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1 Introduction

Ross’s (1976) APT conjectures that a small number of common factors govern the joint

variation of returns. This premise, combined with no-arbitrage arguments, delivers the

prediction that assets’ expected returns are determined by exposures to a few common

factors. Most empirical investigations of the risk-return tradeoff in the past fifty years have

occurred within the confines of the APT’s assumption—small linear factor models.

In this paper, we consider a different conjecture: that asset pricing models with an

exorbitant number of factors are better suited to describe the behavior of asset returns. Our

conjecture is rooted in the burgeoning theory of artificial intelligence, which suggests that

“complex” statistical models, those with many more parameters (P ) than available training

observations (T ), tend to achieve better out-of-sample success than smaller models.1 Given

its origins, we refer to this conjecture as artificial intelligence pricing theory, or AIPT, to

contrast it with the parsimony assumption at the heart of the APT.

One reason for the APT’s position as a cornerstone of empirical asset pricing is the

convenience of working with small linear factor models. The most obvious convenience

stems from the tractability of estimating small models. More subtle is the convenience of

comparing small models. The APT sets up conditions—that the number of parameters is

small compared to the number of training observations—necessary for comparing models

based on in-sample test statistics. Large factor models, on the other hand, are admittedly

inconvenient. With so many parameters, they can be costly to train, and due to their high

1See, among others, Hastie et al. (2019), Bartlett et al. (2020), and Kelly et al. (2024b). Following these
papers, we define model complexity as the ratio of factor dimension to the number of training observations
c = P/T . Our theoretical derivations rely crucially on the ratio c, hence our focus on this definition of
complexity. The statistics literature proposes and analyzes other measures of model complexity as well, each
capturing somewhat different qualities. As noted by Bartlett et al. (2020): “The classical perspective in
statistical learning theory is that there should be a tradeoff between the fit to the training data and the
complexity of the prediction rule. Whether complexity is measured in terms of the number of parameters,
the number of nonzero parameters in a high-dimensional setting, the number of neighbors averaged in a
nearest neighbor estimator, the scale of an estimate in a reproducing kernel Hilbert space, or the bandwidth
of a kernel smoother, this tradeoff has been ubiquitous in statistical learning theory.”
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statistical complexity, standard in-sample asset pricing tests are not applicable. Instead,

they require out-of-sample model performance comparisons.

We show that, despite their inconveniences, large factor models are far better at pricing

assets than the standard low-dimensional factor models in the literature. In the first half

of this paper, we present extensive empirical evidence that challenges the APT parsimony

conjecture and favors the complexity conjecture of AIPT. The second half of the paper

develops a statistical theory that characterizes the behavior of complex factor models and

rationalizes their surprising dominance in pricing assets.

1.1 Empirical Behavior of Large Factor Models

Our central empirical finding is that the out-of-sample performance of factor pricing models

is increasing in the number of factors. We focus on two metrics of model performance— the

Sharpe ratio of the tangency portfolio among factors and the magnitude of pricing errors

among test assets.

Our analysis gradually increases the number of factors while holding the underlying

information set fixed. The information set includes 130 well-known characteristics for the

cross-section of US stocks. To vary the number of pricing factors, we use a neural network

to generate new stock characteristics—up to hundreds of thousands—that are nonlinear

transformations of the original 130 variables. For each nonlinear characteristic, we build

the corresponding factor (i.e., using a standard characteristic-managed portfolio approach).

Training the factor model amounts to building the stochastic discount factor (SDF) as the

tangency portfolio of factors (using ridge shrinkage where applicable). We then track the

two model performance metrics out-of-sample. Our main empirical results are presented in

the form of “VoC curves” that plot performance as a function of the number of factors, as

introduced by Kelly et al. (2024b) (KMZ henceforth). These curves document a “virtue

of complexity” in factor pricing models; out-of-sample Sharpe ratios increase, and pricing
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errors decrease as we expand the number of factors. Our results show that there is a virtue

of complexity even when—in fact, especially when—P far exceeds T .

Large factor models outperform well-known, low-dimensional factor models from the

literature by a wide margin. The largest model we consider (with 360,000 factors, or a

complexity ratio of 1,000 given our 360-month rolling training window) reduces pricing errors

by 54.8% relative to the six-factor Fama and French (2015) model (including momentum),

by 50.4% relative to the five-factor Hou et al. (2021) model, and by 54.8% relative to the

six-factor Barillas and Shanken (2018) model. Meanwhile, our largest factor model produces

an out-of-sample tangency Sharpe ratio of 3.7, compared to 0.8, 1.2, and 0.8 for the three

aforementioned benchmarks, respectively.

The asset pricing benefits of complexity and nonlinearity accrue even when the condition-

ing information set is relatively small. For example, we construct a “nonlinear Fama-French

model” using a large set of nonlinear factors derived from only five characteristics: size, value,

investment, profitability, and momentum, rather than the full set of 130 characteristics in our

main analysis. The added complexity more than doubles the out-of-sample tangency Sharpe

ratio relative to the baseline Fama-French model. The same result obtains for complex

nonlinear versions of other benchmark models in the literature.

The insights of Kozak et al. (2020) suggest that a successful asset pricing model may not

require many factors because the returns of most anomaly factors are adequately explained

by a small number of their principal components. This begs the question: Can our complex

pricing model be compressed to achieve similar performance with potentially many fewer

parameters? Evidently, the answer is no. We consider replacing the large number of

factors in our complex model with a smaller number of their principal components and

find that dimension reduction significantly impairs out-of-sample performance relative to

the full complex model.

Lastly, we conduct a variety of robustness analyses that consider different input char-
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acteristics, various subsets of the stock universe, different training windows, and so forth.

Every robustness test reinforces our main findings. In summary, we establish the empirical

fact that large factor models are better at pricing assets than existing parsimonious models.

1.2 Theoretical Findings

In order to understand our empirical findings, we develop a statistical theory of large factor

pricing models. Consider the following interpretation of a large factor model from the asset

pricing theory perspective of an SDF. A conditional SDF can be represented as a tradable

portfolio of risky assets:

Mt+1 = 1− w(Zt)
′Rt+1. (1)

Rt+1 contains excess returns of risky assets, and w(Zt) are the SDF’s weights on those

assets. The weights are determined by variables Zt that span the time t information set.

Without further guidance about the functional form of w, a machine learning-based empirical

approach would approximate the SDF with a nonparametric model such as a shallow neural

network: w(Zt) ≈
∑P

p=1 λpSp(Zt), where each Sp(Zt) is some nonlinear basis function of Zt.

Thus, a neural network SDF delivers a linear factor pricing model,

Mt+1 ≈ 1−
∑
p

λpFp,t+1, (2)

where each “factor” Fp,t+1 is a characteristic-managed portfolio that uses the transformed

“characteristics” Sp(Zt) as portfolio weights, and λ = (λ1, ..., λP ) are parameters to be

estimated.

This formulation captures the tension in machine learning asset pricing models. On the

one hand, the more terms in the nonparametric representation of w (and thus the larger

the number of factors), the better the model can approximate the true SDF. But as we
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improve the approximation, we simultaneously increase the number of parameters that must

be estimated, so when P becomes large, the estimated model may be unstable and suffer

out-of-sample. Our theory makes it possible to understand (and quantitatively characterize)

this cost/benefit tradeoff in large factor models.

On the cost side of the tradeoff is a phenomenon we refer to as “limits to learning.”

In low complexity settings—with many more observations than parameters to estimate—

the law of large numbers kicks in, and appropriate estimators can recover the true model.2

Traditional econometric theory deals with estimator behavior in this data-rich environment.

By contrast, in high-complexity settings, the number of factors is large relative to the number

of observations. Thus, the law of large numbers breaks down. Even correctly specified

estimators fail to converge on the true model because there is not enough data to go around.

The first key aspect of our theory is an explicit characterization of the limits to the learning

effect. We prove that data limitations impose an unavoidable implicit shrinkage of the model,

which depresses the model’s expressive power. Complexity induces bias through its implicit

shrinkage. But on the benefit side of the tradeoff, complexity also reduces specification bias.

More factors lead to a more accurate approximation of the true SDF. Our main theoretical

result shows that which effect dominates depends on the eigenvalue distribution of the factors.

When there is a concentrated eigenvalue distribution and thus a few dominant factors, asset

pricing model performance tops out after adding only a few factors, and there is no virtue

of complexity—a counterfactual prediction in light of our empirical findings.

However, when the underlying factor structure is not too concentrated—that is, when the

data-generating process aligns with the AIPT conjecture—a virtue of complexity emerges

that closely mimics the patterns we find in the data. Our theory rationalizes our surprising

empirical facts, demonstrating that even if arbitrage is absent and an SDF exists, it is

possible to continually find new empirical “risk” factors that are unpriced by others and that

2I.e., if the model is correctly specified. If the model is mis-specified, estimators recover the nearest
“pseudo-true” parameters (e.g. White, 1996).
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adding these factors to the pricing model continually improves its out-of-sample performance.

The theory also helps rationalize the prominence of “anomaly” portfolios in empirical asset

pricing. The abundance of anomalies (the so-called “factor zoo”) is not a puzzle to be solved

or evidence of a corrupt research process.3 Instead, it is the theoretically expected outcome

in a complex asset pricing environment because data limitations hamper our ability to learn

the true nature of markets. In fact, our theory argues that the extant factor zoo is too small

and that an SDF model can be beneficially expanded to incorporate a teeming Noah’s ark

of factors by transforming raw asset characteristics into a wide variety of nonlinear signals

(buttressed by appropriate shrinkage). Such a large factor set improves the out-of-sample

SDF Sharpe ratio and reduces out-of-sample pricing errors.

1.3 Literature Review

This paper is related to an emergent literature that shows machine learning asset pricing

models achieve higher out-of-sample Sharpe ratios and smaller pricing errors than their

parsimonious predecessors. Examples include Kozak et al. (2020), Gu et al. (2020a), Chen

et al. (2023), Bryzgalova et al. (2020), Cong et al. (2022), Fan et al. (2022) and Preite

et al. (2022), among others. It also relates to machine learning methods for analyzing

factor models, including Connor et al. (2012), Fan et al. (2016), Kelly et al. (2020), Lettau

and Pelger (2020), Giglio and Xiu (2021), Giglio et al. (2022), and He et al. (2023) (see

Kelly and Xiu (2023) and Rapach and Zhou (2020) for more complete survey treatments of

these topics). We extend this literature with detailed documentation of the counterintuitive

phenomenon that out-of-sample asset pricing model performance appears to improve with

ever richer model specifications.

3Jensen et al. (2023) reach a similar conclusion based on the rationale that the risk-return trade-off is
difficult to measure and complexity manifests as an inability to find a single silver-bullet characteristic that
pins down expected returns. Instead, researchers gradually expand and refine the set of noisy signals and
conclude “a more positive take on the factor zoo is not as a collective exercise in data mining and false
discovery, but rather as a natural outcome of a decentralized effort in which researchers make contributions
that are correlated with, but incrementally improve on, the body of knowledge.”
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An understanding of this surprising empirical phenomenon is only beginning to take

shape. KMZ theoretically analyze machine learning models for return prediction. We

extend this work in a number of ways, including reorienting the statistical objective around

minimizing pricing errors and maximizing SDF Sharpe ratios, and by moving from a single

asset to a cross-section of assets.4 Together with Martin and Nagel (2021), Da et al. (2022),

Fan et al. (2022), and KMZ, our paper belongs to an emergent literature analyzing “limits to

learning” in high-dimensional asset pricing models. Our paper also relates to the theoretical

machine learning literature on topics surrounding “double descent” and “benign overfit” (e.g.

Spigler et al., 2019; Hastie et al., 2019; Belkin et al., 2020; Bartlett et al., 2020).

Through its coupling with the literature on factor pricing models, our work also relates

to the empirical literature surrounding the “factor zoo” and factor replicability, including

Harvey et al. (2016), McLean and Pontiff (2016), Hou et al. (2020), Feng et al. (2020),

Jensen et al. (2023), and Chen and Zimmermann (2021). Our theory helps rationalize the

continued discovery of factors that are unspanned by simpler precedent models. Relatedly,

the demonstrated success of machine learning models in predicting the cross-section of

returns such as Chinco et al. (2019), Han et al. (2019), Freyberger et al. (2020), Rapach

and Zhou (2020), Gu et al. (2020b), Avramov et al. (2023), and Guijarro-Ordonez et al.

(2021), is additional evidence of the virtue of complexity in financial markets research.

The remainder of the paper proceeds by introducing our empirical design in Section 2

and our empirical findings in Section 3. Section 4 presents our theoretical analysis of large

factor models, and Section 5 concludes.

4From a technical standpoint, we overcome a number of new theoretical hurdles relative to KMZ. In time
series regressions of KMZ, the random matrix behavior of time series signal covariances dictates the market
timing strategies. In the panel problem, behavior is determined not just by time series covariances but also
by the covariance of signals across assets. While standard random matrix theory in KMZ requires dealing
with double limits (number of observations and number of parameters), our analysis requires development
of a non-trivial theoretical extension to deal with a third limiting dimension—the number of base assets.
Importantly, we also remove the equal ex-ante predictive power assumption of KMZ and allow for a generic
distribution of risk premia across factors.
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2 Empirical Framework

We now present the details of our empirical framework for large factor pricing models and

their associated SDF representations.

2.1 Background: Factor Models and the SDF

Hansen and Richard (1987) show that a true SDF, if one exists, is representable as a tradable

portfolio of risky assets as introduced in Equation (1).

A factor pricing model is equivalent to an SDF that is linear in the factors. We can,

therefore, analyze and compare asset pricing factor models as competing SDF specifications.

Motivated by the APT and the principle of parsimony,5 the literature has primarily

investigated (1) with tightly constrained factor specifications of the SDF weight function

w(Zt). A leading example is the Fama and French (1993) model, which restricts Mt+1 to be

a three-parameter model:

wFF
i = c1MKTi + c2SIZEi + c3VALUEi,

where the weight of asset i in the Fama-French SDF (wFF
i ) depends only on the stock’s

weight in the market portfolio (MKTi) and on researcher-dictated functions of the stock’s

size and book-to-market ratio (SIZEi and VALUEi).

The Fama-French SDF portfolio can equivalently (and more familiarly) be viewed as a

linear combination of three factors. The factors are portfolios whose individual stock weights

are given by MKTi, SIZEi, and VALUEi, respectively. The SDF combines these factors with

three parameters, c1, c2, and c3, corresponding to the Sharpe ratio maximizing combination

5See, e.g., Tukey (1961) and Box and Jenkins (1970). Economic theory also motivates functional
restrictions on the SDF (e.g. Hansen and Singleton, 1982). However, restrictions derived from economic
theory have had limited success to date in pricing cross-sections of assets such as stocks, bonds, and
derivatives. The Fama-French SDF and many other factor models in the literature are motivated by empirical
“anomalies” vis-a-vis the CAPM and not by a particular economic theory.
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of the factors. These are the only three parameters that must be estimated in the Fama-

French SDF, resulting in an extraordinarily parsimonious asset pricing model. Thus, the

Fama-French model is a special case of (1) where

w(ZFF
t ) = ZFF

t λFF .

The conditioning set is ZFF
t , which has D = 3 columns containing stocks’ Fama-French

characteristics, and the weight function is linear in parameters λFF = (c1, c2, c3)
′. In this

case, the SDF is

MFF
t = 1− λFF ′

ZFF
t

′
Rt+1,

where we recognize that ZFF
t

′
Rt+1 is a vector of time t returns on the three Fama-French

factors and 1−MFF
t is their mean-variance efficient combination.

2.2 Designing A Large Factor Model

The Fama-French model achieves its parsimony from rigid assumptions on the SDF weighting

function—discarding all but a few conditioning variables and making detailed choices for the

functional form that maps the selected variables into SDF weights.

The AIPT takes a different approach, founded on the philosophy of machine learning,

and explores the benefits of flexible models that accommodate many potential conditioning

variables and diverse functional forms. In our analysis, Zt is an Nt ×D matrix that collects

a large number of D conditioning variables for each risky asset. We derive a complex

factor pricing model by replacing detailed specification choices with a generic nonparametric

approximation to the unknown SDF:

w(Zt) ≈
P∑

p=1

λpSp(Zt) = Stλ, (3)
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where each Sp(Zt) is an Nt×1 nonlinear basis function of the input data Zt and λp is a scalar

basis coefficient. This basis expansion explores the space of potential shapes for w(Zt), then

combines these building blocks with coefficients (λp) that best reconstruct the unknown

function w(Zt). Collecting the P basis terms into an Nt × P matrix of characteristics

St = [S1,t, ..., SP,t], and collecting parameters λ = [λ1, ..., λP ]
′, we arrive at Stλ as the

nonparametric approximation to the true SDF weighting function. The larger is P , the

broader the set of nonlinearities considered, the larger the number of model parameters, and

the more flexible the approximation.

The nonparametric approximation in (3) takes the same basic form as the Fama-French

SDF with St in place of ZFF
t . The basis terms Sp(Zt) merely transform conditioning variables

into a large number of new nonlinear asset “characteristics” analogous to those underpinning

the Fama-French model. Substituting the approximation in (3) into the SDF definition (1),

we arrive at

Mt+1 ≈ 1− λ′S ′
tRt+1 = 1− λ′Ft+1 = 1−RM

t+1. (4)

In other words, like the Fama-French model, the SDF portfolio (denoted RM
t+1 = λ′Ft+1) is a

linear combination of factor portfolios,

Ft+1 = S ′
tRt+1. (5)

Each factor Fp,t+1 = Sp(Zt)
′Rt+1 is a characteristic-managed portfolio of risky assets that

uses the nonlinear asset “characteristic” Sp(Zt) as the vector of portfolio weights, and again λ

is the mean-variance efficient combination of factors.6 The difference vis-a-vis Fama-French

(and other parsimonious models) is that the factors in (4) make flexible and nonlinear use

of conditioning data, and there are a large number P of these factors.

6Because the size of the cross-section varies over time, our empirical analysis in fact scales the factors as

Ft+1 = N
−1/2
t S′

tRt+1 to maintain a relatively consistent scale of factor returns over time.
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wi,t=S′
i,tλ

Si,t=
{[

sin(γZ ′
i,tωp), cos(γZ

′
i,tωp)

]}P

p=1

Zi,t

Figure 1: Neural Network Representation of Random Fourier Factors

Note. Illustration of nonlinear mapping from stock i’s characteristics Zi,t into hidden layer neurons Si,t

and then into the conditional SDF weight wi,t during the construction of random Fourier factors.

2.3 Random Fourier Factors

To operationalize this large factor model approximation of the SDF, our empirical approach

adapts the method of random Fourier features, or RFF (Rahimi and Recht, 2007). While

(Rahimi and Recht, 2007) propose RFF for predictive regression, our approach embeds RFF

in an SDF. The nonlinear basis functions in this method are trigonometric transformations

of the original signals Zt:

[S2p−1,tS2p,t] ∈ RNt×2 = [sin(γZtωp), cos(γZtωp)]
′ , ωp ∼ i.i.d. N(0, I), p = 1, ..., P/2. (6)

Each RFF basis function forms a random linear combination (ωp) of the raw characteristics

Zt, then feeds this through sine and cosine activation functions.7 The transformation is

applied stock-by-stock, converting stock i’s characteristics into new nonlinear characteristics

that include not just transformations of each individual characteristic but general multi-way

interactive effects involving all characteristics for stock i.

Upon closer inspection, we see that the SDF in (4) is, in fact, a two-layer neural

network with input parameters given by ωp, output parameters given by λ, and trigonometric

activation neurons (see Figure 1). In a typical neural network, both the input and output

parameters are estimated using computationally costly numerical methods. The fascinating

7The parameter γ controls the Gaussian kernel bandwidth in generating random Fourier features.
Following Kelly et al. (2022), we randomly chose γ from the grid [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] for each ωi that
we generate. This embeds varying degrees of nonlinearity in the generated feature set St.
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insight of (Rahimi and Recht, 2007) is that, by using randomization to fix the input

parameters and only estimating the output parameters, random features regression can

build nonparametric approximations in a computationally efficient manner.8 Building on

this insight, our SDF model is estimable in closed form using only least squares regression

(as discussed below).

RFF is an ideal tool for our analysis because, from a fixed input data set Zt we can create

asset pricing models with any desired factor dimension, P . For a low-dimensional model of,

say, P = 2, one generates a single pair of RFFs. For a high-dimensional model of, say,

P = 10,000, one can instead draw many random weight vectors ωp, p = 1, ..., 5,000. This

gives us the ability to evaluate how asset pricing models are impacted by varying the number

of factors while holding the set of conditioning variables fixed. It is important to emphasize

that in our analysis, factor proliferation arises not from expanding the set of input data Zt

(which may or may not be low-dimensional) but instead from generating many nonlinear

basis transformations of Zt.

2.4 Estimator

The SDF coefficient vector λ represents the mean-variance efficient portfolio of factors. Note

that the factor representation of the conditional SDF in essence produces an equivalent

unconditional SDF. This allows us to estimate λ as the sample Markowitz portfolio of factors:

argmin
λ

{
Ê[λ′Ft]−

1

2
Ê
[
(λ′Ft)

2
]}

= Ê[FtF
′
t ]
−1Ê[Ft] (7)

8Indeed, RFF is a special case of kernel regression. For applications of kernel regression in asset pricing
settings, see Kozak (2020) and Kelly et al. (2024a).
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where Ê denotes the training sample mean. We denote the corresponding estimated SDF

and SDF portfolio as

M̂t = 1− R̂M
t and R̂M

t = λ̂′Ft. (8)

The AIPT explores large factor models in which the dimension of λ may exceed the

number of time series observations, i.e., P > T . In this case, Ê[FtF
′
t ]
−1 is rank-deficient,

which we resolve by introducing a ridge penalty in the Markowitz problem:

λ̂(z) = argmin
λ

{
Ê[λ′Ft]−

1

2
Ê
[
(λ′Ft)

2
]
+ zλ′λ

}
=
(
zI + Ê[FtF

′
t ]
)−1

Ê[Ft] (9)

where z is the ridge parameter.

Kozak et al. (2020) point out that we can also interpret λ̂(z) in terms of “pricing errors.”

Since the factors Ft are tradable assets, the true SDF Mt prices these factors with zero error

due to the marginal investor’s first-order optimality condition:

E[MtFt] = 0. (10)

Hansen and Jagannathan (1997) suggest a statistic for comparing the efficacy of SDF

models in terms of their pricing error magnitudes. For a candidate SDF M̃t, The Hansen-

Jagannathan distance (HJD) is a weighted sum of squared pricing errors for the set of test

assets Ft:
9

DHJ = E[M̃tFt]
′E[FtF

′
t ]
−1E[M̃tFt]. (11)

Substituting the SDF approximation model (4) for M̃ in the HJD and adding a ridge penalty

9We discuss some attractive properties of the HJD in the following sections.
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to handle rank deficiency when P > T , we have

λ̂(z) = argmin
λ

{
Ê[(1− λ′Ft)Ft]

′Ê[FtF
′
t ]
−1Ê[(1− λ′Ft)Ft] + zλ′λ

}
. (12)

In other words, λ̂(z) is also the regularized SDF estimator that minimizes pricing error (we

discuss HJD in further detail in Section 2.6).

2.5 Data and Training

To make the conclusions from this analysis as easy to digest as possible, we perform our

analysis in a conventional setting with conventional data. We use a comprehensive and

standardized sample of monthly US stock returns and 153 stock characteristics from 1963 to

2023, compiled by Jensen et al. (2023) (JKP henceforth).10 As in JKP, our universe includes

NYSE/AMEX/NASDAQ securities with CRSP share code 10, 11, or 12, excluding “nano”

stocks (i.e., stocks with market capitalization below the first percentile of NYSE stocks).

Some of the JKP characteristics have low coverage, especially in the early parts of the

sample. To ensure that characteristic composition is fairly homogeneous over time and to

avoid purging a large number of stock-month observations due to missing data, we reduce

the 153 characteristics to a smaller set of D = 130 characteristics with the fewest missing

values. We drop stock-month observations for which more than 30% of the 130 characteristic

values are missing and use Nt to denote the number of the remaining stock observations at

time t. Next, we cross-sectionally rank-standardize each characteristic and map it to the

[−0.5, 0.5] interval, following Gu et al. (2020b). Ultimately, we obtain an Nt ×D matrix of

conditioning characteristics Zt in each month.

In our empirical analyses, we study SDF performance as we vary two aspects of the model:

the number of factors P and ridge penalty z. For each model of a given size and shrinkage,

we conduct a rolling out-of-sample model performance analysis. Starting in January 1993, in

10To access the stock-level characteristic data and associated documentation, refer to jkpfactors.com.
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each month t, we use the most recent 360 months of data to estimate the ridge SDF parameter

in (9).11 We then track the out-of-sample SDF portfolio return in the subsequent month.

From the sequence of monthly out-of-sample SDF realizations, we calculate out-of-sample

SDF performance metrics.

2.6 Performance Metrics

We evaluate our SDF models with two standard out-of-sample performance metrics. A true

SDF is the mean-variance efficient portfolio of risky assets. Thus, our first performance

metric is the SDF portfolio Sharpe ratio. For a candidate SDF M̃t = 1− R̃M
t , the annualized

out-of-sample Sharpe ratio is

ŜR =
√
12
ÊOS[R̃

M
t ]

σ̂OS(R̃M
t )

where ÊOS and σ̂OS denote sample average and standard deviation among the TOS out-of-

sample observations (to differentiate versus the notation Ê and T used for training samples).

Since the SDF is constructed from excess returns on risky assets, the numerator need not be

adjusted for the risk-free rate.

Our second performance metric is the pricing error for a large set of test assets. The test

assets in our main analysis are the 153 JKP anomaly factors constructed by those authors

and downloadable at jkpfactors.com (robustness analyses report pricing errors for other

test asset sets as well). To aggregate test asset pricing errors into a single metric, we calculate

the normalized sum of squared pricing errors according to the Hansen-Jagannathan distance

(HJD) referenced in Section 2.4. For a set of test asset returns RT
t , the out-of-sample HJD

11The stochastic nature of RFF means that there is inherent variability in the estimated SDF model when
P is small. To mitigate this variability, we repeat the RFF-based estimation 20 times with different random
seeds and report average performance metrics across seeds. This has little qualitative effect on the plots
shown. See KMZ for further discussion of this point.
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is

D̂HJ = ÊOS

[
M̃tR

T
t

]′
ÊOS

[
RT

t R
T
t

′
]+
ÊOS

[
M̃tR

T
t

]
, (13)

where + is the Moore-Penrose quasi-inverse (necessary due to the degeneracy of ÊOS[R
T
t R

T
t
′
]

when P > TOS).

The HJD has a number of attractive model comparison properties.12 It averages pricing

errors among test assets using a common weighting matrix for all candidate models of

Mt. This is important because it puts all models on equal footing for comparison, unlike

other alpha or GMM-based comparisons. The weighting matrix is economically motivated

since it gives the HJD a clear interpretation as the pricing error of the portfolio of test

assets that is most mispriced by each model. Furthermore, the HJD is scale invariant.13

While typically used for in-sample comparison, the HJD easily generalizes for out-of-sample

evaluation because it avoids the need to estimate out-of-sample time series alphas and betas

for each test asset. Finally, because our theoretical derivations explicitly characterize the

expected out-of-sample HJD for complex SDF models, the empirical HJD can be directly

compared to theoretical predictions.

2.7 Benchmark Models

We provide reference points for our analysis by comparing large factor model performance

to five benchmark factor pricing models in the literature:14

FF6: This is a six-factor model that includes the five factors of Fama and French (2015) plus

their UMD momentum.

12In addition to Hansen and Jagannathan (1997), the literature including Kan and Robotti (2009), Chen
and Ludvigson (2009), and Kelly and Xiu (2023) further advocates HJD as a pricing error metric.

13Differences in volatilities among factors can skew test statistics like average absolute alpha or the GRS
statistic, and as a result, the volatility scaling choice for test assets can lead to different conclusions. HJD
is invariant to changes in test asset volatility.

14All benchmark factor data are conveniently available from the respective authors’ websites.
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SY: This is a four-factor model that includes the “mispricing” factors of Stambaugh and

Yuan (2017).

HXZ: This is a five-factor model that includes the q-factor model specification of Hou et al.

(2015) augmented to include the expected growth factor of Hou et al. (2021).

DHS: This is a three-factor model that includes the long-horizon and short-horizon behavioral

factors of Daniel et al. (2020).

BS: This is a composite model that selects factors from the literature based on the Bayesian

methodology of Barillas and Shanken (2018). Its six factors include the market factor,

the investment and profitability factors from Hou et al. (2015), the size and momentum

factors from Fama and French (2015), and the value factor (HMLm) from Asness et al.

(2013).

To compare models, we use the SDF corresponding to each of these factor pricing models,

which requires estimating the Markowitz portfolio of factors in each model. We do this in

rolling 360-month training windows and track benchmark performance out-of-sample. In

other words, we use the same training/evaluation design for the benchmarks that we use for

our large factor pricing models.15

3 Empirical Results

3.1 The Virtue of Complexity in Factor Pricing Models

Our central empirical finding is that factor model performance is increasing in the number of

factors. We illustrate this virtue of complexity by plotting out-of-sample model performance

15When building the Markowitz portfolio for each benchmark model, we do not use ridge shrinkage because
the number of assets is far smaller than the number of time series observations. Even with infeasible (ex-
post optimal) ridge shrinkage, we find the out-of-sample SDF performance of benchmark models changes
negligibly.
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as a function of the number of model parameters (which, in our setting, corresponds to

the number of factors). KMZ refer to such plots as “VoC curves.” Each curve applies

a different ridge penalty z = 10−5, 10−3, 10−1, 1, or 10. Along each curve, we vary the

complexity—i.e., the number of factors—in our SDF model. We consider specifications with

P = 36, ..., 360,000 random Fourier factors, corresponding to c = 0.1, ..., 1,000. The VoC

curves in Figure 2 show four out-of-sample properties of each SDF specification: expected

return (Panel A), volatility (Panel B), Sharpe ratio (Panel C), and pricing error (Panel D).

We find the following main patterns associated with model complexity. As we increase

the number of factors, i) the average SDF return rises, ii) SDF volatility rises, iii) the SDF

return increases faster than volatility, resulting in a rising SDF Sharpe ratio, iv) pricing

errors decline, and v) performance gains accrue more quickly with less ridge shrinkage. The

exceptions to these patterns occur when ridge shrinkage is small, and complexity is close to

one, in which case we see a spike in out-of-sample SDF volatility that induces an abrupt dip

in the Sharpe ratio and a spike in pricing error. This “double ascent” in Sharpe ratio and

“double descent” in pricing error is reminiscent of previously documented phenomena in the

machine learning literature (e.g. Hastie et al., 2019; Bartlett et al., 2020).

Quantitatively, the differences in out-of-sample performance for high and low-complexity

models are dramatic despite the fact that both model types use identical data inputs and

differ only in the richness of their parameterizations. High-complexity models with light

shrinkage earn out-of-sample Sharpe ratios near 3.7, roughly 2.6 times larger than the Sharpe

ratios of low-complexity models with c < 1. Likewise, large factor models are much better

positioned to price our demanding test assets (153 anomaly portfolios collected from decades

of finance research). Pricing errors for low-complexity models are more than twice as large

as those for high-complexity models (0.54 vs 0.22).
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Panel A: Expected Return Panel B: Standard Deviation

Panel C: Sharpe Ratio Panel D: Pricing Error

Figure 2: Out-of-sample Performance of Complex Factor Models

Note. Realized out-of-sample SDF portfolio average return, standard deviation, Sharpe ratio, and pricing
error (HJD). The horizontal axis shows model complexity c = P/T , with P ranging from 36 to 360,000
and T = 360 months. Factors underlying the SDF are characteristic-managed portfolios constructed with
random Fourier features derived from JKP stock characteristics. The test assets in Panel D are 153 anomaly
factors from JKP.

3.2 Comparison With Benchmarks

In Figure 2, we compare large and small variants of factor models using random Fourier

factors. However, the conclusion that large factor models outperform simple models is not

specific to the nonparametric framework in Figure 2.

Figure 3 compares the high complexity factor model (P = 360, 000 and z = 10−5) to
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Panel A: Sharpe Ratio Panel B: Cumulative Return

Panel C: Pricing Error

Figure 3: Performance Comparison of Complex and Benchmark Factor Models

Note. This figure reports the out-of-sample performance of SDF portfolios corresponding to various factor
pricing models, including the complex model (P = 360, 000 and z = 10−5) as well as the simple benchmark
models FF6, HXZ, SY, DHS, and BS. Panel A shows the out-of-sample Sharpe ratio for each model’s factor
Markowitz portfolio. Panel B shows the simple cumulative sum of out-of-sample returns for each model’s
factor Markowitz portfolio (we have standardized out-of-sample returns to 10% annualized volatility for all
models in order to facilitate comparison in this panel). Panel C shows pricing errors (HJD) for four sets
of test assets, including are the 360,000 random Fourier factors underlying the large factor model (denoted
“complex”), the 153 JKP factors, the 13 JKP aggregate theme factors, and the 25 Fama-French size and
book-to-market portfolios. Benchmark data sets are available for different sample periods, so we report
statistics on the intersection of their out-of-sample ranges, which is from August 2002 to December 2016.

five of the leading factor models in the literature: FF6, HXZ, SY, DHS, and BS. Panel A
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reports the out-of-sample Sharpe ratio for each model’s SDF portfolio, Panel B shows the

corresponding cumulative return plot, and Panel C reports out-of-sample pricing errors.16

Panel A shows that the benchmark factor models are all roughly on par with each other in

terms of Sharpe ratio, while the complex model rather dramatically outperforms every simple

model. Its Sharpe ratio is around 3-6 times higher than the benchmarks. The cumulative

returns in Panel B show that the portfolio performance comparison is not driven by any

particular subsample and that the complex model does not exhibit any periods of unusually

turbulent behavior.

Panel C shows that the large factor model also dominates in terms of pricing error.

When the 153 JKP factors are test assets, HJD for the benchmark models hovers around

0.9, roughly twice that of the large factor model. This finding is not specific to this set of

test assets. When the test assets are the 360,000 random Fourier factors themselves, the

HJD hovers around 0.95 for benchmark models, again roughly twice the HJD of the complex

factor model. Third, we study the JKP theme factors, which collect the individual anomaly

factors into 13 aggregate theme portfolios. The benchmark HJD for this test set is around

0.2, which is roughly four times larger than the complex model HJD. Finally, we use the

classic Fama-French 25 size and value portfolios. This test set has been the target for pricing

models for forty years, and one can argue that benchmark models have been honed to price

test assets like these. Even in this case, benchmark models deliver an out-of-sample pricing

error of around 0.2, roughly three times larger than those from the complex pricing model.

Table 1 extends the benchmark comparison by reporting pairwise alphas between SDF

portfolios of the large factor pricing model and each of the benchmark models. For this,

we use the out-of-sample SDF portfolios but renormalize them ex post to a 10% annualized

volatility to make alphas comparable for all models (unlike HJD, alphas lack scale invariance,

so volatility scaling is helpful for comparison). The complex model produces a large and

16Figure 3 shows small differences in performance metrics for the high complexity factor model compared
to Figure 2. This is because Figure 3 is restricted to a shorter time sample in which data is available for all
benchmark models.
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Table 1: Performance Comparison of Complex and Benchmark Factor Models

This table reports a comparison of out-of-sample SDF portfolio performance for various factor pricing models,

including the complex model (P = 360, 000 and z = 10−5) as well as the simple benchmark models FF6,

HXZ, SY, DHS, and BS. The first two rows show the annualized percentage alpha and associated t statistic of

the complex SDF portfolios versus each benchmark SDF portfolio. The next two rows show each benchmark

SDF portfolio’s alpha and t statistic versus the complex model. The last two rows show the ex-post tangency

portfolio weights combining the SDF portfolios of all models with and without a non-negativity constraint

(and constraining weights to sum to one). To facilitate alpha comparisons, out-of-sample SDF portfolio

returns for all models are rescaled to have 10% annualized volatility. Benchmark data sets are available for

different sample periods, so we report statistics on the intersection of their out-of-sample ranges, which is

from August 2002 to December 2016.

LHS

FF6 SY HXZ DHS BS Complex

Complex Alpha 42.8 40.7 39.4 43.5 44.4 –

vs. Benchmark (13.9) (13.6) (13.0) (13.7) (13.8) –

Benchmark Alpha -2.8 -4.3 -2.3 1.50 3.90 –

vs. Complex (-0.7) (-1.2) (-0.6) (0.40) (1.00) –

Tangency Weights

Unconstrained -0.44 -0.24 -0.01 0.12 0.56 1.01

Non-negative 0.00 0.00 0.00 0.01 0.09 0.90

highly significant alpha versus all benchmarks, ranging from 39.4% to 44.4% per annum.

The reverse is not true. Benchmark models all have small and statistically insignificant

alphas versus the complex model. Finally, we estimate the “meta”-Markowitz portfolio that

combines SDF portfolios of all individual models. The complex model dominates the meta

portfolio, receiving a weight of 101% in the unconstrained portfolio and a weight of 90% in

the portfolio that constrains weights on individual models to be non-negative.

3.3 The Nonlinear Fama-French Model

In the preceding analysis, we compare high complexity factor models derived from 130 JKP

characteristics to the FF6 model and other benchmarks that are low complexity models

derived from a small set of characteristics. Naturally, one may wonder about the benefits of

complexity when we restrict the raw data inputs to match those used by a given benchmark
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Figure 4: Complex Versions of Benchmark Models

Note. The figure reports out-of-sample Sharpe ratios of simple benchmark models compared to their
nonlinear, high-complexity counterparts. For each benchmark model we construct its high complexity SDF
with random Fourier factors derived from the characteristics underlying that model: size, value, investment,
profitability, and momentum for FF6; size and two mispricing measures (MGMT and PERF) for SY; size,
investment, profitability and expected growth for HXZ; size, PEAD, and two measures of issuance (CSI and
NSI) for DHS; and asset growth, profitability, size, value and momentum for BS. Complex versions of each
benchmark use P = 360, 000 factors (c = 1000) and shrinkage of z = 10−5, 10−3, 10−1 or 1.

model. To investigate this, we construct complex SDFs using random features derived from

only the characteristics that underly each benchmark. For example, in the case of FF6, we

construct a complex factor model with a large number of nonlinear factors derived from the

size, value, investment, profitability, and momentum characteristics.

Figure 4 reports the out-of-sample Sharpe ratio of high complexity variations of each

benchmark model using P = 360,000 (c = 1,000) random Fourier factors and ridge shrinkage

of z = 10−5, 10−3, 10−1 or 1. The original formulation of the FF6 model has an out-of-

sample Sharpe ratio of 0.74, while its high complexity version ranges from 1.93 to 2.50
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depending on the degree of shrinkage. All benchmarks show the same pattern—if we hold

the stock characteristics of each simple model fixed but enrich the model specification to

incorporate highly parameterized nonlinear transformations of those characteristics, the out-

of-sample performance of the benchmarks improves by a factor of 1.4 to 3.6 depending on

the benchmark and the amount of shrinkage.

The conclusion is that the benefits of large factor models accrue even when starting from

a small conditioning information set. Complexity may be applied to any set of conditioning

variables to more flexibly reflect patterns in the underlying return-generating process.

3.4 SDF Complexity or SDF Sparsity?

A recent line of financial machine learning research suggests that it is possible to estimate a

successful factor pricing model through the imposition of sparsity.17 The evidence indicates

that an SDF model with a small number of factors can successfully price a wide variety of

test assets. This is exemplified by Kozak et al. (2018), who study a collection of difficult-to-

price anomaly portfolios that serve as their test assets. They then show that a simple linear

SDF—comprised of just a few principal components of the anomaly portfolios—is powerful

for pricing their entire anomaly cross-section.

The notion of SDF sparsity appears at odds with the benefits of complexity that

we document above. While our results thus far demonstrate that a complex model can

identify efficacious nonlinear pricing factors, is it possible that we also introduce unnecessary

redundancy by using many thousands of factors? We investigate this possibility now.

In Figure 2, each point on each curve is a model with a particular number of factors, P ,

and a particular shrinkage parameter, z. To investigate the potential benefits of sparsity,

we replace the P -factors in each model of Figure 2 with a small number K of principal

17This includes Gagliardini et al. (2016), Kelly et al. (2020), Kozak et al. (2020), Lettau and Pelger (2020),
and Giglio and Xiu (2021), among others.
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K = 5 K = 25

Figure 5: The Effect of Sparsity on Out-of-sample SDF Performance

Note. Realized out-of-sample SDF Sharpe ratio (top row) and pricing error (HJD, bottom row) for complex
models with dimension reduction to K = 5 (left column) and K = 25 (right column) principal components.
The horizontal axis shows model complexity c = P/T with P ranging from 36 to 360,000 and T = 360
months. For ease of reference, “Complex Model” shows performance of the highest complexity model (P =
360,000, z = 10−5) from Figure 2 without dimension reduction.

components derived from those P factors. We then re-estimate the SDF coefficients on the

K components and track the resulting out-of-sample factor model performance.

Figure 5 reports the results. In the left column, we consider a K = 5 component dimen-

sion reduction of each complex factor model (corresponding to the number of components

in the main analysis of Kozak et al., 2018). The Sharpe ratio (top panel) of the dimension-

reduced SDF is roughly 1.3, compared to 3.7 for the full complexity model. Likewise, pricing

errors (bottom panel) are 0.57 for the K = 5 SDF versus 0.22 for the full complexity
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Figure 6: The Effect of Sparsity on Out-of-sample SDF Performance

Note. Realized out-of-sample SDF Sharpe ratio (top row) and pricing error (HJD, bottom row) for complex
models with dimension reduction to K = 5, ..., 360 principal components (x-axis).

model. In other words, imposing sparsity on the SDF via dimension reduction inhibits SDF

performance relative to the unreduced, high-complexity counterpart.

The right column of Figure 5 shows that increasing model complexity by using K = 25

rather than K = 5 principal components leads to a large improvement in out-of-sample

performance. But even in this case, the Sharpe ratio remains well below that of the full

complexity model (3.7 vs 2.9), and the pricing error remains 41% higher (0.31 vs 0.22).

Two properties of high-dimensional models drive this effect. First, even if the true

(unobservable) factor covariance matrix has a few large eigenvalues and, hence, a strong

factor structure, the factors become difficult to detect when complexity is high.18 Second

and more surprisingly, even low-variance components have a significant Sharpe ratio, so

excluding them leads to a large drop in out-of-sample SDF performance. This fact is

illustrated in Figure 6. In this analysis, we hold the number of factors in the underlying model

fixed at P = 360, 000, but vary the number of components extracted from the model from

K = 5, 10, ..., 360. Adding low variance components typically helps, and never hurts, out-

of-sample factor model performance. Based on this analysis, the AIPT’s large factor model

18See, e.g., Lettau and Pelger (2020).
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Panel A: Mega Panel B: Large

Panel C: Small Panel D: Micro

Figure 7: Out-of-sample Sharpe Ratios of Complex SDF Models By Size Group

Note. Realized out-of-sample SDF Sharpe ratio for SDFs estimated from subsamples based on market
capitalization.

conjecture appears better suited for describing market behavior than does the parsimony

conjecture of the APT.

3.5 Sensitivity to Liquidity

A Sharpe ratio of 3.7 for the high-complexity SDF model suggests that the model is exploiting

inefficiencies associated with illiquidity. To understand the role of complexity in factor pricing

models while abstracting from the question of asset liquidity, we conduct our empirical
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Panel A: Mega Panel B: Large

Panel C: Small Panel D: Micro

Figure 8: Out-of-sample Pricing Errors of Complex SDF Models By Size Group

Note. Realized out-of-sample SDF pricing error (HJD) for SDFs estimated from subsamples based on
market capitalization.

analysis separately for different market capitalization groups. We study four size groups

from JKP: mega (largest 20% of stocks based on NYSE breakpoints each period), large

(between 80% and 50%), small (between 50% and 20%), and micro (between 20% and 1%).

Figure 7 plots out-of-sample Sharpe ratios for SDFs estimated separately within each

size group, while Figure 8 plots pricing errors. The central conclusion from these figures is

that the virtue of complexity arises in all stock size groups. In terms of magnitude, Figure 7

indeed suggests that the SDF Sharpe ratios in Figure 2 are heavily influenced by microcap
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T = 12 T = 60 T = 120

Figure 9: The Effect of Training Sample Size on Out-of-sample SDF Performance

Note. Realized out-of-sample SDF Sharpe ratio (top row) and pricing error (bottom row) training windows
of T = 12, 60, and 120 months.

stocks. Yet the SDF Sharpe ratios based on mega or large stocks are on the order of 1.6 and

1.8, respectively. In other words, a complex factor model derived from mega stocks alone

(roughly the 400 largest stocks in the US) produces an out-of-sample SDF Sharpe ratio well

in excess of the FF6 model’s Sharpe ratio of 0.74 (which uses the full cross-section of stocks).

In summary, the patterns documented in our main analysis (Figure 2) do not appear to be

driven by illiquidity and limits-to-arbitrage among the underlying assets. Instead, these

findings suggest that models with a large number of factors are generally better suited to

price assets in the cross-section, regardless of their liquidity.

3.6 Sensitivity to Sample Size

Our main analysis demonstrates the virtue of complexity when estimation is conducted in a

rolling 360-month training sample. However, the benefits of complexity can accrue in much
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smaller training samples. In Figure 9, we plot VoC curves for training samples of T = 12, 60

and 120 months. We find identical patterns in complex factor model behavior in training

windows as short as a single year. However, for shorter training windows, model performance

weakens as the training process has less information to learn from. The out-of-sample Sharpe

ratio for our highest complexity factor model is 2.0, 2.9, 3.3, and 3.7 for T = 12, 60, 120,

and 360 months, respectively. Likewise, pricing errors reduce from roughly 0.45 for T = 12

months to 0.22 for T = 360.

4 AIPT: Theoretical Underpinnings of Complex Factor Models

This section presents artificial intelligence pricing theory. We first present assumptions that

formalize the AIPT’s core conjecture—that asset prices are determined by a high-dimensional

factor structure. From these assumptions, we derive a statistical theory of large factor pricing

models. Lastly, we show that the empirical behavior of factor pricing models in Section 3

bears a strikingly close correspondence to theoretically predicted behaviors of the AIPT.

4.1 Assets and Conditioning Information

Our theory begins with the following two assumptions:

Assumption 1 There exist loadings St ∈ RN×P , latent factors F̃t+1, and idiosyncratic

shocks εt+1 such that returns Rt+1 ∈ RN satisfy

Rt+1 = StF̃t+1 + εt+1, (14)

where Et[εt+1] = 0 and Et[εt+1ε
′
t+1] = Σε,t, and E[ε

4
i,t] are uniformly bounded. The latent

factors satisfy Et[F̃t+1] = νF , and ΣF,t = Et[F̃t+1F̃
′
t+1] satisfies tr(ΣF,t) = O(1) as P → ∞.

Assumption 2 We have St = Σ1/2XtΨ
1/2 for some positive definite matrices Σ,Ψ; here,

the random variables Xi,k,t satisfy E[Xi,k,t] = 0, E[X2
i,k,t] = 1, and Xi,k,t are independent
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and have uniformly bounded sixth moments. In the limit as N, P → ∞, both Σ and Ψ stay

uniformly bounded, tr(Σ) is uniformly bounded, and limN→∞ tr(Σ2)/(tr(Σ))2 = 0. Without

loss of generality, everywhere in the sequel we assume Σ is normalized so that tr(Σ) = 1.

Factor pricing models summarize the risk-return tradeoff among N risky assets in the

economy. To this end, Assumption 1 describes the dependence structure of assets and

expected returns. It is a standard conditional factor structure that allows for an arbitrary

number of factors P .19 Assumption 1 defines the relevant conditioning information in this

economy, which amounts to the conditional factor loadings in the N × P matrix St. We

refer to St as “characteristics” or “signals” in connection with the empirical asset pricing

literature.20 The P -vector of factor risk prices, denoted νF , together with the conditional

loadings determine asset expected returns. Appendix B further discusses Assumption 1 as

a generic statistical specification arising in the context of machine learning factor pricing

models.

Next, our theoretical derivations require assumptions about the covariance structure of

the signals St. By Assumption 2,

E[S ′
tSt] = tr(Σ)Ψ ∈ RP×P and E[StS

′
t] = tr(Ψ)Σ ∈ RN×N , (15)

thus the matrix Ψ captures the covariance of signals across factors and Σ captures their

covariance across assets. The assumption of bounded tr(Σ) is a no-arbitrage condition to

ensure that the predictable variation in returns stays bounded. The last two limits in

Assumption 2 ensure that characteristic-managed portfolios offer a meaningful amount of

diversification across stocks.21

19The assumption tr(ΣF,t) = O(1) as P → ∞ is the mathematical formalization of the idea of a factor
structure. For example, if ΣF has a finite rank K with bounded eigenvalues, then this condition is trivially
satisfied. The assumption of constant conditional factor premia is without loss of generality since dynamic
premia can be subsumed by St.

20One can think of the loadings as some function of other underlying conditioning characteristics, or the
characteristics could be loadings themselves as in the BARRA model popular among industry professionals.

21For example, suppose that rank(Σ) = 1, so that Σ1/2 = ππ′ for some π ∈ RN . Then, St = ππ′XtΨ
1/2
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4.2 Characteristic-managed Portfolios

From the equivalence of an SDF and the mean-variance efficient portfolio, Assumption 1

implies the following SDF representation.

Proposition 1 A conditional stochastic discount factor is

M̃t+1 = 1 − w̃(St)
′Rt+1 , (17)

where

w̃(St) = (StΣF,tS
′
t + Σε,t)

−1StνF (18)

is the conditional mean-variance efficient portfolio and

Et[Ri,t+1M̃t+1] = 0, i = 1, · · · , N . (19)

The SDF in (17) is stated as a conditional portfolio of the basic risky assets, R, as discussed

in the empirical framework of Section 2. Estimating the conditional mean-variance portfolio

of basic assets is challenging. Not only does it require estimates of means and covariances

for a large number of assets, but it also requires these moments in conditional terms.

To avoid the difficult task of modeling the conditional distribution of basic assets, it is

common in the empirical literature to instead study characteristic-managed portfolios, or

and therefore all factors are given by

Ft+1 = Ψ1/2X ′
tπ(π

′Rt+1) , (16)

implying that all factor returns are proportional to returns on a single portfolio, π′Rt+1, with no idiosyncratic
return. Assumption 2 ensures that such pathological situations cannot occur.
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“factors,”22

Ft+1 = S ′
tRt+1. (20)

The conjecture is that by studying the unconditional properties of factors, we can learn about

the conditional properties of asset markets. For example, Kozak et al. (2020) approximate

the conditional SDF using the unconditional mean-variance efficient portfolio of managed

portfolios.23 Yet it is easy to see that the mean-variance portfolio of Ft,

λ = E[Ft+1F
′
t+1]

−1E[Ft+1] (21)

is generally different from the conditionally efficient portfolio of basic assets that determines

the true SDF in (17).

We prove in Proposition 2 that when the number of factors is large, the conjecture

indeed holds, and the unconditional optimal portfolio of factors coincides with the true

conditional SDF. While somewhat technical, the logic for this result is straightforward.

Factors interact base asset returns with conditioning characteristics, and, in the large P

limit, these interactions encode all available conditioning information. Therefore, we can rely

on unconditional properties of factors to capture the conditional properties of the underlying

assets.24

Proposition 2 (Characteristic-managed Portfolios and the Conditional SDF) Suppose

that in the limit, as P → ∞, the vector of latent risk premia νF is uniformly bounded and

22The literature often refers to the managed portfolios Ft as “factors,” and we adhere to this slight abuse
of nomenclature when the difference between Ft and the true factors F̃t is clear.

23Relatedly, to help justify the empirical approach of Kozak et al. (2020), Kozak and Nagel (2023) discuss
conditions under which managed portfolios “span” the conditional SDF.

24See Appendix E for technical details.
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satisfies

ν ′FAνF → 0 (22)

in probability, for any symmetric, positive definite A with uniformly bounded trace.25 Suppose

also that Σε,t = I26 and let

Mt+1 = 1− λ′Ft+1 = 1 − w(St)
′Rt+1, with w(St) = λ′St , (23)

be the factor approximation for the SDF with λ given by (21). Then, Mt+1 converges to M̃t+1

from (17) in probability and the Sharpe ratio of w(St)
′Rt+1 converges to that of w̃(St)

′Rt+1

as N,P → ∞.

The surprising and very convenient implication of Proposition 2 is that model complexity,

in fact, simplifies asset pricing. Much like continuous time limits simplify a variety of asset

pricing calculations, large factor limits reduce conditional SDF modeling to an unconditional

problem. Therefore, in the remaining theoretical development, we leave behind the base

assets Rt and work directly with managed portfolios, Ft.
27

4.3 Large Models as Approximations

As the George Box adage goes, “All models are wrong, but some are useful.” In reality,

the true data-generating process is unknown to the researcher. A core premise of modern

artificial intelligence (and nonparametric statistics more broadly) is that large models are

25For example, this is the case when νF is sampled from N(0,Σλ/P ) for some bounded matrix Σλ. In this
case, E[ν′FAνF ] = tr(E[AνF ν

′
F ]) = tr(AE[νF ν

′
F ]) = tr(AΣλ)/P ≤ tr(A)∥Σλ∥/P → 0.

26When Σε,t ̸= I, Proposition 2 still holds true if we redefine managed portfolios as Ft+1 = S′
tΣ

−1/2
ε,t Rt+1.

27Relatedly, Assumptions 1 and 2 govern the properties of Rt, which serves two purposes. First, the
assumptions ensure that characteristic-managed portfolios span the SDF in the high-complexity limit, per
Proposition 2. Second, they imply that characteristic-managed portfolios satisfy the technical conditions of
random matrix theory (see Theorem 5 in the Appendix). Once these conditions are established, the origin
of factors is no longer relevant, and the theory can treat them in the abstract when proving our main result
in Theorem 3.
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useful because they provide flexible approximations of the unknown truth. However, while

added complexity brings better approximations, it also brings the usual statistical challenges

of heavy parameterization in the face of limited data.

In this section, we design a framework to understand the out-of-sample behavior of factor

pricing models as we gradually expand their parameterization. To embed this investigation

in our theoretical environment, we consider a true SDF with a large number of factors,

P ∗. We then consider an empirical model that approximates the SDF with only a fraction

q = P
P ∗ ≤ 1 of those factors.

Assumption 3 A misspecified empirical model of size P < P ∗ (q = P
P ∗ ) uses a subset of

factors, Ft+1(q) = (Fi,t+1)
P
i=1 with covariance matrix E[Ft(q)Ft(q)

′] ∈ RP×P .

We are interested in characterizing out-of-sample factor model behavior as we expand the

subset of factors from P = 1, ..., P ∗, gradually reducing the degree of misspecification in the

approximating model (when P1 = P the model is correctly specified) while increasing the

number of parameters that must be estimated.

Our theoretical derivations are based on large P limits. The number of factors in the true,

unattainable factor model is P ∗ → ∞. We conceptualize the AIPT as a rich but nevertheless

imperfect empirical model with P → ∞ and q ≤ 1. We now develop the limiting behavior

of large empirical factor models using random matrix theory.

4.4 Feasible and Infeasible SDF Estimators

Proposition 2 directly motivates our empirical approximation to the SDF in equation (4) and

the ridge estimator in equations (9) and (12). Following Assumption 3, the ridge estimator

has access to a fraction q of the factors in the true model. Given a training sample of size

T , the empirical model has complexity c = P/T . We define the ridge SDF estimator for an
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empirical model of complexity c and specification q as

λ̂(z; q; c) = (zI + Ê[Ft(q)Ft(q)
′])−1Ê[Ft(q)] (24)

with corresponding portfolio return and SDF of

R̂M
T+1(z; q; c) = λ̂(z; q; c)′FT+1(q), M̂T+1(z; q; c) = 1− R̂M

T+1(z; q; c),

where Ê denotes sample average over the T training observations.

It will be useful to contrast λ̂(z; q; c) with the infeasible ridge SDF estimator

λ(z; q) = (zI + E[F (q)F (q)′])−1E[F (q)] (25)

and its return and SDF

RM
T+1(z; q) = λ(z; q)′FT+1(q), MT+1(z; q) = 1−RM

T+1(z; q). (26)

This estimator is infeasible because it relies on the population mean and covariance of factors

rather than their sample counterparts. The special case λ = λ(0, 1) corresponds to the true

SDF in (23). Naturally, as z increases from zero or as q decreases from one, the Sharpe ratio

of RM
T+1(z) declines. The portfolio λ(z; q) is an intermediate object between the true SDF

λ(0, 1) and the feasible estimator λ̂(z; q; c).

A remarkable aspect of the theoretical results below is that we can fully characterize the

properties of λ̂(z; q; c) in terms of the infeasible estimator λ(z; q). Our analysis focuses on

the key properties that summarize the theoretical behavior of a factor-based SDF: its mean

and variance (which in turn dictate its Sharpe ratio and pricing errors). Because they are

central to our derivation below, we give special notation to these properties for the infeasible
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ridge SDF:

E(z; q) ≡ E[RM
T+1(z; q)], V(z; q) ≡ Var[RM

T+1(z; q)]. (27)

4.5 The Ridge SDF and Random Matrix Theory

It is perhaps easiest to understand our large P theory for factor model behavior through the

calibrations in Section 4.7, and readers interested in a non-technical discussion of the theory

may proceed there directly. For interested readers, this section provides a brief overview of

the RMT concepts behind our analysis, and Section 4.6 gives a detailed presentation of our

main result.

The central challenge to understanding λ̂(z; q; c) is the P×P matrix Ê[Ft(q)Ft(q)
′] whose

dimension grows with the number of factors. The limiting properties of this object require

the apparatus of random matrix theory (RMT).

One technical insight in our analysis is that incorporating ridge regularization in the

SDF estimation problem allows us to extend core RMT results, such as the Marčenko and

Pastur (1967) theorem, to asset pricing analysis. We derive the necessary extensions of

Marčenko and Pastur (1967) to describe expected out-of-sample SDF behavior in terms of

three objects: the eigenvalue distribution of the factor population covariance matrix, E[FF ′],

the number of parameters per training observation (i.e., complexity, c), and the extent of

model misspecification (governed by q). Recall that our factors are defined as Ft+1 = S ′
tRt+1,

with signals and returns satisfy Assumption 1 and 2. As we show in the Appendix, the only

properties of the data-generating process that matter for portfolio performance in the high

complexity limit are Ψ and νF . Let Ψ(q) = Ψ[1 : P, 1 : P ] be the Ψ sub-matrix corresponding

to the first P signals, and, similarly, let ν(q) = (ΨνF )[: P ] to be the first P coordinates of

the ΨνF vector.

We need the following regularity condition on the covariance matrix of factors.
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Assumption 4 In the limit as P → ∞, the eigenvalue distribution of Ψ(q) =

U(q)D(q)U(q)′, D(q) = diag(Di(q)), converges to a limit distribution dH(x; q) supported

on a bounded interval. Furthermore, ν(q) = (ΨνF )[: P ] is such that

1

∥ν(q)∥2
∑
i

|U(q)′ν(q)|2(i)1Di(q)<x (28)

weakly converges to a probability distribution on R as P → ∞. Furthermore, in addition to

Assumption 1, we have E[ε3i,t] = 0 for all i, and the latent factors satisfy E[∥F̃t+1∥4] < K

for some K > 0.28

The central object that dictates the behavior of large factor models is the eigenvalue

distribution of the factor covariance matrix, which our derivations represent as a Stieltjes

transform. This transform for the eigenvalue distribution of E[FtF
′
t ] in the large P limit is

denoted

m(−z; q) = lim
P→∞

1

P
tr
(
(E[Ft(q)Ft(q)

′] + zI)−1
)
, (29)

and, similarly, the infeasible moments (27) converge to well-defined limits

E(z; q) , V(z; q) .

We denote the limiting eigenvalue distribution of Ê[Ft(q)Ft(q)
′] as

m(−z; q; c) = lim
P→∞
P/T→c
P/P ∗→q

1

P
tr

((
zI + Ê[Ft(q)Ft(q)

′]
)−1
)

(30)

The main challenge of the AIPT is that when the factor model is heavily parameterized

(c > 0), Ê[Ft(q)Ft(q)
′] converges not to E[F (q)F (q)′] but to a distortion of it. In Theorem

28See Lemma 13 which shows how this condition is essentially equivalent to ΣF having a bounded trace
and νF being bounded, as in Assumption 1, plus a condition on the fourth moments.
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5 in Appendix D, we apply an extension of the Marčenko and Pastur (1967) theorem due

to Bai and Zhou (2008) to our asset pricing environment in order to establish the explicit

mapping between Ê[Ft(q)Ft(q)
′] and E[FtF

′
t ]. Namely,

m(z; q; c) =
1

1 − c − c z m(z; q; c)
m

(
z

1 − c − c z m(z; q; c)
; q

)
. (31)

The nonlinear master equation in (31) has a unique positive solution m(z; c; q) for any z < 0.

This solution is a function of only m(z; q) and c. Thus, equation (31) links m(−z; q; c) in

(30) to m(−z; q) in (29). When complexity is low and misspecification is small, i.e. when

c ≈ 0 and q ≈ 1, (31) implies m(z; q; c) ≈ m(z; q), as predicted by the standard law of

large numbers. However, for c > 0, the empirical Stieltjes transform and the “true” Stieltjes

transform decouple in a deterministic manner. When complexity is high (e.g., c > 1), large

parts of information about m(z) are lost in finite samples even in the correctly specified

(q = 1) case, and this information loss is, of course, further exacerbated by misspecification.

The last object we need to introduce is the particular formulation of the HJD that we use

to characterize pricing errors. In the high complexity regime, exact details of computing the

out-of-sample HJD are important. We assume that the data sample is split into two sets:

in-sample data indexed as t ∈ [1, T ] and out-of-sample data indexed as t ∈ (T +1, T + TOS],

where TOS is the number of out-of-sample periods. For simplicity, we focus our theoretical

analysis on the case in which the test assets are the factors Ft(q) used to estimate the SDF.29

We thus define the out-of-sample HJD as

DHJ
OS (z; q; c) = EOS(z; q; c)

′B+
OS EOS(z; q; c) ,

Where EOS(z; q; c) = 1
TOS

∑
t∈(T,T+TOS ]

Ft(q)M̂t(z; q; c) is the out-of-sample pricing error

29The pricing error properties of the SDF are particularly tractable to derive when the test assets are the
P factors Ft(q), but this point can be generalized this at the cost of further notation and derivations.
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vector and BOS = 1
TOS

∑
t∈(T,T+TOS ]

Ft(q)Ft(q)
′ is the out-of-sample test asset second

moment.

4.6 The Theoretical Behavior of Large Factor Models

We now state our main theoretical result, which describes the expected out-of-sample

properties of large factor models.

Theorem 3 In the limit as P, T → ∞, P/T → c, P/P ∗ → q, the expected out-of-sample

moments of the ridge SDF portfolio satisfy

i. limE[R̂M
T+1(z; q; c)] = E

(
Z∗(z; q; c); q

)
where

Z∗(z; q; c) = z
(
1 + ξ(z; q; c)

)
∈ (z, z + c) and ξ(z; q; c) =

c(1 − m(−z; c; q)z)
1− c(1 − m(−z; c; q)z)

,

ii. limVar[R̂M
T+1(z; q; c)] = V

(
Z∗(z; q; c); q

)
+ G(z; q; c)R

(
Z∗(z; q; c); q

)
where

G(z; q; c) = (zξ(z; q; c))′ ∈ (0, cz−2], R(z; q) ≡ (1− E(z; q))2 + V(z; q)

iii. lim
Var[R̂M

T+1(z; q; c)]

E[R̂M
T+1(z; q; c)]

2
= (1 +G(z; q; c))

1

S2(Z∗; q)
+ G(z; q; c)

(
1− E(Z∗; q)

E(Z∗; q)

)2

,

iv. limE[DHJ
OS (z; q;P ;T )] = −(1− E(0; 1))max(1− cOS, 0)

+ (1 +G(z; q))R(Z∗(z; q; c); q) .

The central theme in Theorem 3 is that the large number of factors relative to the

number of training observations limits the estimator’s ability to learn the true parameters.

When c > 0, there are too many parameters and too few data points for the estimator to

converge to its population counterpart. This failure to fully hone in on the truth results in

an asymptotic wedge between the out-of-sample performance of the trained model and that

of the true model. We refer to this as “limits to learning.” Perhaps surprisingly, Theorem 3

shows that we can explicitly quantify the effects of limits to learning using only knowledge

of the factors’ sample covariance in the training data.
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Limits to learning manifest in two ways—implicit shrinkage and complexity risk—which

impact the SDF’s out-of-sample properties. We describe these properties now.

4.6.1 Expected Return

Part i. of Theorem 3 describes how complexity inhibits the expected return of the SDF

portfolio. It describes the expected return in terms of the infeasible ridge portfolio’s return.

The key to this is the function Z∗(z; q; c), which is the “implicit shrinkage” of the feasible

estimator. Z∗ is monotone increasing in c. In other words, high complexity imposes

additional shrinkage on the SDF, above and beyond the explicit ridge shrinkage z.30

If the model is correctly specified (q = 1) and with a complexity of zero, then

Z∗(z; 0; 1) = z and the feasible SDF’s expected return converges to the infeasible expected

return, E
[
λ̂(z)′RT+1

]
→ E[λ(z)′RT+1] = E(z). But holding z fixed, a rise in complexity to

c > 0 induces additional bias in the estimator and drives down the expected return of the

SDF portfolio. By how much? By the same amount that the expected return drops when

the infeasible portfolio’s shrinkage rises from z to Z∗(z; 1; c). In other words, the challenge

of learning in a complex setting is equivalent to knowing the true factor moments but being

forced to use an unduly large shrinkage. Remarkably, Z∗(z; 1; c) is available in closed form

thanks to the expression for ξ(z; q; c) from RMT.

The monotonicity of Z∗(z; q; c) in z means that out-of-sample expected returns are highest

with minimal shrinkage. But even in the ridgeless limit when z → 0, Theorem 3 shows there

are limits to learning. In particular, there is an unavoidable reduction in expected return

because Z∗(z; q; c) is uniformly bounded away from zero in the high complexity regime

(c > 1).

Thus, limits to learning hold even if the model is correctly specified. But this case

30Complexity generates this additional implicit shrinkage in an intuitive way. Holding z fixed, if we increase
P , we cannot raise ∥λ∥2 further due to the ridge penalty. By adding more parameters, we can only continue

to satisfy the ridge constraint by shrinking the λ̂ vector further.
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is unrealistic; we can’t ever expect to achieve an empirical model that nests all relevant

conditioning information or uses that information in its proper nonlinear form. Furthermore,

under correct specification, comparative statics for complexity change both the empirical and

the true model as we vary c. Thus, these theoretical comparative statics cannot be taken to

data.

The empirically relevant comparative statics must consider a single true DGP, in essence

fixing the set of true factors and varying the number of those factors that the empirical

model has access to. We can conceptualize these comparative statics by varying q. When

the model is misspecified (q < 1), expected returns are hindered further because the model

relies on incomplete information. But the effect of q is subtle. Holding T fixed, a higher q

has two opposing effects on the expected SDF return. First, larger q means that there are

more empirical factors, so c rises as well, which exacerbates the limits to learning. However,

higher q also reduces specification bias and, therefore, improves the approximation power

of the model. This shows up as a smaller implicit shrinkage, Z∗. Which effect dominates

depends on the eigenvalue distribution of the factors. As we will see in the calibration below,

when there is a concentrated eigenvalue distribution and thus a few dominant factors—as

in the assumptions of the APT—the cost of complexity (i.e., more severe limits to learning)

dominates the approximation benefits and high complexity may hurt expected SDF returns

on net. But when the eigenvalue distribution is dispersed, and there are many relevant

factors—i.e., under the conditions of the AIPT—approximation gains dominate, and high

complexity leads to better out-of-sample SDF returns.

4.6.2 Variance

Part ii. of Theorem 3 regards the variance of the ridge SDF portfolio. On the right side of

(32), the first term relates to the implicit shrinkage effect discussed above. In the large P

limit, the feasible SDF portfolio with parameter z has the same volatility as the infeasible
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portfolio with a larger ridge parameter Z∗(z; q; c) > z. Due to this implicit shrinkage and

the monotonicity of Z∗ in c, SDF portfolio variance decreases with model complexity when

c > 1.

While the first term in (32) reflects the implicit shrinkage in large factor models, the

second term represents a different phenomenon that we call “complexity risk.” Complexity

risk can be thought of as sampling variation that exists even in the large T limit. It is a pure-

variance effect governed by the function G(z; q; c), independent of expected factor returns,

and only depends on the eigenvalue distribution of E[Ft(q)Ft(q)
′]. For a simple model, c = 0,

there are infinitely more observations than parameters, so the SDF estimator converges

to a non-random limit, thus G(z; q; 0) = 0, and there is no complexity risk. However,

when c > 0, sampling variation survives even in the large T limit because the number of

parameters is too large to be accurately informed by the data. Complexity risk is a second-

moment manifestation of limits to learning. The behavior of SDF portfolio variance is driven

primarily by c and is relatively insensitive to the extent of model misspecification, q.

4.6.3 Sharpe Ratio and Pricing Error

Part iii. of Theorem 3 describes the SDF portfolio’s limiting Sharpe ratio. First, focusing

on the effect of complexity, consider the correct specification case, q = 1. Building on

i. and ii., a rise in complexity unambiguously decreases the expected SDF return due to

implicit shrinkage. The effect on the variance is mixed—implicit shrinkage lowers variance,

but complexity risk raises it. The net effect of complexity is an unambiguous decrease in the

Sharpe ratio in the correctly specified setting.

As emphasized above, while the q = 1 case is helpful for developing intuition around com-

plexity effects, our real interest lies in understanding SDF Sharpe ratios in the misspecified

setting. In this case, the effect of complexity on the Sharpe ratio is ambiguous and depends

on the eigenvalue distribution of the factor covariance. When eigenvalues are concentrated,
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complexity has a small net effect on SDF Sharpe, and can potentially reduce it. However,

when the eigenvalue distribution is relatively flat, the Sharpe ratio tends to increase with

complexity, and the gains from complexity are potentially large.

In the high complexity limit, pricing error is the mirror image of Sharpe ratio. When

conditions are such that Sharpe ratio increases with complexity, it is also the case that

pricing errors are reduced by complexity.

In summary, Theorem 3 characterizes the subtle mechanisms through which complexity

determines a model’s out-of-sample performance. Complexity introduces a tradeoff between

the quality of a model’s approximation for the unknown truth on the one hand versus limits

to learning (implicit shrinkage and complexity risk) on the other. In terms of the effect on the

SDF expected return, a larger model reduces specification bias, which raises expected returns,

but it also induces additional implicit shrinkage, which lowers returns. While complexity’s

implicit shrinkage has a dampening effect on SDF volatility, it at the same time raises

volatility by producing sampling variation (i.e., complexity risk) that survives in the large

T limit. When the marginal approximation benefits are large relative to the loss due to

limits to learning, we find that the complexity raises the out-of-sample SDF Sharpe ratio

and reduces pricing errors. Under these conditions, there is a virtue of complexity, and large

factor models dominate simple, parsimonious models. Theorem 3 shows that the eigenvalue

distribution among factors is critical for determining whether complexity is a virtue or a

vice.

4.7 Illustrating the Theory

Theorem 3 derives foundational results for understanding the role of complexity in factor

pricing models. However, the analytical expressions are dense and can be difficult to parse.

In this section, we attempt to bring Theorem 3 to life by visualizing the role of complexity

in different data environments. We present two DGP calibrations of our theory. In each
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case, we evaluate the closed-form theoretical expressions in Theorem 3 to plot the key out-

of-sample SDF properties as a function of model complexity given the assumed DGP. These

illustrations are the direct theoretical counterparts to the empirical VoC curves presented in

Section 3.

4.7.1 Calibration 1: The AIPT

As emphasized in the theory discussion above, the eigenvalue distribution of E[F (q)F (q)′]

is a critical driver of out-of-sample SDF behavior. Our first calibration assumes a uniform

eigenvalue distribution, E[F (q)F (q)′] = I. This calibration captures the spirit of the AIPT—

that is, the conjecture that the underlying DGP is subject to a large number of distinct

factors. To complete the calibration, we also assume E[F (q)] ∼ N(0, I/P ), and we set the

true complexity P ∗/T to 10. To produce theoretical VoC curves, we gradually increase the

fraction of observable factors in the empirical model (q = P/P ∗) from 0 to 1, thus varying

model complexity c = P/T from 0 to 10.

Figure 10 plots the results. Each curve corresponds to a different choice of ridge penalty

z, and each point on a curve corresponds to a different number of factors P . The four panels

show how complexity (on the x-axis) affects the expected out-of-sample mean, variance, and

Sharpe of the SDF portfolio and the SDF’s expected out-of-sample pricing errors.

Panel A shows that the out-of-sample expected return of the SDF portfolio is increasing

in model complexity. The intuition for this result is that higher model complexity allows the

SDF model to approximate the unknown true SDF more accurately. As the approximation

improves and specification error shrinks, the estimated SDF is able to achieve a higher

expected portfolio return. When the true DGP has many factors, the gains from better

approximation overwhelm performance loss due to limits to learning. This is true for all

ridge penalty levels and throughout the full range of complexity. Expected return curves are
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Panel A: Expected Return Panel B: Variance

Panel C: Sharpe Ratio Panel D: Pricing Error

Figure 10: Out-of-sample Behavior of Large Factor Models in AIPT Calibration

Note. Limiting out-of-sample mean, variance, Sharpe ratio, and pricing error (HJD) of the SDF as a
function of c and z from Theorem 3 assuming an identity factor covariance matrix.

flatter with higher explicit ridge shrinkage, z. This is because more shrinkage increases the

estimator’s bias, reducing the approximating power of the SDF, which eats into its returns.

In Panel B, we see that SDF volatility is highly sensitive to model complexity. When c

approaches unity, the variance of the low z SDFs spikes. The logic for this behavior follows

from arguments in KMZ. As c → 1, the unregularized sample covariance matrix of factors

becomes unstable, which causes the unregularized estimator to explode. Intuitively, when
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c = 1, the number of model parameters equals the number of time series observations, so

there is an SDF estimate with an infinite in-sample Sharpe ratio. Without regularization, this

estimator badly overfits the training data and produces disastrous out-of-sample behavior.

When c≫ 1, the ridge SDF estimator experiences implicit shrinkage due to complexity,

which reduces SDF volatility. As the other curves in Panel B show, SDF volatility can also

be controlled by raising the explicit ridge shrinkage, z. This is the low variance benefit of

the shrinkage-induced bias.

The out-of-sample SDF Sharpe ratio is shown in Panel C. The ridgeless SDF estimator

demonstrates “double ascent,” in analogy to the “double descent” MSE phenomenon studied

in statistics literature.31 At low complexity (c ≪ 1), the Sharpe ratio rises with complexity

as larger models show improved approximation power benefits. But near c = 1, the Sharpe

ratio collapses to zero due to the explosion in SDF variance. Finally, at high complexity

(c ≫ 1), variance comes under control, and the benefits of improved approximation again

dominate and lead to an increasing Sharpe ratio. Panel C also demonstrates that, with

appropriate explicit shrinkage z, the complex SDF estimator exhibits “permanent ascent”

with an increasing Sharpe ratio throughout the full range of complexity.

Finally, Panel D illustrates the behavior of out-of-sample SDF pricing errors (HJD) as

a function of complexity. Pricing errors in Panel D are a mirror image of the patterns for

the Sharpe ratio in Panel C. The more complex the SDF, the better its ability to price

assets out-of-sample. As long as the number of true factors (P ) is large, these pricing errors

never go to zero, even for very high-complexity empirical models. Higher complexity means

the empirical SDF includes more true factors, improving its pricing ability. But at the same

time, higher complexity also means more stringent limits to learning, so out-of-sample pricing

errors are bounded away from zero (this is true even for high complexity models that are

correctly specified).

The most important point regarding Figure 10 is that it closely matches the qualitative

31See, for example, Spigler et al. (2019); Belkin et al. (2018, 2019, 2020); Bartlett et al. (2020).
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Panel A: Expected Return Panel B: Variance

Panel C: Sharpe Ratio Panel D: Pricing Error

Figure 11: Out-of-sample Behavior of Large Factor Models in APT Calibration

Note. Limiting out-of-sample mean, variance, Sharpe ratio, and pricing error (HJD) of the SDF as a
function of c and z from Theorem 3 assuming a factor covariance matrix with eigenvalues (1, · · · , P ∗)−2.

patterns in the data, as documented in Figure 2. The out-of-sample expected return and

Sharpe ratio of the ridge SDF are increasing in complexity while pricing errors are decreasing.

4.7.2 Calibration 2: The APT

To contrast with the AIPT in the previous calibration, we change the DGP assumption so

that the cross-section of returns is dominated by only a few distinct factors, thus embodying
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the APT conjecture. To do so, we change only one aspect of the calibration in Section 4.7.1 by

assuming that eigenvalues of the true covariance matrix Ψ are given by 1, 2−2, · · · , P ∗−2. This

assumption implies that E[F (q)F (q)′] has an effective rank EffRank(Ψ) = (trΨ)2/ tr(Ψ2) of

2.5. As (Bartlett et al., 2020) show, EffRank(Ψ) is an intuitive way to quantify the number

of significant eigenvalues of Ψ in the context of high dimensional models.

Figure 11 plots the results. The main conclusion conveyed by this figure is that there are

no benefits to complexity when the eigenvalue distribution is very concentrated. When the

ridge penalty is small (e.g., z ≤ 10−3), high-complexity models have lower expected returns

and Sharpe ratios (and larger pricing errors) than models with complexity near zero. The

fact that peak SDF performance occurs when c ≈ 0 is at odds with the patterns in Figure

2, where performance peaks when c≫ 1 regardless of the value of z.32

In summary, while the AIPT conjecture aligns closely with the evidence in Figure 2, the

APT appears counterfactual.

5 Conclusion

In this paper, we show that the out-of-sample performance of factor pricing models is

increasing in terms of the number of factors. Larger models achieve higher risk-adjusted

returns and lower pricing errors than smaller models, including standard low-dimensional

factor models in the literature. Our novel machine learning empirical design allows us to

compare models with varying degrees of statistical complexity while holding the raw data

inputs fixed. More heavily parameterized models outperform simpler models because they

afford a better approximation to the unknown data-generating process. The cost of these

parameters is higher out-of-sample model volatility, but this cost is more than justified by

the gains in expected returns from using rich parameterizations.

32Interestingly, while there are no gains to using large factor models in the APT calibration, there is
surprisingly also no cost as long as moderate ridge shrinkage is used. This is because the overfit costs
of adding additional (mostly redundant) parameters are offset by the implicit shrinkage that comes with
complexity.
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We then develop a theory of machine learning SDF estimators founded on the concept

of statistical model complexity. Among our key theoretical findings is the virtue of asset

pricing model complexity: In essence, the out-of-sample performance of factor pricing models

generally improves with the number of factors. This result holds as long as the covariance

matrix of factors is not too concentrated. We also characterize the limits to learning that arise

from the application of highly parameterized prediction models amid relative data scarcity.

While heavy parameterization precludes consistent estimation of the SDF, the virtue of

complexity arises from the improved approximation power of complex models, overwhelming

the countervailing effect of limits to learning. The empirical patterns that we document bear

a strikingly close resemblance to the predictions of our theory. Meanwhile, the theoretical

predictions of the APT are contradicted by our empirical evidence.
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Internet Appendix

A Road Map

The Appendix is organized as follows:

• Section B provides a Neural Network interpretation of the AIPT environment.

• Section C reports some useful properties of the infeasible portfolio.

• Section D presents some auxiliary results that we use in all of our proofs.

• Section E provides a proof of Proposition 2: The fact that, in the high complexity

limit, characteristic-managed portfolios span the SDF.

• Section F presents some useful results from Random Matrix Theory.

• Section G contains the proof that managed portfolios satisfy the technical conditions of

Random Matrix Theory, paving the road for all of our subsequent theoretical analyses.

• Section H contains more technical lemmas for computing moments involving managed

portfolios.

• Section I computes limE[R̂M
T+1(z; q; c)], proving item i. of Theorem 3.

• Section J develops mathematical techniques for computing RMT quantities arising in

AIPT.

• Section K computes limE[(R̂M
T+1(z; q; c))

2], proving item ii. of Theorem 3.

• Section L computing the limit of HJD distance, proving item iv. of Theorem 3.

58



B Neural Network Interpretation of the AIPT Environment

The structure of returns in Assumption 1 has a clear machine-learning interpretation.

Imagine for a moment that returns on asset i are generated by a low-dimensional factor

model like those common in economic theory,33

Ri,t+1 = β(Xi,t)
′Gt+1 + ui,t+1, (32)

where Xi,t is a vector of J conditioning variables that determines i’s conditional betas on a

small number K of latent factors, Gt+1. If one has no knowledge of the specific functional

form for the conditional beta function, one can use a machine learning model to approximate

it. For example, a shallow neural network could replace the K × 1 vector β(Xi,t) with the

approximation

β(Xi,t) ≈
P∑

p=1

ξp Si,t,p = Ξ︸︷︷︸
K×P

Si,t︸︷︷︸
P×1

, (33)

where

Si,t = A(ΩXi,t) = (A(ω′
pXi,t))

P
p=1 . (34)

The neural network model approximates the unknown beta function with a linear combina-

tion of “generated conditioning variables” denoted Si,t,p. Specifically, each Si,t,p is a basis

function that captures nonlinear predictive information in the raw conditioning variables

Xi,t. To build the basis functions, the neural network first generates a J × P matrix

Ω = (ωp)
P
p=1 of weights with rows ωp to combine the elements of Xi,t into P different linear

combinations of ΩXi,t ∈ RP . Next, these linear combinations are transformed by a nonlinear

33Santos and Veronesi (2004) is an example asset pricing theory that generates a conditional beta
formulation along these lines.
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activation function A(x), so that we end up with nonlinear features Si,t = A(ΩXi,t) ∈ RP .

Then, equation (33) collects the P basis terms into a weighted sum in order to approximate

β(Xi,t). TheK×1 vectors ξp determine how each nonlinear basis term best contributes to the

approximation of each of the K betas. We can write this sum in a matrix form by collecting

the basis terms into a P × 1 vector Si,t and the weights into the K ×P matrix Ξ. Universal

approximation theory such as Hornik et al. (1989) ensures that the formulation in (33) can

accurately approximate the true conditional beta function under regularity conditions.34

To tie this back to Assumption 1, we may stack assets’ beta coefficients into an N ×K

matrix and substitute (33) into (32) to deliver

Rt+1 ≈ StF̃t+1 + ut+1, with

F̃t+1 = Ξ′Gt+1, λF = Ξ′E[Gt+1] .
(35)

The key point of this neural network example is that, while Assumption 1 treats the factor

loadings St as known and potentially high-dimensional, we interpret it as a generic statistical

specification that arises from machine learning approximations to an unknown (and likely

low-dimensional) factor pricing model.

C Properties of the Infeasible Portfolio

By a direct calculation,35

λ = E[FF ′]−1E[F ] =
1

1 +MaxSR2
Var[F ]−1E[F ] , (36)

34The approximating structure in (33) is analyzed by Gu et al. (2020a) and is a semi-nonparametric
extension of the IPCA model in Kelly et al. (2020).

35See the Sherman-Morrison formula (77).
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where Var[F ] is the covariance matrix of factors and where we have defined

MaxSR2 = E[F ]′Var[F ]−1E[F ] (37)

to be the maximal achievable unconditional squared Sharpe ratio. Most existing papers

perform their analysis assuming that the population moments of the factors are directly

observable and, hence, so is the vector of factor risk premia, λ. The corresponding portfolio

satisfies

E[λ′Ft+1] = E[(λ′Ft+1)
2] = E[F ]′E[FF ′]−1E[F ] =

MaxSR2

1 +MaxSR2
. (38)

It will be instructive for our subsequent analysis to decompose the maximal Sharpe ratio

into the contributions coming from the factor principal components. Given the eigenvalue

decomposition Var[F ] = U diag(µ)U ′, we can define PCi to be the i-th column of U ′F . In

the sequel, we will use

θ = U ′E[F ] (39)

to denote the vector of mean returns of the PCs. Then, we can rewrite the maximal Sharpe

ratio (37) as

MaxSR2 =
∑
i

θ2i
µi

=
∑
i

(SR(PCi))
2 . (40)

We will now use this representation to understand the effect of ridge shrinkage on the

performance of the infeasible efficient portfolio,

Rinfeas
t+1 (z) = E[F ]′(zI +Var[F ])−1Ft+1 . (41)
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We call this portfolio infeasible because, in the big data regime, when P > T, neither

E[F ] ∈ RP nor E[FF ′] ∈ RP×P can be efficiently estimated from only T observations. By

construction, Rinfeas
t+1 (0) = λ′Ft+1 achieves the MaxSR, and

E(z) = E[Rinfeas(z)] = E[F ]′(zI + E[FF ′])−1E[F ] =
A(z)

1 + A(z)
, (42)

where we have defined

A(z) = E[F ]′(zI +Var[F ])−1E[F ]

=
∑
i

(SR(PCi))
2 µi

µi + z

=
∑
i

(SR(PCi))
2 1

1 + z/µi

≈
∑
i:µi>z

(SR(PCi))
2

(43)

and

A′(z) = −
∑
i

θ2i
1

(µi + z)2
. (44)

The function A(z) will be important in understanding ridge-regularization in the high

complexity case. It turns out that the risk of the efficient portfolio can be expressed in

terms of the derivative of A(z) : Defining

(zA(z))′ =
∑
i

(SR(PCi))
2

(
µi

µi + z

)2

, (45)

a somewhat tedious calculation implies that

Var[Rinfeas(z)] =
(zA(z))′

(1 + A(z))2
. (46)

62



and

E[(Rinfeas(z))2]

=
1

(1 + A(z))2
E[(E[F ]′(zI +Ψ)−1Ft)

2] =
1

(1 + A(z))2
E[E[F ]′(zI +Ψ)−1FtF

′
t(zI +Ψ)−1E[F ]]

=
1

(1 + A(z))2
E[E[F ]′(zI +Ψ)−1FtF

′
t(zI +Ψ)−1E[F ]]

= E[F ]′(zI +Ψ)−1Ψ(zI +Ψ)−1E[F ] + R1(z)
2

=
1

(1 + A(z))2

∑
i

θ2i (z + µi)
−2µi +

(
A(z)

1 + A(z)

)2

=
A(z) + zA′(z) + A2(z)

(1 + A(z))2

=
(A(z) + zA′(z))(1 + A(z))− zA(z)A′(z)

(1 + A(z))2

=
d

dz

(
zA(z)

1 + A(z)

)
.

(47)

Since the weights µi

µi+z
are monotone increasing in µi, we see that all that the ridge shrinkage

does it re-weights principal components, giving a larger weight to higher-variance PCs. The

following is a simple but important observation, implying that ridge shrinkage is always

detrimental to performance.

Lemma 1 The Sharpe ratio SRinfeasible(z) = SR(Rinfeasible(z)) is monotone decreasing in

z.

D Auxilliary Results

D.1 Basic Inequalities

Definition 1 (Strongly uncorrelated variables) We say that fi, i = 1, · · · , K are

strongly uncorrelated if E[fi1 ] = E[fi1fi2 ] = 0 for all i1 ̸= i2, E[fi1fi2fi3 ] = 0 for any i1, i2, i3
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and E[fi1fi2fi3fi4 ] = 0 unless the set {i1, i2, i3, i4} contains exactly two different elements.

Furthemore, E[f 2
i f

2
j ] = E[f 2

i ]E[f
2
j ] for i ̸= j.

Lemma 2 Suppose that X = (Xi)
P
i=1 with Xi being strongly uncorrelated according to

Definition 1. Suppose also that E[X2
i ] = 1, E[X4

i ] ≤ k, and let AP be random matrices

independent of X and such that ∥AP∥2 = o(1). Let also

Yt = X ′
tAPXt . (48)

Then,

(1) Yt = tr(APXtX
′
t) (49)

(2) lim
P→∞

E[(Yt − tr(AP ))
2|AP ] = 0 (50)

In particular, If AP = BP/P where ∥BP∥ ≤ K, we have ∥AP∥22 ≤ P∥BP∥2/P 2 ≤ K, and

hence

lim
P→∞

E[(X ′
tBPXt − tr(BP ))

2|BP ]/P
2 = 0 . (51)

Proof of Lemma 2.

(1):

X ′
tAXt ∈ R ⇒ X ′

tAXt = tr(X ′
tAXt)

tr(AB) = tr(BA) ⇒ tr(X ′
tAXt) = tr(AXtX

′
t)
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(2): Define Yt = X ′
tAPXt. We have

E[Yt] = E[tr(AP (XtX
′
t))|AP ] = tr(APE[XtX

′
t]) = tr(AP ) ,

and hence

E[(Yt − tr(AP ))
2|AP ] = Var[Yt|AP ] = E[Y 2

t |AP ]− E[Yt|AP ]
2 (52)

and hence it suffices to prove that

E[Y 2
t |AP ] − (tr(AP ))

2 → 0 (53)

For simplicity, we assume from now on that AP is deterministic, and write AP = (Ai,j)
P
i,j=1.

We also assume that A is symmetric. Then,

Yt =
∑
i,j

XiXjAi,j (54)

and therefore

Y 2
t =

∑
i1,j1,i2,j2

Xi1Xj1Ai1,j1Ai2,j2Xi2Xj2 (55)

Now, among all fourth-order moments, E[Xi1Xj1Xi2Xj2 ], the only non-zero moments are

those where either all are identical, i1 = i2 = i3 = i4, or when there are exactly two identical

pairs. The latter can happen in exactly 3 ways. First, (i1 = i2, j1 = j2), (i1 = j2, j1 = i2)

give rise to the terms A2
i1,j1

because, by assumption, A is symmetric, so that Ai1,j1 = Aj1,i1 .

Second, (i1 = j1, i2 = j2) gives rise to Ai,iAj,j. Note also that E[X2
iX

2
j ] = E[X2

i ]E[X
2
j ] = 1.
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Thus,

E[Y 2
t ] =

∑
i1,j1,i2,j2

Ai1,j1Ai2,j2E[Xi1Xj1Xi2Xj2 ]

=
∑
i

A2
i,iE[X

4
i ] +

∑
i,j,i̸=j

(2A2
i,j + Ai,iAj,j)

=
∑
i

A2
i,iE[X

4
i ] +

∑
i,j,i̸=j

2A2
i,j −

∑
i

A2
i,i + (

∑
i

Ai,i)
2

=
∑
i

A2
i,iE[X

4
i ]− 2

∑
i

A2
i,i +

∑
i,j

2A2
i,j −

∑
i

A2
i,i + (

∑
i

Ai,i)
2

=
∑
i

A2
i,i(E[X

4
i ]− 3) + 2∥A∥22 + (tr(A))2

(56)

Thus, since E[Yt] = tr(A), we have

E[Y 2
t ]− E[Yt]

2 =
∑
i

A2
i,i(E[X

4
i ]− 3) + 2∥A∥22 ≤ (k − 1)∥A∥22 . (57)

because

∑
i

A2
i,i ≤

∑
i,j

A2
i,j = ∥A∥22 , (58)

The proof is complete. □

We will need the following lemma, whose proof follows by direct calculation.

Lemma 3 Suppose that Xt ∈ RN×P is a matrix with i.i.d. elements satisfying E[Xi,kXj,l] =

δ(i,k),(j,l). Then,

E[X ′
tΣXt] = tr(Σ) IP×P .
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Lemma 4 Let A be a symmetric matrix. Then, we have

E[S ′
tStAS

′
tSt] = ((tr Σ)2 + tr(Σ2))ΨAΨ+ tr(Σ2) tr(ΨA)Ψ

+ tr(Σ ◦ Σ)Ψ1/2(κ− 3) diag(Ψ1/2AΨ1/2)Ψ1/2
(59)

where diag(Ψ1/2AΨ1/2) is the diagonal matrix with diagonal coinciding with that of

diag(Ψ1/2AΨ1/2), and Σ ◦ Σ is the elementwise product of Σ with itself.

Proof. Substituting St = Σ1/2XtΨ
1/2, we get

E[S ′
tStAS

′
tSt] = E[S ′

tStAS
′
tSt] = Ψ1/2E[X ′

tΣXtÃX
′
tΣXt]Ψ

1/2 , (60)

where Ã = Ψ1/2AΨ1/2. Thus, it suffices to consider the case Ψ = I and just compute

E[X ′
tΣXtÃX

′
tΣXt] , (61)

in which case the desired identity takes the form

E[X ′
tΣXtAX

′
tΣXt] = ((tr Σ)2 + tr(Σ2))A+ tr(Σ2) tr(A)I

+ tr(Σ ◦ Σ) (κ− 3) diag(A) .
(62)

Further, it suffices to prove the result for rank-one matrices because any symmetric matrix

A can be written as

A =
∑
i

λiβiβ
′
i
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Thus, suppose that A = ββ′. Then,

E[X ′ΣXββ′X ′ΣX]j,k

= E[
∑

i1,i2,i3,i4,i5,i6

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,k] .
(63)

By assumption, all elements of X are i.i.d. and have mean zero. Thus, the only non-zero

terms come from two identical pairs or when all terms are identical. For two identical pairs,

they are determined by what coincides with (i1, j). These are the posibilities: (i1, j) = (i2, i3)

or (i1, j) = (i5, i4) or (i1, j) = (i6, k). The latter can only happen when j = k.

• Suppose first that j ̸= k. Then,

E[
∑

i1,i2,i3,i4,i5,i6

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,k]

= E[
∑

i1=i2,j=i3,i5=i6,i4=k

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,k]

+ E[
∑

i1=i5,j=i4,i2=i6,i3=k

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,k]

= (tr(Σ)2 + tr(Σ2))βjβk = (tr(Σ)2 + tr(Σ2))Aj,k .

(64)
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• When j = k, we get

E[
∑

i1,i2,i3,i4,i5,i6

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,j]

= E[
∑

i1,i2,i3,i4,i5

X2
i1,j

Σi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i1 ]

+ E[
∑

i1,i2,i3,i4,i5,i6 ̸=i1

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,j]

= E[
∑

i1,i2,i3

X2
i1,j

Σi1,i2X
2
i2,i3

β2
i3
Σi2,i1 ]

+ E[
∑

i1,i2,i3,i4,i5,i6 ̸=i1

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,j]

= tr(Σ2)
∑
i

β2
i + (κ− 1)

∑
i

Σ2
i,iβ

2
j

+ E[
∑

i1,i2,i3,i4,i5,i6 ̸=i1

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,j]

= tr(Σ2)
∑
i

β2
i + (κ− 1)

∑
i

Σ2
i,iβ

2
j

+ E[
∑

i1=i2,i3=j,i4=j,i5=i6 ̸=i1

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,j]

+ E[
∑

i1=i5,i3=j,i4=j,i2=i6 ̸=i1

Xi1,jΣi1,i2Xi2,i3βi3βi4Xi5,i4Σi5,i6Xi6,j]

= tr(Σ2)
∑
i

β2
i + (κ− 1)

∑
i

Σ2
i,iβ

2
j

+ β2
j

∑
i1

Σi1,i1(tr(Σ)− Σi1,i1)

+ β2
j

∑
i1

∑
i2 ̸=i1

Σ2
i1,i2

= tr(Σ2)
∑
i

β2
i + (κ− 3)

∑
i

Σ2
i,iβ

2
j + β2

j (tr(Σ))
2

+ β2
j

∑
i1

(
∑
i2

Σ2
i1,i2

− Σ2
i1,i1

)

= tr(Σ2)
∑
i

β2
i + (κ− 3)

∑
i

Σ2
i,iβ

2
j + β2

j ((tr(Σ))
2 + tr(Σ2))

(65)
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Since j = k, the latter can be rewritten as

tr(Σ2) tr(A)δj,k + (κ− 3) tr(Σ ◦ Σ)Aj,k + ((tr(Σ))2 + tr(Σ2))Aj,k . (66)

□

Lemma 5 Let ε be a random vector with i.i.d. coordinates, satisfying E[ε] = 0, and E[εε′] =

I, and E[ε4i ] = κε. We have

E[εZ ′ε] = Z

and

E[ε′Zε′] = Z ′

for any vector Z.

E[ε′Aε] = tr(A)

for any matrix A. Furthermore, for any matrix B, we have

E[(ε′Bε)2] =
∑
i

B̃2
i,i(κε − 3) + 2 tr(B̃2) + (tr(B̃))2 (67)

where B̃ = 0.5(B +B′), and

E[εtε
′
tBεtε

′
t] = 2B̃ + diag((κε − 3) diag(B) + tr(B))
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Similarly,

E[ε′Bεε′] = diag(B)E[ε3j ] . (68)

Proof. We have

E[εZ ′ε]i,j = E[εi
∑
j

Zjεj] =
∑
j

Σε,i,jZj

and the first claim follows. The second claim follows because

E[ε′Zε′] = E[εZ ′ε]′ .

For the third claim, we have

E[ε′Aε] = trE[ε′Aε] = trE[Aεε′] = tr(A) (69)

while (67) follows from (56). For the last claim, we make the observation that, for any matrix

B,

ε′Bε = 0.5ε′(B +B′)ε.

For j ̸= k, we have

E[εε′B̃εε′]j,k

= E[εj
∑
i1,i2

εi1εi2B̃i1,i2εk] = 2B̃j,k

(70)
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while, for j = k, we have

E[εε′B̃εε′]j,j

= E[ε2j
∑
i1,i2

εi1εi2B̃i1,i2 ]

= κεB̃j,j +
∑
i ̸=j

B̃i,i = (κε − 1)B̃j,j + tr(B̃) .

(71)

Similarly,

E[ε′Bεε′]j = E[
∑
i1,i2

Bi1,i2εi1εi2εj] = Bj,jE[ε
3
j ] (72)

□

D.2 Moments of Managed Portfolios

Recall that

Ft+1 = S ′
tRt+1 (73)

Lemma 6 (Expected Factor Moments) Suppose a normalization tr(Σ) = 1 and let

σ∗ = tr(ΣΣε) and E[X
4
i,k] = κ for all i, k. We have

E[S ′
tΣεSt] = tr(ΣΣε)Ψ

and

E[Ft+1F
′
t+1] = ((tr Σ)2 + tr(Σ2))ΨΣFΨ

+ tr(Σ ◦ Σ)Ψ1/2(κ− 3) diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
) (74)
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Thus,

∥E[Ft+1F
′
t+1]− (ΨΣFΨ+ σ∗Ψ)∥ → 0 (75)

when P → ∞.

Proof of Lemma 6. Recall that, under the normalization tr(Σ) = 1, by Assumption 2,

tr(Σ2) → 0 and tr(Σ ◦ Σ) =
∑

i Σ
2
i,i ≤

∑
i,j Σ

2
i,j = tr(Σ2) → 0. We have

E[Ft+1F
′
t+1] = E[S ′

t(StF̃ + ε)(StF̃ + ε)′St] = E[S ′
tStΣFS

′
tSt] + E[S ′

tΣεSt] ,

and

E[S ′
tΣεSt] = E[Ψ1/2X ′

tΣ
1/2ΣεΣ

1/2XtΨ
1/2] = Ψ1/2E[X ′

tΣ
1/2ΣεΣ

1/2Xt]Ψ
1/2 = Ψtr(ΣΣε) = Ψσ∗ ,

while Lemma 4 implies that

E[S ′
t(StF̃ + ε)(StF̃ + ε)′St]

= ((tr Σ)2 + tr(Σ2))ΨΣFΨ

+ tr(Σ ◦ Σ)Ψ1/2(κ− 3) diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ+ tr(ΨΣF ) tr(Σ

2)

(76)

The claim how follows because tr(Σ ◦ Σ) and tr(Σ2) converge to zero, and Ψ is uniformly

bounded when P → ∞ by assumption. The proof of Lemma 6 is complete.

□
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E Proof of Proposition 2: Characteristic-managed Portfolios and

the Conditional SDF

We will frequently be using the Sherman-Morrison formula

(A+xx′)−1 = A−1−A−1xx′A−1/(1+x′A−1x), (A+xx′)−1x = A−1x/(1+x′A−1x) (77)

for any matrix A ∈ RP×P and any vector x ∈ RP .

Lemma 7 We have

(A+B)−1 = B−1 − (A+B)−1AB−1 , (78)

and

(A+B)−1AB−1 ≤ A (79)

in the sense of positive semi-definite order.

Proof of Lemma 7. Let Â = B−1/2AB−1/2. Then, we have

(A+B)−1AB−1 = B−1/2(Â+ I)−1ÂB−1/2 ≤ B−1/2ÂB−1/2 = B−1AB−1 . (80)

□

Proof of Proposition 2. Recall that, by Proposition 1,

w̃(St) = (StΣF,tS
′
t + Σε)

−1StνF (81)
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is the conditionally efficient portfolio with the return

R′
t+1w̃(St) = F ′

t+1(StΣF,tS
′
t + Σε)

−1StνF . (82)

For simplicity, in the sequal omit the t subindex for ΣF and Σ∗
F . We have

((ΣF )
−1 + S ′

tSt)
−1 ≤ ((ΣF )

−1)−1

Hence, defining

Qt = (StΣ
∗
FS

′
t + Σε)

−1 = Σ−1
ε − (StΣ

∗
FS

′
t + Σε)

−1StΣ
∗
FS

′
tΣ

−1
ε , (83)

we get

E[R′
t+1w̃(St)]

= E[(StF̃t+1 + εt+1)
′(St(ΣF )S

′
t + Σε)

−1StνF ]

= E[ν ′FS
′
t(St(ΣF )S

′
t + Σε)

−1StνF ]

= E[ν ′FS
′
t(St(νFν

′
F + Σ∗

F )S
′
t + Σε)

−1StνF ]

= E[ν ′FS
′
t((StνF )(StνF )

′ + (StΣ
∗
FS

′
t + Σε))

−1StνF ]

=︸︷︷︸
(77)

E[ν ′FS
′
t(Qt −QtStνFν

′
FS

′
tQt(1 + ν ′FS

′
tQtStνF )

−1)StνF ]

= E[Zt − Z2
t (1 + Zt)

−1] = E[Zt/(1 + Zt)] ,

(84)

where we have defined

Zt = ν ′FS
′
tQtStνF = ν ′FS

′
tΣ

−1
ε StνF − q , (85)
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with

q = ν ′FS
′
tΣ

−1
ε StνF − ν ′FS

′
tQtStνF . (86)

By Lemma 7,

(StΣ
∗
FS

′
t + Σε)

−1StΣ
∗
FS

′
tΣ

−1
ε ≤ Σ−1

ε StΣ
∗
FS

′
tΣ

−1
ε (87)

and hence

q = ν ′FS
′
t(StΣ

∗
FS

′
t + Σε)

−1StΣ
∗
FS

′
tΣ

−1
ε StνF ≤ ν ′FS

′
tΣ

−1
ε StΣ

∗
FS

′
tΣ

−1
ε StνF . (88)

For simplicity, we will assume that Xi,k,t all have the same fourth moment κ (otherwise, the

identity needs to be replaced by an inequality). Then, we have that, by Lemma 4,

E[ν ′FS
′
tΣ

−1
ε StAS

′
tΣ

−1
ε StνF ] = ν ′F

(
((tr Σ̂)2 + tr(Σ̂2))ΨAΨ+ tr(Σ̂2) tr(ΨA)Ψ

+ tr(Σ̂2) (κ− 3)Ψ1/2 diag(Ψ1/2AΨ1/2)Ψ1/2

)
νF

= (tr Σ̂)2ν ′F

(
(1 +

tr(Σ̂2)

(tr Σ̂)2
)ΨAΨ+

tr(Σ̂2)

(tr Σ̂)2
tr(ΨA)Ψ

+
tr(Σ̂ ◦ Σ̂)
(tr Σ̂)2

(κ− 3)Ψ1/2 diag(Ψ1/2AΨ1/2)Ψ1/2

)
νF

(89)

with

A = Σ∗
F (90)
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and

Σ̂ = Σ1/2Σ−1
ε Σ1/2 . (91)

If Σε = I then, by Assumption 2, tr(Σ̂2)+tr(Σ̂◦Σ̂)

(tr Σ̂)2
→ 0 and, since νF and Ψ and A and tr(Σ̂)

are uniformly bounded, we get that

E[ν ′FS
′
tΣ

−1
ε StAS

′
tΣ

−1
ε StνF ] ≈ (tr Σ̂)2ν ′FΨAΨνF . (92)

Since, by Assumption 1, tr(A) is uniformly bounded, we also get that tr(ΨAΨ) ≤ ∥Ψ∥2 tr(A)

is uniformly bounded and, hence, ν ′FΨAΨνF → 0 by (22).

Thus, E[qt] → 0 and hence qt → 0 in probability. Now,

E[ν ′FS
′
tΣ

−1
ε StνF ] = tr(Σ̂)ν ′FΨνF (93)

whereas, by Lemma 4,

E[(ν ′FS
′
tΣ

−1
ε StνF )

2] = E[ν ′FS
′
tΣ

−1
ε StνFν

′
FS

′
tΣ

−1
ε StνF ]

= ν ′F

(
((tr Σ̂)2 + tr(Σ̂2))ΨνFν

′
FΨ+ tr(Σ̂2) tr(ΨνFν

′
F )Ψ

+ tr(Σ̂ ◦ Σ̂) (κ− 3)Ψ1/2 diag(Ψ1/2νFν
′
FΨ

1/2)Ψ1/2

)
νF

(94)

and the same argument as in (89) implies that

E[(ν ′FS
′
tΣ

−1
ε StνF )

2] ≈ tr(Σ̂)2(ν ′FΨνF )
2 . (95)

Thus, Var[ν ′FS
′
tΣ

−1
ε StνF ] → 0 and, hence, ν ′FS

′
tΣ

−1
ε StνF → tr(Σ̂)ν ′FΨνF in probability.
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As a result, Zt − tr(Σ̂)ν ′FΨνF → 0 is probability, and hence

Zt

1 + Zt

− tr(Σ̂)ν ′FΨνF

1 + tr(Σ̂)ν ′FΨνF
→ 0 (96)

in probability, and the dominated convergence theorem implies that the same holds in

expectation. Similarly, for the second moment, we have

E[(πMV
t )′Rt+1R

′
t+1π

MV
t ]

= E[λ′S ′
t(St(ΣF )S

′
t + Σε)

−1(St(ΣF )S
′
t + Σε)(St(ΣF )S

′
t + Σε)

−1Stλ]

= E[R′
t+1π

MV
t ] → tr(Σ̂)ν ′FΨνF

1 + tr(Σ̂)ν ′FΨνF
.

(97)

Now, for the factor portfolios, we have

E[Ft] = E[S ′
tRt+1] = E[S ′

t(StF̃t+1 + εt+1)]

= E[S ′
tStF̃t+1] = E[Ψ1/2X ′

tΣXtΨ
1/2F̃t+1]

= E[Ψ1/2X ′
tΣXtΨ

1/2]νF

= tr(Σ)E[Ψ1/2Ψ1/2]νF

= tr(Σ)ΨνF ,

(98)

and, again by Lemma 4 and the same argument as in (89), we have

E[FtF
′
t ] = E[S ′

t(StF̃t+1 + εt+1)(StF̃t+1 + εt+1)
′St|λ] = E[S ′

t(St(ΣF )S
′
t + Σε)St]

≈ tr(ΣΣε)Ψ + tr(Σ)2Ψ(ΣF )Ψ .
(99)

Then, defining

Q = (tr(ΣΣε)Ψ + tr(Σ)2ΨΣ∗
FΨ)−1 , (100)
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we get that the efficient portfolio of factors is given by

πF = (tr(ΣΣε)Ψ + tr(Σ)2ΨΣFΨ)−1ΨνF

= (tr(ΣΣε)Ψ + tr(Σ)2Ψ(Σ∗
F + νFν

′
F )Ψ)−1ΨνF

=︸︷︷︸
(77)

1

1 + Z
QΨνF ,

(101)

where

Z = tr(Σ)2ν ′FΨQΨνF . (102)

By the same argument as above,

ν ′F (ΨQΨ−Ψ(tr(ΣΣε)Ψ)−1Ψ)νF → 0 (103)

by Assumption 22 because ΣF
∗ has a bounded trace. Thus,

Z ≈ tr(Σ)2

tr(ΣΣε)
ν ′FΨνF (104)

and

E[π′
FFt+1] = E[ν ′F

1

1 + Z
ΨQΨνF ] ≈

Z

1 + Z
, (105)

while

E[π′
FFt+1F

′
t+1πF ] = E[π′

FFt+1] , (106)
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and the proof is complete because

tr(ΣΣ−1
ε )ν ′FΨνF =

tr(Σ)2

tr(ΣΣε)
ν ′FΨνF (107)

when Σε = I.

Finally, the fact that E[(π′
FFt+1−R′

t+1w̃(St))
2] → 0 follows because, otherwise, one could

construct a better-diversified portfolio by combining the two, which is impossible. Namely,

we know that

E[R′
t+1w̃(St)− 0.5((R′

t+1w̃(St))
2] ≥ E[R′

t+1bt − 0.5((R′
t+1b

2
t ] (108)

for any portfolio policy bt because w̃(St) is optimal for the agent with quadratic utility. Let

bt = w̃(St) + εStπF . Then,

max
ε
E[R′

t+1bt − 0.5((R′
t+1bt)

2] (109)

is achieved with

ε =
E[π′

FFt+1]− E[π′
FFt+1R

′
t+1w̃(St)]

E[(π′
FFt+1)2]

. (110)

Since the corresponding utility gain is zero, we must have

E[π′
FFt+1]− E[π′

FFt+1R
′
t+1w̃(St)] = 0 . (111)
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Thus,

E[(π′
FFt+1 −R′

t+1w̃(St))
2] = E[(π′

FFt+1)
2] + E[(R′

t+1w̃(St))
2]− 2E[π′

FFt+1R
′
t+1w̃(St)]

= E[(π′
FFt+1)

2] + E[(R′
t+1w̃(St))

2]− 2E[π′
FFt+1]

≈ Z

1 + Z
+

Z

1 + Z
− 2

Z

1 + Z
= 0 .

(112)

The proof is complete. □

F Random Matrix Theory: Auxiliary Results

Let

λ̂(z) = (zI +BT )
−1 1

T

T∑
t=1

Ft (113)

where

BT =
1

T

T∑
t=1

FtF
′
t , (114)

while

R̂M
T+1(z) = λ̂(z)′Ft+1 = (Stλ̂(z))

′Rt+1 . (115)

In the sequel, to simplify some expressions, we often assume that factor risk premia νF ∼

N(0,Σλ/P ) for some uniformly bounded sequence of matrices Σλ = Σλ(P ). The general case

described in Assumption 4 follows from the following remarkable result from Knowles and

Yin (2017).
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Theorem 4 (Knowles and Yin (2017)) For any bounded vector β, we have

λβ′(Ψ1/2ZZ ′Ψ1/2/t+ λI)−1β︸ ︷︷ ︸
random (through Z)

≈ −β′(ΨrΨ(λ; c) + I)−1β︸ ︷︷ ︸
deterministic

, (116)

where r is the unique solution to

1

r
= −λ +

1

t
tr(Ψ(I + rΨ)−1) . (117)

It is related to the Stieltjes transform

m(z; c) = (1− c+ zr(z; c))/(cz), (118)

which solves

m(z; c) = N−1 tr((Ψ(1− c− czm)− zI)−1). (119)

See, also, (Hastie et al., 2019) for more detailed results that even hold for finite values of P.

In this case,

ν ′FAνF ≈ P−1 tr(AΣλ) (120)

in probability (and in L2). All our results hold under the more general condition (22), and

all expressions can be rewritten without Σλ using (120).

Lemma 8 We have

(F̃ ′
t+1AP F̃t+1 − tr((ΣF,tAP ) + P−1 tr(APΣλ))) → 0 (121)

is L2 and hence in probability, for any sequence of bounded matrices AP .
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Proof of Lemma 8. The proof follows directly from Lemma 2. □

We will also need the following Lemma from KMZ.

Lemma 9 We have

P−1 tr(A1(zI +BT )
−1A2) − P−1 trE[A1(zI +BT )

−1A2] → 0

almost surely for any bounded A1, A2 that are independent of Ft.

Lemma 10 Let

1

T
tr((zI +BT )

−1Ψσ∗) → ξ(z; c) (122)

almost surely and

1

T
F ′
t(zI +BT,t)

−1Ft → ξ(z; c) , (123)

in probability, where

c−1ξ(z; c)

1 + ξ(z; c)
= 1 − m(−z; c)z (124)

Proof. First, Lemma 14 implies that

1

T
F ′
t(zI +BT,t)

−1Ft − 1

T
tr((zI +BT,t)

−1E[FtF
′
t ]) → 0 .

in probability. Next Lemma 9 applied to our setting implies that for any bounded matrix

QT independent of BT,t we have

1

T
tr((zI +BT,t)

−1QT ) − 1

T
E[tr((zI +BT,t)

−1QT )] → 0
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almost surely. At the same time, by Lemma 6,

E[FtF
′
t ] = ((tr Σ)2 + tr(Σ2))ΨΣFΨ

+ tr(Σ2)(κ− 3)Ψ1/2 diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
) (125)

We have

1

T
tr((zI +BT,t)

−1(tr Σ)2ΨΣF,tΨ) = O(1/T ) (126)

The same argument applies to the second term because the trace of

tr(Σ2)(κ− 3)Ψ1/2 diag(Ψ1/2ΣFΨ
1/2)Ψ1/2

is also uniformly bounded. Thus, we get

1

T
F ′
t(zI +BT,t)

−1Ft ∼ 1

T
tr((zI +BT,t)

−1E[FtF
′
t ])

∼ T−1 tr[(zI +BT,t)
−1Ψσ∗] → ξ(z; c) .

(127)

Now, we have

1 = P−1 trE[(zI +BT )
−1(zI +BT )]

= zm(−z; c) +
1

P
tr

1

T

∑
t

E[(zI +BT )
−1FtF

′
t ]

= zm(−z; c) + 1

P
trE[(zI +BT )

−1FtF
′
t ]

(128)

where we have used symmetry across t in the last step. Using the Sherman-Morrison formula,

we get

1

T
trE[(zI +BT )

−1F ′
tFt] = E[

1
T
F ′
t(zI +BT,t)

−1Ft

1 + 1
T
F ′
t(zI +BT,t)−1Ft

] ,
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where

BT,t =
1

T

∑
τ ̸=t

FτF
′
τ .

Furthermore, since all functions involved are uniformly bounded, a standard argument

implies that we can replace

1

T
F ′
t(zI +BT,t)

−1Ft

with

ξ(z; c)

by (127).36 □

G A Proof that Managed Portfolio Returns Satisfy the Assump-

tions of RMT

The goal of this section is to prove the following theorem.

Theorem 5 The eigenvalue distribution of E[FtF
′
t ] converges to that of Ψσ∗ where σ∗ =

lim tr(ΣΣε) in the limit as N,P, T → ∞, P/T → c, so that

1

P
tr
(
(zI + E[FtF

′
t ])

−1
)

→ σ−1
∗ mΨ(−z/σ∗) = mσ∗Ψ(−z) =

1

P
tr((zI+σ∗Ψ)−1) , (129)

36Indeed, E[ YT

1+YT
− ZT

1+ZT
] = YT−ZT

(1+YT )(1+ZT ) for any random variables YT , ZT . If YT , ZT ≥ 0 then
|YT−ZT |

(1+YT )(1+ZT ) ≤ 1 and hence convergence YT − ZT → 0 in probability implies convergence of expectations.
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whereas

1

P
tr((zI +BT )

−1) → m(−z; c) , (130)

where, for each z < 0, we have that m(z; c) is the unique positive solution to the nonlinear

master equation

m(z; c) =
1

1 − c − c z m(z; c)
mσ∗Ψ

(
z

1 − c − c z m(z; c)

)
. (131)

This theorem’s proof is non-trivial and based on techniques from the random matrix

theory from (Bai and Zhou, 2008). Applying standard results from random matrix theory to

Ft is not straightforward because of the complex cross-dependence in higher moments of Ft

introduced by the signals. Namely, even if Rt+1 are conditionally independent, S ′
tRt+1 have

very strong cross-dependencies.

Once the theorem is proved, we can then directly establish another useful auxiliary result

from KMZ.

Lemma 11 Define ξ(z; c) through

c−1ξ(z; c)

1 + ξ(z; c)
= 1 − m(−z; c)z . (132)

Then,

1

T
tr((zI +BT )

−1Ψ) → ξ(z; c) (133)

almost surely and

1

T
F ′
T+1(zI +BT )

−1FT+1 → ξ(z; c) (134)
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in probability. Furthermore, ξ(z; c) < c/z.

Define the effective shrinkage

Z∗(z; c) = z (1 + ξ(z; c)) ∈ (z, z + c) (135)

Then, Z∗(z; c) is monotone increasing in z and c. In the ridgeless limit as z → 0, we have

Z∗(z; c) →


0, c < 1

1/m̃(c), c > 1

(136)

where m̃(c) > 0 is the unique positive solution to

c− 1 =

∫ dH(x)
m̃(1+m̃ x)∫ xdH(x)
1+m̃ x

(137)

Lemma 12 Let XP be a sequence of positive semi-definite matrices with tr(XP ) ≤ K. Then,

lim
M→∞

(
1

P
tr(zI + AP +XP )

−1 − 1

P
tr(zI + AP )

−1) = 0

for any positive semi-definite matrices AP .

Proof. We have

1

P
tr(zI +AP +XP )

−1 − 1

P
tr(zI +AP )

−1 =
1

P
tr((zI +AP +XP )

−1 − (zI +AP )
−1)

and the claim follows because

1

P
tr((zI +AP +XP )

−1 − (zI +AP )
−1) = − 1

P
tr((zI +AP +XP )

−1XP (zI +AP )
−1)
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and

tr((zI + AP +XP )
−1XP (zI + AP )

−1) = tr(XP (zI + AP )
−1(zI + AP +XP )

−1)

≤ tr(XP )∥(zI + AP )
−1(zI + AP +XP )

−1∥ ≤ Kz−2
(138)

Thus, the difference is bounded in absolute value by Kz−2/M. □

The technical condition in Assumption 4 that E[∥F̃t∥4] is bounded holds, for example,

under the following setup.

Lemma 13 Suppose that F̃t+1 = νF +Σ
1/2
F,t X̃t+1, where the coordinates of X̃t+1 are indepen-

dent and E[X̃t+1] = 0, E[X̃t+1X̃
′
t+1] = I, and have uniformly bounded forth moments. Then,

E[∥F̃t+1∥4] is uniformly bounded.

Proof of Lemma 13. Using Lemma 2, we get

E[∥β̃∥4] = E[(F̃ ′
tΨF̃t)

2] = E[(ν ′FΨνF + Σ
1/2
F,t X̃

′
tΨX̃t)

2

= E[(ν ′FΨνF )
2 + 2ν ′FΨνF tr(ΣFΨ) + (tr(ΣFΨ))2 +

∑
i

(Σ
1/2
F AΣ

1/2
F )2i,i(E[X̃

4
i ]− 3) + 2∥Σ1/2

F AΣ
1/2
F ∥22]

≤ K(∥νF∥2 + E[tr(ΣF )])

(139)

for some K > 0 and is therefore uniformly bounded. □

Lemma 14 (Managed Portfolios Satisfy The RMT Conditions) Suppose that P, T →

∞, P/T → c > 0. Let AP be a sequence of symmetric P × P matrices such that ∥AP∥ ≤ K

and AP are independent of Ft. Then, E[FtF
′
t ] is uniformly bounded and

Var[
1

T
F ′
tAPFt] → 0 , (140)
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so that

1

T
(F ′

tAPFt − tr (AP σ∗Ψ)) → 0

in probability. That is, averaging across P factors leads to constant risk, no matter which

matrix A we use to measure it.

An important observation is that by Lemma 6,

1

T
tr(APE[FtF

′
t ]) ≈ 1

T
tr(AP (ΨΣFΨ+ σ∗Ψ)) . (141)

However, since ΣF has a uniformly bounded trace norm, we have

1

T
tr(AP (ΨΣFΨ+ σ∗Ψ)) ≈ 1

T
tr(AP (σ∗Ψ)) (142)

Note that tr (AP FtF
′
t) = F ′

tAPFt.

Proof of Lemma 14. For simplicity, we will assume that AP is deterministic.37 We can

also assume that AP is symmetric because F ′
tAPFt = Ft0.5(AP + A′

P )Ft. We need to prove

that

1

T 2
E[F ′

tAPFtF
′
tAPFt] −

(
1

T
E[F ′

tAPFt]

)2

→ 0

We have by Lemma 6 that

E[FtF
′
t ] = ((tr Σ)2 + tr(Σ2))ΨΣFΨ

+ tr(Σ ◦ Σ)Ψ1/2(κ− 3) diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
) (143)

37Otherwise, we replace all expectations below by expectations conditional on AP .
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and, with ΣF having uniformly bounded traces and Assumption 2, we get

1

T
E[F ′

tAPFt] =
1

T
trE[APFtF

′
t ]

≈ 1

T
tr

(
AP

(
(tr Σ)2ΨΣFΨ+ tr(Σ ◦ Σ)Ψ1/2(κ− 3) diag(Ψ1/2ΣFΨ

1/2)Ψ1/2

+Ψ
(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
)))

≈ T−1 tr(APΨ)σ∗,

(144)

since

1

TP
tr(ΨAPΨΣF ) = O(1/T ).

Similarly, the kurtosis term does not matter because it has a uniformly bounded trace.

Throughout the proof, we will use the notation

β ≡ F̃t , (145)

so that

Ft = S ′
t−1Rt = S ′

t−1(St−1β + εt). (146)

Note that, by Assumption 4,

E[∥β∥4] (147)

is uniformly bounded.
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Then, we have

FtF
′
t = S ′

t−1(St−1ββ
′S ′

t−1 + εtβ
′S ′

t−1 + St−1βε
′
t + εtε

′
t)St−1

= Ztββ
′Zt + S ′

t−1εtβ
′Zt + Ztβε

′
tSt−1 + S ′

t−1εtε
′
tSt−1 .

(148)
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with Zt = S ′
t−1St−1. Then, Lemma 5 implies that

1

T 2
E[F ′

tAFtF
′
tAFt] =

1

T 2
trE[FtF

′
tAFtF

′
tA]

=
1

T 2
trE[(Ztββ

′Zt + S ′
t−1εtβ

′Zt + Ztβε
′
tSt−1 + S ′

t−1εtε
′
tSt−1)A

(Ztββ
′Zt + S ′

t−1εtβ
′Zt + Ztβε

′
tSt−1 + S ′

t−1εtε
′
tSt−1)A]

=
1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA]

+
1

T 2
2 trE[Ztββ

′ZtAS
′
t−1εtε

′
tSt−1A]

+
1

T 2
2 trE[S ′

t−1εtβ
′ZtAS

′
t−1εtβ

′ZtA]

+
1

T 2
2 trE[S ′

t−1εtβ
′ZtAZtβε

′
tSt−1A]

+
1

T 2
trE[S ′

t−1εtε
′
tSt−1AS

′
t−1εtε

′
tSt−1A]

=
1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA]

+
1

T 2
2 trE[Ztββ

′ZtAZtA]

+
1

T 2
2 trE[ZtAZtββ

′ZtA]

+
1

T 2
2 trE[(β′ZtAZtβ)ZtA]

+
1

T 2
(2 trE[ZtAZtA] + E[(tr(ZtA))

2])

+ E[
∑
i

(St−1AS
′
t−1)

2
i,i(κε − 3)]

=
1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA]

+
1

T 2
4 trE[Ztββ

′ZtAZtA]

+
1

T 2
2 trE[(β′ZtAZtβ)ZtA]

+
1

T 2
(2 trE[ZtAZtA] + E[(tr(ZtA))

2])

+
1

T 2
E[
∑
i

(St−1AS
′
t−1)

2
i,i(κε − 3)]

= Term1 + Term2 + Term3 + Term4 + Term5 + Kurt,

(149)
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where in the last term, we have used Lemma 5 to show that, by formula (67), we have

trE[S ′
t−1εtε

′
tSt−1AS

′
t−1εtε

′
tSt−1A]

= trE[ε′tSt−1AS
′
t−1εtε

′
tSt−1AS

′
t−1εt]

= E[(ε′tSt−1AS
′
t−1εt)

2]

= E[
∑
i

(St−1AS
′
t−1)

2
i,i(κε − 3) + 2 tr((St−1AS

′
t−1)

2) + (tr(St−1AS
′
t−1))

2]

(150)

and

tr(St−1AS
′
t−1) = tr(AS ′

t−1St−1) = tr(AZt) (151)

whereas

tr((St−1AS
′
t−1)

2) = tr(St−1AS
′
t−1St−1AS

′
t−1) = tr(AZtAZt) . (152)

Furthermore, we have used the fact that all terms that are cubic in εt vanish because of

Assumption 1 and (68). Note also that

Kurt = T−2E[
∑
i

(St−1AS
′
t−1)

2
i,i(κε − 3)] ≤ T−2(κε − 3)Term4. (153)

Below, we show that Term4 is negligible and, hence, so it Kurt.

In our proofs, we will be using Newton’s identities.
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Lemma 15 (Newton’s identities) Let A be a matrix with eigenvalues λi. Then,

∑
i1,i2,i1 ̸=i2

λi1λi2 = (trA)2 − tr(A2)

∑
i1,i2,i3 all different

λi1λi2λi3 = (trA)3 − 3 tr(A) tr(A2) + 2 tr(A3)

∑
i1,i2,i3,i4 all different

λi1λi2λi3λi4

= (trA)4 − 6(tr(A))2 tr(A2) + 3(tr(A2))2 + 8(trA)(tr(A3))− 6 tr(A4) .

(154)

We also note that Assumption 2 implies

tr(Σ3) ≤ tr(Σ2) tr(Σ) = o((tr Σ)3), tr(Σ4) ≤ (tr(Σ2))2 = o((tr Σ)4) (155)

For simplicity, we, throughout the proof below, assume that Xt is Gaussian. Without

this assumption, excess kurtosis terms with the factor (κ − 3) appear, but our calculations

below imply that they are all negligible.

G.1 Term1 in (149)

We start with the first term. We have

1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA] =

1

T 2
E[(β′ZtAZtβ)

2] . (156)

Writing

Zt = S ′
t−1St−1 = Ψ1/2X ′

t−1ΣXt−1Ψ
1/2

and defining

β̃ = Ψ1/2β ,
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and

Ã = Ψ1/2AΨ1/2 ,

and then using rotational invariance of all moments up to eight, we may assume that Ã is

diagonal and Σ is diagonal and β̃ = e1∥β̃∥ = (1, 0, · · · , 0)∥β̃∥. Note that

∥β̃∥2 = β′Ψβ = F̃ ′
tΨF̃t .

Then,

1

T 2
trE[Ztββ

′ZtAZtββ
′ZtA] =

1

T 2
E[(β′ZtAZtβ)

2]

≤ ∥A∥2T−2E[∥β′Zt∥2]

= ∥A∥2T−2E[β̃′X ′
tΣXtX

′
tΣXtβ̃]

= ∥A∥2T−2E[∥β̃∥4(X ′
tΣXtX

′
tΣXt)1,1]

= ∥A∥2 1

T 2
E[∥β̃∥4]E[

( ∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1

)2

]

= ∥A∥2 1

T 2
E[∥β̃∥4]E[

( ∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1

)2

]

= ∥A∥2 1

T 2
E[∥β̃∥4]

× E[
∑

i2,j2,k2

∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1Xi2,1λi2(Σ)Xi2,k2λk2Xj2,k2λj2(Σ)Xj2,1]

(157)

Here, we have used that, under Gaussianity of Xt, we have that a random, independent

rotation of Xt is still Gaussian and is independent of ∥β̃∥.
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• First, consider the terms with k1 = k2 in (157):

1

T 2
E[∥β̃∥4]E[

∑
i2,j2

∑
i1,j1,k1

Xi1,1λi1(Σ)Xi1,k1λk1Xj1,k1λj1(Σ)Xj1,1Xi2,1λi2(Σ)Xi2,k1λk1Xj2,k1λj2(Σ)Xj2,1]

(158)

Using Newton’s identities, we get that the contribution of terms with k1 = 1 is given
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by

E[∥β̃∥4] 1
T 2
E[
∑
i2,j2

∑
i1,j1

X2
i1,1
λi1(Σ)λ

2
1X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

= E[∥β̃∥4] 1
T 2

(
E[

∑
i2,j2,i1,j1 all different

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

+ E[
∑

i2,j2,i1,j1 only two are equal

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

+ E[
∑

i2,j2,i1,j1 only three are equal

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

+ E[
∑

i2,j2,i1,j1 all four are equal

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)X

2
i2,1
λi2(Σ)X

2
j2,1
λj2(Σ)]

)

= E[∥β̃∥4] 1
T 2

(
(tr Σ)4 − 6(tr Σ)2(tr(Σ2)) + 8(tr Σ)(tr(Σ3)) + 3(tr(Σ2))2 − 6 tr(Σ4)

+

(
4

2

)
E[X4]

∑
j

λj(Σ)
2

∑
i1,j1 ̸=j,i1 ̸=j1

λi1(Σ)λj1(Σ)

+ 4E[X6]
∑
j

λj(Σ)
3
∑
i1 ̸=j

λi1(Σ)

+ E[X8] tr(Σ4)

)

= E[∥β̃∥4] 1
T 2

(
(tr Σ)4 − 6(tr Σ)2(tr(Σ2)) + 8(tr Σ)(tr(Σ3)) + 3(tr(Σ2))2 − 6 tr(Σ4)

+

(
4

2

)
E[X4]

∑
j

λj(Σ)
2((tr(Σ)− λj)

2 − (tr(Σ2)− λ2j)

+ 4E[X6](tr(Σ) tr(Σ3)− tr(Σ4)) + E[X8] tr(Σ4)

)
= O(1/T 2)

(159)

because, by the assumed normalization, tr(Σ) = 1 and
∑

i λi(Σ)
2 = tr(Σ2) → 0, and

E[∥β̃∥4] is bounded by Assumption 4.
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The remaining terms with k1 = k2 ̸= 1 must have i1, i2, j1, j2 have at least two identical

pairs. The first contribution would be

T−2E[∥β̃∥4]E[
∑

i1=i2 ̸=j1=j2;k1

X2
i1,1
λ2i1(Σ)X

2
i1,k1

X2
j1,k1

λ2j1(Σ)X
2
j1,1

]

≤ E[∥β̃∥4]P (tr(Σ2))2 ,

(160)

there will be three contributions like this, corresponding to the three cases: i1 = i2, i1 =

j1, and i1 = j2.

In the case when more than two out of i1, i2, j1, j2 are identical, they would all have to

be identical. This contribution would be negligible because it would give

T−2E[∥β̃∥4]E[X4]P (tr(Σ4)) = T−2o(P ),

which is negligible.

• We can now focus on the case k1 ̸= k2 in (157). First, consider the terms with k1 = 1.

By symmetry, terms with k2 = 1 give the same contribution. Since k2 ̸= 1, Newton’s
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identities imply that

1

T 2
E[∥β̃∥4]E[

∑
i2,j2,k2 ̸=1

∑
i1,j1

X2
i1,1
λi1(Σ)X

2
j1,1
λj1(Σ)Xi2,1λi2(Σ)Xi2,k2λk2Xj2,k2λj2(Σ)Xj2,1]

∼ 1

T 2
E[∥β̃∥4]E[

∑
i2,k2

∑
i1,j1

X2
i1,1
X2

j1,1
λi1(Σ)λj1(Σ)X

2
i2,1
λi2(Σ)

2X2
i2,k2

]

∼ E[∥β̃∥4] 1

T 2
P

(
E[
∑
i2

∑
i1,j1

X2
i1,1
X2

j1,1
λi1(Σ)λj1(Σ)X

2
i2,1
λi2(Σ)

2]

)

= E[∥β̃∥4] 1

T 2
P

( ∑
i2,i1,j1 all different

λi1(Σ)λj1(Σ)λi2(Σ)
2

+
∑

i1=j1 ̸=i2

E[X4]λi1(Σ)
2λi2(Σ)

2

+ 2
∑

i1 ̸=j1=i2

E[X4]λi1(Σ)λi2(Σ)
3

+ E[X6] tr(Σ4)

)

= E[∥β̃∥4] 1

T 2
P

(∑
i2

λi2(Σ)
2((tr(Σ)− λi2)

2 − (tr(Σ2)− λ2i2))

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]
∑
i2

λi2(Σ)
3(tr(Σ)− λi2)

+ E[X6] tr(Σ4)

)

= E[∥β̃∥4] 1

T 2
P

(
(tr(Σ)2) tr(Σ2)− 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
(161)

because the rest terms are zero. And this term gets multiplied by 2 when we add the
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contribution of the k2 = 1 case. As above, all these terms are

O(P/T 2)

and hence are negligible.

• Now, in the case when k1 ̸= k2 and both are different from 1 in (157), we immediately

get that (i1, i2, j1, j2) must either be all identical, or come in two identical pairs. The

first case gives a contribution of

E[∥β̃∥4]E[
∑

i,k1 ̸∈{k2,1}

X4
i,1X

2
i,k1
X2

i,k2
λi(Σ)

4] ∼ E[∥β̃∥4]E[X4] (P 2−P ) tr(Σ4) = o(P 2) .

The second one ought to have i1 = j1, i2 = j2 because k1 ̸= k2 and both are not equal

to 1, giving

1

T 2
E[∥β̃∥4]E[

∑
i2,k2

∑
i1,k1

X2
i1,1
X2

i1,k1
λ2i1(Σ)λ

2
i2
(Σ)X2

i2,1
X2

i2,k2
]

≤ 1

T 2
E[∥β̃∥4]P 2

(
E[
∑
i2

∑
i1

X2
i1,1
λ2i1(Σ)λ

2
i2
(Σ)X2

i2,1
]

)

=
1

T 2
E[∥β̃∥4]P 2((tr(Σ2))2 − tr(Σ4))

≤ 1

T 2
E[∥β̃∥4]P 2(tr(Σ2))2 = o(P 2)

1

T 2

(162)

because tr(Σ2) = o(1).

Summarizing, Term1 is negligible.

G.2 Term2 in (149)

We now proceed with the second term (note that it comes with a factor of four). As above,

we, for simplicity, work under the assumption that Xt are Gaussian so that we could rotate
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them and assume that β̃ is proportional to e1. Then,

E[β′ZtAZtAZtβ] ≤ ∥A∥E[∥β̃∥2]E[
∑

Xi1,1λi1(Σ)Xi1,k1Xi2,k1λi2(Σ)Xi2,k2Xi3,k2λi3(Σ)Xi3,1] .

(163)

• Suppose first that k1 = k2 ̸= 1 in (163). The respective contribution is

E[
∑

Xi1,1λi1(Σ)Xi1,k1X
2
i2,k1

λi2(Σ)Xi3,k1λi3(Σ)Xi3,1] , (164)

and hence i1 = i3 for non-zero terms, so that this contribution becomes

E[
∑

X2
i1,1
λi1(Σ)

2X2
i1,k1

X2
i2,k1

λi2(Σ)]

=

( ∑
i1 ̸=i2,k1 ̸=1

λi1(Σ)
2λi2(Σ) + E[X4]

∑
i1,k1 ̸=1

λi1(Σ)
3

)

≤ P ((E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2)) = O(P )

(165)

• The terms with k1 = k2 = 1 in (163) give

E[
∑

X2
i1,1
λi1(Σ)X

2
i2,1
λi2(Σ)X

2
i3,1
λi3(Σ)]

∼

( ∑
i1,i2,i3 pairwise different

λi1(Σ)λi2(Σ)λi3(Σ)

+ 3
∑

i1,i2 different

E[X4]λ2i1(Σ)λi2(Σ) + E[X6] tr(Σ3)

)

≤

(
(tr Σ)3 − 3(tr Σ) tr(Σ2) + 2 tr(Σ3)

+ 3E[X4]((tr Σ) tr(Σ2)− tr(Σ3)) + E[X6] tr(Σ3)

)
= O(1)

(166)
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by Newton’s identities, where 3
∑

i1,i2 different appears because there are three possi-

bilities for a coincidence of pair among i1, i2, i3.

• For the terms with k1 ̸= k2 and none of them equal to 1 in in (163), we must have

i1 = i2 = i3 for them to be non-zero, giving

E[
∑

X2
i1,1
λi1(Σ)

3X2
i1,k1

X2
i1,k2

] ∼ ∥β̃∥2((P )2 − P ) tr(Σ3)

= o(P 2)
(167)

since ((P )2 − P ) = O(P 2).

• If k1 ̸= k2 = 1 in (163), then we get the contribution

E[
∑

Xi1,1λi1(Σ)Xi1,k1Xi2,k1λi2(Σ)Xi2,1λi3(Σ)X
2
i3,1

]

= E[
∑

Xi1,1λi1(Σ)Xi1,k1Xi2,k1λi2(Σ)Xi2,1λi3(Σ)X
2
i3,1

]

= {only terms with i1 = i2 survive}

= E[
∑

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λi3(Σ)X
2
i3,1

]

∼

(
tr(Σ)(tr(Σ2)) + (E[X4]− 1) tr(Σ3)

)
= O(P (tr(Σ))3) = O(P )

(168)

and there is an identical contribution with k1 = 1 ̸= k2.

Thus,

Term2 ∼ T−2o(T 2) (169)

is negligible.
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G.3 Term3 in (149)

We now proceed with the third term. As above, we perform calculations under the

Gaussianity assumption and rotate signals so that β̃ is proportional to e1 and β′ZtAZtβ =

(ZtAZt)1,1 = ∥β̃∥2(X ′
t−1ΣXt−1ÃX

′
t−1ΣXt−1)1,1. We have

2
1

T 2
E[tr(AZt) β

′ZtAZtβ]

= 2E[∥β̃∥2] 1
T 2
E[
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1,i2

Xi1,1λi1(Σ)Xi1,k1λk1(Ã)Xi2,k1λi2(Σ)Xi2,1]

(170)

• First consider the terms with k1 = 1 in (170). This gives

2E[∥β̃∥2] 1
T 2
E[
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,i2

X2
i1,1
λi1(Σ)λ1(Ã)λi2(Σ)X

2
i2,1

]

≤ 2P∥A∥2E[∥β̃∥2] 1
T 2

(tr Σ)E[
∑
i1,i2

X2
i1,1
λi1(Σ)λi2(Σ)X

2
i2,1

] + T−2O(1)

= 2P∥A∥2E[∥β̃∥2] 1
T 2

(tr Σ) ((tr(Σ))2 + (E[X4]− 1) tr(Σ2)) + T−2O(1)

= O(PT−2),

(171)

where the O(1) term comes from the contribution of k = 1 terms:

2E[∥β̃∥2] 1
T 2
E[λ1(Ã)

∑
i

λi(Σ)X
2
i,1

∑
i1,i2

X2
i1,1
λi1(Σ)λ1(Ã)λi2(Σ)X

2
i2,1

] = T−2O(1) .

(172)

because tr(Σ) = 1.
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• If k1 ̸= 1 in in (170), the only non-zero terms are with i1 = i2 and they give

2E[∥β̃∥2] 1
T 2
E[
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1 ̸=1

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λk1(Ã)]

= 2E[∥β̃∥2] 1
T 2
E[
∑
k ̸=1

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1 ̸=1

X2
i1,1
λ2i1(Σ)X

2
i1,k1

λk1(Ã)] + T−2O(P )

= 2E[∥β̃∥2] 1
T 2

E[
∑
k ̸=1

λk(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1,k1 ̸=1

λ2i1(Σ)X
2
i1,k1

λk1(Ã)] + T−2O(P )

= 2E[∥β̃∥2] 1
T 2

(
E[
∑
k ̸=1

λ2k(Ã)
∑
i

λi(Σ)X
2
i,k

∑
i1

λ2i1(Σ)X
2
i1,k

]

+ E[
∑
k ̸=1

λk(Ã)
∑

i,k1 ̸=1,k

λi(Σ)X
2
i,k

∑
i1

λ2i1(Σ)X
2
i1,k1

λk1(Ã)]

)
+ T−2O(P )

≤ ∥A∥22E[∥β̃∥2] 1
T 2

(
E[X4]P tr(Σ3) +

∑
k ̸=1

∑
i

λi(Σ)
∑
i1 ̸=i

λ2i1(Σ)

+
∑
k ̸=1

∑
i,k1 ̸=1,k

λi(Σ)
∑
i1

λ2i1(Σ)

)
+ T−2O(P )

≤ 2∥A∥2E[∥β̃∥2] 1
T 2

(
P
(
(E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2)

)
+ (P 2 − P ) tr(Σ) tr(Σ2)

)
+ T−2O(P ) ≤ 2∥A∥2E[∥β̃∥2] 1

T 2
P 2 tr(Σ) tr(Σ2) + T−2O(P ) .

(173)

Thus,

Term3 = o(P 2/T 2) (174)

and, hence, is negligible.
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G.4 Term4 and Term5 in (149)

As above, we are only considering the Gaussian case, for simplicity. We have

E[2 tr(AZtAZt) + (tr(AZt))
2]

= 2E[
∑

λk(Ã)Xi,kλi(Σ)Xi,k1λk1(Ã)Xi1,k1λi1(Σ)Xi1,k]

+ E[(
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k)

2]

(175)

We have

E[(
∑
k

λk(Ã)
∑
i

λi(Σ)X
2
i,k)

2]

= E[
∑

k,k1,i,i1

λk(Ã)λk1(Ã)λi1(Σ)X
2
i1,k1

λi2(Σ)X
2
i2,k2

]

= E[
∑
k

λ2k(Ã)
∑
i1,i2

λi1λi2X
2
i1,k
X2

i2,k
] +

∑
k1 ̸=k2

λk1(Ã)λk2(Ã)(tr(Σ))
2

= E[X4]
∑
k

λ2k(Ã)
∑
i1=i2

λi1λi2 +
∑
k

λ2k(Ã)
∑
i1 ̸=i2

λi1λi2 +
∑
k1 ̸=k2

λk1(Ã)λk2(Ã)(tr(Σ))
2

= E[X4] tr(Ã2) tr(Σ2) + tr(Ã2)(tr(Σ)2 − tr(Σ2)) + (tr(Ã)2 − tr(Ã2)) tr(Σ)2

(176)

Thus,

Term5 = T−2E[(tr(AZt))
2] = T−2 tr(Ã)2 + O(P/T 2) . (177)
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Similarly,

E[2 tr(AZtAZt)] = 2E[
∑

λk(Ã)Xi,kλi(Σ)Xi,k1λk1(Ã)Xi1,k1λi1(Σ)Xi1,k]

= 2E[
∑
k1=k

λk(Ã)
2X2

i,kλi(Σ)λi1(Σ)X
2
i1,k

]

+ 2E[
∑
k ̸=k1

∑
i

λk(Ã)X
2
i,kλ

2
i (Σ)X

2
i,k1
λk1(Ã)]

≤ ∥A∥2(2P ((E[X4]− 1) tr(Σ2) + (tr Σ)2) + 2((P )2 − P ) tr(Σ2)) = o(T 2) .

(178)

Thus, the only term that is non-negligible is Term5 in (177). The proof of Lemma 14 is

complete. □

Proof of Theorem 5. The first claim follows because, by Lemma 12, the other contribu-

tions do not impact eigenvalue distribution.

To prove the claim about the eigenvalue distribution of BT , we use a Theorem of (Bai

and Zhou, 2008). According to (Bai and Zhou, 2008), defining Ft+1 = S ′
tRt+1, we need to

verify the following technical conditions:

(1) E[Ft+1F
′
t+1] = AP for some matrix AP

(2) E[(F ′
t+1BFt+1 − tr(APBP ))

2] = o(T 2) for any bounded matrix sequence BP , P > 0.

(3) The norm of AP is uniformly bounded, and its eigenvalue distribution converges as

P → ∞.

The only non-trivial claim here is item (2), which in turn follows from Lemma 14. The

proof of Theorem 5 is complete. □
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H Technical Lemmas for Computing Higher Moments

The following lemma is a direct consequence of (149) and the polarization identity

ab = 0.25((a+ b)2 − (a− b)2) .

Lemma 16 Let Zt = S ′
t−1St−1. Recall also that

Rt+1 = Stβ + εt+1, (179)

where, for brevity, we omit the time index for β = F̃t+1. Thus,

Ft = Ztβ + S ′
t−1εt . (180)

For any two matrices A,B with A being symmetric, we have

1

T
E[F ′

tAFtF
′
tBFt]

=
1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

+
1

T
2 tr(E[β′ZtAZtBZtβ] + E[β′ZtBZtAZtβ])

+
1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

+
1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

= Term1 + Term2 + Term3 + Term4 + Term5 .

(181)
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Proof. When A,B are symmetric, (149) implies

1

T
E[F ′

tAFtF
′
tBFt]

=
1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

+
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

+
1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

+
1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

(182)

The general case follows because

1

T
E[F ′

tAFtF
′
tBFt] =

1

T
E[F ′

t0.5(A+ A′)FtF
′
t0.5(B +B′)Ft]

=
1

T
trE[Ztββ

′Zt0.5(A+ A′)Ztββ
′Zt0.5(B +B′)]

+
1

T
2 tr(E[Ztββ

′Zt0.5(A+ A′)Zt0.5(B +B′)] + E[Ztββ
′Zt0.5(B +B′)Zt0.5(A+ A′)])

+
1

T
tr(E[(β′Zt0.5(A+ A′)Ztβ)Zt0.5(B +B′)] + E[(β′Zt0.5(B +B′)Ztβ)Zt0.5(A+ A′)])

+
1

T
((κε − 1) trE[Zt0.5(A+ A′)Zt0.5(B +B′)] + E[tr(Zt0.5(A+ A′)) tr(Zt0.5(B +B′))])

=
1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

+
1

T
tr(E[β′ZtAZtBZtβ] + E[β′ZtBZtAZtβ] + E[β′ZtA

′ZtBZtβ] + E[β′ZtAZtB
′Ztβ])

+
1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

+
1

T
((κε − 1)0.5 tr(E[ZtAZtB] + E[ZtA

′ZtB]) + E[tr(ZtA) tr(ZtB)])

(183)

□
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Lemma 17 For any two matrices A,B, we have

1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

∼
(
(β̃′Ãβ̃) tr(B̃) + (β̃′B̃β̃)P

)
∥β̃∥2 tr(Σ2)(tr(Σ))2

1

T

+ E[∥β̃∥4]((tr Ã)(tr B̃) + 2 tr(ÃB̃))(tr(Σ2))2
1

T

+ E[∥β̃∥4]E[X4]P tr(B̃) tr(Σ4)
1

T
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

T
4∥β̃∥2 tr(ÃB̃) tr(Σ) tr(Σ2)

+
1

T
4∥β̃∥2(P tr(B̃)− tr(ÃB̃)) tr(Σ3)

+
1

T
4
(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)
tr(Σ)(tr(Σ2))

1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

T

(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)
(tr Σ)3 + 2E[∥β̃∥2] 1

T
(tr Ã)(tr B̃) tr(Σ) tr(Σ2)

1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼
(
(tr Ã)(tr B̃) + 2 tr(ÃB̃)

)
(tr Σ)2

1

T

(184)

with Ã = Ψ1/2AΨ1/2 and B̃ = Ψ1/2BΨ1/2.
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Proof of Lemma 17. Using (??), (169), (174), and (??) , we get the following result:

1

T
trE[Ztββ

′ZtAZtββ
′ZtB] ∼ 3E[∥β̃∥4] tr(ÃB̃) (tr(Σ2))2

1

T
+ E[∥β̃∥4]E[X4] tr(ÃB̃) (tr(Σ4))

1

T

+
(
(β̃′Ãβ̃) tr(B̃) + (β̃′B̃β̃)P

)
∥β̃∥2

(
tr(Σ2)(tr(Σ))2 − 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
1

T

+ E[∥β̃∥4]E[X4] (P tr(B̃)− tr(ÃB̃)) tr(Σ4)
1

T

+ E[∥β̃∥4]((tr Ã) tr(B̃)− tr(ÃB̃))(tr(Σ2))2
1

T
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

T
4∥β̃∥2 tr(ÃB̃)((E[X4]− 1) tr(Σ3) + tr(Σ) tr(Σ2))

+
1

T
4∥β̃∥2(P tr(B̃)− tr(ÃB̃)) tr(Σ3)

+
1

T
4
(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)(
tr(Σ)(tr(Σ2)) + (E[X4]− 1) tr(Σ3)

)
1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

T

(
β̃′Ãβ̃ (tr B̃) + β̃′B̃β̃ (tr Ã)

)
(tr Σ)3 + 2E[∥β̃∥2] 1

T 2
(tr Ã)(tr B̃) tr(Σ) tr(Σ2)

1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼
(
(tr Ã)(tr B̃) + 2 tr(ÃB̃)

)
(tr Σ)2

1

T

+ 2
(
(tr Ã)(tr B̃) − tr(ÃB̃)

)
tr(Σ2)

1

T 2

(185)
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where we have used that(
tr(Σ2)(tr(Σ))2 − 2(tr Σ)(tr(Σ3)) + 2 tr(Σ4)− (tr(Σ2))2

+ E[X4]((tr(Σ2))2 − tr(Σ4))

+ 2E[X4]((tr Σ)(tr(Σ3))− tr(Σ4)) + E[X6] tr(Σ4)

)
∼ tr(Σ2)(tr(Σ))2

(186)

□

Lemma 18 Define ψ∗,1 through the equation

b∗ψ∗,1 = tr((ΣF,tΨ) + ν ′FΨνF )) . (187)

Then, we have

1

T
trE[ββ′Ft1F

′
t1
Ft1F

′
t1
Q] ∼ 1

T
tr(Ψ) (tr(Σ))2(b∗ tr Σψ∗,1 + 1)E[β′ΨQβ]

for any uniformly bounded Q that is independent of F.

Proof of Lemma 18. We have

1

T
trE[ββ′Ft1F

′
t1
Ft1F

′
t1
Q] =

1

T
trE[F ′

t1
Ft1F

′
t1
Qββ′Ft1 ] (188)

and hence we are in a position to apply Lemmas 16 and 17 with the two matrices given by

A = I and B = Ψ1/2Qββ′Ψ1/2 so that Ã = Ψ and B̃ = Ψ1/2Qββ′Ψ1/2. Thus, (188) is the
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sum of the following terms:

1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

∼
(
(β̃′Ψβ̃) tr(Ψ1/2Qββ′Ψ1/2) + (β̃′Ψ1/2Qββ′Ψ1/2β̃) tr(Ψ)

)
∥β̃∥2 tr(Σ2)(tr(Σ))2

1

T

+ E[∥β̃∥4]((trΨ)(trΨ1/2Qββ′Ψ1/2) + 2 tr(ΨΨ1/2Qββ′Ψ1/2))(tr(Σ2))2
1

T
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

T
4∥β̃∥2 tr(ΨΨ1/2Qββ′Ψ1/2) tr(Σ) tr(Σ2)

+
1

T
4∥β̃∥2(tr(Ψ) tr(Ψ1/2Qββ′Ψ1/2)− tr(ΨΨ1/2Qββ′Ψ1/2)) tr(Σ3)

+
1

T
4
(
β̃′Ψβ̃ (trΨ1/2Qββ′Ψ1/2) + β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)

)
tr(Σ)(tr(Σ2))

1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

T

(
β̃′Ψβ̃ (trΨ1/2Qββ′Ψ1/2) + β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)

)
(tr Σ)3

+ 2E[∥β̃∥2] 1
T
(trΨ)(trΨ1/2Qββ′Ψ1/2) tr(Σ) tr(Σ2)

1

T
(2 trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼
(
(trΨ)(trΨ1/2Qββ′Ψ1/2) + 2 tr(ΨΨ1/2Qββ′Ψ1/2)

)
(tr Σ)2

1

T

(189)

Now, tr(ββ′D) is uniformly bounded almost surely for any bounded D. In addition,

Assumption 2 implies that tr(Σ2) = o(tr(Σ)2) and tr(Σ3) = o(tr(Σ) tr(Σ2)) . As a result,
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many terms become negligible, and we get

1

T
trE[Ztββ

′ZtAZtββ
′ZtB]

∼ (β̃′Ψ1/2Qββ′Ψ1/2β̃) tr(Ψ) ∥β̃∥2 tr(Σ2)(tr(Σ))2
1

T
1

T
2 tr(E[Ztββ

′ZtAZtB] + E[Ztββ
′ZtBZtA])

∼ 1

T
4β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ) tr(Σ)(tr(Σ2))

1

T
tr(E[(β′ZtAZtβ)ZtB] + E[(β′ZtBZtβ)ZtA])

∼ 1

T
β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)(tr Σ)3

1

T
((κε − 1) trE[ZtAZtB] + E[tr(ZtA) tr(ZtB)])

∼ (trΨ)(trΨ1/2Qββ′Ψ1/2)(tr Σ)2
1

T

(190)

Recall that b∗ = trE[ββ′] = tr((ΣF,tΨ) + λ′νF )). The first term is of the order

b3∗M tr(Σ) tr(Σ2). The second term is of the order b2∗M tr(Σ) tr(Σ2). The third term is of

the order of b2∗M(tr Σ)3 and hence it dominates the second term as well as the first term

because tr(Σ2) = o((tr(Σ))2). Thus, we are left with

1

T
β̃′Ψ1/2Qββ′Ψ1/2β̃ (trΨ)(tr Σ)3 + (trΨ)(trΨ1/2Qββ′Ψ1/2)(tr Σ)2

1

T

∼ 1

T
b∗ψ∗,1 tr(Ψ) (tr(Σ))3E[β′ΨQβ] + (trΨ)E[β′ΨQβ](tr Σ)2

1

T

(191)

where we have used that, by Lemma 8, β′Ψ1/2β̃ ≈ tr((ΣF,tΨ) + λ′νF )) The proof of Lemma

18 is complete. □

I Expectation of R̂M

We will, for simplicity, assume σ∗ = 1 and frequently use λ = νF notation. Indeed, λ =

E[FF ′]−1E[F ] ≈ Ψ−1ΨνF = νF .
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Proposition 6 We have

E[RF
t+1(z)] =

Γ1,1(z)

1 + ξ(z; c)
, (192)

where

Γ1,1(z) = lim
T,P→∞

λ′E[Ψ(zI +BT )
−1Ψ]λ . (193)

Proof of Proposition 6. We start by computing

E[Ft+1] = E[S ′
tRt+1] = E[S ′

t(StF̃t+1 + εt+1)] = tr(Σ)νF (194)

and therefore, by (115), we have

E[RF
t+1(z)] = E[β̂(z)′Ft+1]

= tr(Σ)E[
1

T

∑
t

F ′
t(zI +BT )

−1]νF ∼ E[
1

T

∑
t

F ′
t(zI +BT )

−1]νF ,
(195)

where we have used the normalization trΣ = 1. Now, by the interchangeability of Ft across

t and the Sherman-Morrison formula, we have

E[
1

T

∑
t

F ′
t(zI +BT )

−1]νF

= E[F ′
t(zI +BT )

−1Ψ]λ = E[F ′
t(zI +BT,t)

−1 1

1 + (T )−1F ′
t(zI +BT,t)−1Ft

Ψ]λ ,

(196)

where

BT,t =
1

T

∑
τ ̸=t

FτF
′
τ .
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By Lemma 10,

(T )−1F ′
t(zI +BT,t)

−1Ft → ξ(z; c)

is probability and therefore

E[F ′
t(zI +BT,t)

−1 1

1 + (T )−1F ′
t(zI +BT,t)−1Ft

Ψ]λ ∼ E[F ′
t(zI +BT,t)

−1νF ]

1 + ξ(z; c)
, (197)

whereas E[Ft] = tr(ΣΣε)νF implies

E[F ′
t(zI +BT,t)

−1νF ] = tr(ΣΣε)λ
′E[Ψ(zI +BT,t)

−1νF ] ∼ Γ1,1(z) . (198)

The proof of Proposition 6 is complete.

□

J Computing Expectations Involving Powers of Ψ

Lemma 19 Let

ψ∗,k = limP−1 tr(λ′Ψkλ) (199)

and

Γk,l,T (z) ≡ λ′E[Ψk(zI +BT )
−1Ψℓ]λ . (200)

We have

ψ∗,k+ℓ ∼ z Γk,ℓ,T (z) +

(
ψ∗,k+1Γ1,ℓ,T (z) + σ∗Γk+1,ℓ,T

)
(1 + ξ(z; c))−1 (201)
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Proof of Lemma 19. Using the Sherman-Morrison formula and Lemma 10, we get

F ′
t(zI+BT )

−1 = F ′
t(zI+BT,t)

−1(1+(T )−1F ′
t(zI+BT,t)

−1Ft)
−1 ∼ F ′

t(zI+BT,t)
−1(1+ξ(z; c))−1

We also have

E[FtF
′
t ] = ((tr Σ)2 + tr(Σ2/))ΨΣFΨ

+ tr(Σ ◦ Σ)(κ− 3)Ψ1/2 diag(Ψ1/2ΣFΨ
1/2)Ψ1/2 +Ψ

(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
)

= Σ̂F +ΨΣFΨ + σ∗Ψ ,

(202)

where ∥Σ̂F∥ = o(1), and

ΣF = λλ′ + Σ∗
F . (203)

We will need the following important observation:

Lemma 20 For any sequence

λ′APQPλ → 0 (204)

in probability, for any uniformly bounded QP (even if they correlate with λ) and any AP with

a uniformly bounded trace norm, such that AP is independent of λ.
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Proof of Lemma 20. We have

λ′APQPλ = tr(λλ′APQP )

≤ ∥λλ′APQP∥1 ≤ ∥QP∥∞∥λλ′AP∥1

= ∥QP∥∞ tr((λλ′APA
′
Pλλ

′)1/2) = ∥QP∥∞(λ′APA
′
Pλ)

1/2 tr((λλ′)1/2) = (λ′APA
′
Pλ)

1/2∥λ∥

= (tr(APA
′
Pλλ

′))1/2∥λ∥ → (P−1 tr(Σλ))
1/2(P−1 tr(APA

′
PΣλ))

1/2

≤ (P−1 tr(Σλ))
1/2∥Σλ∥1/2(P−1 tr(APA

′
P ))

1/2 → 0

(205)

The proof of Lemma 20 is complete. □
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Thus, for any AP with bounded trace norm, we get

ψ∗,k+ℓ = P−1 tr(Ψk+ℓΣλ) ≈ λ′Ψk+ℓλ = λ′E[Ψk(zI +BT )(zI +BT )
−1Ψℓ]λ

= zΓk,ℓ,T (z) + λ′E[ΨkBT (zI +BT )
−1Ψℓ]λ

=︸︷︷︸
symmetry over t

zΓk,ℓ,T (z) + λ′E[ΨkFtF
′
t(zI +BT )

−1Ψℓ]λ

=︸︷︷︸
(77)

zΓk,ℓ,T (z) + λ′E[ΨkFtF
′
t(zI +BT,t)

−1(1 + (T )−1F ′
t(zI +BT,t)

−1Ft)
−1Ψℓ]λ

∼︸︷︷︸
Lemma 10

zΓk,ℓ,T (z) + λ′E[ΨkFtF
′
t(zI +BT,t)

−1Ψℓ]λ(1 + ξ(z; c))−1

∼︸︷︷︸
(202)

zΓk,ℓ,T (z) + λ′E[Ψk(Σ̂F +ΨΣFΨ + σ∗Ψ)(zI +BT,t)
−1Ψℓ]λ(1 + ξ(z; c))−1

∼ zΓk,ℓ,T (z) + λ′E[Ψk(Ψ(ΣF + λλ′)Ψ + σ∗Ψ)(zI +BT )
−1Ψℓ]λ(1 + ξ(z; c))−1

∼︸︷︷︸
(204)

zΓk,ℓ,T (z) + λ′E[Ψk(νFν
′
F + σ∗Ψ)(zI +BT )

−1Ψℓ]λ(1 + ξ(z; c))−1

= zΓk,ℓ,T (z) + λ′Ψk+1λE[ν ′F (zI +BT )
−1Ψℓ]λ(1 + ξ(z; c))−1

+ ν ′k+1
F σ∗(zI +BT )

−1Ψℓλ(1 + ξ(z; c))−1

∼ z Γk,ℓ,T (z) +

(
ψ∗,k+1Γ1,ℓ,T (z) + σ∗Γk+1,ℓ,T

)
(1 + ξ(z; c))−1

(206)

□

Lemma 21 Let

δ(z) = −σ∗z−1(1 + ξ(z; c))−1 . (207)

Then,

Γ1,l(z) =
z−1P−1 tr(Ψ1+ℓ(I −Ψδ(z))−1Σλ)

1− δ(z)P−1 tr(Ψ2(I −Ψδ(z))−1Σλ)
(208)
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and

Γk,ℓ = z−1P−1 tr(Ψk+ℓ(I−Ψδ(z))−1Σλ)−z−1P−1 tr(Ψk+1(I−Ψδ(z))−1Σλ)Γ1,ℓ(1+ξ(z; c))
−1

(209)

Proof. We have

Γk,ℓ = ak+1 + δ Γk+1,ℓ (210)

where

ak+1,ℓ = z−1(ψ∗,k+ℓ − ψ∗,k+1Γ1,ℓ(1 + ξ(z; c))−1), δ(z) = −σ∗z−1(1 + ξ(z; c))−1 . (211)

Let us pick z > max(1, ∥Ψ∥) sufficiently large, so that σ∗z
−1(1 + ξ(z; c))−1 < 1 and38

|δkΓk,ℓ(z)| ≤ z−k+1∥λ∥2∥Ψ∥k+ℓ →k→∞ 0 . (212)

Then, iterating forward, we get

Γk,ℓ =
∞∑
τ=0

ak+τ+1,ℓδ
τ . (213)

Now,

ak+τ+1,ℓ = z−1(ψ∗,k+τ+ℓ−ψ∗,k+τ+1Γ1,ℓ(1+ξ(z; c))
−1), δ(z) = −σ∗z−1(1+ξ(z; c))−1 . (214)

38This uniform exponential decay also implies that the infinite sum of the limits equals the limit of the
infinite sum, as we pass to the P → ∞ limit.
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Γ1,ℓ =
∞∑
τ=0

aτ+2,ℓδ
τ

=
∞∑
τ=0

z−1(ψ∗,1+τ+ℓ − ψ∗,1+τ+1Γ1,ℓ(1 + ξ(z; c))−1)δτ

=
∞∑
τ=0

(z−1(P−1 tr(Ψτ+ℓ+1Σλ)− P−1 tr(Ψτ+2Σλ)Γ1,ℓ(1 + ξ(z; c))−1))δτ

= z−1P−1 tr(Ψ1+ℓ(I −Ψδ(z))−1Σλ)− z−1P−1 tr(Ψ2(I −Ψδ(z))−1Σλ)Γ1,ℓ(1 + ξ(z; c))−1 ,

(215)

implying that

Γ1,l =
z−1P−1 tr(Ψ1+ℓ(I −Ψδ(z))−1Σλ)

1− δ(z)P−1 tr(Ψ2(I −Ψδ(z))−1Σλ)
(216)

Then, the same argument implies

Γk,ℓ = z−1P−1 tr(Ψk+ℓ(I−Ψδ(z))−1Σλ)−z−1P−1 tr(Ψk+1(I−Ψδ(z))−1Σλ)Γ1,ℓ(1+ξ(z; c))
−1

(217)

Furthermore,

δ(z) = −σ∗z−1(1 + ξ(z; c))−1, (218)

We have, with λ̃ = νF , that

Γ1,1(z) ≈ z−1λ̃′(I −Ψδ(z))−1λ̃

1− δ(z)λ̃′(I −Ψδ(z))−1λ̃
(219)

□
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K Proof of Theorem 3, ii.: Second Moment of R̂M

We start with

Lemma 22 We have

G(z; c) =
d

dz
(zξ(z; c)) ∈ (0, cz−2] (220)

satisfies

G(z; c) = M(z;Z∗(z; c)) , (221)

where

M(z;Z) = −1 +
Z

z + cϕ(Z)Z2
, ϕ(z) = P−1 tr(E[FF ′](zI + E[FF ′])−2) . (222)

Proof of Lemma 22. By the master equation,

m(z; c) =
1

1 − c − c z m(z; c)
mσ∗Ψ

(
z

1 − c − c z m(z; c)

)
. (223)

whereas, by the definition of the ξ(z; c) function,

c−1ξ(z; c)

1 + ξ(z; c)
= 1 − m(−z; c)z . (224)

and hence

ξ(z; c) =
1− zm(−z; c)

c−1 − 1 + zm(−z; c)
(225)
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and hence

1 + ξ(z; c) =
c−1

c−1 − 1 + zm(−z; c)
=

1

1− c+ czm(−z; c)
(226)

Differentiating this identity, we get

ξ′(z; c) = −c(zm(−z; c))′(1 + ξ(z; c))2 (227)

Furthermore, differentiating the identity

zm(−z; c) = Z∗(z; c)m(−Z∗(z; c)), (228)

we get

(zm(−z; c))′ = (zm(−z))′(Z∗)Z∗′ = (zm(−z))′(Z∗)(1 + ξ(z; c) + zξ′(z; c)) (229)

so that

ξ′(z; c) = −c(zm(−z))′(Z∗)(1 + ξ(z; c) + zξ′(z; c))(1 + ξ(z; c))2 , (230)

implying that

ξ′(z; c) =
−c(zm(−z))′(Z∗)(1 + ξ(z; c))3

1 + c(zm(−z))′(Z∗)z(1 + ξ(z; c))2
(231)

and hence

1+ξ(z; c)+zξ′(z; c) =
1 + ξ(z; c)

1 + c(zm(−z))′(Z∗)z(1 + ξ(z; c))2
=

Z∗(z; c)

z + c(zm(−z))′(Z∗)Z∗2(z; c)

(232)
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□

Let

Ft =
∑
t

Ft .

Without loss of generality, we assume that κ = 2 because all kurtosis terms vanish

asymptotically due to their vanishing trace norm. Using Lemma 6, we get39

E[(RF
t+1(z))

2] = E[
1

T
Ft

′
(zI +BT )

−1Ft+1F
′
t+1(zI +BT )

−1 1

T
Ft]

= E[
1

T
Ft

′
(zI +BT )

−1Et−[Ft+1F
′
t+1](zI +BT )

−1 1

T
Ft]

=︸︷︷︸
Lemma 6

E[
1

T
Ft

′
(zI +BT )

−1

(
((tr Σ)2 + tr(Σ2))ΨΣFΨ+Ψ

(
tr(ΣΣε) + tr(ΨΣF ) tr(Σ

2)
))

(zI +BT )
−1 1

T
Ft]

≈ E[
1

T
Ft

′
(zI +BT )

−1

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

))
(zI +BT )

−1 1

T
Ft]

=
1

T 2

∑
t1,t2

E[Ft1(zI +BT )
−1

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft2 ]

∼ Term1 + Term2

(233)

with

Term1 =
1

T
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft1 ] (234)

39Et− denotes the expectation averaging over realizations of St and Rt+1.
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and

Term2 =
T (T − 1)

T 2
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft2 ]

(235)

for any t1 ̸= t2.

K.1 Term1 in (234)

We first deal with the first term. Using the Sherman-Morrison formula and Lemma 10, and

Lemma 6, we get

Term1 =
1

T
trE[

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1]

∼ 1

T
trE[

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1)

−1Ft1F
′
t1
(zI +BT,t1)

−1](1 + ξ(z; c))−2

∼ 1

T
trE[

(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1)

−1](1 + ξ(z; c))−2

(236)

We can now split this expression into several terms. We have

1

T
trE[(tr Σ)2ΨΣFΨ(zI +BT,t)

−1(tr Σ)2ΨΣFΨ(zI +BT,t)
−1](1 + ξ(z; c))−2

=
1

T
trE[ΨΣFΨ(zI +BT,t)

−1ΨΣFΨ(zI +BT,t)
−1](1 + ξ(z; c))−2 → 0

(237)

because

tr(ΣF ) = tr(ΣF,t) + P−1∥λ∥2 = o(P ) + O(1) = o(T ) ,
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and all other matrices involved are uniformly bounded. The second term is

1

T
trE[(tr Σ)2ΨΣFΨ(zI +BT,t)

−1 tr(ΣΣε)Ψ(zI +BT,t)
−1]/(1 + ξ(z; c))2 = O(T−1) (238)

by the same argument. Finally, the last term is

(tr(ΣΣε))
2 1

T
trE[Ψ(zI +BT,t)

−1Ψ(zI +BT,t)
−1]/(1 + ξ(z; c))2 (239)

and it needs to be evaluated directly.

Lemma 23 We have

1

P
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]

∼ σ2
∗
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1]

→ Γ3(z) =
(
1− (−z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

)
)
(1 + ξ(z; c))4

= c−1(ξ(z; c) + zξ′(z; c))(1 + ξ(z; c))2

(240)

Proof. We have by the Sherman-Morrison formula that

1

P

1

T
trE[Ft1F

′
t1
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1]

∼ 1

c

1

T 2
E[F ′

t1
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1Ft1 ]

= c−1E

[( 1
T
F ′
t1
(zI +BT,t1)

−1Ft1

1 + 1
T
F ′
t1(zI +BT,t1)

−1Ft1

)2
]

∼ c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

(241)

by Lemma 10. Now,

m′(−z; c) = limP−1 trE[(zI +BT )
−2] (242)
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and hence

1 =
1

P
trE[(zI +BT )(zI +BT )

−1(zI +BT )(zI +BT )
−1]

=
1

P
z2 trE[(zI +BT )

−2] + 2z
1

P
trE[(zI +BT )

−2BT ]

+
1

P
trE[BT (zI +BT )

−1BT (zI +BT )
−1]

∼ z2m′(−z; c) + 2z
1

P
trE[(zI +BT )

−2(BT + zI − zI)]

+
1

P

1

T 2

∑
t1,t2

trE[Ft1F
′
t1
(zI +BT )

−1Ft2F
′
t2
(zI +BT )

−1]

= −z2m′(−z; c) + 2zm(−z; c) + 1

P

1

T
trE[Ft1F

′
t1
(zI +BT )

−1Ft1F
′
t1
(zI +BT )

−1]

+
1

P

T (T − 1)

T 2
trE[Ft1F

′
t1
(zI +BT )

−1Ft2F
′
t2
(zI +BT )

−1]

∼ −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P
trE[Ft1F

′
t1
(zI +BT )

−1Ft2F
′
t2
(zI +BT )

−1]

∼ −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P
trE[Ft1F

′
t1
(zI +BT,t1)

−1Ft2F
′
t2
(zI +BT,t2)

−1]/(1 + ξ(z; c))2

∼ −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P
E[F ′

t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1Ft1 ]/(1 + ξ(z; c))4

= −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+
1

P
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]/(1 + ξ(z; c))4

(243)

where we have defined

BT,t1,t2 =
1

T

∑
τ ̸∈{t1,t2}

FτF
′
τ . (244)
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We also used that

F ′
t1
(zI +BT )

−1 ∼ F ′
t1
(zI +BT,t1)

−1/(1 + ξ(z; c))

by Lemma 10 and the Sherman-Morrison formula.

Now,

1

P
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]

=
1

P
trE[

(
((tr Σ)2 + tr(Σ2))ΨΣFΨ

+Ψ
(
tr(ΣΣε) + tr(ΣFΨ) tr(Σ2)

))
(zI +BT,t1,t2)

−1

(
((tr Σ)2 + tr(Σ2))ΨΣFΨ

+Ψ
(
tr(ΣΣε) + tr(ΣFΨ) tr(Σ2)

))
(zI +BT,t1,t2)

−1]

(245)

which coincides with the expression in (236). By the derivations in formulas (237) and (238),

we get

1

P
trE[Ft1F

′
t1
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1]

∼ σ2
∗
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1] ,

(246)

and hence

1 = −z2m′(−z; c) + 2zm(−z; c) + c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

+ σ2
∗
1

P
trE[Ψ(zI +BT )

−1Ψ(zI +BT )
−1]/(1 + ξ(z; c))4

(247)

Finally,

ξ(z; c)

1 + ξ(z; c)
= c(1− zm(−z; c)) (248)
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(1 + z2m′(−z; c)− 2zm(−z; c)− c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

)(1 + ξ(z; c))4

= (
d

dz
(z(1− zm(−z; c)))− c−1

(
ξ(z; c)

1 + ξ(z; c)

)2

)(1 + ξ(z; c))4

= c−1

(
d

dz

( zξ(z; c)

1 + ξ(z; c)

)
(1 + ξ(z; c))2 − (ξ(z; c))2

)
(1 + ξ(z; c))2

= c−1

(
d

dz

(
z − z

1 + ξ(z; c)

)
(1 + ξ(z; c))2 − (ξ(z; c))2

)
(1 + ξ(z; c))2

= c−1

((
1− 1

1 + ξ(z; c)
+

zξ′(z; c)

(1 + ξ(z; c))2

)
(1 + ξ(z; c))2 − (ξ(z; c))2

)
(1 + ξ(z; c))2

= c−1(ξ(z; c) + zξ′(z; c))(1 + ξ(z; c))2

(249)

The proof of Lemma 23 is complete. □

We conclude that the first term from (233) characterized in (236) satisfies

Term1 =
1

T
E[F ′

t1
(zI +BT )

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft1 ]

∼ (1 + ξ(z; c))−2cΓ3(z)

(250)

because 1/T ∼ c/P.
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K.2 Term2 in (235)

We now proceed with the second term (235). By the Sherman-Morrison formula and Lemma

10,

E[F ′
t1
(zI +BT )

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT )

−1Ft2 ]

∼ E[F ′
t1
(zI +BT,t1)

−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t2)

−1Ft2 ]/(1 + ξ(z; c))2

∼ E[F ′
t1

(
(zI +BT,t1,t2)

−1 −
1
T
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t2(zI +BT,t1,t2)

−1Ft2

)
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)(
(zI +BT,t1,t2)

−1

−
1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

)
Ft2 ]/(1 + ξ(z; c))2

= Term1 + Term2 + Term3

(251)

where

Term1 = E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1,t2)

−1Ft2 ]/(1 + ξ(z; c))2

Term2 = −2E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

Term3 = E[F ′
t1

1
T
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t2(zI +BT,t1,t2)

−1Ft2(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

) 1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

(252)

We now analyze each term separately.
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K.3 Term1 in (252)

We will need the following lemma.

Lemma 24 We have

F (A) = λ′E[(zI +BT )
−1A(zI +BT )

−1]λ → 0 (253)

for any A with uniformly bounded trace norm, with A independent of λ.

Proof of Lemma 24. We know from Lemma 20 that λ′E[A(zI + BT )
−1]λ → 0. Further-

more,

λ′E[A(zI +BT )
−1]λ = λ′E[(zI +BT )

−1(zI +BT )A(zI +BT )
−1]λ

=︸︷︷︸
symmetry

zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ +
1

T
λ′E[(zI +BT )

−1FtF
′
tA(zI +BT )

−1λ]

= zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ

+ E[
(
(zI +BT,t)

−1 −
1
T
(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1

1 + 1
T
F ′
t(zI +BT,t)−1Ft

)
FtF

′
tA(zI +BT )

−1λ]

≈ zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ + (1 + ξ(z; c))−1λ′E[(zI +BT,t)
−1FtF

′
tA

×
(
(zI +BT,t)

−1 −
1
T
(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1

1 + ξ(z; c)

)
λ]

= zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ

+ (1 + ξ(z; c))−1λ′E[(zI +BT,t)
−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
A(zI +BT,t)

−1]λ

− (1 + ξ(z; c))−2λ′E[(zI +BT,t)
−1FtF

′
tA

1

T
(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1]λ

≈ zλ′E[(zI +BT )
−1A(zI +BT )

−1]λ

+ (1 + ξ(z; c))−1λ′E[(zI +BT,t)
−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
A(zI +BT,t)

−1]λ

−Q(z)(1 + ξ(z; c))−2λ′E[(zI +BT,t)
−1FtF

′
t(zI +BT,t)

−1]λ

(254)
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where

Q(z) = F ′
tA

1

T
(zI +BT,t)

−1Ft → T−1 trE[ΨA(zI +BT,t)
−1] → 0 (255)

because ∥A∥1 = o(P ) by assumption, and

λ′E[(zI +BT,t)
−1FtF

′
t(zI +BT,t)

−1]λ

= λ′E[(zI +BT,t)
−1
(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t)

−1]λ = O(1) .
(256)

Thus, we get

o(1) ≈ zF (A) + (1 + ξ(z; c))−1 F ((ΨΣFΨ+Ψ)A) (257)

where o(1) is uniform, and the same iterative argument as in the proof of Lemma 21

give a power series representation for F ((ΨΣFΨ + Ψ)kA) for all k, and the same uniform

boundedness argument implies that F (A) = 0. The proof of Lemma 24 is complete. □

Now, E[Ft] = tr(ΣΣε)νF and therefore

(1 + ξ(z; c))2Term1 = E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
(zI +BT,t1,t2)

−1Ft2 ]

∼ 1

N3
(tr(Σ))2ν ′F E[(zI +BT,t1,t2)

−1(
(tr Σ)2Ψ(ΣF,t + λλ′)Ψ + Ψ tr(ΣΣε)

)
(zI +BT,t1,t2)

−1]νF

=
1

N4
(tr(Σ))2ν ′F E[(zI +BT,t1,t2)

−1(tr Σ)2ΨΣF,tΨ(zI +BT,t1,t2)
−1]νF

+
1

N4
(tr(Σ))2ν ′F E[(zI +BT,t1,t2)

−1(tr Σ)2Ψλν ′F (zI +BT,t1,t2)
−1]νF

+
1

N3
(tr(Σ))2ν ′F E[(zI +BT,t1,t2)

−1(tr ΣΣε)Ψ(zI +BT,t1,t2)
−1]νF

∼ Γ1,1(z)
2 + Γ4,T (z) ,

(258)
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where Γ4 is defined in the following lemma.

Lemma 25 We have

σ∗ν
′
FE[(zI +BT,t1,t2)

−1Ψ(zI +BT,t1,t2)
−1]νF = Γ4,T (z)

→ Γ4(z) =
Γ1,1(z) + zΓ′

1,1(z)− (Γ1,1(z))
2(1 + ξ(z; c))−2

(1 + ξ(z; c))−2

(259)

Proof. We have by the symmetry across t and the Sherman-Morrison formula and Lemma

10 that

Γ1,1(z) ∼ λ′E[Ψ(zI +BT )
−1Ψ]λ = λ′E[Ψ(zI +BT )

−1(zI +BT )(zI +BT )
−1Ψ]λ

= z λ′E[Ψ(zI +BT )
−1(zI +BT )

−1Ψ]λ + λ′E[Ψ(zI +BT )
−1BT (zI +BT )

−1Ψ]λ

= −z Γ′
1,1,T (z) + λ′E[Ψ(zI +BT )

−1 1

T

∑
t

FtF
′
t(zI +BT )

−1Ψ]λ

= −z Γ′
1,1,T (z) + λ′E[Ψ(zI +BT )

−1FtF
′
t(zI +BT )

−1Ψ]λ

∼ −z Γ′
1,1,T (z) + λ′E[Ψ(zI +BT,t)

−1FtF
′
t(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−2

= −z Γ′
1,1,T (z)

+ λ′E[Ψ(zI +BT,t)
−1

(
((tr Σ)2 + tr(Σ2))ΨΣFΨ

+ Ψ
(
tr(ΣΣε) + tr(ΣFΨ) tr(Σ2)

))
(zI +BT,t)

−1Ψ]λ(1 + ξ(z; c))−2

∼ −z Γ′
1,1,T (z) + (Γ1,1(z))

2(1 + ξ(z; c))−2

+ Γ4,T (z)(1 + ξ(z; c))−2

(260)

The claim follows now because Γ′
1,1,T (z) → Γ′

1,1(z) by standard properties of analytic

functions. The proof of Lemma 25 is complete. □
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K.4 Term2 in (252)

The next term in (252) is (note the factor of 2 as it appears two times):

Term2 = −2E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

= −2E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

νF ] tr(Σ)/(1 + ξ(z; c))2

∼ −2E[F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

νF ]/(1 + ξ(z; c))2

= −2(1 + ξ(z; c))−2E[XTYT ],

(261)

where we have used that

E[Ft2 ] = νF , (262)

and where

YT = F ′
t1
(zI +BT,t1,t2)

−1λ

XT = F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

(263)
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We will need the following technical lemma whose proof follows directly from the Cauchy-

Schwarz inequality.

Lemma 26 If XT → X in probability and is uniformly bounded and E[Y 2
T ] is uniformly

bounded. Then,

E[(XT −X)YT ] → 0

Then, we will need

Lemma 27 We have

E[(YT )
2]

is uniformly bounded whereas

E[YT ] = E[F ′
t1
(zI +BT,t1,t2)

−1λ] → Γ1,1(z) . (264)

Proof. Recall that

λ′Ψk(zI +BT )
−1Ψℓλ → Γk,l(z) (265)

by Lemma 21.
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We have

E[
(
F ′
t1
(zI +BT,t1,t2)

−1λ
)2
]

= E[F ′
t1
(zI +BT,t1,t2)

−1λλ′(zI +BT,t1,t2)
−1Ft1 ]

= trE[(zI +BT,t1,t2)
−1λλ′(zI +BT,t1,t2)

−1Ft1F
′
t1
]

∼ trE[(zI +BT,t1,t2)
−1λλ′(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
] ≤ Kz−2

(266)

for some K > 0. The proof of Lemma 27 is complete. □

Recall that

YT = F ′
t1
(zI +BT,t1,t2)

−1λ

and

XT = F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

)
×

1
T
(zI +BT,t1,t2)

−1Ft1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

(267)

Now, we know from the proof of Lemma 14 that

1

T
F ′
tAFt −

1

T
tr(AE[FtF

′
t ]) → 0
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in L2 and

F ′
t1
(zI +BT,t1,t2)

−1(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

) 1
T
(zI +BT,t1,t2)

−1Ft1

∼ 1

T
trE[(zI +BT,t1,t2)

−1
(
Ψ(ΣF,t + λλ′)Ψ + σ∗Ψ

)
× (zI +BT,t1,t2)

−1
(
Ψ(ΣF,t + λλ′)Ψ + σ∗Ψ

)
]

∼︸︷︷︸
(204) and Lemma 24

1

T
trE[(zI +BT,t1,t2)

−1
(
Ψλν ′F + σ∗Ψ

)
× (zI +BT,t1,t2)

−1
(
Ψλλ′Ψ+ σ∗Ψ

)
]

∼ 1

T
trE[(zI +BT,t1,t2)

−1Ψλλ′Ψ(zI +BT,t1,t2)
−1Ψλν ′F ]

+ 2
1

T
trE[(zI +BT,t1,t2)

−1Ψλλ′Ψ(zI +BT,t1,t2)
−1Ψσ∗]

+ σ2
∗
1

T
trE[(zI +BT,t1,t2)

−1Ψ(zI +BT,t1,t2)
−1Ψ]

∼ cΓ3(z)

(268)

by Lemma (23) because the λ-terms are O(T−1). Furthermore, XT is uniformly bounded by

the Cauchy-Schwarz inequality. Thus,

XT → cΓ3(z)

1 + ξ(z; c)

and

E[YT ] → Γ1,1(z)
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by Lemma 27, and Lemma 26 and formula (261) imply that

Term2 ∼ −2
cΓ3(z)Γ1,1(z)

(1 + ξ(z; c))3
. (269)

K.5 Term3 in (252)

Finally, we now deal with Term3 in (252).

Lemma 28 Term3 in (252) converges to zero.

Proof of Lemma 28. We have

Term3 = E[F ′
t1

1
T
(zI +BT,t1,t2)

−1Ft2F
′
t2
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t2(zI +BT,t1,t2)

−1Ft2(
(tr Σ)2ΨΣFΨ+Ψtr(ΣΣε)

) 1
T
(zI +BT,t1,t2)

−1Ft1F
′
t1
(zI +BT,t1,t2)

−1

1 + 1
T
F ′
t1(zI +BT,t1,t2)

−1Ft1

Ft2 ]/(1 + ξ(z; c))2

= E[XTYT ] /(1 + ξ(z; c))2 ,

(270)

where we have defined

XT =

(
1
T
F ′
t1
(zI +BT,t1,t2)

−1Ft2

)2
(1 + 1

T
F ′
t1(zI +BT,t1,t2)

−1Ft1)(1 +
1
T
F ′
t2(zI +BT,t1,t2)

−1Ft2)

and

YT = F ′
t2
(zI +BT,t1,t2)

−1

(
ΨΣFΨ + σ∗Ψ

)
(zI +BT,t1,t2)

−1Ft1 .

The first observation is that XT is uniformly bounded by the Cauchy-Schwarz inequality and

has a O(1/T ) L2-norm by Lemma 29. Since the first component of YT ,

F ′
t2
(zI +BT,t1,t2)

−1ΨΣFΨ(zI +BT,t1,t2)
−1Ft1 .
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has a o(T ) L2-norm, we get that this part is negligible by Lemma 26.

Lemma 29 We have that

E[(F ′
t1
AFt2)

2] = O(∥A∥1 ∥A∥∞) .

for any A. Thus,

(
1

T
F ′
t1
(zI +BT,t1,t2)

−1Ft2

)2

converges to zero in L1, while

F ′
t2
(zI +BT,t1,t2)

−1ΨΣFΨ(zI +BT,t1,t2)
−1Ft1

has a uniformly bounded L2-norm because tr(ΣF ) = o(T ).

Proof. We have

E[(F ′
t1
AFt2)

2] = N−2E[F ′
t1
AFt2F

′
t2
AFt1 ]

= N−2 trE[AFt2F
′
t2
AFt1F

′
t1
]

∼ trE[A

(
ΨΣFΨ + σ∗Ψ

)

× A

(
ΨΣFΨ + σ∗Ψ

))
]

(271)

The proof of Lemma 29 is complete. □

Lemma 30 We have

E[(F ′
t1
AFt2)

4] = O(P 2)
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for any uniformly bounded A.

Indeed, Lemma 30 implies that

E[X2
T ] ≤ T−4E[(F ′

t1
(zI +BT,t1,t2)

−1Ft2)
4] = O(P 2/T 4)

while Lemma 29 implies that

E[Y 2
T ] = O(P ) .

Thus,

|E[XTYT ]|2 ≤ E[X2
T ]E[Y

2
T ] = O(P 2/T 4)O(P ) → 0

and the claim follows.

Proof of Lemma 30. Without loss of generality, we may assume that A is symmetric.

Recall that

Rt = St−1βt + εt, (272)

and

Ft = S ′
t−1Rt = S ′

t−1St−1βt + S ′
t−1εt = Ztβ + S ′

t−1εt (273)

and therefore

FtF
′
t = Ztββ

′Zt + S ′
t−1εtβ

′Zt + Ztβε
′
tSt−1 + S ′

t−1εtε
′
tSt−1 . (274)
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and formula (149) applied to t = t1 implies

E[(F ′
t1
AFt2)

4] = E[F ′
t1
AFt2F

′
t2
AFt1F

′
t1
AFt2F

′
t2
AFt1 ]

= trE[Ft1F
′
t1
AFt2F

′
t2
AFt1F

′
t1
AFt2F

′
t2
A]

= trE[Zt1ββ
′Zt1AFt2F

′
t2
AZt1ββ

′Zt1AFt2F
′
t2
A]

+ trE[Zt1ββ
′Zt1AFt2F

′
t2
AZt1AFt2F

′
t2
A]

+ 2 trE[(β′Zt1AFt2F
′
t2
AZt1β)Zt1AFt2F

′
t2
A]

+ ((κε − 1) trE[Zt1AFt2F
′
t2
AZt1AFt2F

′
t2
A]

+ E[tr(Zt1AFt2F
′
t2
A)2]

(275)

We then again apply (149) to t = t2. It is then straightforward to show that the leading

contribution will be

E[tr(Zt1AZt2A)
2] = E[

(∑
Xi1,k1,t1λi1(Σ)Xi1,k2,t1λk2(Ã)Xi2,k2,t2λi2(Σ)Xi2,k1,t2λk1(Ã)

)2

]

= E[
∑

Xi1,k1,t1λi1(Σ)Xi1,k2,t1λk2(Ã)Xi2,k2,t2λi2(Σ)Xi2,k1,t2λk1(Ã)

×Xĩ1,k̃1,t1
λĩ1(Σ)Xĩ1,k̃2,t1

λk̃2(Ã)Xĩ2,k̃2,t2
λi2(Σ)Xĩ2,k̃1,t2

λk̃1(Ã)]

(276)

Non-zero terms must have that (i1, k1), (i1, k2), (̃i1, k̃1), (̃i2, k̃2) is coming in at least two

identical pairs. For example, k1 = k2, k̃1 = k̃2 will give tr(Σ)4(P )2. All other terms will

be even smaller because more indices should be equal. For example, if k1 = k̃1 we ought to

have i1 = ĩ1. The proof of Lemma 30 is complete. □

Thus, (270) converges to zero.

The proof of Lemma 28 is complete. □
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Summarizing, we get from (261) and (258), (269), that

Term2 = (1 + ξ(z; c))−2(Γ1,1(z)
2 + Γ4(z)) − 2

cΓ3(z)Γ1,1(z)

(1 + ξ(z; c))3
(277)

and (233) implies

E[(RF
t+1(z))

2] ∼︸︷︷︸
(233)

Term1 + Term2

∼︸︷︷︸ (250) (1 + ξ(z; c))−2cΓ3(z) + Term2

∼︸︷︷︸
(277)

(1 + ξ(z; c))−2cΓ3(z) + (1 + ξ(z; c))−2(Γ1,1(z)
2 + Γ4(z)) − 2

cΓ3(z)Γ1,1(z)

(1 + ξ(z; c))3

(278)

and the final expression follows from Lemma 25:

Γ1,1(z)
2 + Γ4(z) = Γ1,1(z)

2 +
Γ1,1(z) + zΓ′

1,1(z)− (Γ1,1(z))
2(1 + ξ(z; c))−2

(1 + ξ(z; c))−2
(279)

L Proof of Theorem 3, iv.: Pricing Errors

Our analysis relies on the quantities

F̄OS = EOS[F ] ∈ RP , BOS = EOS[FF
′] ∈ RP×P (280)

where EOS[X] = 1
TOS

∑
t∈(T,T+TOS ]

Xt denotes an out-of-sample time series average. The

pricing error properties of the SDF are particularly tractable to derive when the test assets

are the P factors Ft that underly the SDF. The out-of-sample pricing error vector is

EOS(z;P ;T ) =
1

TOS

∑
t∈(T,T+TOS ]

FtM̂t(z;P ;T ) ∈ RP . (281)
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Finally, following Hansen and Jagannathan (1997), we define the out-of-sample HJD as40

DHJ
OS (z;P ;T ) = EOS(z;P ;T )

′B+
OS EOS(z;P ;T ) , (282)

where B+
OS is the Moore-Penrose quasi-inverse of the potentially degenerate matrix BOS.

The following is true.

Proposition 7 We have

DHJ
OS (z;P ;T ) − F̄ ′

OSB
+
OSF̄OS = −2EOS[R̂

M
t (z;P ;T )] + EOS[(R̂

M
t (z;P ;T ))2] (283)

When P > TOS and both are sufficiently large, we have

F̄ ′
OSB

+
OSF̄OS ≈ 1 (284)

and hence

DHJ
OS (z;P ;T ) ≈ EOS[(1− M̂t(z;P ;T ))

2] . (285)

In expectation, we have

lim
P,T,TOS→∞, P/T→c, P>TOS

E[DHJ
OS (z;P ;T )] = (1 +G(z; c))R(Z∗(z; c)), (286)

Proposition 7 shows a surprising identity for expected out-of-sample pricing errors. The

high complexity error DHJ
OS (z; c) is proportional to the infeasible error R(Z∗(z; c)), subject

to implicit regularization (i.e., z is replaced by Z∗(z; c)). The proportionality factor equals

one plus the complexity risk.

40At first glance, it may not be obvious whether we should define the HJD weighting matrix as the in-
sample or out-of-sample second moment of factors. Upon further inspection, we find that the out-of-sample
second moment is preferable because it allows us to establish a direct correspondence between DHJ

OS (z;P ;T )
and the out-of-sample SDF Sharpe ratio.
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Perhaps surprisingly, the out-of-sample pricing error (286) does not always converge to

zero even when c = z = 0. Instead,

lim
P,T,TOS→∞, P/T→0

E[DHJ
OS (0;P ;T )] → limE[F̄ ′

OSB
+
OSF̄OS] − E[F ]E[FF ′]−1E[F ] . (287)

Note that E[F ]E[FF ′]−1E[F ] = E(0) is the expected return on the efficient portfolio, whereas

E[F̄ ′
OSB

+
OSF̄OS] can be computed based on the following result.

Lemma 31 We have

limE[F̄ ′
OS(zI +BOS)

−1F̄OS] =
E(Z∗(z; cOS)) + ξ(z; c)

1 + ξ(z; c)
. (288)

In the ridgeless limit,

limE[F̄ ′
OSB

+
OSF̄OS] =


E(0)(1− cOS) + cOS, cOS < 1

1, cOS ≥ 1 ,

(289)

and, hence,

lim
P,T,TOS→∞, P/T→0

E[DHJ
OS (0;P ;T )] →


cOS(1− E(0)), cOS < 1

1− E(0), cOS ≥ 1 .

(290)

The pricing error (290) remains strictly positive as long as cOS > 0. Only when c = 0 do

we recover the true SDF in the large T limit, so it must price all assets without error. In this

case, because the test assets (Ft) are the same factors that underly the SDF, the factors are

essentially trying to “price themselves.” However, when cOS > 0, the out-of-sample factor

moments (F̄OS, BOS) are so severely misestimated that DHJ
OS (0;P ;T ) does not converge to

zero even if we have learned the true SDF in training.
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Finally, we can relate the out-of-sample HJD to the out-of-sample Sharpe ratio. Consider

a scale parameter α such that

M̂t(z;P ;T ) = 1− α R̂M
t (z;P ;T ). (291)

Then (285) implies that the optimal α is α = EOS[R̂
M
t (z;P ;T )]/EOS[(R̂

M
t (z;P ;T ))2], and

we get

DHJ
OS (z;P ;T ) = F̄ ′

OSB
+
OSF̄OS − SR2

OS(R̂
M(z;P ;T )). (292)

Thus, the larger the out-of-sample Sharpe ratio, the lower the out-of-sample pricing error.

Pricing errors are minimized when the complex feasible ridge SDF achieves the same out-

of-sample Sharpe ratio as the ex-post out-of-sample tangency portfolio of factors. This is, in

essence, an out-of-sample counterpart to the Gibbons et al. (1989) statistic.

Proof of Proposition 7. We have

PricingError(z; q; c) = E[F ′(1− λ(z; q)′F (q))]E[FF ′]−1E[(1− λ(z; q)′F )F ]

= (E[F ]− E[FF (q)′]λ(z; q))′E[FF ′]−1(E[F ]− E[FF (q)′]λ(z; q))

= E[F ]′E[FF ′]−1E[F ]− 2E[RF (z; q)F ′]E[FF ′]−1E[F ]︸ ︷︷ ︸
directional

+ E[RF (z; q)F ′]E[FF ′]−1E[RF (z; q)F ]︸ ︷︷ ︸
risk

= E[F ]′E[FF ′]−1E[F ]− 2E[RF (z; q)] + E[(RF (z; q))2]

(293)

We have

E

[
λ̂(z; q)′

(
1

T̂

∑
τ

(Fτ (q))F
′
τ

)
((0+)I + B̂T̂ )

−1

(
1

T̂

∑
τ

Fτ

)]
(294)
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Now, all matrices here have a block structure:(
1

T̂

∑
τ

(Fτ (q))F
′
τ

)
= [B̂T̂ (q) + (0+)I , Ψ̂1,2] (295)

where Ψ̂1,2 ∈ RP×(P−P ) and, assuming for simplicity that

(
1

T̂

∑
τ

(Fτ (q))F
′
τ

)
((0+)I + B̂T̂ )

−1 = [IP×P , 0P×(P−P )] (296)

by the definition of the inverse matrix. Namely,

(A,B)

A B

C D

−1

= (I, 0) (297)

Thus,

E[RF (z; q)F ′]E[FF ′]−1 = λ̂(z; q)′(I, 0) (298)

and hence

E[RF (z; q)F ′]E[FF ′]−1E[RF (z; q)F ]

= E[RF (z; q)F ′]E[FF ′]−1E[FF ′]E[FF ′]−1E[RF (z; q)F ]

= λ̂(z; q)′E[F (q)F (q)′]λ̂(z; q) .

(299)

Finally, the last identity follows from

D = 1 − 2E[R̂M ] + E[(R̂M)2] = 1− 2E(Z∗) + V(Z∗) +G(z; c)R(Z∗) = R(Z∗) +G(z; c)R(Z∗)

(300)

□
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