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1. Introduction

Measuring invention similarity is important for many decisions. Patent examiners must

assess the similarity of new claims against prior art to determine novelty. Inventors, partic-

ularly those in competitive fields, need to understand how their ideas overlap with those of

rivals. Policymakers may balance encouraging specific innovations versus minimizing redun-

dant efforts. Each of these contexts demands a reliable measure of invention similarity.

Beyond these practical applications, invention similarity has long been a core concern

for economists. Similarity influences patent value, the intensity of knowledge spillovers, the

direction of technological change, and the efficiency of R&D investments (Griliches 1979; Jaffe

1986). Accurate similarity measurement is also fundamental to deriving other economically

significant metrics. For example, Kelly et al. (2021) identify “breakthrough” patents as those

dissimilar to prior art but highly similar to subsequent patents.

Many methods have been used to measure patent similarity. How should researchers

choose among them? And how should readers evaluate these choices? Our main contribution

is to develop and implement a pipeline for the construction, validation, and selection of

measures of economic interest derived from patent text. This pipeline also serves as a

step-by-step guide for researchers constructing other measures and for readers assessing the

reliability of these measures. Our pipeline emphasizes domain-specific validation and model

selection as essential steps. Crucially, we demonstrate that the choice of representation is

not innocuous and can dramatically affect economic measures of interest.

The construction of patent similarity and other measures can be usefully separated into

three distinct steps: (1) representation, (2) measurement, and (3) validation-based selection.

The first step maps each patent to a location in idea space, representing it as a vector in IRn.

This mapping could be based on patent office classifications, traditional Natural Language

Processing (NLP) methods that count words, or more modern NLP methods that produce

distributed embeddings, where meaning is “distributed” over a whole vector. The second

step measures a concept of economic interest using representations produced by each of
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several candidate models. Patent similarity is a classic quantity of interest; other concepts

might be motivated from theory, derived from a structural model, or based on intuition.

Different representations lead to different measurements of the same concept. Therefore,

the third step involves validating these representations using purpose-built, domain-specific

tasks to select the optimal mapping among an ever-expanding list of NLP alternatives. This

crucial step, often overlooked in economics, is a central focus of our paper. We emphasize that

validating a single method without considering alternatives can lead to spurious conclusions.

Instead, our approach aligns with the NLP literature’s view that no method is universally

superior, and each should be evaluated based on its task-specific performance (Ash and

Hansen 2023). As Grimmer, Roberts, and Stewart (2022) note, “the best method depends

on the task” and “validations are essential and depend on the theory and the task.”

To illustrate the importance of model selection, we analyze the full text of US utility

patent claims from 1836 to 2023 using different representations. Figure 1 shows the average

pairwise similarity of patents by year, based on two different representations (see details in

Section 4). According to the General Text Embedding (GTE) model, a top performer in

our validation tasks, patent claim similarity has declined steadily over a century and a half.

In contrast, patent claim similarity measured by the widely-used Term Frequency-Inverse

Document Frequency (TF-IDF) representation increased steadily between 1850 and 1950,

and has levelled off since. The divergence between GTE and TF-IDF measures of patent

similarity underscores the critical role of representation choice in economic analysis of patents

and technological change.

To implement our validation-based selection pipeline, we design novel, domain-specific

validation tasks that compare the performance of seven leading, widely-used NLP models.

Our validation tasks use (a) patent interference cases, (b) non-expert human annotations,

and (c) patent office technology classifications to assess model performance. We evalu-

ate (i) Term Frequency-Inverse Document Frequency (TF-IDF), a traditional workhorse

model that counts words, and six modern models that produce distributed embeddings: (ii)
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Figure 1: Average pairwise patent claims similarity by representation and year

doc2vec, (iii) Universal Sentence Encoder (USE), (iv) Sentence-BERT (S-BERT), (v) Ope-

nAI’s text-embedding-3-large1, (vi) General Text Embedding (GTE), and (vii) Patent-

level Representation Learning using Citation-informed Transformers (PaECTER).

In the interference task, PaECTER and GTE significantly outperform other models,

including the proprietary OpenAI embeddings. Interferences were US patent office admin-

istrative proceedings that occurred when two or more independent inventors submitted ap-

plications containing identical claims of invention (Ganguli, Lin, and Reynolds 2020). Thus,

this task’s design combines modern patent application text and expert judgment of near-

identical similarity. PaECTER achieves a precision-recall area under curve (PR AUC) of

0.65, closely followed by GTE at 0.64, substantially surpassing S-BERT (0.52) and TF-IDF

(0.44). This difference is economically meaningful: at each model’s F10-maximizing thresh-

old (which heavily prioritizes finding true interference pairs over potential false positives), a

patent examiner searching for interferences using GTE instead of TF-IDF could reduce false

positives by a factor of 4.3 while identifying slightly fewer true positives.

1Released in January 2024, this model likely uses similar technology and training data to GPT-4.
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In our human annotation task, GTE demonstrates superior alignment with non-expert

human judgment about patent similarity, achieving an R2 of 0.38, significantly outperform-

ing PaECTER (0.27) and TF-IDF (0.12). GTE’s robust performance across both tasks

underscores its overall effectiveness in capturing patent similarity.

In our technology classification task, S-BERT representations outperform other models

in correctly identifying common top-level technology sections. PaECTER and then GTE are

competitive and far outperform TF-IDF. We weigh the performance on this task less, as by

construction, it ignores the dynamics of between-class similarity.

Taken together, the results of our validation tasks suggest that GTE and PaECTER

representations produce measures of patent similarity that best match non-expert human

judgment and domain-specific, expert legal determinations. Using GTE representations, we

find a long-term decline in contemporaneous patent similarity over the past century and a

half, suggesting that inventors are “spreading out” over an expanding knowledge frontier

(Figure 1). Combining information from both GTE and PaECTER—or combining GTE,

PaECTER, and S-BERT together—yields similar results. However, as already shown, using

TF-IDF representations suggests a strikingly different conclusion.

We also re-examine trends in “breakthrough” inventions following Kelly et al. (2021)

using GTE instead of TF-IDF in the initial representation step. We are able to replicate

some qualitative features of their study, with fewer discretionary researcher choices.

To corroborate the GTE-based finding of a long-run decline in contemporaneous inven-

tion similarity, we estimate the rate of interference over nearly 150 years. In theory, the rate

of interference declines when inventors choose projects that are less similar. We combine

newly-digitized 1864–1901 Registers of Interferences with summary statistics of interfer-

ences for 1950–1962 and 1981–1993 and our 1998–2014 database of interference decisions.

Consistent with our GTE-based estimates, the rate of interference also exhibits a secular

decline. Importantly, since interferences before 1998 were not used to validate the represen-

tations produced by GTE, this result represents independent, out-of-sample confirmation of
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the long-run decline in invention similarity.

In a companion paper (Ganguli et al. 2024), we develop a theory where the decline in

contemporaneous invention similarity is related to recent findings on long-run invention dy-

namics, including the increasing burden of knowledge (Jones 2009), increasing R&D spending

(Hirschey, Skiba, and Wintoki 2012), declining R&D productivity (Bloom et al. 2020), and

constant R&D spillovers (Lucking, Bloom, and Van Reenen 2019). The increasing burden of

knowledge raises the fixed costs of inventing over time. This restricts entry into invention as

the space of inventions grows, leading inventors to spread out over an expanding knowledge

frontier. Ideas get harder to find because there are weaker positive knowledge spillovers

from “neighbors” that are now more distant in idea space. Inventors increase their own

R&D inputs in response to weaker spillovers, thus reducing own-R&D productivity. (On

net, total spillovers may be roughly constant as increasing idea distance is offset by increases

in own-R&D investment.)

Our analysis of NLP model selection and validation yields several important takeaways

for economists, particularly those studying innovation. These recommendations stem from

(i) our finding of substantial differences in model performance on specific tasks and (ii) the

diverging trends they measure in key economic concepts. First, we recommend testing several

models, especially when some models are proprietary and expensive. (In our results, open-

source GTE is competitive with proprietary OpenAI.) Second, researchers should design

validation tasks specific to their domain and research questions, using these to motivate

model selection. Third, for innovation studies, our validated embeddings can serve as a

benchmark if no newer alternatives exist. To facilitate future research, we plan to provide

both GTE and PaECTER representations for US patents from 1836–2023. Our results

suggest these representations should be the current standard for patent text analysis in

economics research. However, if new candidate models emerge or researchers develop their

own, we encourage using our validation tasks alongside research question-specific ones.

Our paper builds on work measuring the similarity of inventions and ideas. Earlier
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work uses bibliometric features such as overlapping patent classifications (Akcigit, Kerr,

and Nicholas 2017; Clancy 2018; Fleming 2001), keywords (Azoulay, Fons-Rosen, and Graff

Zivin 2019), or citations (Berkes and Gaetani 2020; Wang, Veugelers, and Stephan 2017).

Others use the workhorse model TF-IDF (Kelly et al. 2021) or newer NLP models including

doc2vec (Feng 2020) and S-BERT (J. Lee and Hsiang 2019). Some recent work evaluates the

performance of NLP models (Arts, Cassiman, and Gomez 2018; Arts, Hou, and Gomez 2021;

Cheng, D. Lee, and Tambe 2022). A typical approach is to validate a single representation

using expert judgment (e.g., patent office classifications) or choice behavior (e.g., citations).

Compared with this work, our analysis contributes a comparative design that evaluates

several leading NLP models against a common set of validation tasks. We also provide general

guidelines for innovation researchers using NLP methods to measure economic quantities of

interest, design novel validation tasks, and document new facts about invention similarity

over time.

Our analysis focuses on pairwise, contemporaneous invention similarity. This measure is

distinct from the related concepts of “novel” (Akcigit, Kerr, and Nicholas 2017), “disruptive”

(Park, Leahey, and Funk 2023), “breakthrough” (Kelly et al. 2021), or “unconventional”

(Berkes and Gaetani 2020) innovations. Those previous measures compare newly-issued

patents against prior art, whereas contemporaneous invention similarity measures simulta-

neous decisions by inventors about where to locate in idea space. However, the choice of

representation (and often, similarity itself) is a direct input into the measurement of these

prior concepts. Our contribution is to highlight the importance of validation and model

selection for constructing measures based on patent text.

Finally, our results have potential applications for innovation economics. For example,

similarity measures may be used for constructing matched controls in studies of localized

knowledge spillovers (Ganguli, Lin, and Reynolds 2020; Jaffe, Trajtenberg, and Henderson

1993; Murata et al. 2014; Thompson and Fox-Kean 2005). Similarity measures seem espe-

cially useful for empirical study of theories of idea space (Akcigit, Kerr, and Nicholas 2017;
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Clancy 2018; Dasgupta and Maskin 1987; Olsson 2000).

The rest of the paper is structured as follows. Section 2 outlines a pipeline for the

construction and validation of measures (including similarity) from patent text. Section

3 compares the performance of different representations in our validation tasks. Section 4

shows that the choice of representation affects the measurement of trends in patent similarity.

Section 5 concludes.

2. Framework and Pipeline

For economists, NLP is an intriguing tool for measuring quantities of economic interest.

However, the rapid pace of innovation in NLP, characterized by several qualitative break-

throughs in recent decades, has led to a proliferation of models. This diversity poses a

challenge: different NLP models, despite appearing reasonable ex ante, can produce strik-

ingly different representations of the same economic concept (Ash and Hansen 2023). Thus,

traditional approaches of selecting a single model and validating it (Gentzkow, Kelly, and

Taddy 2019) may no longer suffice. Instead, model selection should be an integral part of the

NLP paper pipeline in economics, with validations designed to identify the best-performing

models for specific tasks.

We propose a comprehensive pipeline for creating robust measures of economic concepts

using patent text. The initial step arises from an economist’s aim to measure an economic

quantity. This quantity could be based on intuition, informal theory, or derived from a

structural economic model. Our pipeline emphasizes a critical distinction that the numerical

representation of text is separate from the economic quantity of interest.

Figure 2 provides a schematic view of our proposed pipeline, which consists of four key

steps. Each of these steps is discussed in more detail below.

1. Representation: Mapping each patent to a location in idea space.

2. Measurement: Quantifying the concept of interest using the chosen representation.
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3. Validation-based selection: Evaluating multiple representations using purpose-built,

domain-specific validation tasks.

4. Model selection: Choosing the representation that best aligns with human judgment

or “ground truth.”

Our primary contribution lies in emphasizing the critical importance of steps 3 and 4, which

go beyond traditional validation approaches in economics.

The usefulness of our pipeline extends beyond patent analysis, offering potential benefits

to other subfields in economics. Our pipeline provides a systematic way for economists to

evaluate and incorporate state-of-the-art NLP techniques into their research.

2.1. Data

We use the full text of claims in all US utility patents issued 1836–2023. For historical

patents issued 1836–1975, we use the digitized patent text from the Patents Core database

by ProQuest. For modern patents issued 1976–2023, we use the full text of patents from

PatentsView (U.S. Patent and Trademark Office 2023). We also use patent metadata, the

text of modern patent applications, historical and modern data on patent interferences, and

human annotations. These data are described as they are used in later sections.

2.2. Representation: Mapping Patents to Idea Space

We denote a representation of patent text pi to a location in idea space as:

m(pi) = Cm
i , (1)

where m refers to the particular method or model used to map the patent to a location in

idea space and Cm
i refers to the coordinate vector for patent i based on method m.

This is Step 1 in Figure 2. Various methods have been employed to map patents to idea

space, each with its own strengths and limitations. These methods broadly fall into two

categories: classification-based and text-based approaches.
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Text of patent 1
Text of patent 2
Text of patent 3

Step 1: Numerical representations in three idea spaces (Ci(mk), k ∈ {A, B, C})

Repr. A Repr. B Repr. C0.44 0.03 0.55 0.44
0.42 0.33 0.2 0.62
0.3 0.27 0.62 0.53


0.13 0.51 0.18
0.85 0.49 0.85
0.51 0.07 0.43


0 1 0 0
0 1 0 0
0 0 0 1



Step 2: Measurements of pairwise similarities (Simmk(pi, pj))

Repr. A Repr. B Repr. C
Pat 1 Pat 2 Cos. Sim.

1 2 0.82
1 3 0.94
2 3 0.87

Pat 1 Pat 2 Cos. Sim.
1 2 0.71
1 3 0.48
2 3 0.96

Pat 1 Pat 2 Cos. Sim.
1 2 1
1 3 0
2 3 0

Step 3: Validation-based selection
(
V l(mk), l ∈ {(i), (ii), (iii)}

)
Task (i) Task (ii) Task (iii)

Repr. Perf. Rank
Repr. A 0.91 1
Repr. B 0.87 2
Repr. C 0.84 3
Baseline 0.51 4

Repr. Perf. Rank
Repr. A 0.46 1
Repr. B 0.23 2
Repr. C 0.18 3
Baseline 0.03 4

Repr. Perf. Rank
Repr. A 0.85 2
Repr. B 0.93 1
Repr. C 0.73 3
Baseline 0.05 4

Step 4: Compute downstream measure based on the best representation:

For example, “Breakthrough” patents (qm(pi)) (Kelly et al. 2021) or average patent pair
similarity (qm(pi, pj)) by year (this paper).

Figure 2: Overview of the NLP pipeline
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A traditional approach uses patent office classifications (e.g., Jaffe 1986; Jaffe, Trajten-

berg, and Henderson 1993). These classifications, assigned by specialized patent examiners,

are primarily administrative tools designed to facilitate searches for relevant prior art. The

US Patent and Trademark Office (USPTO) currently uses the Cooperative Patent Classifi-

cation (CPC), divided into eight top-level sections2.

In our framework, a class-based mapping would represent each patent as a vector with 1s

in the position of its assigned class(es) and 0s in all other positions. Such a representation

would resemble Representation C in Figure 2. While straightforward, this approach has

limitations due to its coarse granularity: it treats all patents within a class as equally similar,

and all patents in different classes as equally dissimilar.

More recent approaches apply NLP models to patent text to produce numerical repre-

sentations of each patent. These representations have the potential to offer finer granularity

and a richer map of idea space.3 Such representations would resemble Representations A

and B in Figure 2.

TF-IDF. The workhorse model TF-IDF (Sparck Jones 1972) represents patents based on

word frequency, weighted by the inverse of word frequency across all patents. The TF-IDF

vector for patent i is:

cT F IDF
i,k ≡ TFi,k · IDFi,k (2)

where TFi,k ≡ ni,k/
∑

j ni,j (Term Frequency) and IDFi,k ≡ log( # of patents in corpus
# of patents in corpus with word k)

(Inverse Document Frequency).

2The eight top-level sections are (a) Human Necessities, (b) Performing Operations, Transporting, (c)
Chemistry, Metallurgy, (d) Textiles, Paper, (e) Fixed Construction, (f) Mechanical Engineering, Lighting,
Heating, Weapons, Blasting Engines or Pumps, (g) Physics, (h) Electricity. There is also residual category
for new technological developments. These eight sections are further sub-divided into over 100 “three-digit”
classes.

3See Bochkay et al. (2023), Gentzkow, Kelly, and Taddy (2019), and Grimmer, Roberts, and Stewart
(2022) for reviews of the use of NLP methods in economics and neighboring disciplines. See Smith (2020) for
an accessible introduction to numerical text representations from one-hot encoding to contextual embeddings.
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Neural Network-based Models. Recent advances in NLP have led to the development of so-

phisticated models that produce vector representations, or distributed embeddings. These

models include open-source options like doc2vec (Le and Mikolov 2014; Mikolov et al. 2013),

USE (Cer et al. 2018), S-BERT (Devlin et al. 2019; Reimers and Gurevych 2019), and GTE

(Li et al. 2023), as well as proprietary ones such as those released by OpenAI (OpenAI 2024).

Additionally, domain-specific models have been developed such as PaECTER (Ghosh et al.

2024).

Embedding sizes vary considerably across models. doc2vec typically produces embed-

dings of 100-300 dimensions, USE generates 512-dimensional vectors, S-BERT and GTE

yield larger embeddings of 768 or 1,024 dimensions, and PaECTER, designed specifically for

patents, uses 1,024-dimensional embeddings. OpenAI embeddings have dimension of 1,536

by default, but they use Matryoshka representation learning technology, allowing reductions

in embedding size with limited loss in performance (Kusupati et al. 2024).

The objective functions and training processes also differ significantly. doc2vec employs

a skip-gram approach, predicting context words given an input word. In contrast, USE

and subsequent models involve a two-stage training process: an initial unsupervised stage

followed by supervised fine-tuning on downstream tasks using supervised data. This sec-

ond stage typically includes paraphrase identification and sentence similarity tasks, with the

explicit goal of producing embeddings that are broadly applicable and semantically mean-

ingful. GTE utilizes a contrastive learning objective (Li et al. 2023), which explicitly aims to

both bring similar sentences closer and different ones further apart. PaECTER adapts this

approach to the patent domain, fine-tuning on patent citation data. Details of the OpenAI

embedding models are proprietary, but the technology and training data is likely similar to

that underlying the large language model GPT-4.

The development of these models involves numerous engineering decisions that signifi-

cantly impact performance. Unlike structural economic models, where evaluation often relies

on examining the functional forms, the extensive engineering choices in ML make it chal-
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lenging to assess models ex ante from first principles. Our approach circumvents this issue

by focusing on the validation of model outputs. This strategy allows us to select the most

effective model for our analysis, based on performance, rather than technical specifications.

2.2.1. Visualizing Idea Spaces

To develop intuition about these different representations, Figure 3 displays two-

dimensional projections of high-dimensional idea spaces based on S-BERT and TF-IDF

representations, chosen for their striking contrast. (See Appendix A for details on the

construction of this figure.)

The visual differences observed in Figure 3 highlight the potential impact of representa-

tion choice on downstream analyses. By overlaying patent class colors on both S-BERT and

TF-IDF representations, we demonstrate that these models differ dramatically in how they

cluster patents from the same class, with S-BERT showing noticeably tighter groupings by

patent class compared to TF-IDF.

Intriguingly, the S-BERT visualization reveals nuances that align with expert knowledge

but are not captured by patent classifications alone. For instance, in Figure 3 Panel A, a

cluster of semiconductor patents (blue, near (-5, 0)) is positioned between materials science

patents (light-blue) and a broader electricity cluster. This arrangement reflects the interdis-

ciplinary nature of semiconductor innovations, combining aspects of materials science and

electricity, and it demonstrates S-BERT’s ability to capture complex relationships between

technological domains.

2.3. Measuring Concepts from Patent Text

The second step in our pipeline is to use numerical representations of patent text to

measure a concept of economic interest. Researchers have defined a number of such measures.

A core measure is pairwise similarity, defined as the cosine similarity between patent vector

representations:

Simm(pi, pj) ≡
Cm

i · Cm
j

||Cm
i ||||Cm

j ||
(3)
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(a) S-BERT; Class (Patent Section) (b) TF-IDF; Class (Patent Section)

Figure 3: Uniform Manifold Approximation and Projection (UMAP) plots for S-BERT and
TF-IDF representations
Notes: The plot is based on a sample of 111,251 patents stratified by patent class (USPTO Section) and quarter-century
period. To constrain extreme values, the data were winsorized at the 5% and 95% levels along both axes.
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where m denotes a specific model. This is illustrated by Step 2 in Figure 2.

Other measures from the literature can also be expressed as functions of patent repre-

sentations. For instance, Kelly et al. (2021) define patent “importance” as:

qm(pi) ≡
∑

j∈F Simm(pi, pj)/|F|∑
k∈B Simm(pi, pj)/|B|

(4)

where F and B denote sets of patents published in the 5 years after and before patent i,

respectively.

Notice that the measurement of these concepts of economic interest depends both on

the conceptual definition and on the choice of patent representation. Even for the same

quantity, different representations can lead to different measurements. While the choice of a

conceptual measure can generally be guided by theory or other a priori considerations, the

choice of representations amounts to choosing between different “black-box” methods.

2.4. Validation-Based Selection

Given a concept of interest, how should researchers choose between alternative repre-

sentations? We propose validation-based selection as a crucial step in our pipeline (Step 3

in Figure 2). This process requires external measures (“ground truth”) that have a clear

theoretical connection with the concept of interest, often available (or obtainable for a cost)

only for a subset of the data.

Formally, given a concept c, a representation-specific measurement fmi , and a score

function S, validation evaluates each representation mi to select the best mapping:

V (mi) = S (fmi(p), c(p)) (5)

In practice, we implement an empirically-feasible version:

V j(mi) = Sj
(
fmi(pj), gj(pj) | pj

)
(6)
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where gj(pj) is a ground truth, fmi(pj) is a measurement based on representation mi, and

Sj quantifies the correspondence between measures derived from mi and the ground truth.

The score function could be correlation, mean squared error, or other appropriate metrics.

V j(mi) provides a score or ranking for each model mi, identifying the best representation

according to validation criterion j.

If different validations suggest different representations as optimal, researchers should

employ a deliberate, multi-faceted approach to make a final decision. This process should

consider:

1. Relevance to research question: Prioritize validation tasks that most closely align

with the specific economic concept or question being studied.

2. Quality and reliability of ground truth: Assess the reliability and representative-

ness of each validation task’s ground truth data.

3. Performance differentials: Consider the magnitude of performance differences be-

tween models across validation tasks.

4. Consistency across tasks: Look for models that perform well across multiple vali-

dation tasks, even if not optimal in each.

5. Domain expertise: Leverage economic theory and subject-matter knowledge to

weigh the importance of different validation tasks.

This nuanced approach acknowledges the complexity of economic concepts and the limi-

tations of individual validation tasks. By applying our validation-based selection pipeline,

researchers can identify a set of best-performing models along with their relative strengths.

These relative strengths can be formalized as weights, allowing for informed model aggrega-

tion or selection based on specific research needs.

For concreteness, we can apply our framework to the interference validation task (dis-

cussed in detail in Section 3.1). Here, pj represents the set of patent applications in in-

terference cases. The ground truth function g(pj) creates pairwise combinations of these

applications, producing a Boolean vector where entries are 1 if the corresponding pair was in
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an interference case. This approach leverages the expertise of patent examiners in identifying

highly similar applications. The function fmi(pj) computes pairwise similarities based on

the representation mi. We use the Receiver Operating Characteristic Area Under the Curve

(ROC AUC) or the Precision-Recall Area Under Curve (PR AUC) as our score function Sj,

comparing fmi(pj) to g(pj).

For the human validation task (Section 3.2), pj represents a set of patent pairs sampled

to have varying levels of similarity according to each model. The ground truth function

g(pj) is the human judgment on which pair in each comparison is more similar. This lever-

ages non-expert perception of patent similarity. The function fmi(pj) computes pairwise

similarities based on the representation mi, using the same text segments shown to human

annotators. Our score function Sj compares the model’s ranking of pair similarities to the

human judgments, measuring how well fmi(pj) aligns with g(pj).

Our approach to validation differs from some prior literature in that it is intrinsically

linked with model selection. This validation-based selection, while common in fields like

forecasting and machine learning, has been less prevalent in empirical economics using NLP

measures. In forecasting and machine learning, it is often acknowledged that we cannot

select the best model a priori, necessitating a structured selection procedure. Our work

demonstrates that this principle extends to NLP applications in economics, where model

selection can have substantial effects on results and interpretations.4

4Model selection is a well-established practice in econometrics and forecasting, often using criteria such
as the Akaike Information Criterion (AIC). In machine learning, out-of-sample testing is commonly used
for model selection, where models are evaluated on data not used for training. The “winning” model is
typically determined by a score function, such as root mean squared error. Ash and Hansen 2023 provide
examples outside of innovation economics where different text representations lead to divergent conclusions,
highlighting the need for careful validation in NLP applications to economics.
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3. Validation Task Results

3.1. Interferences

Our first validation task uses patent interferences. Patent interferences were a unique

feature of US patent law, which applied to patents filed between 1836 and March 2013.5.

Patent interferences were USPTO administrative proceedings that decided the priority of

invention when two or more independent parties claimed to have invented the same thing at

the same time. An interference was suggested by a specialized patent examiner when, during

their search for relevant prior art, they encountered at least one other pending US patent

applications containing the “same patentable invention” (37 CFR § 1.601). Thus, patent

interferences represent expert judgment that two independent patent applications contain

identical legal claims.

3.1.1. Interference Data

We select patent applications from a database of 215 interference cases decided 1998–

2014. These decisions were publicly available through the USPTO’s “e-FOIA Reading Room”

and encoded by Ganguli, Lin, and Reynolds (2020).6 Each interference case involves two

or more independent parties with competing, simultaneous claims to the same patentable

invention. Each party has one or more patent applications corresponding to the content of the

interference. In our database of 215 cases, we identify 440 distinct patent applications. Using

these interference cases and applications, we construct 96,580 (= 1
2(4402 − 440)) application

pairs. Of these application pairs, we identify 322 interfering pairs—meaning two patent

applications from independent (opposing) parties that make overlapping claims of invention.

We represent the text of each application using the seven NLP models mentioned in

the introduction: (1) TF-IDF, (2) doc2vec, (3) USE, (4) S-BERT all-mpnet-base-v2,

5More detail and institutional background on patent interferences can be found in Ganguli, Lin, and
Reynolds (2020)

6The 215 cases are a subset of the database by Ganguli, Lin, and Reynolds (2020) selected based on the
availability of the full text of applications and the claims in interference.
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Table 1: Example rows from the patent pair dataset used for interference validation

Cosine similarity based on:
ID App. 1 ID App. 2 Class TF-IDF doc2vec USE S-BERT Open AI PaECTER GTE Int.

9885259 11064123 0.00 0.02 0.86 0.07 0.27 0.41 0.89 0.49 0
10239566 11517991 0.79 0.68 0.74 0.76 0.66 0.56 0.93 0.73 0
10116112 10909561 0.00 0.01 0.54 0.18 0.26 0.36 0.87 0.49 0
10005999 11614142 0.00 0.02 0.59 0.26 0.20 0.34 0.87 0.55 0
11255647 11428279 0.00 0.28 0.62 0.59 0.80 0.75 0.97 0.73 1

Notes: Columns show patent IDs, similarity scores from different patent representations, and a binary label indicating
whether this pair was part of an interference case.

(5) OpenAI’s text-embedding-3-large, (6) GTE, and (7) PaECTER. For every pair of

applications, we compute the cosine similarity based on the vector representations from each

of these seven models. We also construct an alternative measure of similarity based on the

number of shared CPC classes between application pairs (for more detail on CPC classes,

see Section 3.3). Table 1 shows an excerpt of the resulting application-pair database. Each

row is a unique application pair. Columns are application identifiers, similarity scores, and

a true interference indicator.

3.1.2. Interference Results

Next, we evaluate the performance of alternative representations. The task is to classify

application pairs in interference. We provide some intuition about the economic magnitudes

of performance differences by considering a hypothetical scenario where a patent examiner

wants to identify application pairs that are likely to be in interference. Patent examiners

can use representations of patents to compute the similarity of all pairs and rank them from

most similar. In this situation, a classifier involves the ranked similarity scores and a cutoff,

above which pairs will be considered interference candidates. The patent examiner and their

staff would then review these interference candidates to determine which are true and which

are false according to their expertise.

The examiner cares about (i) how often a classifier correctly classifies true interfering

pairs (true positives) and (ii) how often a classifier incorrectly classifies non-interfering pairs

as interfering pairs (false positives). They may place a different weight on each of these
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Table 2: Rankings based on threshold-based metrics

(a) Separate F1-max. thresh.

Rank Repr. TP FP F1
1 PaECTER 168 58 0.67
2 GTE 170 82 0.64
3 OpenAI 182 123 0.63
4 S-BERT 143 90 0.56
5 TF-IDF 110 67 0.48
6 USE 85 58 0.40
7 doc2vec 50 72 0.25
8 Class 98 792 0.17

(b) Separate F10-max. thresh.

Rank Repr. TP FP F10
1 PaECTER 265 1,862 0.90
2 GTE 259 1,222 0.90
3 OpenAI 255 1,118 0.89
4 S-BERT 250 3,001 0.82
5 TF-IDF 253 5,306 0.77
6 USE 235 4,984 0.72
7 Class 209 6,255 0.62
8 doc2vec 198 17,944 0.44

Notes: F1/F10 scores and underlying true positives and false positives with a different thresholding strategy in each panel.

The total number of patents is 440; the total number of patent pairs is 96,580; the total number of interference cases is 312.

criteria. Here, true positives represent the statutory obligation of the USPTO to determine

priority of invention, while false positives incur investigation costs through examiner and

staff time. Thus, there may be a trade-off between classifiers that detect many true positives

but also many false positives, and those which detect fewer true positives but also fewer false

positives. This can be formalized as the tradeoff between recall and precision. The recall of a

classifier is the share of total interferences it correctly identifies. The precision of a classifier

is the share of total pairs correctly classified as interfering.

Note that many different classifiers can be built from a given similarity measure. Different

threshold levels will lead to classifiers with different performance in terms of selecting true

positives and false positives.

As a starting point, consider the case where the examiner values identifying promising

cases (recall) and not overburdening staff (precision) equally. The so-called F1 score does

exactly this. Table 2a shows that PaECTER has the highest F1 score (67%), followed closely

by GTE (64%) and OpenAI embeddings (63%), with all three significantly outperforming

S-BERT (56%) and TF-IDF (48%) at each representation’s F1-maximizing threshold.

Next, consider the case where the examiner places higher priority on identifying potential
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interferences (true positives) than on minimizing investigative effort (false positives)—i.e.,

staff time is considered less costly relative to missed interferences. The F10 score weights

recall ten times more than precision. Table 2b shows that at each measure’s F10-maximizing

threshold, PaECTER, GTE, and OpenAI embeddings (with almost identical F10 scores of

90%, 90%, and 89%) retrieve 255–265 true positives, slightly outperforming S-BERT (250)

and TF-IDF (253). More importantly, the top three models (PaECTER, GTE, and Ope-

nAI) significantly reduce false positives compared to S-BERT and TF-IDF. Specifically, they

reduce false positives by a factor of 1.6–2.7 compared to S-BERT and by a factor of 2.8–4.7

compared to TF-IDF, while maintaining a higher true positive rate. This dramatic reduc-

tion in false positives would significantly decrease the number of unnecessary investigations,

leading to more efficient use of examiner time and resources. Text-based classifiers based on

USE and doc2vec prove uncompetitive. The shared-class-based classifier consistently lags

behind all NLP-based methods except doc2vec.

We next report results based on two metrics which summarize classifier performance

across all possible thresholds. Receiver Operating Characteristic Area Under the Curve

(ROC AUC) evaluates the trade-off between true positive and false positive rates across all

possible thresholds. Precision-Recall Area Under Curve (PR AUC) measures the trade-off

between precision and recall across all possible thresholds.7

Across both ROC AUC and PR AUC, we find that PaECTER, GTE, and OpenAI em-

beddings best predict interference cases, followed by S-BERT and then TF-IDF (Table 3).

The PR AUC differences are more pronounced, as expected for an imbalanced binary pre-

diction problem. PaECTER achieves a PR AUC of 0.65, closely followed by GTE at 0.64

and OpenAI at 0.62, significantly outperforming S-BERT (0.52) and TF-IDF (0.44).

Across threshold- and non-threshold-based comparisons, classifiers based on PaECTER,

GTE, and OpenAI embeddings consistently demonstrate superior performance, materially

outperforming even recent models like S-BERT and other approaches. The differences in

7See Davis and Goadrich (2006) for a comparison of the two measures.
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Table 3: Rankings based on non-threshold-based metrics

(a) ROC AUC

Rank Repr. ROC AUC
1 PaECTER 0.99
2 GTE 0.99
3 OpenAI 0.99
4 S-BERT 0.98
5 TF-IDF 0.98
6 USE 0.96
7 Class 0.85
8 doc2vec 0.84

(b) PR AUC

Rank Repr. PR AUC
1 PaECTER 0.65
2 GTE 0.64
3 OpenAI 0.62
4 S-BERT 0.52
5 TF-IDF 0.44
6 USE 0.36
7 Class 0.21
8 doc2vec 0.16

Notes: ROC and PR AUC scores for different patent text representations on predicting interference cases.

performance are substantial and economically significant. Importantly, all models, including

the worst-performing doc2vec, technically pass this validation task by predicting interferences

better than chance. The stark performance gaps highlight generational differences in NLP

technologies. The result that all models alone do better than chance underscores the critical

importance of our validation-based selection pipeline and a comparative approach.

3.2. Non-Expert Human Judgment

Second, we design and implement a non-expert human validation task to assess the per-

formance of four models: PaECTER, GTE, S-BERT, and TF-IDF.8 This task complements

the interference validation task by focusing on patents with varying levels of similarity and

drawing from a broader time period. Our primary objective is to determine which model

aligns more closely with the general human judgment.

A main challenge is that humans without special training struggle to place objects on

absolute scales (Carlson and Montgomery 2017). Therefore, we asked research assistants

(RAs) to make relative judgments of similarity. We presented them with two sets of patent

8We eliminated USE, class overlap, and doc2vec at this stage because of their non-competitiveness on
the interference task. We eliminated OpenAI because its good-but-not-best performance did not justify
including a proprietary and expensive model in further analyses.
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pairs and asked them to select which pair contained patents more similar to each other.

To ensure that the task was feasible for human annotators, we sampled patent pairs

separately for each model. The pairs were selected so that, according to the model being

tested, they were at least 50 percentiles apart in terms of similarity. For example, if one

pair was in the 90th percentile of similarity, the other pair could be no higher than the 40th

percentile. This approach helped to create a clear distinction between the pairs, making the

task more manageable for human annotators.

We provided detailed instructions to the annotators (see Appendix B for full instructions

and an example). The RAs were asked to consider four factors when comparing the patent

pairs: (i) the general field or domain of each patent, (ii) the specific problem each patent is

trying to solve, (iii) key components of the solution each patent proposes, and (iv) any other

major similarities or differences between the patents in each pair.

Each of the four annotators was asked to make 100 comparisons between two sets of

patent pairs. For each patent, we presented the annotators with two specific fragments of

text: the “improvement in” statement extracted from the patent and the first 500 characters

of the claims section. This focused approach allowed annotators to quickly grasp the essence

of each patent without being overwhelmed by technical details. The embeddings used for

model comparisons in this task were calculated using the same text segments shown to the

human annotators.

Annotators were encouraged to use online resources to understand unfamiliar terms or

concepts, but were instructed to avoid reading parts of the patent outside the provided

snippet. We also emphasized that many patent pairs might be only tenuously connected,

and asked annotators to think creatively about how seemingly dissimilar patents might be

solving similar problems or using related technologies. The annotators provided their final

judgment as a single number (1, 2, or 0 if unsure).
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Table 4: Human Agreement with Embedding-Based Similarity Rankings

Dep. Var.: More similar pair = 1
PaECTER GTE BERT TF-IDF

(Intercept) 0.28∗∗∗ 0.20∗∗ 0.24∗∗∗ 0.37∗∗∗

(0.07) (0.06) (0.07) (0.07)
Human Choice = 1 0.51∗∗∗ 0.62∗∗∗ 0.54∗∗∗ 0.35∗∗∗

(0.09) (0.08) (0.09) (0.10)
R2 0.27 0.38 0.29 0.12
Adj. R2 0.26 0.38 0.28 0.11
Num. obs. 83 90 91 89
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: Regression results showing the agreement between the 4 human annotators and the relative similarity rankings of patent

pairs according to different patent text representations.

3.2.1. Human Annotation Results

To analyze the agreement between human judgments and embedding-based similarity

rankings, we use the following regression:

I[Sim(1) > Sim(2)]Emb = β0 + β1I[Choice = 1]Human + ϵ (7)

where Emb ∈ {PaECTER, GTE, BERT, TF-IDF}. The coefficient β1 represents the in-

crease in the likelihood that the embedding indicates pair 1 is more similar when humans

choose pair 1. Higher β1 suggests stronger human–embedding agreement.

Table 4 presents the results of our human annotation analysis. All embedding models

show statistically significant agreement with human judgments, as indicated by the positive

and significant coefficients on “Human Choice = 1” (β1). However, there are clear differences

in performance. GTE demonstrates the strongest alignment with human judgments, with

the highest coefficient (0.62) and R2. PaECTER and BERT are the next best performers

and show very similar levels of agreement with human judgments, with coefficients of 0.51

and 0.54, respectively. TF-IDF exhibits the weakest agreement with human judgments, as

evidenced by its lower coefficient (0.35) and R2.

Interestingly, while PaECTER showed strong performance in the interference task, its

24



performance here is lower than GTE. This may be attributed to the fact that PaECTER

was fine-tuned using patent data from 1985 to 2022 (Ghosh et al. 2024), whereas this task

involves historical patents from 1880-1920. GTE’s strong performance across different time

periods highlights its robustness and generalizability in capturing patent similarity.

3.2.2. Exploring LLMs for Scalable Patent Similarity Validation

Human annotation, while valuable, can be costly and challenging, especially when com-

paring technical documents like patents. To explore scalable validation methods, we inves-

tigated the use of Large Language Models (LLMs) for assessing patent similarity. However,

note that we do not view LLMs as direct substitutes for human annotations. Recent research

has shown that LLMs often fail to accurately reflect human judgments (Bisbee et al. 2024;

Dominguez-Olmedo, Hardt, and Mendler-Dunner 2024; Goli and Singh 2024). We conduct

this analysis as part of an ongoing effort in the field to incorporate LLM tools in reasonable

and productive ways, acknowledging both their potential and limitations.

Our LLM-based analysis, using Claude 3.5 Sonnet and GPT-4, revealed notable differ-

ences not only from human annotations but also between the LLMs themselves in ranking

embedding models. (See Appendix C for our prompt.) Claude, like human annotators, se-

lected GTE as the best model, while GPT-4 chose S-BERT, highlighting the limitations of

LLMs in capturing human intuition about technological similarity. Despite these differences,

both LLMs consistently ranked newer embedding models above the traditional TF-IDF ap-

proach, aligning with our human annotation findings in this crucial aspect. This consistency

suggests a potential role for LLMs in the preliminary testing of annotation tasks, potentially

streamlining the process before deploying to human annotators. For a detailed discussion,

refer to Appendix D.

3.3. Patent Office Classifications

Our final validation task uses patent classifications. Patent classifications are assigned to

patents by specialized patent examiners. Thus, like interferences, this task relies on expert
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judgement. On the other hand, this task is more similar to the human annotation task in

that it focuses on a coarser degree of similarity. This task also considers an extended sample

period, since 1850.

The entire patent classification system, and the assignment of classes to all previously

issued patents, is updated frequently. We use the CPC vintage from May 2023, which repre-

sents classifications of all patents as of that date. Since patent classifications are primarily

administrative tools designed to facilitate searches for relevant prior art, they may reflect

judgments of similarity that are relatively more accurate for recent patents. On the other

hand, they may be less accurate for historical patents, which may be less relevant for the

task of identifying prior art for current patent applications.

We classify patents according to whether their main classification belongs to (i) one of

eight top-level CPC technology sections or (ii) one of 123 “three digit” CPC technology

classes. We draw random samples of 200 patents from each of these classification groups and

quarter-century period from 1850 to 2023. For each pair of patents, we form indicators for

common section and common class.

As in the prior tasks, we evaluate the performance of similarity scores based on TF-IDF,

S-BERT, GTE, and PaECTER representations as classifiers, in this case classifying patent

pairs as belonging to the same section or class.9

Figure 4 shows results by level of classification detail (top-level sections versus three-

digit classes) and performance metric (ROC versus PR AUC). TF-IDF is uniformly the

worst performer across classification detail and performance metrics. In contrast, S-BERT’s

performance is competitive; it leads the other models in predicting common top-level technol-

ogy section according to both ROC (Panel 4a) and PR AUC (Panel 4c). S-BERT also leads

all other models in predicting common technology class according to PR AUC (Panel 4d),

and it ranks second after PaECTER according to ROC AUC (Panel 4b).

9Feng (2020) uses doc2vec to create measures of patent similarity and uses patent classes to validate the
vectors generated by doc2vec. Compared with this work, our analysis compares the performance of several
models.
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(a) Same Section; ROC (b) Same Class; ROC

(c) Same Section; PR (d) Same Class; PR

Figure 4: Representation performance on common section and common class tasks

According to both PR and ROC AUC, PaECTER representations outperform GTE in

predicting common technology class (Panels 4d and 4b). However, GTE is competitive with

PaECTER in predicting common technology section.

Finally, note that by construction, this validation task does not take into account

between-class similarity. The design of this validation task therefore emphasizes within-class

similarity at the cost of ignoring all between-class similarity. This feature potentially

explains some of the divergence in performance results compared with the previous tasks.

(We explore these patterns further in Section 4.1.) These results also underscore the
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importance of multi-faceted validation.

4. Model Selection is Critical for Downstream Economic Measurement

We measure contemporaneous invention similarity over time. We apply four text em-

bedding models to the claims sections of US patents from 1836 to 2023 (the final complete

year of patent data). Then, for each model/representation, we compute within-year average

pairwise similarity, normalized by the largest similarity value in the time series.

Figure 5 illustrates how different models yield different measured average annual pairwise

patent similarity. GTE exhibits a clear downward trend in patent similarity for over a

century, from 1836 to 1977. PaECTER suggests that contemporary patent similarity declined

from 1900 to 1950, followed by a slight, volatile increase to the present day. S-BERT suggests

steadily declining patent similarity from the turn of the 20th century to today. A notable

contrast is TF-IDF. TF-IDF measures indicate a sharp increase similarity until the 1950s,

followed by fluctuations around a high degree of similarity.

Note that the scale of variability also differs significantly across models. GTE’s minimum

value is at about 90% of its maximum. PaECTER exhibits very little variability in patent

similarity over time, with its minimum value at 97% of its historical maximum. S-BERT’s

minimum value is at 75% of its historical maximum. TF-IDF similarity is the most variable,

with its minimum value at 20% of its historical maximum.

All of these models performed better than chance on our validation tasks. Thus, any

single one of them could have been chosen to measure trends in contemporaneous pairwise

similarity without a validation-based selection process. Put differently, a single panel from

Figure 5 could have been presented as a main result, followed by individual “validations”

showing correlations between that single representation and ground truths. However, our

approach provides a framework for more informed model selection, allowing us to differentiate

between models based on their performance across multiple tasks.

We can confidently eliminate TF-IDF due to its significant underperformance on all
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Figure 5: Average pairwise patent claims similarity by representation and year
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validation tasks. In order to compare and aggregate the results from the other models, it is

useful to review the validation task results.

The interference task used expert judgment about near-identical similarity using modern

data (Section 3.1). In this task, PaECTER marginally outperformed GTE. S-BERT was

substantially worse at predicting interferences.

The human annotation task used non-expert judgment about a broader sense of similarity

using historical data (Section 3.2). In this task, GTE significantly outperformed the other

models. S-BERT and PaECTER performed similarly on this task.

Finally, the patent classification task used expert judgment about a coarse sense of simi-

larity using both historical and modern data (Section 3.3). In this task, S-BERT performed

best at predicting common technology sections and classes; PaECTER was competitive with

S-BERT, and GTE lagged.

Overall, we view GTE and PaECTER as the strongest models across our validation

tasks, with S-BERT lagging behind. Both GTE and PaECTER suggest patents declined

in contemporaneous similarity in the first half of the 20th century, but they differ in other

aspects. Given GTE’s success at predicting historical human annotations and PaECTER’s

strong results in predicting modern patent interferences , one might weigh GTE’s historical

trends and PaECTER’s modern trends more. Alternatively, a equally weighting both GTE

and PaECTER indexes (Figure 5) captures these dynamics well: a long-run historical decline

in patent similarity from 1836 to 1977, followed by relatively stability. Note that PaECTER’s

scale implies minimal movement in similarity overall. Because of that, a simple average of

the GTE and PaECTER indexes results in a trend similar to GTE’s, but on a smaller scale.

On the other hand, one might want to give some weight to the S-BERT results, given

its strong performance on the patent class task. The final panel in Figure 5 reports a

weighted average of S-BERT (10% weight), GTE (45% weight), and PaECTER (45% weight).

Compared with the simple average of GTE and PaECTER, this index shows more stable

contemporaneous similarity in the middle 19th century, and a steady decline in similarity
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since 1977.

These findings highlight the importance of careful model selection and validation in eco-

nomic research, particularly when analyzing long-term trends in technological change.

Our findings have significant implications for understanding long-run invention dynamics.

In a companion paper (Ganguli et al. 2024), we develop a theory that links the decline

in contemporaneous invention similarity to other notable trends in innovation economics,

including the increasing burden of knowledge (Jones 2009), rising R&D spending (Hirschey,

Skiba, and Wintoki 2012), declining R&D productivity (Bloom et al. 2020), and constant

R&D spillovers (Lucking, Bloom, and Van Reenen 2019). This theory posits that as the

burden of knowledge increases, inventors spread out over an expanding knowledge frontier,

leading to a situation where ideas become harder to find (Bloom et al. 2020) due to weaker

knowledge spillovers from more distant neighbors in idea space.

To further demonstrate that measurement depends on representation, we revisited the

analysis of breakthrough patents by Kelly et al. 2021. (See details in Appendix E.) Overall,

our analysis confirms the Kelly et al. (2021) finding that the rate of breakthrough inventions

is higher today compared with prior decades. That said, the choice of representation still

matters. Compared with the TF-BIDF representations used by Kelly et al. (2021), GTE-

based measures suggest that the recent increase in breakthrough inventions is less unusual

compared with historical patterns. Moreover, GTE-based measures appear to be more robust

and less sensitive to decisions about how to process and residualize the data. In Appendix

F, we further explore why deep learning models perform better compared with traditional

methods such as TF-IDF.

4.1. Similarity Dynamics Within and Across Patent Office Technology Classifications

Figure 6 decomposes patent claim similarity into within-class and between-class com-

ponents. We group patents according to their primary CPC “three-digit” class. Then, we

calculate average pairwise similarity for patent claims in the same class and for claims in

different classes, using our validated GTE-based representations. Within-class similarity
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(a) Within classes (b) Between classes

Figure 6: Average pairwise patent claims similarity by year according to GTE embeddings,
decomposed into within and between class similarity.

declines throughout the sample, closely mirroring the overall trend observed in Figure 5.

In contrast, between-class similarity shows more dramatic fluctuations, with a sharp initial

decrease followed by a substantial increase since the early 20th century.

These findings highlight the limitations of classification-based approaches to measuring

patent similarity (where, by definition, the patents in the same class are always similar).

They also demonstrate a potential weakness of our patent class validation task, since, by

construction, between-class similarity is ignored. Instead, text-based models can better cap-

ture dynamics both within and across technological fields, providing a more comprehensive

picture of the evolving landscape of innovation.

4.2. Declines in Interferences

To further substantiate our GTE results on declining similarity, we construct a time series

of interference rates spanning 150 years. This analysis provides an independent confirmation

of our finding of declining patent similarity over time. While we used post-1998 interference

cases to validate GTE-based measures of similarity, this section documents trends in inter-

ference rates from 1864 to 2014, offering additional out-of-sample empirical support for our

main results.

We estimate the annual rate of interferences per issued patent, which approximates the
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probability that an issued patent was involved in an interference. Our analysis combines

four distinct data sources spanning different time periods. Our earliest data come from

the Registers of Interferences (1864–1901), which we purpose-digitized from the USPTO

Records in the National Archives. We recorded 19,388 interference cases, averaging 504

interferences terminated annually. For the period 1950–1962, we rely on summary statistics

from Di Simone, Gambell, and Gareau (1963), which report an average of 640 interferences

terminated annually. Data from Calvert and Sofocleous (1982, 1986, 1989, 1992, 1995)

show an average of 237 interferences terminated yearly from 1980–1994. Finally, our most

recent data from Ganguli, Lin, and Reynolds (2020) indicate an average of 76 interferences

terminated annually from 1998–201410.

Figure 7 illustrates a striking decline in the rate of interference over the 150-year period

from 1864 to 2014. The average rate of interference fell from 2.71% in 1864–1901 to 1.43% in

1950–1962, then to 0.30% in 1980–1994, and finally to 0.05% in 1998–2014. Interestingly, the

greater variability in the 19th century in the rate of interference, followed by a steady decline

in interference since the middle 20th century, most closely resembles the trend in pairwise

patent similarity illustrated by the weighted average of S-BERT, GTE, and PaECTER shown

in Figure 5. This substantial and consistent decline in interference rates provides independent

support for a long-run decline in invention similarity.

5. Conclusion

This paper presents a systematic approach to the construction and validation-based se-

lection of text-based measures for economic concepts, focusing on patent similarity. Our

analysis of NLP model selection and validation for economic research yields important rec-

ommendations for economists. We advocate testing multiple models, especially when some

of the candidate NLP models are older or proprietary. Researchers should design domain-

10This figure likely slightly undercounts the actual number of interferences, as some were terminated before
reaching the Board of Patent Interferences.
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Figure 7: Interferences per issued patent

specific validation tasks tailored to their research questions to guide model selection. For

studies measuring the similarity of patents, or similar concepts, GTE and PaECTER em-

beddings can serve as benchmark embeddings, as long as newer alternatives do not exist. As

new generations of models emerge or when developing custom models, we encourage using

our validation tasks alongside the research question-specific ones.

These recommendations stem from our finding of substantial performance differences

between models on specific tasks and their divergent trends in key economic measures. This

approach can allow economists to conduct more reliable and more robust analyses using

methods from the dynamic and evolving field of NLP.
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Appendix A. Visualization of Embedding Spaces

This appendix describes the process we followed to generate the visualizations discussed

in Section 2.

The raw data are obtained using the same sampling strategy outlined in the class and

period validation section (3.3). This strategy involves sampling patents from specified classes

as categorized by the USPTO, across distinct 25-year periods ranging from 1850 to 2023.

We then plot 2-dimensional projections of the embedding spaces, where individual patents

are marked with color according to their respective class or period. This visualization tech-

nique provides a geometrically intuitive perspective of the innovation space. It also lays a

visual foundation for comparing the efficacy of different embedding techniques like S-BERT

and TF-IDF.

A.1. Methodology

The primary method we employ for visualization is dimensionality reduction through the

Uniform Manifold Approximation and Projection (UMAP) technique. UMAP is noted for

its ability to preserve both global and local structures during reduction, making it, roughly

speaking, a non-linear variant of Principal Component Analysis (PCA).

To speed up the computation, we conduct the initial dimension reduction using PCA,

which reduces the dimensionality of the S-BERT and TF-IDF representations to 50. Subse-

quently, UMAP is applied to these reduced representations. This two-step process harnesses

the computational efficiency of PCA while benefiting from the geometric qualities of UMAP.

We manually tuned UMAP hyperparameters to achieve a more clustered representation

that looked more like an “archipelago” than a singular “continent.” This tuning aids in

better visual separation among clusters within the innovation space.

A.2. Plotting

One of the challenges encountered during visualization was the overlapping of data points,

especially in dense clusters. To mitigate this, a jittering technique was employed which
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disperses each point slightly within its local neighborhood to reduce overlap, hence enhancing

the visibility of individual clusters. The jittering results in a boxier scatter plot, which is a

compromise for better clarity.

The plots (refer to Figure 3) primarily serve as illustrative tools, providing a more tangible

notion of the idea space. We use color coding to denote different patent classes and 25-year

periods in both S-BERT and TF-IDF projections. Despite the inherent distortions, some

observations could hint at underlying structural differences between the representations.

At first glance, it’s clear how the representations reflect the class and period structure.

S-BERT representations show clearer class boundaries compared to TF-IDF representations,

suggesting that patent clustering is closer to the class structure. On the other hand, TF-IDF

periods seem less mixed compared to S-BERT periods, although this difference is more subtle.

These visual patterns match the results we discussed in Section 3.3, where we evaluated how

well the representations classify patent pairs into the same class and same period categories.

This consistency between visual observations and analytical findings is encouraging.

It is harder to draw conclusions from the general layout because of the distortions inherent

in the projection project. However, some observations stand out. For example, TF-IDF has

more “dust” compared to S-BERT, which has more of an “empty space.” Also, the extended

x and y tails in TF-IDF, hidden due to winsorizing, hint at a possible trend where variability

in expressing similar ideas with different words pushes these representations farther from the

core.

Lastly, we explored the clusters qualitatively using an interactive tool. While we don’t ex-

pect every aspect of patent positions to be interpretable, some interesting observations came

to light. For instance, in Panel A of Figure 3, a blue square around (-5, 0), representing the

electricity class, contains many semiconductor patents. This square sits between the light

blue square on its left representing materials science patents (Chemistry and Metallurgy)

and a more general blue electricity patent cluster on its right. Although such observa-

tions are anecdotal, they help build trust in the model, especially when supported by more
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rigorous analyzes. Such qualitative insights, alongside quantitative evaluations, enrich our

understanding of the embedding spaces and their ability to capture the complex nature of

innovation.

The visualizations provide insight into how different representations can result in

meaningfully different similarity measures, highlighting the importance of making grounded

choices in representations when studying innovation.
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Appendix B. Instructions for the Non-Expert Human Judgement Task

You will be comparing the similarity of two pairs of patents to determine which pair is

more similar to each other. Read through each pair carefully. Then compare the key aspects

of each pair of patents, including the following (feel free to use “scratchpad” column to take

notes, but that’s not necessary):

• The general field or domain the patents relate to

• The specific problem each patent is trying to solve

• The key components of the solution each patent proposes

• Any other major similarities or differences between the patents in each pair

Based on analyzing these factors, assess the overall similarity of the patents in each pair.

Determine which pair of patents you think is more similar to each other.

If you don’t understand the text enough to assess the above, feel free to google to under-

stand meaning of unfamiliar words or concepts. But try to avoid reading parts of the patent

that are outside the snippet (for example, using google patents).

In the “anno more similar 1 or 2 or 0” column, put only the number of the pair (1 or 2)

that you judge to be more similar. If you are unsure about which is better, put 0 there.

To make it easier to annotate in excel, adjust the width of the text pair 1 and text pair 2

columns and click the “wrap text” button.

Example

Pair 1

IMPROVEMENT: Improvements in Train-Binding Harvesters and Mowers

CLAIMS: The combination of the wedge-shaped platform 15, secondary platform 47,

door 35, carriage 46, pivoted reciprocating extension-rake 41, chain 64, and the pulleys

60, these members constructed and operating substantially as and for the purposes herein
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specified. 2. In combination with the main frame B, the detachable arm 63, having the

binder mounted thereon, substantially as and for the purposes herein specified. 3. The

combination of the arm 63, eyebolt H

IMPROVEMENT: Improvement in Incandescent Electric Lamps

CLAIMS: 1. The combination, with the incandescing conductor of an electric lamp and

the key for controlling the circuit thereof, of an adjustable resistance located within the base

of the lamp and cut in or out of the circuit in any desired proportion by the key, so that the

lamp may be used at any desired power less than its normal capacity, substantially as set

forth. 2. A carbon resistance made substantially as described, and provided with a series of

metallic contacts, in combination with a keyhavin

Pair 2

IMPROVEMENT: Improvements in Wire Fences

CLAIMS: 1. In a wire fence a vertical brace or tie having two legs, a horizontal wire

having horizontal bends disposed between said two legs, a plate having at each end a pair

of horizontally-extending prongs or fingers with spaces between the same, and a connecting-

portion d, the back side of said connecting portion being disposed within said horizontal

bend, the horizontal wire passing throughsaid spaces, and the front side of said prongs or

fingers being clamped around said legs, substantially as and

IMPROVEMENT: improvements in hitches

CLAIMS: 1. A trailer hitch comprising a bar, means for rigidly securing said bar

vertically on a vehicle bumper, a loop loosely mounted on the lower portion of the bar,

said bar having an opening in its upper portion, a bracket removably mounted on the bar,

said bracket including a second vertical bar engaged at its lower end in the loop, a forwardly

projecting rigid pin on the upper end portion of the second-named bar engaged in the opening
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of the first-named bar, and a ball rigidly mounted on the seco

Possible Reasoning

Pair 1

The first patent relates to harvesting/mowing equipment, while the second is about

incandescent electric lamps. Very different domains. The first patent aims to improve the

binding mechanism on a harvester/mower. The second allows adjusting the power level of an

electric lamp. The first uses components like platforms, doors, carriages, rakes and pulleys in

its solution. The second uses an adjustable resistance, metallic contacts, and a key. The two

patents are solving very different problems in unrelated fields using dissimilar components

and mechanisms.

Pair 2

Both patents relate to connection/attachment mechanisms, the first for wire fences and

the second for trailer hitches. More related domains than Pair 1. The first patent aims to

provide an improved way to brace and tie together wires in a fence. The second provides an

improved trailer hitch mechanism. Both make use of bars, loops, brackets, and engagement

of components to create their attachment solutions. While the specific applications differ,

both patents essentially aim to solve connection/attachment problems using some similar

components like bars, loops and brackets.

Conclusion

The patents in Pair 2 seem to have more in common in terms of their general domain,

the type of problem they are solving, and some of the key components used, compared to

the very different patents in Pair 1. Pair 2 appears more similar overall.

More difficult pairs

Many patent pairs will be more tenuously connected than others, even when patent pairs

seem dissimilar try to think about how they might be trying to solve similar problems or
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using similar technology.

Here are some examples of dissimilar things that might still be the more similar patent

pair in a row:

• Sewing Machines and Closet Hanging Rods are very different technologies, but are

both related to clothing/home goods

• Flutes and Tube Sprinklers are very different technologies, but are both tubes with

holes in them

Often the patents themselves are small but complicated improvements in technologies

you are already familiar with. Even if it is hard to understand the improvement, try to

think about how you can connect the technologies in each pair of patents (even tenuously),

keeping in mind again:

• The general field or domain the patents relate to

• The specific problem each patent is trying to solve

• The key components of the solution each patent proposes

• Any other major similarities or differences between the patents in each pair
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Appendix C. LLM prompt for patent similarity assessment

You will be comparing the similarity of two pairs of patents to determine which pair is

more similar to each other.

Here is the first pair of patents:

<pair1> {PAIR1} </pair1>

And here is the second pair of patents:

<pair2> {PAIR2} </pair2>

Read through each pair carefully. Then, in a <scratchpad>, compare the key aspects of

each pair of patents, including:

• The general field or domain the patents relate to

• The specific problem each patent is trying to solve

• The key components of the solution each patent proposes

• Any other major similarities or differences between the patents in each pair

Based on analyzing these factors, assess the overall similarity of the patents in each pair.

Determine which pair of patents you think is more similar to each other.

In an <answer> tag, output only the number of the pair (1 or 2) that you judge to

be more similar. If you are unsure about which is better, output 0. Do not include any

other text or explanation. Close the answer tag with </answer>. You shouldn’t have a bias

towards answering either 1 or 2, the answer should be only evidence-based. If you don’t have

a reasonable level of confidence, it’s better to output a 0.
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Appendix D. LLMs for patent similarity assessment

Human annotation, while valuable, can be costly and challenging, especially when com-

paring technical documents like patents. To address these limitations and provide a scalable

approach to our validation setup, we explore the use of Large Language Models (LLMs) for

annotation tasks. While this approach introduces its own set of limitations, it offers potential

benefits in terms of scalability and cost-effectiveness.

It’s crucial to note that we do not view this as an exercise in using LLMs as survey respon-

dents. Recent research across various disciplines has shown that LLMs often do not reflect

human judgments in statistically accurate ways (Bisbee et al. 2024; Dominguez-Olmedo,

Hardt, and Mendler-Dunner 2024; Goli and Singh 2024). In light of these findings, we

cannot assume that LLMs have the same underlying concept of idea similarity as humans.

Rather, we explore whether this is the case to a useful degree by comparing LLM results

with human annotations, allowing us to assess the potential utility of LLMs in this context.

Our approach is conceptually similar to the distillation techniques used in LLM research,

where outputs from larger models are used to improve or evaluate smaller models (Hsieh

et al. 2023). In our case, we’re not improving capabilities but testing them, using larger

LLMs to evaluate the performance of smaller embedding models that share many elements

with LLMs.

We employed two state-of-the-art (as of July 2024) language models, Claude 3.5 Sonnet

(claude-3-5-sonnet-20240620) and GPT-4o (gpt-4o-2024-05-13), to perform the same

similarity judgment task as human annotators. We provided the models with identical

patent pair comparisons, using carefully designed prompts based on the human annotator

instructions (see Appendix Appendix C for the full prompt).

Our prompts were structured to mirror the human annotation process closely, incorpo-

rating a “chain of thought” (CoT) approach (Wei et al. 2024). The LLMs were instructed

to analyze key aspects of each patent pair in a “scratchpad” section before making a final

judgment, mirroring the format of human annotations.
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Table D.5: LLM Agreement with Embedding-Based Similarity Rankings

PaECTER GTE S-BERT TF-IDF
Claude GPT Claude GPT Claude GPT Claude GPT

(Intercept) 0.14 0.17 0.08 0.14 0.16 0.11 0.16 0.31∗

(0.10) (0.10) (0.09) (0.09) (0.09) (0.09) (0.09) (0.13)
Claude=1 0.52∗∗∗ 0.60∗∗∗ 0.58∗∗∗ 0.54∗∗∗

(0.11) (0.10) (0.10) (0.10)
GPT4o=1 0.57∗∗∗ 0.58∗∗∗ 0.71∗∗∗ 0.35∗

(0.12) (0.11) (0.10) (0.15)
R2 0.19 0.26 0.28 0.28 0.28 0.43 0.23 0.08
Num. obs. 92 72 91 76 90 67 94 68
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: Regression results showing the agreement between Claude 3.5 Sonnet (claude-3-5-sonnet-20240620), GPT-4o
(gpt-4o-2024-05-13), and the relative similarity rankings of patent pairs according to different patent text representations.

D.0.1. LLM-based Results

To analyze the agreement between LLM judgments and embedding-based similarity rank-

ings, we use the following regression setup:

I[Sim(2) > Sim(1)]Emb = βLLM
0 + βLLM

1 I[Response = 2]LLM + ϵ (D.1)

where LLM ∈ {Claude, GPT} and Emb ∈ {PaECTER, GTE, BERT, TF-IDF}. The coef-

ficient β1 represents the increase in the probability that the embedding indicates pair 2 is

more similar when the LLM chooses pair 2. Higher β1 suggests a stronger LLM-embedding

agreement.

Each LLM produced outputs for 100 comparisons. However, the number of observations

in our regressions is lower, reflecting the removal of cases where the LLM responded with

0 (indicating it couldn’t decide). This ensures that our analysis focuses on clear judgments

made by the LLMs.

We present the results of our LLM-based regressions in Table D.5. The ranking of

representations differs between the two LLMs and from our human annotation results. For

Claude, the ranking is GTE >S-BERT >PaECTER >TF-IDF, while for GPT-4o, it’s S-
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BERT >GTE >PaECTER >TF-IDF. This contrasts with the human annotation ranking

of GTE >BERT >PaECTER >TF-IDF. Despite these differences, both LLMs consistently

show that newer embedding models (PaECTER, GTE, S-BERT) outperform the traditional

TF-IDF approach, aligning with our human annotation findings in this crucial aspect.

The variability in results between human annotators and different LLMs underscores

the potential limitations of using LLMs as proxies for human judgment in this context.

However, the consistent underperformance of TF-IDF across all evaluation methods (human

and LLM) provides strong evidence for the superiority of newer embedding techniques in

capturing patent similarity. This suggests a potential use for LLMs as a cost-effective way

to test the validation tasks before deploying them to human annotators, streamlining the

overall validation process.
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Appendix E. Revisiting Breakthrough Patents with Validated Patent Represen-

tations

This section demonstrates how the choice of patent representation can significantly im-

pact economic measurement by revisiting the analysis of “breakthrough” patents in Kelly

et al. (2021).

Our investigation not only provides a robustness check on their findings but also under-

scores the critical importance of model selection in economic research. Kelly et al. (2021)

employ a backward-looking variant of TF-IDF, which they term TF-BIDF, to identify break-

through patents. These are defined as patents dissimilar to past inventions but highly similar

to future ones. Their method involves creating TF-BIDF representations of patent texts,

residualizing this measure on year fixed effects, identifying the top 10% of patents in the

residualized measure, and plotting the rate of breakthrough patents normalized by total US

population.

Our analysis explores the sensitivity of their results along three key dimensions: (i)

using GTE versus TF-BIDF for representations, (ii) residualizing the breakthrough measure

on year fixed effects, and (iii) normalizing the rate of breakthrough patents by total US

population. This comprehensive approach allows us to isolate the impact of representation

choice while also examining other methodological decisions.

Figure E.8: Reproduction of Kelly et al. (2021), Figure 4, Panel A
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(a) Closest to Kelly et al. (2021) (b) No per-capita adjustment

(c) Adjusting for number of patents in-
stead of population

(d) No year fixed effects

Figure E.9: Replication and robustness of Kelly et al. (2021) using TF-BIDF representations

Figure E.8 reproduces the key result from Kelly et al. (2021), showing the rate of break-

through patents per capita over time. Our replication, shown in Figure E.9, Panel A, closely

mirrors their findings despite some methodological differences.11 The qualitative dynamics

are very similar, with fluctuations in the rate (per US population) of breakthrough patents,

followed by a sharp increase starting around 1980.

Examining the robustness of the Kelly et al. (2021) results reveals several insights: The

choice of normalization significantly affects the interpretation of results. While the per-capita

measure shows a sharp increase in breakthrough patents since 1980 (Figure E.9, Panel A),

11The primary distinctions are in the source corpus and IDF computation. We use the ProQuest database
of patent claims, whereas Kelly et al. (2021) employed Google Patents digitized text. Additionally, for
computational efficiency, we simplify the calculation of backward-looking IDFs to the prior five calendar
years, while Kelly et al. (2021) computed a backward IDF for each patent up to five years prior to its issue
date.
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(a) Closest to Kelly et al. (2021) (b) No per-capita adjustment

(c) Adjusting for number of patents in-
stead of population

(d) No year fixed effects

Figure E.10: Replication and robustness of Kelly et al. (2021) using GTE representations

normalizing by the total number of patents issued in that year reveals that the peak rate

of breakthroughs occurred before 1870 (Figure E.9, Panel C). Additionally, residualizing on

year fixed effects alters the historical pattern of breakthrough patents (Panel D), producing

two peaks. These comparisons highlight the sensitivity of the results to methodological

choices.

Figure E.10 presents the same analysis using GTE representations instead of TF-BIDF.

This comparison yields several important observations.

GTE-based measures confirm the general trend of increased breakthrough patent rates

in recent decades, lending support to the Kelly et al. (2021) findings. However, GTE rep-

resentations suggest that the recent increase in breakthrough inventions is less exceptional

when compared to historical patterns. GTE identifies similar, albeit more modest, booms
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in breakthrough patents in the 1870s, 1930s, and 1960s.

GTE-based measures also appear more robust to methodological choices. For instance,

the decision to residualize on year fixed effects has less impact on the overall trends when

using GTE (Figure E.10, Panel D) compared to TF-BIDF. This enhanced stability suggests

that GTE may provide a more reliable foundation for analyzing patent data across differ-

ent methodological approaches, potentially offering a more consistent view of technological

change over time.

Our analysis corroborates Kelly et al. (2021)’s finding of elevated breakthrough invention

rates in recent decades, while demonstrating the crucial role of representation choice in

economic measurement. GTE-based measures, unlike TF-BIDF, reveal that the recent surge

in breakthrough inventions is less exceptional in a broader historical context. Crucially,

GTE representations show greater robustness and reduced sensitivity to data processing

and residualization decisions. These findings underscore the importance of validation-based

model selection in research on technological progress.
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Appendix F. Why are Deep Learning Models Better? An In-Depth Look at

Why S-BERT is Better than TF-IDF.

In this section, we explore the performance differences between S-BERT and TF-IDF.

First, we compare a 21st-century bicycle patent and a 19th-century velocipede patent to

illustrate S-BERT’s ability to identify semantic similarities. Second, we examine unigram

frequencies in the Google Books Ngram database. Unigrams characteristic of patent pairs

with high TF-IDF similarity overweight period-specific language similarities, rather than

similarity of ideas represented by the patents. We then present details of the characteristic

unigram methodology, an additional Google Books Ngram analysis, and a synonym-based

analysis that further highlights S-BERT’s ability to capture semantic similarity.

F.1. Example: Bicycle versus Velocipede

Figure F.11 shows a bicycle patent from the 21st century and a velocipede patent from the

19th century. Despite these patents originating from different time periods and employing

distinct terminologies, S-BERT successfully identifies them as similar, positioning them in

the 87th percentile of similarity. At the same time, the similarity according to TF-IDF is 0.

This example illustrates the S-BERT’s ability to capture semantic nuances and contextual

similarities despite changes in language.

Both patents introduce improvements in the design or function of two-wheeled vehicles.

A velocipede is an archaic term for a type of bicycle. Although Patent 1 focuses on the

“front frame for a bicycle” while Patent 2 is more broadly about an “improved velocipede,”

they both involve common mechanical features such as tubes, frames, and axles. However,

the patents do not share many common terms. Patent 1 talks about “front frame,” “inner

tubes,” “upper tube,” while Patent 2 mentions “friction-clutch,” “spurs,” “arms,” etc.

S-BERT takes into account not just specific words, but also the context in which these

words appear. Words with similar meaning that frequently appear in similar contexts will be

assigned similar S-BERT vectors. Thus, S-BERT representations reflect that both patents
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Patent 1: US7562890B2 (2009) Patent 2: US93016A (1869)

Front frame for a bicycle. IMPROVED VELOCIPEDE.
1. A front frame for a bicycle,
comprising: two first inner tubes abutted
together; two second inner tubes abutted
together; an upper tube of cured
multiple layers of fiber reinforced rein
material wound around the two first
inner tubes so that there is no crack
between the upper tube and . . .

In the velocipede as constructed, and in
combination therewith, the
friction-clutch, spurs, arms, cross-bar,
cam, guide-wheel, with hollow rim and
axle, arranged and operated
substantially as described. In witness
whereof, I have hereunto set my hand
and seal.

Figure F.11: A conceptually similar pair of patents from different time periods
Notes: Velocipede is a type of bicycle. The text is truncated to the title and the beginning of the claims section of the
patents. Typos due to OCR were fixed for this illustrative example. According to S-BERT, these patents are in the 87th
percentile of similarity, whereas according to TF-IDF, the similarity is 0.
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are about two-wheeled vehicles, even if they use different terms. S-BERT is trained on

a diverse dataset, which includes technical language. It can therefore encode terms like

“frame,” “tubes,” and “axle” as related in general, even if they appear in different contexts.

TF-IDF is a simpler bag-of-words model that does not capture meaning in the same way

(see Smith 2020). It considers only the frequency of individual words in each document and

in the corpus as a whole. TF-IDF treats distinct terms such as “bicycle” and “velocipede” as

unrelated concepts. In sum, S-BERT is able to better capture the semantic and contextual

similarities between these two patents that describe similar inventions but do not share a

common vocabulary.

F.2. TF-IDF Overweights Period-Specific Words versus Universal Synonyms

The bicycle/velocipede example suggests that TF-IDF overweights period-specific terms

like velocipede, leading it to assign low similarity to pairs that might describe the same idea

with different terms. Here we extend that analysis. We hypothesize that terms used in

patent pairs assigned high similarity by TF-IDF should have a higher variance of usage over

time. These period-specific terms might be archaic or modern, or they may have irregular

fluctuations in usage.

Figure F.12 presents some illustrative examples of unigram frequencies over time. Among

the top-five most characteristic unigrams, TF-IDF unigrams are more volatile, which indi-

cates more time-specific word usage.

We further hand-picked examples of conceptually-similar words in panel (b). “Dresser,”

characteristic of S-BERT similar pairs, exhibits moderate use with little variation until the

2000s. In contrast, “vanity,” characteristic of TF-IDF similar pairs, exhibits more volatility,

steadily dropping in usage throughout the period between 1850 and 1970, followed by a small

rise. Another example is shown in panel (c). “Verbal” and “cognitive” both increase after

1950. But the increase is more dramatic for “cognitive,” and therefore this term characteristic

of TF-IDF similar pairs has a larger coefficient of variation.
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(a) Top-5 characteristic unigrams for each representation

(b) Hand-picked example 1

(c) Hand-picked example 2

Figure F.12: Frequency of characteristic unigrams of the pairs of patents classified as similar
by S-BERT and TF-IDF
Notes: The plot is based on the Google Ngram Corpus (1850–2019). Frequency is normalized to the largest frequency on each
plot. The number after the unigram label is the coefficient of variation, defined as the standard deviation divided by the
mean. The characteristic unigrams are computed using the Monroe, Colaresi, and Quinn 2017 algorithm.
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F.3. Google Ngrams Analysis

To gain insights into the time-specific nature of the words that TF-IDF focuses on, we turn

to examining the tokens characteristic of patent pairs located closely in the TF-IDF space

through the lens of Google Ngrams data. We identify characteristic tokens that differentiate

patent pairs based on their similarity scores. Our analysis categorizes patent pairs into three

groups: (i) those identified as similar by both S-BERT and TF-IDF, (ii) those recognized as

similar only by S-BERT, and (iii) those recognized as similar only by TF-IDF. We exclude

pairs with mutual agreement between models and determine characteristic unigrams for the

latter two categories.

This analysis demonstrates that the unigrams characteristic of patent pairs with high TF-

IDF similarity tend be more heavily used in specific time periods compared to the S-BERT

unigrams, which can explain the outperformance of TF-IDF in the period classification task.

The Google Books Ngrams dataset is a collection of word frequencies derived from the

Google Books corpus,12 which contains a vast array of books published over several centuries.

This dataset enables the analysis of the usage patterns of words and phrases over time,

providing a valuable resource for studying the evolution of language.

In NLP, characteristic tokens or words are specific lexical features that are highly indica-

tive of a particular category, topic, or sentiment. These tokens serve as markers that can

help in classifying or differentiating texts based on the target concept of interest, such as

the party alignment of a political speech, or, in our case, whether a patent pair is deemed

similar by S-BERT or TF-IDF. We use the Monroe, Colaresi, and Quinn (2017) method im-

plemented in the Schnoebelen, Silge, and Hayes (2022) R library to systematically identify

characteristic words. The method employs Bayesian shrinkage and regularization techniques

to select and evaluate the relative importance of words that capture the target semantic

concept.

12Specifically, we use the “English 2019” corpus accessed using ngramr library in R programming language
(Carmody 2023).
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Finding characteristic words requires a corpus of text split according to a categorical

variable, which we obtain the following way. From the corpus of 11,200 patents used in the

class and period validation task, we selected pairs that were in the top quartile of similarity

scores according to S-BERT, TF-IDF, or both. We then categorized these pairs into three

classes:

1. The representations agree

2. S-BERT identifies as similar, but TF-IDF does not S-BERT Yes category

3. TF-IDF identifies as similar, but S-BERT does not TF-IDF Yes category

We discard the pairs where both representations agreed and use the rest of the pairs as the

input to Monroe, Colaresi, and Quinn (2017) algorithm to find unigrams most characteristic

of S-BERT and TF-IDF similarity. The output of the algorithm is the list of characteristic

words for the categories S-BERT Yes and TF-IDF Yes along with the weighted log-odds that

quantify the extent to which a unigram is more likely to appear in one category of patent

pairs compared to the other.

Once the characteristic unigrams are obtained, we analyze their frequency from 1850 to

the present using the Google Books Ngram corpus. For each unigram, we calculate the mean

and standard deviation of its frequency over time. To obtain a measure of variation that is

comparable between different unigrams we compute the coefficient of variation, defined as

the standard deviation divided by the mean.

Figure F.13 demonstrates the average coefficient of variation for S-BERT Yes and TF-

IDF Yes characteristic unigrams. The difference is large, especially for the unigrams with

the highest weighted log-odds. For the top 100 unigrams, the S-BERT coefficient of variation

is 0.7 compared to 1.2 for TF-IDF (which means that the average standard deviation is 70%

and 120% of the mean, respectively). As we increase the number of unigrams we include in

the computation, the difference becomes smaller, but is always large: for all unigrams, the

S-BERT coefficient of variation is 0.74 compared to 0.95 for TF-IDF.
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Figure F.13: Average over-time coefficient of variation of the frequency of characteristic
unigrams of the pairs of patents classified as similar by S-BERT and TF-IDF
Notes: The unigram frequency information is from the Google Ngram Corpus (1850–2019). The coefficient of variation is

defined as the standard deviation divided by the mean. The characteristic unigrams are computed using the Monroe, Colaresi,

and Quinn 2017 algorithm.

The higher coefficient of variation of unigrams in the TF-IDF Yes category suggests that

TF-IDF is sensitive to the linguistic peculiarities of specific time periods. This provides

strong evidence for why TF-IDF is more effective at categorizing patents based on their

temporal context.

F.4. Synonyms Analysis

The objective of this analysis further explore the contrasting types of similarity captured

by S-BERT and TF-IDF, particularly focusing on why S-BERT excels in class validation

while TF-IDF shines in the period task. Our hypothesis posits that S-BERT, unlike TF-IDF,

assigns a relatively lower weight to exactly overlapping words when determining similarity

between patent pairs, and leans more towards semantic similarity and other forms of word

“interchangeability.” This distinction becomes apparent when analyzing patents within the

same period that tend to exhibit period-specific overlapping language, even if they belong

to different classes. Conversely, patents from the same class but different periods are more

likely to exhibit similarity at a conceptual or idea level, which is the main type of similarity

we aim to capture.

In preparing the data for analysis, we further stratified patent pairs from the Class/Period
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validation sample into two strata: tfidf yes, S-BERT yes, and agree (using the 75th per-

centile similarity cutoff for yes). For instance, S-BERT yes implies that according to S-BERT

this pair is similar, but according to TF-IDF, it is not. We further categorized them as

same class, same period, both same, and neither same. To focus on informative cases,

pairs in agree, both same, and neither same categories were excluded. A sample of 200

pairs from each of the 4 strata (800 pairs in total) was selected.

To enrich our analysis, we employed WordNet, a lexical database of English (Miller

1992). In WordNet, nouns, verbs, adjectives, and adverbs are grouped into sets of synonyms

(synsets), each expressing a distinct word sense. These synsets are interlinked by means

of semantic relations. The relations include hypernyms (more abstract terms), hyponyms

(more specific terms). For each word in each patent, we listed all word senses. For each

word sense, we found the set of synonyms, hypernyms, and hyponyms. These, along with

the original word, were concatenated. For instance, for the word “air,” we obtained a set of

related terms encompassing synonyms like “breeze,” hypernyms like “gas,” and hyponyms

like “zephyr.”

Each patent was then represented as the set of unique tokens in it (each counted once)

and separately as the set of unique tokens plus their synonyms, hypernyms, and hyponyms.

For each document pair, we calculated the exact word overlap and the word plus synonym

plus hypernym plus hyponym overlap (Word+ overlap).

We then conducted a pair of analyzes with the aim of investigating whether the same

text characteristics drive both S-BERT similarity and belonging to the same class cate-

gory, as well as TF-IDF similarity and belonging to the same period category. In the first

analysis of the pair, we ran regressions with S-BERT and TF-IDF on the LHS and the text

characteristics (exact word overlap and Word+ overlap) on the RHS. This analysis aimed

to explore the relationship between the similarity scores generated by S-BERT and TF-IDF

and the text characteristics.

In the second analysis of the pair, we conducted a PR AUC analysis with same class and
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same period categories as the dependent variables and the text characteristics as predictors.

This analysis aimed to explore how well the text characteristics predict the categorization

of patents into same class and same period categories.

The findings from both analyzes exhibited similar patterns: S-BERT similarity and

same class categorization were both driven by Word+ overlap, while TF-IDF similarity

and same period categorization were both driven by direct word overlap. These patterns

led us to conclude that S-BERT’s superior performance in same class categorization can be

attributed to its ability to capture the semantic similarity of words present in the patents,

whereas TF-IDF’s superior performance in same period categorization can be attributed to

its ability to capture direct word overlap.

The findings are shown in Table F.6 and Figure F.14, exhibiting expected patterns.

Table F.6 quantitatively shows how WordNet-derived measures relate to S-BERT and TF-

IDF similarity scores. The regression coefficients indicate that S-BERT’s similarity scores are

negatively associated with direct word overlap but positively associated with Word+ overlap,

suggesting a stronger emphasis on semantic similarity (the negative coefficient on direct word

overlap is not surprising, given our sampling strategy’s focus on patent pairs where the two

models disagree). Conversely, TF-IDF’s similarity scores are positively associated with direct

word overlap, indicating a preference for exact lexical matching.

Following the tabular analysis, Figure F.14 visually represents the Precision-Recall Area

Under Curve (PR AUC) values for Word and Word+ overlap measures across same class

and same period categorizations. In the same class categorization, it is discernible from the

figure that Word+ overlap (sim combined) yields a higher PR AUC value of 0.49 compared to

the Word overlap (sim 1 2) value of 0.43, underscoring the importance of capturing semantic

relationships in addition to exact word overlap for classifying patents within the same class.

Conversely, in the same period categorization, Word overlap outperforms Word+ overlap

with a PR AUC value of 0.588 against 0.512, indicating that direct word overlap is more

pertinent for capturing period-specific similarities. The Figure also shows that, S-BERT
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Table F.6: Regression results for similarity scores and Wordnet-based measures on the
S-BERT yes and tfidf yes patent sample

TF-IDF S-BERT
(Intercept) 0.31∗∗∗ 0.58∗∗∗

(0.02) (0.02)
Word Overlap 0.39∗∗∗ −0.29∗∗∗

(0.04) (0.04)
Word+ Overlap −0.01 0.13∗∗

(0.04) (0.04)
R2 0.15 0.06
Adj. R2 0.15 0.06
Num. obs. 800 800
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: The table presents the coefficients from a regression analysis where the dependent variables are the similarity scores

generated by TF-IDF and S-BERT. The independent variables are Word Overlap, representing the exact word overlap between

patent pairs, and Word+ Overlap, representing the overlap including synonyms, hypernyms, and hyponyms. The negative

coefficients for S-BERT on Word Overlap and for TF-IDF on Word+ Overlap are observed due to the sampling strategy

focusing on patents where the two models disagree.

performs best on same class task and TF-IDF performs same period task on the sub-sample

used in this analysis, conforming with the full sample results discussed in Section 3.3.

In conclusion, one of the mechanisms through which S-BERT better captures idea simi-

larity is through its ability to assign similar vectors to words located closely in the semantic

graph (synonyms, hypernyms, hyponyms). This is consistent with the properties theoreti-

cally expected from S-BERT based on its architecture and training procedure. Our results

show that these properties are useful in innovation economics by allowing S-BERT to capture

the similarity of ideas in a way that transcends period-specific language.

F.5. Why is S-BERT Better? Conclusion

The Google Ngrams analysis and the patent pair example collectively offer robust ev-

idence to support our initial observations. TF-IDF’s strength lies in identifying patents

from the same time period, primarily due to its sensitivity to words that are popular within

specific temporal contexts. Conversely, S-BERT proves superior at classifying patents into
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(a) Same Class; Similarity (b) Same Period; Similarity

(c) Same Class; Wordnet (d) Same Period; Wordnet

Figure F.14: Similarity scores based on the S-BERT and TF-IDF representations and
Wordnet-based measures for categorizing patent pairs as belonging to the same class and
period
Notes: The sample includes patent pairs in the S-BERT yes and tfidf yes categories. We evaluate how well patent pairs can
be classified as belonging to the same class or the same quarter-century period using two sets of similarity scores, based on
S-BERT and TF-IDF representations, and two sets of Wordnet-based measures, Word Overlap and Word+ Overlap. “Word”
represents exact word overlap and “Word+” encompasses word overlap along with their synonyms, hypernyms, and hyponyms
as derived from Wordbet, a lexical database grouping English words into sets of synonyms and recording their semantic
relationships.
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the same technical class, given its ability to understand and capture the semantic essence

of the text, highlighted by its association with synonym, hypernym, and hyponym overlap

as opposed to the exact word overlap. These insights are important for choosing the more

appropriate model for specific downstream tasks.
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Appendix G. Miscellanea

G.1. Photograph of the Register of Interferences

Figure G.15 shows an example page from one of the Register volumes. It displays two

cases. Both cases record hearing dates of January 7, 1890. The subject of the first case was

roll paper cutters and the competing inventors were named Ehrlich and Lawton. The case

was decided in favor of Lawton on January 11. The subject of the second case, Blaine v.

Hadley, was corn harvesters; the case was decided in favor of Hadley on April 29th.
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Figure G.15: Example page from Register of Interferences
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