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apply this framework to a novel theory studying strategic exploration under uncertainty. We show 
how our framework can not only replicate the results from experiments with human subjects at a 
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existing methods for theorizing in strategy and, more broadly, the social sciences.
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1 Introduction

Strategy research is remarkably diverse, drawing from disciplines as varied as economics, sociology, and

psychology. At its core, however, the field is concerned with how agents strategically interact with each

other in organizational or market settings. These agents may consist of individuals, such as employees and

managers, or organizations, such as firms and startups. The interactions they have are also varied: from

more collaborative, like when agents coordinate towards a common outcome, to more rivalrous, when they

must compete to discover and exploit new market opportunities. Modeling and analyzing these strategic

interactions is at the heart ofmany research communities inmanagement. The objective is to develop theories

that provide convincing explanations for relevant management phenomena and help formulate normative

guidance to improve performance (Rumelt et al., 1991).

In this paper, we argue that generative Artificial Intelligence (generative AI) and specifically Large Language

Models (LLMs) can be immensely helpful for management researchers focused on theory building. LLMs

are already widely diffusing as research tools in the social sciences, primarily to aid with data cleaning,

data analysis, and writing (Grimes et al., 2023; Liang et al., 2024; Charness et al., 2023). Researchers have

also started to use these models as a sort of “homo silicus” (Horton, 2023), reproducing the results from

behavioral research using human subjects (Horton, 2023; Aher et al., 2023; Ashokkumar et al., 2024). Yet,

the value of LLMs goes beyond harnessing generative AI to support the research process or replicate known

results. Our central contention is that LLMs can become a simulation tool that is particularly well-suited to

generate novel theory in management.

We propose that LLMs can be used to create ecologies of AI agents that interact in environments mimicking

the strategic interdependencies and complexities of real-world settings. Without the need to mechanistically

specify their behavior, researchers can endow these autonomous agents with objectives, preferences, capa-

bilities, and personalities of their choosing. The end result is a fast, robust, and flexible method to generate

theoretical predictions under different assumptions. We refer to this framework as Generative AI-Based

Experimentation (GABE). When compared with other types of simulations, we argue that GABE has one

crucial difference: it relies on AI agents whose behavior is not deterministically pre-specified by the re-

searcher, yet whose reasoning can still be elicited via direct prompting. As we aim to demonstrate, learning

the mechanisms behind their actions in this way and tweaking the characteristics of AI agents is a powerful

way to build, validate, and extend management theory.

Our framework requires researchers to start with an initial theory about a phenomenon to conceptualize a
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computational experiment and record the variables of interest (Ludwig and Mullainathan, 2024; Manning

et al., 2024; Shrestha et al., 2021; Davis et al., 2007). However, once conceptualized, GABE can augment and

strengthen the initial theory by helping test boundary conditions and mechanisms. In so doing, they serve as

a useful complement to existing research approaches, like laboratory and field experiments, as well as agent-

based models (ABM). On the one hand, experiments that feature multiple human subjects or organizations

remain essential for testing theoretical predictions. However, due to the costs and logistical complexities

involved, these experiments can rarely be used as an exploratory tool to help researchers theorize. On the

other hand, ABMs are a powerful tool for studying the emergent properties of interactive social systems,

and as a result, they have enjoyed significant popularity in management. Yet the stylized setups and the large

degrees of freedom the researcher enjoys when designing them may compromise realism. GABE can play

an intermediate role by simulating cheap and realistic exploratory experiments with agents whose behavior

is likely closer to humans than the automatons of traditional simulations.

To demonstrate the potential of this approach, we use GABE to study a phenomenon that is common in

management and innovation research: strategic exploration under uncertainty. We focus on a theory that

tries to model the “streetlight effect” – namely, the tendency of people to search where there are existing

data rather than in the darkwhere the rewardsmight lie (Demirdjian et al., 2005). Commentators have noticed

this dynamic in high-stakes settings like biomedical research, where firms keep innovating in well-trod areas

and neglect potential breakthroughs (Haynes et al., 2018; Bulgheresi, 2016). In a recent paper, Hoelzemann

et al. (2024) developed a formal theory to capture this phenomenon and tested its predictions with an online

lab experiment where human subjects collectively explored a set of low-, medium- or high-value projects

over multiple time periods. The key finding is that participants achieve lower earnings and are less likely

to discover the high-value project when they are initially told the location of the medium-value project as

compared towhen they start exploringwithout any data. Shedding light on attractive but sub-optimal projects

can skew exploration in a sub-optimal direction and deprive agents and society of breakthrough innovations.

We use the GABE framework (powered by OpenAI’s GPT-4 model) to extend the Hoelzemann et al. (2024)

theory by simulating this same experiment with AI agents. As we will describe in detail, we develop a central

experimental engine that feeds multiple AI agents the objectives and rules of the game and coordinates their

actions under different experimental conditions. We first use this method to replicate the conditions of the

original experiment and reproduce the results derived from human subjects. Our analysis shows that we are

able to do so with a remarkable degree of accuracy. Like humans, AI agents also earn less when exploring

with the medium-value option revealed as compared to when they explore in the dark. Their qualitative
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responses are also highly consistent with the behavior of human participants in Hoelzemann et al. (2024),

providing face validity for our approach. Reassuringly, these results are not due to the model knowing the

results of the paper beforehand, but rather they are endogenously generated by the GABE framework.

Next, we show how AI agents can be used to enrich our theoretical understanding of the streetlight effect

beyond the original study. In particular, we run AI-based experiments to introduce several extensions to

the original results, including (a) implementing alternate variations in design, (b) relaxing the underlying

theoretical assumptions, and (c) incorporating heterogeneous agent preferences, such as risk aversion or

pro-sociality. Our objective is to uncover new boundary conditions that delineate when the predictions of

the theory are likely to fail, or mechanisms to explain why the streetlight effect might actually prevail. The

exploration of mechanisms is greatly aided by the ability to prompt AI agents to justify strategic choices as

well as the ability to “fine tune” AI agents to behave in a particular way (for example, to take more risks or

care about collective outcomes). These approaches are powerful tools to rationalize the findings and sharpen

the mechanisms and boundary conditions of the theory.

Our analysis yields several findings. First, we uncover new potential mechanisms that help to explain the

streetlight effect. For instance, when we increase the number of AI agents engaged in search, the LLMs are

more likely to gravitate toward the medium-value option. When eliciting agents’ motivations, we find that

their responses suggest herding behaviors due to social conformity–a mechanism absent from the original

theory of Hoelzemann et al. (2024). Second, we uncover additional boundary conditions for the streetlight

effect. For instance, when we introduce payoff rivalry, AI agents no longer herd around the safe option for

fear of splitting the rewards. We also document the theory’s robustness to several assumptions. Adding

ambiguity in the distribution of potential payoffs or changing their magnitude has little effect as long as

the relative value of options is maintained. Third, we endow a subset of AI agents with heterogeneous

preferences and objectives. In so doing, we see that even a small share of agents with alternative preferences

can temper the streetlight effect. In a final set of experiments, we simply ask out-of-the-box LLMs to predict

the results of the experiment rather than using the GABE approach we propose. We show how this approach

has limited power to predict real-world outcomes to the same extent.

Our paper makes several contributions. First, we present GABE as a novel conceptual framework to lever-

age LLMs as AI agents in management research, positioning them as tools for theory building. We suggest

harnessing the ability of LLMs to simulate interactive strategic management settings and generate new theo-

retical insights by directly engaging with the reasoning processes of AI agents. Second, we show howGABE

couples the advantages of traditional agent-based models with the greater realism of LLMs. Researchers can
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specify the features of the setting and endow agents with preferences or resources, while at the same time

relying on the LLM to more instinctively emulate agents’ behaviors. This approach enables researchers to

run large-scale in silico experiments affordably, trace the logical pathways from observed outcomes back

to underlying assumptions, and gain insights into decision-making processes. This level of transparency is

particularly valuable because learning the mechanisms behind observed behaviors is fundamental to theory

development. Finally, our application to the theory of the streetlight effect exemplifies how GABE can lead

to substantial theoretical contributions. The new mechanisms and boundary conditions that we uncovered

are intriguing hypotheses for testing in future experimental and empirical work.

We focus our attention on the use of LLMs for theorizing, which plays a central role in strategic management

research (Makadok et al., 2018; Shrestha et al., 2021; Sutton and Staw, 1995). Management theorizing often

oscillates between induction, which generalizes from observations, and deduction, which develops theories

from first principles (Makadok et al., 2018; Choudhury et al., 2021; Davis et al., 2007; Harrison et al., 2007;

Shrestha et al., 2021). The observations derived from GABE do not neatly fit into either category. As the

product of simulations, they do not constitute “ground truth” evidence from which inductive generalizations

can be made. At the same time, they do not provide evidence external to the generating model that can be

used to test its predictions. Instead, we suggest these experiments largely facilitate abductive theorizing.

LLMs can offer verbal explanations for their actions, enabling researchers to reason about the most likely

mechanisms for the patterns observed.

One important caveat is in order. It is not our belief that GABE should replace rigorous testing of manage-

ment theories through careful, experimental study. Despite their general consistency with humans, obser-

vations derived using AI agents do not constitute real-world empirical evidence that can be used to falsify

theories; rather, they are better thought of as exploratory insights that ultimately need to be validated using

traditional experiments with human subjects or observational data. In addition, GABE also suffers from

concerns highlighted in other studies that use LLMs as stand-ins for human subjects, such as a potential bias

towards rationality and the tendency to hallucinate responses. As the underlying models improve, we expect

these issues to improve as well, but the extent to which AI agents can supplant real-world observations is an

ongoing topic of research.

The rest of the paper proceeds as follows. Section 2 provides a discussion of how LLMs are currently being

used in management research, as well as how they can be used to aid theory building. Section 3 introduces

the GABE framework. Section 4 briefly describes the application to the streetlight effect experiment and

benchmarks GABE against previous results using human subjects. Section 5 describes how our framework
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can be deployed to extend the theory of the streetlight effect and develop new mechanisms. Section 6 con-

cludes with a discussion of the potential uses and limitations of our framework in other settings.

2 LLMs as tools for Management Research

2.1 How Do Researchers Use LLMs?

Recent advancements in generative AI are poised to reshape the field of social science. This is especially

true with the rise of LLMs, which are deep learning models trained on pre-existing data and capable of

producing original content, conditional on a sequence of human prompts. LLMs have captured the attention

of the public because of their impressive performance in a variety of domains (Bubeck et al., 2023), such as

image generation (Qu et al., 2023) and computer programming (Kazemitabaar et al., 2024).

Increasingly, LLMs are being used as tools for academic research, with their versatility proving to be useful

for various tasks (Grimes et al., 2023).1 For instance, researchers have used LLMs to clean datasets (Chong

et al., 2022), perform data analysis (Ma et al., 2023), and generate visualizations (Ye et al., 2024). Beyond

data tasks, LLMs have been used extensively in scientific writing, even for generating abstracts and drafts.

For instance, it is estimated that up to 20% of the content in computer science conference papers is now

substantially AI-modified (Liang et al., 2024). Among other use cases, LLMs have also been leveraged to

conduct systematic literature reviews (Agarwal et al., 2024) and refine research instruments such as survey

questionnaires (Grimes et al., 2023; Charness et al., 2023). Despite legitimate concerns that LLMs may

compromise the quality of research (Lindebaum and Fleming, 2024), it is plausible that automating these

tasks will represent a large productivity boon (Korinek, 2024).

There is one feature of LLMs that may prove to be particularly useful for academic research: they have

a remarkable propensity to exhibit human-like traits. For example, a recent study by Mei et al. (2024)

subjected LLM chatbots to a personality test and a series of behavioral games, finding that their responses

were statistically indistinguishable from randomly picked human subjects. Another body of research finds

that LLMs rely on human-like heuristics and are prone to similar cognitive errors, reasoning, and even

moral judgment (Dillion et al., 2023; Lampinen et al., 2024; Hagendorff, 2024). Given these similarities,

a growing number of researchers are seeking to understand whether there are insights we can learn about
1Our focus is on understanding howLLMs can be used in the research process and, more generally, strategizing endeavors. However,
it must be noted that a florid literature is exploring the direct impact of AI on firm activities and performance (Berg et al., 2023;
Csaszar et al., 2024; Dell’Acqua et al., 2023; Doshi et al., 2024; Jia et al., 2024). Relatedly, another strand of research studies
the extent to which generative AI can replace humans in carrying out a variety of tasks, and the related labor-market implications
(Eloundou et al., 2024; Felten et al., 2023). Our paper complements these strands of literature by focusing on the use of LLMs to
develop strategy theory.
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humans just by indirectly studying the behavior of LLMs (Bail, 2024; Grossmann et al., 2023). In this

context, LLMs would not be inputs into the research process, but rather the subjects of study, serving as

proxies for humans (Manning et al., 2024; Park et al., 2023). While LLMs do not perfectly mirror human

decision-making (Tjuatja et al., 2023; Mohammadi, 2024), they might provide a flawed but potentially very

useful approximation as “homo silicus” (Horton, 2023).

Indeed, an active body of literature is developing around this promise. Scholars have tried to use LLMs as

survey respondents to uncover consumer demand (Brand et al., 2023; Li et al., 2024a) and predict voting

behavior (Argyle et al., 2023). However, most research to date has focused on replicating lab-based ex-

periments using LLMs in the place of human subjects. Aher et al. (2023) and Ashokkumar et al. (2024)

replicate a suite of behavioral experiments, from the wisdom of crowds to the Milgram shock experiment,

finding results consistent with past studies using human subjects. Horton (2023) investigates the strategic

capabilities of LLMs by having them participate in games like the prisoner’s dilemma or the dictator game.

While these games involve two players only, more recent studies have incorporated more players and richer

design elements, like information deficiencies and spatial reasoning (Wu et al., 2023; Xu et al., 2023). This

bodes well for LLMs’ ability to capture the complexities of real-world phenomena studied in strategy.

However, there are important limitations to studies replicating past experiments. First, there is a valid con-

cern that the language models used are simply regurgitating results from famous studies they have been

trained on, which presents a risk for generalization. Second, the study authors did not conduct the original

experiments, which means their ability to recreate the study conditions is limited by a lack of access to the

original protocols. This makes comparing results harder. Finally, and most importantly, these studies are

generally not creating new knowledge. Instead of using LLMs to expand or develop theory, these studies

have used results validated with human subjects to explore the capabilities of the LLMs themselves. The

encouraging results indicate the potential to run new in silico experiments that could help expand our the-

oretical knowledge, yet with only a couple of recent exceptions (Binz and Schulz, 2023; Li et al., 2024b),

these studies have mostly abstained from doing so.

2.2 Management Theorizing With LLMs

While researchers have more recently begun to use LLMs to augment the theorizing process, they have fo-

cused on LLM-led hypothesis generation and research ideation. For instance, Manning et al. (2024) study

automated hypothesis generation employing LLMs to propose potential causal relationships and design ex-

periments to test those relationships. Doshi and Hauser (2024) find that when fiction writers use generative
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AI to obtain ideas for a story, the narratives are evaluated as more novel but tend to be more similar to each

other. Similar results are found by Si et al. (2024) when tasking an LLM with generating new research ideas

and comparing them with human experts.2 Researchers have also used LLMs for hypothesis generation

in psychology (Tong et al., 2024), materials science (Park et al., 2024), biomedicine (Qi et al., 2024), and

mathematical modeling (Shojaee et al., 2024).3

While this body of work is intriguing, we believe some level of care is needed to appropriately situate LLMs

into the theorizing process. To be sure, there are cases when the theory space is so vast and under-developed

that LLMs can generate significant value by suggesting creative directions and novel corners to explore

(Tranchero, 2024). However, often researchers will either start from existing theories or develop an initial

“simple theory” (Davis et al., 2007). In these cases, the emphasis shifts from novelty to good judgment, and

deciding how best to progressively build on established theory. For now, exercising this judgment remains

largely the prerogative of humans (Agrawal et al., 2019). We envision an increasingly central role for LLMs

in theory development, but one that is steered by the researcher working from a starting theory. This is our

primary focus: we are less concerned with the development of de novo theories (Manning et al., 2024) and

more with understanding how generative AI and human researchers can work in tandem (Mollick, 2024).

In particular, we believe the researcher can leverage the likeness of AI agents with humans to experiment

with extensions to the starting theory. Once the theory is operationalized in an experimental setup, the

researcher can simulate it using LLMs as stand-ins for human subjects. Any promising insights gained

from this in silico experiment can then later be tested via real-world experiments or observational data. This

approach can enhance theory development in two ways. Firstly, it can enable the researcher to theorize about

potential underlying causal mechanisms by tweaking micro-level aspects of a complex system (Davis et al.,

2007). This is especially true if one takes advantage of LLMs’ language generation capabilities and solicits

rationales for their decisions, which can help to make sense of the observed behavior.4 The other benefit of

this approach is that it can provide a clearer impression of boundary conditions for models that cannot be

solved in a closed form. Articulating all the relevant assumptions and then relaxing them in the simulations

can help to both generalize and bound theories (Makadok et al., 2018).
2In a related paper, Jia et al. (2024) find that AI can increase human creativity through an alternative channel: automating repetitive
tasks while freeing up time to engage with more intellectually challenging tasks, hence stimulating individual creativity. Note that
this mechanism does not leverage AI’s ability to create per see, but highlights how complementarities between AI and humans can
unlock superior innovation.

3A related line of work explores the use of LLMs for automated data-driven discovery, including generating novel hypotheses from
datasets (Ludwig and Mullainathan, 2024; Majumder et al., 2024; Gu et al., 2024).

4While this carries the risk of hallucinations, the researcher can reduce this risk by verifying that the behaviors and rationales are
consistent with one another. Our application in the following Sections showcases how this can be done in practice.
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How does this approach compare to existing research methods? Laboratory and field experiments remain the

gold standard for testing theoretical predictions (Chatterji et al., 2016). These experiments are conducted

on the actual subjects of interest (i.e., humans or organizations), so observations represent the “ground

truth.” This is not true for experiments using LLMs, which can show idiosyncratic behavior (Mohammadi,

2024) or rationality biases (Hagendorff, 2024). However, lab and field experiments are typically conducted

when there is already an established theory, which has generated key predictions that are ready to be tested

(Card et al., 2011). Real-world experiments are generally far too cumbersome (and expensive) to be used

to explore potential extensions in an open-ended manner, which is a crucial part of theory development

(Mueller, 2018).5 As such, LLMs are uniquely suited to the early stages of theory development.

In silico experiments with LLMs also share similarities with traditional simulation methods, such as ABMs.

These methods are similarly highly agile, which means they have been used extensively in theory devel-

opment, not least in strategic management (Ganco and Hoetker, 2009; Harrison et al., 2007). However,

they have some drawbacks. It can be challenging to fully capture the complexities of strategic manage-

ment settings given the constraints imposed by the fixed structures (Arend, 2022), as exemplified by the

stylized NK models (Davis et al., 2007; Levinthal, 1997). The naive automaton agents in ABMs need to

be exogenously pre-determined by the researcher, which means they do not default to approximating hu-

man behavior (Ganco, 2017). Most importantly, these agents cannot verbalize the “thinking” behind their

decision-making, which limits the researcher’s ability to engage in abductive reasoning (Makadok et al.,

2018). None of these challenges apply to in silico experiments using LLMs.

In summary, LLMs have the potential to be used in management research. Going beyond basic applications

like data analysis and scientific writing, we believe they can increase the pace of theory development. While

researchers have tried placing LLMs in the pilot seat to autonomously generate new research ideas, we argue

they are best used for augmenting human-led theorizing. In the following Sections, we develop an application

to show how LLMs can help researchers explore extensions to theories with in silico experiments.

3 A Framework for Simulating Experiments

In this section, our goal is to provide a framework that enables management scholars to simulate experi-

ments where multiple LLMs or AI agents interact in a rich strategic environment. We call this framework

Generative AI-Based Experimentation, or GABE for short. We envision GABE as a systematic, bottom-up
5Moreover, experiments are strictly monitored by university Institutional Review Boards (IRBs) and necessarily constrained from
performing a variety of interventions that carry the risk of harming or being unethical.
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methodology that deploys micro-level autonomous AI agents in controlled settings, where they are given op-

portunities to interact organically with each other. These interactions can produce emergent behaviors that

are not presumed by the researcher from the outset and are unknown to the individual LLMs. Throughout

the simulations, the decisions, rationales, and outcomes of each AI agent are meticulously tracked, enabling

an in-depth study of strategic interactions. In this sense, GABE has much in common with more traditional

simulation methods (Davis et al., 2007), but it harnesses the power of generative AI to mimic actual human

behavior.

Because these experiments are conducted completely in silico, some computational infrastructure is re-

quired. In particular, the researcher will need to set up a central deterministic engine that administers the

entire experimental process virtually. The engine is tasked with spawning AI agents, defining their roles and

behaviors, providing instructions, conveying new information as the experiment proceeds, and recording any

outcomes. Figure 1 provides a stylized description of this process. Note that this infrastructure is versatile

because the functions are mostly agnostic to the particular experiment, which means only minor tweaking

will be needed when tailoring the engine to a new study. Once operational, the researcher can theoretically

run an infinite number of simulations. Further, in contrast to studies replicating survey-based experiments

(Ashokkumar et al., 2024), this engine-based setup is better suited for studying complex, repeated interac-

tions among multiple agents.

Figure 1: Stylized GABE Engine

Note: This figure presents a stylized depiction of the central deterministic engine that powers an interactive experi-
ment using GABE. The engine spawns the AI agents (each consisting of an action space, fine-tuned personality, and
underlying foundation model) and then administers the experiment in silico following the steps above.
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The researcher will need to supply the key parameters of each particular experiment. We describe the main

degrees of freedom available to the researcher in Appendix A.1. In short, the choices include the features of

the strategic environment, such as the choice landscape, the payoff structure, spatial features, and the infor-

mation set. They also include the properties of the AI agents themselves, such as their goals, capabilities, and

action space. Important choices concern the protocols for how decisions are made (e.g. simultaneously or

sequentially) and whether to add channels for communication between AI agents. The researcher must also

decide which outcomes to collect, such as quantitative data that can be analyzed using traditional econo-

metric techniques, or qualitative responses that can support abductive theorizing. Finally, the researcher

must choose which interventions to apply. These could include altering the information structure, agents

preferences, payoffs, and communication structures, to name just a few. As with lab experiments involving

human subjects and ABM simulations, these parameters should be determined by the starting theory that

motivates the research question (Davis et al., 2007).

4 Implementing GABE in Management Research: An Application

4.1 The Theory of the Streetlight Effect

We choose to apply GABE in the context of strategic exploration, where agents scour over a fitness land-

scape in search of valuable discoveries (Levinthal, 1997; Kauffman, 1992). This setting captures many

activities in innovation and entrepreneurship, such as venture capital funds deciding which startups to in-

vest in (Lerner and Nanda, 2020), or pharmaceutical companies deciding which genes to target for drug

development (Tranchero, 2024). In Hoelzemann et al. (2024), this process is formalized using a strategic

multi-armed bandit model: agents explore from a set of risky projects and the value of these projects (low,

medium, or high) is only learned upon exploration. The paper theorizes about what happens when exter-

nal data is introduced on the value of risky projects. In particular, the authors show that when data sheds

light on a medium-value opportunity, it can actually reduce welfare compared to when no data is available.

This provides a theoretically grounded basis for the “streetlight effect”, defined as the tendency for people

to search where data is most readily available and convenient, often to their own detriment (Haynes et al.,

2018; Bulgheresi, 2016).6

We focus on this theory for several reasons. First, we have a closed-form mathematical specification for

the underlying theoretical framework. This allows us to precisely contextualize both the human and LLM
6This phenomenon takes its name from the parable of a drunkard searching for his keys late at night. He focuses his search underneath
a lamp post, since this is “where the light is”.
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decisions using the calculated theoretical optimums. Second, Hoelzemann et al. (2024) test their theory

with human subjects in an online lab experiment with strategic inter-dependencies and uncertainty. These are

elements that characterize many real-world settings, so simulating these experiments in silico will be helpful

to gauge whether LLMs can be useful for strategic management research.7 Finally, we can be reasonably

confident that our simulations will constitute out-of-sample predictions. There is a legitimate concern in

previous studies replicating classic human-subject experiments that the models were simply regurgitating

memorized results from the training data. In contrast, GPT-4 is largely unfamiliar with the experiment we

chose, helping us bypass this concern.8

4.2 The Online Lab Experiment: Searching Mountains for Hidden Gems

The experiment of Hoelzemann et al. (2024) features a group of participants searching across a virtual

range of mountains for hidden gems. The setup is shown in Panel A of Figure 2. There are n = 5 players

and m = 5 mountains. Three of the mountains contain topazes, one mountain contains a ruby, and one

mountain contains a diamond. While the dollar value of each gem varies by round, the diamond is always

valued more than the ruby, which in turn is valued more than the topazes. The location of these gems is

unknown from the outset. The experiment consists of two periods: in the first period, each player selects a

mountain in sequential order. After everyone has finished selecting, the gems behind the selected mountains

will be revealed. In the second period, players choose again, this time equipped with the knowledge of gems

revealed in the first period. Each player earns the sum total of the payoffs from their choices in both periods.

The payoffs are non-rival, which means there is no penalty for choosing the same mountain as other players.

Right from the beginning, players are explicitly told the number of gems and their values.

In the baseline condition, participants are not shown any data on the location of the gems. However, the

experiment has several other treatment conditions, each providing partial initial data on payoffs. These are

depicted in Panel B of Figure 2. In the low-value condition, the location of one topaz is revealed at the

beginning of the experiment, while the same happens with the ruby in the medium-value condition and with

the diamond in the high-value condition. This design allows researchers to observe how the availability (and

nature) of initial payoff-relevant data influences exploration strategies and outcomes. The study involved 350

participants and was conducted over 1400 rounds, with each round consisting of 5 players and 2 periods.
7An additional advantage is that we enjoy unfettered access to the original raw materials and results. In previous studies of this
kind, the authors must do their best to faithfully adhere to the original study designs. In our setting, we can be confident to compare
results like-for-like, and we can also introduce extensions that are still true to the model at hand.

8We verify this by asking GPT-4 to describe the experiment in Hoelzemann et al. (2024). The answers were nonsensical and largely
hallucinated. This is not surprising since the version of GPT-4 that we use was last updated in December 2023, while the NBER
Working Paper was only published in 2024.
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Figure 2: Experimental platform.

Panel A: User interface

Panel B: Examples of no-data condition and data conditions
(i) No-data condition (ii) Low-value condition

(iii) Medium-value condition (iv) High-value condition

Note: This figure depicts the software platform used in the online lab experiment of Hoelzemann et al. (2024).
Panel A shows how the interface is seen by participants in the no-data condition. The values of the gems for each
round are shown in the upper left corner. In this example, the user can see that Mountain 4 has already been picked
and decides to select Mountain 5. Panel B depicts the four experimental conditions. For instance, in plot (iii), the
mountain uncovering the ruby is revealed at the start of the round. The figure is reproduced with permission from
Hoelzemann et al. (2024).

We implement this experiment in silico using GABE. The key parameters that we supply from the GABE

framework are shown below in Table 1. We keep the same setup as Hoelzemann et al. (2024). However, this

time, it is a group of AI agents selecting which mountains to explore each round. We use Expected Parrot

Domain-Specific Language (EDSL), an open-source Python package that provides a wrapper between user

prompts and the GPT-4 API (Horton et al., 2024). EDSL allows us to spawn the five AI agents at a time,
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familiarize them with the instructions of the experiment, and prompt them sequentially for their choice of

mountains.9 Once an AI agent chooses a mountain, the code updates the conditions of the environment and

informs the other AI agents about this choice. See Appendix A.2 for an excerpt of the script we use. We

simulate 500 rounds of the online lab experiment using AI agents in place of human subjects.

Table 1: Application of GABE to the Streetlight Effect Experiment

Parameter Description

Environment

There are 5 choices (i.e. mountains) available to all AI agents. Each choice is associated
with a payoff, depending on whether it holds a topaz, ruby, or diamond. There are no spatial
features to the environment. Information is incomplete: agents do not know the locations of
gems. The engine keeps track of the game state, including which mountains have been explored,
which gems lie underneath, and which agents have picked which mountain.

Agent There are 5 AI agents. Each agent has the same objective: they are explicitly instructed to
maximize their individual earnings. There are no differences in capabilities or in action spaces.

Decision-rules The experiment uses sequential decision-making: each agent is allotted a “turn” to make their
decision. This provides an implicit mechanism for agents to coordinate their exploration.

Communication channels AI agents are not allowed to verbally communicate with each other during the course of the
experiment.

Outcomes
We record the earnings of AI agents, whether or not each group made a “breakthrough” and
discovered a diamond, and the number of mountains explored. We also solicit AI agents for
qualitative explanations behind their decisions.

Interventions

We make isolated changes to the information set. In particular, we have different initial data
conditions. In the ”no data” condition, the experiment begins with five unknown mountains,
while in the other conditions, it begins with one mountain revealed as either high, low or,
medium value.

Note: This table illustrates how we specify the key parameters of GABE to replicate the online lab experiment of
Hoelzemann et al. (2024). See the text and Appendix A.1 for more details.

4.3 Comparing Human Subjects and AI Agents

We begin by comparing the results of using AI agents to conduct the streetlight experiment with those

obtained from human participants in online lab experiments. The results of this exercise are presented in

Figure 3. The first primary outcome of interest is the group payoff (Panel A), which is the sum total of all

individual payoffs in a group for a given round. We plot the mean group payoff across all rounds, as well as

the 95% confidence intervals. The original results from the online lab experiment are presented in the upper

left corner in plot i), which confirms the key prediction of the streetlight effect. When shown the location

of the ruby – the medium-valued gem – human participants tend to earn the least amount of money. Further

analysis reveals they avoid risking a search for the (higher-valued) diamond and instead herd around the

safer ruby option (Appendix Figure B1). This initially boosts their payoffs in the first period but ultimately

leads to lower earnings by the end of the round (Appendix Table B1). In contrast, when the location of the

(lowest-valued) topaz is revealed – or when no gem is revealed – humans feel compelled to search for a better

option. This leads them to coordinate their search efforts and uncover the diamond.
9EDSL also enables us to prime the agents to have different objectives or features. For more details, see Section 5.3.
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Figure 3: Comparing the Streetlight Experiment with Human Subjects and AI Agents

Note: This figure compares the results of the streetlight experiment when using AI agents versus human subjects. In
Panel A, the outcome of interest is the average group earnings (as a percentage of the maximum possible earnings).
In Panel B, the outcome of interest is the mean likelihood of a breakthrough, which occurs when at least one group
member finds the diamond. Plots i) show the results obtained in the original lab experiment using human subjects,
while plots ii) show the results obtained from the simulated experiments using AI agents.

How closely do AI agents mimic this strategic behavior? These results are presented in plot ii). We find

that the behavior of the AI agents is remarkably similar, even in this socially intricate setting. AI agents

tend to earn the least amount of money when shown the location of the ruby. Like humans, they decide

not to explore any further, and instead herd around the safer ruby option (see Appendix Figure B2 and

Appendix Table B2). When shown only the location of the topaz (or no gems at all), AI agents are also able

to effectively coordinate their search efforts, using the sequential order of choice to explore all options and

ultimately achieve higher payoffs. When the location of the diamond is revealed, they immediately select it

to earn the maximum payoffs. In other words, LLMs reproduce the same patterns and reveal the key, though

subtle, insight that more data is not always advantageous in search.

Our other outcome of interest is whether the group achieves a breakthrough (Panel B), which occurs when

at least one member discovers a diamond. Once more, the patterns are similar. Both AI agents and humans

achieve a breakthrough in nearly every round where a ruby is not revealed (either because they collectively

search for the diamond, or it is revealed to them) but are less likely to do so when the ruby is revealed. Yet,
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one disparity emerges in the latter case: whereas humans achieve a breakthrough at least some of the time

(i.e., in roughly 45% of rounds), AI agents almost never do. Indeed, Hoelzemann et al. (2024) proves that

we should not expect any breakthroughs to occur from a purely rational perspective, suggesting that LLMs

behave more in line with our theoretical expectations. This echoes other research that finds that language

models tend to behave more rationally than humans (Hagendorff, 2024). Furthermore, qualitative interviews

with humans revealed idiosyncratic reasons for deviating from the ruby: some acted out of boredom, while

others chose randomly. These behaviors appear to be largely absent in AI agents.

5 Going Beyond the Original Experiment

Having shown that AI agents can reasonably approximate the behavior of human subjects in our setting, we

now introduce a series of exploratory experiments to enrich our understanding of the streetlight effect. In

particular, we try extending the original experiment by a) varying the experimental setup, b) relaxing under-

lying theoretical assumptions, and c) incorporating heterogeneous agent preferences, with a view towards

probing the robustness of its boundary conditions and uncovering new potential mechanisms.

5.1 Varying the Experimental Setup

The first set of extensions concerns the setup of the experiment itself. Often, when researchers wish to test a

theory in an experiment, they need to first operationalize the theory and specify the key parameters. Accord-

ingly, while the theoretical framework for the streetlight effect in Hoelzemann et al. (2024) is general, the

corresponding lab experiment required a series of choices pertaining to the timing of the rounds, the number

of agents and mountains, the magnitudes of the payoffs, and even how to best socialize the setting to the

participants (e.g., calling risky projects ‘mountains’ and payoffs ‘gems’). While some of these choices were

likely inconsequential, others might have influenced the results. How robust were the results to generaliz-

ing these decisions? To shed light on these inner workings, we conduct 800 additional rounds of simulated

experiments using AI agents, varying one of three major game mechanics at a time.

A. Varying Group Size: We begin by varying the number of agents, keeping the number of mountains

fixed.10 We try running the streetlight experiment with additional AI agents, starting with ten agents and

incrementing by 10 until we have thirty AI agents participating in the simulation at a time, to reflect more

crowded search settings (Erat and Krishnan, 2012). As plots i) of Figure 4 show, we find that adding more
10Having at least as many agents as mountains guarantees that agents would make a breakthrough if they just chose to coordi-
nate. However, enforcing a parity between the number of agents and the number of mountains was a specific design choice of
Hoelzemann et al. (2024).
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players does not diminish the streetlight effect. Even in large groups, AI agents still tend to cluster around

the ruby, failing to make a breakthrough. When we ask them for explanations for this behavior, they allude

to a force that we had not previously considered and suggest a new intriguing mechanism for the streetlight

effect: social conformity. As one AI agent tells us:

“Given that 19 agents have already chosen Mountain 1 and each will receive the full value of

the gem, it indicates a common strategy to secure a known and relatively high value”.

Another AI agent concurs and expresses the same idea in slightly different terms:

The fact that many other participants have also chosen Mountain 2 reinforces the idea that it is

a preferable choice given the available information..

This mirrors other studies where conformity or emulation in group settings drives behavior (Lazer and Fried-

man, 2007; Puranam and Swamy, 2016). Sometimes, AI agents wrongly infer that the large mass of other

agents herding on the same options belies some bit of information that they have missed (Banerjee, 1992).

Whether the same dynamics would be at play with human subjects is a theoretically interesting question that

can later be tested in a laboratory with humans.11

B. Varying Choice Landscape: The next experimental mechanic that we vary is the number of mountains,

keeping the number of agents fixed. While the agents are no longer guaranteed to find a breakthrough with

coordinated search, this reflects large search spaces where agents cannot search every possibility (LiCalzi

and Surucu, 2012; Tranchero, 2024). We try running the streetlight experiment with additional mountains,

starting with ten mountains and incrementing by ten until AI agents must choose from thirty mountains at

any time. As plots ii) of Figure 4 shows, we once more find no significant change in results: AI agents

continue to cluster around the ruby. They remain unswayed by the greater (absolute) number of diamonds

(and rubies) and behave according to the original logic. If anything, exploration activity seems to even

decrease, suggesting that larger search spaces may pose an additional hindrance in coordinating individual

experimentation.

C. Varying PayoffMagnitude: The final experimental mechanic that we vary is the absolute magnitudes of

the payoffs. While the relative payoffs of the gemswere already pre-determined by the theoretical framework,

Hoelzemann et al. (2024) needed to choose the actual dollar amounts. They chose amounts below 15$ per
11It could also be that the idiosyncratic behavior of human subjects may be sufficient to unearth a breakthrough in a crowded space,
thus counteracting the tendency to herd in settings with strong social influence. This exemplifies well how GABE can lead to
uncovering interesting theoretical tensions.
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Figure 4: Changing the experimental setup using GABE

Note: This figure shows how the outcomes of the streetlight experiment change when we adjust the experimental
setup usingGABE. In Panel A, the outcome of interest is the average group earnings (as a percentage of themaximum
possible earnings). In Panel B, the outcome of interest is the mean likelihood of a breakthrough, which occurs when
at least one group member finds the diamond. In plots i), we increase the number of agents from the baseline
(5 agents) by up to 30 agents, holding the number of mountains fixed. We only focus on the medium-value data
condition. In plots ii), we increase the number of mountains from the baseline (5 mountains) by up to 30 mountains,
holding the number of agents fixed. We once more focus on the medium-value data condition. In plots iii), we
increase the dollar values of gems a millionfold. Here, we look at all four data conditions.

gem to keep the experiment affordable, but we might wonder how the intensity of the streetlight effect would

have changed if players were earning up to several millions in a given round. This would reflect search

settings with high stakes in decision-making, such as pharmaceutical innovation and venture capital (Lou

and Wu, 2021; Bhatia and Dushnitsky, 2023). Of course, this experiment would be impossible to run with

actual human subjects, since they would be entitled to keep the high earnings. But it is one we can simulate

with AI agents. We try running the streetlight experiment with the payoffs increased by a millionfold; the

results of this exercise are presented in plots iii) of Figure 4. We find similar results to the baseline. This

aligns with the theoretical framework of Hoelzemann et al. (2024), which suggests that only the relative

values of the gem should matter. To what extent this finding generalizes to humans is open to debate, as the

psychological impact of these stakes might differ, but the use of AI agents generates a reasonable prediction

that would otherwise be unattainable.
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5.2 Relaxing theoretical assumptions

The next set of extensions that we introduce relates to the underlying theoretical framework. There are two

key assumptions that are embedded in the framework: that payoffs are non-rivalrous and non-ambiguous.

This means that multiple agents who choose the same gem do not have to split the payoff, and the distribution

of gems is known from the outset. As a result, the online lab experiments were also designed with these

conditions in mind. But we might wonder how strongly the streetlight effect depends on these assumptions,

and whether we would still observe any free riding if payoffs were rival and/or ambiguous, as is often the case

in many real-world settings (Rahmandad et al., 2021). Knowing this would also give us a more complete

understanding of the conditions under which the streetlight effect is likely to emerge. This forms the basis

of our next analysis, in which we conduct an additional 1500 rounds of simulated experiments and relax

the assumptions one at a time. The baseline case (where payoffs are non-rivalrous and non-ambiguous) is

presented in plots i) of Panels A and B in Figure 5.

We first try making payoffs rival, which means that any agents who choose the same gem must split the

payoffs. The results of this exercise are shown in plots ii) of Panel A and Panel B. Strikingly, we find

that introducing rivalry leads the streetlight effect to disappear entirely. This suggests we have uncovered

a potentially important new boundary condition for the theory. It is no longer the case that agents make

the least money when the ruby is revealed (Panel A), nor do they make fewer breakthroughs (Panel B). In

general, because agents can observe the choices of other agents (thanks to the sequential order of choice),

they will explore an unchosen mountain simply to avoid splitting rents. The qualitative responses of AI

confirm these dynamics and show how competition acts as a powerful incentive for risky exploration. As

one AI agent tells us:

I chose Mountain 5 to avoid competition and potentially discover the Diamond or another Topaz,

maximizing my potential earnings by not sharing the already known Ruby value in Mountain 3

with another agent.

As a result, we also find that payoffs begin to equalize across the four conditions, although they are signifi-

cantly diminished, which is analogous to competition eliminating profits in a market.

Next, we try making payoffs ambiguous, which means we no longer inform the agents how many gems of

each kind there are from the outset. We begin by keeping payoffs non-rival. The results of this exercise are

shown in plots iii) of Panel A and Panel B. Interestingly, we continue to find strong evidence of the streetlight

effect even when we introduce ambiguity. The group payoffs (Panel A) and group breakthroughs (Panel B)
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Figure 5: Relaxing Theoretical Assumptions using GABE

Note: This figure shows how the outcomes of the streetlight experiment change when we relax key theoretical
assumptions. In Panel A, the outcome of interest is the average group earnings (as a percentage of the maximum
possible earnings). In Panel B, the outcome of interest is the mean likelihood of a breakthrough, which occurs
when at least one group member finds the diamond. Plots i) show the baseline results, where there is no rivalry or
ambiguity in payoffs. In plots ii), we introduce rivalry in payoffs, which means agents who choose the same gem do
not have to split the pay. In plots iii), we introduce ambiguity in payoffs, which means the distribution of gems is
known from the outset. In plots iv), we introduce both rivalry and ambiguity in payoffs.
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are nearly identical to the baseline: AI agents earn the least money when shown the location of the ruby, and

they almost never achieve a breakthrough. This indicates that the streetlight effect may not, in fact, depend

on prior information about the distribution of payoffs, but only about the relative value of payoffs.

Finally, we try making payoffs both rivalrous and ambiguous. This allows us to see which assumption exerts

a greater force on the behavior of AI agents, or if there is any interaction effect that results from relaxing

both assumptions. The results of this exercise are shown in plots iv) of Panels A and B. Interestingly, the

streetlight effect once more disappears entirely, and the agents behave almost identically to the case where

payoffs are rival but non-ambiguous. This suggests that rivalry exerts a much stronger force when acting

upon the participants and that, of the two, it might be the more relevant precondition. This provides an

important boundary condition that was hard to foresee before experimenting with GABE.

5.3 Manipulating agent preferences and objectives

The final set of extensions concerns the goals and preferences of agents. Hoelzemann et al. (2024) spec-

ulate that risk-aversion and other alternative decision rules could have some role to play in explaining the

experimental results, and possibly even the strength of the streetlight effect. However, studying this in an

experimental context is challenging, as varying the risk tolerance of human subjects can be impractical. In

contrast, this process becomes feasible with AI agents: one notable feature of LLMs is their ability to be

endowed with specific preferences, views, demographics, or personalities from the outset (Horton, 2023;

Aher et al., 2023), which would simply involve priming them with additional scripts. To explore whether

this is true in practice, we run an additional 1000 rounds of simulated experiments where we endow the

LLMs with different preferences.

To begin with, we try introducing higher risk tolerance. We run the baseline streetlight experiment with risk-

loving agents, startingwith one risk-loving agent and incrementing by one until all AI agents are risk-lovers.12

Since we are interested in the intensity of the streetlight effect, we once more focus only on the data condition

where the ruby is revealed. We find that exploration monotonically increases with the number of risk-loving

agents (Figure 6 Panel B), and consequently, more players are able to locate a breakthrough (Figure 6 Panel

A). To verify that the risk endowment is working as intended, we review the agents’ rationales, which are

quite instructive. As one risk-lover tells us:
12Before running this extension, we have also assessed the risk propensity of AI agents at baseline. Using the traditional Holt &
Laury task (Hoelzemann et al., 2024), we confirm research showing how AI agents based on LLM tend to be risk-neutral as the
average participant in academic lab studies (Mei et al., 2024). We also repeat the same preference elicitation task after priming AI
agents with their respective risk profiles, finding that our priming significantly changes how agents respond to the Holt & Laury
task in the expected direction.
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“Given my risk-loving nature and the information available, I choose Mountain 1. This decision

is based on the fact that the Ruby has already been found in Mountain 4, and another agent has

chosen Mountain 5. Since the Diamond has not yet been discovered and I prefer taking risks

for potentially higher rewards, I opt for Mountain 1, which has not been chosen by any other

participant and still holds the possibility of containing the Diamond.”

Interestingly, we find that when more agents are primed to take risks, the remaining agents (who were not

primed) follow suit and increase their exploration. In other words, risk tolerance can trigger an implicit

coordination process. As one non-risk-lover tells us, it makes more sense to explore when they are now

highly likely to collectively uncover the diamond:

“I choose Mountain 1 because Mountains 3, 4, and 5 have already been chosen by other par-

ticipants. Given that Mountain 2 is the only other remaining option aside from Mountain 1, I

randomly select Mountain 1.

This means the number of risk-lovers would need to grow less than proportionally to produce enough explo-

ration, a prediction we can later test in the laboratory.

Next, we try introducing pro-sociality. This time, we run the baseline streetlight experiment with pro-social

agents, starting with one pro-social agent (out of the five players) and incrementing until all five AI agents

are pro-social. We tell the primed agents they are only successful if the others choose the diamond, which

means they should try to generate information that gives the group the best chance of discovering a diamond.

We once more focus only on the data condition where the ruby is revealed. The results of this exercise are

presented in plots ii) of Panel A and Panel B in Figure 6. Like before, we see that exploration monotonically

increases with the number of pro-social agents, as does the share of agents that find the diamond. Once

again, the rationales are instructive. As one pro-social agent tells us,

“Since I am pro-social and aim to give other participants the chance to discover a diamond, I

will choose a mountain that has not been selected by others yet. All other agents have chosen

Mountain 4, which contains a ruby. To maximize the group’s potential earnings and to explore

the possibility of finding a diamond, I will choose Mountain 1.

Finally, we try introducing a taste for exploration. We run the baseline streetlight experiment with explorative

agents, starting with one explorative agent and incrementing until all AI agents are explorative. We explicitly

tell primed agents that their sole objective is to find the diamond and that they should continue exploring
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Figure 6: Incorporating Agent Preferences into GABE

Note: This figure shows how the outcomes of the streetlight experiment change when we incorporate heterogeneous
agent preferences using GABE. In Panel A, the outcome of interest is the share of agents that achieve a breakthrough
in the second period.. In Panel B, the share of agents that chose an unmapped mountain in the first period. In plots
i), we add risk-loving agents, starting with one risk-lover until all five agents are risk-loving. In plots ii), we add
pro-social agents, and in plots iii) we add agents with a taste for exploration. For all three analyses, we focus on the
medium-value data condition.

until they do so. The results of this exercise are presented in plots iii) of Panel A and Panel B in Figure 6. The

results are nearly identical to the case with risk-loving agents, and we see that exploration (unsurprisingly)

increases monotonically with the number of explorative agents.

This completes our extensions to the original streetlight experiment using GABE. A summary of the full set

of results is presented in Table 2. Before we provide further discussion, we briefly explore whether these

results were also achievable through direct elicitation using GPT-4.

5.4 Comparing GABE to Direct Elicitation

So far, we have used LLMs to simulate individual human subjects, which is analogous to the bottom-up

approach of agent-based modeling. But we might wonder if there was an easier way to achieve the same

insights and extend management theory. In particular, if LLMs are already quite advanced at performing

complex tasks, and they are only getting better over time, perhaps we can just ask an LLM to predict the
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Table 2: Summary of results using GABE

Intervention Description Rounds
(#)

Cost
($)

Hypothetical
Payment ($) Summary of findings

Baseline The original experiment with
5 players and 5 mountains 500 250 50,000 Players herd around the suboptimal

option, lowering payoffs
Extension 1: Varying the experimental setup

Varying group
size

We vary the size of groups
from 5 agents to 30 agents 150 300 60,000

No change in exploration: social
conformity reinforces the decision to herd

around suboptimal option

Varying choice
landscape

We vary the number of
mountains from 5 mountains

to 30 mountains
150 75 15,000

No change in exploration: agents
unswayed by greater number of absolute

options

Varying payoff
magnitude

We amplify gem values one
millionfold 500 250 -

No change in exploration: Streetlight
Effect depends on relative magnitudes of

payoffs
Extension 2: Relaxing theoretical assumptions

Relaxing payoff
rivalry

Agents who choose the same
gem must split the payoffs 500 250 50,000

Rivalry breaks the Streetlight Effect:
agents no longer exhibit herding and

want to avoid splitting payoffs

Relaxing payoff
ambiguity

We no longer inform the
agents how many gems of

each kind there are.
500 250 50,000

No change in exploration: Streetlight
Effect does not depend on prior
information about distribution

Relaxing payoff
rivalry and
ambiguity

Agents must split payoffs,
and we no longer inform
agents of the distribution

500 250 50,000
Rivalry exhibits a greater force than
ambiguity, continuing to break the

Streetlight Effect
Extension 3: Manipulating agent preferences

Incorporating
risk-aversion

Some portion of the group is
now risk-loving, varying from

1 agent to all 5 agents.
500 250 50,000

Risk aversion breaks the Streetlight
Effect - exploration increases with the

number of risk-lovers

Incorporating
pro-sociality

Some portion of the group is
now pro-social, varying from

1 agent to all 5 agents.
250 125 25,000

Pro-sociality breaks the Streetlight Effect
- exploration increases with the number

of pro-social agents

Incorporating
explorativeness

Some portion of the group is
now explorative, varying from

1 agent to all 5 agents.
250 125 25,000

Explorativeness breaks the Streetlight
Effect - exploration increases with the

number of explorative agents
Total 3800 2125 $375,000 (Excludes payoffs from amplified case)

Note: This table provides an overview of all the results from this study. Column 1 lists the extensions we introduce.
Column 2 provides a description of each extension. Column 3 indicates the number of rounds simulated. Column
4 shows the approximate total cost in GPT-4 credits as of July 2024. Column 5 highlights the amount we would
have needed to pay to human subjects. Column 6 summarizes the key result. Row 2 covers the baseline replication
of the original lab experiment. Rows 4-6 cover changes in the experimental setup. Rows 8-10 cover key theoretical
assumptions being relaxed. Rows 12-14 cover heterogeneous agent preferences being introduced.

outcomes of the experiments outright (Horton, 2023). Not only could it provide point estimates, but the

LLM could also explain its reasoning, which could then be used to verify the results and potentially even

explore underlying mechanisms. If this were true, the researchers would save themselves even more time,

effort, and resources than if they were to simulate experiments using GABE. Of course, this depends entirely

on the ability of language models to accurately predict the outcomes of complex social interactions.

To explore the extent to which this is currently feasible, we tasked GPT-4 with predicting the outcomes of

the baseline streetlight experiment. The results of this exercise are presented in Appendix Table B3. We

find that while direct elicitation can sometimes produce reasonable predictions, the overall accuracy of these

predictions remains modest at best. More importantly, GPT-4 fails to grasp the core mechanisms underlying
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the theory and consequently misses the subtle (but core) insight that more data is not always better. It is

also clear that using AI agents per the GABE framework outperforms direct elicitation in replicating the

original experiment, which lends further support to our bottom-up methodology. Finally, we confirm that

the predictions of GPT-4 also do not align with the results of GABE for several of the extensions that we

ran.

6 Discussion

In this study, we have shown how Generative AI-Based Experimentation (GABE) can be a powerful tool

for extending management theory. Firstly, we validate that LLMs can closely approximate human behavior

in strategic group settings. In our replication of the lab experiment in Hoelzemann et al. (2024), AI agents

showed a similar tendency to cluster around safer but sub-optimal choices. This demonstrates GABE’s po-

tential to extend the theory of the streetlight effect by simulating exploratory experiments. More importantly,

we actively implement several of these extensions. We first demonstrate the ease with which GABE enables

modifications to the experimental setup, such as group sizes, the choice landscape, and payoff magnitudes.

Then, we show how GABE can be used to relax underlying theoretical assumptions, such as payoff rivalry

and ambiguity. Finally, we demonstrate how to incorporate heterogeneous preferences using GABE, prim-

ing individual AI agents to be risk-averse, pro-social, or have a taste for adventure. By leveraging LLMs’

language generation capabilities to interpret these simulations in the appropriate manner, we uncover in-

triguing new mechanisms, like social conformity and emulation, as well as plausible boundary conditions,

like rivalry and widespread risk aversion.

These findings from the streetlight experiment provide compelling proof of concept for using GABE to

extend management research. Nevertheless, we expect GABE to have broader applicability, and expand-

ing the list of use cases remains a promising avenue for further research. While our focus has been on

organizational search and strategic exploration, other social phenomena are equally ripe for investigation.

For instance, researchers could use GABE to deepen our understanding of large-scale discrimination. This

might entail creating AI-managed organizations and having them evaluate candidate resumes, mimicking

previous audit studies. As in this study, researchers could then implement various extensions, like manipu-

lating applicant attributes to identify subtle biases that would be costly and time-consuming to detect with

human participants. There may also be significant potential to use GABE to simulate field experiments.

For instance, researchers could use GABE to model interactions between authentic economic agents (e.g.,

farmers, traders, and consumers), allowing researchers to explore the impact of field interventions (e.g., sub-
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sidies, pricing strategies, or market conditions) prior to real-world implementation. The more studies of this

kind are conducted, the better we will understand both the unique strengths of the GABE framework, as well

as its inherent limitations.

At the same time, we recognize this vision will require sufficient future engagement with GABE from the

management research community. As of now, the lack of familiarity with transformer-based languagemodels

and the significant technical barriers to entry may hinder such engagement. Therefore, in future work, we

hope to directly address this gap. While the engine that we programmed to implement the GABE framework

is specifically designed for the experiments presented in this paper, it will become necessary to develop more

standardized tools and protocols that can be easily adapted by other researchers to study a wider range of

settings. With this in mind, we plan to release software that automates the process of simulating multi-agent

strategy experiments for researchers who are mostly unfamiliar with LLMs. This should help to significantly

increase broader engagement with GABE from the management community.

Our hope is that this framework marks a meaningful step forward in integrating generative AI into manage-

ment research, moving beyond conventional uses of LLMs such as data processing and scientific writing. By

enabling researchers to simulate complex social interactions at a fraction of the time and cost of traditional

experiments and using AI agents that are more verbally responsive than traditional simulation methods,

GABE has the potential to improve the way management scholars approach the stage of theory develop-

ment. While much work remains to be done, the findings from our study suggest that AI agents can serve as

a powerful catalyst for advancing our understanding of strategic interactions in large-scale social systems.
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A Deeper Dive Into Generative-AI Based Experimentation (GABE)

A.1 Key Parameters for Experiments

Environment: The researcher must specify the common set of conditions that the agent encounter during
an in silico experiment. The following conditions are especially relevant to strategic management:

1 Choice landscape: The array of options available to all agents. With GABE, the computational
environment could theoretically support an unlimited number of choices.

2 Payoff structure: The magnitude of rewards associated with each choice in a given choice landscape.
With GABE, the computational environment could theoretically support unlimited combinations of
earning schedules. Researchers can also easily add other complex dynamics, like variable rewards or
payoff rivalry.

3 Spatial features: The physical layout of the experiment, including the positions of agents. With
GABE, the computational environment supports highly tunable search landscapes that might capture
the spatial features usually represented in NK models (Kauffman, 1992; Levinthal, 1997).

4 Information set: The degree to which the elements above are common knowledge. For instance,
agents may know the options available, but not the payoffs associated with each option.

Agents: The researcher must also specify the number of agents and the characteristics of each agent. Agents
may differ in the following ways:

1 Goals: Each agent may have a different objective or set of preferences. For example, agents can be
explicitly instructed to profit-maximize or to be pro-social and value collective welfare in their deci-
sions. Alternatively, the agents can be assigned specific roles, which might contain implicit objectives
that the language model needs to infer. For example, a “student agent” might focus on maximizing
learning, while a “firm agent” might choose to maximize profits.

2 Capabilities: Each agentmay have a different set of capabilities or resources to achieve their objective.
For instance, an agent might incur lower costs when carrying out certain actions as a result of their
skills, or a firm might have slack resources to invest in certain opportunities.

3 Action space: Each agent may be able to take a different course of action at any given point in time.
This may dynamically change over the experiment, perhaps as a result of learning, or it could vary by
agent as a function of their capabilities.

Decision rules: The researcher must specify how decisions are made by agents. There are two primary
methodologies they can choose from:

1 Sequential decision-making: Agents are allotted a “turn” to make their decision. After each turn, the
state space is updated and the experiment proceeds until a predetermined endpoint has been reached.
The researcher would need to decide how turns are allotted, e.g., using a random order or perhaps
having an independent LLM interact with each agent, and then decide (Manning et al., 2024).

2 Simultaneous decision-making: Agents take actions at the same time within a round. After each
round, the state space is updated and the experiment proceeds until a predetermined endpoint has
been reached. The researcher would simply need to decide the number of rounds (Huang et al., 2024).
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Communication channels: The researcher must decide whether the AI agents can speak with each other
during the course of the experiment (or engage in other forms of interaction, such as trading). This func-
tionality must be programmed into the engine but remains feasible with LLMs (Xu et al., 2023).

Outcomes: The researcher must specify which outcomes to record as a function of the research question
and the theoretical constructs explored.

1 Quantitative data: This includes participant choices, their earnings as a function of collective de-
cisions, the time or effort taken to make a decision, or any other measurable outcome. The engine
is also able to calculate more complex corollary measures. This data could then be analyzed using
traditional econometric techniques for rigorous inference.

2 Qualitative responses: This primarily includes the explanations that AI agents provide for their deci-
sions, but could include anything in light of LLMs’ language comprehension and generation capabil-
ities (e.g. their subjective experiences navigating a certain environment). Collecting these responses
is essential for eliciting mechanisms (see section 2.2), as well as for verifying the experiments are
working as intended (e.g. seeing whether an agent is embodying an assigned role).

Interventions: These are isolated changes to any element of the game environment or the agents themselves.
With GABE, it becomes possible to pull levers that are not normally available in real-world lab experiments,
such as manipulating an agent’s preferences or tolerance for risk. Once all the building blocks have been
specified, the researcher can begin simulating the experiment, adjusting one element at a time and tracing
how the outcomes of interest evolve.

A.2 Excerpt of Script Given to AI Agents

Welcome. This is an experiment in the economics of decision-making. If you pay close attention to these
instructions, you can earn a significant amount of money paid to you at the end of the experiment. Following
these instructions, you will be asked to make some choices. There are no correct choices. Your choices
depend on your preferences and beliefs, so different participants will usually make different choices. You
will be paid according to your choices, so read these instructions carefully and think before you decide.\n”,

”The Basic Idea:\n”,

”There are {len(MOUNTAINS_DISTRIBUTION)} mountains and each of them hides one type of gem,
which can only be found by exploring the mountain. There are 3 types of gems hidden in the {len(MOUN-
TAINS_DISTRIBUTION)} mountains: Diamonds, Rubies, and Topazes. The exact values of the topazes,
rubies, and diamonds vary across rounds but the diamonds are always worth more than the rubies and the
rubies are always worth more than the topazes. You choose which mountains to explore and the value of the
gems you find are your earnings in dollars. Your objective is to maximize your own earnings.\n”,

”The Mapped Mountain:\n”,

”At the beginning of each round, one mountain will be randomly selected to be mapped and its gem value
will be revealed to all participants. Each participant will be able to see the same gem contained by the
mountain. The mountain chosen for mapping is random and changes in each round. Besides the value of the
mapped mountain, no participant has any other initial information in Stage 1 on the location of gems.\n”,

”How Participants Choose Mountains:\n”,

”There are {len(agent_ids)} participants including you in total. In each round, participants choose which
mountain to explore. The choice does not happen simultaneously, but participants choose sequentially, one
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after the other, according to a random order. You can choose to explore any mountain you wish or select
the mapped mountain. If you choose the same mountain chosen by other participants, each of you will
receive the full value uncovered. Similarly, if someone else chooses the same mountain that you previously
chose, you will still receive the full gem’s value (and so will the other participant(s) who chose it). This
means that payoffs are non-rival and there is no penalty in choosing the same mountain as other players. To
repeat, no participant has any private information in Stage 1 on the location of the gems, besides the common
knowledge about the mapped mountain.\n”,

”Each Round Has 2 Stages:\n”,

”A round consists of 2 stages. At the beginning of a new round, gems are randomly allocated to the
{len(MOUNTAINS_DISTRIBUTION)} different mountains. The position of gems will not be reset be-
tween the two stages in a round. Then, before Stage 1 begins, one mountain will be mapped and its value
revealed to everyone. In Stage 1, all participants sequentially choose one mountain to explore. Before choos-
ing a mountain, you will see which mountains have been selected by the other participants in your group who
chose before you. You can choose the same mountain chosen by other participants or a different mountain.
At the end of Stage 1, the gems hidden in each mountain selected by all participants in Stage 1 are revealed,
and you earn the value of the gem hidden in the mountain you chose. In Stage 2, you can again choose
any of the same {len(MOUNTAINS_DISTRIBUTION)} mountains; that is, you can either choose the same
mountain of Stage 1 or switch to another one. The position of gems remains the same as in Stage 1, but
this time you will also see the gems located in the mountains revealed in Stage 1 in addition to the mapped
mountain. At the end of Stage 2, the gems hidden in each mountain selected by all participants in Stage 2
are revealed, and you earn the value of the gem hidden in the mountain you chose in Stage 2. Your total
earnings for the round equal the sum of the value of the gem you found in Stage 1 and the value of the gem
you found in Stage 2. Again, if multiple players choose the same mountain, they all receive its full value.\n”,

”Payment:\n”,

”At the end of the round, you will be paid an amount equivalent to the sum of payoffs you earned in Stage 1
and Stage 2. This protocol of determining payments suggests that you should choose in each Stage knowing
that your choice directly determines your payment because the dollar value of the gems you select will
directly translate into your earnings. \n”
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B Additional Figures and Tables

Figure B1: Number of unknown mountains chosen in period 1 by human subjects

(i) No-data condition (ii) Low-value condition

(iii) Medium-value condition (iv) High-value condition

Note: Each plot represents the empirical frequencies of rounds for each possible number of unknown options chosen in period 1,
shown separately by experimental condition. The text written on top of each bar shows the share of participants who found the
maximum payoff in period 2. The figure is reproduced with permission from Hoelzemann et al. (2024).
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Figure B2: Number of unknown mountains chosen in period 1 by AI agents (baseline)

(i) No-data condition (ii) Low-value condition

(iii) Medium-value condition (iv) High-value condition

Note: Each plot represents the empirical frequencies of rounds for each possible number of unknown options chosen in period 1,
shown separately by experimental condition. The text written on top of each bar shows the share of participants who found the
maximum payoff in period 2.
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Table B1: Quantitative results of experiment with human subjects

Panel A: Round-level Outcomes

Individual payoff I(Individual found max) I(Group found max)
(1) (2) (3)

High 6.682∗∗∗ 0.039∗∗ 0.003
(0.143) (0.011) (0.006)

Low 0.889∗∗∗ 0.037∗∗ 0.006
(0.096) (0.011) (0.007)

Medium -2.261∗∗∗ -0.645∗∗∗ -0.539∗∗∗
(0.214) (0.028) (0.039)

Constant 13.349∗∗∗ 0.968∗∗∗ 1.012∗∗∗
(0.163) (0.018) (0.020)

Round order FE Yes Yes No
Block order FE Yes Yes Yes
Payoff structure FE Yes Yes Yes
Observations 7000 7000 1400

Panel B: Analysis of Mechanisms

Exploration Individual payoff I(Individual found max) I(Group found max)

Round Period 1 Period 2 Period 1 Period 2 Period 1 Period 2
(1) (2) (3) (4) (5) (6) (7)

High -75.059∗∗∗ 6.499∗∗∗ 0.191∗ 0.784∗∗∗ 0.037∗∗ 0.310∗∗∗ 0.003
(1.770) (0.097) (0.073) (0.008) (0.011) (0.015) (0.006)

Low 5.744∗∗∗ 0.664∗∗∗ 0.225∗∗ 0.055∗∗∗ 0.036∗∗ 0.122∗∗∗ 0.006
(1.300) (0.074) (0.062) (0.007) (0.011) (0.020) (0.007)

Medium -34.130∗∗∗ 1.251∗∗∗ -3.511∗∗∗ -0.134∗∗∗ -0.644∗∗∗ -0.444∗∗∗ -0.539∗∗∗
(2.450) (0.122) (0.142) (0.007) (0.027) (0.029) (0.039)

Constant 83.977∗∗∗ 3.610∗∗∗ 9.717∗∗∗ 0.187∗∗∗ 0.963∗∗∗ 0.752∗∗∗ 1.012∗∗∗
(2.045) (0.104) (0.117) (0.008) (0.018) (0.018) (0.020)

Round Order FE No Yes Yes Yes Yes No No
Block order FE Yes Yes Yes Yes Yes Yes Yes
Payoff structure FE Yes Yes Yes Yes Yes Yes Yes
Observations 1400 7000 7000 7000 7000 1400 1400

* p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease class level in parentheses.
Estimates from OLS models. In Panel A, the sample in Columns 1 and 2 is at the participant-round level (5 par-
ticipants × 1400 rounds). The sample in Column 3 is at the group-round level (1400 rounds). Individual payoff=
participant-level round payoffs in Canadian dollars; I(Individual found max):0/1=1 if the location of the maximum
was found by the participant; I(Group found max):0/1=1 if the location of the maximum was found by at least one
participant in the round. The excluded category captured by the constant is the condition without data.

In Panel B, the sample in Column 1 is at the group-round level (1400 rounds). The sample in Columns 2, 3, 4, 5
is at the participant-period level (5 participants × 1400 periods of each type). The sample in Columns 6 and 7 is
at the group-period level (1400 periods of each type). Exploration= share of unknown mountains explored in the
round; Individual payoff= participant-level period payoffs in Canadian dollars; I(Individual found max):0/1=1 if the
location of the maximum was found by the participant in the period; I(Group found max):0/1=1 if the location of
the maximum was found by at least one participant in the period. The table is reproduced with permission from
Hoelzemann et al. (2024).
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Table B2: Quantitative results of experiment with AI agents (baseline)

Panel A: Round-level Outcomes

Individual payoff I(Individual found max) I(Group found max)

(1) (2) (3)

High 6.777∗∗∗ 0.022∗∗∗ -0.001
(0.183) (0.007) (0.002)

Low 0.067 -0.011 0.000
(0.207) (0.008) (0.002)

Medium -1.805∗∗∗ -0.964∗∗∗ -0.969∗∗∗
(0.182) (0.008) (0.017)

Constant 15.423∗∗∗ 0.978∗∗∗ 1.000∗∗∗
(0.176) (0.007) (0.001)

Round order FE Yes Yes No
Payoff structure FE Yes Yes Yes
Observations 2500 2500 500

Panel B: Analysis of Mechanisms

Exploration Individual payoff I(Individual found max) I(Group found max)

(1) (2) (3) (4) (5) (6) (7)
Round Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

High -100.000∗∗∗ 6.569∗∗∗ 0.208∗∗∗ 0.802∗∗∗ 0.040∗∗∗ 0.010 0.000
(0.085) (0.183) (0.049) (0.018) (0.009) (0.010) (0.002)

Low -0.100 0.077 -0.009 0.007 -0.006 0.002 0.000
(0.115) (0.205) (0.057) (0.021) (0.011) (0.012) (0.001)

Medium -98.250∗∗∗ 2.258∗∗∗ -4.063∗∗∗ -0.196∗∗∗ -0.946∗∗∗ -0.980∗∗∗ -0.970∗∗∗
(0.806) (0.179) (0.060) (0.018) (0.010) (0.014) (0.017)

Constant 100.000∗∗∗ 4.531∗∗∗ 10.892∗∗∗ 0.198∗∗∗ 0.960∗∗∗ 0.990∗∗∗ 1.000∗∗∗
(0.049) (0.176) (0.049) (0.018) (0.009) (0.010) (0.001)

Round order FE No Yes Yes Yes Yes No No
Payoff structure FE Yes Yes Yes Yes Yes Yes Yes
Observations 500 2500 2500 2500 2500 500 500

* p < 0.05, ** p < 0.01, *** p < 0.001. Standard errors clustered at the disease class level in parentheses.
Estimates from OLS models. In Panel A, the sample in Columns 1 and 2 is at the participant-round level (5 par-
ticipants × 500 rounds). The sample in Column 3 is at the group-round level (500 rounds). Individual payoff=
participant-level round payoffs in Canadian dollars; I(Individual found max):0/1=1 if the location of the maximum
was found by the participant; I(Group found max):0/1=1 if the location of the maximum was found by at least one
participant in the round. The excluded category captured by the constant is the condition without data. See text for
more details.

In Panel B, the sample in Column 1 is at the group-round level (500 rounds). The sample in Columns 2, 3, 4, 5
is at the participant-period level (5 participants × 500 periods of each type). The sample in Columns 6 and 7 is
at the group-period level (500 periods of each type). Exploration= share of unknown mountains explored in the
round; Individual payoff= participant-level period payoffs in Canadian dollars; I(Individual found max):0/1=1 if the
location of the maximum was found by the participant in the period; I(Group found max):0/1=1 if the location of
the maximum was found by at least one participant in the period.
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Table B3: Comparing GABE to direct elicitation

Mean group payoff (%) Mean group breakthrough (%)
Configuration Data Rivalry Ambiguity Humans AI Agents Prediction Humans AI Agents Prediction

1 None

FALSE FALSE

68 69 75 99 100 80
2 Low 72 70 62 100 100 80
3 Medium 58 61 75 46 3 80
4 High 98 100 95 100 100 100
5 None

TRUE FALSE

- 38 45 - 100 40
6 Low - 37 62 - 100 80
7 Medium - 37 75 - 100 40
8 High - 34 75 - 100 100
9 None

FALSE TRUE

- 69 50 - 99 20
10 Low - 69 62 - 100 40
11 Medium - 62 62 - 5 40
12 High - 100 75 - 100 100

Note: This table shows the results when we try asking GPT-4 to predict the outcomes of the Streetlight experiment.
Column 1 lists the specific prediction task. Column 2 lists the data condition. Columns 3 and 4 list which theoretical
assumptions apply. Column 7 shows GPT-4’s direct prediction for the average group earnings (as a percentage of
the maximum possible earnings). This is compared with the outcomes derived using human subjects (Column 5)
and using AI agents (Column 6). Similarly, Column 10 shows GPT-4’s direct prediction for the mean likelihood
of a breakthrough, which occurs when at least one group member finds the diamond. This is compared with the
outcomes derived using human subjects (Column 8) and using AI agents (Column 9). In Rows 1-4, we show the
predictions for the baseline replication. In Rows 5-8, we show the predictions for the extension where we introduce
payoff rivalry. In Rows 5-8, we show the predictions for the extension where we introduce payoff ambiguity.
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