks, granular geographic units made up of roughly 150 households that proxy a

family’s local social network.9

Location Characteristics. Finally, we link neighborhoods to a set of location character-

istics. These capture a neighborhood’s overall socioeconomic status, labor market structure,

demographics, and local public goods. Unlike social characteristics, many of the locational

characteristics are statistics calculated on the full population of Danish adults living in the

neighborhoods (rather than the main sample), typically averaged between 1980–2000. Char-

acteristics include mean market income, the Gini index (in market income of adults between

ages 18–60), mean housing value, home ownership rate, mean 9th grade test scores, share of

commuters, urbanicity, share of farmers, and share of non-Western immigrants.10

2.2 Descriptive Patterns of Neighborhood Stratification

To motivate our analysis, we begin with descriptive patterns that illustrate how neighbor-

hoods embody inequalities in family, social, and location characteristics. Appendix Tables

C.1–C.3 provide summary statistics of all family, social, and location characteristics.

Figure 1 summarizes the key issues at hand. Figure 1(a) plots parish-level averages

of standardized measures of child income, parental income, mother education level, intact

family structure, hospitalizations, and crime by the parish’s rank in each characteristic.

For all characteristics, the lowest and highest ranked neighborhoods tend to differ by 1–2

standard deviations, showcasing how Danish neighborhoods possess significant differences

in their composition of families due to sorting. Focusing on parental income, we find the

mean parental income of the middle 90% of parishes lies between $55,600 and $81,800,
corresponding to the middle 44% of the population income distribution.11 For many other

9. See Damm and Schultz-Nielsen (2008) for details on the construction of these small block units and see
Appendix B.2.4 for more details on social characteristics. We have checked that our results are robust to
using social characteristics that use only one of these social groups or alternative social group definitions such
as families residing in large blocks or, in the case when the neighborhood unit is municipalities, parishes.
10. Ninth grade test score data is available only starting in 2002. Figure B.3 demonstrates that mean

neighborhood test scores is strongly correlated with measures of neighborhood’s socioeconomic status over
time, indicating it provides a strong signal of mean test scores experienced by our study’s cohorts.
11. See Appendix Figures C.1 and C.2 for plots of these distributions.
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Figure 1: Inequality in family and location characteristics

(a) Inequality in family characteristics
across parishes

(b) Association between mean 9th grade test
scores and parental income across parishes

Notes: Panel (a) plots within-parish mean family attributes, ranked from smallest to largest. Family
characteristics are standardized over the pooled sample. Panel (b) presents the association between
parish-level mean parental income and parish-level mean (nationally-standardized) 9th grade test score.
The scatter plot are means within $5,000 mean parish income bins; these means and the linear fit (red line)
are weighted by parish sample sizes. See Appendix Figure A.1 for corresponding plots for municipalities.

characteristics, Theil index decompositions reveal that parishes explain meaningful levels of

inequality across families; see Appendix Table C.4.

Figure 1(b) highlights how another possible driver of neighborhood heterogeneity in

mobility—location characteristics such as mean standardized test scores—are confounded by

selection. The plot documents a strong positive association between mean parental income

and 9th grade test scores, revealing how neighborhood sorting may explain the relationship

between common measures of local public goods and mobility. These descriptive statistics

highlight the importance of disentangling selection from sorting of families and location ef-

fects driven by local public goods like schools for understanding differences in mobility across

neighborhoods.

3 Baseline Results from theWorkhorse Mobility Model

For the first stage of our analysis, we estimate Equation (1) to provide a set of baseline

results that we can use as a benchmark against later specifications that account for selection

on observables and unobservables. These results also provide an opportunity to compare

the magnitude of heterogeneity of neighborhood mobility estimates with what has been
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documented in other countries like the U.S.

Throughout our paper, we focus on two key neighborhood mobility measures based on

parent and child incomes expressed in logs:12 the intergenerational elasticity of income (IGE),

corresponding to the neighborhood-specific slope coefficient βn, and the absolute upward

mobility (AUM) ȳcqn ≡ αn + βny
p
q , which is the predicted log income for a child that grows

up in neighborhood n conditional on setting parental income to Y p
i = ypq , the qth percentile

of the national parent income distribution. In much of our analysis, we use q = 25, since

the bottom income quartile is a common benchmark of socioeconomic disadvantage. We

sometimes exponentiate the AUM to express our results of predicted child income as levels

instead of logs.13

3.1 Variation in Baseline Estimates of Neighborhood Mobility

Raw Mobility Estimates. We first focus on descriptive patterns in the raw estimates

from Equation (1). Table 1 reports summary statistics of neighborhood mobility point es-

timates.14 The modal parish and municipality has an IGE estimate of around 0.32 and an

AUM estimate of $33,400, but there is considerable spread across neighborhoods. Among

municipalities (reported in Panel A), the standard deviation of municipality-level IGE es-

timates is 0.06. A one standard deviation increase in a child’s municipality-level AUM is

associated with an increase of about $1,160 per year in predicted income during adulthood.

Parishes exhibit even greater variation, with a standard deviation change associated with

about a 0.18 change in the IGE and a $2,860 change in the AUM.

To better quantify the localized nature of variation in mobility estimates, Appendix Table

A.1 decomposes the variance of parish-level mobility estimates within and between munic-

ipalities. The variance of parish estimates within municipalities contributes around 80% of

the total variance, highlighting how granular neighborhood units appear to have large con-

sequences in a child’s future outcomes. For example, among parishes within Aarhus—the

second largest municipality in Denmark—AUM estimates range between $26,100 (corre-

sponding to the 1st percentile of the parish AUM distribution) and $37,600 (corresponding

12. We focus on the log–log regression model given its popularity and ease of interpretation. Appendix
D provides results on alternative mobility statistics, such as rank–rank regression estimates and transition
probabilities.
13. Both neighborhood-level statistics capture distinct dimensions of intergenerational mobility. The

neighborhood-level IGE captures a notion of relative income mobility: what is the associated change in
child income due to a 1% increase in parental income in neighborhood n? Meanwhile, the neighborhood-
level AUM captures a notion of absolute income mobility: what is the child’s predicted income in adulthood
in neighborhood n, conditional on their parents lying at the bottom income quartile?
14. Eriksen and Munk (2020) find similar patterns in their intergenerational mobility estimates across the

98 municipalities defined after the 2007 municipality reform.
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Table 1: Summary Statistics of Neighborhood-level Mobility Estimates

Percentiles
N Mean S.D. Min. 10th 25th 50th 75th 90th Max.

A. Municipality-level mobility measures

β̂n 273 0.328 0.062 0.139 0.248 0.292 0.332 0.369 0.402 0.507

ˆ̄y25n (thousands) 273 33.4 1.16 30.3 32 32.6 33.4 34.2 35.1 36.5

Sample size 273 2,055 2,689 313 678 930 1,276 2,193 4,047 25,418

B. Parish-level mobility measures

β̂n 1,949 0.316 0.179 −0.727 0.114 0.218 0.315 0.406 0.522 1.21

ˆ̄y25n (thousands) 1,949 33.4 2.86 23.3 30.1 31.7 33.3 35.2 37 49.6

Sample size 1,949 288 344 25 43 74 155 363 720 3,117

Notes: This table reports summary statistics of estimates of the IGE (β̂n) and AUM (ˆ̄yc25n) from Equation
(1) and the number of observations in municipalities and parishes from our main sample. All AUM
estimates ˆ̄yc25n are exponentiated and expressed in thousands of 2010 U.S. dollars.

to the 93rd percentile), suggesting that neighborhood upbringing may matter at a highly

granular level. In fact, Appendix Figure A.2 plots mobility estimates among large and small

blocks, which are composed of roughly 600 and 150 households, and finds even larger vari-

ance in point estimates.15 To visualize this spatial variation, Appendix Figure A.3 illustrates

heat maps of the municipality- and parish-level IGE and AUM point estimates.

These descriptive patterns of differences in mobility across neighborhoods are corrobo-

rated by a series of robustness checks. We find qualitatively similar results of mobility esti-

mates based on rank-rank regressions (Chetty et al. 2014), level–level regressions, transition

probabilities, and Poisson–transformed regressions (Mitnik and Grusky 2020); see Appendix

D. We also find qualitatively similar variation in educational mobility (where Y c
in, Y

p
in are

defined as years of schooling). While using disposable income (after taxes and transfers)

decreases heterogeneity in income mobility across neighborhoods, the results remain highly

correlated with estimates using market income.16

Clearly, neighborhood-level variation in mobility estimates is a prevalent feature in Den-

mark, just as in developed countries with less prominent welfare states. In fact, the hetero-

geneity of certain income mobility estimates across Danish parishes falls within a comparable

order of magnitude as the U.S. Census tracts reported by the Opportunity Atlas (Chetty

et al. 2018). Appendix Figure G.1 demonstrate that distributions of rank-based neighbor-

15. We exclude blocks with fewer than 25 families in our main sample.
16. See Appendix Table D.1, Panel B.
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hood slope estimates (similar to the IGE) between both countries are quite similar, while

the distribution of AUM estimates in Denmark is more compressed.

Accounting for Sampling Error. The large observed heterogeneity even within mu-

nicipalities might suggest that the specific location that a child is raised in is critical in

determining their future socioeconomic status. However, sampling error may inflate the

variation of neighborhood mobility estimates and mask the actual degree of heterogeneity

in the model’s true neighborhood mobility parameters. This is especially a concern when

considering more granular neighborhood units like parishes, which are prone to having a

small numbers of families in our sample.

In Appendix E, we critically assess how sampling error drives this heterogeneity through

three types of statistical exercises. The first two exercises involve joint and multiple hypoth-

esis test procedures (MHTP) that establish the extent that individual neighborhoods vary

in mobility; to the best of our knowledge, these have not been pursued in the neighbor-

hood mobility literature. First, Appendix Table E.1, Panel A reports that at least 71% of

municipalities and 88% of parishes have statistically indistinguishable AUM estimates from

one another.17 This is consistent with Andrews et al. (2024) and Mogstad et al. (2024),

who document substantial uncertainty around the rankings of AUM estimates among U.S.

neighborhoods. Second, Panel B reports shares of neighborhood mobility estimates that

are statistically indistinguishable from mobility estimates from the population-level mobility

regression (Y c
i = α+βY p

i +εi) based on the Benjamini and Hochberg (1995) step-up MHTP,

which controls for the probability of “false discoveries” or incorrect rejections of the null.

Remarkably, only about 5% of municipalities and 3% of parishes possess AUM estimates

that are statistically different from the pooled AUM estimate (ˆ̄yc25 ≡ α̂ + β̂yp25).

The third exercise aims to assess the magnitude of true parameter heterogeneity among

the distribution of neighborhoods. Following practices pursued by some of the neighborhood

mobility literature (e.g., Chetty and Hendren 2018b, Chetty et al. 2018), we conduct standard

signal–noise decompositions to quantify the fraction of variance in neighborhood mobility

estimates explained by sampling error (e.g.,
E[σ̂2

β̂n
]

Var(β̂n)
×100%, where σ̂β̂n

is the standard error of

β̂n).
18 Appendix Table E.4 finds that about 38% of the unweighted variance of municipality

AUM estimates and 72% of the unweighted variance of parish AUM estimates are driven

by noise; weighing neighborhoods by sample sizes reduces the role of noise, but it clearly

remains a significant driver of neighborhood heterogeneity. Relative to our hypothesis tests,

the signal-noise decomposition results provide a somewhat more optimistic outlook of the

17. This result is based on an iterative series of joint Wald tests; see Appendix E for details.
18. This is the complement of what is sometimes called the “reliability score.”
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degree that neighborhood mobility estimates possess signal.

In sum, these exercises demonstrate how estimation error—even in the baseline mobil-

ity model—generates significant spurious heterogeneity in neighborhood mobility estimates.

They highlight the importance of accounting for noise when we turn to estimating more

sophisticated models of mobility and decomposing its underlying sources. They also suggest

the promise in identifying properties of the distribution of neighborhood mobility rather than

individual neighborhood mobility, such as through second-stage correlation exercises.

3.2 Second-Stage Correlations and their Interpretation

With the neighborhood-level mobility estimates from Equation (1) at hand, a common prac-

tice in the empirical mobility literature is to correlate these estimates with various location

characteristics Zn. These second-stage correlation exercises aim to provide suggestive evi-

dence of the underlying drivers of heterogeneity in mobility across neighborhoods. Typically,

second-stage correlation exercises are based on bivariate regressions focusing on one element

of Zn at a time; in the case of the neighborhood IGE,

β̂n = δ0 + δ1Zn + un. (3)

Scaling δ1 by the ratio of the standard deviations of β̂n and Zn delivers the correlation

coefficient.

Results. Following the literature, the left panels of Figure 2 report second-stage correla-

tions between neighborhood AUM estimates and a multitude of neighborhood characteristics

for both municipalities and parishes; Appendix Figure A.4 reports results for the IGE. We

find that neighborhoods with higher mobility are associated with higher mean income, home

value, and homeownership rates; higher 9th grade test scores; higher shares of farmers and

lower shares of non-Western immigrants; and lower income inequality as measured by the

Gini index, which is consistent with an intranational “Great Gatsby Curve” (Krueger 2012;

Corak 2013; Durlauf and Seshadri 2018). These findings are broadly consistent with patterns

found in other countries.

Interpretation. Given that both the mobility estimates and location characteristics used

in calculating the correlations presented above are measured at the neighborhood level, one

may be tempted to interpret their correlations as reflections of strictly “place-based” features

of mobility. However, most location characteristics are arguably correlated with their self-

selected populations, or are themselves defined as neighborhood mean family characteristics

13



Figure 2: Second-stage correlations between location characteristics
and neighborhood AUM estimates, without vs. with select controls

(a) Municipalities

(i) Baseline (no controls) (ii) Control: Mother’s edu. (iii) Control: Intact family

(b) Parishes

(i) Baseline (no controls) (ii) Control: Mother’s edu. (iii) Control: Intact family

Notes: This figure plots correlation coefficients between neighborhood-level AUM estimates and location
characteristics. Left panels plot correlations using baseline neighborhood AUM estimates ȳc25n (from
Equation (3)). Middle and right panels show correlations using neighborhood AUM estimates after
controlling for mother’s education level and intact family as in Equation (4). Square markers measure
controls at the individual family level (i.e., components of Xi); triangular markers represent measure
controls at the social level, among other families of children belonging to the same birth cohort in the
neighborhood (i.e., components of S−in). Horizontal capped lines are 90% confidence intervals.
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Xi. Other characteristics commonly studied include segregation, institutional quality, and

local labor markets that may not be directly constructed from Xi but could be potentially

affected by Xi. This raises serious concerns over the interpretation of these correlation

exercises as descriptions of mobility aspects that are place-specific.

To put it differently, in light of Figure 1, it is clear that selection may directly affect

the neighborhood mobility estimates from Equation (1) and their association with location

characteristics. To help fix ideas, consider the simple case where the true data generating

process of neighborhood mobility includes the mother’s educational attainment Edu i,
19

Y c
i = α̃n + β̃nY

p
i + γ̃Edu i + ϵi, (4)

where γ̃ ̸= 0. Notice that, in this model, mother’s education has a uniform effect on child

income irrespective of the family’s neighborhood. This permits us to examine an “individual

family effect” (γ) that is separate from the “location effect,” which consists of both the direct

effect on the child αn and the effect mediated through parent income βn.

In this case, the identified neighborhood IGE from Equation (1) is

βn = β̃n + θEdun ,

where θEdun ≡ γ̃
Cov(Y p

i ,Edui |n(i)=n)
Var(Y p

i |n(i)=n)
is the omitted variable bias (OVB) that represents the

within-neighborhood gradient of parent income and mother’s education. Thus, the identi-

fied neighborhood IGE includes both the pure “location effect” as well as the “individual

family effect” captured through the parent income–mother’s education gradient within neigh-

borhoods. This implies that the second-stage slope coefficient recovered from Equation (3)

will similarly comprise both a location and an individual family effect. Similar OVB argu-

ments can be applied to αn to decompose the correlations with neighborhood AUM ȳc25n into

neighborhood and individual family effect components as well.

Though the neighborhood mobility measures and their concomitant correlations identi-

fied by Equations (1) and (3) provide interesting descriptive patterns, it is clear from this

example that they are difficult to interpret. Despite the fact that second-stage correlation

exercises involve variables measured at the neighborhood level—even place-based character-

istics that may generate a pure location effect—the correlations themselves might express

effects driven by selection, be it through individual family effects (as captured through θEdun

in the example) or social effects from the neighborhood’s local population. This can lead

to misleading conclusions about the underlying sources of neighborhood heterogeneity. Our

19. Arguments for richer models that include other family characteristics and social characteristics S−in

can be extend naturally.
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simple example highlights how the degree that OVB arising from selection is associated with

location characteristics might affect the magnitude, sign, and interpretation of second-stage

correlation exercises.

In practice, we find such bias can be economically and statistically significant. The middle

and right panels of Figure 2 illustrate correlation coefficients between location characteristics

and AUM estimates following the example in Equation (4). As controls, we use different

family and social characteristics that reflect selection: mother’s education level and intact

family structure. When measured at the family or social level, these characteristics proxy for

different theories of intergenerational mobility—family channels of human capital investment

or social influences through role model effects—that are distinct from theories of strictly

location effects. We find that controlling for mother’s education at family or social level

(middle panels) has little impact but controlling for intact family structure at the social

level (right panels) qualitatively changes associations relative to baseline. For example, the

neighborhood’s share of farmers and non-Western immigrants—which are respectively among

the strongest positive and negative correlates of the baseline AUM—are no longer correlated

with the AUM upon including this control. This reveals that interpreting correlations with

baseline AUM estimates from the lens of place-based theories, such as the neighborhood’s

occupational structure or degree of ethnic diversity, may be misplaced. These results show

how baseline correlations can be driven by associations between parent income and omitted

variables that reflect selection.

This analysis highlights that the relative contribution of selection toward baseline mo-

bility estimates can be large. Changes in correlation patterns from controlling for a single

omitted family or social characteristic suggest that second-stage correlation exercises with

baseline mobility estimates from Equation (1) are rather fragile. This implies that second-

stage correlation exercises typically pursued in the literature should not be interpreted as

uncovering mechanisms of how location characteristics explain mobility differences across

neighborhoods. Controlling for selection using a rich set of family and social characteristics

will be critical to retrieve correlations that appropriately reflect the actual locational drivers

of neighborhood mobility.

4 Results from a Generalized Mobility Model

The baseline neighborhood mobility model, Equation (1), does not explicitly control for

sorting. Rather, the average effect of selection—from both observable and unobservable

characteristics—on child income is subsumed by the neighborhood index n ∈ N in the lo-

cation parameters (αn, βn). As we have just shown, this poses issues in interpreting the
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underlying mechanisms that generate neighborhood mobility. This raises the question: How

much does selection arising from family and social characteristics explain variation in neigh-

borhood mobility relative to location effects? How much residual neighborhood heterogeneity

in mobility exists after explicitly controlling for selection?

To answer these questions, we generalize the workhorse neighborhood mobility model by

estimating a linear specification of Equation (2),

Y c
i = αn +αxXi +αsS−in︸ ︷︷ ︸

α(Xi,S−in,n)

+(βn + βxXi + βsS−in)︸ ︷︷ ︸
β(Xi,S−in,n)

·Y p
i + εi, (5)

where Xi is individual family characteristics and S−in is social-level characteristics (see

Section 2.1).20 In this model, the residual neighborhood parameters (αn, βn) represent the

location effect that affect child income above and beyond our controls for selection. We

focus on linear specifications due to the curse of dimensionality, but revisit the possibility of

nonlinearities later in the paper.

Note that the family and social characteristics are specified to have common effects across

all neighborhoods (i.e., the parameters (αx,αs,βx,βs) are not indexed by n) so that loca-

tion effects are assumed to be additively separable from family and social characteristics. If

interactions between (Xi,S−in) and index n exist, they will be captured by εi. Though this

is a strong assumption, we pursue this specification on conceptual and practical grounds.

Conceptually, it allows us to bound the magnitude of residual neighborhood heterogeneity

after controlling for selection. Practically, there are insufficient degrees of freedom to esti-

mate a model where family and social characteristics have location-specific effects, and this

specification permits a clean decomposition of neighborhood mobility along the dimensions

of selection and location effects.

We begin by discussing our methodologies for estimating Equation (5). Next, we report

estimates of the effects of selection on neighborhood-level mobility and re-assess the magni-

tude of residual neighborhood heterogeneity. We then conduct a decomposition exercise that

disaggregates variation in mobility estimates along its constituent components of selection

effects, location effects, and sampling error. Finally, we re-examine second-stage correlation

exercises using our location effect estimates.

20. In order to compare the effects between components of Xi and S−in on a common scale, all continuous
characteristics are standardized so that they are expressed as standard deviation units. All dummy indicators
are demeaned. Demeaning helps retain the centering of the neighborhood-level intercepts αn.
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4.1 Empirical Implementation

We work with two alternative assumptions for analyzing Equation (5): selection on observ-

ables and selection on unobservables.

Assumption O. (Selection on observables.) E [εi |Xi,S−in, Y
p
i , n(i) = n] = 0.

Assumption O states that any remaining unobservables captured by εi do not bias our

estimates of selection and location effects. Under this assumption, we can directly identify

the parameters of Equation (5) via ordinary least squares. Though convenient for empirical

implementation, this is a strong assumption. It posits there are no interactions between

(Xi,S−in) and index n, and that there are no other family or social characteristics that

influence child outcomes that are not fully captured by (Xi,S−in).

Assumption U. (Selection on unobservables.) E [εi |Xi,S−in, Y
p
i , n(i) = n] = Kn({Pij}j∈N )

where Pij ≡ Pr(n(i) = j |Xi,S−ij, Y
p
i , Zij) and Zij is a neighborhood j-specific instrument.

In contrast to Assumption O, Assumption U allows unobserved factors to affect child

income. It expresses the bias term E[εi |Xi,S−in, Y
p
i , n(i) = n] that arises from selection on

unobservables through a control function that depends on the probabilities of selecting each

possible neighborhood, Kn({Pij}j∈N ). By including a control function in our regression (5),

we can properly identify the parameters of interest free of bias.21

The key challenge of Assumption U is its empirical implementation. We employ a semi-

parametric control function approach that involves two steps: estimating the neighborhood

choice probabilities {Pij}j∈N and specifying the function Kn({Pij}j∈N ) in a computationally

tractable way.

For the first step, we consider a multinomial discrete choice problem where parents who

originate from neighborhood n0 are selecting the neighborhood n that their child will reside

for the majority of their childhood. For our neighborhood-specific instruments {Zij}j∈N , we

use the geographic distance between n0 and each potential neighborhood choice n. Note that

each Pin depends generally on Xi,S−in, Y
p
i , Zin. To make this computationally tractable,

we make two simplifications. First, we discretize a subset of family characteristics Xi and

parent income Y p
i to form 360 different “family types” indexed by t ∈ T .22 Second, we

21. Strictly speaking, this allows us to identify all parameters except the neighborhood intercept
parameters αn. These intercepts can be recovered through identification at infinity arguments:
limPin→1 Kn({Pij}j∈N ) = 0. We discuss our approach for identifying αn below.
22. Specifically, we discretize mother’s age into terciles; mother’s highest educational attainment based

on less than high school, high school, or college plus; and parent income into quintiles and consider these
variables along with indicators of whether the child resided in an intact household, either parent committed
a crime, and either parent experienced inpatient hospitalization. The Cartesian product of these family
characteristics results in |T | = 360.
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abstract away from social characteristics S−in.
23

Together, these two simplifying assumptions dramatically reduce the dimensionality of

the probabilities to Pin = Pr(n(i) = n |Xi,S−in, Y
p
i , Zin) ≈ Pr(n(i) = n | t(i), Zin). As-

suming that neighborhood-specific preference shocks are drawn independently from a type-I

extreme value distribution conditional on family type t, we compute the neighborhood choice

probabilities via a per-type logit: letting Nt be the set of neighborhoods chosen by family

type t, we have that Pin = exp{θnt+ξtZin}∑
j∈Nt

exp{θjt+ξtZij} , where θjt are neighborhood-by-type-specific

mean utilities of each neighborhood alternative j and ξt is type-specific disutility from dis-

tance to alternatives.

The second step involves specifying the control function Kn(·). Due to the curse of

dimensionality, it is practically impossible to allow Kn(·) to nonparametrically depend on all

the neighborhood choice probabilities {Pij}j∈N . Different assumptions are invoked to reduce

its dimensionality (Bourguignon et al. 2007). One recent approach employs the linearity

assumption of Dubin and McFadden (1984), which states that the control function linearly

depends on particular functions of each Pij, and further assumes they are homogeneous

across neighborhoods (i.e., Kn(·) = K(·)).24 However, in our context, this assumes away

interactions between (Xi,S−in) and the neighborhood index n. An alternative approach

applies the index sufficiency assumption of Dahl (2002), which states that Kn(·) depends on
only a subset of {Pij}j∈N (e.g., the first few highest order statistics). This approach allows

Kn(·) to depend on the subset of probabilities nonlinearly and to vary across neighborhoods.

We adopt a middle ground approach. We reduce the dimensionality ofKn(·) by exploiting

the nested nature of Denmark’s neighborhoods. Specifically, we assume that the control

function depends on summary statistics of conditional-on-nest neighborhood and marginal

nest choice probabilities.

Recall that parishes are nested within municipalities. We further classify municipalities

into eight mutually exclusive and exhaustive “supernests” we call regions. A given parish n is

nested (i.e., contained) in a municipality that includes other parishes as well. We denote the

set of parishes contained in this municipality by N 1(n). This municipality, which contains

parish n, is itself a member of a given region, which includes other municipalities as well.

We let N 2(n) denote the collection of municipality nests that represents the region supernest

containing parish n. Similarly, when we perform the analysis at the municipality level instead

(i.e., when n indexes municipalities), thenN 1(n) denotes the collection of municipalities lying

23. Introducing these variables requires satisfying equilibrium conditions that arise from a social interactions
game where each individual family’s neighborhood choice depends on the potential choices that other families
make. Estimating such a model with such a large set of neighborhoods is challenging and beyond the scope
of this paper.
24. Abdulkadiroğlu et al. (2020) and Otero et al. (2021) employ this strategy with an ordered logit model.
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within the region nest containing municipality n. Let N ℓ(n) denote the ℓth-order nesting of

neighborhood n, and define N 0(n) ≡ n and N L+1(n) ≡ N . Then, there are L = 1 levels of

nesting when we define municipalities as our neighborhood unit, and L = 2 levels of nesting

when we study parishes.

Define the marginal nest and supernest probabilities as PiN 1(n) ≡
∑

j∈N 1(n) Pij and

PiN 2(n) ≡
∑

N 1∈N 2(n) PiN 1 . Further define the conditional-on-nest neighborhood choice and

conditional-on-supernest nest choice probabilities as Pin | N 1(n) ≡ Pin

PiN1(n)
and PiN 1 | N 2(n) ≡

PiN1

PiN2(n)
. Note that PiNL(n) | NL+1(n) = PiNL(n). With these probabilities at hand, we specify

the control function as

Kn({Pij}j∈N ) =
L+1∑
ℓ=1

λℓn · [1− PiN ℓ−1(n) | N ℓ(n)]︸ ︷︷ ︸
Conditional choice probabilities

of chosen neighborhood

+
L+1∑
ℓ=1

gℓ({PiN ℓ−1 | N ℓ(n)}N ℓ−1∈N ℓ(n))}︸ ︷︷ ︸
All conditional choice probabilities

. (6)

The first term allows the conditional choice probabilities of the chosen neighborhood n and

its higher-order nests N ℓ(n) to have neighborhood-specific effects λℓn, permitting selection

on unobservables to vary by the index n. The second term’s gℓ(·) functions map each set

of conditional choice probabilities to various summary statistics of the distributions of these

probabilities, including variance, skewness, and kurtosis; 25th, 50th, and 75th quantiles; and

second- and third-order statistics. Each of these summary statistics are assumed to have

common effects across neighborhoods. This specification is more parsimonious yet permits

the control function to indirectly depend on all of the neighborhood choice probabilities via

the conditional choice probabilities.

Notice that, in the first term, limPin→1[1−PiN ℓ−1(n) | N ℓ(n)] = 0 for each ℓ. We also recenter

each summary statistic in the second term so that limPin→1 gℓ({PiN ℓ−1 | N ℓ(n)}N ℓ−1∈N ℓ(n)) =

0.25 Specifying Kn(·) in this fashion means that the control function possesses no intercept,

obviating practical issues associated with recovering the neighborhood-level intercepts αn

via “identification at infinity” approaches (Chamberlain 1986, Heckman 1990).

For inference, we re-estimate the two-step procedure for estimating Equation (5) for 200

weighted bootstraps à la Rubin (1981). Standard errors are estimated with the standard

deviations of estimates across bootstrap draws.

25. For example, we recenter the variance of {Pij | N 1(n)}j∈N 1(n) of each family i with the value of the
variance that sets Pin = 1 and Pij = 0, ∀j ∈ N 1(n) s.t. j ̸= n.
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4.2 Estimates from the Generalized Mobility Model

Having estimated Equation (5), we compute three types of mobility statistics. To simplify

notation, letWin ≡ (Xi,S−in), (αw,βw) ≡ ((αx,αs), (βx,βs)), andKin ≡ Kn({Pij}j∈N ).26

The first type is the individual-level IGE and AUM—that is β(Win, n) and ȳci,25n ≡
α(Win, n) + β(Win, n)y

p
25 (under Assumption O) or ȳci,25n ≡ α(Win, n) + β(Win, n)y

p
25 +Kin

(under Assumption U). The individual-level mobility parameters depend on both the loca-

tion index n and the family and social characteristics Win, thereby capturing heterogeneity

of intergenerational mobility experienced by individual children even within a given neigh-

borhood n.

The second type of mobility statistic is the mean neighborhood-level IGE and AUM,

which are defined as E[β(Win, n) |n(i) = n] and E[ȳci,25n |n(i) = n]. This describes average

mobility by neighborhood, analogous to the baseline estimates from Equation (1).

The third type of statistic is given by the two components of the individual-level mobility

parameters. The first is the selection effect, which itself is decomposed into two terms: the ob-

servable selection effect of family and social characteristics (βwWin and αwWin+βwWiny
p
25)

and the unobservable selection effect captured by the control function. The second copmo-

nent is the location effect, i.e., the residual effect of neighborhoods after accounting for

selection (βn and ȳc25n ≡ αn + βny
p
25). The key difference between the location effects βn

and ȳc25n from Equation (5) and the baseline neighborhood IGE and AUM estimates from

Equation (1) is that the former are constructed after explicitly controlling for selection via

Win and Kin (under Assumption U). This provides insight of the relative contributions of

selection and location effects in heterogeneity in mobility, which will be formally analyzed

through a decomposition exercise in the next subsection.

Overview of Results. Figure 3 reports estimates of the three types of AUM effects from

Equation (5) for both municipalities and parishes; Appendix Figure A.5 reports estimates

of the IGE. We discuss each panel in turn.

The left panels plot the mean neighborhood-level AUM estimates from Equation (5)

(under each assumption of selection) against the baseline AUM estimates from Equation

(1) through a binscatter plot. This provides a test of our generalized mobility model’s fit

against the workhorse empirical model.27 We find that neighborhood-level mobility estimates

after controlling for selection are remarkably similar to the baseline model: correlations

between the AUM estimates range between 0.93–0.98. Moreover, as seen by the overlap

26. Since social characteristics possess relatively smaller effects on child income in practice, we group family
and social characteristics together in our analysis.
27. Note that this does not test either model’s goodness of fit to the data. We will revisit the limits of our

linear specification in Section 5.2.
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Figure 3: AUM estimates from the generalized mobility model

(a) Municipalities

(i) Comparison with baseline estimates (ii) PDFs of indiv.-level AUM components (iii) PDFs of location effects, by model

(b) Parishes

(i) Comparison with baseline estimates (ii) PDFs of indiv.-level AUM components (iii) PDFs of location effects, by model

Notes: Left panels are binscatters of estimates of ȳc25n from Equations (1) and (5) under Assumptions O and U, binned by two centiles. Dashed lines are lines of best fit.
Correlations (ρ) are reported in the legend. Middle panels plot densities of estimates of the individual-level AUM ȳci,25n ≡ α(Win, n) + β(Win, n)y

p
25 +Kin from Equation (5)

and its components under Assumption U. Estimates of the location AUM component ȳc25n ≡ αn + βny
p
25 are not weighted by neighborhood sample size and de-meaned to

facilitate comparisons with the AUM’s observable selection component αwWi + βwWiy
p
25 (since Wi was originally de-meaned). Right panels compare densities of the AUM’s

location component estimates from Equations (1) and (5) under Assumptions O and U. All densities are weighted by their inverse squared standard errors and Epanechnikov
kernels with their respective rule-of-thumb bandwidths, trimmed at the 1st and 99th percentiles to retain a reasonable scale.
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of the binscatters, the mean neighborhood-level estimates under Assumptions O and U are

nearly identical (correlation > 0.99). These results indicate that both the baseline model

and models controlling for selection do an equally good job at predicting average mobility

in each neighborhood.

Next, the panels in the middle column present densities of individual-level AUM estimates

from the generalized mobility model (under Assumption U) and unpack their underlying

components. Despite the strong concordance between the mean neighborhood-level mobility

estimates, there is a large degree of heterogeneity in predicted child income across the pop-

ulation that cannot be explained by the pure location component. The empirical density of

the observable selection effect component has much larger spread than location effects, and

shares similar variation as the overall individual-level AUM distribution. Interestingly, the

density of observable effects is bimodal, with one peak at around −0.2 and another peak at

around 0.2, suggesting that there are two “types” of family and social characteristic vectors

that generate 20% increase or decrease in child income relative to the population average.28

Similarly, the empirical density of the selection effect’s control function component ranges

over negative and positive values. This indicates that there are both positive and negative

effects from selection on unobservables, indicating substantial heterogeneity in the effects of

unobserved features of families or locations. The fact that many children experience negative

effects suggests that their families may have adverse unobserved characteristics associated

with their residential preferences and/or face frictions in moving to higher-opportunity neigh-

borhoods (Bergman et al. 2024). Meanwhile, location effect estimates possess substantially

smaller variation than the observable selection component, suggesting that the effects of se-

lection could matter more than locations per se. Note, however, that the density of parish

location effect estimates has greater spread and more extreme tails than municipalities.

Finally, the right panels compare the density of the location AUM effects across different

model specifications. Relative to the baseline AUM estimates from Equation (1), controlling

for selection shifts the distribution of location effects to the right. Under Assumption O,

controlling for selection decreases its variance across both parishes and municipalities, sug-

gesting that conditioning on observables decreases the variation in the location component

estimates. The same is true under Assumption U for municipalities, though the variance of

location AUM component estimates increases for parishes.

Though these descriptive patterns are interesting, it is difficult to draw firm assessments

about the impact of controlling for selection given the presence of sampling error. We thus

pursue a formal variance decomposition that accounts for sampling error in Section 4.3.

28. Recall that Win is de-meaned, which implies the observable selection component has mean zero by
construction.
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Effects of Family and Social Characteristics. We briefly examine the effects of indi-

vidual family and social characteristics to better understand the underlying drivers of the

observable selection component.

Our model employs an unusually rich vector of family and social characteristics. To sim-

plify our discussion, we assign elements of the covariates Win into eight mutually exclusive

categories: parental age, parental assets, mother’s employment, parental education, house-

hold structure, marital status, parental health, and parental crime. We reverse the sign of

any variable with negative effects on child income to set a common direction interpretation.

Within each category, we estimate the first principal component (PC) of all individual fam-

ily characteristics and of all social characteristics. We then construct linear combinations of

these family and social characteristics’ respective estimates in (αx,βx) and (αs,βs), using

their PC loadings as weights, and normalize these linear combinations by their PC scores’

standard deviations. This procedure delivers standardized effect estimates of each category

of family and social characteristics.

Figure 4 presents our results. In general, individual family characteristics play a far

larger role than social characteristics, and effect magnitudes are qualitatively similar be-

tween muncipalities and parishes. Controlling for selection on unobservables only modestly

attenuates effects on family characteristics. Assets and education of individual families in-

crease the IGE by 0.005–0.02, suggesting a complementarity between parent’s own human

capital and wealth and their investments in child human capital as predicted by Becker

and Tomes (1979). Among the most impactful social characteristics on the IGE is parental

assets, which is consistent with Durlauf’s (1996) prediction that public goods arising from

neighborhood wealth can amplify individual family investments in children. Parental age,

which is often controlled for in empirical studies on national-level mobility (e.g., Solon 1992)

but rarely in the neighborhood mobility literature, has among the largest effects on upward

mobility. This characteristic, along with parental assets, mother’s employment, and parental

education, increases AUM by 2–3.5%. Household structure, marital status, health, and crime

do not affect the IGE but have modest, statistically significant effects on AUM.

The Geography of Mobility, Redux. Next, we take a closer look at the spatial patterns

of the location effect estimates that control for selection. Figure 5, Panels (a) and (b)

illustrate municipality heat maps of the estimated location effect components of the IGE

and AUM across different models. The left maps plot estimates from the baseline model

(Equation 1) to provide a reference of spatial patterns while the middle maps plot estimates

of the residual location effect components from our generalized mobility model (i.e., based

on αn and βn from Equation 5) under Assumption U.
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Figure 4: Effects of family and social characteristics on individual-level mobility estimates

(a) Municipalities

(i) Effect on IGE estimates (ii) Effect on AUM estimates

(b) Parishes

(i) Effect on IGE estimates (ii) Effect on AUM estimates

Notes: This figure plots effect sizes of the first principal component of categories of family and social
characteristics on the individual-level IGE and AUM estimates, separately based on estimating Equation
(5) under Assumption O or U. Principal component loadings of effects are standardized based on the
variance of the first principal component score. Categories contain the following variables: “parental age”
includes mother and father age; “parental assets” includes sum of mother and father assets; “mother’s
employment” includes mother’s labor force participation along the extensive and intensive margins;
“parental education” includes mother and father’s years of schooling and indicators of college education;
“household structure” includes an indicator and years of childhood in intact families, household size,
number of siblings, and number of parental figures; “marital status” includes an indicator and years of
childhood in a divorced and in an unmarried household; “parental health” includes an indicator, years of
childhood, and duration of parents’ inpatient hospitalization; and “parental crime” includes an indicator
and years of childhood of parental crime and incarceration. Horizontal capped lines are 90% confidence
intervals; solid and dashed lines correspond to Assumptions O and U, respectively.

Remarkably, broad regional patterns in mobility predicted by the workhorse model are

reversed after controlling for selection. Municipalities that tend to have greater baseline mo-
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Figure 5: Heat maps of location effect estimates, before and after controlling for selection

(a) IGE estimates

(i) Baseline (no controls) (ii) Location effect (iii) Difference vs. rurality

(b) AUM estimates (thousands $)

(i) Baseline (no controls) (ii) Location effect (iii) Difference vs. rurality

Notes: This figure plots heat maps of estimates of the location IGE βn and exponentiated location AUM ȳc25n. Left panels plot estimates from
Equation (1). Middle panels plot location effect estimates from Equation (5) under Assumption U. Right panels plot binscatters of standardized
differences between the middle and left panels and standardized long-run proportion of farmers in the municipality; data is binned in ventiles and
red lines are best linear fits.
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bility (higher baseline AUM, lower baseline IGE) lie in much of western and northern Jutland

(Denmark’s large western peninsula)—which comprise the country’s rural mainland—while

municipalities with lower baseline mobility are concentrated around large cities such as the

greater Copenhagen and Aarhus areas. The opposite pattern, however, is found in heat

maps of the residual location effect components. To see this more clearly, the right panels

provide binscatter plots between the difference in the municipality-level mobility estimates

and the municipality’s long-run share of farmers, which proxies rurality. There is a striking

association: More rural municipalities tend to possess location effects that diminish mobility.

This result implies that the key engine of intergenerational mobility in rural areas is

their self-selected population. Meanwhile, urban areas tend to be endowed with place-based

features that promote mobility. More generally, these findings suggest that controlling for

selection can dramatically affect our understanding of the spatial landscape of mobility.

Employing baseline mobility estimates alone cannot diagnose the relative role of selection or

locations in explaining these regional patterns.

4.3 Variance Decomposition

What are the relative contributions of selection and location effects in explaining spatial

variation in mobility? To answer this question, we decompose the total variance of the

individual-level mobility parameters derived from Equation (5) along these dimensions. First,

consider the individual-level IGE:

Var
(

̂β(Win, n)
)
= Var

(
β̂wWin

)
︸ ︷︷ ︸

Observable selection effect

+ Var
(
β̂n

)
︸ ︷︷ ︸
Location effect

+2Cov
(
β̂wWin, β̂n

)
︸ ︷︷ ︸

Sorting effect

. (7)

The first two terms are variances of the observable selection and location effects defined in

Section 4.2. The third term is the “sorting effect,” which captures the extent that observable

selection effects on mobility are associated with their chosen location’s effect. We can further

decompose each term between and within neighborhoods. The between-neighborhood com-

ponent corresponds to variation in the mean neighborhood-level mobility estimates. Here,

we are particularly interested in quantifying the relative contributions of the population and

location effects toward between-neighborhood variation. As before, sampling error may ex-

plain much of the observed between-neighborhood variation, so we further decompose all

terms into their signal and noise components.29 See Appendix F for the formula of the full

decomposition.

Under Assumption O, we can conduct a similar decomposition for ̂α(Win, n) and the

29. We assign noise to the “within-neighborhood” component.
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covariance Cov
(

̂α(Win, n), ̂β(Win, n)
)
to decompose the individual-level AUM. Under As-

sumption U, we consider excluding or including the control function in our decomposition.30

Table 2 reports variance decompositions of the individual-level AUM estimates under

Assumption O and U for municipalities (Panel A) and parishes (Panel B).31 All components

are expressed as shares of the total estimates to make explicit the relative contributions of

each variance component.

There are three key takeaways. First, observable selection effects account for a significant

fraction of variation in individual-level AUM estimates. Looking at the top rows of each

panel, Column (2), observable selection effects accounts for at least 89% of the variation

in the municipality regression model and between 43–91% of the variation in the parish

regression model, depending on the model specification.32 This implies that much of the

variation in individual-level mobility is explained by family and social characteristics within

neighborhoods rather than location or sorting effects, per se.33

Second, the between-neighborhood component (which represents a signal component)

explains little of the variation in mobility. Row 1, Column (1) reports that this component

makes up at most 9% of the variation, irrespective of neighborhood unit or our modeling

assumption on selection.34

Third, within the between-neighborhood component, the magnitude of the observable

selection effect consistently exceeds that of the location effect. For example, comparing

Columns (2) and (3) of Row 1, Assumption O, the between-neighborhood observable selec-

tion effect is 1.8–3.2 (5.1% ÷ 2.9% for parishes; 5.5% ÷ 1.7% for municipalities) times larger

than the between-neighborhood location effect. This finding is robust to modeling assump-

tions of selection. This signifies that neighborhood segregation of observable population

characteristics generates more variation in mobility than residual location effects. In sum,

this analysis demonstrates that most of the variation of mobility experienced by individual

families and found across neighborhoods is explained by selection.

30. There are different rationales for excluding or including the control function Kin. Excluding Kin may
be appropriate if Kin is viewed as a nuisance parameter that only serves to obtain unbiased estimates of
(α(Win, n), β(Win, n)). Alternatively, one may include the control function estimates under the “sorting
effect” with the view that selection on unobservables should be accounted for in the mobility process.
31. Appendix Table A.2 reports results for individual-level IGE estimates.
32. Rows 2.1 reports the vast majority of this is explained by pure signal variation within neighborhoods.
33. Sorting effect patterns differ across neighborhood units and modeling assumptions. Families endowed

with characteristics with larger effects on child income tend to live in municipalities with lower location
effects, but sort into parishes with higher location effects, reflecting the granularity of neighborhood sort-
ing behavior. Including control function estimates generates positive within-neighborhood sorting effects,
indicating a positive relationship between the unobserved, idiosyncratic population and location effects.
34. In fact, including the control function drives this component to fall below zero due to strong negative

sorting effects.
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Table 2: Variance decomposition of individual-level AUM estimates

(1) (2) (3) (4)
Assump. C.F. Total (%) Obs. Selection (%) Location (%) Sorting (%)

A. Municipalities

Total O 100.0 100.9 2.6 −3.5
U 100.0 88.8 12.0 −0.7
U ✓ 100.0 96.7 13.0 −9.7

1. Between-neighborhood O 4.4 5.5 1.7 −3.2
U 8.1 4.6 3.9 −0.4
U ✓ −4.0 5.0 4.3 −13.2

2. Within-neighborhood O 95.6 95.5 0.9 −0.3
U 91.9 84.2 8.0 −0.3
U ✓ 104.0 91.7 8.8 3.5

2.1. Signal O 95.0 95.0 — —
U 83.8 83.8 — —
U ✓ 98.1 91.2 — 6.9

2.2. Noise O 0.6 0.4 0.9 −0.3
U 8.2 0.4 8.0 −0.3
U ✓ 5.9 0.4 8.8 −3.3

Total variance O 0.034
U 0.037
U ✓ 0.034

B. Parishes

Total O 100.0 91.2 8.3 0.4
U 100.0 43.0 56.4 0.6
U ✓ 100.0 77.8 102.2 −80.0

1. Between-neighborhood O 8.7 5.1 2.9 0.6
U 2.4 2.4 −0.6 0.7
U ✓ −91.1 4.4 −1.2 −94.4

2. Within-neighborhood O 91.3 86.1 5.4 −0.1
U 97.6 40.5 57.1 −0.1
U ✓ 191.1 73.4 103.4 14.3

2.1. Signal O 85.8 85.8 — —
U 40.4 40.4 — —
U ✓ 162.6 73.1 — 89.5

2.2. Noise O 5.6 0.3 5.4 −0.1
U 57.2 0.2 57.1 −0.1
U ✓ 28.5 0.3 103.4 −75.1

Total variance O 0.036
U 0.074
U ✓ 0.041

Notes: This table reports fractions (expressed as percentages) of the total variance of individual-level AUM
estimates (from Equation (5)) via the decomposition described in the main text (see Appendix F for
details). Column “Assump.” indicates whether the decomposition is based on regression estimates under
Assumptions O and U. Column “C.F.” indicates whether, under Assumption U, control function estimates
are included in the sorting effect estimates or excluded from the decomposition.

Accounting for Sampling Error. Having controlled for selection, we next investigate

the degree by which residual location effects vary across neighborhoods. In Appendix Tables

E.3 and E.5, we conduct analogous hypothesis tests and variance decomposition exercises

to those conducted using baseline estimates on the residual location effect estimates from
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Equation (5). Overall, these results show that controlling for selection injects significantly

more imprecision into the location parameter estimates. Based on hypothesis tests, the ma-

jority of neighborhoods’ mobility estimates are indistinguishable from estimates implied by a

population-level mobility model that controls for selection. In fact, Appendix Table E.3 finds

that controlling for selection on unobservables causes all or nearly all of the neighborhoods’

location effects to be statistically indistinguishable from their population-level counterparts.

Turning to signal-noise decompositions of the residual location estimates, Appendix Table

E.5 reports that between 32–65% of variance of the IGE and AUM location components

across municipalities is driven by signal; this fraction is significantly lower, but typically

positive, among parishes.35 Thus, there is still some positive signal variance detected in

our location effect estimates. Though our hypothesis tests suggest that we cannot draw

conclusions about individual neighborhoods, these variance decomposition exercises imply

that there is still promise of garnering information about properties of the distribution of

estimates, particularly among municipalities. We thus turn to examining the correlates of

location effects across neighborhoods.

4.4 Second-Stage Correlations

Figure 6 re-examines the bivariate correlation exercises with location characteristics Zn

using the location AUM effect estimates purged of selection.36 The square and triangular

markers visually depict correlation coefficients under Assumptions O and U respectively.

For reference, hollow markers report correlations using the baseline AUM estimates from

Equation (1) that do not control for selection.37 All correlations weigh neighborhoods by

their AUM estimates’ inverse squared standard error to account for precision.

This exercise provides three key takeaways. First, as predicted in Section 3.2, stripping

neighborhood mobility estimates of selection dramatically affects correlation patterns for

several location characteristics. Some of the strongest positive predictors of baseline AUM

estimates—including the share of homeowners and mean home value—possess little to no

association with pure location AUM effect estimates. This suggests that the extent to which

baseline neighborhood mobility rates are capitalized into home prices is primarily driven by

the composition of families in the neighborhood. Similarly, controlling for selection causes

the correlation with mean neighborhood income to vanish, suggesting relatively little role for

35. The only exception is the weighted signal-noise decomposition of parish AUM estimates: As indicated
in Row 2.2 of Table E.5, Panel B, the fraction of weighted variance explained by noise actually exceeds 100%.
However, the unweighted signal-noise decomposition lowers this share to 93.7%.
36. Appendix Figure A.6 plots correlations for the location IGE effect estimates.
37. Chetty and Hendren (2018b) conduct a similar second-stage correlation exercise using the location

parameters identified via the movers design.
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Figure 6: Second-stage correlations between location characteristics
and AUM location effect estimates

(a) Municipalities (b) Parishes

Notes: This figure plots estimates of the correlation coefficients between various location characteristics of
neighborhoods and the residual location effect estimates from Equation (5). Square markers are estimates
under Assumption O; triangular markers are estimates under Assumption U. Horizontal capped lines are
90% confidence intervals. Hollow markers are correlations with the baseline neighborhood-level AUM
estimates from Equation (1), which are included for reference.

place-based amenities such as school quality that may be proxied by income in explaining

location effects. This idea is corroborated by the null associations between location effects

and mean 9th grade test scores, a remarkable finding that aligns with Wodtke et al. (2023).

In other words, the strong positive association between parent income and mean test scores

documented in Figure 1(b) implies that schools in Denmark appear to matter for mobility

due to composition of families in schools rather than the quality of schooling institutions,

per se.

Second, there are some notable differences in correlation patterns found in municipalities

compared to parishes. Interestingly, controlling for selection on observables only, compared

to additionally controlling for unobservables, affects the magnitude and even the sign of the

correlations among municipalities. In contrast, correlations with location AUM estimates

among parishes are insensitive to modeling assumptions. This suggests that controlling for
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selection on unosbervables may be particularly important among coarser geographic units

that encapsulate populations that are diverse along unobserved characteristics. Accounting

for such selection causes the correlations among municipalities to be more qualitatively

similar to those among parishes, though the magnitude of the correlations varies between

the neighborhood units.

Third, after controlling for both selection on observables and unobservables, the strongest

predictors of location AUM effects signify the neighborhood’s rurality (the share of farmers

for parishes; urbanicity for municipalities). This is also seen by the strong spatial autocor-

relation in location AUM estimates illustrated in Figure 5. It suggests that a key locational

source of heterogeneity in neighborhood mobility in Denmark is the difference in ameni-

ties in rural versus urban areas. This finding can help refine the appropriate portfolio of

place-based policies aimed to promote upward mobility. Our analysis suggests that policies

directed to promote place-based investments in amenities found in rural areas may be a

promising avenue for improving mobility.

5 Irreducible Heterogeneity across Neighborhoods

The previous bivariate correlation exercise can be naturally extended to a hierarchical lin-

ear modeling framework by adjoining Equation (5) with the following “second-level” model

(Raudenbush and Bryk 2002):

α̂n = ᾱ + ᾱzZn + αir
n

β̂n = β̄ + β̄zZn + βir
n .

(8)

Here, the location effect estimates (α̂n, β̂n) are regressed on the entire vector of location

characteristics. The residuals of the model, (αir
n , β

ir
n ), are the irreducible location effects.

These represent the effect of unknown features of locations that cannot be explained after

controlling for both selection and observed location characteristics via Equations (5) and

(8). In this sense, irreducible heterogeneity is a good measure of our remaining ignorance of

why neighborhoods matter, since the indices themselves are simply labels.

Is there an underlying, interpretable structure in irreducible heterogeneity? To answer

this question, this section pursues two extensions. First, we examine if there are clusters

underlying the joint distribution of irreducible effects (αir
n , β

ir
n ). Second, we assess whether

irreducible heterogeneity might be explained by nonlinear family or social effects present in

the intergenerational transmission of income.

As indicated in Appendix Tables E.3 and E.5, the underlying location effect estimates

(α̂n, β̂n) are extremely noisy measures of the true location effects (αn, βn). This motivates
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applying empirical Bayes (EB) shrinkage methods to develop biased but more precise (in

the mean squared error sense) estimators of irreducible location effects to utilize in our two

extensions. We summarize our EB procedure below.

Empirical Bayes Estimates. In the case of β̂n (and analogously for α̂n), we assume that

β̂n ∼ N(βn, σ2
β̂n
) and specify that the true residual location effect parameter βn itself is

drawn from the prior hyperdistribution βn ∼ N(β̄ + β̄zZn, ν2
β). This implies the following

EB posterior mean:

β̂EB
n ≡ ν2β

ν2β+σ2
β̂n

· β̂n +
σ2
β̂n

ν2β+σ2
β̂n

· (β̄ + β̄zZn) (9)

The variance σ2
β̂n

is estimated by the squared standard errors of β̂n. We follow the procedure

described in Morris (1983) to estimate the hyperparameters. Intuitively, the shrinkage factor

(i.e.,
ν̂2β

ν̂2β+σ̂2
β̂n

) adjusts such that the noisier the original least-squares estimator (i.e., larger

σ̂2
β̂n
), the more the EB posterior mean will shrink the original estimator β̂n toward the

predicted value of the second-level model (i.e., ˆ̄β + ˆ̄βzZn).

Substituting Equation (8) into the posterior means, the EB estimators of the irreducible

location effect components are simply

α̂ir ,EB
n = ν̂2α

ν̂2α+σ̂2
α̂n

· α̂ir
n

β̂ir ,EB
n =

ν̂2β
ν̂2β+σ̂2

β̂n

· β̂ir
n .

(10)

We will work with these EB posterior mean estimates to analyze the structure of irreducible

heterogeneity separately in municipalities and parishes. In what follows, we focus exclusively

on estimates derived under Assumption U.

5.1 Neighborhood Types

Our first extension aims to identify latent “types” of neighborhoods in the joint distribution

of irreducible location effect estimates. To investigate this, we conduct a k-means analysis

on (α̂ir ,EB
n , β̂ir ,EB

n ). The k-means algorithm assigns neighborhoods to K clusters such that

the assignments minimize the within-cluster sum of squares (WSS) of distances between

(α̂ir ,EB
n , β̂ir ,EB

n ) and their respective cluster means. Using standard rule-of-thumb assessments

based on the WSS, we find that neighborhoods fall into K = 2 latent types.38

Table 3, Panel A reports differences in the irreducible effects between the neighborhood

38. See Appendix Figure A.7 for scree plots of WSS and the proportional reduction of error for different
choices of K. Appendix Table A.3 provides results for choosing K = 3.
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types. For both parishes and municipalities, Type 1 is characterized by lower α̂ir ,EB
n and

higher β̂ir ,EB
n estimates than Type 2. Specifically, on average, Type 1’s β̂ir ,EB

n is between

0.02–0.05 higher than Type 2. Meanwhile, its relatively smaller α̂ir ,EB
n offsets this difference,

resulting in a 0.4–0.5% lower EB irredicuble location AUM effect than Type 2. Qualitatively

similar patterns hold for the unshrunken irreducible location effects (α̂ir
n , β̂

ir
n ) and the location

effects (α̂n, β̂n). There are less consistent patterns in the population or control function

components of the IGE or AUM between municipality and parish types.

Panel B turns to differences in mean population characteristics between the neighbor-

hood types. Interestingly, we find that there are statistically significant differences between

neighborhood types along a number of dimensions. The presence of significant differences

may be surprising given that the neighborhood types are constructed from the irreducible

location effect estimates, which have already controlled for these characteristics at both the

family and social levels. This reveals the potential limits of the linear model specifications

employed thus far.

5.2 Nonlinearities in Population Characteristics

All of our main results have been derived from Equation (5), which is a linear specification

of Equation (2) described in the introduction. In Equation (2), α(·) and β(·) are general

functions that may nonlinearly depend on family characteristics Xi and social characteristics

S−in, as posited by Becker et al. (2018) and Durlauf and Seshadri (2018). Our second

extension shows how irreducible location effects may capture nonlinearities in the mobility

process.

Let Dij ≡ 1{n(i) = j} indicate if family i resides in neighborhood j and let Ỹ p
ij ≡ Dij ·Y p

i .

Further, denote fij ≡ α(Xi,S−ij, j) + β(Xi,S−ij, j) · Y p
i . Finally, for a given neighborhood

n, let Y c∗
i , Ỹ p∗

in , f ∗
in be population residuals from linearly projecting Y c

i , Ỹ p
in, fin onto all

other covariates (Xi, Xi · Y p
i , S−in, S−in · Y p

i , (Dij)j∈N , (Ỹ p
ij)j ̸=n). If the nonlinear model

described in Equation (2) is the true data generating process, then we can invoke the Frisch-

Waugh-Lovell theorem to express the location IGE effect as

βn =
E[Ỹ p∗

in · Y c∗
i ]

E[Ỹ p∗2
in ]

=
E[Ỹ p∗

in · f ∗
in]

E[Ỹ p∗2
in ]

(11)

The final equality in (11) shows that the identified location-specific component of the IGE

is simply an average slope of the residual nonlinear location-specific function f ∗
in (White

1980). In our context, this captures a combination of (i) pure location effects captured by

the neighborhood index n and (ii) neighborhood-level averages of nonlinear effects arising
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Table 3: Differences between neighborhood types

(1) (2) (3) (4)
Municipalities Parishes

Type 1 Type 2 Type 1 Type 2
Mean Diff. Mean Diff.

A. Mobility estimates

Irreducible location IGE 0.033 −0.073∗∗∗ 0.081 −0.158∗∗∗

(0.004) (0.004)

E.B. irreducible location IGE 0.009 −0.024∗∗∗ 0.023 −0.049∗∗∗

(0.001) (0.001)

Irreducible location AUM −0.008 0.023∗∗∗ −0.032 0.056∗∗∗

(0.007) (0.009)

E.B. irreducible location AUM −0.003 0.005∗∗∗ −0.002 0.004∗∗∗

(0.002) (0.000)

Location component of IGE 0.262 −0.080∗∗∗ 0.291 −0.157∗∗∗

(0.005) (0.004)

Location component of AUM 10.453 0.021∗∗∗ 10.435 0.055∗∗∗

(0.008) (0.009)

Population component of IGE −0.006 0.014∗∗∗ −0.000 0.000
(0.003) (0.001)

Population component of AUM 0.008 −0.018∗∗∗ 0.001 −0.002
(0.005) (0.002)

Control function estimate −0.038 −0.005 −0.029 −0.019∗∗

(0.008) (0.009)

B. Mean family characteristics

Mean mother age 26.835 −0.074 26.815 −0.028
(0.065) (0.036)

Mean parent income (thousands) 71.520 −0.274 71.303 0.232
(1.056) (0.502)

Mean parent assets (thousands) 25.881 −2.121 25.068 −0.274
(1.617) (0.815)

Share of mothers not employed 0.408 0.004 0.411 −0.004
(0.007) (0.004)

Mean mother years of education 12.836 0.102 12.875 0.013
(0.065) (0.033)

Mean father years of education 13.130 0.104 13.173 0.005
(0.078) (0.039)

Share of intact families 0.687 −0.041∗∗∗ 0.673 −0.010∗

(0.011) (0.005)

Mean household size 4.144 −0.103∗∗∗ 4.110 −0.027∗∗

(0.027) (0.012)

Share of divorced families 0.204 0.024∗∗∗ 0.212 0.006∗

(0.007) (0.004)

Share of never married families 0.142 0.018∗∗∗ 0.147 0.006∗∗∗

(0.003) (0.002)

Share of parents hospitalized 0.730 −0.007∗ 0.728 −0.003
(0.004) (0.002)

Share of parents committed crime 0.138 0.015∗∗∗ 0.142 0.006∗∗

(0.004) (0.003)

Share of parents incarcerated 0.055 0.004∗ 0.056 0.001
(0.002) (0.001)

Number of neighborhoods 133 140 768 1,181

Notes: This table reports differences in mean mobility estimates and mean family characteristics between
the neighborhood types identified in the k-means clustering algorithm on (α̂ir ,EB

n , β̂ir ,EB
n ). All estimates

are weighted by neighborhood sample size.
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from complementarities between Y p
i and Xi or S−in predicted by economic theory.

From this vantage point, the irreducible components (αir
n , β

ir
n ) can provide suggestive

evidence of nonlinearities. The second-level model regressions (8) are purged of observ-

able location characteristics Zn that are determinants of pure location effects. Thus, the

irreducible components capture any local nonlinear effects as well as effects of unobserved

location characteristics that cannot be fully explained by Zn. This implies that we ex-

pect the irreducible components themselves to be associated with average characteristics of

the neighborhood’s population, X̄n. This analysis can help adjudicate which dimensions of

characteristics can generate nonlinear mobility patterns. For example, if the irreducible com-

ponents are significantly associated with average mother’s education level, then this would

lend credence to Becker et al. (2018).

To detect the presence of nonlinearities in the mobility process, we estimate the following

regression model,

β̂ir ,EB
n = γ + ηX̃n + ξn, (12)

and similarly for ˆ̄yc,ir ,EB25n , weighting neighborhoods by their sample sizes. Here, X̃n is a

vector of neighborhood-level mean family characteristics from our main sample that are

residualized by location characteristics Zn (in accordance with Frisch-Waugh-Lovell logic).39

We choose a representative subset of the full vectorXi in order to capture distinct dimensions

of populations. We re-scale coefficients by the ratio of standard deviations of the outcome

variable and regressors so that the η coefficients can be compared along a common scale.

Figure 7 reports the resulting estimates. Three interesting patterns emerge. First, there

are notable differences in the characteristics that drive irreducible location IGEs (triangular

markers) versus AUMs (circular markers). The population characteristics with the most

significant associations with the irreducible location IGE effect across parishes are shares

of children whose mothers were ever out of the labor force during childhood and whose

parents were hospitalized, committed crime, or unmarried. This suggests nonlinearities in the

complementarity between these characteristics and parental income in the intergenerational

transmission process.

Second, the only characteristics significantly positively associated with irreducible AUM,

particularly among municipalities, are mean parental income and the share of mothers out of

the labor force. All other characteristics have largely null or small, statistically insignificant

associations. Notably, we do not find empirical evidence supporting Becker et al. (2018),

since mean mother’s years of education has statistically insignificant estimates. In contrast,

the large positive effects from parental income and the share of mothers out of the labor

39. Recall thatZn are defined based on place-based features of the neighborhoods or long-run characteristics
of the full population residing in the neighborhood—not from our main sample of families.
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Figure 7: Detecting nonlinearities: Results from regressing irreducible location effects on
mean family characteristics

(a) Municipalities (b) Parishes

Notes: This figure plots estimates from Equation (12), rescaled to standardized effect units. All mean
family characteristics are residualized by location characteristics and regressions are weighted by
neighborhood sample sizes. Horizontal capped lines are 90% confidence intervals.

force suggest that monetary and maternal time investments may have convex effects in the

mobility process (Del Boca et al. 2014). This discussion illustrates that examining the sources

of variation of irreducible location heterogeneity through average family characteristics can

help to reveal sources of potential nonlinearities, and to refine the set of plausible theories

of intergenerational mobility.

Third, there are differences in the relevance of certain population characteristics between

municipalities and parishes. For example, a one standard deviation increase in parental

income is associated with nearly 0.25 standard deviation decline in the irreducible location

IGE effect for municipalities but has a precise null association for parishes. Differences in

correlation patterns across neighborhood types suggests that nonlinearities in the mobility

process may manifest at certain geographic levels but not others, suggesting the mobility

process may operate in complex ways at different levels of neighborhood aggregation.

37



5.3 Discussion

We conclude this section by noting that the patterns we find in our clustering and nonlinear-

ity analyses are also consistent with more complex models than the ones we study. Among

the explanations that can produce these patterns are bimodality in the density of unob-

served neighborhood-level variables or the presence of multiple equilibria in the behaviors of

children, which can map mean family characteristics to their future income. An example of

an unobserved neighborhood-level variable that may be captured in our irreducible location

effects is self-efficacy (Sampson et al. 1997; Sampson et al. 1999; Sampson and Raudenbush

1999, 2004), which refers to norms in a neighborhood that involve cooperative behaviors.

Models of multiple equilibria such as Brock and Durlauf (2001) produce finite numbers

of self-consistent choices for interdependent behaviors, which can produce variation in our

neighborhood mobility measures. Such models are generically nonlinear, which can produce

different linear approximations for intergenerational mobility relationships at the different

equilibria. These differences could, in principle, generate the evidence of distinct neighbor-

hood “types” and nonlinearities we observe. We certainly do not claim to have corroborated

either of these more complex neighborhood mobility models. Rather, we emphasize that a

systematic understanding of the irreducible heterogeneity we have uncovered may involve

very different models than what that is conventional in empirical mobility analysis.

6 Conclusion

In this paper, we develop and estimate a generalized model of intergenerational income mo-

bility to understand the sources of heterogeneity in mobility estimates across neighborhoods.

Using administrative data from Denmark, we extend the workhorse neighborhood mobility

model by explicitly controlling for selection into 273 municipalities and nearly 2,000 parishes.

Our model conditions on rich vectors of family and social characteristics and, in some spec-

ifications, we employ a multinomial neighborhood selection model to account for selection

on unobservables.

We find that selection plays a predominant role in explaining the heterogeneity in the

overall distribution of mobility within population as well as between neighborhoods. We also

find that the spatial landscape of mobility and the location characteristics correlated with

conventional mobility estimates change dramatically after accounting for selection. This

highlights how correlation exercises between conventional estimates and neighborhood char-

acteristics are difficult to interpret and connect to the underlying mechanisms of neighbor-

hood mobility.
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Nevertheless, even after accounting for estimation error, location effects still explain some

of the neighborhood heterogeneity in mobility. Moreover, after controlling for all observed

location characteristics, there remains irreducible neighborhood heterogeneity, which repre-

sents the limits of our linear specification of the mobility process. Clustering neighborhoods

using irreducible location effects suggests the existence of two underlying “types” of neighbor-

hoods. We also show these irreducible effects can provide a lens for detecting nonlinearities

in the mobility process, and find evidence that mean parental income and mothers’ labor

force participation are candidate factors that nonlinearly affect child income in Denmark.

Our paper complements and extends a range of efforts in the literature that aim to

disentangle pure location effects from selection and its underlying mechanisms. Though

the specific empirical results documented here may be unique to the Danish context, our

framework underscores the importance of considering the role of selection into neighborhoods

and provides a template for understanding the sources of heterogeneity in neighborhood

mobility around the world.
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