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Abstract

We use a controlled experiment to show that ability and belief calibration jointly
determine the benefits of working with Artificial Intelligence (AI). AI improves
performance more for people with low baseline ability. However, holding ability
constant, AI assistance is more valuable for people who are calibrated, meaning
they have accurate beliefs about their own ability. People who know they have low
ability gain the most from working with AI. In a counterfactual analysis, we show
that eliminating miscalibration would cause AI to reduce performance inequality
nearly twice as much as it already does.

1 Introduction

In the future, many workers will use AI tools. How will these tools a↵ect productivity

and inequality in the labor market? Broadly speaking, AI is trained on a vast corpus

of human examples and can perform a variety of tasks at, or near, the level of human

experts. But AI rarely outperforms the best humans, and workers can complement AI

both with contextual knowledge and the ability to deal with atypical examples. In this

paper we propose that complementarities between workers and AI tools will be greatest

when workers have an accurate appraisal of their own abilities.

We show that workers with well-calibrated beliefs make better use of AI assistance.

Calibrated beliefs are those that are aligned with objective likelihoods. For example, when

∗Caplin, Li, and Ye: New York University; Deming and Weidmann: Harvard University; Martin: Uni-
versity of California, Santa Barbara; and Marx: Louisiana State University. We thank the Sloan Foun-
dation for supporting this research under the “Cognitive Economics at Work” grant. IRB approval from
the University of California, Santa Barbara. Preregistration: https://aspredicted.org/pm63-gvdv.pdf.
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90% sure, a calibrated person is correct 90% of the time.1 Belief calibration is important

regardless of the AI’s capabilities. Consider the case of an AI that provides assistance

to workers who are making some prediction about a future event, such as whether a

financial transaction is fraudulent or whether a person will reo↵end if released on bail.

If the AI’s prediction is very poor, under-confident workers will defer too much even if

they have better information. If the AI’s prediction is extremely accurate, overconfident

workers will override it when they should defer, limiting the scope of their gains from AI

assistance (Ho↵man, Kahn and Li, 2018).

In this paper, we introduce an experimental framework to measure both ability and

calibration and their impact on the gains from AI assistance. To measure these character-

istics properly we must elicit probabilistic assessments from a large sample of participants

in a task with clear ground truth and with an appropriate level of task di�culty relative

to a calibrated AI.

We ask 732 experimental participants to report the likelihood that 160 di↵erent people

in photographs are over 21 years of age. Some participants are randomly assigned an AI

assistant that provides them with an algorithmic confidence score. The AI assistant is

more accurate than the average person but less accurate than the best person, a fact that

is known to participants. Treatment group participants receive AI assistance for only

some images, which allows us to estimate baseline ability at the task. We also measure

general cognitive ability by administering a short form of the Ravens matrices test.

We find that AI assistance improves prediction accuracy on average and with heteroge-

neous impacts across individuals. We present three main findings addressing the question

of ‘who benefits?’. First, the impact of AI assistance depends on whether participants

are calibrated about their own abilities. Holding baseline ability fixed, a one standard

deviation increase in calibration increases the average treatment e↵ect of AI assistance

by 20 percent.

Second, we find that participants with high calibration and low ability gain the most

from working with AI. This is consistent with finding that AI closes the performance gap

1For a review of literature on belief calibration and systematic departures, see Benjamin (2019).
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between lower performers and their more expert peers (Brynjolfsson, Li and Raymond,

2023; Noy and Zhang, 2023; Autor, 2024).

Third, we find that miscalibration limits the extent to which AI assistance can reduce

performance inequality. In a counterfactual analysis where miscalibration is eliminated,

the productivity gap (captured by interquartile ratio, a measure of spread) would shrink

nearly twice as much as it does already with the introduction of AI assistance. The

reason is that low-ability participants also tend to be more miscalibrated, which limits

the benefits from working with AI.

Our results build on several findings from the literature on AI and labor market in-

equality. First, we contribute to the growing evidence in labor economics that, in many

cases, AI tools increase average productivity and reduce disparities in output between

high-skilled and low-skilled workers (Gruber et al., 2020; Brynjolfsson, Li and Raymond,

2023; Noy and Zhang, 2023; Merali, 2024; Choi, Monahan and Schwarcz, 2023). For ex-

ample, Gruber et al. (2020) find that giving health insurance brokers AI-based decision

support improves retiree choices by $278 on average and decreases performance hetero-

geneity among brokers. Our findings replicate these empirical patterns and highlight a

potential mechanism – belief calibration – that may be important in understanding who

benefits from AI adoption.

Second, we extend the experimental literature examining the way in which AI advice

influences human decision-making (Dietvorst, Simmons and Massey, 2015; Green and

Chen, 2019; Tejeda et al., 2022; Dargnies, Hakimov and Kübler, 2024). Green and Chen

(2019) provide an early example of work exploring calibration and AI assistance. They

show that in the context of making predictions about loan defaults and court appearances,

Mechanical Turk participants working with AI were not able to e↵ectively evaluate either

the accuracy of algorithmic risk assessments or their own predictions.2 In an experimental

study of the e↵ects of gender on hiring decisions, Dargnies, Hakimov and Kübler (2024)

find that more confident participants (as measured by how often they thought they hired

the best performer) were less likely to completely override their choices with AI-generated

2Broader motivation for studying belief calibration is provided by an extensive literature on over-
confidence as a general trait (e.g., Moore and Healy (2008)).
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ones than under-confident participants. Closer to our task, Tejeda et al. (2022) ask par-

ticipants to classify fuzzy versions of images from the ImageNet database with the aid of

AI recommendations. They present a hierarchical Bayesian framework that incorporates

multiple factors, including decision-makers’ confidence in their classifications, and use this

framework to infer that participants are more likely to accept AI recommendations when

they are not confident about their decision but the AI is highly confident.

Last, our findings build directly on Agarwal et al. (2023), who randomly o↵er AI

assistance to radiologists after asking them to report their confidence in an estimate

of how likely chest radiographs were to exhibit di↵erent pathologies.3 They find that AI

assistance does not improve performance, even though the AI is more accurate than about

75 percent of radiologists in their sample. They provide evidence that this is not because

the radiologists ignore the AI assistance and that this occurs because they incorrectly

combine information across predictions. Importantly, they find evidence of significant

heterogeneity in participants’ use of AI, which is consistent with our results.

Overall, mounting evidence suggests that AI adoption has heterogeneous impacts

across individuals. The primary contribution of our paper is to examine whether this

heterogeneity is a function of measurable, individual di↵erences in skills. Using a care-

fully controlled experiment, we examine the extent to which di↵erences in AI value-add

are driven by ability and belief calibration (the ‘ABCs of who benefits’).

The paper is structured as follows. Section 2 introduces a minimal conceptual frame-

work to define our main measures of ability, beliefs, and calibration, and to discuss the

measurement challenges contained therein. Section 3 discusses the experimental design

and participant pool, while Section 4 discusses our empirical strategy. Section 5 presents

our experimental analysis and results. Section 6 concludes with a discussion.

3To accurately assess individual di↵erences in ability and calibration, we amend the experimental de-
sign in Agarwal et al. (2023) in two ways. First, we ask people to perform a very simple task that does not
require specialized training, so that we can collect data on many individuals. Second, we gather enough
assessments from each person to estimate individual ability (e.g. percent of faces identified correctly) as
distinct from calibration (e.g. knowing how accurate one is at identifying faces). In combination with the
randomization of AI assistance, these individual-level measurements allow us to estimate heterogeneous
treatment e↵ects as a function of heterogeneous baseline skills.
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2 Ability, Beliefs, and Calibration

2.1 Measures

Each individual decision-maker i faces a number of binary classification task instances

! 2 ⌦ = [0, 1] for which we elicit probabilistic beliefs Bi(!) 2 [0, 1], henceforth encoded

in random variable Bi. True states across task instances are summarized by a random

variable S 2 {0, 1} with balanced prior E[S] = 1/2. We use the relationship between

an individual’s beliefs Bi and the true states S to define a simple measure of both the

individual’s ability – what they know – and calibration – how well they know what they

know.

For ability, define a random variable summarizing whether beliefs would have induced

correct choices at a decision threshold of 50%:

Ri =

8
><

>:

1 if |Bi � S| < 0.5

0.5 if Bi = 0.5

0 else,

and define the individual’s ability as the expected accuracy of such choices:

Ai = E[Ri] (1)

For calibration, define a random variable summarizing the confidence of beliefs over each

image:

Ki = max{Bi, 1� Bi},

and define the individual’s net confidence as the expected di↵erence between their confi-

dence and correctness:

Ni = E[Ki �Ri]

If correctness exceeds confidence Ni < 0, we say that an individual is under-confident;

if confidence exceeds correctness Ni > 0, we say that an individual is over-confident. In

either case, the larger the di↵erence between perceived and actual performance, the less

an individual’s beliefs are calibrated. We capture this notion by defining the individual’s

calibration as the negative absolute value of their net confidence:

Ci = �
��E[Ri �Ki]

�� (2)
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Empirically, an individual is calibrated if, say, expressing 75% confidence in their classifi-

cations, they are also correct 75% of the time. Alternatively, calibration could be further

disaggregated across bins of an individual’s confidence (DeGroot and Fienberg, 1983) or

estimated parametrically (Grether, 1980); in Appendix A.4 we show that our results are

robust to such alternative definitions of calibration and to alternative definitions of ability,

such as the Area Under the Receiver Operator Characteristic Curve, or AUC (Bamber,

1975; Hanley and McNeil, 1982).

Our main question is how ability and calibration relate to the ability to incorporate AI

advice. In contrast to human decision makers, we ensure that the AI model’s probabilistic

predictions, which we denote by M , are calibrated. Working with the AI, individual i

observes and integrates the AI predictions M before reporting their AI-augmented sub-

jective beliefs B̄i, which determine AI-augmented ability Āi as in (1) and calibration C̄i

as in (2).4 If the human benefits from the AI but also does not repeat its predictions

M wholesale, we expect that both B̄i 6= Bi and B̄i 6= M . Our main prediction is that

conditional on their individual ability Ai, individuals who are more calibrated will benefit

more from working with AI in terms of their AI-augmented ability Āi.

2.2 Causal Framework

We now embed our main prediction into a standard causal framework. In a random subset

of task instances we call the control block, all individuals work without AI assistance. We

estimate individual skills Ai and Ci for each individual i using plug-in estimators of the

respective definitions (1) and (2) in the control block of task instances. In the remaining

subset of task instances we call the treated block, we randomly assign as treatment Ti 2

{0, 1} whether human i worked with or without AI assistance. To distinguish outcomes

from skills, we adopt standard potential outcomes notation and let Yi(0) = Ai denote

individual i’s performance if (potentially) assigned to work alone, let Yi(1) = Āi denote

individual i’s performance if assigned to work with AI, and let Yi = Yi(Ti) denote the

observed outcome given treatment status. We estimate individual performance Yi for

4We adopt the convention that a bar indicates an analogous term as defined before, but when working
with AI.
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each individual using a plug-in estimator of (1) in the treated block of tasks.

The treatment e↵ect Yi(1) � Yi(0) is the change in performance for human i from

working with AI. Our research question is predicated on the possibility that the e↵ects

of working with AI are heterogeneous across individual skill types, i.e., that E[Yi(1) �

Yi(0)|Ai = a, Ci = c] varies in (a, c). Specifically, our main prediction is that the e↵ect

is increasing in calibration c given ability a. The conditioning on ability is important,

since the net confidence underlying calibration (2) is a linear function of accuracy. We

aggregate such e↵ects in a linear regression model:

Yi = ↵0 + ↵1Ai + ↵2Ci + �0Ti + �1AiTi + �2CiTi + "i, (3)

Our main prediction then is that the coe�cient �2 on the interaction of calibration and

treatment is significant and positive.

2.3 Measurement Challenges

Our experiment will allow us to estimate individual ability and calibration from observed

beliefs, working with or without AI. Nevertheless, estimation and use of these measures

raise several challenges. For each participant we need to elicit a large number of proba-

bilistic beliefs to estimate ability and calibration skills and to reduce measurement error

therein. We need to do so in a task with (i) a clear, objective ground truth, and (ii) an

appropriate perceived and actual di�culty, so that the distribution of probability reports

and latent beliefs is not skewed toward extremes. Our focus on treatment e↵ect hetero-

geneity requires this for a large sample of participants and is furthermore predicated on

the presence of heterogeneity in subjects’ calibration, conditional on their ability. Addi-

tionally, for working with an AI, we need AI predictions to be well-calibrated over the

selected images and to be of a suitable diagnostic ability. We next describe our experi-

mental design for surmounting these challenges, beginning with the experimental task.
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3 Experimental Design

3.1 The Task

In each round of our experiment, participants were presented with an image of a human

face and were asked to report the probability that the individual was over 21 years old

at the time the image was taken. Participants were informed that all images were taken

between 2010 and 2014, with half of the images depicting individuals who were under

21 years old and the other half depicting individuals over 21 at the time the image was

taken.5

In half of the rounds, participants in the treatment group were also shown an “AI

Assistant guess,” which was an AI prediction of whether the individual was over 21 (a

percentage between 0 and 100). Participants were told that the AI Assistant guesses were

more accurate than the average human, but worse than the most skilled human. See the

Appendix for screenshots of choices with and without AI predictions.

3.2 Implementation

We recruited participants from Prolific, a popular platform for conducting online experi-

ments. Prolific requires participants to be at least 18 years old, and we further restricted

participants to be U.S. residents. In the recruitment material, participants were told that

they would be given $5 as a participation fee if they finished the experiment and that

they could receive additional bonus payments based on their choices in the experiment.

After being shown a consent form that outlined the basic conditions of the experiment,

each participant was asked whether they would like to participate. Our experiment was

deemed exempt from the Federal Regulations at 45 CFR 46.101(b) by the Human Subjects

Committee at the University of California, Santa Barbara (protocol number 11-22-0691).

Upon agreeing to participate, participants answered two unincentivized questions as an

attention check. Participants had only one chance to answer these questions correctly to

proceed with the rest of the experiment.

5To avoid confusion, we excluded images in which the individual could have been exactly 21 years old.
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The rest of the experiment began with several pages of instructions, which provided

an estimate of the session length (30-35 minutes), the possible bonus payments ($5 and

$1), an explanation of the task they would complete in each round, the total number of

rounds (160), and how the bonus payments would be awarded. To incentivize the truthful

reporting of beliefs in the task, we used the same incentives provided by Agarwal et al.

(2023). A random round was selected (all were equally likely to be selected), and based

on the reported probability and true age, the binarized scoring rule (Hossain and Okui,

2013) was used to determine the probability of getting the $5 bonus payment. Following

Danz, Vesterlund and Wilson (2022), we provided few details about the scoring rule but

indicated that the likelihood of receiving the bonus was maximized by truthful reporting

of their belief in each round.

After the experimental instructions, participants completed four unincentivized prac-

tice rounds. Participants were not provided with any feedback about their choices or

the true age of the individual during the practice rounds. After the practice rounds,

participants faced 160 incentivized rounds, divided into eight blocks of 20 rounds each.

There were opportunities to pause between blocks, which was intended to mitigate fatigue

e↵ects. Participants were also not provided feedback during the incentivized rounds.

In these rounds, participants were provided with a slider bar that ranged from 0 to

100 for reporting the probability that the person in the image was over 21 years old. To

minimize anchoring e↵ects, the slider bar did not have a starting location. Participants

could click anywhere on the bar to select a probability and adjust it before clicking the

submit button to record their choice and proceed to the next round. They could not go

back to previous rounds once the submit button was pressed, and they were given a time

limit of 60 seconds for each round. Subjects were informed in the instructions that they

would have no chance of winning the bonus payment if, in the round that was randomly

selected for payment, they had not submitted a response within the time limit.
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3.3 AI Assistant

Participants in the control group were not shown any AI Assistant predictions during

the 160 incentivized rounds. For participants in the treatment group, AI predictions

were provided in blocks 2, 3, 5, and 8, which correspond to the treated blocks. The

arrangement of treated and control blocks was chosen to minimize di↵erences in fatigue

between treated and control images and to minimize order e↵ects. In each session, images

were assigned to be in a control block or treated block, so we refer to images as either

being treated or control images. While images were fixed across participants in a session

to be either treated or control, within participant the images were randomly assigned to

a random round within the block.

Participants in the treatment group were not told in advance that they would be

given AI predictions. Instead, after completing the first block of rounds, participants in

the treatment group were told that they would be shown an AI Assistant’s guess for the

upcoming block of 20 rounds (the first treated block). In addition to being told that the

AI Assistant performs better than the average human but not as well as the best human,

they were also told that the AI predictions were calibrated, and they were given the option

to learn what it means for the AI to be calibrated.

For our AI predictions, we used the “Ca↵e” model trained by Rothe, Timofte and

Van Gool (2018), which predicts human ages based on facial images. To generate a

confidence score that the person in an image was over 21 years old, we summed the

confidence scores for all ages above 21.

3.4 Extra Tasks

Following the 160 rounds, participants completed two additional tasks. The first task

was to complete 14 questions from the Raven’s Progressive Matrices test. This task was

incentivized by paying the participant a $1 bonus if a randomly selected question was

answered correctly. The second task was a brief survey in which participants were asked

to describe their experience in the experiment, indicate the point at which they felt fatigue

during the experiment, and provide any other feedback.
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The final part of the experiment consisted of result pages for the incentivized tasks.

As in Caplin et al. (2020), we attempted to make the random outcomes used in payment

more credible by using the machine time at the moment the participant pressed a button.

3.5 Design Choices

In this section, we discuss several of the main decisions we faced while designing the

experiment.

Task Choice: We chose this age classification task for several reasons. First, it is a

task that can be completed quickly and with minimal e↵ort, allowing us to collect a large

sample of participants and a large number of reports per participant. Second, we could

easily modify the task’s di�culty by varying the ages included in the experiment. For ex-

ample, ages closer to 21 are generally more di�cult to distinguish than those further way.

We set the level of di�culty so that the best participant could outperform the algorithm,

while the average human performance remained below it, as in Agarwal et al. (2023).6

Third, this task requires no specialized training, as it originates from a real-world setting.

Common examples of guessing whether someone is under or over 21 include scenarios

involving liquor sales, such as stores, bars, restaurants, and entertainment venues. Addi-

tionally, people unconsciously judge ages in their daily lives. Thus, age classification does

not require specialized expertise and is well-suited for an online experiment to collect a

substantial amount of data. Fourth, this task has a clear ground truth, the age of the

person in the photograph. Our coarse classification scheme provides further protection

from small amounts of measurement error in the recorded age. This di↵ers from Agarwal

et al. (2023), where the subjective assessments of experts are aggregated to determine the

ground truth.

Image Selection: We utilized the IMDB-WIKI dataset to source images for our ex-

periment.7 This dataset is the largest publicly available collection of face images with

6To this end, we selected images based on ages: 16 to 19 years old for the under-21 category and 23
to 26 years old for the over-21 category. We only know the year when the photo was taken, so to avoid
the possibility of including subjects who were exactly 21, we excluded images of individuals who could
have been 20, 21, or 22 years old.

7See https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/ for details.
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age labels, and its size and diversity are useful for training machine learning algorithms.

Our aim was to select 160 images from this dataset so that the distribution of probability

reports would be as even as possible, which would provide room for both humans and

the AI to contribute in helping to identify the category of an image. Additionally, we

wanted the AI predictions to be well calibrated over the selected images. To accomplish

these objectives in a systematic way, we ran two pilots of 100 participants each. See the

Appendix for more details on these pilots and how we used the results of the pilots to

select 160 images.

Number of Rounds: In our two pilot sessions, we asked subjects to complete 100

rounds, and on average participants finished the experiment within 15 minutes. Since

performance did not decline over rounds, we increased the number of rounds to 160,

allowing participants to complete the experiment within approximately 25 minutes on

average.

Time Limit: There were two reasons why we introduced a fixed time limit of 60 seconds

for participants to report a probability for each image. First, we wanted participants to

remain focused on the experiment and not set aside the experiment to work on other

tasks. Second, our pilots indicated that 60 seconds was su�ciently long to assess each

image. In line with our pilots, this time limit was only reached in 0.23% of subject-round

pairs in our experiment (275 out of 117,120 rounds). We exclude these responses from

subsequent analyses, leaving 116,845 responses.

4 Results

4.1 Summary Statistics

We recruited 732 participants over two sessions, with 376 participants in the first session

and 356 in the second session. Of those, 493 were assigned to the treatment of working

with AI, and 239 were assigned to the control of never working with the AI. Summary

statistics across both sessions are presented in Table 2 of Appendix A.1. This table shows

that there was balance across control and treated participant characteristics.
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Figure 1 plots the empirical distributions of ability and net confidence in the treated

image block, split by subjects working with and without AI. The dotted lines indicate the

performance of the AI. This illustrates several motivating facts. First, the AI has ability

in the top 6% of human performers working alone, and working with the AI significantly

improves average human performance in our task. However, there remains dispersion in

human performance when working with AI, with 68% of treated subjects still performing

worse than if they had followed the AI recommendations wholesale.8 Finally, there is

sizeable dispersion in humans’ net confidence when working alone, with 79.5% of humans

over-confident in their own ability, and with individual confidence exceeding accuracy by

10.6 percentage points on average. We now turn to the estimation of our main regression

(3) to determine how much the heterogeneity in the gains from working with AI can be

explained by individual-level ability and calibration.

Figure 1: Empirical Distributions of Ability and Calibration Across Participant s

8Subjects repeat the AI recommendation exactly (i.e., within a percentage point) 6% of the time with
AI and 2% of the time without AI.
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4.2 Calibration and the E↵ects of Working with AI

Table 1: Regression: Skills and Working with AI

Outcome:
Accuracy (Treated Block)

Skills (Control Block) (1) (2) (3) (4)

Treatment 6.93 6.27 6.16 6.27
(0.56) (0.47) (0.47) (0.47)

Accuracy 4.05 3.96 3.60
(0.38) (0.45) (0.45)

Accuracy ⇥ Treatment -1.57 -2.16 -1.83
(0.50) (0.57) (0.57)

Calibration 0.19 0.11
(0.44) (0.43)

Calibration ⇥ Treatment 1.35 1.40
(0.54) (0.54)

IQ 1.17
(0.43)

IQ ⇥ Treatment -1.01
(0.51)

Constant 65.46 65.96 65.99 65.88
(0.48) (0.39) (0.40) (0.39)

Observations 732 732 732 732

Note: Observations are at the subject level. Robust standard errors are in parentheses. Skills
are standardized within session.

Table 1 presents estimates from our main regression specification, equation (3). We

standardize all three skill measures (accuracy, calibration, IQ) to compare the relative

heterogeneity of treatment e↵ects across skills in the sample.

Column 1 shows the impact of AI assistance on accuracy in a simple bivariation

regression.9 AI improves participants’ ability to accurately identify an image by 6.9

percentage points, an increase of more than 10 percent relative to the control mean of

65.5 percent. Column 2 adds participants’ baseline accuracy with control images and an

interaction between accuracy and treatment. Consistent with past work, we find that AI

9Table 3 replicates the main results but with demographic controls. We find very similar results.
However, since demographic variables were missing for some participants, we present the main results
without them.
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improves accuracy more for participants with low baseline skill – a one standard deviation

increase in accuracy decreases the impact of AI assistance by 1.6 percentage points.

Column 3 adds baseline calibration and the interaction between calibration and treat-

ment. Unlike the interaction with accuracy, we find that better-calibrated participants

benefit more from AI assistance. A one standard deviation increase in calibration in-

crease the impact of AI assistance by 1.4 percentage points, or about 20 percent of the

total treatment e↵ect of 6.9 percentage points. Both interaction terms are statistically

significant at the less than five percent level. Column 4 adds IQ and its interaction with

treatment. Similar to the accuracy measure, we find that low IQ participants benefit

more from AI help. Adding IQ in Column 4 does not meaningfully change the coe�cients

on calibration. Overall, we find that the impact AI assistance is increasing in the base-

line accuracy of participants’ beliefs (calibration) but decreasing in the other two skills

(accuracy and IQ).

Figure 2: Heterogeneous treatment e↵ects by skill-calibration groups.

To give a visual sense of the treatment e↵ect variation, Figure 2 plots the estimated
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treatment e↵ects for hypothetical participants with ability and calibration each one stan-

dard deviation above or below the mean, which we label respectively as High or Low

Ability or Calibration. The coe�cients and 95 percent confidence intervals in Figure 2

come from linear projections of the estimates from Column 3 of Table 1, with the aver-

age treatment e↵ect from Column 1 added for clarity. Participants with low ability but

accurate beliefs benefit the most – nearly 10 percentage points – from AI assistance. By

contrast, participants with high accuracy but miscalibrated beliefs benefit the least.

Over- and under-confident participants may be harmed for di↵erent reasons. Under-

confident participants may commit too many Type I errors (following the AI when it is

incorrect), while over-confident individuals may commit too many Type II errors (failing

to follow the AI when it is correct). In Table 4 of Appendix A.2, we repeat our main

specification with net confidence instead of calibration and disaggregating by whether the

AI prediction was correct. We find that the less confident are relatively more disadvan-

taged for images where the AI is ex post incorrect, whereas the more confident are more

disadvantaged for images where the AI is ex post correct.

A remaining potential concern with our results is the presence of measurement error

in our skills estimates. In a univariate setting, this would manifest as simple attenuation

bias working against finding skill e↵ects. However, in our multivariate context, Gillen,

Snowberg and Yariv (2019) show that the attenuation bias in one covariate (in our case,

individual ability Ai) could lead to a spurious e↵ect of another covariate (calibration Ci)

when the latter is correlated and thus picks up on the remnants of the true former e↵ect.

We address this concern in two ways. First, if our measure of calibration were picking

up on the e↵ects of imperfectly measured ability, we would also expect to observe this

spurious e↵ect among control participants who never worked with AI; however, the co-

e�cient on standardized calibration alone is economically and statistically insignificant

across specifications in Table 1. Second, in Appendix A.3 we repeat the preceding analysis

with an adaptation of the Obviously Related Instrumental Variables (ORIV) methodol-

ogy of Gillen, Snowberg and Yariv (2019). Doing so, we find larger e↵ects of calibration

on the treatment e↵ect, which while less precise (an expected outcome of this procedure),
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remain statistically significant at conventional levels.

A final possibility is that our results depend on our choice of performance measures.

In Appendix A.4 we repeat the main analysis replacing our measure of ability (1) with

AUC (Bamber, 1975; Hanley and McNeil, 1982), and our measure of calibration (2) with

an alternative based on the functional form of Grether (1980). We replicate our main

findings.

4.3 The Impact of Calibration on Performance Inequality

Figure 3: (Counterfactual) Productivity Gap

How does (mis)calibration a↵ect the distribution of productivity when working with

AI? Figure 3 presents the results of a counterfactual exercise where we estimate perfor-

mance inequality across four scenarios. For ease of interpretation, we measure inequality

using the the interquartile range (IQR) of predicted performance across participants. In

the first two scenarios, we estimate inequality with and without AI, given participants’

actual (mis)calibration in the experiment.10

10Specifically, we reestimate equation (3) using unscaled measures of each skill, compute the predicted
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We estimate an IQR of 5.84 when participants work without AI, compared to an

IQR of 3.86 with AI, representing a 34% reduction in performance inequality from AI

assistance. This is consistent with prior studies which find that AI reduces inequality by

helping low-performing workers more (Autor, 2024; Brynjolfsson, Li and Raymond, 2023;

Noy and Zhang, 2023).

Scenarios 3 and 4 repeat the exercise, but now we simulate the impact of AI assistance

in a counterfactual scenario where all participants are perfectly calibrated, meaning their

accuracy and confidence take on exactly the same value. We estimate an IQR of 5.80

without AI. Thus, relative to the first scenario, improving calibration has no impact on

accuracy when there is no AI assistance. However, with AI assistance, perfect calibration

reduces the IQR to 2.30, which represents a 61% reduction in performance inequality

relative to baseline (Scenario 1).

Our counterfactual implies that if everyone were perfectly calibrated, working with

AI would reduce performance inequality by an additional 27 percentage points beyond

the 34 percentage point reduction from AI assistance alone. This is because of the joint

distribution of ability and calibration: the low-ability individuals who stand to gain the

most from working with AI are also among the least calibrated. A natural set of questions

that we leave to future work is if, how, and for whom individual calibration can be trained

as a skill for the collaborative nature of work with AI.

5 Conclusion

In this paper we introduce an experimental framework to measure the joint impacts of

accuracy and calibration on the benefits of working with AI. We find that AI assistance

improves overall prediction accuracy on average, but that the extent and direction of the

impact depends on whether participants are appropriately confident about their own abil-

ity. We also find that lower ability participants who are well-calibrated benefit the most

from AI assistance, consistent with other studies finding that AI helps lower performers

values, and then calculate the IQR implied by performance at the 25th and 75th percentiles. For the
third and fourth scenarios, we compute the same statistics but with the coe�cients on calibration taking
on the values implied by a participant whose accuracy and confidence are exactly equal to each other.
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close the gap with their more expert peers (Brynjolfsson, Li and Raymond, 2023; Noy

and Zhang, 2023; Autor, 2024).

Finally, we perform a counterfactual analysis that shows if miscalibration was elimi-

nated, performance inequality would shrink nearly twice as much as it does already with

the introduction of AI assistance. In addition to showing the importance of calibration in

performance inequality, this result might motivate the use of inventions targeting calibra-

tion. Among the characteristics that we show are related to performance when working

with AI (baseline skill, IQ, and calibration), calibration appears to be a relatively strong

candidate for policy and training. For example, training interventions have been shown

to improve calibration (Lichtenstein and Fischho↵, 1980; Benson and Önkal, 1992; Had-

dara and Rahnev, 2022), even with some short interventions lasting less than an hour

(Gruetzemacher, Lee and Paradice, 2024). In domains where direct upskilling is costly or

time consuming, our results suggest that the combination of calibration training and AI

assistance may be particularly valuable.
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