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ABSTRACT

Digital technologies are bringing vast improvements to modern society but also carry the risk of 
perpetuating disparities if adopted at lower rates by underserved communities. We investigate the 
efficiency and equity aspects of technological advancement in digital health by studying an 
intervention of “remote patient monitoring” that enabled patients to transmit real-time clinical data 
for timely treatment. The program was deployed at the Academic Medical Center UC San Diego 
Health among a diverse population of patients and targeted hypertension management to reduce the 
risk of cardiovascular disease. From an efficiency standpoint, we find significant and persistent 
reductions in cardiovascular risk, which are notable across all subgroups of gender, age, race/
ethnicity, and geographic affluence. Evidence suggests both reduced frictions in the provision of 
care and improved health behaviors as mechanisms. The program also led to significant reductions 
in healthcare utilization costs from improved hypertension control. From an equity standpoint, 
however, we find that the longer-run health gains from the program fell short among underserved 
patient subpopulations, inducing inequities in the reductions in cardiovascular risk. The new 
technology was systematically adopted at lower rates by Black/Hispanic patients and by patients 
from disadvantaged geographic communities, who were less likely to either take up or adhere to 
the program. Overall, our analysis highlights the simultaneous promise and hazards of digital health 
technologies. We further provide evidence that primary care physicians and the nature of their 
relationship with patients can have a promising role in promoting greater and more equitable 
adoption of digital health.
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1. Introduction 
Technology is a key driver of growth and improvements in economic well-being, and it is 

particularly important in advancing population health (Cutler and Miller 2005; Cutler et al. 2006). 

Powered by mobile internet, recent technological advances in digital health—such as remote 

monitoring devices, digital wearables, and telemedicine services—are becoming increasingly 

promising in the efforts to promote population health (Mathews et al. 2019; WHO 2022). 

By reducing transaction costs that could hinder the utilization of traditional care (e.g., 

accessibility, distance, and time), these technologies aim to improve patient health by providing 

solutions that promote adherence to healthy behaviors and real-time continuous care. Along with 

their promise to improve population health, however, a general concern with the introduction of 

new technologies is that they could perpetuate inequities. Such concerns have become central in 

the context of digital health with the challenge that lower adoption rates among underserved 

communities (e.g., due to non-inclusive product design and uneven implementation) would lead 

to biased health improvements and deepen disparities (Lyles et al. 2021, WHO 2022). Still, while 

investment in the digital health sector is enormous and growing (with nearly $6 billion in funding 

in 2017), evidence of solutions that provide real value in the production of population health and 

of their implications for health equity is notably limited (Mathews et al. 2019, Lyles et al. 2021). 

In this paper, we provide novel analysis of both the equity and efficiency consequences of 

a digital “remote patient monitoring” program, which was deployed in a real-world healthcare 

setting at the Academic Medical Center UC San Diego Health (UCSDH). The program targeted 

cardiovascular risk—due to its prominence as a leading cause of death in the U.S. (Ahmad and 

Anderson 2021)—and was offered to a wide and diverse population of individuals. The program 

operated as follows. Primary care physicians at UCSDH were asked to offer the new program to 

their patients with poorly managed hypertension on a rolling basis. The program provided 

participating patients with electronic Bluetooth-enabled digital blood pressure devices. When 

patients used the device, it automatically transmitted blood pressure data via Bluetooth to the 

patient portal of the electronic health record at UCSDH. A team of clinical staff would then 

monitor the data daily and manage patients’ blood pressure levels based on standardized medical 

protocols. The program was designed to maximize access and health equity by ensuring no out-

of-pocket costs regardless of patients’ insurance. The patient population of our study is comprised 

of the 2,512 patients who were referred to the program by their primary care physicians between 
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October 2020 and July 2022, with representation across race/ethnicity, geographic affluence, 

gender, and age. 

We first focus on efficiency aspects by assessing the effect of the program on patients’ 

health outcomes. We analyze the program’s impact using a high-frequency event study design. 

Specifically, at a monthly frequency, we study the evolution of referred patients’ blood pressure 

levels over the course of the year before and the year after they were referred to the program by 

their physician. Identification relies on how outcomes immediately after the referral event deviate 

from the baseline trend prior to it. We also accompany this research design with matched control 

groups using exact matching as a robustness check with virtually similar findings. 

We find clear evidence of meaningful improvements in health outcomes following the 

referral to the program. Patients display a 15 percentage points (pp) increase in the propensity to 

reach healthy systolic blood pressure levels on a baseline of 22 pp.1 We further study an aggregate 

measure of the health value of the intervention by using the Atherosclerotic Cardiovascular 

Disease (ASCVD) score, which indicates a patient’s ten-year risk of experiencing a serious 

cardiovascular event such as a heart attack or stroke (Goff et al. 2014). We find that after one year, 

the intervention led to a decline of 4.4 pp in exhibiting high cardiovascular risk (defined as 20 

percent or higher by the American College of Cardiology) on a baseline of 35.5 pp. Additional 

analysis provides suggestive evidence of reduced frictions in the provision of care via enhanced 

treatment tailoring as well as patients’ adherence to healthier behaviors as potential mediating 

channels in the health gains from the remote monitoring program.  

We also investigate the financial implications of the digital health program using internal 

administrative data on healthcare utilization and costs. We find that within our analysis horizon of 

one year, the program and its effects of improved hypertension management led to a decline of 40 

percent in utilization costs ($385 quarterly on a counterfactual of $1,004). Our results thus offer a 

promising pathway for curbing healthcare expenditures.  

We then turn our focus to equity. Exploiting our patient demographic data, we first find 

that the large health improvements were experienced across-the-board, along the dimensions of 

 

1 Blood pressure is measured as two numbers in millimeters of mercury (mmHg) units: (1) systolic blood pressure 
(the first and higher number) measures the pressure inside the arteries when the heart beats; (2) diastolic blood pressure 
(the second and lower number) measures the pressure inside the arteries when the heart rests between beats. We follow 
the medical literature and focus on systolic blood pressure in the context of hypertension management (The SPRINT 
Research Group 2021). 
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age, gender, race/ethnicity, and geographic affluence. That said, we find that in the longer run, the 

reduced-form intent-to-treat estimates (which incorporate the program adoption margin) display 

large gaps in health gains. Health improvements for Black/Hispanic patients fall short to about half 

of those for White patients (for whom improvements keep growing), with similar patterns of 

unequal gains across geographic economic affluence. We show that the disparities induced by the 

introduction of the digital health program are large when benchmarked against nationwide 

inequities in cardiovascular health. 

This leads us to analyze the program’s adoption behavior and how it varied across social 

subgroups. As reference, the initial takeup rate of the program (or the enrollment rate) across the 

analysis sample was 0.53; and, conditional on takeup, adherence to the program (defined by the 

likelihood of digitally transmitting blood pressure data in a given month) averaged to a monthly 

rate of 0.47 over the subsequent 1.5 years. The product of these two likelihoods translates to an 

aggregate adoption rate over the 1.5-year horizon, which averaged to 0.27 in the full sample. 

Comparing across subpopulations, we find that Black and Hispanic patients were 15 

percent less likely to adopt the program over this period (4.04 pp on a baseline of 27.7 pp), driven 

by lower adherence rates after the initial takeup. Adoption rates across geographic communities 

display even larger gaps, on the order of 28 percent (8.24 pp on a baseline of 29 pp). Geographic 

disparities already arise in the initial takeup stage, which are then further exacerbated by lower 

adherence rates. These patterns affirm policymakers’ concerns that households from underserved 

communities could face greater challenges in engaging with new digital health technologies as 

those are integrated into traditional care (Lyles et al. 2021, WHO 2022), and the findings further 

underscore considering policy tools that target both takeup and adherence in the adoption of digital 

health. 

Our findings of significant improvements in health outcomes along with only partial and 

differential participation across subgroups suggest the presence of frictions in the adoption of the 

digital program. To identify pathways that could reduce these frictions, we study the potential role 

of primary care physicians in inducing greater and more equitable adoption. We find a strong 

relationship between patients’ program adoption and their physician’s baseline performance, as 

measured either by objective clinical outcomes or by average ratings of subjective patient 

experience. We also find that patients are much more likely to adopt the program when the 

physician-patient relationship is longer, which could reflect greater trust that has been emphasized 
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as an important factor in recent work on health inequities.2 Notably, these patterns prevail across 

race/ethnicity and across geographic communities, pointing to the physician-patient relationship 

as a potentially promising pathway to promote more equitable adoption of digital health. 

Contribution to Literature. Our study contributes to three main strands of the literature. 

First, our work was motivated by recent small trials in clinical settings on the promise of digital 

health monitoring in reducing cardiovascular risk (Burke et al. 2015). In this domain, prior work 

has highlighted the clear absence of research on real-world digital health implementations at scale 

(Tinetti and Studenski 2011, Lyles et al. 2021). In turn, our intervention was designed to provide 

an original setting for studying the consequences of introducing a digital health program in a real-

world healthcare environment with novel evidence of scalability.3 Our setting—population health 

services within a busy academic health system—offers exactly the type of healthcare environments 

in which digital health programs would be rolled out. Moreover, integration of remote patient 

monitoring into the provision of care—the context that we study here—is particularly relevant in 

the efforts to improve population health and multiple reimbursement government policies via 

Medicaid and Medicare have been recently implemented (Burke et al. 2015; Hayes et al. 2023). 

Overall, we are able to study both the real-life technology adoption decision (which is outside the 

scope of clinical trials by nature) and the potential for health improvements at scale (as our program 

was offered to a broad patient population and built into the workflow of the busy health system).4 

Second, we contribute to the active and pressing work addressing geographic, racial, and 

ethnic disparities in health in the U.S. (e.g., Chandra and Skinner 2003, Bolen et al. 2010, Cutler 

et al. 2011, Chetty et al. 2016, Eberly et al. 2018, Schwandt et al. 2021, Couillard et al. 2021, 

Finkelstein et al. 2021). Digital health solutions have been rising in attractiveness due to their 

promise to shatter barriers in the provision of traditional care, including physical inaccessibility 

 

2 See Greenwood et al. (2018), Alsan et al. (2019), Frakes and Gruber (2022). 
3 Our intervention includes aspects of both stages III and IV of the NIH Stage Model for Behavioral Intervention 
Development as it advances existing work from pure efficacy to real-world efficacy and wider-scale effectiveness 
(https://www.nia.nih.gov/research/dbsr/nih-stage-model-behavioral-intervention-development).  
4 An additional advantage of our setting is that it allows us to harness the diversity of our patient population to analyze 
the digital program’s efficacy among traditionally underserved communities; thus addressing the pressing need for 
their representation in health research as recently emphasized by both the medical and economic professions (Bruke 
et al. 2015, Lyles et al. 2021, Alsan et al. 2024). We also note that, when analyzing health effects, we use an event 
study design to recover estimates based on the intent-to-treat (ITT), which stands in contrast to the American Heart 
Association’s critique of existing studies that make before and after comparisons of patients who self-select to 
participate in a program (Burke et al. 2015, Blood et al. 2022). 
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and time constraints of financially disadvantaged households. But concerns have been raised that 

digital health can harm equity due to, e.g., product design and evaluation that lack representation 

as well as implementation hurdles from lack of training, support, or trust (Lyles et al. 2021). Our 

work provides a novel setting to evaluate and quantify these various considerations of efficiency 

and equity. In our setting, we find both improvements in health across all subpopulations and 

inequities that arise in health gains from unequal adoption of the new technology. Our findings 

underscore the importance of considering levers that affect both takeup and adherence in the 

adoption of digital health (e.g., via community outreach), and we moreover find that physicians 

could have an important role in overcoming adoption gaps. 

Finally, we contribute to work on the economics and value of medical innovation (e.g., 

Cutler et al. 2006, Miller and Tucker 2011, Williams 2013, Budish et al. 2015, Sampat and 

Williams 2019, Bauer, Lakdawalla, and Reif 2022, Chandra et al. 2022), here in the digital health 

sphere. Digital health represents a large and growing market in medical innovation, with global 

estimates on the order of $350 billion in value and an annual expected growth of 8 percent.5 Still. 

economic research is in its infancy of assessing the value of digital health, with new insightful 

studies such as the work by Dahlstrand (2021) in Sweden and Zeltzer et al. (2024) in Israel on the 

availability of remote visits for primary care. We provide a timely assessment of innovation in 

remote patient monitoring, which represents a key segment of the growing digital health market 

(see, e.g., Vegesna et al. 2017, Thomas et al. 2021). We are in the unique position of assessing the 

economic value of the new technology in several dimensions. In terms of health outcomes, we are 

able to directly study high-frequency clinical measures (particularly blood pressure). Direct 

clinical measures of health status are typically absent in observational economic studies, in which 

health status is imputed from claims data or by healthcare utilization that has been shown to be 

affected by financial incentives. In addition, we can directly assess changes in the financial burden 

on the healthcare system by studying administrative data on medical costs. Overall, our remote 

patient monitoring intervention shows large and scalable economic returns from the introduction 

of the digital health innovation.  

The remainder of the paper proceeds as follows. Section 2 describes the digital health 

program. Section 3 introduces the data, patient population, and analysis sample. Section 4 

 

5 See a 2019 report by McKinsey & Company at https://www.mckinsey.com/industries/life-sciences/our-insights/
healthtech-in-the-fast-lane-what-is-fueling-investor-excitement. 
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describes the empirical framework. We then analyze the consequences of the intervention: Section 

5 studies efficiency gains in health outcomes and reductions in costs, and Section 6 studies 

inequities in health gains and in the technology adoption decision. Section 7 concludes. 

2. Program Overview 
High blood pressure, or hypertension, is a major health problem that is affecting nearly half 

of all American adults and can lead to severe cardiovascular disease, such as heart attacks and 

strokes. In turn, hypertension management has been a top priority for UCSDH and across 

healthcare systems nationwide. Hypertension can be effectively controlled with healthy lifestyle 

changes (not smoking, eating a healthy diet, being physically active) and medication (Whelton et 

al. 2018, Muntner et al. 2022). As such, hypertension management requires continuous monitoring 

to guarantee that patients remain within blood pressure targets and that timely medical care is 

provided when cardiovascular risk escalates. 

In our intervention, primary care physicians (PCPs) were encouraged to refer their patients 

with poorly managed hypertension to the digital health program in the Population Health Services 

Organization at UCSDH. PCPs first learned of the program from their clinic’s primary care 

leaders, to whom the new program was announced and described in a routine operation meeting. 

Our analysis includes PCP referrals from as early as October 2020. In addition, later on in June 

2021, a presentation on the program was delivered to PCPs at a primary care retreat. The 

descriptions of the program that were disseminated included content of hypertension management 

guidelines and details of local workflow for how to refer eligible patients—those with blood 

pressure trend over 140/90 mmHg—to the digital remote monitoring program. 

For research design considerations, it is important to emphasize that the intervention was 

designed to provide a real-world healthcare setting that can offer novel insights about scalability 

of digital monitoring for population health. As a Population Health Services Organization in an 

academic health system, we were ethically obligated to offer all medically eligible patients the 

same high-quality treatment when anticipated risk is minimal and in the absence of capacity 

constraints. As such, we had to refrain from experimental designs that include randomization, 

which would have effectively deprived some eligible patients of access to new modes of care. This 

makes causal analysis more complex (for internal validity); but it allows us to analyze a real-life 

setting of a busy healthcare system (for external validity), which is where evidence is lacking. Our 
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research design therefore utilizes quasi-experimental techniques (high-frequency event studies 

along with matched placebo control groups), as we describe in detail in Section 4. 

The program operated as follows. After the referral from their PCP, referred patients were 

contacted by the digital health team and invited to participate in the program. Patients who chose 

to participate in the program were provided with iHealth Ease, Bluetooth-enabled digital cuffs for 

blood pressure measurement (see a picture of the device in Appendix B.1). Blood pressure 

measurements taken by this device were automatically transmitted via an app in patients’ 

smartphones to the patient portal in the Electronic Health Records (EHR) system. Technical 

support for setting up the device and downloading the accompanying app was provided in a 

telephone conversation. For patients experiencing difficulties that could not be successfully 

addressed over the phone, a digital health specialist would make a home visit to set up the device 

and teach the patient how to use it to transmit blood pressure measures. The digital health program 

was set up such that, upon data transmission, the EHR system would stratify the incoming blood 

pressure measures into three risk groups: normal, high/priority, and critical. 

A team of care managers, including a pharmacist and registered nurses, would monitor and 

review the transmitted data in the EHR daily during the work week. The team would then make 

medication adjustments as needed per established medical protocols, as well as recommendations 

for behavioral adjustments based on the patient’s blood pressure levels. Example snapshot pictures 

of the EHR dashboard and details on the program’s care protocol are provided in Appendix B. 

After a successful setup, participating patients were advised to take blood pressure 

measures daily and were contacted if they did not transmit measures at least once every 30 days.  

Patients were advised to continue their participation in the program for at least six months and 

technical support was provided throughout a patient’s participation. 

Overall, the program was designed with the objectives to: 1) reduce the burden of patients 

managing their health and incentivize adherence, by providing a service that seamlessly gathers 

data with little effort on the patient’s part and delivers remote ongoing engagement; 2) minimize 

clinician burden, by integrating the monitoring and alerting systems into existing clinical 

workflows; and 3) maximize inclusion for health equity. To address the latter, the device and team-

based continuous support were free of charge to patients regardless of their health insurance plan. 

Appendix Figure B.1 provides a schematic diagram that illustrates the main steps of the 

program’s workflow. These steps flow from the PCP referral to patient outreach by the digital 
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program staff, to active participation of the patient in the program, and to integration of remote 

data into the EHR system. 

3. Data, Population, and Analysis Sample 

3.1. Data Sources 
Our baseline data include information on the overall patient population of UCSDH. Data 

on clinical health outcomes come from the Electronic Health Records (EHR) including all readings 

of blood pressure measures, either taken in-clinic or transmitted electronically via the remote 

monitoring devices. The EHR also has patients’ atherosclerotic cardiovascular disease (ASCVD) 

risk scores, a standard risk measurement that indicates a patient’s risk of having a heart attack or 

a stroke in the next ten years for patients between ages 40-79. Predictors of ASCVD risk include 

age, high-density lipoprotein (HDL) cholesterol, total cholesterol, systolic blood pressure, diastolic 

blood pressure, whether the patient has diabetes, whether the patient is being treated with 

medication for high blood pressure, and whether the patient is currently, formerly, or has never 

been a tobacco smoker (Goff et al. 2014). 

The EHR data include patients’ self-reported demographic information, collected from a 

standard survey that new patients fill out when becoming UCSDH patients. These demographics 

include birth year, gender, race, ethnicity, and place of residence. The EHR also includes a measure 

that maps a patient’s residential address onto the “Healthy Places Index” (Maizlish et al. 2019), 

which we use as our measure of geographic affluence. The Healthy Places Index (HPI) combines 

neighborhood-level data on economic and social conditions, including income, education, 

employment, and housing. The index was created to advance health equity in California and is 

used in practice to characterize differentially affluent communities by researchers, health systems, 

and government agencies (see, e.g., Tai-Seale et al. 2022).6 The HPI is highly correlated with 

CDC’s Social Vulnerability index (SVI), both at the Census tract level, with a correlation of -0.87 

(p<0.0001).7 

 

6 For more information see https://www.phi.org/our-work/programs/healthy-places-index-hpi and https://www.
healthyplacesindex.org. 
7 CDC’s SVI ranks the relative vulnerability of a Census tract based on social factors, including unemployment, racial 
and ethnic minority status, and disability (see: https://www.atsdr.cdc.gov/placeandhealth/svi/documentation/
SVI_documentation_2020.html). 
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For our analysis sample of patients who were referred to the program, we have 

administrative claims data (with healthcare costs) at the monthly level. When analyzing costs, we 

focus on Managed Care patients, for whom UCSDH receives capitation payments from payers 

(i.e., an advanced amount per patient per month) for providing these patients with medical care. 

As UCSDH is fully financially responsible for capitated patients, we know that for them the lack 

of claims in a given month implies no costs (whereas, otherwise, it could also be a result of patients 

receiving care elsewhere in that month).8 

Our data also include the linking of all patients to their primary care physicians, for whom 

we have two measures that can characterize provider performance. The first measure relies on 

objective health benchmarks. Specifically, we exploit internal information on incentive payments 

a physician received as part of value-based performance incentives that are determined by health 

outcomes of patients. Target rates (e.g., a cutoff share of a physician’s patients whose specific 

medical condition is within healthy levels) are set relative to national or regional performance 

goals. The incentive programs gather information on how effectively each PCP manages the health 

of their patients relative to the set targets and accordingly places them on a reward tier represented 

in percent of the maximum performance incentive. We take the mean tier for each physician based 

on rewards for performance in 2021 across all target medical conditions that are not directly related 

to management of cardiovascular health (to avoid mechanical correlations with our program). The 

second proxy for physician performance relies on subjective patient evaluations. We use a 

physician’s current ranking within the “Net Promoter Score” (NPS) (Adams et al. 2022), which is 

based on routinely gathered patient experience surveys on the likelihood of recommending the 

PCP to friends and family. NPS is a prevailing metric used by many health systems and is also tied 

to performance incentives within UCSDH. 

3.2. Patient Population and Analysis Sample 
The overall population of UCSDH patients who have an assigned primary care physician 

and for whom we have information on year of birth, gender, race/ethnicity, and health outcomes 

consists of 55,624 patients. Among these patients, 26,804 have a hypertension diagnosis (based on 

code I10 of the ICD-10 classification); 37,375 are younger than 65; the share of female patients is 

 

8 The internal pricing used for healthcare costs of Managed Care capitation patients is at 100 percent of Medicare 
reimbursement rates for patients on Medicare Advantage HMO plans and about a third of that for patients on 
Commercial HMO plans.  
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0.55; 34,942 are non-Hispanic White and 8,987 are Black and Hispanic. This large and diverse 

pool of patients enables us to provide a complementary matching design that uses exact matching 

on a wide range of observables (birth year, gender, race, ethnicity, quartile of HPI, and baseline 

systolic blood pressure) with sufficient matches and precision. 

Our analysis sample is comprised of the 2,512 patients who were referred to the digital 

health program by their PCP from October 2020 to July 2022. The program is still ongoing for 

both enrolled and potential new patients and we note that only patients with an assigned UCSDH 

PCP are eligible to participate in the program. Appendix Table A.1 provides characteristics of the 

analysis sample in terms of age, gender, race/ethnicity, and HPI of residence. An advantageous 

feature of our setting is that the intervention’s analysis sample has a diverse representation of 

different demographic subgroups, specifically across race/ethnicity. This is in light of the recent 

work that emphasizes the pressing need for representation of underserved communities in health 

research (Bruke et al. 2015, Lyles et al. 2021, Alsan et al. 2024). For cost analysis, the subsample 

of capitation patients includes 1,792 patients, comprising 71 percent of all referred patients in our 

studied period. 

A total of 274 physicians referred the patients in our analysis sample to the digital health 

program. On average, referred patients have been treated by their physicians for 2.3 years, with a 

median physician-patient relationship length of 1 year. The mean and median of these physicians’ 

Net Promoter Score (NPS) rate in 2022 were 87 percent with a standard deviation of 8 percent. 

4. Empirical Framework 
We use a semi-parametric event study design to assess the program’s impact, closely in 

line with specifications from Dobkin, Finkelstein, Kluender, and Notowidigdo (2018). In the first 

step, we residualize the raw outcome based on pre-period observations. Physicians were 

encouraged to refer patients with hypertension whose blood pressures averaged above 140/90 

mmHg, so the first step allows for potential underlying trends that may have led a PCP to refer 

their patient to our program. We use data from months -12 to -2 relative to the referral, where 

month -1 will serve as the baseline period. In the second step, we run a non-parametric event study 

of the residualized outcome for the horizon of a year before and a year after the referral at a monthly 

frequency; that is, using data from month -12 to month +12 relative to the referral. We will 

accordingly identify effects based on high-frequency breaks in trends following the referral event. 
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Appendix Figure A.2 illustrates the evolution of the raw data for our main health outcome of 

systolic blood pressure around the month of referral to the program. 

The exact equations we run are as follows. In the first step, we estimate: 
(1)                                                                    𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝑥𝑥𝑖𝑖,𝑡𝑡𝜆𝜆+𝜖𝜖𝑖𝑖,𝑡𝑡, 

where 𝑦𝑦𝑖𝑖,𝑡𝑡 is an outcome for referred patient 𝑖𝑖 in month 𝑡𝑡, and 𝑥𝑥𝑖𝑖,𝑡𝑡 includes a linear trend in months 

relative to referral and a vector of age fixed effects. This equation is estimated using months -12 

to -2 relative to the PCP referral. We then project this equation onto the entire time horizon of 12 

months before and 12 months after the referral and we take the residual value of the outcome 

variable, i.e., the difference between the actual value and the predicted value. We denote the 

residualized outcome by 𝑦𝑦�𝑖𝑖,𝑡𝑡; that is, 𝑦𝑦�𝑖𝑖,𝑡𝑡 ≡ 𝑦𝑦𝑖𝑖,𝑡𝑡 − 𝑥𝑥𝑖𝑖,𝑡𝑡�̂�𝜆, where �̂�𝜆 represents coefficient estimates 

from the estimation in the first step. In the second step, we estimate: 

(2)                                                           𝑦𝑦�𝑖𝑖,𝑡𝑡 = � 𝛽𝛽𝑟𝑟 × 𝐼𝐼𝑟𝑟
𝑟𝑟≠−1

+ 𝛼𝛼𝑖𝑖+𝜀𝜀𝑖𝑖,𝑡𝑡 , 

where 𝑟𝑟 is the time period relative to the referral event, 𝐼𝐼𝑟𝑟 denotes indicators of time relative to the 

event, and 𝛼𝛼𝑖𝑖 are patient fixed effects. Robust standard errors clustered at the patient level are 

calculated from the estimation of equation (2). In Appendix Figure A.3, we calculate standard 

errors via bootstrap, which also accounts for error from the first-step estimation of equation (1). 

Our parameter vector of interest is 𝛽𝛽𝑟𝑟, which traces the evolution of patients’ health 

outcomes around the referral event relative to the baseline period -1. We identify the program’s 

impacts, 𝛽𝛽𝑟𝑟 for 𝑟𝑟 > 0, based on how outcomes right after the intervention deviate from the baseline 

trend in the pre-intervention period.9 

As a robustness analysis to our main design, we provide an important complementary 

strategy. Specifically, we augment the design with a matched control group to address some key 

potential threats to identification (exact details are described when we discuss estimation results 

in Section 5.1). 

For analyses of heterogeneous effects across subpopulations, we will study average effects 

by running pooled regressions of the form: 
(3)                                                              𝑦𝑦�𝑖𝑖,𝑡𝑡 = 𝛽𝛽 × 𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 + 𝛼𝛼𝑖𝑖+𝜀𝜀𝑖𝑖,𝑡𝑡, 

 

9 The distribution of the time of referral in terms of calendar year/month is displayed in Appendix Figure A.1. Our 
research design implicitly takes advantage of the fact that the rollout of referrals spanned different calendar times, so 
that dynamics around referrals is not governed by particular calendar times. 
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where 𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡 is an indicator for whether the observation comes from periods before or after the 

intervention, and 𝛽𝛽 captures the average effect of the dynamic specification in equation (2). 

Technically, when estimating specification (3), we weight each observation by the inverse of the 

frequency of observations from the same period for a given subgroup (in terms of months relative 

to referral). This allows the mean estimates from specification (3) to preserve their dynamics that 

show up in the estimation of specification (2) without being affected by data censoring (since those 

referred later have shorter follow-up panels). We now turn to our empirical analysis. 

5. Efficiency: Health Effects of the Digital Health Program 
In this section, we assess the program’s impact on patient health, its potential underlying 

mechanisms, as well as the associated changes in healthcare costs. 

5.1. Health Impacts 
Dynamic Effects on Blood Pressure. As a main outcome to assess the program’s impact 

on patient cardiovascular health, we follow the medical literature and focus on systolic blood 

pressure (The SPRINT Research Group 2021). Panel A of Figure 1 plots the event study 

coefficients from equation (2) at a monthly frequency for all patients who were referred to the 

program. We estimate the intent-to-treat (ITT) by including all referred patients, as the takeup 

decision itself is endogenous. Recall that we use all data on blood pressure measurements (taken 

either at home or in-office).  

Clear reductions in blood pressure are visually apparent right after the intervention, as 

patients begin to actively engage with the program and its health-management goals. By the end 

of the one-year analysis period, we find that the intervention reduced patients’ blood pressure by 

an average of 9.8 mmHg on a baseline of 134 mmHg at 𝑡𝑡 = −1. To focus on the effect on enrollees 

who take up the program, we scale the reduced-form intent-to-treat by the enrollment rate. Out of 

our 2,512 referred patients, 1,327 patients took up the program. The enrollment rate is therefore 

0.53, which we use as the scaling factor. Our findings accordingly imply that program enrollment 

led to an average reduction of 18.5 mmHg (=9.8/0.53) in systolic blood pressure. 

Importantly, the health improvements that we find show remarkable persistence over our 

analysis horizon of up to one year. In fact, pushing the data further (and cautioning against relying 
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on an increasingly smaller sample10), the evidence suggests these reductions persist even longer. 

Panel C of Figure 2 shows that 1.5 years following the referral, the decline in blood pressure is on 

the order of 14 mmHg; or an average reduction of 26.4 mmHg (=14/0.53) among enrollees. 

Robustness I: Dynamic Selection. We further assess threats of potential dynamic 

selection from observations that remain in our sample, although we already include patient fixed 

effects in all specifications which in principal capture such selection on systematic differences. 

Still, we replicate the analysis using observations of patients for whom we have repeated blood 

pressure readings within our main analysis period of a year before and a year after the referral. 

Specifically, we include patients with at least one data point in the pre-period, from day -365 up 

to day -10 (to provide sufficient distance from the day of referral), and at least one data point in 

the latter part of the post-period, from a chosen time threshold and up to day 365. In panel B of 

Figure 1, we include all patients who have at least one post-period reading after day 150 as the 

chosen time threshold. Appendix Figure A.4 (panel D) studies the sensitivity to the choice of this 

threshold for the values of 50, 100, 150, 200, and 250 days at a quarterly frequency for increased 

precision. Overall, all exercises provide results that are virtually the same. The rest of the analysis 

accordingly includes the sample of patients with repeated readings (based on the day 150 

threshold) and is aggregated at the quarterly level. Panels A-C of Appendix Figure A.4 replicate 

panels A-C of Figure 1 at the quarterly level for completeness. 

Robustness II: Matching Design. We provide an important complementary identification 

strategy that augments the event study design with a matched control group. This design is helpful 

for gauging general concerns of threats to identification. Such threats could include mean reversion 

in our dynamic context as well as confounding factors that may come from patient interactions 

with their physicians irrespective of the program, as we elaborate on below. 

We use exact matching of patients on birth year, gender, race, ethnicity, quartile of HPI, 

and the bin of patients’ average systolic blood pressure level in the baseline year of 2019 (where 

we split this average into twenty equal bins).11 Matched control (non-referred) patients were then 

 

10 The sample becomes smaller for later periods since the number of referred patients who can be followed in the data 
up to later periods becomes smaller (as determined by their referral date and our data range over calendar time), and 
it is not due to enrollees’ declining engagement with the program in our ITT framework. 
11 Our ability to construct a sample of matched control (non-referred) patients who are closely observationally and 
clinically comparable to our treatment (referred) patients stems from the nature of the rollout of the program and the 
process of dissemination of information about it as described in Section 2. Recall that the digital health program was 
first introduced to clinical primary care leaders, who were then responsible to disseminate the information to PCPs in 
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assigned the referral date of the treated patient they were matched with. This assigned date serves 

as a placebo referral date for control patients. In both the treatment and the control groups, we 

include patients with repeated measures, resulting in a sample of 583 treated units and 2,362 

control units. In panel A of Figure 2, we repeat our two-step event study analysis of equations (1) 

and (2) for each experimental group separately (in the plot on the left), and we then plot the 

differentials across the two groups as our estimates for the treatment effects (in the plot on the 

right). The plots clearly show the robustness of our results to this augmented design. 

We further note that referrals by PCPs typically occurred in routine primary care office 

visits as suggested by program design. While the program targeted patients with a poorly managed 

hypertension condition who had already been under the care of their PCP for this condition, the 

office visit in itself might still represent a confounding factor, e.g., from patient receiving general 

counseling again on ways to reduce blood pressure. To alleviate such concerns, we limit the 

analysis sample of both experimental groups in the matching design to include only patients who 

have had a PCP visit around the “referral event” (the actual referral event for treatment units and 

the placebo referral event for control units). The results remain practically the same in panel B of 

Figure 2. 

Robustness III: Measurement. Finally, it is useful to note that referred patients who took 

up the program (i.e., the program’s enrollees) could have blood pressure measured either at home 

or in-clinic. Appendix Figure A.5 plots the dynamics of the share of blood pressure readings that 

were taken at home versus in-clinic over our analysis period, for the entire sample of referred 

patients (in panel A) and for the subsample of patients who took up the program (in panel B). In 

this regard, practitioners consider the “white coat effect” (e.g., Gerin et al. 2006, Manios et al. 

2008), which refers to potential transient blood pressure rises during clinical visits. This issue 

could potentially confound our estimated effects, as transmitted measures taken at home could be 

 

their clinics, and PCPs were those who later made the referrals. This created variation in referral rates over time across 
PCPs during the program’s rollout period. When we look at the distribution of the total number of patients referred by 
PCPs we see that control units come from the pool of patients with PCPs who engaged with our digital health program 
to a lesser degree in the studied period. Specifically, among included patients, control units come from physicians 
whose 5th, 25th, 50th, 75th, and 95th percentiles are 0, 3, 9, 25, and 67 referred patients, and treatment units come 
from physicians whose 5th, 25th, 50th, 75th, and 95th percentiles are 3, 13, 31, 67, and 121 referred patients. 
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artificially lower. In practice, however, two important observations mitigate such concerns that 

measurement issues could govern our results.12 

First, we later show (in Figure 5 and as reflected in panel B of Appendix Figure A.5) that 

due to declining engagement with the program following initial takeup, the highest rate of 

electronic data transmission from home occurs in months 0 to 1 following the referral. Therefore, 

the high-frequency dynamics of declining adoption (in Figure 5) and the high-frequency dynamics 

of increasing improvements in blood pressure in the ITT estimates (in Figure 1) together imply the 

following: these types of mechanical measurement concerns could explain, at most, a decrease of 

-2.4 mmHg (i.e., the ITT coefficient on month 1) out of the total long-run effect of -14 mmHg.13 

Second, since enrollees still have occasional in-clinic measures (as shown in panel B of Appendix 

Figure A.5), we can narrow the analysis to include only blood pressure measurements taken in-

clinic. This covers 1,246 of the referred patients among whom 60 percent took up the program, 

and we include in the analysis only measures taken in-clinic whether the referred patient enrolled 

or not. While this is a selected subsample (for whom, for example, post-referral office visits might 

have been due to an illness), the patterns of their blood pressure are all consistent with minimal 

potential measurement issues and with similar-magnitude impacts of reductions at the end of the 

one-year analysis horizon (see Appendix Figure A.6 as compared to Appendix Figure A.4). 

5.2. Cardiovascular Risk Outcomes 
We also examine the probability of reaching healthy blood pressure levels as defined by 

established guidelines. The American College of Cardiology and the American Heart Association 

define blood pressures below 120/80 mmHg as normal; blood pressures at or above 130/80 mmHg 

as stage 1 hypertension; and high blood pressures at or above 140/90 mmHg as stage 2 

hypertension (Whelton et al. 2018). Panel A of Figure 3 plots the event study coefficients of the 

probability that a patient’s systolic blood pressure drops below the 140 mark of high blood pressure 

(of stage 2 hypertension) as well as below the 120 mark of normal blood pressure. We find clear 

 

12 In this regard, we should mention that, in part due to the white coat effect and since patients sometimes rush to a 
clinic visit, the blood pressure measurement standard workflow in UCSDH clinics is to retake blood pressure measures 
if the initial readings are high compared to clinical benchmarks. Blood pressure is taken again after patients are more 
settled in. Accordingly, we use the minimal value among all potential readings in a given day (whether at home or in-
clinic). 
13 Beyond the clear dynamics in systolic blood pressure effects, our analysis of healthcare costs in Section 5.4 further 
mitigates related concerns as it is not prone to such potential measurement issues.  
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significant improvements in both categories. Within one year of referral to the program, patients 

display a 25 pp increase in the propensity to fall below stage 2 hypertension levels and a 15 pp 

increase in the propensity to reach healthy blood pressure of normal levels. 

Finally, we quantify the predicted long-run effects on severe cardiovascular events using 

the ASCVD risk score. The ASCVD score essentially maps the causal reductions in blood pressure 

over our one-year analysis period to a ten-year surrogate index analysis for the long-run risk of 

experiencing a severe cardiovascular event (Athey et al. 2019). As our analysis sample is 

composed of patients with higher cardiovascular risk, we analyze changes in the share of patients 

who exhibit high ASCVD risk, defined relative to the 20 percent benchmark by the American 

College of Cardiology (Arps et al. 2018). In panel B of Figure 3, we find that the intervention led 

to a decline of 4.4 pp in the share of patients who exhibit a high long-run probability of 

experiencing a severe cardiovascular event on a baseline of 35.5 pp. This translates to an average 

decline of 8.3 pp (=4.4/0.53) among program enrollees. Overall, across health and risk outcomes 

that we study in this section, our results provide clear visual evidence of large improvements in 

health following the intervention. 

5.3. Mechanisms of Change 
There are two basic approaches to lowering high blood pressure which are usually 

combined (see, e.g., Goff et al. 2014, Smith, Lennon, and Carlsgaard 2020, WHO 2021, Mayo 

Clinic 2024). The first is adoption of healthy lifestyle habits, such as weight control, physical 

activity, healthier diets, and reduced tobacco smoking. The second is taking antihypertensive 

medication. There is a wide variety of medication regimens (in terms of drug combinations and 

dosages), whose efficacy varies widely across patients due to patient tolerance, presence of 

multiple chronic conditions, etc. Patient-tailoring of effective medication regimens requires a 

series of adjustments and experimentations, which necessitate recurring feedback between the 

prescribed regimen and its health consequences until patients reach their health goals.14 This 

process can be delayed in traditional office-based care, where measurements are taken only upon 

in-person visits. Remote monitoring lets patients provide continuous measurements from the 

comfort of their own home in their own time with minimal hassle, which could reduce frictions 

 

14 As one example, WHO guidelines suggest a monthly follow-up after initiation or a change in antihypertensive 
medications until patients reach target (WHO 2021). 
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and delays in the process of tailoring care. Accordingly, the team-based remote patient monitoring 

program was designed such that transmission of real-time health indicators triggers timely 

healthcare provider involvement by the clinical team (of pharmacists and registered nurses), who 

monitors the data daily and makes medication adjustments and recommendations for behavioral 

changes. By program design, there are therefore two key channels that we hypothesize could 

underlie the estimated health improvements in blood pressure and ASCVD risk: 1) more efficient 

provision of tailored care, and 2) patient behavioral changes. With limitations that we describe 

below, our rich data offer empirical ways to explore aspects of both channels.  

Efficiency in the Provision of Tailored Care. We merge administrative information on 

all prescription orders for antihypertensive medication made from 2016-2022 by physicians at 

UCSDH to patients in our analysis sample. We note that 87 percent of our referred patients (2,185 

out of 2,512) were ever prescribed such medication within the data horizon. As a proxy measure 

of medication experimentation, we study the time gap between sequential distinct medication 

orders, as defined by the pair of medication/s and dosage. In this way, we can capture different 

variations, specifically along the dimensions of the single medication prescribed (“monotherapy”), 

multiple medication classes (“combination therapy”), and dosage changes of any medication 

involved (“titration”). We note that when multiple medication classes are prescribed it comes in 

the form of a “combination blood pressure medication,” which is a pill that contains more than one 

class of antihypertensive drugs. 

Panel A of Figure 4 plots the event study of time between unique medication orders in days 

(where the pre-treatment mean is 121 days, reflecting that medication for chronic use is often 

prescribed in bulk for several months). The pattern is closely consistent with enhanced 

experimentation of patient-tailored medication regimens. There is a clear increase in the frequency 

of unique prescription orders following the referral with the highest effect in the first quarter. The 

frequency of experimentation then declines and converges to baseline, which is closely in line with 

the intervention uncovering the regimen that is effective for a given enrolled patient in achieving 

successful hypertension management.  

Health Behaviors. We merge information from the EHR on patient’s tobacco smoking 

behavior. Patients are asked about their smoking habits in the standard new patient survey as well 

as in recurring office visits, where patients can report the categories: never smoker, former smoker, 

light smoker, some days, every day/heavy smoker. We study an indicator for heavy smoking (every 
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day/heavy smoker), as 58 percent of our sample are heavy smokers at baseline. It is important to 

raise an important caveat here about data quality: beyond being self-reported, smoking information 

is also poorly populated since it is not a mandatory field in the EHR. This both decreases the 

number of observations substantially, and brings on concerns that the intervention itself may 

induce differential reporting. To limit concerns of the latter form, we accordingly limit the analysis 

only to patients for whom we have at least one data point in the pre-period and one data point in 

the post-period on smoking. As such, we think the findings on smoking should be interpreted with 

caution and viewed as suggestive. 

Still, while the sample reduces to only 204 patients (with 4,697 patient-month 

observations) and standard errors become less precise, the effects sizes are large enough to be 

statistically detectable. Panel B of Figure 4 shows a clear pattern of reduction in smoking intensity, 

which begins following the intervention and is then persistent at least throughout our analysis 

horizon. Whereas suggestive, this finding is important nonetheless, as health-related behaviors are 

well-known to be sticky and hard to change (see discussion in, e.g., Fadlon and Nielsen 2019). 

5.4. Healthcare Costs  
In our final exercise of analyzing efficiency aspects of the program, we directly study the 

potential reductions in healthcare costs from the improvements in prevention and management of 

hypertension that our intervention induced. As a rough benchmark for cost reductions per program 

enrollee, we note that Americans with high blood pressure have been estimated to face nearly 

$2,000 higher annual healthcare expenditure for treating their hypertension condition, with an 

estimated total associated costs of about $131 billion nationwide (Kirkland et al. 2018).  

In Table 1, we analyze healthcare costs among capitated patients, who comprise 71 percent 

of our study’s sample. We provide the event study estimates at the quarterly level for the evolution 

of patients’ costs from professional medical services around the referral event (in column 1). We 

also report estimations for when costs are capped from above at the top 0.01 percent to investigate 

robustness to extreme cost values (in column 2). 

We find that, by the third quarter after the referral, patients begin showing meaningful 

reductions in average costs. The reduction in quarterly costs per referred patient averages to $385 

in the second half of the year following the referral on a counterfactual predicted level of $1,004, 

amounting to a decline on the order of 40 percent. The overall one-year reduction in costs (captured 

by the sum of the statistically significant effects from quarters 3-4) is about $770. The enrollment 
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rate among this subsample of capitated patients was 0.52 (=928/1,792), closely similar to that in 

the overall sample. Correspondingly, scaling the reduced-form effect by the takeup rate implies 

that the program led to an average reduction of $1,488 (=770.4/0.5178) in annual cost per enrollee. 

This analysis offers novel promising findings about the potential of digital monitoring to reduce 

healthcare costs in the context of a leading cause of death. 

6. Equity: Disparities in Health Outcomes and Program Adoption 
Next, we analyze patient subpopulations in order to study potential inequities in the gains 

from the program. As we show in the tables that we report below, given that referrals were based 

on medical criteria, all patient subpopulations have similar average health outcomes at baseline. 

As such, our intervention provides an opportune setting, in which we can study whether the 

introduction of digital health itself can lead to disparities even when the initial departure point 

displays parity in health outcomes across social subgroups. 

6.1. Disparities in Health Gains 
We study how the reductions in cardiovascular risk reflect improvements in health across 

different subpopulations. Table 2 reports estimates of the effect on systolic blood pressure based 

on equation (3). In defining the variable 𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑟𝑟𝑡𝑡, we include observations from quarter -1 as baseline 

in the pre-referral period. Given the dynamics in treatment effects that we found in Figure 1, we 

offer specifications that include in the post-referral observations quarters 1-2 for the “short run,” 

quarters 3-4 for the “medium run,” and quarters 5-6 for the “longer run.” As a benchmark, we 

provide the corresponding estimates for the overall sample with a long run reduction of 12.15 

mmHg in systolic blood pressure. 

 Given the focus of the recent health disparities studies, we are particularly interested in 

comparing the findings for Black/Hispanic patients to those for White patients and across 

differentially affluent geographic communities.15 It is first worth noting the meaningful reductions 

in blood pressure across race and ethnicity (Black/Hispanic patients or White patients) and the 

affluence of a patient’s community (below and above the median HPI). Notably, the representation 

of our sample allows us to draw these conclusions for improvements in health outcomes across 

 

15 Appendix Table A.3 additionally considers differences across gender and age. 
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underserved communities and economically vulnerable families, who are typically very narrowly 

represented in clinical studies (Alsan et al. 2024). 

Table 2 then additionally provides tests for the gaps in health improvements across these 

patient subgroups. We find that the estimates for the reduced-form intent-to-treat, which also 

incorporate differentials in the program adoption decision, start displaying meaningful gaps in the 

longer run both economically and statistically. In particular, as improvements in health outcomes 

among White patients continue to grow larger, improvements among Black/Hispanic patients fall 

short to about half (8.74 compared to 15.81). We find similarly differential improvements across 

a community’s economic affluence, comparing patients from below-median HPI locations and 

above-median HPI locations (who display reductions of 8.62 compared to 14.85). We note that as 

referred patients across subgroups have similar average baselines (see bottom of Table 2, reflecting 

the uniform clinical criteria for referrals), differences in absolute magnitudes also reflect 

differences in percent changes. 

To put these disparate gains from the digital innovation in context, we compare them to 

nationwide estimates of inequities in cardiovascular health. Aggarwal et al. (2021) use the National 

Health and Nutrition Examination Survey (NHANES) to study blood pressure management among 

U.S. adults with hypertension across race/ethnicity.16 They find that, when compared with blood 

pressure control rates for White adults (0.49), control rates are lower among Black adults (0.392) 

and Hispanic (0.40) adults. That is, there is an overall racial/ethnic gap of about 10 pp. To convert 

the gaps in our program’s gains in blood pressure to a metric comparable to that in Aggarwal et al. 

(2021), we analyze the differential in the program’s impact on reaching controlled levels of systolic 

blood pressure as defined relative to the 140 mmHg mark. Using equation (3), Appendix Table 

A.2 (panel A) summarizes the longer-run effects of the program on the probability of reaching 

controlled blood pressure levels by race/ethnicity. We find that the program itself led to a gap on 

the order of 13 pp in health outcomes across race/ethnicity, highlighting the magnitude of 

disparities that could result from uneven gains from a technological innovation. 

 

16 The National Health and Nutrition Examination Survey (NHANES) is a cross-sectional population-based survey 
conducted by the U.S. Centers for Disease Control and Prevention with in-person biannual physical examinations. 
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These findings of inequities in the reduced-form health gains depend on the degree to 

which the different subpopulations take up and adhere to the program. This leads us to analyze 

next the program’s adoption behavior and how it varies across social subgroup. 

6.2. Disparities in Adoption Rates 
Definitions. The adoption of the digital program is determined both by the initial takeup 

of the program (i.e., enrollment) and by the follow-on adherence to the program conditional on 

takeup. 

We define a patient’s initial takeup of the program as the event that the patient transmits 

data at least once after the referral. This approach guarantees the patient has successfully integrated 

into the system and has engaged with the program. We denote an indicator for takeup by 𝑇𝑇𝑖𝑖, which 

assumes the value 1 if the referred patient takes up the program and assumes the value 0 otherwise. 

We define patient 𝑖𝑖’s adherence to the program in time period 𝑟𝑟 in months relative to 

referral, denoted by the indicator 𝐴𝐴𝑖𝑖𝑟𝑟, based on the event that the patient transmits data in period 

𝑟𝑟. The probability of adherence in period 𝑟𝑟 conditional on initial takeup, 𝑃𝑃𝑟𝑟(𝐴𝐴𝑖𝑖𝑟𝑟|𝑇𝑇𝑖𝑖 = 1), will 

characterize patients’ “survival” on the program. The average of this probability over time periods 

will provide us with mean adherence probabilities. 

The implied mean adoption rate over the analysis horizon for a specific subgroup will be 

defined based on the interaction of the two variables. Specifically, we will take averages of  𝑇𝑇𝑖𝑖 × 𝐴𝐴𝑖𝑖𝑟𝑟 

for a given patient subgroup over the months in the follow-up period. We provide estimates for 

the 6-months, 1-year, and 1.5-year horizons, bearing in mind that enrollees were all advised to 

adhere to the program for at least 6 months. 

Results. Figure 5 first characterizes adoption among the entire sample on a monthly basis 

for the 1.5-year horizon following the referral. The initial takeup rate among all referred patients 

was 0.53. The average adherence rate conditional on takeup was 0.47 over the 1.5-year horizon 

with a clear declining pattern across months. Overall, the adoption rate of the program over the 

entire follow-up horizon averaged to 0.265.17 

Next, we compare these behaviors across subpopulations of interest in Table 3. We first 

compare Black and Hispanic patients to White patients in panel A. We find consistently lower 

 

17 For the 6-months horizon, the average adherence rate conditional on takeup was 0.57 (s.e.: 0.01) and the overall 
adoption rate averaged to 0.32 (s.e.: 0.01); for the 1-year horizon, the average adherence rate conditional on takeup 
was 0.49 (s.e.: 0.01) and the overall adoption rate averaged to 0.28 (s.e.: 0.01). 
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adoption rates among Black and Hispanic patients compared to White patients. By the end of our 

analysis period, the racial/ethnic gap in the adoption of the digital health program amounts to 15 

percent, a 4.04 pp lower rate relative to 27.67 pp among White patients. We find that this gap is 

driven by lower adherence rates (that is, lower rates of “survival” on the program), suggesting that 

Black/Hispanic patients may face greater difficulties in continuously engaging with the program.18 

To look at disparities across geographic communities, we compare patients from low-

affluence communities (with below-median HPI) to patients from high-affluence communities 

(with above-median HPI). The adoption gap across households from differentially affluent 

communities amounts to 28 percent, a gap of -8.24 pp relative to a baseline of 29.06 pp among the 

most affluent (see panel B of Table 2). Geographic disparities already arise in the initial takeup 

decision and are then exacerbated by lower adherence rates among enrollees. 

6.3. Role of Physicians in Adoption of Digital Health 
We have found that the program leads to significant improvements in health outcomes 

along with only partial and differential participation across subgroups. The combination of these 

findings suggests the presence of frictions in the adoption of the digital program, which raises the 

question of whether the adoption decision is a margin that can be influenced and, if so, how. 

Primary care physicians, who are the point of contact between the patient and the program, are 

obvious candidates to investigate. More generally, primary care physicians have been shown to 

have fundamental effects on their patients’ healthcare utilization and willingness to undertake 

medical procedures (Alsan et al. 2019, Fadlon and Van Parys 2020, Frakes and Gruber 2022). In 

this final analysis, we assess whether we can identify practice styles and characteristics that predict 

a physician’s success in inducing higher patient engagement with digital health. 

We begin by asking whether higher performing physicians induce higher adoption rates by 

utilizing our two performance proxies. We split physicians into three equal-sized bins within each 

performance measure, accordingly assigning them to the categories high, medium, and low. 

 

18 Interestingly, the results suggest that active enrollment in the program provides similar health gains for 
Black/Hipanic and White patients. To see this, let us focus on the short run of quarters 1-2 when gaps are smallest, 
and consider the treatment effect “per enrollee” (defined by the reduced-form effect divided by takeup rate) and the 
treatment effect “per active enrollee” (defined by the reduced-form effect divided by adoption rate). Appendix Table 
A.2 (panel B) shows that these estimates are closely similar across Black/Hispanic patients and White patients. 
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The first measure, based on objective medical goals, is represented by the average 

performance-pay tier the physician achieved within the incentive program. Recall that this 

calculation, based on performance in the year 2021, excludes management of patient 

cardiovascular health to avoid mechanical correlations. Panel A of Figure 6 plots the relationship 

between 1.5-year patient adoption rates and physician performance, reporting differentials relative 

to the lowest performing physicians. We see a clear gradient such that the highest performing PCPs 

see their patients adopting the program at a rate that is 10.5 pp higher relative to 25 pp among the 

lowest performing PCPs. 

This gradient likewise persists when we use our subjective measure of physician 

performance as perceived by their patients. Recall that patients rate their experience in routine 

surveys where they are asked about the “likelihood to recommend the PCP to friends and family.” 

This rating is combined across patients into a physician’s Net Promoter Score (NPS). Panel B of 

Figure 6 plots 1.5-year patient adoption rates against physician NPS category. We find that 

physicians who rank higher in this metric, i.e., those who induce improved patient experience, also 

foster a higher program adoption rate of 6.2 pp among their patients, relative to the lowest ranking 

physicians whose mean patient adoption rate is 27 pp. Overall, we see that higher adoption of the 

program is highly associated with measures of physician performance. 

Lastly, we characterize the physician-patient relationship and its association with 

technology adoption. Specifically, we investigate the length of the relationship, which could either 

reflect or engender trust that may induce a higher willingness to take up a new program.19 Table 4 

provides these results. We find that patients are 7.7 pp more likely to adopt the digital health 

program in longer physician-patient relationships, defined relative to the sample median of 1 year 

at baseline. Importantly, the patterns prevail across all subgroups over race/ethnicity and 

geographic affluence. The findings therefore suggest that stronger provider-physician relationships 

via continuity of care could be a promising pathway to promote higher and more equitable adoption 

of digital health programs. 

7. Conclusion 
In this paper, we study the efficiency and equity consequences of offering individuals with 

high cardiovascular risk a digital health program of remote patient monitoring that enabled them 

 

19 The EHR provides information on the date a physician-patient match started. 
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to transmit real-time clinical data for timely treatment. We find that the real-world digital health 

program led to meaningful and persistent health improvements across a diverse population of 

patients, providing novel empirical evidence of the great promise of digital solutions in medical 

care. Further bolstering its benefits, we find that the program resulted in meaningful cost 

reductions, offering a promising pathway for curbing healthcare costs more broadly. Nonetheless, 

the intervention induced meaningfully lower health gains among patients from traditionally 

underserved communities, whose adoption of the program was substantially lower. As such, our 

findings also simultaneously highlight the challenges that could hinder equity in gains from the 

introduction of new technologies within the growing digital health sector. 

Our results underscore the importance of well-targeted policy designs in the efforts to 

achieve equity in digital health. Effective policies could include, for example, community outreach 

involving digital training and information campaigns, as well as the design of inclusive, culturally 

adapted products that are suitable for adoption by lower-income households. In fact, the Digital 

Equity Act of 2021 will allocate $2.75 billion in federal grant funding for digital equity over a five 

year period to support initiatives such as training programs for digital literacy for underserved 

communities to promote digital inclusion.20 In our context of health, the evidence suggests that 

physicians and the nature of their relationship with patients can be instrumental in inducing greater 

and more inclusive adoption of digital innovations in the provision of care. 

  

 

20 See https://www.congress.gov/117/plaws/publ58/PLAW-117publ58.pdf#page=781 for details. 
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Figure 1: Program’s Impact on Patient Blood Pressure 

A. All Patients B. Patients with Repeated Measures 

  
 

C. Longer Horizon 

 
 
Notes: This figure evaluates the program’s impact on systolic blood pressure among patients who were 
referred to the program. We use a semi-parametric event study design that is conducted in two steps. In the 
first step, we residualize the outcome based on observations from pre-periods (months -12 to -2) using a 
linear term in time relative to the intervention and age fixed effects. In the second step, we run a non-
parametric event study for the residualized outcome. The plots display the event study coefficients from 
equation (2) along with their 95-percent confidence intervals, where robust standard errors are clustered at 
the patient level. Panel A displays the event study estimates for the entire sample of referred patients. Panel 
B displays the event study estimates for the subsample of patients with repeated measures in the analysis 
horizon of a year before and a year after the referral. We define this subsample as patients with at least one 
data point in the pre-period, taken as days -365 to -10 to provide sufficient distance from the day of referral, 
and at least one data point in the post-period, taken here to be days 150 to 365. Robustness to this threshold 
of day 150 is provided in Appendix Figure A.4. Panel C extends the analysis of panel B up to 1.5 years 
after the referral. 
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Figure 2: Program’s Impact on Patient Blood Pressure—Matched Control Group 

A. All Matches 
Referred Patients vs. Matched Control Patients Differential 

  
 

B. Matches with PCP Visits 
Referred Patients vs. Matched Control Patients Differential 

   

 
Notes: This figure evaluates the program’s impact on systolic blood pressure based on a matched control 
group design. We create exact matches of patients based on birth year, gender, race, ethnicity, quartile of 
HPI, and the bin of their average level of systolic blood pressure in the baseline year of 2019, where we 
split this average into twenty equal bins. In cells with matches of control and treatment patients, the 75th 
percentile of the number of matched treatment (referred) patients is one, so we keep only cells with exactly 
one referred patient for simplicity. We assign to matched control (non-referred) patients the referral date of 
the treated patient they were matched with as a placebo referral date. We then include only patients with 
repeated measures. For each experimental group, we separately perform our two-stage analysis of 
residualizing the outcome and then running an event study. We display both the event study coefficients 
from the specifications of equation (2) at a quarterly frequency (along with their 95-percent confidence 
intervals) for each experimental group and the differentials between the two groups (along with their 95-
percent confidence intervals), which provide the matching design estimates of treatment effects. Panel A 
includes the entire matched sample that is comprised of 583 treated units and 2,362 control units. Panel B 
limits the analysis to the subsample of units that have had a PCP visit around the event (specifically, within 
days -10 to +10) that is comprised of 526 treated units and 711 control units. Robust standard errors are 
clustered at the patient level.  
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Figure 3: Program’s Impact on Cardiovascular Risk 

A. Desirable Blood Pressure Levels 

 
 

B. Prevalence of High ASCVD Risk Score 

 
 

Notes: This figure evaluates the program’s impact on cardiovascular risk. In panel A, we study the 
probability of reaching favorable blood pressure levels based on the probability that a patient’s systolic 
blood pressure drops below 140 (stage 2 hypertension) and below 120 (normal blood pressure). In panel B, 
we analyze changes in the share of patients who exhibit high ASCVD risk of 20 percent or above as defined 
by the American College of Cardiology. We display event study coefficients from a specification of 
equation (2) at a quarterly frequency along with their 95-percent confidence intervals, where robust standard 
errors are clustered at the patient level. Estimations include the sample of patients with repeated blood 
pressure measures. 
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Figure 4: Channels of Change 

A. Time between Orders of Antihypertensive Prescriptions 
 

 
 

B. Prevalence of Heavy Tobacco Smoking 
 

 
 

Notes: This figure provides tests for potential mediating mechanisms of the improvements in health 
outcomes. In panel A, we study a proxy for more efficient provision of tailored care. We plot the event 
study of time between unique medication orders to study the degree to which the frequency of unique 
prescriptions orders are consistent with enhanced experimentation in medication regimens following the 
referral. We use administrative information on all prescription orders for antihypertensive medication made 
from 2016-2022 by physicians at UCSDH to patients in our analysis sample. In panel B, we study patient 
behavioral changes. Specifically, we plot the evolution of heavy smoking using information from the EHR 
on a patient’s self-reported tobacco smoking behavior. The plots display event study coefficients from a 
specification of equation (2) at a quarterly frequency along with their 95-percent confidence intervals, 
where robust standard errors are clustered at the patient level. 
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Figure 5: Adoption Rate—Initial Takeup and Follow-on Adherence 

 

 
 

Notes: This figure displays the overall adoption rate of the program. Adoption is a composition of the initial 
takeup decision and the follow-on adherence to the program. As reported on the figure, the mean initial 
takeup rate of the program was 0.53 (s.e.: 0.01). The plot then displays the adherence to the program 
conditional on takeup. It is measured as the rate of electronically transmitting data in each follow-up month 
over a 1.5-year horizon after the referral. The mean adherence rate during this period is reported on the 
figure to be 0.47 (s.e.: 0.01). The combination of these two behaviors translates to an average program 
adoption rate of 0.265 (s.e.: 0.01) over the 1.5-year horizon following the referral, as reported on the figure. 
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Figure 6: Physician-Level Adoption Rates and Performance 

A. Extent of Incentive Rewards 

 
B. Net Promoter Score 

 
Notes: This figure studies how physician-level patient adoption rates correlate with proxies for physician 
performance. Our first proxy in panel A is a measure of the incentive rewards a physician received as part 
of ongoing performance-pay incentive schemes undertaken by UC San Diego Health for quality promotion. 
Each program sets target rates and compensates physicians with respect to how well they perform relative 
to that target, which places them on a reward tier represented in percent. We take the mean tier for each 
physician from the year 2021 across all programs that are not directly related to management of 
cardiovascular health (to avoid mechanical correlations). The second proxy in panel B is “Net Promoter 
Score” for the year 2022. It is physicians’ rate of approval based on their patients’ reported likelihood to 
recommend them to family and friends, as answered in routine quality promotion surveys.  
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Table 1: Event Study of Healthcare Costs 
 

 
 Costs Capped Costs 
 (1) (2) 
Quarter Relative to Referral   

-4 67.86 66.95 
 (174.3) (168.1) 

-3 -95.88 -89.20 
 (144.2) (143.6) 

-2 48.39 44.82 
 (155.9) (152.7) 

-1 0 0 
 (0) (0) 

0 -62.07 -63.01 
 (128.3) (128.2) 

1 132.1 112.3 
 (173.5) (169.6) 

2 -124.6 -143.6 
 (170.2) (163.9) 

3 -431.8*** -444.5*** 
 (148.1) (147.9) 

4 -338.6** -354.8** 
 (172.5) (172.3) 
Medium Run Effect -385.2*** -399.7*** 
(Average of Quarters 3-4) (149.2) (149.1) 
Annual Effect -770.4*** -799.3*** 
(Sum of Quarters 3-4) (298.5) (298.1) 
Baseline Level 887 886 
Medium Run Counterfactual 1,004 1,012 
Number of Individuals 1,651 1,651 

 
 
Notes: This table evaluates the program’s impact on healthcare costs. We provide event study coefficients 
from a specification of equation (2) at a quarterly frequency along with their 95-percent confidence 
intervals, where robust standard errors are clustered at the patient level. We include observations of patients 
for whom UC San Diego Health receives capitation payments. Column 1 uses raw data of costs, and column 
2 caps costs from above at the top 0.01 percent. The medium run effect averages the impact on costs in the 
last half of the year following the referral (quarters 3 and 4), and the annual effect is the sum over this 
period. We report baseline levels (from quarter -1) and the counterfactual level in the medium run. 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 2: Program’s Impact on Blood Pressure by Patient Subpopulations 
 

 All Race/Ethnicity HPI 
  Black/Hispanic White Below Median Above Median 
 (1) (2) (3) (4) (5) 

Short Run (quarters 1-2)      
Treatment Effect -6.72*** -6.18*** -6.67*** -5.85*** -7.10*** 
 (0.59) (1.04) (0.81) (1.02) (0.73) 
Difference  0.49 1.252 
  (1.32) (1.246) 
Number of Individuals 1,312 317 745 407 899 
      
Medium Run (quarters 3-4)      
Treatment Effect -9.42*** -7.13*** -9.61*** -9.76*** -9.20*** 
 (0.92) (1.53) (1.25) (1.50) (1.14) 
Difference  2.48 -0.56 
  (1.97) (1.88) 
Number of Individuals 1,186 285 671 370 811 
      
Longer Run (quarters 5-6)      
Treatment Effect -12.15*** -8.74*** -15.81*** -8.62*** -14.85*** 
 (1.60) (2.90) (2.01) (2.35) (2.04) 
Difference  7.06** 6.23** 
  (3.52) (3.11) 
Number of Individuals 1,019 248 583 321 693 
      
Baseline (quarter -1) 134.06 135.13 134.05 134.17 133.97 
 (0.85) (1.73) (1.07) (1.47) (1.04) 
Difference  1.08 0.20 
  (2.03) (1.80) 

 
Notes: This table studies the program’s effect on systolic blood pressure among patient subpopulations. We 
estimate equation (2) using the sample of patients with repeated measures. Observations from before the 
referral come from quarter -1. Observations from after the referral correspond to quarters 1-2 for the “short 
run,” quarters 3-4 for the “medium run,” and quarters 5-6 for the “longer run.” Observations in a given 
month relative to referral are weighted by the inverse of the frequency of same-period observations within 
a subpopulation. Baseline levels are subpopulation means of the outcome in quarter -1. Robust standard 
errors are clustered at the patient level. *** p<0.01, ** p<0.05, * p<0.1 
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Table 3: Disparities in Adoption Rates 
 
Panel A: Disparities across Race/Ethnicity 

 Initial 
Takeup 

6-Month Horizon 1-Year Horizon 1.5-Year Horizon 
 Adherence Adoption Adherence Adoption Adherence Adoption 
Rates among White 
patients 

0.5272*** 0.5898*** 0.3304*** 0.5083*** 0.2903*** 0.4885*** 0.2767*** 
(0.0135) (0.0115) (0.0105) (0.0120) (0.0100) (0.0122) (0.0099) 

        
Black/Hispanic patients 
relative to White patients 

0.0024 -0.0597*** -0.0342* -0.0603*** -0.0382** -0.0656*** -0.0404** 
(0.0246) (0.0214) (0.0183) (0.0216) (0.0173) (0.0216) (0.0169) 

        
Number of Individuals 1,970 1,040 1,970 1,040 1,970 1,040 1,970 

   
Panel B: Disparities across Geography 

 Initial 
Takeup 

6-Month Horizon 1-Year Horizon 1.5-Year Horizon 
 Adherence Adoption Adherence Adoption Adherence Adoption 
Rates among patients 
with above-median HPI  

0.5510*** 0.5930*** 0.3474*** 0.5126*** 0.3050*** 0.4932*** 0.2906*** 
(0.0118) (0.0099) (0.0093) (0.0102) (0.0089) (0.0104) (0.0089) 

        
Below-median relative to 
above-median HPI 

-0.0796*** -0.0716*** -0.0839*** -0.0807*** -0.0838*** -0.0845*** -0.0824*** 
(0.0219) (0.0195) (0.0160) (0.0195) (0.0149) (0.0193) (0.0146) 

        
Number of Individuals 2,500 1,319 2,500 1,319 2,500 1,319 2,500 

 
 
Notes: This table studies disparities in adoption rates across patient subpopulations. It displays initial takeup 
rates, follow-on adherence rates conditional on takeup, and the resulting overall adoption rate. Panel A 
compares Black/Hispanic patients to White patients, and panel B compares patients from lower HPI 
communities to patients from higher HPI communities. *** p<0.01, ** p<0.05, * p<0.1  
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Table 4: Adoption Rates and Length of PCP-Patient Relationship 
 

 All Below-Median 
HPI 

Above-Median 
HPI 

White Patients Black/Hispanic 
Patients 

Relationship Longer than 
Median 

0.0774*** 0.0736*** 0.0711*** 0.0749*** 0.0934*** 
(0.0150) (0.0248) (0.0184) (0.0204) (0.0294) 

Number of Individuals 2,316 691 1,613 1,253 557 
 
Notes: This table assesses the role of the length of the PCP-patient relationship in patient adoption behavior. 
We study whether patients with relationships longer than the sample median of 1 year are more likely to 
adopt the technology over the 1.5-year horizon after the referral. *** p<0.01, ** p<0.05, * p<0.1 
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Online Appendix 

Appendix A: Figures and Tables 

 

Appendix Table A.1: Sample Characteristics 

 Statistic 
Number of Individuals 2,512 
Age:  
Average Age 65.34 
Share 65 and Older 0.595 
Location:  
Average HPI Percentile 63 
Share in Quartile:  
      1st 0.10 
      2nd 0.19 
      3rd 0.31 
      4th 0.40 
Gender:  
Female 1,369 
% Female 54.5 
Race/Ethnicity:  
Non-Hispanic White 1,379 
Black/Hispanic 591 
Year of Referral:  
2020 92 
2021 1,180 
2022 1,240 

 

Notes: This table provides average characteristics for our analysis sample in terms of age, gender, 
race/ethnicity, and HPI of residence. Our sample includes 2,512 patients who were referred to the digital 
health program by their physicians from October 2020 to July 2022.  
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Appendix Figure A.1: Distribution of Calendar Time of Referral 

 

Notes: This figure plots the distribution of time of referral in terms of calendar year/month. 
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Appendix Figure A.2: Raw Data of Systolic Blood Pressure around PCP Referral 

 
Notes: This figure plots the raw data of systolic blood pressure among patients who were referred to the 
program. We also display a linear fit for the pre-period months to assess patterns prior to the intervention 
(solid linear line), which we extrapolate to the post-period months (dashed linear line). 
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Appendix Figure A.3: Program’s Impact on Patient Blood Pressure— 
Bootstrapping Standard Errors 

 
Notes: This figure evaluates the program’s impact on systolic blood pressure, where we compute confidence 
intervals via bootstrapping. Specifically, we repeat our estimation procedure for 100 replications of 2,000 
patient draws (sampled with replacement). For each replication, we perform our semi-parametric event 
study on the subsample of patients with repeated measures. The plot displays the event study coefficients 
averaged across iterations, along with their 95-percent confidence intervals based on the standard deviation 
of coefficient estimates across replications. 
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Appendix Figure A.4: Program’s Impact on Patient Blood Pressure—Quarterly Frequency 
 

A. All Patients B. Patients with Repeated Measures 

  
 

C. Longer Horizon D. Patients with Repeated Measures—Robustness 

  
 

Notes: This figure evaluates the program’s impact on systolic blood pressure among patients who were 
referred to the program. In panels A-C, we replicate panels A-C from Figure 1 at a quarterly frequency. 
Panel D displays the event study coefficients for different subsamples of patients with repeated blood 
pressure readings in the analysis horizon of a year before and a year after the referral. We define this 
subsample as patients with at least one data point in the pre-period, taken as days -365 to -10 to provide 
sufficient distance from the day of referral, and at least one data point in the post-period, from a chosen 
threshold day up to day 365. We present plots for the threshold values of 50, 100, 150, 200, and 250 days 
after the referral (along with the 95-percent confidence intervals for estimates from the day 150 threshold). 
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Appendix Figure A.5: Method of Blood Pressure Measurement—At Home versus In-Clinic 

 
A. All Referred Patients 

 
 

B. Referred Patients who Took Up the Program 

 
 
 

Notes: This figure displays the breakdown of blood pressures measurements by whether they were taken at 
home or in-clinic over the one-year horizon following the referral event. Panel A includes blood pressure 
readings for the entire sample of referred patients, and panel B includes blood pressure readings of only 
referred patients who took up the program. 
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Appendix Figure A.6: Program’s Impact on Patients’ In-Clinic Blood Pressure Measures—
Quarterly Frequency 

 
A. All In-Clinic Readings 

 
 

B. In-Clinic Readings for Patients with Repeated In-Clinic Measurements 

 
 

Notes: This figure evaluates the program’s impact on systolic blood pressure among patients who were 
referred to the program using only measures taken in-clinic. This includes 1,246 referred patients among 
whom 60 percent were initial adopters. The plots display the quarterly-level event study coefficients from 
a specification of equation (2) along with their 95-percent confidence intervals, where robust standard errors 
are clustered at the patient level. Panel A displays the event study estimates using in-clinic readings for the 
entire sample. Panel B displays the event study estimates for a narrower set of in-clinic readings for patients 
with repeated in-clinic measurements. The latter group is comprised of patients with at least one in-clinic 
data point in the pre-period (taken as days -365 to -10 to provide sufficient distance from the day of referral) 
and at least one in-clinic data point in the post-period of days 150 to 365. 
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Appendix Table A.2: Program’s Impacts by Race/Ethnicity 
 

Panel A: Controlled Blood Pressure Rates 
 Black/Hispanic White 

Treatment Effect in Quarters 5-6 0.2234*** 0.3518*** 
 (0.0482) (0.0388) 
Difference -0.1284** 
 (0.0618) 
Number of Individuals 248 583 
Baseline in Quarter -1 0.5968*** 0.6251*** 
 (0.0303) (0.0256) 
Difference -0.0283 
 (0.0397) 

 
Panel B: Effects on Enrollees and Active Enrollees 

 Black/Hispanic White 
Treatment Effect in Quarters 1-2 -6.18 -6.67 
Takeup Rate 0.5296 0.5272 
Effect per Enrollee -11.6692 -12.6517 
Adoption Rate in Quarters 1-2 0.2962 0.3304 
Effect per Active Enrollee -20.8643 -20.1877 

 
 
Notes: Panel A provides estimates using equation (3) for the longer-run effects of the program on the 
probability that a patient’s systolic blood pressure drops below the 140 mark by race/ethnicity. Panel B 
focuses on the short run of quarters 1-2 and considers the treatment effect “per enrollee” (defined by the 
reduced-form effect divided by take-up rate) and the treatment effect “per active enrollee” (defined by the 
reduced-form effect divided by adoption rate). 
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Appendix Table A.3: Program’s Impact on Blood Pressure by Patient Subpopulations 
 

 All Age Group Gender 
  Below 65 Above 65 Male Female 

Short Run (quarters 1-2)      
Treatment Effect -6.72*** -6.06*** -7.03*** -7.93*** -5.67*** 
 (0.59) (0.91) (0.74) (0.83) (0.84) 
Difference  0.98 -2.27* 
  (1.17) (1.18) 
Number of Individuals 1,312 454 858 591 721 
      
Medium Run (quarters 3-4)      
Treatment Effect -9.42*** -8.09*** -9.98*** -10.48*** -8.54*** 
 (0.92) (1.71) (1.08) (1.13) (1.38) 
Difference  1.89 -1.95 
  (2.01) (1.79) 
Number of Individuals 1,186 410 776 544 642 
      
Longer Run (quarters 5-6)      
Treatment Effect -12.15*** -11.28*** -12.32*** -14.88*** -9.06*** 
 (1.60) (2.96) (1.91) (2.28) (2.20) 
Difference  1.04 -5.82* 
  (3.51) (3.17) 
Number of Individuals 1,019 328 691 463 556 
      
Baseline (quarter -1) 134.06 131.36 135.32 133.79 134.27 
 (0.85) (1.67) (0.94) (1.41) (1.09) 
Difference  -3.96** -0.48 
  (1.92) (1.75) 

 
 
Notes: This table studies the program’s effect on systolic blood pressure among patient subpopulations. We 
estimate equation (2) using the sample of patients with repeated measures. Observations from before the 
referral come from quarter -1. Observations from after the referral correspond to quarters 1-2 for the “short 
run,” quarters 3-4 for the “medium run,” and quarters 5-6 for the “longer run.” Observations in a given 
month relative to referral are weighted by the inverse of the frequency of same-period observations within 
a subpopulation. Baseline levels are subpopulation means of the outcome in quarter -1. Robust standard 
errors are clustered at the patient level. *** p<0.01, ** p<0.05, * p<0.1 
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Appendix B: Program Details 

Appendix Figure B.1: Program Stages from Referral to Active Participation 

 
Notes: This figure provides a schematic flowchart that illustrates the stages of the program from a 
physician’s referral of a patient to the patient’s successful engagement with the program. Blue rounded 
boxes indicate the start and end points of a workflow, pink diamond boxes indicate decision points, and 
gray rectangular boxes indicate actions taken. 
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Appendix B.1: Logistical Details—Remote Patient Monitoring Device and Clinical Chart 

The remote patient monitoring device is an iHealth Ease device, which is a Bluetooth-enabled 
digital blood pressure cuff. It appears in the following picture: 

 

To be eligible to participate in the program, a patient must have a compatible smartphone and 
comfort using apps to be able to turn on devices and synchronize data from home independently. 

To place a referral to the Population Health Team, a provider checks the box for 
“Prevention/Digital Health” and indicates “Hypertension Control”:  

 

When patients measure their blood pressure, the information is synchronized through MyChart 
(the patient portal) and flows into the patient chart for easy review by clinicians. There are 2 
methods to review these home measurements: 

Method 1: Review Results via Flowsheets  

1. Open patient's chart within Epic. 

2. Click the Review Flowsheets activity tab. 
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 3. Search for "VITALS UC DIGITAL HEALTH MONITORING - BLOOD PRESSURE" to 
review blood pressure data. 

 

 

Method 2: Review Results via Synopsis  

1. Once enrolled, the patient will have an “Engaged with Population Health Digital Program” 
purple banner on their Snapshot view. 

2. Click on this banner to access remote patient monitoring data “Synopsis” which displays blood 
pressure data. 

  

3. Wrench in the flowsheet subtab “Vitals Digital Health”: 
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Appendix B.2: Population Health Team Digital Health Protocol for Outreach and Ongoing 
Care 

This appendix provides the exact digital health team outreach protocol. It is designed based on the 
Milliman Care Guidelines (more details can be found at https://www.mcg.com/). 

Subjective 
@NAME@ is a @AGE@ @SEX@ who I have contacted regarding: {phtoutreach:33397} related 
to the Digital Health Program for {rpmtask:32434} Monitoring. Was able to establish telephonic 
contact with the patient and verified patient’s identity with full name and date of birth. 

Patient’s most recent Remote Patient Monitoring (RPM) {rpmtask:32434} reading of: *** with 
the following device(s): {digitalequipment:29472} 

Contact outcome: {phtoutcome:33398} 

Service Type Updated: {rpmyesnona:32440} 

Motivational interviewing and positive affirmation techniques deployed with an emphasis on 
health coaching: 

Blood Pressure Discussion: 
-How to take BP Accurately (AHA guidelines): Patient well rested, arm at heart level, confirm 
cuff placement/fit; both feet flat on ground; bladder empty, prior to caffeine or activity. For any 
unusual readings / asymptomatic, rest/reposition/recheck - {rpmyesnona:32440} 
-Frequency (at least x1/week, consistent times or as otherwise directed by 
MD):{rpmyesnona:32440} 
-Patient is taking BP medications as prescribed? {rpmyesnona:32440} 
-Patient has questions regarding BP management / medication (routing for potential f/u) 
{phtrns:33399} 

Diet: 
-HTN Patient following DASH diet: {rpmyesnona:32440} 
-DM Patient following low glycemic diet: {rpmyesnona:32440} 
-Patient requires additional dietary support {rpmrefer:32437} 

Exercise: 
-Patient regularly exercises: {rpmyesnona:32440} 
-Patient requires additional exercise support {rpmrefer:32437} 

RPM Disclaimer: 
Reiterated that RPM f/u is available M-F 8:30a-4:30p (with the exception of National/University 
Holidays), does not replace emergent care, as there may be a delay in the upload/analysis of your 
blood pressure/blood sugar readings. 

In the event of a Hypertensive Crisis (BP > 180 + symptoms of CP, Severe HA/Blurred Vision, 
SOB) or Hyperglycemic Medical Emergency (Blood Sugar > 300 + symptoms of Frequent 
Urination, N/V Increased Thirst and/or Hunger) please contact 911 or go to your nearest ED. 

https://www.mcg.com/


15 
 

Plan: 
Direct contact information provided and patient encouraged to reach out with further questions 
or concerns. DH Team to continue to monitor peripherally via Digital Health Dashboard or Self-
Report outreach. Routing to {phtrns:33399} as FYI. 
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