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ABSTRACT

This chapter synthesizes and critically reviews the modern instrumental variables (IV) literature 
that allows for unobserved heterogeneity in treatment effects (UHTE). We start by discussing why 
UHTE is often an essential aspect of IV applications in economics and we explain the conceptual 
challenges raised by allowing for it. Then we review and survey two general strategies for 
incorporating UHTE. The first strategy is to continue to use linear IV estimators designed for 
classical constant (homogeneous) treatment effect models, acknowledge their likely 
misspecification, and attempt to reverse engineer an attractive interpretation in the presence of 
UHTE. This strategy commonly leads to interpretations of linear IV that involve local average 
treatment effects (LATEs). We review the various ways in which the use and justification of LATE 
interpretations have expanded and contracted since their introduction in the early 1990s. The 
second strategy is to forward engineer new estimators that explicitly allow for UHTE. This 
strategy has its roots in the Gronau-Heckman selection model of the 1970s, ideas from which 
have been revitalized through marginal treatment effects (MTE) analysis. We discuss 
implementation of MTE methods and draw connections with related control function and bounding 
methods that are scattered throughout the econometric and causal inference literature.
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1 Introduction

Instrumental variable (IV) methods are fundamental to causal inference in economics.

They are now also widely used across the social and biological sciences. Their attrac-

tion lies in allowing for unobserved confounders, which arise generically in economic

applications due to private information, preference heterogeneity, and simultaneity,

among other reasons. This chapter synthesizes and critically reviews the literature

on modern IV methods that allow for unobserved heterogeneity in treatment effects

(UHTE).

In Section 2, we briefly review the basic ideas behind IV methods. We argue that

UHTE is a generic feature of many economic applications, especially those in labor

economics. The classical linear IV model found in textbooks does not allow for UHTE.

We clarify the problems created by this misspecification and we outline the conceptual

trade-offs associated with various ways of solving these problems.

The rest of the chapter is then organized into two parts, reflecting the two main

approaches to incorporating UHTE into IV models.

The first approach, which was pioneered by Imbens and Angrist (1994), is to inter-

pret linear IV estimators designed for the classical linear IV model through the lens of

a nonparametric IV model that allows for UHTE. Based on their results, it has become

increasingly common in the empirical literature to describe linear IV estimators, such

as two-stage least squares (2SLS), as reflecting local average treatment effects (LATEs).

This interpretation is derived from a baseline setup with a binary treatment, a binary

instrument, and no covariates, a setup which does not characterize most empirical work

in practice.

In Section 3, we provide a comprehensive survey of how the LATE interpretation is

affected by moving away from the baseline setup. We find that it is remarkably specific

to the baseline setup. Deviating from the baseline setup by having a multivalued

treatment, multivalued instrument, or by linearly controlling for covariates complicates,

qualifies, or breaks the widespread interpretation that “linear IV is LATE.”

The interpretation problems we point to are orthogonal to the debate over whether

LATEs are interesting objects, a debate which has been had many times before. In-

stead, the problems stem from the now-widespread methodological practice of trying to

provide a misspecification-robust interpretation for a commonly-used estimator in the

context of a less restrictive model for which it was not designed. We call this practice re-

verse engineering because it starts with an estimator rather than starting with a model.

Reverse engineering arguments are increasingly fashionable in microeconometrics, hav-

ing been applied to selection on observables (Angrist, 1998), difference-in-differences
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and two-way fixed effects (e.g. Goodman-Bacon, 2021; Sun and Abraham, 2021), set-

tings with multivalued treatments (Goldsmith-Pinkham et al., 2024), and regression

discontinuity and kink designs (Lee, 2008; Card et al., 2015; Cattaneo et al., 2016).

Our discussion in Section 3 shows that reverse engineering arguments for linear IV

estimators are brittle.

The second approach, which has a longer and more diffuse history, is to forward

engineer estimators of specific target parameters in models that explicitly allow for

UHTE. This includes methods of directly estimating LATEs with estimators other

than linear IV. It also includes the classical selection model developed by Gronau

(1974) and Heckman (1974, 1976, 1979), and its nonparametric reincarnation in terms

of the marginal treatment effect (Heckman and Vytlacil, 1999, 2005).

Section 4 is devoted to surveying these forward engineering approaches. We discuss

methods for estimating unconditional LATEs that avoid some of the pitfalls of reverse

engineering encountered with linear IV. We then discuss a practical linear regression

framework for conducting marginal treatment effect (MTE) analysis with binary treat-

ments. In doing so we emphasize the underappreciated point, formalized by Vytlacil

(2002), that the separable threshold-crossing model used in both the Gronau-Heckman

selection model and modern MTE analysis imposes exactly the same “monotonicity

condition” about selection as the model used by Imbens and Angrist (1994), just with

different notation. The benefit of the MTE analysis is that it provides a vehicle for

both clearly stating the target parameter and for imposing additional assumptions to

aid in estimating it. We show how the linear regression framework for MTE extends

to ordered and unordered treatments, even as the equivalence with the monotonicity

condition is lost. The key theme that emerges is the model of treatment selection and

under what assumptions it is identified. We contrast these selection model methods

to those that allow for UHTE but do not impose restrictions on how the instrument

affects treatment choice.

In Section 5, we distill our discussion into a list of recommendations for researchers

using IV methods. Section 6 provides some brief concluding remarks. Example Stata

and R code for implementing some of the main methods we discuss in the chapter is

available at https://a-torgovitsky.github.io/ivhandbook/.

2 Background

In this section we provide some brief background on IV methods with an empha-

sis on the motivation for incorporating unobserved heterogeneity in treatment effects

(UHTE).
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2.1 IV in a nutshell

IV methods are used to estimate the causal effect of one variable, the treatment, on

another variable, the outcome. The motivating concern is that the treatment is endoge-

nous in the sense that it covaries with other unmeasured factors that are associated

with the outcome. The association between the treatment and outcome conflates the

effect of the treatment with these unmeasured factors. An IV method instead focuses

on the association between the outcome and a third variable, the instrumental variable,

or instrument for short. If the instrument is associated with the treatment, but not

with the unmeasured factors, and if it has no direct effect on the outcome itself, then

the association between the instrument and the outcome should only reflect the causal

effect of the treatment on the outcome.

This line of reasoning relies on three assumptions that all IV methods invoke to

one extent or another: exclusion, exogeneity, and relevance. Exclusion means that

the instrument itself has no direct effect on the outcome. Exogeneity means that it

is not associated with any unmeasured factors that are associated with the outcome.

Relevance means that the instrument is associated with the treatment.

The exclusion and exogeneity assumptions are often controversial in practice. The

purpose of this chapter is not to litigate their merits either in general or in specific ap-

plications. The enormous body of published empirical work using IV methods suggests

that at least some researchers find these assumptions reasonable in at least some appli-

cations. Our focus instead is on how these assumptions can be implemented while also

allowing for the possibility of unobserved heterogeneity in treatment effects (UHTE),

meaning systematic variation in the effect of the treatment on the outcome that persists

even after controlling for other observable variables.

2.2 Why is there unobserved heterogeneity in treatment effects?

UHTE creates many complications in IV methods. These complications can be en-

tirely avoided by assuming that treatment effects are either constant (homogeneous)

or, slightly more generally, idiosyncratic in the sense of being unassociated with the

treatment variable. So before diving in, we should take a moment to reflect on why

such an assumption is often unpalatable in empirical economics.

A workhorse example from labor economics illustrates the issues clearly. Suppose

that the treatment variable is college attendance and the outcome variable is a labor

market outcome, such as subsequent earnings (e.g. Card, 1999). The classic endogeneity

concern is that there are unmeasured factors, often described loosely as “ability,” that

are correlated with both educational attainment and labor market performance (e.g.
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Becker, 1964; Griliches, 1977). This description is not particularly helpful because it

obscures the role of choice; attending college is a choice and individuals make choices

purposefully.

A more compelling explanation of the endogeneity problem is that individuals are

heterogeneous in their anticipated returns to college due to unobserved private infor-

mation about their skills, aptitudes, or outside options, and they use this information

when making their attendance choices.1 For example, some individuals have an apti-

tude for abstract reasoning that translates into strong labor market performance only

with a college education. Other individuals have an aptitude for trade skills (welder,

plumber, carpenter) that are equally remunerative with or without a college education.

Individuals choose whether to attend college at least in part because of its anticipated

effect on their future earnings. This explanation results in UHTE that is systematically

related to the treatment variable itself: those who choose to attend college tend to be

those who would benefit from it.

The essential ingredients of this story are common for causal inference questions

involving human actors. Interesting treatment variables are often choices. Interesting

outcome variables often reflect substantive consequences for the human beings under

consideration. Human beings don’t make choices randomly; they likely consider, at

least in part, the effect that their choices may have on the outcome. These choices

then become treatment variables that are associated with their effects on the outcome.

Unless there’s a compelling domain-specific reason to believe that the effect of the

treatment cannot vary for some physical or institutional reason, then there will be

UHTE that is systematically associated with the observed treatment choices.

2.3 From the classical linear IV model to potential outcomes

Classical textbook treatments of IV (e.g. Theil (1971), Wooldridge (2010)) start with

an equation like

Yi = α0 + α1Di + εi, (1)

where Yi is the outcome variable, Di is the treatment variable, and εi is an unobservable

that collects all other unmeasured factors in Yi. The instrument, Zi, does not appear in

this equation due to the exclusion assumption. The exogeneity assumption is that Zi

is uncorrelated with εi. The relevance assumption is that Zi is correlated with Di. All

variables are indexed by a unit of observation, i, which we will think of as an individual

1Becker (1967), Willis and Rosen (1979), and Card (2001) develop models with this property. The
following is adapted from Willis and Rosen (1979, pp. S10–S11).

7



for concreteness.

Equation (1) says that a one unit increase in Di—holding all else εi fixed—causes a

change of α1 in Yi for everyone (all i). This is restrictive in two ways: (i) it implies that

the treatment effect of Di on Yi is linear, and (ii) it rules out heterogeneous treatment

effects. In much of the literature and much of this chapter, it is assumed that Di is

binary (takes values 0 or 1), in which case (i) is not restrictive. Our focus is on relaxing

(ii).

One way to relax (ii) is to allow for treatment effects to vary with some observable

covariates, Xi. For example, (1) could be augmented to

Yi = α0 + α1Di + α2Xi + α3XiDi + εi, (2)

so that the causal effect of Di on Yi is now α1 + α3Xi, which can vary with i through

α3Xi. Equation (2) allows for observed heterogeneity in treatment effects, but not

for unobserved heterogeneity (UHTE). So this relaxation of (ii) does not address self-

selection created by factors such as private information and heterogeneity in skills or

preferences. For many economic applications—especially those that appeal to an IV

strategy—it is precisely the unobserved heterogeneity that is the concern.

Relaxing (ii) to allow for UHTE instead requires interacting the treatment variable

with latent variables. One way to do this is to postulate a relationship like

Yi = f(Di, εi), (3)

for some function f . Such a relationship is called “nonseparable” because Di and εi

are not additively separable, as in (1). Unlike the classical model (1), a nonseparable

relationship allows for unobserved heterogeneity in treatment effects because, f(d′, εi)−
f(d, εi) still depends on εi.

Comparing f(d, εi) to f(d′, εi) involves the mental exercise of considering the value

that the outcome would have taken if the treatment variable had been fixed at a

potentially counterfactual value d or d′ while keeping all other factors εi the same. This

exercise can be represented succinctly in the potential outcomes notation introduced

by Neyman (republished as Splawa-Neyman et al., 1990) for experiments and ported to

observational settings by Rubin (1974).2 In potential outcomes notation, the function

f and unobservable εi are replaced by a collection of potential outcomes Yi(d), one for

each value that the treatment Di can conceivably take.3 Each potential outcome Yi(d)

2Heckman and Vytlacil (2007a) detail the many other authors across numerous disciplines who have
independently invented similar notation. This is perhaps a testament to its intuitive appeal.

3The exclusion restriction is already implicitly embedded in this form of potential outcomes notation. To
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is a random variable that answers the same counterfactual question as f(d, εi): what

would Yi have been had Di been fixed to d, keeping all other factors the same? The

outcome actually observed, Yi, corresponds to the potential outcome of the observed

treatment state, Yi = Yi(Di), while all other potential outcomes are unobserved for

individual i. When Di is binary, this is often written as

Yi = (1−Di)Yi(0) +DiYi(1), (4)

which is the potential outcomes analog of (3).

Some researchers have strong opinions about the merits of working with notation

involving latent variables and nonseparable models versus working with potential out-

comes notation. Sometimes these opinions seem to border on suggesting that the

notation itself has some special powers. As we show in Appendix A, the difference

between the two notations is indeed fully notational: every model written in form

(3) implies one written in form (4), and conversely. Good notation is essential for

clearly communicating arguments and assumptions. But at the end of the day, it is

just notation.

In this chapter, we will use both types of notation. Our default is to use potential

outcomes, which tends to be simpler for models that make fewer assumptions. As we

will see, however, the challenges created by UHTE often demand more assumptions.

Latent variable notation turns out to be useful for this purpose. A good example of

the relationship between potential outcomes and latent variables arises when thinking

about models of treatment selection or selection models.

2.4 Selection models

The reason that UHTE complicates IV methods is that it matters “who” takes treat-

ment. Individuals with different treatment effects will also tend to make different

treatment choices. And if the instrument indeed affects treatment choice, then the

distribution of treatment effects conditional on the treatment will further vary condi-

tional on the instrument. Modeling the selection process of how the instrument affects

treatment provides a way to keep track of this relationship and restrict it through

additional assumptions.

Modeling selection requires taking a stance on the dimensions of the treatment Di

and instrument Zi. Consider the simplest setting in which both Di and Zi are binary

(0 or 1).

be more explicit, one could start by postulating potential outcomes Yi(d, z), state the exclusion restriction
as Yi(d, z) = Yi(d, z

′) for all z and z′, and then define Yi(d) ≡ Yi(d, z).
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A large body of research pioneered by Gronau (1974), Lewis (1974), Heckman (1974,

1976, 1979), Willis and Rosen (1979) and others, modeled selection with a threshold-

crossing model like

Di = 1[Vi ≤ γZi], (5)

where γ is an unknown parameter, and Vi is a continuously distributed latent variable.4

Empirical implementations of this model often incorporate additional control variables

Xi, necessitating some functional form assumptions, notably on the distribution of

Vi, which is often taken to be normally distributed. These parameterizations should

be understood as specific practical implementation choices rather than an assumption

inherent to (5).

Imbens and Angrist (1994) took an ostensibly different approach to modeling se-

lection by applying the potential outcomes notation to potential treatments that vary

with the instrument. We denote these Di(z) for z = 0 and z = 1, so that

Di = (1− Zi)Di(0) + ZiDi(1), (6)

in analogy with (4). With a binary treatment there are four configurations of the

pair (Di(0), Di(1)), which can be thought of as individual i’s choice group. Angrist

et al. (1996) later described these groups as never-takers, always-takers, compliers, and

defiers, for (Di(0), Di(1)) = (0, 0), (1, 1), (0, 1), and (1, 0), respectively.

Imbens and Angrist (1994) assumed that either Di(1) ≥ Di(0) for all i or Di(0) ≥
Di(1) for all i, a condition they described as monotonicity. An alternative way to

state the condition, which ends up being easier to extend and modify, is in terms of

probability: P[Di(1) ≥ Di(0)] = 1 or P[Di(0) ≥ Di(1)] = 1. There is no substantive

difference between these two formulations. The monotonicity condition implies that

there are either no defiers or no compliers. It is usually reasonable to simplify this to

the assumption of no defiers, since there are few situations in which monotonicity is a

compelling assumption but the direction of monotonicity is not known.

How does the Imbens and Angrist (1994) potential choices model with monotonicity

differ from the classical threshold-crossing model (5)? It doesn’t. A causal interpre-

tation of (5), in which Vi represents “all other factors,” implies that treatment choice

4In the early literature, the focus was typically on a one-sided selection problem where Di indicated
whether Yi was observed for individual i (Heckman, 1976, is an exception). This problem is a simplified
counterpart to evaluating the causal effect of a binary treatment, which can be seen as a two-sided selection
problem. Models like (5) are now frequently described as Roy models after Roy (1951); see Heckman and
Honoré (1990) for a discussion of the rationale.
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would be given by Di(0) = 1[Vi ≤ 0] if Zi = 0, and by Di(1) = 1[Vi ≤ γ] if Zi = 1. Since

the same latent variable Vi appears in both implied treatment choices, this implies that

either P[Di(1) ≥ Di(0)] = 1, if γ > 0, or the reverse if γ ≤ 0, which is exactly the

monotonicity condition. Conversely, given potential choices, one can always construct

a threshold-crossing model of form (5) that implies exactly the same potential choices

by constructing Vi according to individual i’s group. Assuming that γ ≥ 0, make every

always-taker have Vi ≤ 0, every complier have Vi in (0, γ], and every never-taker have

Vi > γ (see Figure 1). The threshold-crossing model (5) is therefore equivalent to the

Imbens and Angrist (1994) potential choices model with the monotonicity condition.

The argument just outlined is a special case of a more general equivalence theorem

due to Vytlacil (2002). The key to the argument is the additive separability of Zi and

Vi in the threshold-crossing model. The equivalence continues to hold if (5) is replaced

by Di = 1[Vi ≤ ν(Zi)] for some unknown function ν. It breaks down in a more general

model in which Zi and Vi interact, such as Di = 1[ν(Zi, Vi) ≥ 0], which no longer

necessarily produces or is produced by potential treatments that satisfy monotonicity.

The implication of Vytlacil’s equivalence theorem is that rather than presenting a

new model, Imbens and Angrist (1994) were in fact continuing with the same selection

model developed in econometrics in the 1970s–1980s, but using a different notation.

Their contribution was not so much in the model itself, but in establishing an important

nonparametric identification result, the local average treatment effect, which we discuss

ahead in Section 3.2. Perhaps inadvertently, they also contributed to clarifying that

the additive separability between Zi and Vi in the threshold-crossing model has a

behavioral interpretation as the monotonicity condition.

Vytlacil’s equivalence theorem is quite specific to the case of a binary treatment,

although within that context it extends naturally to multivalued instruments and co-

variates. A wider variety of selection models are used for non-binary treatments, many

of which we discuss throughout this chapter. These models are more complicated, but

they are motivated by a recognition that capturing the relevant treatment variation

is important for an IV argument. While it can be tempting to turn a multi-valued

treatment into a binary one by collapsing its values together, this can create violations

of the exclusion condition.

When modeling with potential treatments, it is often clarifying to think of indi-

viduals i as being partitioned into latent groups depending on their potential treat-

ments. Suppose that there are K + 1 instrument values z0, z1, . . . , zK with poten-

tial treatments Di(z0), Di(z1), . . . , Di(zK). If the treatment can take say four val-

ues, then an individual can be in one of 4K+1 possible choice groups, which we write

11



Figure 1: The Vytlacil (2002) equivalence theorem

Vi

Gi ≡ (Di(0), Di(1))

0 γ

Di(0) = 1 Di(0) = 0z = 0

Di(1) = 1 Di(1) = 0z = 1

always-taker complier never-taker

Notes: The figure illustrates the case in which monotonicity is in the direction Di(1) ≥ Di(0) for all
i. Individuals with potential no-instrument choice Di(0) = 1 get mapped to Vi ≤ 0. Because there are no
defiers, these individuals are always-takers. Individuals with potential with-instrument choice Di(1) = 0 get
mapped to Vi > γ. Again because there are no defiers, these individuals are never-takers. Compliers get
mapped to the remaining region of 0 < Vi ≤ γ.

as Gi = (Di(z0), Di(z1), . . . , Di(zK)).5 Assumptions like the monotonicity condition

can be viewed as requiring some choice groups to not exist (have zero probability).

So, for example, with K = 1, z0 = 0, z1 = 1, and a binary treatment, there are

22 = 4 choice groups—always-takers Gi = (1, 1), never-takers Gi = (0, 0), compliers

Gi = (0, 1), and defiers Gi = (1, 0)—and the monotonicity condition is the assumption

that P[Gi = (1, 0)] = 0, so there are no defiers. We use this group notation extensively

ahead.

2.5 Full exogeneity

Both Imbens and Angrist (1994) and prior work using the threshold-crossing model

(5) assumed the instrument to be exogenous with respect to both the outcome and

the treatment. In the potential choices notation with a binary treatment and binary

instrument the assumption is that Zi is independent of (Yi(0), Yi(1), Di(0), Di(1)), while

the equivalent assumption in latent variable notation is that Zi is independent of (εi, Vi).

In contrast, in the classical linear IV model, Zi is only required to be exogeneous with

respect to latent factors determining the outcome: (Yi(0), Yi(1)) or εi.
6 We call these

contrasting assumptions outcome and full exogeneity for emphasis. Most approaches

to incorporating UHTE impose something like full exogeneity.

5Choice groups are an example of what Frangakis and Rubin (2002) call a principal stratification (see
also Robins and Greenland (1992)), and what Heckman and Pinto (2018) describe as response vectors or
types. Manski (2007) used the same idea for discrete choice analysis.

6Exogeneity in the classical linear IV model is usually stated in terms of orthogonality, correlation or
mean independence. Full independence is often necessary for analyzing UHTE. The substantive economic
interpretation of the exogeneity of an instrument rarely depends on whether the mathematical formulation
is independence or something weaker, like orthogonality.
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Full exogeneity exposes an important distinction between selection models and sta-

tistical first stages of the sort that show up in discussions of the two stage least squares

(2SLS) estimator. A statistical first stage satisfies

Di = πZi + ηi where E[Ziηi] = 0, (7)

an equation often written in tandem with (1) for the classical IV model. Equation

(7) can always be satisfied without any assumptions (beyond existence of moments)

by taking π to be the population regression coefficient from regressing Di onto Zi, so

that ηi are the population residuals. This is a statistical relationship, not a model of

causality; the population residuals are simply the difference between Di and its best

linear predictor using Zi. In contrast, the way in which selection models are typically

used for IV models with UHTE presupposes a causal interpretation. This requires the

unobservables to be viewed as “everything else,” whether stated using a latent variable

Vi, or potential choices Di(z). Assuming full exogeneity implies that the first stage

coefficient π represents a causal effect of Zi on Di.
7

The difference between outcome and full exogeneity has important and underap-

preciated practical implications for IV analysis. Under full exogeneity, different instru-

ments for the same treatment variable cannot be considered in isolation. For example,

Card (1995) used distance as an instrument for college, while Kane and Rouse (1995)

used public college tuition. Suppose that the outcome is future earnings. Evaluat-

ing the outcome exogeneity of these instruments means considering whether they are

correlated with any other omitted correlates of future earnings. This task is familiar

from classical IV analysis with constant treatment effects. Evaluating the full exogene-

ity of these instruments means also considering whether they are correlated with any

other omitted correlates of college attendance. In particular, if distance and tuition

are correlated, then neither distance nor tuition will satisfy full exogeneity when used

in isolation. Full exogeneity requires using both instruments together, or controlling

for the omitted instrument as a covariate. For further discussion, see Heckman (2010,

Section 3.6) and Mogstad et al. (2021, Section III.E).

Covariates are often used in IV analysis to try to weaken instrument exogeneity. An

instrument that is not exogenous unconditionally might still be exogenous conditional

on a vector of covariates Xi. This type of reasoning is routine in empirical work, see

for example Gelbach (2002, pg. 309), Dinkelman (2011, pg. 3091) or Maestas et al.

7For example, if Zi is binary, and if a constant term is included in (7), then π = E[Di|Zi = 1]−E[Di|Zi =
0] as a matter of regression algebra. If full exogeneity is additionally maintained, then π = E[Di(1)−Di(0)]
is the average causal effect of Zi on Di.
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(2013, pp. 1811–1812), to name just a few. In the classical IV model, covariates are

introduced by including them in the outcome equation (1) and then assuming that

they are orthogonal to any remaining latent variation in Yi:

Yi = α0 + α1Di + α2Xi + εi where E[Xiεi] = 0. (8)

This outcome equation is the same as (2) with the interaction term removed, a common

specification when covariates are used to support exogeneity rather than for estimating

heterogeneity along observables.

Covariates are introduced more directly in modern IV analysis by making exogeneity

conditional on covariates. With a binary treatment and binary instrument, conditional

full exogeneity is the assumption that (Yi(0), Yi(1), Di(0), Di(1)) is independent of Zi,

conditional on Xi. Conditional outcome exogeneity is that (Yi(0), Yi(1)) is independent

of Zi, conditional on Xi. Conditional independence is a nonparametric concept. This

makes it easier to reason about than the orthogonality condition in the classical IV

model (8), which also requires considering functional form: is a linear function of Xi

enough to ensure orthogonality with εi, or are quadratic or more exotic terms needed

as well? Separating the economic question of exogeneity from the statistical question

of functional form is useful conceptually, even if (perhaps especially when) parametric

functional forms end up being used for estimation in practice.

2.6 Target parameters

The classical IV model has a single homogeneous treatment effect, the coefficient α1

on Di. Allowing for treatment effect heterogeneity replaces this single effect with a

distribution of effects across individuals. How do we want to summarize this distribu-

tion? The answer to this question inherently depends on the researcher’s motivation

for causal inference.

We see two broad and not necessarily exclusive motivations: policy and “science.”

Policy means inference with the intent to evaluate a change in the way the treatment

variable is assigned. For example, Ito et al. (2023) evaluate the welfare impacts of

different incentive policies designed to encourage users to adopt electricity plans with

dynamic pricing. The “science” motivation is a bit of a residual category, but could

perhaps be thought of as knowledge for the sake of knowledge, without necessarily

being used to guide a concrete decision. Understanding the effect of education on

labor market outcomes is important for understanding fundamental issues about human

capital, something which has value independent of any policy implications.

Both motivations produce empirical questions. What would the gain in welfare be

14



if an $x incentive for dynamic pricing were provided? What is the average effect of a

college degree on future earnings? Answering either type of empirical question requires

estimating quantities that summarize the distribution of treatment effects. We call

these quantities target parameters.

The choice of target parameter tends to be clearer for policy questions. One way to

evaluate a policy change is to estimate the average outcome that would occur under the

new policy and compare that to the status quo average observed in the data. Heckman

and Vytlacil (2001a, 2005) call this the policy-relevant treatment effect (PRTE). If the

conjectured policy change is not observed in the data, then estimating a PRTE requires

extrapolation. Policy changes that involve mandating or forbidding a treatment do

not require modeling selection because treatment choice is fully determined in the

counterfactual. Policy changes that involve changing incentives to take treatment do

require a model of how those changes affect selection into treatment.

Choosing a target parameter for the vaguer “scientific” motivation is more open-

ended, but can be guided by two reasonable principles. Fix a population of interest.

For example, the entire population in a representative survey, the population of indi-

viduals at risk of disability or unemployment, or the subset of females in the population

covered by a given study. Target parameters that reflect larger subpopulations of the

population of interest are more interesting than those that reflect smaller and more

specific subpopulations. Target parameters that can be clearly interpreted in terms

of basic statistical quantities, such as means and quantiles, should also be preferred.

These two principles are consistent with the way randomized controlled trials are eval-

uated: with simple quantities such as means and quantiles, and with an understanding

that the results are specific to the population being studied.

If different target parameters answer different questions, then it stands to reason

that some target parameters will be harder to estimate than others. “Harder” here

means, loosely, that less can be learned under the same assumptions, and that stronger

assumptions are needed to learn the same amount; it could also involve various mea-

sures of statistical difficulty. Acknowledging the existence of this trade-off does not

mean that there shouldn’t be guiding principles to the choice of a target parameter.

A reasonable approach to resolving this trade-off is to estimate a variety of target

parameters that answer questions of different ambition under assumptions of different

strengths.

An example of a target parameter that is often difficult to estimate is the average

treatment effect (ATE), which is the overall average effect of a (binary) treatment

on the population under study. The ATE may or may not answer an interesting

policy question. In the Ito et al. (2023) study of dynamic electricity pricing, the
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ATE compares a policy in which all consumers have static pricing to one in which all

consumers are mandated to have dynamic pricing. In the context of active labor market

programs, the ATE compares a policy that mandates training to one that prohibits it,

a mental exercise that probably has little policy relevance (e.g. Heckman et al., 1999).

However, on the two guiding principles for a scientific motivation, the ATE scores at

the top. Averages are perhaps the easiest summary of a distribution to understand,

and the population reflected in the ATE is the overall population under study, same

as in a randomized controlled trial. The ATE is, however, usually difficult to estimate

with an IV while allowing for UHTE; it is generally not identified without additional

assumptions beyond full exogeneity and the sharp bounds on the ATE are often too

wide to be of practical interest.

A target parameter that is easier to estimate is the average treatment effect for the

compliers to a binary instrument, the so-called local average treatment effect (LATE),

the mechanics of which we discuss extensively ahead. Whether the LATE answers an

interesting policy question depends on what the instrument is. Ito et al. (2023) ran-

domly assigned an incentive of $60 for adopting dynamic pricing relative to a baseline

of no incentive. The LATE derived from this contrast provides a comparison of exactly

this policy, which might be one potential policy of interest. The average effect for

compliers is as easy to interpret as the ATE, but it only concerns the compliers, which

are a smaller subset of the overall population. All things equal, LATEs that represent

larger shares of compliers should be more interesting on a scientific basis.

Much ink has been spilt on the question of whether the LATE is an interesting target

parameter compared to say, the ATE, or something else, such as the average treatment

effect on the treated.8 In our view, extreme positions on this question are indefensible.

Whether a given target parameter is interesting or relevant depends on the context and

the empirical question, which is itself necessarily driven by the researcher’s motivation

for pursuing causal inference. How interesting a target parameter is also cannot be

divorced from the difficulty involved in estimating it; there are trade-offs involved

and reasonable people can disagree on how these trade-offs are resolved. Instead, the

important and hopefully less controversial point is that the target parameter should be

clearly stated and correctly interpreted. Not doing so obscures the empirical question

that the analysis is intended to answer.

8An exhausting but not exhaustive list is Angrist et al. (1996), Robins and Greenland (1996), Heckman
(1997), Imbens (2010), Deaton (2010), Heckman and Urzua (2010), Pearl (2011), and Swanson and Hernán
(2014).

16



2.7 Testability

The traditional route for testing the classical linear IV model is an overidentification

test with multiple instruments (Sargan, 1958). The logic of an overidentification test

can be viewed as comparing the equality of multiple possible IV estimates of the same

constant treatment effect; see Windmeijer (2019) for a precise statement. Such a test

might reject because of UHTE rather than because the instrument fails to be excluded

or exogenous.

There’s a well-developed literature that provides alternative tests for IV models

that allow for UHTE. These tests do not require multiple instruments and instead

are based on whether statistical quantities that should reflect well-defined treatment

effects or potential outcome distributions actually have the properties of such objects.

For example, if the outcome Yi is known to lie in [−1, 1], then does an estimator that

should reflect an average causal effect for a subpopulation actually lie in [−1, 1]? If

not, then model can be rejected. We do not discuss testability in this chapter out of

length considerations, but see Balke and Pearl (1997), Imbens and Rubin (1997), and

Heckman and Vytlacil (2005) for discussions of the testable implications, Bhattacharya

et al. (2012), Huber and Mellace (2014), Kitagawa (2015), Mourifié and Wan (2016),

and Kédagni and Mourifié (2020) for various ways of turning these implications into

formal statistical tests, and Carr and Kitagawa (2023), Frandsen et al. (2023), and Sun

(2023) for more recent developments and applications.

3 Reverse Engineering: Interpreting Linear Estimators

If there is UHTE then the classical linear IV model is misspecified, but a linear IV

estimator can still be computed. Perhaps it has an interpretation that is robust to

omitted UHTE? This line of reasoning has been popular in the recent microeconomet-

rics literature. We describe it as reverse engineering because it starts with a tool—the

estimator—and attempts to reverse engineer an interpretation for it. This section con-

tains a comprehensive survey and synthesis of reverse engineering results for linear IV

estimators.

In the next subsection, we begin by first introducing some concepts used in reverse

engineering exercises. Then we use these concepts to review the well-known LATE in-

terpretation that applies in the baseline case of a binary treatment, binary instrument,

and no covariates. The remainder of the section then considers in turn what happens

as one deviates from the baseline case by having either a non-binary instrument, a

non-binary treatment, or by including covariates.
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3.1 Estimators, estimands, and weak causality

Reverse engineering arguments start with an estimator and consider its associated

estimand, meaning the population quantity to which the estimator can be expected to

converge under a law of large numbers. For example, the estimand for the ordinary

least squares estimator of the coefficient on Di in a regression of Yi on Di and a

constant is C[Yi, Di]/V[Di]. The estimand is then decomposed into terms involving

the underlying causal model, typically using potential outcome notation. The focus

is on how assumptions about the underlying causal model affect the properties of

the decomposition. In this way the estimator is taken as the starting point and its

interpretation is then reverse engineered from an underlying causal model.

A minimal criterion for a successful interpretation is typically taken to be whether

the estimand can be written in the form of a weighted average of mutually exclusive

subgroup-specific average treatment effects with weights that are all non-negative. In

an IV framework, an individual’s group is defined by their unobserved potential choice

behavior—the variable Gi introduced in Section 2.4—together with their observed co-

variates, Xi. Being able to write an estimand β as a non-negatively weighted average

of group-specific treatment effects means that there exist weights ω(g, x) ≥ 0 such that

β =
∑
g,x

ω(g, x)︸ ︷︷ ︸
weights

E[Yi(1)− Yi(0)|Gi = g,Xi = x]︸ ︷︷ ︸
subgroup-specific treatment effects

. (9)

The non-negativity of the weights is seen as important because it guarantees that

the estimand cannot systematically have the “wrong” sign. Suppose that all under-

lying covariate- and group-specific treatment effects are non-negative. If β can be

written as (9) with weights that are non-negative, then β must also be non-negative.

Blandhol et al. (2022) generalize this reasoning to include estimands that do not have

decompositions like (9) either because the treatment takes multiple values or because

the weights applied to the treatment arms are asymmetric. They call an estimand

“weakly causal” if β is non-negative whenever the causal effect of all covariate- and

group-specific treatment contrasts are non-negative. Appendix B provides the formal

definition and a generalization to unordered treatments.

Weak causality is, as the name suggests, an extremely minimal requirement for an

estimand to be viewed as “causal.” Any target parameter appropriate for the scientific

motivation of estimating an average treatment effect for a subpopulation will be weakly

causal. But a weakly causal estimand with non-constant weights need not reflect the

average treatment effect for any single subpopulation.9 If all that is known about an

9Poirier and S loczyński (2024) show that a weakly causal estimand can, however, reflect the average
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estimand is that it is weakly causal, then the scientific question it answers is an easy one

based on a strong premise. Assuming that everyone has either a positive or negative

treatment effect, is the common sign positive or negative?

Weak causality is not necessarily a useful property for policy purposes. A target

parameter that answers a policy question might not be weakly causal if the policy

shifts some individuals into treatment and others out of treatment. If such a target

parameter had form (9) then it would give positive weight to groups induced by the

policy change to increase treatment, but negative weights to those induced to decrease

treatment. The opposite possibility can also arise: an estimand that is not weakly

causal but is useful for policy. Kline and Walters (2016, Section V.C) provide an

example of this in the context of unordered treatments, where the estimand conflates

two different treatment contrasts but still reflects an important target parameter for a

policy counterfactual.

Most weakly causal estimands also have weights that are convex in the sense of

being both non-negative and summing to one across all subgroups:
∑

g,x ω(g, x) =

1. The additional sum-to-one property ensures that if treatment effects are actually

homogeneous, then β is equal to that common single effect. More generally, it ensures

that β lies somewhere between the smallest and largest subgroup treatment effects,

which seems like an intuitively attractive property.

The same estimand can have multiple different weakly causal interpretations. As

a simple example, suppose that Di is binary and randomly assigned, and let β =

E[Yi|Di = 1]−E[Yi|Di = 0] be the population difference in means. Then

β︸︷︷︸
difference in means (estimand)

=

overall ATE (interpretation #1)︷ ︸︸ ︷
E[Yi(1)− Yi(0)] =

∑
x

E[Yi(1)− Yi(0)|Xi = x] P[Xi = x]︸ ︷︷ ︸
weighted average of conditional ATEs (interpretation #2)

. (10)

The first equality is the usual interpretation of β as the overall ATE, which is a convex

weighted average of one term. The second equality shows that β can alternatively be

interpreted as a convex weighted average of the conditional ATEs across all covariate

groups.

3.2 Binary treatment, binary instrument, no covariates

The leading example in which the linear IV estimator has a clear interpretation that

is robust to misspecification occurs in the simplest possible setting. Suppose that

treatment effect for a new subpopulation formed by combining subsets of multiple covariate and/or choice
groups.
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Di ∈ {0, 1} and Zi ∈ {0, 1} are both binary, and there are no additional covariates

Xi. Assume that the monotonicity condition (or threshold-crossing model) in Section

2.4 holds together with the full exogeneity condition discussed in Section 2.5. Imbens

and Angrist (1994) showed that under these assumptions the average treatment effect

for the compliers—what they called the local average treatment effect, or LATE—is

identified:

E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Di|Zi = 1]−E[Di|Zi = 0]︸ ︷︷ ︸
βwald ≡ Wald estimand

= E[Yi(1)− Yi(0)|
subpopulation of compliers (Gi = (0, 1))︷ ︸︸ ︷

Di(0) = 0, Di(1) = 1]︸ ︷︷ ︸
average treatment effect for compliers

≡ late. (11)

Angrist and Imbens (1995) later called the left-hand side the Wald (1940) estimand.

The same result appeared in the biostatistics literature in lesser-known papers by

Permutt and Hebel (1989) and Baker and Lindeman (1994).10

Equation (11) is a natural and intuitive nonparametric identification result. In

the absence of additional assumptions, the only subpopulation whose treatment effects

could possibly be identified are the individuals whose decisions are causally affected

by the instrument. Treatment effects for always-takers cannot be identified without

some sort of extrapolation because they are never observed in the untreated state; the

instrument has no causal effect on their treatment choice behavior. The same is true

for never-takers, who are never observed in the treated state.

In general, both compliers and defiers are affected by the instrument, and the nu-

merator of the Wald estimand reflects the aggregate change in outcomes that results

from shifting compliers into treatment and defiers out of treatment. The monotonicity

condition eliminates the defiers, leaving only the impact on compliers. The numera-

tor of the Wald estimand—the reduced form—then reflects the aggregate change in

outcomes caused by the instrument, which reflects both the size of the complier group

and the impact that treatment has on their outcomes. The denominator—the first

10The analysis of Permutt and Hebel (1989) is informal, but remarkably clear, elegant, and precise. See
in particular the bottom of page 621, where the authors recognize the four choice groups created by a
binary treatment and binary instrument, followed by the monotonicity condition, the treatment effect for
the compliers, the implied identification of the shares of each choice group, and the attenuation result for
multivalued treatments formalized by Angrist and Imbens (1995, Section 3.1). The analysis of Baker and
Lindeman (1994) is more formal, but a bit obscured by its embedding inside a “paired availability design;”
however see the beginning of Section 3, Section 5, and Appendix I.

20



stage—adjusts for the size of the complier group:

E[Di|Zi = 1]−E[Di|Zi = 0]︸ ︷︷ ︸
denominator of the Wald estimand

by full exogeneity︷ ︸︸ ︷
= E[Di(1)−Di(0)]

by monotonicity︷ ︸︸ ︷
= P[Di(0) = 0, Di(1) = 1︸ ︷︷ ︸
the complier choice group Gi = (0, 1)

] . (12)

The ratio of the reduced form to the first stage—the Wald estimand—then reflects the

average per-unit treatment effect among the compliers, which is the LATE defined in

(11).

The misspecification-robust interpretation of the linear IV estimand as a LATE

comes from the relationship

late = βwald︸ ︷︷ ︸
from (11)

≡ E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Di|Zi = 1]−E[Di|Zi = 0]
=

C[Yi, Zi]

C[Di, Zi]︸ ︷︷ ︸
simple IV estimand

≡ βiv, (13)

where the simple IV estimand βiv refers to population coefficient on Di for the linear IV

estimator that instruments [1, Di]
′ with [1, Zi]

′. This equality between the Wald and IV

estimands is specific to the case in which Zi is binary and there are no covariates. It does

not hold more generally. It is the source of the misspecification-robust interpretation

that “linear IV is LATE.”

3.3 Multivalued instruments

Suppose that we generalize the setting slightly to allow Zi to take on multiple values

z0, z1, . . . , zK , but thatDi is still binary.11 Each instrument value now has an associated

potential treatment Di(z0), Di(z1), . . . , Di(zK).

Imbens and Angrist (1994) generalized the monotonicity condition by assuming

that the values of the instrument can be placed in order of their impact on treatment

choice, with an ordering that does not vary across individuals i. As in the binary

case, this ordering does not need to be known a priori. Suppose that the instrument

is indexed in increasing order, so that the monotonicity condition becomes P[Di(z0) ≤
Di(z1) ≤ · · · ≤ Di(zK)] = 1, meaning that larger instrument values make everyone

more likely to take treatment. Vytlacil (2002) showed that the Imbens and Angrist

(1994) assumptions are the same as modeling selection with the threshold-crossing

11We focus on a discrete number of instrument values for simplicity. The continuous instrument case is
conceptually similar and intuitively requires replacing sums with integrals. See Alvarez and Toneto (2024)
for details.
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Table 1: Group definitions when Di is binary and Zi takes four values (K = 3)

Di(z0) Di(z1) Di(z2) Di(z3) Gi Group description

1 1 1 1 at Always-takers
0 1 1 1 cp1 z1-compliers (Gi = cp1)
0 0 1 1 cp2 z2-compliers (Gi = cp2)
0 0 0 1 cp3 z3-compliers (Gi = cp3)
0 0 0 0 nt Never-takers
0 1 0 1 df Defier (one of 24 − (3 + 2) = 11 types)

Notes: When K = 3 the monotonicity condition allows for the six possible configurations of Gi ≡
(Di(z0), Di(z1), Di(z2)) shown here.

model,

Di = 1[Vi ≤ ν(Zi)], (14)

where ν is an unknown function. Full exogeneity is still required, and now means that

Zi is independent of (Yi(0), Yi(1), Di(z0), Di(z1), . . . , Di(zK)) or, equivalently, that Zi

is independent of (Yi(0), Yi(1), Vi).

With K + 1 instrument values, there are 2K+1 treatment choice groups in general.

The monotonicity condition implies that only K + 2 of these can exist: the always-

takers, the never-takers, and K different complier groups, one for each subsequent pair

of values for the instrument. Table 1 illustrates. The same argument that produces

(11) shows that the average treatment effect for each complier group is identified from

the Wald estimand using these subsequent pairs:

E[Yi|Zi = zk]−E[Yi|Zi = zk−1]

E[Di|Zi = zk]−E[Di|Zi = zk−1]︸ ︷︷ ︸
one of several possible Wald estimands

= E[Yi(1)− Yi(0)|
k-compliers, (Gi = (0, 0, . . . , 1, 1 . . . , 1) ≡ cpk)︷ ︸︸ ︷

Di(zk−1) = 0, Di(zk) = 1]︸ ︷︷ ︸
the average treatment effect for k-compliers (latek)

(15)

for each k = 1, . . . ,K. We use the short-hand latek for the right-hand side of (15),

a notation which clarifies that there are now multiple LATEs. Even in this simple

extension from the previous section, the statement that “linear IV is LATE” already

doesn’t make sense: which LATE?

On top of that, which linear IV? With a single binary instrument, a binary treat-

ment, and no covariates, the IV estimand given in (13) was the only one to consider.

When the instrument takes multiple values, there are now many possible IV estima-

tors, each producing a different IV estimand. A general formulation is to instrument
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for [1, Di]
′ with [1, ζ(Zi)]

′, where ζ is a scalar function of Zi. This nests using Zi di-

rectly as an instrument for Di, in which case the IV estimand is the same as in (13).

It also nests any 2SLS estimand, in which case ζ(Zi) are the population fitted values

from the first stage.

Imbens and Angrist (1994) showed that this IV estimand can be decomposed as

C[Yi, ζ(Zi)]

C[Di, ζ(Zi)]︸ ︷︷ ︸
linear IV estimand

=
K∑
k=1

P[Gi = cpk] C[ζ(Zi), 1[Zi ∈ {z`}`≥k]]
C[Di, ζ(Zi)]︸ ︷︷ ︸

weights

latek. (16)

The weights sum to one and can be shown to be non-negative if ζ(z) is non-decreasing

in z. This is satisfied if ζ(z) = z, so that the estimand is again the simple IV estimand

on the right-hand side of (13). It is also satisfied for the 2SLS specification whose

first stage includes an indicator for each value of the instrument, in which case ζ(z) =

P[Di = 1|Zi = z] becomes the propensity score. In either of these cases the IV/2SLS

estimand on the left-hand side of (16) is weakly causal.

The weights in (16) are larger for larger complier groups, a feature that seems

intuitive. However, the linear IV weights also vary with a second term that reflects how

ζ(Zi) and Zi covary. One implication is that different choices of estimator—different

choices of ζ—estimate different objects. A second implication is that the weights—and

so also the estimand—depend on the marginal distribution of the instrument.

As an example, suppose that a researcher conducted a randomized experiment in

which individuals were encouraged to take a treatment. Some individuals were given

no additional incentive, while others were randomly assigned an incentive of $10 or $50

for taking treatment. Only 5% of subjects in the unincentivized arm took treatment,

while 20% and 35% took treatment in the $10 and $50 arms.12 There are two complier

groups in this setting: those who wouldn’t take treatment if unincentivized, but would

if offered $10, and those who would only take treatment if offered $50. Suppose that

the average treatment effect for the former group is 1, and for the latter group is −1,

a difference which might reflect the second group’s greater reluctance to participate.

What will the IV estimand be?

Figure 2 shows that the answer depends delicately both on how the incentives

were randomly assigned and on which IV estimand is being considered. The two lines

indicate the values of two different IV estimands, one in which Zi is used directly as an

instrument as in (13), and one in which indicators for the different incentive arms are

12For example, Dutz et al. (2022, 2023a,b) implemented incentivized surveys with this design, Ito et al.
(2023) randomly assigned incentives for switching to dynamic electricity pricing, and Lee et al. (2019)
randomly assigned incentives to connect to the electrical grid.
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Figure 2: The marginal distribution of the instrument affects the IV estimand
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Notes: Values of the linear IV estimand in a hypothetical experiment in which individuals were incentivized
to take a binary treatment. There are three incentive arms: no incentive, low ($10) and high ($50). The
panels show the proportion of individuals assigned to the low or high arms. The x-axis shows the proportion
of individuals in the high arm relative to the low arm. Two different estimands are shown: one that uses the
level of the incentive (Zi = 0, 10, 50) and the 2SLS estimand that uses indicators for each incentive level.

used in the first stage and combined through 2SLS. The left panel depicts a scenario

in which the researcher assigns 75% of individuals to the no incentive arm and assigns

some proportion of the remaining 25% to either the $10 or $50 incentive. When all of

the incentivized individuals are in the low incentive arm, both estimands are the same

and equal to the average treatment effect of 1 for the low incentive compliers. As the

proportion assigned to the high incentive arm increases, the estimands begin to differ,

and the value of the IV estimand starts to decrease as more high-incentive compliers

are reflected in the estimand. The center and right panels of Figure 2 show the same

comparisons when a larger share of individuals are assigned to receive any incentive.

The difference between the estimands grows and in many cases they even have the

opposite sign.

This scenario is one in which the premise of weak causality is not met because the

low incentive compliers have positive treatment effects, while the high incentive com-

pliers have negative treatment effects. There are three LATEs: one for each complier

group separately, and a third when both complier groups are combined into a single
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group. The latter can generally be written as

late0→K ≡ E[Yi(1)− Yi(0)|Di(z0) = 0, Di(zK) = 1︸ ︷︷ ︸
complies with any instrument

] =
K∑
k=1

P[Gi = cpk]latek, (17)

which is like (16), but with weights that only depend on the complier proportions. As

Figure 2 shows, neither of the two IV estimands is generally equal to any of these three

LATEs when both incentives are assigned. If only low incentives are assigned, then

it’s as if we are back in the binary instrument case, and both IV estimands are equal

to the low incentive LATE of one. If only high incentives are assigned, then we are

again in a binary instrument case, and both IV estimands are equal to the combined

LATE, which is zero in this example.13 Outside of these two polar cases—that is,

when the instrument actually takes multiple values—the IV estimand is not equal to

any individual LATE.

3.4 Violations of monotonicity

The monotonicity condition plays a central role in the LATE identification result (11).

There are many settings in which it is usually uncontroversial, such as the type of

incentivized experiment just discussed, where the instrument is a monetary incentive

for treatment. In other contexts there can often be more scope for contention.

As one example, consider the Angrist and Evans (1998) study of the effect of fertility

on labor supply. The authors used the sex composition of a family’s existing children

as an instrument for further childbearing. They found that among families that have

at least two children, those in which the first two children had the same biological

sex were more likely to go on to have a third child than those that had both a male

and female child. They interpreted this as reflecting a preference for sex mix among

children. For the monotonicity condition to hold requires all families to have this same

preference for sex mix. Monotonicity would be violated if there are families whose

fertility stopping rule is to have two male children.

Angrist et al. (1996, Section 5.2) show how to conduct a sensitivity analysis in the

binary instrument case. They show that when the monotonicity condition does not

13The low and high compliers are .20− .05 = .15 and .35− .20 = .15 of the population, so the combined
LATE is late0→2 = 1× .15 + (−1)× .15 = 0.
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Figure 3: Sensitivity of Angrist and Evans (1998) to violations of monotonicity
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hold,

difference between Wald and LATE︷ ︸︸ ︷
E[Yi|Zi = 1]−E[Yi|Zi = 0]

E[Di|Zi = 1]−E[Di|Zi = 0]
− late

=

(
P[Gi = df]

P[Gi = cp]−P[Gi = df]

)
︸ ︷︷ ︸

relative size of defier group

(late−E[Yi(1)− Yi(0)|Gi = df])︸ ︷︷ ︸
difference in treatment effects

. (18)

The bias of the Wald estimand for the LATE has a product structure that is increasing

in the size of the defier group and scaled by the difference between complier and defier
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average treatment effects. Both terms in the product need to be large for the Wald

estimand to differ substantially from the LATE.

Figure 3 illustrates this point using estimates from Angrist and Evans (1998). The

authors report a Wald estimate of approximately −.13, the denominator of which

is estimated to be .06. If the monotonicity condition holds, then this implies that

6% of the population are compliers and that the Wald estimate is the LATE. If the

monotonicity condition doesn’t hold because actually 2% of the population are defiers

and 8% are compliers, then the Wald estimate would differ from the LATE, but not

necessarily by much. For example, even if the 2% defiers have treatment effects that

are −.24—nearly twice as negative as the Wald estimate of −.13—this would still imply

a LATE of approximately −.16.14

Judge designs are a common example of an IV strategy in which the monotonicity

condition can be suspect. These designs are based on institutionally-prescribed random

assignment of a judge or other examiner to cases in which the judge chooses treatment.

If certain judges are systematically more likely to assign treatment, then the judge

identities serve as an instrument for treatment (e.g. Kling, 2006; Doyle Jr., 2007; Dahl

et al., 2014; Bhuller et al., 2020).

The monotonicity condition places strong restrictions on the behavior of judges.

Suppose that judge A is stricter than judge B in the sense that judge A assigns treat-

ment in a higher proportion of cases. Then the monotonicity condition requires judge A

to always assign treatment to any case in which judge B would assign treatment. This

effectively prevents judges from systematically disagreeing. These types of settings

were actually discussed in the original work by Imbens and Angrist (1994, Example 2)

as an example where monotonicity might be an unattractive assumption.

Frandsen et al. (2023) propose a weaker alternative to monotonicity that they de-

scribe as “average monotonicity.” Their motivation is a judge design, although the

assumption could be considered in other contexts as well. Suppose that the instrument

Zi denotes judge identity for K+1 judges labelled z0, z1, . . . , zK . Frandsen et al. (2023)

observe that the 2SLS estimand produced by using an indicator for each judge as an

excluded variable can be written as

β2sls =
E [wam(Gi) E[Yi(1)− Yi(0)|Gi]]

E [wam(Gi)]
, (19)

14See Noack (2021) for a formal analysis of this example in terms of the more general concepts of the
breakdown frontier and falsification region used in the literature on sensitivity (e.g. Kline and Santos, 2013;
Masten and Poirier, 2020, 2021).
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Figure 4: Weights for the 2SLS estimand using the Stevenson (2018) data
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Gi can assume. Without any monotonicity assumption, half of the groups contribute to the 2SLS estimand
with negative weight. Average monotonicity is satisfied if and only if the group shares for this half are zero.

where wam are weights defined as

wam

(
Di(z0), Di(z1), . . . , Di(zK)︸ ︷︷ ︸

≡Gi

)
≡

K∑
k=0

P[Zi = zk] (P[Di = 1|Zi = zk]−P[Di = 1])

×
(
Di(zk)−

K∑
`=0

P[Zi = z`]Di(z`)

)
. (20)

In particular, (19) is true whether or not the monotonicity condition holds.

Frandsen et al. (2023) define average monotonicity as the assumption that the

weights wam are all non-negative, meaning that P[wam(Gi) ≥ 0] = 1, or equivalently

that P[Gi = g] = 0 for any choice group g such that wam(g) < 0. As can be seen from

(19), average monotonicity is equivalent to the assumption that β2sls is weakly causal.

In this sense it assumes away the problems raised by failures of the usual monotonicity

condition.

Figure 4 illustrates the content of the average monotonicity assumption using

the data from Stevenson (2018) (provided by Cunningham, 2021), which has eight

judges. Without any assumptions on potential treatment choice behavior there are
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2K+1 = 28 = 256 treatment choice groups, one for each configuration of potential

judge decisions. The weight that each individual i contributes to β2sls is given by

wam(Gi), which depends only on their choice group, Gi. Although the share of each

choice group is not identified, the weights wam(g) are identified for each value of g.

Figure 4 plots estimates of wam(g) as a histogram taken over all 256 treatment choice

groups.

The weights are symmetric around zero. If all groups occur, then exactly half will

have non-negative weights while the other half will have non-positive weights.15 To see

why, consider a pair of individuals i and i′ who satisfy Di(zk) = 1 −Di′(zk) for all k.

For these individuals,

Di′(zk)−
K∑
`=0

P[Zi = z`]Di′(z`) = −1×
(
Di(zk)−

K∑
`=0

P[Zi = z`]Di(z`)

)
, (21)

which implies that wam(Gi′) = −wam(Gi). An example of this symmetry is highlighted

in Figure 4. One choice group is only assigned treatment for the third and sixth judge;

their weights are positive. The other choice group is assigned treatment for all judges

except the third and sixth; their weights are negative.16

Justifying average monotonicity requires explaning why all the negatively-weighted

groups in Figure 4 do not exist. This seems challenging to do here, even with only eight

judges. A judge design with one hundred judges has 2100 choice groups to consider, so

that justifying average monotonicity requires arguing that half (299) of these groups

do not occur, presumably an even more difficult feat. Compounding this difficulty, the

identity of the groups that must not occur depends on the observable data through the

propensity scores (leniencies) of all judges and the frequency with which each judge

is observed. This makes any attempt at justifying average monotonicity inherently

application-specific.17 While average monotonicity is mathematically weaker than the

usual monotonicity condition, it is not clear that it is any easier to justify on substantive

grounds.18

15Two groups always have zero weight: the always-takers and the never-takers.
16The third and sixth judges are not particularly remarkable: the third one has the sixth highest propensity

score and has the fifth most cases, while the sixth one has the seventh highest propensity score and has the
sixth most cases.

17Chyn et al. (2024, Appendix A) consider the content of average monotonicity in a hypothetical context
with four judges. They show that average monotonicity can be satisfied under an assumption that reduces
individuals to four latent types: minority/majority and with/without a criminal background. Their justifi-
cation involves stylized assumptions on the frequency of these types in the population and the way in which
the four judges respond to these types.

18Sigstad (2024b) estimates treatment group shares using judge panels under the assumption that judges
rule in panels the same way that they would individually. He finds evidence against the usual monotonicity
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Reverse engineering arguments grind to a halt without some sort of monotonicity

condition. de Chaisemartin (2017) shows that the IV estimand can still be interpreted

as representing average treatment effects for some subset of the compliers, even if the

monotonicity condition is not satisfied, as long as the distribution of treatment effects

between the compliers and defiers is not too different. The result effectively provides

conditions under which a single weighted average with some negative weights—the IV

estimand without a monotonicity condition—is equal to a weighted average of some

subset of its non-negatively weighted components. Whether an average treatment effect

for the group represented by such a subset is interesting (or indeed, even uniquely

defined) is another question, but the result provides a thought-provoking examination

of the logical limits of reverse engineering. If all we want to know is whether a given

estimate represents a treatment effect for someone, then we can do that under general

conditions. Is that robustness or superficiality?

3.5 Multiple instruments

The credibility of the monotonicity condition is not about the number of values that the

instrument takes. Compare monetary incentives to judges. If it’s reasonable to assume

that everyone prefers treatment with $10 to treatment without compensation, then

it’s also reasonable to assume that everyone prefers treatment with $50 to treatment

without compensation. Adding another $100 incentive arm would not jeopardize this

argument. On the other hand, if we’re worried that any two of eight judges may

disagree on some cases, then we would probably also have that concern in a setting

with only two judges. The issue instead is whether the instrument has a natural

ordering: ordering monetary incentives from small to large is natural, but ordering

judges, say in terms of their leniency, attempts to reduce something complicated (a

judge) down to one dimension.

This ordering issue arises when Zi is a vector containing multiple distinct compo-

nents, a case we describe as multiple instruments. Multiple instruments are always

multivalued. For example, if Zi is a vector of two binary instruments, then Zi takes

four values. If the monotonicity condition holds for these four values, then all of the

discussion in the previous section for multivalued instruments continues to apply with

multiple instruments.19 But the fact that the four values represent a combination

of two distinct components usually makes the monotonicity condition an extremely

unattractive assumption.

condition and somewhat weaker evidence against the average monotonicity condition.
19Imbens and Angrist (1994, pg. 470) explicitly mention the case in which Zi is a vector in deriving the

decomposition (16).
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To see why, suppose that incentives for treatment vary along two dimensions: a

monetary incentive, and the distance to the location where treatment is administered.

An experimental design like this was used by Thornton (2008) to study the demand

for learning about HIV status in Malawi. For simplicity, suppose that both instru-

ments are binary, with Zi1 ∈ {0, 1} denoting a monetary incentive (no or yes), and

Zi2 ∈ {0, 1} denoting distance (far or near), so that there are four potential treatments

Di(z1, z2). The monotonicity condition requires these potential treatments to be or-

dered for all individuals; in particular, it requires either P[Di(0, 1) ≥ Di(1, 0)] = 1 or

that P[Di(1, 0) ≥ Di(0, 1)] = 1. The first condition says that there is no one who would

take treatment if they were given a monetary incentive but not take treatment if they

were assigned to a close location. The second condition says the opposite: there is no

one who would take treatment if they were assigned to a close location but not if they

were given a monetary incentive. Either condition assumes that there is no meaningful

heterogeneity in the opportunity cost of time (responsiveness to distance).20

If the monotonicity condition is dropped entirely, then a linear IV estimand will

include negatively-weighted average treatment effects for some groups, and so fail to

be weakly causal. The problem here is the model of treatment choice: some model is

needed for a weakly causal interpretation, but the monotonicity (threshold-crossing)

model is too strong to be credible. Mogstad et al. (2021) consider an intermediate model

of treatment choice called partial monotonicity. Partial monotonicity requires the usual

monotonicity condition to be satisfied for each instrument separately, while holding all

other instruments fixed. For example, it is satisfied if all individuals are more likely to

take treatment when given a monetary incentive and when closer to a treatment center,

but it does not require one or the other to be a uniformly more effective inducement to

treatment. Mogstad et al. (2021) show that partial monotonicity can be sufficient for

a weakly causal interpretation: with two binary instruments, a 2SLS estimand with a

saturated first stage will be weakly causal as long as the instruments are not negatively

correlated.

3.6 Ordered, cardinal treatments

The monotonicity condition is a model of treatment choice, so it must be reconsidered

when the treatment has more than two values. Suppose that the treatment takes J +1

20This point was first made by Heckman and Vytlacil (2005, Section 6) and Heckman et al. (2006, Section
III.D). As those authors observed, the “monotonicity” condition is not really about monotonicity, but about
uniformity in treatment choice behavior. The two descriptions often coincide when the instrument is scalar,
but they become meaningfully different with multiple instruments.

31



values labeled in increasing order as d0, d1, . . . , dJ .21 If the treatment is ordered, then

a natural generalization of the monotonicity condition is P[Di(1) ≥ Di(0)] = 1. Both

the notation and content are the same as in the binary case: receiving the instrument

causes treatment to weakly increase for everyone.

The natural generalization of the binary threshold-crossing model (5) to an ordinal

treatment would be to an ordered response model (e.g. Greene and Hensher, 2009).

Depending on how the ordered response model is specified, it may or may not entail the

same restrictions on treatment choice behavior as the monotonicity condition (Vytlacil,

2006). We return to this point in Section 4.5, where it becomes particularly salient.

In this section, we consider reverse engineering under the Angrist and Imbens (1995)

monotonicity condition.

Let Yi(d0), Yi(d1), . . . , Yi(dJ) be potential outcomes for each treatment state. Even

for a given individual i there is no longer a single treatment effect because Yi(d2)−Yi(d1)

could be different than Yi(d1) − Yi(d0) if the size of the treatment increment differs

and/or treatment effects are nonlinear. Angrist and Imbens (1995) showed that if Zi

is binary then the Wald estimand, which is still equal to the simple IV estimand, has

the following decomposition:

βiv ≡
C[Yi, Zi]

C[Di, Zi]
=

J∑
j=1

ωacr(j) E[Yi(dj)− Yi(dj−1)|Di(1) ≥ dj > Di(0)],

where ωacr(j) ≡ P[Di(1) ≥ dj > Di(0)]∑J
`=1 P[Di(1) ≥ d` > Di(0)] (d` − d`−1)

. (22)

The decomposition allows for treatment effects that are both nonlinear and heteroge-

neous.22 The treatment variable Di should have a cardinal interpretation to consider

βiv. If it is ordered but not cardinal (e.g. low, medium, high), then βiv will be sensitive

to the arbitrary coding of the values dj , making estimators that use different treatment

indicators more appropriate. This case is discussed in the next section.

Angrist and Imbens (1995) described the right-hand side of (22) as the average

causal response (ACR). The unit “causal response” is the effect of increasing treatment

from dj−1 to dj , and the “average” is a weighted one taken across all treatment indices j.

The weights in the average are proportional to the probability of the event that Di(1) ≥
dj > Di(0), and the causal effects are conditioned on this event. This event includes all

21All of the conceptual issues in the following discussion extend to the case of a continuous treatment,
essentially by replacing sums with integrals and finite differences with derivatives; see (Angrist et al., 2000).

22Expression (22) is slightly more general than the one in Angrist and Imbens (1995) because they assume
that the treatment is coded as dj = j, so that each treatment value is one increment apart. A derivation of
(22) is in Appendix C.
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individuals i that would have treatment value larger than dj with the instrument, but

strictly smaller than d without it. Individuals unaffected by the instrument (Di(1) =

Di(0)) do not contribute to the ACR. The effect of increasing treatment from dj−1

to dj for individuals who would never have either treatment level (i.e. Di(0) ≥ dj or

Di(1) ≤ dj−1) does not enter into the ACR. These properties are sensible analogs of

the binary treatment LATE identification result. The weights are non-negative, so the

ACR is weakly causal. They do not sum to one unless dj − dj−1 = 1 for all j, which is

the case discussed in Angrist and Imbens (1995) and Angrist and Pischke (2009).23

The ACR has been criticized on the grounds that the conditioning events it rep-

resents are not mutually exclusive. That is, an individual with Di(1) = d2 and

Di(0) = d0 gets “double counted” in both of the events Di(1) ≥ d1 > Di(0) and

Di(1) ≥ d2 > Di(0). Angrist and Imbens (1995, pg. 435–436) and Heckman et al.

(2006) both discuss this criticism, although the former authors downplay it on the

grounds that they do not expect the instrument in their example to have more than

a one unit effect. Heckman et al. (2006, Section VI) provide comparable reverse engi-

neering results under an ordered response model and observe that the same criticism

does not arise; see Section 4.5 for more discussion.

One way to address this criticism while sticking with the Angrist and Imbens (1995)

monotonicity condition is to write the ACR as a different weighted average in which

individuals only appear once.24 Using the group notation Gi ≡ (Di(0), Di(1)), let

G ≡ {(g(0), g(1)) : g(1) ≥ g(0)} denote the subset of the (J + 1)2 possible groups that

can have non-zero probability under the monotonicity condition. In Appendix C, we

show that

βiv =
∑
g∈G

weights reflect group size and instrument effect on treatment︷ ︸︸ ︷
P[Gi = g](g(1)− g(0))∑

g′∈G P[Gi = g′](g′(1)− g′(0))
E

[
Yi(g(1))− Yi(g(0))

g(1)− g(0)

∣∣∣Gi = g

]
︸ ︷︷ ︸

average per-unit treatment effect for group g

. (23)

The conditioning events in this decomposition are mutually exclusive because each

individual belongs to exactly one choice group. The treatment effects being weighted

are expressed in per-unit averages across the range of values that the instrument shifts

23The fact that the weights do not sum to one is not necessarily a concern. Compare one IV estimand
with J = 2 in which d0, d1, and d2 are coded as 0, 1 and 2, to another in which they are coded as 0, 2, 4. The
latter estimand will be half the size of the former, and its weights will also sum to one half. This is because
the unit causal response does not depend on the coding of the treatment, implying that the weights must
depend on it.

24This point was made by Frölich (2007, pg. 50). Equation (23) is an alternate phrasing of his equation
(19).
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a group’s treatment choice. Researchers who find the ACR hard to appreciate due to

overlapping conditioning events may find (23) more attractive.25

Even so, multivalued treatments are undoubtedly more complicated than binary

treatments. Researchers are often tempted to binarize a treatment in order to avoid

this complication. Angrist and Imbens (1995) show that this practice leads to a Wald

estimand that is larger in magnitude than the ACR. Marshall (2016), Andresen and

Huber (2021), and Rose and Shem-Tov (2023) consider additional assumptions under

which the binarized Wald estimand has a more attractive interpretation.

3.7 Unordered or non-cardinal treatments

The previous reverse engineering results all consider linear IV specifications with the

treatment as the sole endogenous variable. These specifications only make sense if the

treatment has a natural cardinal ordering. If it doesn’t, either because it’s ordered

but not cardinal, or because it’s unordered, then the natural specification to consider

is one with multiple endogenous variables that are indicators for different treatment

states or sets of states.

The simplest setting is when Di takes one of three treatment states, d0, d1, or d2,

which are coded up using two binary endogenous variables, Di1 ≡ 1[Di = d1] and

Di2 ≡ 1[Di = d2]. The order condition requires at least two excluded variables for a

linear IV estimand to be defined. Suppose that we have access to an instrument Zi

that takes three values, 0, 1, and 2, which have been similarly coded into two binary

variables, Zi1 and Zi2. Potential outcomes Yi(dj) and potential treatments Di(z) are

defined as before, with Dij(z) ≡ 1[Di(z) = dj ] giving the implied potential binary

treatment indicators. Full exogeneity is assumed, as usual.

With three treatment states and three instrument values there are 33 = 27 a pri-

ori possible choice groups Gi reflecting different combinations of (Di(0), Di(1), Di(2)).

Suppose that we generalize the monotonicity condition to the assumption that in-

strument values one and two are targeted towards the corresponding first and second

treatment states, and that receipt of these instrument values weakly pushes all in-

dividuals towards those states. The formal assumption is that Di1(1) ≥ Di1(0) and

Di2(2) ≥ Di2(0), so that receiving Zi = j makes choosing Di = dj more likely than

when Zi = 0. This eliminates 17 of the 27 choice groups, leaving the first ten shown

in Table 2. The final row of Table 2 gives an example of a group that doesn’t satisfy

this monotonicity condition: Gi = (d1, d0, d2) would choose Di = d0 when Zi = 1, but

25For the ACR decomposition (22), one could also multiply the weights by dj − dj−1 and divide the unit
causal response by dj − dj−1 to get a third expression in which the weights sum to one.

34



would choose Di = d1 when Zi = 0, violating the assumption that Zi = 1 encourages

takeup of state d1 for everyone.

The linear IV estimand for this case is the one with outcome equation linear in a

constant, Di1, and Di2, and first stage variables mirrored with a constant, Zi1, and

Zi2. The coefficients on Di1 and Di2 can be written as a vector by partialling out the

constant (demeaning) from the excluded variables:

βiv ≡
[
βiv,1

βiv,2

]
= E

[[
Z̃i1

Z̃i2

][
Di1

Di2

]′]−1

E

[[
Z̃i1

Z̃i2

]
Yi

]
where Z̃ij ≡ Zij −E[Zij ]. (24)

For this unordered case, βiv,j is weakly causal if it is non-negative whenever E[Yi(dj)−
Yi(d0)|Gi = g] is non-negative for all g (Appendix B).

Kirkeboen et al. (2016) and Heinesen et al. (2022) show that neither of the com-

ponents of βiv are even close to weakly causal under the given monotonicity condi-

tion. Instead, βiv,1 captures a complicated weighted average of Yi(d1) − Yi(d0) and

Yi(d2) − Yi(d0) involving all of the seven non-always-taker groups not ruled out by

monotonicity.26 Many of the weights will be negative. So βiv,1 fails to reflect the sign

of E[Yi(d1) − Yi(d0)|Gi = g] both because it negatively weights some groups and be-

cause it also reflects potential outcomes for treatment state d2. Symmetric conclusions

apply to βiv,2.

The reason this happens is that the monotonicity condition does not sufficiently

restrict treatment choice behavior. Groups with Di(1) = d1 who choose the first state

when its instrument is switched on (Zi = 1) could switch to choosing either d0 (groups

g2, g5, g9) or d2 (group g8) when switched off. A contrast between Zi1 = 1 and Zi1 = 0

would not isolate a single treatment contrast even if it were able to keep Zi2 fixed,

which the linear IV estimand (24) does not. More assumptions on treatment choice

behavior are needed.

An early proposal by Behaghel et al. (2013) is to impose an “extended monotonic-

ity” (EM) condition that eliminates groups g7 through g10. Their motivation was a

multi-armed encouragement design in which individuals are given a specific encour-

agement to take the first or second treatment. The EM restriction rules out groups

like g7 who would enter into treatment d2 when encouraged to, but would switch

to treatment d1 when encouraged to or when not encouraged at all. Under EM,

the authors show that βiv,1 is equal to E[Yi(d1) − Yi(d0)|Di1(1) = 1, Di1(0) = 0],

which is the average treatment effect of state d1 relative to d0 for the combined

complier group Gi ∈ {g2, g5} that responds to Zi = 1. Similarly, βiv,2 is equal to

26The full expression can be found in Proposition 3 of Heinesen et al. (2022).
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Table 2: Choice groups for an unordered treatment with three states

Gi Mon. EM IR NB KLM

(d0, d0, d0) ≡ g1 X X X X X
(d0, d1, d0) ≡ g2 X X X X X
(d0, d0, d2) ≡ g3 X X X X X
(d0, d1, d2) ≡ g4 X X X X X
(d1, d1, d1) ≡ g5 X X X
(d2, d2, d2) ≡ g6 X X X
(d1, d1, d2) ≡ g7 X X
(d2, d1, d2) ≡ g8 X X
(d0, d1, d1) ≡ g9 X X
(d0, d2, d2) ≡ g10 X X

...
(d1, d0, d2)

...

Notes: The groups shown are for a treatment that takes three states d0, d1, d2 and an instrument that takes
three values 0, 1, 2 so that choice groups are determined by a combination of Gi ≡ (Di(0), Di(1), Di(2)). There
are 27 groups possible a priori. Only those satisfying the natural extension of the monotonicity condition
(Mon.) are shown, together with one example of a group that violates that condition. Acronyms: EM
(extended monotonicity), IR (irrelevance), NB (next-best), and KLM (Kirkeboen et al., 2016).

E[Yi(d2) − Yi(d0)|Di2(2) = 1, Di2(0) = 0] = E[Yi(d2) − Yi(d0)|Gi = g4 or g5]. These

quantities have the hoped-for interpretation of average treatment effects for their re-

spective treatment states relative to the omitted state d0 for their respective subpop-

ulation of compliers.

Kirkeboen et al. (2016) point out that EM is a strong restriction on preferences.

Under EM, an individual who chooses state d2 when its cost is low cannot switch to

state d1 when the cost of d2 becomes high. Even in an experimental setting, this may

not be an attractive assumption unless there is one-sided noncompliance. Behaghel

et al. (2013) note that EM has the testable implication that P[Di = d2|Zi = 1] =

P[Di = d2|Zi = 0], meaning that the share of those choosing d2 should be the same

among those encouraged to choose d1 and those not encouraged to choose either d1 or

d2, with a similar implication for the probability that Di = d1. They reject EM for

part of their experiment, as do Kirkeboen et al. (2016) in a different context.

Kirkeboen et al. (2016) consider two alternative assumptions. The first, which

they call “irrelevance” (IR), is that if the instrument value that encourages d2 doesn’t

actually induce d2, then it doesn’t instead induce d1. This rules out group g9, who
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has Di(2) = d1 but Di(0) = d0. It also rules out group g10 symmetrically. The

second assumption, which they call “next best” (NB), is that they can observe in the

data who would choose d0 if assigned Zi = 0. In their application to estimating the

returns to field of study, they justify the NB assumption by restricting their sample

to individuals who list the same second-preferred field of study in a centralized college

admissions process. Conditioning on Di(0) = d0 excludes members of groups g7 and

g8.27 Together, IR and NB leave the same choice groups as under EM, and so also imply

that βiv,1 and βiv,2 reflect average treatment effects among their respective complier

groups (g2, g5 and g4, g5), although now conditioned on the sample selection rule of

having a particular next best alternative.

Bhuller and Sigstad (2024) show that the conditions used by Behaghel et al. (2013)

and Kirkeboen et al. (2016) are necessary for βiv to be weakly causal interpretation.28

In particular, the necessary (and sufficient) condition is that the each instrument es-

sentially only affects the indirect utility of one treatment state, and that the excluded

treatment state d0 is always either the preferred or next best alternative.29 The only

groups in Table 2 that satisfy this description are g1 through g6. The implication of

the Bhuller and Sigstad (2024) result is that the linear IV estimand will only have a

sensible interpretation if heterogeneity in choice behavior is heavily restricted, as in

Behaghel et al. (2013), or if one has data on next-best alternatives, as in Kirkeboen

et al. (2016). Heinesen et al. (2022) show how to conduct a sensitivity analysis similar

to the one in Section 3.4, which suggests that given the monotonicity condition, the

interpretation of the 2SLS estimand given in Kirkeboen et al. (2016) will be relatively

insensitive to modest violations of either IR or NB (but not both) if the amount of

treatment effect heterogeneity is also modest.

In some cases, the values d0, d1, and d2 might have a natural ordering even if not

a cardinal interpretation. An example studied by Arteaga (2023), Humphries et al.

(2023b), and Kamat et al. (2024) is criminal case outcomes, where d2 is incarcerate, d1

is convict with no incarceration, and d0 is do not convict. Bhuller and Sigstad (2024)

characterize sufficient and necessary conditions for weak causality of the linear IV

estimand in (24) coded up as Di1 = 1[Di ≥ d1] and Di2 = 1[Di = d2]. With constant

effects, βiv,1 would be interpreted as the causal effect of d1 relative to d0 and the

coefficient on βiv,2 would be interpreted as the incremental causal effect of d2 relative

27It also eliminates the always-taker groups g3 and g6, however these groups get differenced out regardless.
28The Bhuller and Sigstad (2024) results apply to any number of J discrete treatment states with βiv

defined as the coefficients on J − 1 indicators that are instrumented for by J − 1 binary instruments.
29As usual in discrete response, the minor caveat suggested by “essentially” is the possibility that an

instrument shifts the indirect utility of choosing a different state as long as the shift is inframarginal and
does not result in a discrete change in choice behavior.
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to d1. Bhuller and Sigstad (2024) show that if treatment follows an ordered response

model, then an additional parametric assumption of linearity between the first stage

fitted values for the two treatments is necessary for a weakly causal interpretation.

Humphries et al. (2023b) and Kamat et al. (2024) both conclude that the implied

restrictions on choice behavior are unattractive in their setting.

Given these difficulties, one might consider using a linear IV estimand with only a

single treatment indicator, such as Di2, and instrumenting for it with Zi2 alone. The

concern here is substitution bias (e.g. Heckman et al., 2000). As several authors have

noted, the resulting IV estimand will be equal to a weighted average of treatment ef-

fects relative to both d0 and d1 depending on which treatment state would have been

chosen if Zi2 = 0 (e.g. Kirkeboen et al., 2016; Kline and Walters, 2016; Mountjoy,

2022). The conflation of two different treatment contrasts makes such a quantity not

weakly causal and generally makes it difficult to interpret even under restrictive as-

sumptions on choice behavior; see Mountjoy (2022) for one clear example. Kline and

Walters (2016) show that a quantity that conflates two different treatment contrasts

can, however, still be useful for evaluating policy questions that do not require ac-

counting for substitution bias. Humphries et al. (2023b) show how an interpretation

in terms of a single treatment contrast can be restored under restrictions on choice

behavior if the instruments are probabilities of assignment to the treatment states, as

in a judge design, and one of the instruments is conditioned on as a covariate.30

What about multiple different treatment variables collected into a vector? This

would be an unordered treatment even if the individual components are all ordered

and cardinal. We are not aware of any work for this case on reverse engineering linear

IV with UHTE. The difficulties encountered with the scalar unordered case suggest

that the conclusion is unlikely to be inspiring.

3.8 Covariates

Covariates Xi have so far been absent from our discussion of reverse engineering. Yet

they often play an important role in bolstering the credibility of the exogeneity assump-

tion. Their inclusion complicates reverse engineering interpretations considerably.

30In particular, the authors maintain the unordered partial monotonicity condition used by Mountjoy
(2022). They point out that this restriction has some unattractive implications for behavior in a judge
design, which they find some evidence against in their data.
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3.8.1 Controlling for covariates nonparametrically

Conditioning on covariates nonparametrically doesn’t have any substantive implica-

tions for reverse engineering, since it only changes the subpopulation to which the

arguments and assumptions must apply. For example, dropping observations that

don’t fall into the conditioning set leads to conditional versions of any of the previous

interpretations. These can be aggregated or compared across conditioning sets as de-

sired. Estimates from a crude binning approach like this may be too noisy to be useful.

Nonparametric machine learning estimators are an appealing alternative, but they are

not linear IV (see Section 4.2). The current dominant practice is instead to condition

on covariates by controlling for them linearly.

3.8.2 Controlling for covariates linearly

Linearly controlling for a vector of covariates Xi changes the IV estimand to

βiv ≡
E[YiZ̃i]

E[DiZ̃i]
where Z̃i ≡ Zi −X ′i

population coefficients δ from regressing Zi onto Xi︷ ︸︸ ︷
E[XiX

′
i]
−1 E[XiZi]︸ ︷︷ ︸

population fitted values from linear regression of Zi onto Xi

≡ Zi −X ′iδ. (25)

Equation (25) has the same reduced-form-to-first-stage structure as the simple IV es-

timand without covariates (the right-hand side of equation (13)), except that the in-

strument is residualized against the covariates first, leaving an effective instrument,

Z̃i. This effective instrument contains variation due to both the instrument and the

covariates. The two sources of variation can be separated in the reduced form (the

numerator):

numerator of IV estimand︷ ︸︸ ︷
E[YiZ̃i] = E

[
E[YiZ̃i|Xi]

]
=

variation in Yi caused by Zi︷ ︸︸ ︷
E
[

C[Yi, Zi|Xi]
]

+

covariation between Yi and Xi︷ ︸︸ ︷
E
[
Yi E[Z̃i|Xi]

]
. (26)

The first term contains the type of variation we hope to extract with an IV estimator:

the relationship between Yi and Zi, conditional on Xi. In contrast, the second term

reflects variation between Yi and a function of Xi, something that isn’t part of the

nonparametric rationale of an IV strategy.

The variation in the second term is part of the rationale of controlling for covariates

in the classical model (8). This is because the random variable E[Z̃i|Xi] contained in

the second term is also orthogonal to Xi.
31 As a consequence, the second term—like

31Because Z̃i is the residual from a linear regression of Zi onto Xi, 0 = E[XiZ̃i] = E[Xi E[Z̃i|Xi]].

39



the first term—still reflects the constant treatment effect, β1:

substitute (8), Yi = α0 + α1Di + α2Xi + εi︷ ︸︸ ︷
E
[
Yi E[Z̃i|Xi]

]
=β1 E

[
Di E[Z̃i|Xi]

]
︸ ︷︷ ︸
treatment effect (scaled)

+β2 E
[
Xi E[Z̃i|Xi]

]
︸ ︷︷ ︸

= E[XiZ̃i] = 0

. (27)

This happy simplification only occurs because of the structure of (8): a constant coef-

ficient on Di, and a linear adjustment for Xi. The very point of reverse engineering an

interpretation for the IV estimand is to avoid these assumptions.

3.8.3 Level-dependence caused by covariates

Heterogeneous treatment effects in particular imply that the second term of (26) will

generally reflect problematic variation. Consider the binary treatment, binary instru-

ment case. The intuition of the baseline LATE argument is not that the always-takers

and never-takers disappear, but rather that their contribution is differenced out in the

instrument contrast represented by the numerator of the Wald estimand. This differ-

encing occurs in the first term of (26), but not in the second. As a consequence, the

second term reflects outcomes for the always- and never-takers, outcomes that inher-

ently do not involve the causal effect of the treatment, because treatment does not vary

for these groups. The implication is that the IV estimand is picking up not just the

effect of the treatment on outcomes, but also the level of the outcome itself. Blandhol

et al. (2022) call this phenomenon level-dependence and show that an estimand that

is level-dependent cannot be weakly causal.32

The size of the second term of (26) is mediated by the instrument residual, Z̃i, and

in particular by its conditional mean

E[Z̃i|Xi] = E[Zi|Xi]−X ′iδ. (28)

This quantity reflects the difference between the conditional mean of Zi given Xi and

the linear regression of Zi onto Xi. The latter provides the best linear approximation to

the conditional mean in terms of mean squared error, so it is only zero if the covariate

specification is sufficiently flexible to exactly reproduce the conditional mean of the

instrument. Blandhol et al. (2022) say that IV specifications with this property have

32The intuition is that an estimand that depends on potential outcome levels could have any value—and
any sign—even if all of the underlying treatment effects are positive. By contrast, for an estimand that only
depends on treatment effects, weak causality is only a matter of whether the weights on these treatment
effects are non-negative.
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“rich covariates.” They show that IV estimands for specifications that do not have rich

covariates will necessarily be level-dependent and will therefore not be weakly causal.

There are two cases in which rich covariates is not a controversial assumption.

The first is when the instrument is independent of the covariates, so that E[Zi|Xi] =

E[Zi] is fit exactly as long as Xi contains a constant. This can happen when the

instrument is experimentally assigned, but also in some natural experiments. Fuzzy

regression discontinuity designs implemented with local IV estimators (e.g. Hahn et al.,

2001; Calonico et al., 2014) are another example where this occurs, albeit in a limiting

sense. While controlling for covariates is not necessary for exogeneity in these set-

tings, researchers still often do so to reduce residual variation in the outcome and/or

treatment variables, which can improve statistical precision.

The second case is when the covariate specification is so flexible that it cannot

fail to be rich. When discussing linear IV estimands with covariates, Angrist and

Pischke (2009) analyze a specification they call “saturate and weight,” which controls

for covariates nonparametrically by including an indicator for each covariate value.33

Controlling for covariates in this way ensures that E[Z̃i|Xi] = 0, so that the second term

of (26) disappears, and the IV estimand is not level-dependent. However, saturate and

weight is a ravenously data-hungry specification, and it tends to produce noisy and

poorly-behaved IV estimators. Blandhol et al. (2022) report a survey of IV papers

which indicates that saturating in covariates is uncommon in practice.

Outside of these two cases, assuming that a specification has rich covariates is a

parametric assumption. The Blandhol et al. (2022) analysis shows that having rich

covariates is necessary for an IV estimand to have a weakly causal interpretation, and

therefore also necessary for the IV estimand to have some sort of interpretation as a

convex average of LATEs when the treatment is binary. Interpreting IV estimands

with covariates as reflecting LATEs therefore implicitly requires the parametric as-

sumption that E[Zi|Xi] is linear in Xi, a conclusion that is uncomfortably at odds

with the motivation of reverse engineering as providing an interpretation that is robust

to misspecification. Blandhol et al. (2022) point out that that rich covariates can be

tested, for example with Ramsey’s (1969) RESET test.

33This requires assuming that the covariates are discrete or have been adequately discretized. The saturate
and weight specification was originally Theorem 3 in Angrist and Imbens (1995).
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3.8.4 Weighting expression for linear IV under rich covariates

If rich covariates holds, then (25) can be written as

βiv = E

[
C[Di, Zi|Xi]

E[C[Di, Zi|Xi]]

C[Yi, Zi|Xi]

C[Di, Zi|Xi]

]
= E

[
C[Di, Zi|Xi]

E[C[Di, Zi|Xi]]
βiv(Xi)

]
, (29)

where βiv(x) is the linear IV estimand with no covariates (other than a constant), but

now conditional on the subpopulation with Xi = x.34 The interpretation of βiv(x) can

be considered for each Xi = x subpopulation without concern about linear extrapola-

tion across these subpopulations. If βiv(x) is weakly causal for each x, then (29) shows

that βiv will be weakly causal if and only if C[Di, Zi|Xi = x] ≥ 0 for all x. This latter

condition says that the sign of the first stage relationship is the same for all Xi = x.

It has a close connection to the monotonicity condition.

3.8.5 Monotonicity-correct first stage specifications

The monotonicity condition we have been considering so far requires the instrument

to operate in the same direction for all individuals. One can weaken this to allow the

direction of the effect to depend on each individual’s covariates, so that

P[Di(1) ≥ Di(0)|Xi = x] = 1 or P[Di(0) ≥ Di(1)|Xi = x] = 1 for all x. (30)

S loczyński (2020) describes (30) as weak monotonicity. Strong monotonicity by con-

trast is the assumption that we have previously been working with, where the di-

rectional effect of the instrument does not change when conditioning on covariates.

Vytlacil’s (2002) equivalence theorem continues to hold under weak monotonicity if

the instrument and covariates are interacted in the threshold-crossing model.

Is weak monotonicity appreciably weaker than strong monotonicity? Many objec-

tions to the monotonicity condition are about ruling out heterogeneity in treatment

choice due to unobservables, such as preferences or costs. Weak monotonicity doesn’t

address those concerns. In fact, in judge designs researchers commonly test mono-

34Multiplying and dividing by C[Di, Zi|Xi] in (29) raises the potential concern that this term may be
zero with positive probability. This turns out to not be a concern in the case considered here because
C[Yi, Zi|Xi = x] will be zero whenever C[Di, Zi|Xi = x] is zero. To see why, suppose that C[Di, Zi|Xi =
x] = E[Di(1) − Di(0)|Xi = x] V[Zi|Xi = x] = 0. If this is because the first term is zero, then the
monotonicity condition implies that P[Di(1) −Di(0) = 0|Xi = x] = 1. In this case, full exogeneity implies
that C[Yi, Zi|Xi = x] = E[(Di(1)−Di(0))(Yi(1)− Yi(0))|Xi = x] V[Zi|Xi = x] = 0 as well. Alternatively, if
V[Zi|Xi = x] = 0, then C[Yi, Zi|Xi = x] = C[Di, Zi|Xi = x] = 0. Instead of indicating for the event that
C[Di, Zi|Xi] 6= 0 in (29), we just define C[Di, Zi|Xi = x]βiv(x) = 0 whenever C[Di, Zi|Xi = x] = 0 to keep
the expression cleaner.

42



tonicity by examining the sign of the first stage relationship across cases with different

covariates (see e.g. Dobbie and Song, 2015; Dobbie et al., 2018; Bhuller et al., 2020;

Norris et al., 2021). This exercise can be interpreted as a suggestive test against strong

monotonicity, but it wouldn’t be appropriate as a test of weak monotonicity, which

would allow for these sign changes. This leads us to believe that researchers are con-

cerned with failures of strong monotonicity, not weak monotonicity, at least in these

contexts. An exception is given by Mueller-Smith (2015), who is explicit in preferring

weak monotonicity to strong monotonicity.

S loczyński (2020) considers the implications of weak and strong monotonicity for

interpreting linear IV estimands in a setting with a binary treatment and binary in-

strument, taking rich covariates as given. He shows that if weak monotonicity holds

but strong monotonicity does not, then the linear IV estimand (29) that uses only Zi

as an excluded instrument will reflect negatively-weighted complier treatment effects,

and so will fail to be weakly causal. The reason is that when Di and Zi are both binary,

βiv(x) is a LATE for the subgroup with Xi = x, while C[Di, Zi|Xi = x] is positive if

the direction of monotonicity is the first case of (30) and negative if it is the second

case. If weak monotonicity holds but strong monotonicity does not, then the sign will

be different for some values of x, so compliers for some subpopulations will necessarily

be negatively-weighted.

These sign reversals arise because the first stage for βiv has a single excluded in-

strument Zi and so is not flexible enough to capture the changes in the direction of

monotonicity allowed under weak monotonicity. A 2SLS specification that includes

interactions between Xi and Zi as excluded variables is more flexible in this regard and

can restore non-negativity in the weights (S loczyński, 2020). Blandhol et al. (2022)

extend this concept to 2SLS specifications with non-binary endogenous variables and

instruments, describing a specification as “monotonicity-correct” if it is sufficiently flex-

ible to capture covariate-mediated changes in monotonicity. They show that given rich

covariates, monotonicity-correctness is the additional sufficient and necessary condition

for a 2SLS estimand to be weakly causal.

3.8.6 Specification considerations with covariates

There are two specification considerations when using covariates with linear IV. First,

are the covariates rich? If not, then the linear IV estimand reflects potential outcome

levels, not just treatment effects, and so is not weakly causal. Second, assuming that

covariates are rich, does strong or weak monotonicity hold and, if only weak mono-

tonicity holds, have enough instrument-covariate interactions been included in the first
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stage to capture changes in monotonicity? If not, then the linear IV estimand reflects

some negatively-weighted treatment effects, and so is also not weakly causal.

The saturate and weight specification in Angrist and Pischke (2009) addresses both

considerations by including a full set of instrument-covariate interactions in the first

stage. Doing so is a dangerous invitation to many instruments bias, the phenomenon

whereby an overfit first stage leads to a IV estimate that is similar to an OLS estimate

(e.g. Bekker, 1994). Blandhol et al. (2022) provide both simulation and empirical

evidence that the saturate and weight specification is irredeemably contaminated by

many instruments bias in realistic use cases.35

On the other hand, (29) shows that if one is willing to maintain strong monotonic-

ity, then including instrument-covariate interactions in the first stage is usually not

necessary for securing a weakly causal interpretation. The sole requirement for the

IV estimand to be weakly causal in this case is that it has rich covariates, which is a

matter of the flexibility in which covariates are controlled for, not their interactions

with the instrument in the first stage. In particular, a specification that is saturated

in covariates, but still only uses a single excluded variable Zi, will generally produce

a weakly causal linear IV estimand under strong monotonicity.36 This is the natural

counterpart to the Angrist and Pischke (2009) saturate and weight specification, but

does not suffer from the pitfalls of many instruments.

Even so, saturating in Xi will often still be too statistically demanding. For these

cases, rich covariates must be maintained as a substantive parametric assumption to

ensure that linear IV is a weakly causal estimand. A natural alternative is to use flexible

machine learning methods to help select the functional form in which the covariates

enter, but this takes one outside of the realm of linear IV; see Section 4.2 for more

detail.

3.9 Summary of reverse engineering

Table 3 summarizes reverse engineering interpretations for linear IV estimands across

the different cases we have considered: the baseline case with a binary treatment and

binary instrument, multivalued (or multiple) instruments, multivalued ordered treat-

ments, multivalued unordered treatments, and specifications that control for covariates.

35Blandhol et al. (2022) provide simulation evidence that jackknife IV estimators (Phillips and Hale, 1977;
Angrist et al., 1999; Kolesár, 2013) can struggle with the herculean task of correcting the massive many
instruments bias introduced by saturate and weight. The limited information maximum likelihood (LIML)
estimator, which is also sometimes suggested as a solution for many instruments (e.g. Bekker, 1994; Hansen
et al., 2008), was shown by Kolesár (2013) to generally not be weakly causal.

36There are some minor caveats here if the instrument is multivalued; see Blandhol et al. (2022) for a
precise statement.
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The only case in which the linear IV estimand has an unqualified interpretation as a

LATE is the first one, the baseline case. The baseline case is commonly the exclusive

focus of discussions of the LATE idea, see e.g. textbook discussions by Wooldridge

(2010, Section 21.4.3) and Hansen (2022b, Section 12.34), the Nobel lectures by An-

grist (2022) and Imbens (2022), or the scientific background provided by the Nobel

committee itself (Nobel Committee, 2021). But it is rarely the setting in which empir-

ical work using linear IV is actually conducted.37

Blandhol et al. (2022) find that empirical researchers routinely describe their linear

IV estimates using LATE language as if they were in the baseline case. The source

of this confusion may be due to the way LATE interpretations have been discussed in

some influential texts. An early example is the Handbook of Labor Economics chapter

by Angrist and Krueger (1999, pg. 1326), who wrote

Finally, we note that the discussion of IV in heterogeneous and non-linear mod-

els so far has ignored covariates . . . IV estimates in models with covariates can be

thought of as producing a weighted average of covariate-specific Wald estimates

[conditional LATEs] as long as the model for covariates [satisfies “saturate and

weight”]. In other cases it seems reasonable to assume that some sort of approx-

imate weighted average is being generated, but we are unaware of a precise causal

interpretation that fits all cases.

The precise (sufficient and necessary) causal interpretation that Angrist and Krueger

conjecture about was only recently provided by Blandhol et al. (2022), whose results

show that their reasonable assumption is not true (see Section 3.8). In their hugely

influential monograph, Angrist and Pischke (2009, pg. 173) make a similar but less

circumspect assertion:

The econometric tool remains 2SLS and the interpretation remains fundamen-

37Blandhol et al. (2022) show that the vast majority of empirical studies using IV control for covariates
in a way that suggests they are not just being used to improve precision, while Mogstad et al. (2021) find
that over 40% use multiple instruments.

We have not included a discussion of longitudinal settings out of space considerations. The few reverse
engineering results on this topic are quite negative, even in simple settings. Blundell and Dias (2009, pp. 589-
591) considered difference-in-differences IV strategies in which differential changes over time in the treatment
between two groups serves as an instrument. They showed that the corresponding Wald estimand can be
interpreted as a LATE for the exposed group if the treatment effect is constant over time and treatment
rates do not change in the unexposed group. If they do change in the unexposed group, then the estimand is
a weighted average of LATEs between the two groups, with weights that can be negative. This result later
appeared in de Chaisemartin and D’Haultfoeuille (2018, Theorem 1), who emphasized the importance and
restrictiveness of the time-constant treatment effect assumption. Miyaji (2024a,b) has recently considered the
implementation of IV-DID with staggered events through two-way fixed effects, complications that certainly
don’t make reverse engineering any more attractive (Bailey and Goodman-Bacon, 2015; Sun and Abraham,
2021). de Chaisemartin and Lei (2023) and Hahn et al. (2024) have shown that it is difficult to ensure a
weakly causal interpreted for linear IV estimands used with Bartik instruments.
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tally similar to the basic LATE result, with a few bells and whistles . . . These results

provide a simple casual [sic] interpretation for 2SLS in most empirically relevant

settings.

Sweeping descriptions like these have been repeated more recently, for example in

Cunningham’s (2021, pg. 351) popular monograph:

The intuition of LATE generalizes to most cases where we have continuous

endogenous variables and instruments, and additional control variables, as well.

Statements like these are, at best, only true subject to many unstated caveats.

One reaction to the many caveats of reverse engineered LATE interpretations is to

downplay the theory. Does any of this actually matter “in practice?” It’s an interesting

question because by their nature reverse engineering arguments are creatures of theory:

they do not change practice, they only change interpretation. This probably explains

their seductive appeal to busy empirical researchers, and the understandable desire to

stretch the theory to fit cases that it does not.

In our view, focusing such intense attention on the reverse-engineered interpretation

of a single number like the linear IV estimand makes it more—not less—important for

the theory to accurately reflect practice. With forward engineering, the consequences

of changing the estimation procedure can be seen directly in the results; the estimates

change, but the estimand stays fixed. Reverse engineering, by contrast, cannot be

“seen” in the results, but is instead a matter of theoretical justification, the subtle

assumptions of which are easy to sweep under the rug in practice.

Reverse engineering can also create problems in other, unexpected places. A clear

if mundane example of this was emphasized by Lee (2018), who points out that the

usual standard errors for overidentified 2SLS estimators, such as those commonly used

with multiple or multivalued instruments, are not correct if there is treatment effect

heterogeneity and heteroskedasticity. The classical derivation of these standard error

formulas makes use of the assumption that the linear IV model is correctly specified

as having constant treatment effects. The derivation omits a term that shows up if the

model is misspecified due to UHTE. Imbens and Angrist (1994, Theorem 3) recognized

this point, but it seems to have been forgotten in the subsequent empirically-oriented

literature, including Angrist and Pischke (2009). Whether this point is substantively

important is debatable, and Lee’s empirical illustrations suggest that it may not be.

Nevertheless, it provides a clear example of how reverse engineering makes it easy for

practitioners to ignore the theory that justifies their practice.

There’s a separate issue of whether these reverse-engineered interpretations—when

properly invoked—actually answer useful questions. The baseline LATE result in Sec-
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Table 3: Reverse engineering linear IV estimands
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Summary

Bin. Bin. No The Wald and simple linear IV estimands are equal to each other and equal to the
LATE under monotonicity and full exogeneity.

Bin. Mul. No Each pair of instrument values defines a different complier group with an associated
LATE. Different linear IV estimands produce different weighted averages of LATEs.
2SLS with a saturated instrument specification leads to non-negative weights. The
weights can be negative with non-saturated specifications, but will be non-negative if
the specification reproduces the monotonicity order of the instruments. The mono-
tonicity condition can be especially unattractive if the multivalued instrument is not
ordered, for example in judge designs, or when there are multiple instruments.

Ord. Any No If the instrument is binary, and the treatment is a single scalar cardinal variable, then
the linear IV estimand can be interpreted as the average causal response (ACR). The
ACR can in turn be interpreted either as an average treatment effect among over-
lapping groups whose treatment choice is shifted by the instrument, or an average
per-unit treatment effect across all (disjoint) complier groups. The second interpre-
tation is a natural generalization of the LATE from the binary treatment case. If
the instrument is multivalued, then these generalized LATEs get averaged according
to different instrument contrasts, the same way as in the binary treatment case, and
with the same caveats. Ordered treatments that are not cardinal are better analyzed
through the unordered treatment case.

Uno. Any No The linear IV estimand in this case has indicators for each treatment state, except
for the excluded state, which is captured by a constant. If there are instruments that
affect each treatment state, then the two linear IV estimands will be weakly causal
if and only if each instrument affects choices only in its targeted treatment state
and the excluded state is always the preferred or next best choice. Achieving this
requires strong behavioral restrictions or data on next best choices. With ordered
treatments that are not cardinal there are possibilities for restoring a weakly causal
interpretation, but they are complicated; see main text.

Any Any Yes Two assumptions are required for a linear IV estimand to be interpretable as a convex
weighted average of LATEs: rich covariates and a monotonicity-correct first stage.
Rich covariates is often satisfied in randomized experiments, but may not be satisfied
when the instrument is not independent of covariates. The first stage will usually be
monotonicity-correct under strong monotonicity, but under weak monotonicity it will
only be monotonicity-correct if it includes covariates in a way that is flexible enough
to account for changes in the direction of monotonicity across covariates.

Notes: This table summarizes the discussion in Section 3.

tion 3.2 is clearly useful in some settings, but this is arguably also not really an example

of reverse engineering, as it is based on a nonparametric estimand (the Wald estimand)

that simply happens to be equal to a linear IV estimand in the baseline setting. The

interpretations with a multivalued ordered treatment and binary instrument in Section
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3.6 also seem useful: with a single binary instrument it is difficult to explore nonlin-

earity, so a sensibly-averaged summary of the nonlinearity seems like the best one can

hope to identify nonparametrically.

For the other cases, it is less clear that these reverse engineering interpretations

provide much useful information about causality. An ideal interpretation with convex

weights allows one to conclude that the estimand lies somewhere between the smallest

and largest average subgroup-specific treatment effects. This conclusion is more in-

formative the less treatment effect heterogeneity there is. With substantial treatment

effect heterogeneity—perhaps even effects of different signs—knowing that the weights

are convex is not particularly conclusive. The implication is that reverse engineer-

ing interpretations work best at providing an interpretation robust to omitted UHTE

exactly when this form of misspecification is a lesser concern.

The underlying problem is the form of the weights. For many reverse engineering

interpretations of linear IV, the weights reflect statistical features rather than substan-

tive concerns. The clearest example of this is with multivalued instruments, where

linear IV estimands were seen to be interpretable as a weighted average of different

LATEs, but the weights depended on the marginal distribution of the instrument, as

well as on the choice of linear IV estimator. Different experimenters operating under

different budgets or making different but sensible choices of evaluation could reach

different conclusions in the same economic environment. This is clearly unappealing.38

Changing the weights would lead to more interpretable estimands without these

drawbacks. In the multivalued instrument case, weights that were equal or given by

the respective complier shares would produce a quantity with a clear interpretation. It

would be invariant to the distribution of the instrument and could be defined without

reference to a choice of estimator. But for the same reason, such a quantity is unlikely

to arise from a reverse engineering mindset as the estimand to some commonly-used

estimator: reverse engineering starts with the estimator. Estimating target parameters

with purposefully-chosen weights requires forward engineering.

38Statistically-driven weights that appear in reverse engineering expressions have also been argued to be ob-
jectionable on other grounds. S loczyński (2022) argues that the weights that appear in reverse-engineered in-
terpretations of the OLS estimand under selection on observables have counterintuitive properties. S loczyński
(2020) argues that the weights that appear in linear IV estimands can be difficult to interpret in some cases.
Balla-Elliott (2023) argues that the weights that appear in linear IV estimands are likely to systematically
understate the causal effects of beliefs in information provision experiments.

48



4 Forward Engineering: Estimating Target Parameters

A forward engineering approach starts with a model and then constructs estimators

under the assumption that the model is correctly specified. This is arguably traditional

approach taken by economists, with the earliest examples being the Gronau-Heckman

selection model (Gronau, 1974; Heckman, 1974, 1976). In this section we survey ap-

proaches to forward engineering with a eye towards more recent practice.

4.1 Assuming away the problem

The simplest “solution” to the difficulties raised by UHTE is to assume that, in fact,

there is no such unobserved heterogeneity. Angrist and Fernández-Val (2013) reintro-

duce this assumption under the description of “conditional effect ignorability” (CEI).

Stated in our notation for the binary treatment, binary instrument case with covariates,

their Assumption 3 is that

E[Yi(1)− Yi(0)|Gi = g,Xi = x]︸ ︷︷ ︸
late(x) when g = (0, 1)

=

ate(x) — the average treatment effect given Xi = x︷ ︸︸ ︷
E[Yi(1)− Yi(0)|Xi = x] for all groups g. (31)

The CEI assumption allows for treatment effect heterogeneity across observable covari-

ates Xi but assumes that the unobservably-different choice groups of always-takers,

never-takers, and compliers have the same average treatment effects.

Under the CEI assumption, the ATE is equal to the average of covariate-specific

LATEs. This can be seen by applying the law of iterated expectations with (31):

E [Yi(1)− Yi(0)] = E
[

E[Yi(1)− Yi(0)|Xi]︸ ︷︷ ︸
ate(Xi)

]by force of CEI assumption (31)︷ ︸︸ ︷
= E [late(Xi)] . (32)

Angrist and Fernández-Val (2013) propose estimating covariate-specific LATEs and

then averaging them into the ATE, or into the average treatment on the treated/untreated

(ATT/ATU), to which similar arguments apply. They call this argument “LATE-

Reweight,” but given the strength of the CEI assumption, one could equally well

describe it as “ATE-Reweight.” Such a reweighting scheme can be implemented in

the classical linear model by including treatment-covariate interaction terms and then

summarizing the resulting observable treatment effect heterogeneity however one sees

fit. Angrist and Fernández-Val (2013) maintain both monotonicity and full exogeneity,

but neither are required given the strong CEI assumption.

Assuming away unobserved heterogeneity in treatment effects—whether phrased in
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the classical model or with CEI—is a strong assumption. Assumptions are necessary for

causal inference and strong assumptions may be justified in difficult empirical problems.

But it’s important to remember the economic considerations drove the concern about

UHTE to begin with (Section 2.2).

In describing why fertility and female labor supply are endogenous—but before

introducing the CEI— Angrist and Fernández-Val (2013, pg. 406) write:

Mothers with weak labor force attachment or low earnings potential may be

more likely to have children than mothers with strong labor force attachment or

high earnings potential.

This description nearly precludes the CEI: mothers with weak labor force attachment

may be more likely to have children because the labor supply impacts are different

than for mothers with strong labor force attachment. The only way in which the

description of endogeneity can coexist with the CEI is if less fertile mothers would still

work more than more fertile mothers even in the counterfactual world in which both

types of mothers have the same number of children. A story like this rules out UHTE

by disconnecting the labor supply and fertility decisions, thereby weakening the very

motivation for using an IV to begin with.

4.2 Estimating LATEs and ACRs in the presence of covariates

The difficulties encountered when reverse engineering linear IV estimands with covari-

ates (Section 3.8) were more mechanical than conceptual. Conceptually, nothing about

the LATE identification argument changed, at least for the binary treatment and bi-

nary instrument case; conditional-on-covariate LATEs were identified and could be

estimated cell-by-cell and then aggregated in whatever way desired. The mechanical

problem was with the linear IV estimand, which was not guaranteed to implement

a convex weighting without additional implicit (and typically unstated) assumptions.

Even if these assumptions were met, the weighting implemented by the linear IV esti-

mand was statistical, making it difficult to interpret the resulting quantity, and difficult

to transfer it across settings.

A well-developed econometric literature solves these problems by forward engineer-

ing direct estimators of the unconditional LATE. The estimators are primarily designed

for the case of a binary treatment and a binary instrument, although they can also be

applied with a multivalued ordered treatment, in which case the target parameter is

the unconditional ACR. In this section, we discuss two types of estimators and then

illustrate their implementation in an empirical example.
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4.2.1 Propensity score weighting

A binary instrument allows for a fruitful connection with the large literature on esti-

mation under selection on observables (e.g. Imbens, 2015). Let

Wi(z) ≡ Yi(Di(z)) = Yi(0) +Di(z)(Yi(1)− Yi(0))

denote the potential outcome for Yi associated with a manipulation of the instrument,

Zi, with Yi = (1−Zi)Wi(0)+ZiWi(1). Full exogeneity implies thatWi(z) is independent

of Zi, conditional on Xi. The average treatment effect of Zi on Yi—often called the

intent to treat (ITT)—is then identified by averaging covariate-conditioned contrasts,

assuming an appropriate overlap condition:

E
[

E[Yi|Zi = 1, Xi]−E[Yi|Zi = 0, Xi]
]

=︸ ︷︷ ︸
assuming 0 < P[Zi = 1|Xi] < 1 (instrument overlap)

the ATE of Zi on Yi (the ITT)︷ ︸︸ ︷
E[Wi(1)−Wi(0)] . (33)

If Di is binary and exclusion and strong monotonicity are satisfied, then the ITT only

reflects treatment effects for the compliers:

E[Wi(1)−Wi(0)] = E[(Yi(1)− Yi(0))(Di(1)−Di(0))] = late×P[Gi = cp], (34)

where late ≡ E[Yi(1) − Yi(0)|Gi = cp] is the unconditional LATE. The proportion

of compliers is itself identified as the average treatment effect of Zi on Di, so can be

written in an analogous form:

E [E[Di|Zi = 1, Xi]−E[Di|Zi = 0, Xi]] = E[Di(1)−Di(0)] = P[Gi = cp]. (35)

Putting together (33)–(35) gives

late =
E[Wi(1)−Wi(0)]

E[Di(1)−Di(0)]
=

E [E[Yi|Zi = 1, Xi]−E[Yi|Zi = 0, Xi]]

E [E[Di|Zi = 1, Xi]−E[Di|Zi = 0, Xi]]
, (36)

which is an Xi-averaged reduced form divided by an Xi-averaged first stage.39 A

similar argument can be used when Di is multivalued and ordered, with the change

being that the right-hand side of (36) identifies the ACR in (22), rather than the LATE

(see Appendix D).

39Similar arguments can be used to construct an expression the average treatment effect for treated or
untreated compliers (Hong and Nekipelov, 2010). A treated complier has Zi = 1 while an untreated complier
has Zi = 0. They are probabilistically identical groups without covariates, but with covariates they can differ
because the distribution of Xi varies conditional on Zi.
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Equation (36) was derived by Tan (2006) and Frölich (2007), who also explicitly

made the connection to the problem of estimating the ATE under selection on observ-

ables. This connection is helpful because it suggests applying one of the roughly three

types of approaches used for that problem: imputation, propensity score weighting,

and doubly-robust estimators that combine imputation and weighting. The propensity

score referred to here is for the instrument, denoted as q(x) ≡ P[Zi = 1|Xi = x] =

E[Zi|Xi = x] with Qi ≡ q(Xi). Notice that q was the same object that needed to

be correctly specified for a linear IV estimand to satisfy the rich covariates condition

necesary for a weakly causal interpretation (Section 3.8.3).

An imputation approach constructs estimators of each of the conditional means in

(36) and then averages across the distribution of Xi. Frölich (2007) derived the asymp-

totic properties of nonparametric series and local polynomial imputation estimators,

however the usual curse of dimensionality suggests these will tend to perform poorly

with more than a couple of covariates. Hirano et al. (2000), Yau and Little (2001),

and Tan (2006) considered imputation with parametric estimators. Matching on the

instrument propensity score Qi is another possible imputation approach, which was

suggested by Frölich (2007, Section 4), but does not seem to have been pursued further

in the literature.

Propensity score weighting has been more widely analyzed. In the context of (36),

the appropriate weighting expressions are

E[Wi(1)] = E

[
YiZi
Qi

]
and E[Wi(0)] = E

[
Yi(1− Zi)

1−Qi

]
, (37)

with analogous expressions for Di(1) and Di(0). The attraction of propensity score

weighting is that only a single function q(x) needs to be modeled and estimated by

q̂(x), after which simple sample analogs of the weighting expressions can be formed

from Q̂i ≡ q̂(Xi) and combined to estimate late via (36):

1
n

∑n
i=1 YiZi/Q̂i − 1

n

∑n
i=1 Yi(1− Zi)/(1− Q̂i)

1
n

∑n
i=1DiZi/Q̂i − 1

n

∑n
i=1Di(1− Zi)/(1− Q̂i)

. (38)

Weighting estimators like this were proposed by Frölich (2007), Tan (2006), Uysal

(2011), MaCurdy et al. (2011), and Donald et al. (2014), and have been revisited more

recently by Heiler (2022), Sun and Tan (2022), Singh and Sun (2024), and S loczyński

et al. (2024). The latter authors emphasize the importance of normalizing the weights
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so that the first term in the numerator of (38) is replaced by[
n∑
i=1

YiZi/Q̂i

]/[ n∑
i=1

Zi/Q̂i

]
, (39)

and similarly for the other three terms.

The weighting expressions in (37) follow as special cases from a more general argu-

ment developed by Abadie (2003). Abadie (2003) showed that for any function ψ of

Yi, Di, and Xi,

E[ψ(Yi, Di, Xi)|Gi = cp] =
1

P[Gi = cp]
E [κiψ(Yi, Di, Xi)]

where κi ≡ 1− Di(1− Zi)
1−Qi

− (1−Di)Zi
Qi

, (40)

a result that has been called “Abadie’s κ” by Angrist and Pischke (2009).40 The most

common use of Abadie’s result is to estimate the distribution of Xi among compliers by

taking ψ(Xi) = Xi (e.g. Marx and Turner, 2019; Leung and O’Leary, 2020; Goodman

et al., 2020).

Another application of Abadie’s result is to estimate parametric specifications of

E[Yi(1) − Yi(0)|Gi = cp, Xi = x], which (40) shows can be achieved by taking ψ

to be an appropriate criterion function. For example, if ψ is taken to be a least

squares criterion for a linear regression of Yi onto Di and Xi, then minimizing the left-

hand side of (40) corresponds to running this regression only among compliers, while

minimizing the right-hand side corresponds to running a κi-weighted regression among

the entire population. The former is of interest because Di = Zi is exogenous for the

subpopulation of compliers (conditional on Xi), but infeasible because compliers are

not observed. The latter is feasible because κi can be estimated by substituting Q̂i

for Qi. Using Abadie’s result in this way requires correctly specifying both q and the

functional form of the linear controls in the weighted regression. The latter condition

ends up being the same as requiring rich covariates (Blandhol et al., 2024). The

regression-based approach can also potentially be used to examine heterogeneity in

complier treatment effects along observables by including interactions between Di and

Xi; for an example, see Angrist et al. (2013).

40To obtain (37) from the more general (40), note that Di = Zi for compliers and that

E[Wi(1)−Wi(0)] = late×P[Gi = cp] = E

[
YiDi

Qi
− Yi(1−Di)

1−Qi

∣∣∣Gi = cp

]
P[Gi = cp].

Applying (40) and simplifying some algebra then produces the difference of the two terms in (37).
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4.2.2 Double robustness and machine learning

Doubly robust approaches combine imputation and propensity score weighting to pro-

duce an estimator that is consistent under correct specification of either the propensity

score or the conditional means, but not necessarily both. See Kang and Schafer (2007)

and S loczyński and Wooldridge (2018) for overviews in the context of selection on ob-

servables. For estimating LATEs, Tan (2006) showed that a doubly-robust estimator

of the first term in the numerator of (36) is

1

n

n∑
i=1

Zi
q̂(Xi)

Yi −
1

n

n∑
i=1

(
Zi

q̂(Xi)
− 1

)
µ̂1(Xi), (41)

where q̂ is (as before) an estimator of the instrument propensity score q and µ̂(x) is

an estimator of µ(x) ≡ E[Yi|Zi = 1, Xi = x]. Analogous estimators would replace the

other terms in (36). Uysal (2011), Ogburn et al. (2015), Sun and Tan (2022), and

S loczyński et al. (2022) analyze various doubly-robust estimators based on (41).

To see what double robustness means, suppose that q̂ and µ̂ consistently estimate

functions q̃ and µ̃, so that (41) is consistent for

E

[
Zi

q̃(Xi)
Yi

]
−E

[(
Zi

q̃(Xi)
− 1

)
µ̃1(Xi)

]
. (42)

If q̃ = q is correctly specified, then the first term of (42) is equal to E[Wi(1)], as shown

in (37), while iterating expectations shows that the second term is zero, regardless of

whether µ̃1 = µ1. On the other hand, if µ̃1 = µ1, then the second term of (42) satisfies

E

[(
Zi

q̃(Xi)
− 1

)
µ1(Xi)

]
= E

[
Zi

q̃(Xi)
Yi

]
−E[µ1(Xi)], (43)

and so again (42) reduces to E[µ1(Xi)] = E[Wi(1)], this time regardless of whether

q̃ = q. This is the double robustness property: the estimator (41) converges to (42),

which is equal to E[Wi(1)] if either q̂ or µ̂ is consistent for q or µ, but not necessarily

both.

The double robustness property gives the researcher two chances at correct specifi-

cation. Whether this translates into better finite sample performance when both spec-

ifications are wrong is debated, see e.g. Kang and Schafer (2007) and the commenting

articles, or S loczyński and Wooldridge (2018) for a review and unifying analysis. For

practitioners, doubly robust estimators may be less attractive than propensity score

weighting because they require making more modeling choices.

Machine learning (ML) methods can lessen this concern by allowing for data-driven
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model selection. Belloni et al. (2017) and Chernozhukov et al. (2018) propose a method

based on (42) and the other three analogous pieces, combined into a single moment

condition. They estimate this moment condition using what they term double/debiased

machine learning (DDML), which uses cross-fitting to fit flexible ML estimators to

the functions q(x), E[Yi|Zi = z,Xi = x], and E[Di|Zi = z,Xi = x] for z = 0, 1.

With sufficiently flexible ML estimators of these five functions this procedure can be

viewed as providing a nonparametric estimator of the unconditional LATE/ACR in

(36). The doubly-robust formulation turns out to be important here as it makes the

resulting moment condition Neyman orthogonal, an essential property for ensuring that

nonparametric ML methods can be used despite their slower-than-parametric rates of

convergence (see, e.g. Newey, 1994; Chernozhukov et al., 2018). Ahrens et al. (2024b)

show how multiple ML estimators can be averaged together in DDML using “stacking”

to reduce dependency on the approximation properties of any specific estimator.

4.2.3 Empirical illustration

We illustrate some of these methods with the well-known extract of the National Lon-

gitudinal Survey of Young Men used by Card (1993) in his analysis of the returns to

schooling. The sample size of 3010. The outcome Yi is log wage in 1976. The treatment

Di is years of education. The instrument Zi is a binary indicator for living near a four-

year college in 1966. Our aim is to estimate the unconditional ACR while accounting

for the need to control for covariates Xi.

Table 4 compares five estimators across five different sets of covariates. The first two

rows report the OLS and linear IV estimators that linearly control for sets of geographic

and demographic covariates. Column (4) corresponds to the set of covariates used in

Card’s Table 5, column (3). Columns (2)–(3) only control for geographic covariates,

while column (5) augments Card’s specification with interactions between geographic

and demographic covariates. The linear IV estimator is larger than the OLS estimator

throughout all specifications, a finding that is common in the empirical literature, but

conflicts with the classic constant effects reasoning about “ability bias” (Card, 2001).

Reverse engineering an interpretation for the linear IV estimator that allows for

UHTE is challenging. The rich covariates condition is required for the corresponding

estimand to have an interpretation as a non-negatively weighted average of causal

effects (Section 3.8). A Ramsey (1969) RESET test rejects the null of rich covariates

in all specifications, with p-values smaller than 10−4. This provides strong statistical

evidence that the linear IV estimator cannot be interpreted as weakly causal in this

application.
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Table 4: Methods of controlling for covariates in Card’s (1993) data

(1) (2) (3) (4) (5)

OLS 0.052 0.040 0.039 0.075 0.073
(0.003) (0.003) (0.003) (0.004) (0.004)

Linear IV 0.188 0.091 0.092 0.132 0.133
(0.026) (0.056) (0.056) (0.054) (0.055)

PLIV (DDML) — — 0.097 — 0.124
(0.050) (0.051)

ACR (weighting) — 0.051 0.041 0.073 0.066
(0.053) (0.053) (0.047) (0.050)

ACR (DDML) — — 0.032 — 0.063
(0.033) (0.046)

Geographic controls X X X X
Geographic interactions X X
Demographic controls X X
Demographic interactions X

Notes: Point estimates and heteroskedasticity-robust standard errors in parentheses. Geographic controls
are indicators for region of residence in 1966, residence in an SMSA in 1966 and 1976, and residence in the
South in 1966 and 1976. Demographic controls are an indicator for Black, experience, and experience squared.
The DDML estimates use an ensemble of ten differently-tuned random forest, gradient boosting, and neural
network algorithms, with weights chosen by non-negative least squares through the short-stacking procedure
of Ahrens et al. (2024b). DDML estimates are given uninteracted lists of covariates but reported under the
with-interactions columns because the methods potentially incorporate interactions on their own. Five folds
are used for cross-fitting. The reported point estimate is the median across one hundred replications (different
sample splits), with standard errors for the median computed according to Chernozhukov et al. (2018). The
propensity score ACR estimates used normalized weights computed with a logit model.

A modern reaction is to use data-driven machine learning techniques to select the

functional form of covariates. The third row of Table 4 reports the DDML estimator for

the partially linear IV (PLIV) specification discussed by Chernozhukov et al. (2018),

which can be implemented using the ddml package for Stata or R (Ahrens et al., 2023,

2024a). Three functions are fit in this approach: E[Yi|Xi = x], E[Di|Xi = x], and

E[Zi|Xi = x]. If the learners used to fit these functions are sufficiently expressive,

then the PLIV DDML estimator will converge to the statistically-weighted average of

covariate-specific ACRs given in (29), with βiv(x) being interpreted as the covariate-

specific ACR via conditional versions of (22) or (23). While weakly causal, this object

has a convoluted counterfactual interpretation because the weights depend on the joint

distribution of Xi and Zi.

The linear IV and PLIV estimates are close both when using only geographic con-
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trols and in Card’s specification that includes demographic controls. Comparing the

linear IV and PLIV estimates underscores an important point about reverse engineer-

ing. Even if the linear IV and PLIV estimates were identical, this would not justify

interpreting the linear IV estimate as weakly causal. There are, of course, an infinite

number of ways to write the same single number as a weighted average, whether the

weights are non-negative or not. The obvious consequence is that two estimates can

be similar even if one estimates a weakly causal estimand and the other does not.

The fourth row of Table 4 reports propensity score weighting estimators (38) with

the weights normalized as in (39). The only choice needed for this estimator is a model

of q(x) ≡ E[Zi|Xi = x]. We use a logit model with the same covariate specifications as

in the corresponding linear estimators. S loczyński et al. (2024) show how to construct

analytical standard errors for the estimator and provide a Stata package for imple-

mentation.41 The fifth row of Table 4 reports DDML estimates of the unconditional

ACR, again implemented using the ddml package (Ahrens et al., 2024a). The DDML

estimates are computationally intensive to implement and depend on many choices and

tuning parameters, which we made only modest attempts to explore.

The weighting and DDML estimates of the unconditional ACR are similar to one

another, but substantially smaller than the linear and partially linear estimates, even

while the standard errors for all estimates are comparable. The implication is that

the difference between an unconditional ACR and a statistically-weighted average of

ACRs is considerable in Card’s application. Both sets of unconditional ACR estimates

are comparable to the OLS estimates, and in some cases even smaller. This provides

one answer to Card’s (2001) puzzle of why linear IV estimates often exceed their OLS

counterparts: the linear IV estimator is estimating an odd statistically-weighted object.

Estimates of a more interpretable parameter like the unconditional ACR are not in fact

larger than their OLS counterparts.

4.3 Marginal treatment effects

This section contains a development and selected review of marginal treatment effect

(MTE) methods for binary treatments. Our focus is on an empirically tractable formu-

lation of the MTE idea that leads to an implementation via linear regression. Surveys

on MTE with different emphases are provided by Heckman and Vytlacil (2007b), Cor-

nelissen et al. (2016), and Mogstad and Torgovitsky (2018).

41The package is called kappalate. We used our own R code together with bootstrapped standard errors.
The analytical standard errors reported by kappalate are 10–20% smaller.
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4.3.1 Definitions

MTE methods for binary treatments start with the same underlying assumptions used

for identification of LATEs: full exogeneity and monotonicity. Instead of representing

these selection assumptions with potential treatments, most authors prefer to use the

latent variable notation (14), which we reproduce here, now augmented explicitly with

covariates Xi:

Di = 1[Vi ≤ ν(Zi, Xi)]. (44)

The idea is to view Vi as a random variable that captures the unobserved tendency to

take treatment and then model the relationship between Vi and (Yi(0), Yi(1)).

The “marginal” descriptor comes from viewing an individual with Xi = x and

Vi = ν(z, x) as being on the margin between choosing Di = 0 and Di = 1 when faced

with an instrument value Zi = z. The average treatment effect for these marginal

individuals is E[Yi(1) − Yi(0)|Vi = ν(z, x), Xi = x]. Björklund and Moffitt (1987)

appear to have been the first to make use of this interpretation in a Gronau-Heckman

normal selection model, but it did not attract much attention until being reintroduced

in a nonparametric form by Heckman and Vytlacil (1999, 2005).

Working with (44) is cumbersome because both the function ν and the distribution

of Vi are unknown. Yet full exogeneity implies that some features of these unknowns

are identified by the propensity score:

p(z, x) ≡ P[Di = 1|Zi = z,Xi = x]︸ ︷︷ ︸
the (treatment) propensity score

by (44) and full exogeneity︷ ︸︸ ︷
= P[Vi ≤ ν(z, x)|Xi = x] ≡ FV |X(ν(z, x)|x),

where FV |X is the distribution of Vi conditional on Xi. The model can be simplified

while incorporating this identified relationship by reparameterizing (or “normalizing”)

the distribution of Vi. The simplest way to do this is to assume that Vi is continuously

distributed and then apply FV |X to both sides of (44), defining a new random variable

Ui ≡ FV |X(Vi|Xi):
42

Di = 1
[
FV |X(Vi|Xi)︸ ︷︷ ︸

≡Ui

≤ FV |X(ν(Zi, Xi)|Xi)︸ ︷︷ ︸
=p(Zi,Xi)

]
≡ 1[Ui ≤ p(Zi, Xi)]. (45)

The distribution of Ui conditional on Xi = x is always uniform on [0, 1] for any x, a

42Assuming that Vi is continuously distributed does not change the Vytlacil equivalence theorem; recall
Figure 1.
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textbook result known as the probability integral transform (e.g. Hansen, 2022a, pg.

35). Note that this implies that Ui is independent of Xi. However, it’s important to

remember that Ui is defined as a rank conditional on Xi; comparing Ui across different

values of Xi can be misleading.

The normalized selection equation (45) is easier to work with because the distri-

bution of Ui is known and the propensity score is identified. The normalization gives

Ui an interpretation of the quantile of resistance to treatment. An individual with

Ui = .05 is more prone to take treatment than 95% of the population or, equivalently,

less resistant to taking treatment than only 5% of the population. The Vytlacil equiv-

alence theorem reminds us that these statements should be interpreted as relative to

hypothetical variation in the instrument Zi; the selection model is a model of how

treatment choice varies with Zi, not Xi, and Ui is defined relative to Zi. If Zi is a

cost shifter, then those with lower Ui require less cost reduction to take treatment than

those with higher Ui. A different Zi would mean a different model of selection and

so a different Ui.
43 Even if two different binary instruments have the same propensity

scores, their compliers need not reflect the same individuals, and so their Ui’s also need

not be comparable.

The MTE is defined as the ATE among subpopulations with the same propensity

to take treatment:

mte(u, x) ≡ E[Yi(1)− Yi(0)|Ui = u,Xi = x].

The MTE is a useful definition because it uses the selection model to partition the

population based on all unobservable and observable determinants of their treatment

choice except for the instrument, which is the source of exogeneous variation.44 UHTE

is captured through variation in the u component of the MTE, while observed treatment

effect heterogeneity is captured through variation in the x component. For modeling

purposes it can be advantageous to work with the conditional mean of each treat-

ment arm separately. Mogstad et al. (2018) call these conditional means the marginal

43This subtlety is perhaps one benefit of the potential treatment notation, which makes it harder to forget
the interpretation of the latent variables being modeled. The latent variable notation makes it tempting to
include several instruments without acknowledging the strong implications for choice behavior discussed in
Section 3.5 (e.g. Carneiro et al., 2011), or to attempt to port Ui across different environments (e.g. Kowalski,
2023c).

44While usually considered in the context of instruments, the definition of the MTE only depends on (44),
which allows for ν(Zi, Xi) = ν(Xi). Briggs et al. (2024) use this observation to consider an MTE analysis
based on subjective expectations data rather than instruments.
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treatment response (MTR):

mtr(d|u, x) ≡ E[Yi(d)|Ui = u,Xi = x]. (46)

Any target parameter that reflects a mean or a mean contrast of potential outcomes

can be written as a weighted average of the MTR function.45 For example, the average

treatment on the treated (ATT) can be written as

E[Yi(1)− Yi(0)|Di = 1] = E

[∫ 1

0
(mtr(1|u,Xi)−mtr(0|u,Xi))

1[u ≤ p(Zi, Xi)]

P[Di = 1]︸ ︷︷ ︸
ω(1|u,Zi,Xi)

du

]
,

(47)

where the weights ω(d|u, z, x) are as indicated. For the ATT, the weights are symmetric

in the sense that ω(0|u, z, x) = −ω(1|u, z, x), but asymmetric weights can arise for

target parameters that reflect only one treatment arm, or both arms but weighted

differently. Table 5 reports weights for some of the more commonly considered target

parameters. Appendix E.1 briefly discusses how to derive weighting expressions like

these. Key to these weighting expressions is that the weights themselves are identified.

The MTR function is the sole unknown.

4.3.2 Motivation

So far, these are just definitions. No additional assumptions beyond monotonicity and

full exogeneity have been imposed. The purpose of the definitions is to provide a

framework under which additional assumptions can be imposed and their identifying

content exploited. The additional assumptions are used to construct estimates of a

specific target parameter of interest, such as one of the ones listed in Table 5.

The Ito et al. (2023) study of dynamic electricity pricing provides a concrete ex-

ample of why a researcher may want to do this. The treatment Di in their setting

indicates whether a household adopts dynamic pricing, meaning that instead of paying

a fixed rate throughout the day, they pay considerably more during afternoon peak

hours and somewhat less during off-peak hours. The instrument Zi is a binary indica-

tor of whether a household was randomly assigned a $60 incentive to adopt dynamic

pricing. The outcome Yi is electricity usage.

This example falls into the baseline LATE setting of Section 3.2: a binary treatment

45The MTE idea can be extended beyond means as well. Carneiro and Lee (2009) and Martinez-Iriarte
and Sun (2024) consider quantiles, while Acerenza et al. (2024) consider duration outcomes with censoring.
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Figure 5: Marginal treatment effect estimates from Ito et al. (2023)
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Notes: Authors’ reproduction of Figure 10, Panel A of Ito et al. (2023). We thank Koichiro Ito for
providing the necessary data. The point estimate is the estimated MTE evaluated at the sample average of
the covariates. The shaded region indicates 95% bootstrapped confidence intervals.

and a binary instrument that is unconditionally randomly assigned and undoubtedly

satisfies the monotonicity condition. The authors estimate the LATE, which provides

an evaluation of the effect of an incentive policy matching their experimental policy of

a $60 incentive. But how does it compare to other potential policies?

Answering this question requires understanding which households would be drawn

into dynamic pricing under different incentive policies and how dynamic pricing would

change their usage. As Ito et al. (2023) discuss, willingness to participate and impact

are likely linked: households that can more easily adjust their electricity usage may

be both more willing to adopt dynamic pricing and more affected by it. This creates

UHTE because “ease of adjustment” is unobserved. The MTE function captures the

UHTE by how it changes with u and captures observed heterogeneity by how it changes

with x.

The authors’ MTE estimates are reproduced in Figure 5 which shows the point

estimate of mtr(u, x) with x evaluated at the sample mean, along with 95% confidence
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intervals. The estimated MTE indicates dramatic UHTE with dynamic pricing having

much larger impacts on electricity usage for lower values of u (more willing households)

than larger values of u (less willing households). This implies that different incentive

policies would also have substantially different impacts. Households with the highest

impacts are drawn in by relatively small incentives. Larger incentives draw more

household into dynamic pricing, but with less impact on usage. Ito et al. (2023) develop

a welfare framework that incorporates these considerations, while also accounting for

potential costs of adoption (Eisenhauer et al., 2015). They use the framework to

estimate optimal incentive policies.

The Ito et al. (2023) MTE estimates in Figure 5 rely on additional assumptions

about the MTR/MTE function beyond full exogeneity and monotonicity, assumptions

which we discuss in detail ahead. Their estimates of the impacts of alternative incentive

policies are necessarily less credible than their LATE estimate, because the former rely

on strictly stronger assumptions. Yet the motivation of their analysis was precisely to

estimate the impact of alternative policies and to characterize a potentially optimal

one. Estimating the LATE alone does not speak to this motivation, but an MTE

analysis can. The fact that their MTE analysis relies on stronger assumptions is part

of the bargain.

4.3.3 A linear regression formulation

In this section, we describe a general but simple linear regression formulation of the

MTE idea. Suppose that the MTR functions are linear in parameters, meaning that

mtr(d|u, x) =

dθ∑
k=1

θkbk(d|u, x), (48)

where bk are known “basis” functions specified by the researcher and θk are unknown

parameters, collected into a dθ dimensional vector θ. If the MTR satisfies (48), then

the conditional means of the observed outcomes also turn out to be linear in θ. The

relationship is

E[Yi|Di, Pi, Xi] =

dθ∑
k=1

θkBik

where Bik ≡
(

1−Di

1− Pi

)∫ 1

Pi

bk(0|u,Xi) du+
Di

Pi

∫ Pi

0
bk(1|u,Xi) du, (49)
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and where Pi ≡ p(Xi, Zi) is the propensity score evaluated at Xi and Zi. The derivation

of (49) is given in Appendix E.1, but it follows the same type of logic as the weight

derivations in Table 5. The regressors Bik are known functions of Di, Pi, and Xi.

The integrals in Bik can be computed analytically for common examples of bk like

polynomials, while numerical integration can be used in other cases.

Equation (49) brings us into standard linear model territory.46 Collect the regres-

sors into a vector Bi ≡ [Bi1, . . . , Bidθ ]
′. If the Gram matrix E[BiB

′
i] is invertible, then

θ is identified:

θ = E[BiB
′
i]
−1 E[BiYi]. (50)

Because the Bi are functions of the propensity score, Pi, the invertibility of the Gram

matrix is a statement about instrument relevance. Whether it holds will depend on

the variation in the propensity score and the flexibility of the MTR specification. If θ

is identified, then so too is any target parameter that can be written as an identified

function of the MTR, such as the quantities in Table 5.

For example, suppose that there are no covariates and that the MTR is specified

as linear in u with different parameters for each treatment arm:

mtr(d|u) = θ1(1− d) + θ2(1− d)u︸ ︷︷ ︸
linear in u (untreated)

+ θ3d+ θ4du︸ ︷︷ ︸
linear in u (treated)

, (51)

so that, b1(d|u) = (1− d), b2(d|u) = (1− d)u, b3(d|u) = d, and b4(d|u) = du. Then (49)

becomes

E[Yi|Di, Pi] = θ1(1−Di) + θ2(1−Di)
(1 + Pi)

2
+ θ3Di + θ4Di

Pi
2
, (52)

which specifies the observed conditional mean as a different linear function of the

propensity score for each treatment arm. An alternative way to write (52) is as two

separate regressions stratified by treatment arm:

E[Yi|Di = 0, Pi] = θ1 + θ2
(1 + Pi)

2
,

and E[Yi|Di = 1, Pi] = θ3 + θ4
Pi
2
. (53)

46The approach can be viewed as an example of a two-stage “control function” argument. An early
example of it can be found in Heckman and Robb (1985, Section 3.4), although not stated in terms of the
MTE. Wooldridge (2015) provides a history and exposition of the general idea of a control function. See
also Vella (1998) for a discussion on the various control function approaches for one-sided sample selection
models, many of which can be seen as progenitors of the approaches discussed ahead.
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From (53), we see clearly what is required for identification of θ: the propensity score

must have at least two points of support in each treatment arm. This is satisfied if Zi

is binary and p(0) 6= p(1) with p(0), p(1) ∈ (0, 1).47

The general linear-in-parameters formulation (48) can flexibly accomodate more

complex MTR specifications. Covariates can be included for each treatment arm, as can

interactions between x and u. Nonlinear functions of u such as higher-order polynomials

or splines can also be incorporated, just as in a standard linear model framework. The

complexity in the u component is limited by the identification requirement that the

Gram matrix be invertible, which is in turn determined by the amount of variation in

the propensity score net of covariates. We discuss this further in the next section.

If θ is identified via (50) then it can then be consistently estimated as the coefficients

in a linear regression of Yi on Bi. Some components of Bi will generally depend on

the propensity score, Pi ≡ p(Zi, Xi), as in (52), so to make this regression feasible

Bi needs to be replaced by an estimate B̂i based on an estimated propensity score

P̂i ≡ p̂(Zi, Xi). The same might also be true of the weights in the target parameter.

We discuss this further in Section 4.3.6.

4.3.4 Identification

The linear MTR specification (48) was first studied by Brinch et al. (2012, 2017).48 As

those authors observed, the support of the instrument determines how much linearity

can be relaxed without losing point identification. If the instrument has three points

of support, and if these three points yield three distinct propensity score points per

treatment arm, then an MTR that is quadratic in u is point identified. A cubic is

identified with four points of support, and so on.

The traditional Gronau-Heckman normal selection model can also be interpreted as

specifying (48). For simplicity, suppose there are no covariates. The normal selection

model assumes that (Vi(d), Vi) are bivariate normal with mean zero for d = 0 and

d = 1, where Vi(d) ≡ Yi(d) − E[Yi(d)] and Vi has variance one, where Vi is the pre-

normalization selection unobservable. Bivariate normals have linear conditional means,

47If p(z) = 0 or p(z) = 1, then there is one-sided non-compliance. For example, suppose that Zi is
treatment assignment and treatment cannot be obtained without being assigned to it, so that p(0) = 0.
Then P[Zi = 0|Di = 1] = 0, so Pi only has one point of support (Pi = p(1)) in the treated arm, and
consequently θ3 and θ4 are not separately identified. In this case only the compliers are treated, so there is
no scope for interpolation or extrapolation among the treated.

48See Kowalski (2016, 2023c) for an alternative exposition of the same idea with an application to the
impacts of health insurance. Closely-related linear control function assumptions have been used without the
context of the MTE by Garen (1984) and Card (1999, 2001); see Wooldridge (2015).
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so

mtr(d|u) = E[Yi(d)] + E[Vi(d)|
Ui=u⇔ Vi=F

−1
V (u)=Φ−1(u)︷ ︸︸ ︷

FV (Vi)︸ ︷︷ ︸
Ui

= u] = E[Yi(d)] + C[Vi(d), Vi]Φ
−1(u), (54)

where Φ−1 is the inverse of the standard normal cumulative distribution function. This

can be written in the linear in parameters form (48) as

mtr(d|u) =

θ1︷ ︸︸ ︷
E[Yi(0)]

b1(d|u)︷ ︸︸ ︷
(1− d) +

θ2︷ ︸︸ ︷
C[Vi(0), Vi]

b2(d|u)︷ ︸︸ ︷
(1− d)Φ−1(u) +

θ3b3(d|u)︷ ︸︸ ︷
E[Yi(1)]d

+ C[Vi(1)− Vi(0), Vi]︸ ︷︷ ︸
θ4

dΦ−1(u)︸ ︷︷ ︸
b4(d|u)

. (55)

Appendix E.2 shows that computing the integrals in (49) with (55) produces

E[Yi|Di, Pi] = θ1(1−Di) + θ2(1−Di)λ(−Φ−1(Pi)) + θ3Di − θ4Diλ(Φ−1(Pi)), (56)

where λ(v) ≡ φ(v)/Φ(v) is the inverse Mills’ ratio. Equation (56) is recognizable as

the Heckman selection correction applied to both treatment arms (e.g. Hansen, 2022b,

pg. 883, equation 27.7).49 The coefficients θ3 and θ1 are average treated and untreated

outcomes for the entire population.

If the instrument is binary and there are no covariates, then both the linear and

normal specifications lead to saturated regressions: Di and Pi have four points of

support and θ has four components. The population fitted values from these regres-

sions will therefore exactly reproduce the conditional means E[Yi|Di = d, Pi = p] for

(d, p) ∈ {0, 1} × {p(0), p(1)}. As Brinch et al. (2017) observe, this means that for

either specification (or any other saturated specification) the LATE implied by the

MTR coefficients using the weighting in Table 5 must exactly match the usual LATE,

even if the MTR specification is incorrect. See Appendix E.3 for a formal justification

and Kline and Walters (2019) for an elaboration.50 The equivalence is particular to

saturated specifications and generally breaks in unsaturated specifications, which are

more typical in practice, for example when including covariates.

While saturated MTR specifications produce the same LATE, they do not gener-

ally produce the same value for other parameters. The reason is that other parameters

49Most discussions of the Gronau-Heckman normal selection model would set the index function ν(z) =
ν1 + ν2z to be linear. This would then lead Φ−1(Pi) = ν1 + ν2Zi, which is the more familiar argument in the
inverse Mills’ ratio.

50The result for the normal selection model is also implicit in Baker and Lindeman (1994, Appendix I).
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are not nonparametrically identified; they are identified given the MTR specification

because the parametric assumptions allow for extrapolation (or interpolation). For

example, the ATE weights all values of u equally, so the value of the ATE implied

by a given MTR specification depends on how that specification extrapolates and

interpolates from the observed propensity score support to other values of u. The ex-

trapolation produced by the linear MTR specification is linear in the quantiles of latent

resistance, u, whereas the extrapolation produced by the Gronau-Heckman normal se-

lection model is highly nonlinear and diverges at its extremes because Φ−1(u) diverges

as u tends to zero or one. The relative transparency in how the linear MTR specifi-

cation extrapolates is a good reason to prefer it over the traditional normal selection

model.

Another advantage of the linear MTR specification is the transparency with which

it can be made more flexible. The practice of including a quadratic or cubic term is

familiar to practitioners from standard linear models. The linear-in-parameters spec-

ification also allows for the use of more local specifications, such as splines, which

are even more transparent in how they extrapolate. A continuous instrument allows

for a nonparametric specification, which for the linear-in-parameters formulation can

be interpreted as linear sieve (Chen, 2007). This allows for nonparametric interpola-

tion throughout the support of the propensity score, but does not solve the issue of

extrapolation beyond the support.

An important distinction about propensity score variation arises when there are

covariates. Suppose that Xi ∈ {0, 1} is binary, for simplicity. A nonseparable linear

MTR specification interacts the covariate with the linear terms:

mtr(d|u, x) = (1− d)
(linear in u, interacted with x︷ ︸︸ ︷
θ1 + θ2u+ θ3x+ θ4ux

)︸ ︷︷ ︸
untreated arm

+ d
(linear in u, interacted with x︷ ︸︸ ︷
θ5 + θ6u+ θ7x+ θ8ux

)︸ ︷︷ ︸
treated arm

. (57)

Compared to (51), this specification now allows the slope of the linear-in-u MTR to be

different for x = 0 and x = 1. It implies that the conditional mean of Yi given Di = d

and Xi = x is linear in Pi for each of the four combinations of d and x. Identification

requires p(1, x) 6= p(0, x) for each x, so that the instrument is relevant conditional on

x.

A separable linear MTR specification sets θ4 and θ8 to be zero in (57). This requires

the slope of the MTR to be the same for x = 0 and x = 1 while still allowing the level

to be different. In this case, identification only requires p(1, x) 6= p(0, x) for either

x = 0 or x = 1. To see this, consider the implied conditional mean of the observed
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outcome for the treated arm:

E[Yi|Di = 1, Pi, Xi] = θ5 + θ6
Pi
2

+ θ7Xi. (58)

The coefficients are identified as long as Pi and Xi are not perfectly correlated (given

Di = 1). If we write the propensity score out in saturated form, so that

Pi = π1 + π2Zi + π3Xi + π4ZiXi (59)

we can see that Pi and Xi will not be perfectly correlated if Zi and Xi aren’t and if

either π2 6= 0 or π4 6= 0, which is the same as p(0, x) 6= p(0, x) for either x = 0 or x = 1.

This discussion is related to the well-known critique about the Gronau-Heckman

model being identified even without a relevant instrument (e.g. Goldberger, 1983;

Puhani, 2000). The critique is really about the model of the propensity score: if

both π2 = 0 and π4 = 0 in (59), so that Zi is irrelevant, then Pi is perfectly correlated

with Xi, so that θ6 and θ7 are not separately identified in (58). On the other hand,

suppose that we start with an unsaturated probit model for the propensity score, so

that

p(x, z) = Φ(π1 + π2Zi + π3Xi), (60)

where Φ is the standard normal cumulative distribution function. Now even if π2 = 0,

Pi = Φ(π1+π3Xi) is not perfectly correlated with Xi, because Φ is a nonlinear function.

This shows that the critique about not needing an instrument is not related to selection

modeling per se, but rather to the fact that statistical models commonly used for the

propensity score of a binary treatment are nonlinear. Viewed from this perspective,

this classic critique of selection modeling seems much less damning.

Separable specifications require less instrument variation. The flip side of this

statement is that separable specifications can be more flexible in u than the variation

in the instrument alone would suggest. Brinch et al. (2017) show that a separable

MTR that is quadratic in u is generally identified with a binary instrument and binary

covariate:

mtr(d|u, x) = (1− d)
(quadratic in u, separable in x︷ ︸︸ ︷
θ1 + θ2u+ θ3x+ θ4u

2
)︸ ︷︷ ︸

untreated arm

+ d
(quadratic in u, separable in x︷ ︸︸ ︷
θ5 + θ6u+ θ7x+ θ8u

2
)︸ ︷︷ ︸

treated arm

. (61)

The intuition can be seen in the linear separable conditional mean (58) and the linear

(saturated) propensity score specification (59). There are two excluded variables in
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(59)—Zi and ZiXi—but only one “endogenous” variable Pi/2 in (58).51 So there’s

room to include an additional endogenous variable in (58) by adding the u2 term in

(61). Nonlinear propensity score specifications like (60) are typically used in practice,

and these effectively create interactions between all values of the covariates and the

instrument because p(1, x) − p(0, x) = Φ(π1 + π2 + π3x) − Φ(π1 + π3x) differs for all

values of x.

The Ito et al. (2023) estimates in Figure 5 are based on a separable specification

with a binary instrument. The authors provide evidence that takeup differs heavily

by baseline household characteristics, in particular a measure of expected savings from

switching to dynamic pricing given historical usage. The incentive has an impact

throughout the distribution of household characteristics, leading to wide variation in

the propensity score. This is what allows the authors to identify and estimate a flexible

MTE curve across a wide range of u. The cost is the separability assumption, which

requires the pattern of UHTE to not depend on observables.

Is the cost worth it? Should we be extrapolating at all? Certain target parameters,

such as the ATE, depend on the MTE at extreme quantiles of u, and so require some

extrapolation whenever these extreme quantiles are not represented in the propensity

score, which is common. So whether extrapolation is necessary is a matter of the

research question and how much variation there is in the data. The Ito et al. (2023)

study provides a good example: the authors observed one incentive policy, but the

purpose of their analysis was to compare different incentive policies and estimate an

optimal one. There is no way to do this without interpolating and extrapolating.

The central role of extrapolation in IV methods with UHTE means that different

specifications should be compared for sensitivity. This is already common practice in

applications of MTE. Partial identification analysis provides a formal way to incor-

porate specification ambiguity by allowing for models that are too rich to generate a

single value of the target parameter. Mogstad et al. (2018) develop a partial identifica-

tion approach for MTE analysis. For applications of this approach see Mogstad et al.

(2017), Rose and Shem-Tov (2021), Gulotty and Yu (2023), and Daljord et al. (2023).52

A major benefit of considering partial identification is that it allows one to harness the

51The scare quotes are because Pi/2 is a function of Zi and Xi, so not really endogenous. However, it
arises in (58) because the MTR depends on u, and the dependence between Ui and (Yi(0), Yi(1)) is the source
of endogenity.

52Han and Yang (2024) and Marx (2024) consider partial identification approaches that exploit the full
independence between the instrument and potential outcomes, rather than the mean-independence consid-
ered here and in Mogstad et al. (2018). Kowalski (2023b,a) considers special cases that arise with a binary
treatment and binary instrument, derives closed-form bounds that are easy to implement, and applies the
bounds to study mammography and the overdiagnosis of breast cancer.
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identifying content of nonparametric shape restrictions, such as monotonicity or con-

cavity, which often have a clear economic interpretation. The major challenge with

partial identification is computation, estimation, and inference; see Canay and Shaikh

(2017) and Molinari (2020) for general discussions, and Shea and Torgovitsky (2023)

for a discussion in the context of MTE methods.

4.3.5 Unstratified regressions and local instrumental variables

The implied conditional mean for Yi considered in (49) is stratified in the sense that

it conditions on the treatment indicator, Di. Heckman and Vytlacil (2007b, Section

4.8) call this the selection or control function approach, while Brinch et al. (2017)

call it the “separate” approach. An alternative is an unstratified regression where the

conditioning on Di is dropped and the coarser conditional mean of Yi given only Pi

and Xi is used instead. This produces the relationship

E[Yi|Pi, Xi] = E[Yi(0)|Xi] +

∫ Pi

0
mte(u,Xi) du.︸ ︷︷ ︸

E[Di(Yi(1)− Yi(0))|Pi, Xi]; see Appendix E.1

(62)

Heckman and Vytlacil (2007b, Section 4.8) describe approaches based on (62) as “IV

approaches” in contrast to control function approaches. We adopt the terminology

stratified for (49) and unstratified for (62) because both use the variation in Pi produced

by Zi. The two approaches are more similar than they are different.

Heckman and Vytlacil (1999) observed that the derivative of the unstratified re-

gression (62) identifies the MTE:

liv(u, x) ≡ ∂

∂u
E[Yi|Pi = u,Xi = x]︸ ︷︷ ︸

local instrumental variable

= mte(u, x). (63)

They describe this derivative as the local instrumental variable (LIV) estimand due

to its interpretation as a limiting case of the usual reduced-form-to-first-stage ratio in

traditional linear IV estimands. If u = p(z, x) is set to be an observed propensity score

value, then

liv(p(z, x), x) ≈ E[Yi|
Pi︷ ︸︸ ︷

p(Zi, Xi) = p(z′, x), Xi = x]−E[Yi|p(Zi, Xi) = p(z, x), Xi = x]

E[Di|Zi = z′, Xi = x]︸ ︷︷ ︸
p(z′,x)

−E[Di|Zi = z,Xi = x]︸ ︷︷ ︸
p(z,x)

,
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where the approximation is for p(z′, x) ≈ p(z, x). Because it is a derivative, liv(u, x) is

only well-defined if there is continuous variation in Pi around u, conditional on Xi = x,

which requires continuous variation in Zi. Assuming such variation is available, (63)

shows that the MTE is also identified at that point, a relationship that can be used

to view the MTE at specific points of evaluation as limiting versions of the LATE.

Carneiro et al. (2011) develop a semiparametric local polynomial estimator of the LIV

using Robinson’s (1988) approach for partially linear models; see Cornelissen et al.

(2016) and Andresen (2018) for more details on implementation.

Continuous instrument variation is a luxury that is not available in many IV ap-

plications. Continuous covariate variation can be used as a substitute if the MTE is

assumed to be separable so that mte(u, x) = mU (u)+mX(x) for two functions mU and

mX . Estimation based on the LIV requires one or the other, so may not be applicable

or attractive in many situations.

Alternatively, one can start with the unstratified regression (62) and use a linear-

in-parameters specification:

E[Yi(0)|Xi = x] = x′ϑ0 and mte(u, x) =

dϑ∑
k=1

ϑkbk(u, x), (64)

where bk are known basis functions specified by the researcher and ϑk are unknown

parameters. Notice that in contrast to (48), which parameterized the two treatment

arms in the MTR separately, now we are parameterizing their difference—the MTE—

as well as the baseline covariate relationship in the untreated state. Substituting these

forms into (62) produces

E[Yi|Pi, Xi] = X ′iϑ0 +

dϑ∑
k=1

ϑkBk where Bk ≡
∫ Pi

0
bk(u,Xi) du. (65)

Identification is again a matter of whether the Gram matrix for this linear regres-

sion is invertible, which requires having sufficient variation in the propensity score Pi,

controlling for Xi.

Compared to the stratified regression (49), the unstratified regression (65) exploits

less of the observed variation in the data, because it does not condition on Di. An

implication is that more instrument variation is needed for identification when consid-

ering comparable specifications. For example, suppose that there are no covariates and

assume that the MTE is linear in u, so that

E[Yi(0)] = ϑ0 and mte(u) = ϑ1 + ϑ2u.
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A linear MTE is implied by the linear MTR in (51). In principle, it is a weaker param-

eterization, although as a practical matter it is probably not substantively different.53

However, when substituted into (65), the linear MTE produces a regression that is

quadratic in Pi:

E[Yi|Pi, Xi] = ϑ0 + ϑ1Pi + ϑ2
P 2
i

2
. (66)

This is in contrast to (52), which was linear in the propensity score, but stratified by

treatment arm. Whereas a binary instrument was sufficient for invertibility with the

stratified regression, three points of instrument support are needed for the comparable

unstratified approach.

4.3.6 Estimation and inference

Estimating θ in the stratified regression requires first estimating the treatment propen-

sity score to obtain estimates P̂i ≡ p̂(Zi, Xi) of Pi. Typically one would use a logit or

probit model for this purpose so that the P̂i lie between 0 and 1, but a linear model

could also be used. Replacing Pi with P̂i in the definition of Bik gives an estimate B̂ik

of Bik, collected into a vector B̂i. Then θ can be estimated with ordinary least squares:

θ̂ =

(
n∑
i=1

B̂iB̂
′
i

)−1( n∑
i=1

B̂iYi

)
. (67)

Estimating ϑ in the unstratified regression (62) proceeds the same way, except that

Bik and B̂ik are defined differently and baseline covariates Xi are included additively,

so that the regression is of Yi on Xi and B̂i.

The parameters θ of the MTR (or ϑ or the MTE) are usually not of ultimate

interest; instead we are interested in the target parameter that can be constructed

from the MTR (or MTE). Suppose in particular that the target parameter takes the

form

τ =
∑

d∈{0,1}
E

[∫ 1

0
mtr(d|u,Xi)ω

?(d|u, Zi, Xi)du

]
, (68)

where the weights ω? are assumed to be identified, but may need to be estimated.

53For example suppose that we specify the MTR as mtr(d|u, x) = θ1(1−d)+θ2(1−d)u+θ3d+θ4du+θ5u
2,

where the quadratic term does not depend on d. The implied MTE is then (θ3 − θ1) + (θ4 − θ2)u, which is
linear in u.
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Substituting (48) into this expression gives

τ =
K∑
k=1

θkb
?
k where b?k ≡ E

 ∑
d∈{0,1}

∫ 1

0
bk(d|u,Xi)ω

?(d|u, Zi, Xi) du

 . (69)

Each of the b?k are identified but need to be estimated if ω? needs to be estimated, or

if bk or ω? depend on Xi or Zi. A natural estimator of b̂?k is

b̂?k ≡
1

n

n∑
i=1

∑
d∈{0,1}

∫ 1

0
bk(d|u,Xi)ω̂

?(d|u, Zi, Xi) du, (70)

where ω̂? is an estimator of ω?. For example, if the target parameter is the ATT, then

ω̂?(d|u, Zi, Xi) =
1[u ≤ P̂i]

n−1
∑n

j=1 P̂j
. (71)

The final estimate of the target parameter τ is then

τ̂ ≡
dθ∑
k=1

θ̂k b̂
?
k. (72)

Estimating a target parameter with an unstratified regression uses exactly the same

procedure, just that τ must only depend on the MTE, and not the two arms of the

MTR separately.

Computing θ̂ and τ̂ requires calculating the integrals in the definitions of Bi and

b?. The mtefe package for Stata (Andresen, 2018) and the ivmte package for R (Shea

and Torgovitsky, 2023) both contain functionality that automates this task.54 Given

the integration, computation is simply a matter of one logistic or other binary response

regression to estimate the propensity score p and one linear regression to estimate the

MTR parameters θ. The ivmte package for R also contains functionality for imple-

menting the partial identification approach developed by Mogstad et al. (2018), but

estimation and inference is more complicated.

The formal asymptotic theory for θ̂ and τ̂ does not appear to have been worked out

yet.55 There is no reason to expect that these estimators would not be asymptotically

normal, but their asymptotic variances will be complicated by the fact that B̂ik and

b̂?k are estimated in a first step. Simulation evidence by Andresen (2018) bears out the

54The mtefe package improves on the earlier margte package by Brave and Walstrum (2014).
55Carneiro and Lee (2009) and Sasaki and Ura (2023) have derived formal results for semiparametric

approaches that are not linear-in-parameters.
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normality and suggests that naive variance calculations that ignore first step estimation

error may still be roughly accurate. Bootstrapping the entire procedure will account for

this first step estimation error and is easy to do. This already appears to be standard

practice among empirical practitioners. All aspects of the estimation procedure are

smooth, so there is no reason to expect that the bootstrap would not be consistent (Fang

and Santos, 2019), at least assuming that the instruments are sufficiently strong.56

These statements apply equally to the stratified and unstratified regressions. Which

should be used? One consideration is the amount of instrument variation available,

as less is required for the stratified regressions. Another consideration is the target

parameter: a stratified approach estimates the MTE, and so will not provide enough

information to compute target parameters that depend on the MTR components them-

selves. This comes up in the Ito et al. (2023) study, where the target parameter con-

sidered depends asymmetrically on electricity usage under dynamic and static pricing,

which create different marginal surpluses. Assuming that enough variation is avail-

able to consider both and that the target parameter depends only on the MTE, the

only remaining consideration is presumably statistical precision. Andresen (2018) pro-

vides some simulation evidence that suggests the stratified approach tends to lead to

more precise estimates. On balance then, stratified MTR approaches seem preferable,

although more research on the statistical differences would be useful.

4.3.7 Applications and uses of marginal treatment effects

Applications of MTE methods are widespread and have been proliferating rapidly in

the past fifteen years. Table 6 provides a list of some empirical applications of MTE

methods. All of these applications use the MTE to investigate patterns of UHTE.

These patterns add depth and nuance to the empirical analysis and can sometimes

speak to questions about mechanisms.

Another complementary use of MTE methods is for estimating the impacts of ex-

plicit policy counterfactuals. The Ito et al. (2023) study is one example. Another

example is given by Cornelissen et al. (2018), who study the impact of publicly pro-

vided childcare on childrens’ outcomes, and then use their MTE estimates to simulate

the aggregate impacts of expanding publicly provided childcare. A third example is

Mogstad et al. (2017), who use MTE estimates to compare the cost effectiveness of

different subsidies for encouraging the use of mosquito nets.

56As with linear IV estimators, weak instruments could make the asymptotic approximation a poor de-
scription of the finite sample behavior, and would also render the bootstrap inconsistent (e.g. Andrews et al.,
2019).
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Table 6: Empirical applications of marginal treatment effects

Labor and human
capital Moffitt (2008), Carneiro et al. (2011), Kaufmann (2014), Carneiro et al.

(2016), Joensen and Nielsen (2016), Nybom (2017), Dal Bó et al. (2021),
De Groote and Declercq (2021), Gathmann et al. (2021), Heinesen and
Stenholt Lange (2022), Westphal et al. (2022), Dutz et al. (2022), Humlum
et al. (2023),

Development
Mogstad et al. (2017), Bandiera et al. (2020), Berry et al. (2020), Manda
et al. (2020), Li et al. (2021a), Mellon Bedi et al. (2021), Sarr et al. (2021)

Health
Basu et al. (2007), Johar and Maruyama (2014), Basu et al. (2014), Alessie
et al. (2020), Depalo (2020), Gong et al. (2020), Zeng et al. (2020), Kowalski
(2023c,a), Wilding et al. (2023), Gupta et al. (2024)

Family and child-
hood development Doyle Jr. (2007), Brinch et al. (2017), Cornelissen et al. (2018), Felfe and

Lalive (2018), Priebe (2020), Hojman and Lopez Boo (2022), Liu et al. (2022)
Crime

Doyle Jr. (2008), Arnold et al. (2018), Bhuller et al. (2020), Arnold et al.
(2022), Baron and Gross (2022), Arbour (2022), Arteaga (2023), Agan et al.
(2023), Possebom (2023), Gonçalves and Mello (2023)

Public programs
Maestas et al. (2013), French and Song (2014), Moffitt (2019), Moffitt and
Zahn (2019), Aizawa et al. (2023)

Energy
Wang et al. (2020), Li et al. (2021b), Ito et al. (2023)

Other
Galasso et al. (2013) (innovation), Kasahara et al. (2016) (international
trade), Daljord et al. (2023) (marketing), Coury et al. (2022) (history),
Heldring et al. (2022) (history)

Notes: A list of papers that have applied MTE methods to empirical problems. We limit the list to papers
that fit the binary treatment setting in Section 4.3.

In each case, the authors measure the policy counterfactual using what Heckman

and Vytlacil (2001a, 2005) called policy-relevant treatment effects (PRTEs). A PRTE is

defined by a hypothetical modification of the instrument and/or propensity score from

p and Zi to p◦ and Z◦i . This results in a different hypothetical treatment selection,

D◦i ≡ 1[Ui ≤ p◦(Z◦i , Xi)],

and so also different realized outcomes,

Y ◦i ≡ (1−D◦i )Yi(0) +D◦i Yi(1).

Let p◦◦ and Z◦◦i denote some other policy that leads to treatment choices D◦◦i and
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realized outcomes Y ◦◦i . Then the PRTE for these two policies is defined as

prte ≡ E[Y ◦i ]−E[Y ◦◦i ]

E[D◦i ]−E[D◦◦i ]
,

which gives the average change in outcomes per net change in treatment participation.

An alternative definition omits the denominator and just measures the average change

in outcomes (Heckman and Vytlacil, 2001a; Carneiro et al., 2010).57 The contrasting

policy is often taken to be the baseline status quo, p◦◦ = p, Z◦◦i = Zi, so that D◦◦i = Di

and Y ◦◦i = Yi are the observed treatment and outcomes.

Constructing p◦ and Z◦i may require some extrapolation or speculation. Cornelissen

et al. (2018) consider a policy that takes p◦(Zi, Xi) = min{1.5p(Zi, Xi), 1} and so

increases the likelihood of attendance for every child by one and a half times. As the

authors point out, it is not clear what type of concrete intervention would achieve

this new level of attendance. Another counterfactual policy intervention the authors

consider is a direct increase in their instrument, the number of available childcare seats

per capita, from Zi to Z◦i = Zi+ .4. Here the intervention is more clear, but the impact

that this has on attendance depends on p(Z◦i , Xi), which involves some extrapolation

beyond the observed support of Zi. Two types of extrapolation (or interpolation) are

required for evaluating a PRTE of this sort: the effect of changing the instrument on

treatment takeup, and the effect of treatment on outcomes for those induced to change

their treatment status under the new policy.

The definition of the PRTE is premised on the fundamentals of the environment

remaining stable under the new policy, an assumption that Heckman and Vytlacil

(2005) describe as policy invariance. The need for policy invariance is not specific to

MTE methods; it’s a necessity for any sort of counterfactual policy analysis. In the

context of the MTE, policy invariance means that the distribution of (Yi(0), Yi(1), Ui)

remains the same under different policies. There are certainly good reasons to be

skeptical of such an assumption. For example, if the childcare expansion entertained

by Cornelissen et al. (2018) is achieved by adding poorer quality childcare facilities,

then the treatment effect Yi(1) − Yi(0) could change, leading to a failure of policy

invariance. Again, this is not a drawback of MTE methods or even IV strategies more

generally, but rather an inherent limitation of evaluating a policy with a model that

doesn’t model all possible effects of the policy.

57Carneiro et al. (2010) also define a limiting version of the PRTE for small policy changes, which they call
the marginal PRTE or MPRTE. The advantage of the MPRTE is that it doesn’t require any extrapolation,
and so in principle can be estimated nonparametrically.
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4.4 Binary treatments when monotonicity is violated

The monotonicity condition plays a central role when estimating both LATEs and

MTEs. Yet as we saw in Section 3.4, it can be unattractive in some settings, such as

in judge designs. Multiple instruments are also difficult to square with the traditional

monotonicity condition (Section 3.5). What can be done in these cases?

The simplest solution is to redefine the instrument in a way that makes the mono-

tonicity condition more plausible. For example, instead of using all judges individually,

Dahl et al. (2014) consider estimates based on a binary instrument that defines whether

the judge is one of the most strict or one of the least strict, with moderate judges being

omitted from the analysis. Monotonicity violations that might occur among a variety of

similar judges are perhaps less likely to occur when comparing extreme judges, making

the monotonicity condition with the binary instrument more plausible. This point was

recently recycled by Sigstad (2024b,a). Binarizing the instrument also makes it easier

to assess the impact that violations of monotonicity would have through a sensitivity

analysis like the one in Section 3.4.

The same idea can also be applied to multiple instruments. The problem in that case

was the difficulty in comparing treatment choice behavior under pairs of instrument

values that were not ordered in a natural way, such as (Zi1, Zi2) = (0, 1) and (Zi1, Zi2) =

(1, 0). One solution is to remove these instrument values and only consider (Zi1, Zi2) =

(0, 0) and (1, 1), which can be naturally ordered if both Zi1 and Zi2 are incentives to

take treatment. Versions of this idea have been used by Frölich (2007), Goff (2024), and

van ’t Hoff et al. (2024). An alternative is to use only one component of the instrument

at a time, conditioning on the rest of the components as covariates. Monotonicity in

each instrument separately allows for the estimation of separate LATEs and separate

MTE curves, one for each instrument; see Mogstad et al. (2021) for an empirical

illustration. Mogstad et al. (2024) show how MTE curves for different instruments can

be aggregated in a partial identification framework.

Recording the instrument or conditioning on subcomponents are simple solutions,

but they reduce the amount of effective exogenous variation. A more ambitious ap-

proach is to design a new selection model that allows for deviations from monotonicity.

The major obstacle is identification. With a binary treatment, monotonicity enables

identification of the shares of each choice group. Removing monotonicity requires

adding a new assumption or allowing for the possibility of partial identification.

Gautier and Hoderlein (2015) and Gautier (2021) consider random coefficient ver-

sions of the threshold-crossing model (44) and show that point identification can be

obtained under extreme large support assumptions on the available of instrument vari-
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ation. Ura and Zhang (2024) and Han and Kaido (2024) provide partial identification

approaches that are applicable to models that do not satisfy monotonicity, such as a

random coefficients model, but the approaches come with some of the familiar compu-

tational and statistical challenges of partial identification. Dutz et al. (2022) develop

a simple non-monotonic model of survey response and apply it under conditions that

lead to either point or partial identification.

Arnold et al. (2022, Section 4) point out that MTE-style regressions of outcomes on

propensity scores can still be estimated even if monotonicity does not hold. Assuming

that these regressions are correctly parameterized, they can still be extrapolated to

estimate unconditional potential outcome means. Their approach effectively replaces

low-level behavioral assumptions about monotonicity with higher-level statistical as-

sumptions about the relationship between outcomes and the propensity score. Arnold

et al. (2022, Section 5) develop a parametric selection model that does not impose

monotonicity and show how to estimate the model, but do not establish identification.

Measurement error in the treatment provides another source of monotonicity viola-

tions. Even if monotonicity is satisfied for the correctly measured (but latent) binary

treatment variable, misclassification will mean that it is violated for the observed, mis-

measured treatment variable. Ura (2018), Calvi et al. (2022), and Tommasi and Zhang

(2024) consider identification of the LATE in the presence of this type of measurement

error, while Possebom (2023), Acerenza et al. (2023), and Acerenza (2024) consider

identification of the MTE. Partial identification emerges in all of these analyses, with

the exception of Calvi et al. (2022).

4.5 Ordered treatments

The linear MTE approach for binary treatments extends to ordered treatments with

one important caveat: the natural generalization of the threshold-crossing model (44)

is no longer equivalent to the monotonicity condition.

4.5.1 Threshold-crossing with multiple treatments

Suppose as in Section 3.6 that the treatment variable takes values d0, d1, . . . , dJ ar-

ranged in increasing order. Instead of (44), assume that

1[Di ≥ dj ] = 1[Vi ≤ ν(dj |Zi, Xi)] for each j. (73)

The function ν now depends on dj , but the unobservable Vi is the same for all dj , an

important distinction that we will return to ahead. Because Di is no smaller than d0
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we can set ν(d0|Zi, Xi) = +∞. It’s also convenient to add an artificial value dJ+1 > dJ

with ν(dJ+1|Zi, Xi) = −∞ to reflect that Di must always be strictly smaller than dJ+1.

Normalizing (73) as in the binary case simplifies it to

1[Di ≥ dj ] = 1
[
FV |X(Vi|Xi)︸ ︷︷ ︸

≡Ui

≤ FV |X(ν(dj |Zi, Xi)|Xi)︸ ︷︷ ︸
=p(dj |Zi,Xi)

]
≡ 1[Ui ≤ p(dj |Zi, Xi)], (74)

where p(dj |z, x) ≡ P[Di ≥ dj |Zi = z,Xi = x] is a generalization of the propensity score

(the “greater than” propensity score or the conditional survival function when viewed

as a function of dj). As in the binary case, p(dj |z, x) is identified. In the multivalued

case, it is decreasing in dj , with p(d0|z, x) = 1 and p(dJ+1|z, x) = 0.

Writing (74) in terms of individual levels makes it look a bit more familiar:

Di = d0 +

J∑
j=1

(dj − d0) 1 [p(dj+1|Zi, Xi) < Ui ≤ p(dj |Zi, Xi)]︸ ︷︷ ︸
1[Di < dj+1 and Di ≥ dj ] = 1[Di = dj ]

. (75)

This is an ordered response model (e.g. Greene and Hensher, 2009; Wooldridge, 2010,

Chapter 16). The binary threshold-crossing model (5) is recovered by setting J = 1,

d0 = 0, and d1 = 1, so that p(d0|z, x) = 1, p(d1|z, x) = P[Di = 1|z, x] is the usual

binary propensity score, and p(d2|z, x) = 0.

In the multivalued case, the ordered response model is no longer equivalent to the

monotonicity condition. This was shown by Vytlacil (2006) in a follow-up to Vytlacil

(2002). The reason can be seen with three values (J = 2), a binary instrument, no

covariates, and with monotonicity in the direction Di(1) ≥ Di(0). Monotonicity allows

for the choice groups Gi = (d0, d2) and Gi = (d1, d1) to both exist. In terms of (75),

the first group would consist of those individuals with Ui strictly larger than p(d1|0),

giving Di(0) = d0, and weakly smaller than p(d2|1), giving Di(1) = d2. So for this first

group to exist, it must be that p(d1|0) < p(d2|1). On the other hand, the second group

consists of those values of Ui that lie in the intervals (p(d2|z), p(d1|z)] for both z = 0

and z = 1. But if the first group exists, these two intervals must be disjoint:

p(d2|0) < p(d1|0)︸ ︷︷ ︸
Ui here if Gi(0) = d1

if Gi = (d0, d2) exists︷︸︸︷
< p(d2|1) < p(d1|1)︸ ︷︷ ︸

Ui here if Gi(1) = d1

. (76)

Intuitively, the ordered response model restricts how much treatment can respond to

the instrument: in this case it can either respond a lot (Gi = (d0, d2)) or not at all

(Gi = (d1, d1)), but not both.
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This finding makes sense in the context of reverse engineering linear IV with ordered

treatments (Section 3.6). The weights in the Angrist and Imbens (1995) ACR were

identified, but only because they combined (“double counted”) multiple choice groups.

A counting exercise reveals that the shares of each of the choice groups cannot be

point identified. With J = 2 and a binary instrument, there are six choice groups

consistent with monotonicity: Gi can be (d0, d0), (d0, d1), (d0, d2), (d1, d1), (d1, d2), or

(d2, d2). Yet there are only four independent choice probabilities: P[Di = d|Zi = z] for

d = d0, d1, and z = 0, 1, with the probability for Di = d2 being implied by the sum-to-

one constraint. Five independent choice group probabilities cannot be uniquely pinned

down by four independent choice probabilities. The ordered threshold model (75)

effectively rules out an additional choice group a priori, restoring point identification

of the group shares.

Is this additional restriction attractive? Vytlacil (2006) shows that it’s not inherent

to latent variable notation or even to a threshold-crossing structure. Vytlacil (2006)

extends his equivalence result from the binary case to a more flexible class of ordered

response models with thresholds that vary according to additional latent variables,

which he shows is again equivalent to the monotonicity condition stated with potential

choices notation. The number of latent variables in these models makes it clear that

they are not point identified without additional distributional structure or extreme

assumptions on the available instrument variation (Cunha et al., 2007). We are left with

a familiar trilemma: (i) use a selection model that admits point identification but makes

potentially restrictive behavioral assumptions; (ii) relax the behavioral assumptions but

impose additional parametric structure; or (iii) allow for partial identification. Most

empirical applications of forward engineered with ordered treatments have taken the

first option and used (75) as the selection model.58

4.5.2 A linear regression formulation

Using (75) as the selection model makes it possible to directly adapt the linear re-

gression formulation of MTE from the binary case.59 The marginal treatment response

58An example of an application of the third option is Goldin et al. (2021), who maintain the usual mono-
tonicity condition. Their partial identification argument is further developed in Vohra and Goldin (2024).
Kamat et al. (2024) develop and apply a partial identification approach under a different model of ordered
choice that they describe as “latent monotonicity.” Their approach uses a linear-in-parameters framework
similar to the one discussed ahead, but without the benefit of a point identified selection model. Arteaga
(2023) uses the same latent monotonicity model with additional assumptions that effectively return the
problem back to a binary treatment case, to which she then applies MTE methods.

59Heckman et al. (2006) and Heckman and Vytlacil (2007b) provide the earliest discussions phrased in
terms of local instrumental variable estimands.
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(MTR) is defined as before, except now there are more values of d for its first argument.

We again assume that the MTR function has the linear-in-parameters form (48). For

notation, let Pi(dj) ≡ p(dj |Zi, Xi) be the dj-specific greater-than propensity score and

collect these scores into Pi ≡ (Pi(d1), . . . , Pi(dJ)). Then (49) can be generalized to

E[Yi|Di, Pi, Xi] =

dθ∑
k=1

θkBik

where Bik ≡
J∑
j=0

1[Di = dj ]

(
1

Pi(dj)− Pi(dj+1)

∫ Pi(dj)

Pi(dj+1)
bk(dj |u,Xi) du

)
. (77)

First step estimates of Pi(dj) can be constructed by estimating an ordered response

model and then used to construct estimates B̂ik of Bik. At that point the story becomes

the same as in the binary treatment case: a linear regression of Yi onto B̂ik to estimate

the θk’s, which can then be used to estimate a variety of target parameters.

The primary difference with the binary treatment case is that it might also be

attractive to parameterize the d dimension of the MTR function when Di has a cardinal

interpretation. For example, the linear specification (51) can be extended so that each

treatment value d has its own linear-in-u function, leading to dθ = 2(J+1) parameters.

These can be point identified if the binary instrument satisfies p(dj |0) 6= p(dj |1) for

j = 1, . . . , J . A more parsimonious specification could be to interact the levels of d

and u, so that there are only four basis functions (1, d, u, du) with four parameters

to estimate. Many other types of parameterizations are possible. Point identification

is a matter of whether the resulting Gram matrix formed from the Bik variables is

invertible, which requires the Pi(dj) scores to vary sufficiently with Zi and/or Xi.

Rose and Shem-Tov (2021) apply a linear-in-parameters ordered treatment MTR

analysis in their study of the effect of incarceration on recidivism.60 The authors’

treatment is incaracteration measured in months, which can be expected to have an

impact on recidivism that is both nonlinear over length and heterogeneous across in-

dividuals. The authors use discontinuities in sentencing guidelines as instruments to

produce linear IV estimates, but they correctly recognize that the interpretation of

these estimates is opaque with both a multivalued treatment and a multivalued instru-

ment (not to mention covariates). Even if weakly causal, the linear IV estimates smear

UHTE and nonlinearities into a single hard-to-interpret number. The authors pro-

vide suggestive evidence of both UHTE and nonlinearities by showing that their linear

IV estimates change substantially when using different instruments or when including

60Other recent applications are Cornelissen et al. (2018) and Rivera (2023).
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Figure 6: Marginal treatment effect estimates from Rose and Shem-Tov (2021)
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Notes: Authors’ reproduction of Figure 6 of Rose and Shem-Tov (2021). We thank Evan Rose for pro-
viding the necessary data. The solid lines are upper bound estimates and the dotted lines are lower bound
estimates. The left-hand panel reports estimates of E[Yi(0)|Di = d], where Yi is an indicator for any reincar-
ceration within five years and Di is incarceration length in months. The right-hand panel reports estimates
of E[Yi(24)− Yi(0)|Di = d] in red and E[Yi(24)− Yi(12)|Di = d] in blue.

nonlinear treatment terms.

Figure 6 reproduces a central empirical finding from Rose and Shem-Tov (2021,

Figure 6). The outcome is an indicator for any reincarceration within five years of

sentencing. The authors assume that the MTR function is a fifth degree polynomial in

u that is additively separable between u and x, but make no assumptions about how

the MTR varies across d. Because the MTR is so flexible in u, the authors proceed

as if it (and any target parameters generated from it) are potentially only partially

identified and extend the partial identification framework of Mogstad et al. (2018) to

the ordered treatment case. While some of their bound estimates are wide, many are

quite narrow, including the ones in Figure 6, which are essentially point estimates.

The left panel of Figure 6 plots estimates of the counterfactual probability of re-

cidivism (being reincarcerated) if counterfactually not incarcerated, conditional on sen-

tence length. The strong upward trend indicates strong selection patterns: judges as-

sign longer sentences to individuals more likely to offend if not incarcerated. The right

panel shows that the effects of a hypothetical two year sentence are large and nega-

tive. The effect of the two year sentence increases dramatically with an individual’s

actual sentence length, signaling important treatment effect heterogeneity. On top of
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the heterogeneity, the right panel shows evidence of nonlinearity, with the effect being

driven by the first year of the hypothetical two year sentence.

Rose and Shem-Tov (2021) point out that accounting for the type of heterogeneity

and nonlinearity visible in Figure 6 is important when considering sentencing policy.

They use their estimates to consider the impacts of a budget-neutral change in sen-

tencing that increases the rate of incarceration while reducing the length of longer

sentences. As expected from Figure 6, they find that this type of reallocation can

produce large reductions in the rate and duration of reincarceration.

Linear IV estimates are not up to the task of evaluating this type of nuanced policy

counterfactual. If viewed as correctly-specified, a linear IV estimate for a specification

that is linear in treatment mechanically produces no aggregate effects from reallocating

sentence lengths. A reverse engineering interpretation allows the coefficient on the

single linear treatment variable to be interpreted as a non-negatively weighted average

across different treatment intensities (Section 3.6), but knowing the components in this

weighted average is what’s needed for evaluating a reallocation of sentence lengths.

Adding in a nonlinear treatment term to the linear IV specification puts one in a

reverse engineering no-mans land of no known results other than to assume constant

effects. But the assumption of constant effects is both implausible a priori and strongly

at odds with the right-hand panel of Figure 6. Ignoring treatment effect heterogeneity

would overstate the benefit from reducing sentence lengths by not accounting for the

higher effect of incarceration on more severe offenders.

4.5.3 Continuous treatments

In some cases it might be reasonable to think of the treatment as being ordered and

continuous. The model analogous to (75) for a continuous treatment can be written as

Di = ν(Zi, Xi, Vi), (78)

where ν is an unknown function that is assumed to be strictly decreasing in Vi, which

is still a single scalar unobservable, and still assumed to satisfy full exogeneity together

with the potential outcomes. It is again possible to normalize Vi by replacing it with

Ui ≡ FV |X(Vi|Xi), a transformation that can be absorbed into the definition of ν

(Matzkin, 2003). Upon doing so, we see that ν is identified by the survival function

p(d|Zi, Xi) ≡ P[Di ≥ d|Zi, Xi] = P[Ui ≤ ν−1(Zi, Xi, d)|Zi, Xi] = ν−1(Zi, Xi, d), (79)
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where ν−1 is the inverse of ν in its Vi argument. The selection model is then

Di = p−1(Ui|Zi, Xi) = ν(Zi, Xi, Ui), (80)

which is just a function of a scalar uniform random variable and point identified objects,

as before. The MTR m(d|u, x) is defined the same way as before, except now the first

argument can take a continuum of values.

There is an econometrics literature that analyzes models of continuous treatments

together with a selection equation like (80).61 Imbens and Newey (2009) show that if

no assumptions are placed on the MTR, then extreme instrument variation is necessary

for point identification of E[Yi(d)] = E[mtr(d|Ui, Xi)]. Torgovitsky (2015, 2017) shows

that the strong assumption of rank invariance across different potential outcomes (e.g.

Heckman et al., 1997) enables nonparametric point identification of average and quan-

tile potential outcomes even with only a binary instrument. Viewed in terms of the

MTR function, these results are fully nonparametric in d, u, and x. They represent

polar cases that are likely to be unattractive for most applications.

Imposing some parametric assumptions seems reasonable. Masten and Torgovitsky

(2016) show that if

mtr(d|u, x) = ρ0(u) + ρ1(u)d+ ρ2(u)′x, (81)

then the functions ρ0(u), ρ1(u), and ρ2(u) can be identified for all u with only a bi-

nary instrument, implying identification of the entire MTR function. Masten and

Torgovitsky (2014) analyze a kernel-based linear regression estimator, which can be

implemented with the Stata command ivcrc (Benson et al., 2022); see Gollin and

Udry (2021) and Carrillo et al. (2023) for empirical applications. Florens et al. (2008)

consider a rth degree polynomial specification that omits covariates but includes an

additional unknown function of d:

mtr(d|u) = ρ0(u) + ρ1(u)d+ · · ·+ ρr(u)dr + ρ̄(d). (82)

Their identification results require continuous instrument variation and they do not

consider estimation.

Chernozhukov et al. (2020) and Newey and Stouli (2021) extend the analysis of

61The selection equation is traditionally assumed to be strictly increasing in Ui rather than strictly de-
creasing, but this is not material. What matters is the invertibility created by strict monotonicity. The
literature also typically uses nonseparable models for Yi rather than potential outcomes; we have translated
the notation and findings to the concept of an MTR so as to stick with the potential outcomes notation.
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both Florens et al. (2008) and Masten and Torgovitsky (2016) to allow for more general

specifications of the MTR, as well as quantile counterparts. These include the linear-in-

parameters form of the MTR (48), which should be particularly attractive and flexible

for applications. If we let Pi ≡ p(Di|Zi, Xi), which is equal to Ui by (80), then

E[Yi|Di, Pi, Xi] =

dθ∑
k=1

θkBik where Bik ≡ bk(Di|Pi, Xi). (83)

Implementation proceeds as before: estimate p, now using distribution or quantile

regression (e.g. Chernozhukov et al., 2013) to construct B̂ik, then regress Yi onto B̂ik

to estimate the θk’s. Relative to (81) and (82), the linear-in-parameters specification

allows for parameterizations in both the u and d dimensions. This can be used to lessen

the demands on instrument variation.

4.5.4 Selection models that do not allow for heterogeneity

The selection equations (44), (75), and (78) for the binary, ordered discrete, and con-

tinuous cases all have a single unobservable, but one that enters the equation non-

additively. This is important. As we noted, for multivalued cases the selection models

are not equivalent to the monotonicity condition, which generally requires additional

latent variables (Vytlacil, 2006). However, they do still allow for unobserved hetero-

geneity in how the instrument affects treatment choice.

In contrast, Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2008) con-

sider linear and additive selection models like

Di = ν0 + ν1Zi + Vi, (84)

where Vi is assumed to be mean-independent of Zi. The authors show that under this

condition and the linear-in-treatment specification (81), the linear IV estimand is equal

to E[ρ1(Ui)], and so the average partial effect E[mtr(d|Ui)− mtr(d′|Ui)] is identified

for any pairs d and d′.

This result comes at a high cost. While (84) may look like the usual statistical first

stage regression (7), the regression only ensures that Vi and Zi are orthogonal, which

is weaker than mean-independence. Imposing mean-independence requires thinking

of (84) as a selection model that describes choices under counterfactual manipulation

of the instrument. It is a particularly restrictive selection model because it implies

that the effect of Zi on Di is ν1—constant for all individuals—so that there is no

unobserved heterogeneity in the effect of the instrument on the treatment. This seems
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like an unacceptably asymmetric assumption given the motivating goal of allowing for

UHTE in treatment effects.

4.6 Unordered treatments

The major obstacle in extended these ideas to unordered treatments is identification of

the selection equation. Suppose that Di takes one of J unordered values d0, d1, . . . , dJ ,

and that selection follows the discrete choice model

Di = arg max
dj∈{d0,d1,...,dJ}

ν(dj |Zi, Xi) + Uij , (85)

where ν is again an unknown function and Uij are unobservables, with ν(d0|z, x) = 0

and Ui0 = 0 as a normalization. Relative to the binary and ordered cases, there are

now multiple unobservables, one for each choice, which we collect as the vector Ui ≡
(Ui1, . . . , UiJ). The familiar econometric interpretation of (85) views the arguments

of the argmax as indirect utilities for choosing option dj , with the observed choice

Di being the one with the highest utility. These indirect utilities can differ with the

instrument, the observed covariates, and the unobservables.

The definition of the MTR extends immediately with the change that now u is a

vector, not a scalar. We can still consider a linear-in-parameters specification like (48).

As one example, Kline and Walters (2016) consider a case with three choices (J = 2)

and assume that

mtr(dj |u1, u2︸ ︷︷ ︸
u

, x) = ρ0(dj)
′x+ ρ1(dj)u1 + ρ2(dj)u2, (86)

where ρj are unknown coefficients that are different for each treatment state dj . This

MTR specification can be written in the linear basis form with nine components by

including indicators for each treatment state. Where things become difficult is the

following step: what does (86) imply about the conditional mean of the observed

outcome? It can still be related to the MTR via

E[Yi(d)|Di = dj , Zi = z,Xi] = E
[
mtr(dj |Ui, x)

∣∣ Ui ∈ U?(dj |z,Xi)︸ ︷︷ ︸
set of Ui for which dj is optimal

, Xi

]
, (87)

where U?(dj |z, x) is the subset of Ui for which dj is the maximizer of (85). But

evaluating this expression further requires knowing something about the distribution

of Ui, even if the MTR function is assumed to have a linear-in-parameters form.

This problem is the same issue that arose for binary treatments without mono-
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tonicity (Section 4.4). Counterfactual choice probabilities—let alone the distribution

of Ui—are not point identified in a traditional discrete choice model like (85) without

parametric assumptions or extreme instrument variation (Tebaldi et al., 2023). This

is in contrast to the models for ordered choice considered in the previous section, all

of which admitted nonparametric point identification of choice probabilities. The uni-

form normalization that produced Ui came from folding the unknown distribution of

the original latent variable Vi into the definition of the MTR, permitting focus on a

single unknown object. These nonparametric simplifications are not available for the

unordered case, at least not with a model like (85).

One path is to embrace the need for parameterization and leverage insights from

the well-developed literature on discrete choice (e.g. Train, 2009). A pioneering early

example is Dubin and McFadden (1984), who used a multinomial logit model for the se-

lection equation and also made an assumption like (86) to derive a linear-in-parameters

expression for the conditional mean.62 See Abdulkadiroğlu et al. (2020) for a recent

application of their approach. Kline and Walters (2016) replaced the logit with a

multinomial probit that allows for correlation between Uij and Uik. They derived the

resulting expression for the observed conditional outcome mean when the MTR is given

by (86). The result looks like a multivariate generalization of the inverse Mills’ ratio

expression (56). Kline and Walters (2016) show that if there is only a binary instrument

that affects the utility of one option, then additional variation in choice probabilities

due to covariates is needed for identification if the MTR is separable between x and u,

as in (86). Hull (2020) uses a similar approach to estimate hospital quality.

These types of parametric distributional assumptions may of course be unattrac-

tive, or at least not sufficiently easy to flexibly modify. Dahl (2002) replaced the

explicit parametric distributional assumptions with higher-level index-sufficiency as-

sumptions. Heckman and Pinto (2018), Lee and Salanié (2023), and Navjeevan et al.

(2023) consider selection models for unordered treatments that are more restrictive

than (85), which can lead to point identification of average treatment effects for cer-

tain choice groups either nonparametrically or with a little bit of added parametric

structure (Pinto, 2022).63 Lee and Salanié (2023) and Kamat (2024) consider partial

identification. All of these approaches are relatively tailored and may require a fair

amount of case-specific work to be applied.

62This is again an example of a control function approach (Heckman and Robb, 1985; Vella, 1998;
Wooldridge, 2015), in contrast to fully parameterizing the entire model and basing estimation off of the
likelihood function, which requires stronger assumptions. See Geweke et al. (2003) for an example of this
type of approach for unordered treatments.

63See Navjeevan et al. (2023) and Xie (2024) for estimation methods that incorporate covariates gracefully.

87



As usual, extreme amounts of instrument variation can solve these difficulties. Heck-

man et al. (2008) showed that instruments that drive choice probabilities to one effec-

tively reduce the problem back to the binary treatment setting. Lee and Salanié (2018)

showed that natural generalizations of the local instrumental variable argument extend

to the unordered treatment setting for a variety of choice models if these models are

point identified, which typically requires extreme instrument variation (or parametric

assumptions). Also as usual, instruments with extreme variation don’t exist in practice.

Mountjoy (2022) shows how continuous but local (not extreme) instrument vari-

ation can be used nonparametrically with unordered treatments. Mountjoy’s argu-

ment is based on having choice-specific instruments in (85).64 In his application

with J = 2 representing the choice of two-year or four-year college, this means that

ν(d1|Zi1, Zi2, Xi) = ν(d1|Zi1, Xi) and ν(d2|Zi1, Zi2, Xi) = ν(d2|Zi2, Xi). Mountjoy

(2022) argues that this can be satisfied with separate two- and four-year distance in-

struments. He then shows that marginal shifts in these instruments can be used to

separately identify marginal treatment effects of d2 relative to d0 and of d4 relative

to d0 for those on the margin of indifference between these choices. Identifying the

ν function or the distribution of Ui can by bypassed because of the assumption that

each instrument affects only one choice. Humphries et al. (2023b) show that if this

assumption is dropped, then one can still apply Mountjoy’s argument by estimating ν

and then using the estimated ν(dj |Zi, Xi) as themselves choice-specific instruments.

Unordered choice problems can also arise out of dynamic or multistage decision

problems. Versions of the above ideas have been applied to these settings as well.

For examples, see Heckman et al. (2016, 2018), Walters (2018), and Humphries et al.

(2023a).

4.7 No selection model

All of the reverse and forward engineering approaches for allowing UHTE discussed so

far have maintained a selection model. This is certainly not innocuous. The behavioral

assumptions imposed by a selection model, such as the monotonicity condition, can

sometimes be unattractive. The full exogeneity condition that is invariably imposed

with a selection model places strong requirements on the instrument, as we noted in

Section 2.5. In this section, we consider an approach due to Manski (1990) that allows

for UHTE but does not impose a selection model.

64Mountjoy shows that the full structure of (85) is not necessary, although it nicely captures the key
elements. Heckman and Pinto (2018) and Loeser (2023) provide equivalence results relating discrete choice
models of treatment selection to restrictions on their implied potential choices.
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4.7.1 Manski-Robins and IV intersection bounds

Suppose that outcome exogeneity is satisfied, so that E[Yi(d)|Zi = z] = E[Yi(d)] for all

d and z. Assume that the treatment is binary, for simplicity.65 Then

E[Yi(1)] = E[Yi(1)|Zi = z]︸ ︷︷ ︸
outcome exogeneity

= E[Yi|Di = 1, Zi = z]p(z)︸ ︷︷ ︸
identified

+ E[Yi(1)|Di = 0, Zi = z]︸ ︷︷ ︸
not directly identified

(1− p(z))︸ ︷︷ ︸
identified

.

The only term on the right-hand side that is not identified by the data is the counter-

factual treated mean for those in the untreated state. Assume that it lies in [ylb, yub].

This assumption could be based either on the logical support of Yi, in which case it’s

not restrictive, or it could be based on substantive restrictions about a reasonable range

for the conditional mean of Yi. Substituting these bounds for the unidentified coun-

terfactual gives upper and lower bounds on E[Yi(1)] that depend on z. The tightest

bounds are then found by taking the largest lower bound and the smallest upper bound

across z:

E[Yi(1)] ∈
[

max
z

E[Yi|Di = 1, Zi = z]p(z) + ylb(1− p(z)),

min
z

E[Yi|Di = 1, Zi = z]p(z) + yub(1− p(z))
]
. (88)

A symmetric set of bounds can be derived for the untreated mean, E[Yi(0)]. Bounds

for the ATE are then formed by taking the difference of the bounds for the potential

outcome means.

This argument was first considered without an instrument (Zi deterministic) by

Manski (1989) and Robins (1989), a result often described as the “worstcase” bounds,

although that phrase is a bit misleading, so we will describe these as the Manski-Robins

bounds.66 Manski (1990, 1994) observed that an instrument allows for the construction

of the IV bounds in (88), which are often described as “intersection bounds” due to their

max-min structure. The intersection bounds only depend on the outcome exogeneity

assumption. They do not require full exogeneity nor any behavioral assumptions about

selection, such as the monotonicity condition.

4.7.2 Empirical illustration

Table 7 reports estimates of Manski-Robins and IV intersection bounds using data from

Gelbach (2002), who estimated the impact of public school availability on maternal

65The following argument applies equally well for non-binary treatments, but the bounds will tend to be
wider.

66All bounds are achieved at the “worst case.”
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Table 7: Manski-Robins and instrumental variable bounds in Gelbach (2002)

Logical Substantive
(ylb = 0, yub = 1) (ylb = 0.4, yub = 0.8)

p(z) LB UB LB UB

Manski bounds
E[Yi(0)] .632 .275 .908 .528 .781
E[Yi(1)] .632 .425 .793 .572 .719

E[Yi(1)− Yi(0)] -.482 .518 -.209 .191
E[Yi(0)|Zi = 75:Q1] .313 .496 .809 .621 .746
E[Yi(0)|Zi = 74:Q4] .553 .344 .897 .565 .787
E[Yi(0)|Zi = 74:Q3] .793 .159 .952 .476 .793
E[Yi(0)|Zi = 74:Q2] .834 .127 .961 .461 .795
E[Yi(1)|Zi = 75:Q1] .313 .192 .879 .467 .742
E[Yi(1)|Zi = 74:Q4] .553 .355 .802 .534 .712
E[Yi(1)|Zi = 74:Q3] .793 .545 .752 .628 .711
E[Yi(1)|Zi = 74:Q2] .834 .582 .748 .648 .715

Instrumental variable bounds
E[Yi(0)] .496 .809 .621 .746
E[Yi(1)] .582 .748 .648 .711

E[Yi(1)− Yi(0)] -.227 .252 -.098 .090

Notes: Sample analog estimates of the components of (88), the symmetric expressions for E[Yi(0)], and
bounds on the ATE formed from the difference. The data is the sample of 10,932 single mothers whose
youngest child was five years old in 1980. The outcome variable is an indicator for employment in 1979.
The values of Zi indicate the birth quarter of this child. heteroskedasticity-robust standard errors (not shown)
for E[Yi|Di = d, Zi = z] are smaller than .02 for all values of d and z and for p(z) are smaller than .01 for
all values of z.

labor supply. The sample is restricted to mothers whose youngest child was five years

old in 1980. The treatment Di is an indicator for whether the mother’s five-year-old was

enrolled in public school. The outcome Yi is an indicator for the whether the mother

was employed in the previous year. Gelbach instruments for Di with indicators Zi for

the quarter when the five-year-old was born, an instrument that is relevant because of

age-at-entry rules for public kindergartens.

The top portion of Table 7 reports two sets of estimated Manski-Robins bounds

on the untreated means. In the first set of bounds, we take these to be the logically

possible values for a binary variable of ylb = 0 and yub = 1. In the second set of

bounds, we make the substantive (potentially incorrect) assumption that counterfactual

employment probabilities lie between ylb = .4 and ylb = .8, compared to estimated

conditional employment probabilities E[Yi|Di = d, Zi = z] that range between .49 and
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.71 over different values of d and z.

The first three rows of Table 7 do not condition on the instrument. The uncondi-

tional treatment propensity is .632, so bounds on the treated mean are narrower than

on the untreated mean. The implied bounds on the ATE are quite wide, even when

placing substantive prior bounds on counterfactual employment probabilities. These

bounds do not make use of the assumption that the instrument satisfies outcome exo-

geneity.

The subsequent rows report Manski-Robins bounds that condition on the instru-

ment. These are just conditional-on-Zi versions of the first three rows. The propensity

score varies with the conditioning value of the instrument, leading to variation in the

width of the bounds. The bounds for the untreated conditional mean are narrowest

for the youngest children (75:Q1), who are least likely to be in public kindergarten.

For the treated conditional mean, they are narrowest for the oldest children (74:Q2).

Outcome exogeneity allows bounds for the youngest and oldest children to be combined

through the intersection bounds in (88). The result is shown in the final three rows

together with the implied bounds on the ATE.

While narrower than the unconditional Manski-Robins bounds, both the logical

and substantive IV intersection bounds on the ATE are still quite wide. As a point of

reference, an uncontrolled OLS estimate is −.076 (standard error .009), which increases

to −.013 (SE: .008) when adding state fixed effects and demographic controls (Gelbach,

2002, Table 7, columns (1)–(2)). An uncontrolled linear IV estimate is .036 (SE: .022),

which increases to .040 (SE: .020) in Gelbach’s preferred linear IV specification that

includes controls (Gelbach, 2002, Table 7, column (3)).67 The logical IV bounds on

the ATE by contrast range from −.227 to .252. The substantive bounds of −.098 to

.090 are considerably narrower, but are still consistent with negative or positive effects

larger than any of Gelbach’s estimates. This is despite the relatively wide variation in

the propensity score between younger and older children from .313 to .834. That the IV

bounds are inconclusive about the ATE even in a setting with this type of propensity

score variation is probably why they are not often used in practice.68

67The bounds in Table 7 do not control for covariates. Controlling for covariates in a parsimonious way is
a challenge for this type of bounding analysis.

68Applications of IV bounds can be found in Pepper (2000), Siddique (2013), and Shurtz et al. (2022).
A more commonly-applied bounding approach uses an assumption that Manski and Pepper (2000) call
monotone instrumental variables (MIV). The MIV assumption is that E[Yi(d)|Zi = z] is increasing or
decreasing in z, instead of constant (both increasing and decreasing) as under outcome exogeneity. Bounds
based on MIV can be compelling tools for causal inference, but the name MIV is perhaps a misnomer, as the
whole point of the assumption is that the variables used as Zi no longer need to be excluded and exogenous;
monotone covariates would be an equally appropriate description. For applications of MIV, see Kreider and
Pepper (2007), Blundell et al. (2007), Kreider et al. (2012), and De Haan and Leuven (2020).
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Inconclusive does not mean useless. The bounds shown in Table 7 are sharp, mean-

ing the best possible given the assumption of outcome exogeneity. So, far from being

useless, they indicate the central role played by making additional assumptions. A

linear IV estimate based on a binarized version of the instrument that groups the two

earliest and two latest quarters is .034 (SE: .024). If we assume away UHTE, then this

estimate is a consistent estimate of the ATE. If we allow for UHTE, then the most we

can conclude about the ATE is that it is contained within the bounds given in Table

7. In this way, the IV bounds quantify the empirical importance of assuming constant

treatment effects.

4.7.3 The role of a selection model

By the same reasoning, the IV bounds also quantify the empirical importance of using

a selection model. Under full exogeneity and monotonicity, the binarized linear IV

estimate of .034 is a consistent estimate of the LATE.69 Comparing the LATE estimate

to the ATE bounds measures how different the treatment effect for compliers could be

from the treatment effect for the overall population. In this case, a positive LATE is

consistent with an ATE that is positive and considerably larger, or negative and equally

large. Similarly, using the selection model together with a linear MTE extrapolation

produces an estimated ATE of .025 (SE .022). Selecting this number from the ATE

bounds depends on the validity of the selection model and the extrapolation of the

MTE.

The absence of a selection model helps clarify why one can be so useful. Modeling

how counterfactual objects relate to observable ones is the fundamental challenge in

all causal inference. For IV with a binary treatment, the counterfactual object is the

conditional mean E[Yi(1)|Di = 0, Zi = z]. Bounding this object to [ylb, yub] is one sim-

ple model. For developing a more involved model, one effectively has two components

to work with: the potential treatment arm, Yi(1) vs. Yi(0), or the conditioning event,

Di = 0, Zi = z vs. Di = d, Zi = z for different values of d and z. One option with

the former is to assume that Yi(1) ≥ Yi(0), an assumption Manski (1997) described

as monotone treatment response. Apart from that, there is little scope for additional

69Perhaps surprisingly, the ATE bounds in Table 7 are still sharp even after imposing monotonicity and
full exogeneity (Balke and Pearl, 1993, 1997; Heckman and Vytlacil, 2001b; Bai et al., 2024). To be more
precise, these selection model assumptions have testable implications, as explored by the literature cited in
Section 2.7, but if the testable implications are satisfied, then the sharp bounds on the ATE are the same as
they are without the selection model. This result applies more generally to the entire marginal distributions
of potential outcomes (Kitagawa, 2009, 2021), but not to the joint distribution (Kamat, 2021). It breaks
down when additional assumptions are added; see Flores et al. (2018) for a survey and Shaikh and Vytlacil
(2011), Bhattacharya et al. (2012), Huber et al. (2015), and Machado et al. (2019) for some specific results.
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assumptions that still allow for UHTE, at least with a binary treatment.70 That leaves

modeling the conditioning event of the treatment and instrument value, which means

modeling the treatment selection process.

Selections models become a necessity when the goal is to evaluate a policy change

that affects treatment choice. The Cornelissen et al. (2018) evaluation of publicly

provided childcare and the Ito et al. (2023) study of dynamic pricing provide two clear

examples (see Section 4.3.7). There is little hope for conclusive inference about these

types of policy counterfactuals without imposing assumptions on how the instrument

affects treatment selection.

4.8 Summary of forward engineering

In this section we’ve discussed some forward engineering approaches for incorporating

UHTE into IV models. These run the gamut from the always-possible option of assum-

ing there is no UHTE, to estimating LATEs directly, to extrapolating MTEs for binary

or multivalued treatments, to bounding analyses that use only the most essential prop-

erties of an IV. What unites all of these approaches as forward engineering is that take

the target parameter as the focus and design an estimator suitable for estimating it.

What divides them are the target parameters they focus on and the assumptions they

use to estimate those target parameters.

Figure 7 provides a familiar graphical tool for comparing these different approaches.

It depicts a stylized production possibilities frontier for empirical research using IV with

a binary treatment, with the attendant trade-off between assumptions and conclusions

that Manski (2003) has described as the Law of Decreasing Credibility. At one corner is

the assumption of no UHTE, the strongest assumption that we have considered in this

chapter, under which the assumed-to-be-constant treatment effect is point identified

under the classical linear IV assumptions. In the other corner are Manski-Robins and

IV intersection bounds that do not impose full exogeneity or a selection model, but

provide only a bound on the ATE. Selection models allow one to explore the area

between these two corners, either at a single point with an unconditional LATE, or at

multiple points by extrapolating an MTE curve under additional parametric or shape

restrictions.

Our two-dimensional figure can’t capture the many dimensions on which empirical

70One option that has been explored is rank invariance (Chernozhukov and Hansen, 2005), which can
provide point identification without a selection model, albeit with a more complicated relevance condition
on how the instrument affects the treatment. Vuong and Xu (2017) show how to combine rank invariance with
the usual monotonicity condition to point identify the entire marginal distributions of potential outcomes
under a standard instrument relevance condition.
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Figure 7: The empirical production possibility frontier for IV methods
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Notes: Two primary trade-offs involved in producing empirical research with a binary treatment.

approaches differ. What is a stronger conclusion, a bound on an ATE or a point

estimate of a LATE? How does one trade-off statistical precision with a broader and

more ambitious target parameter? What is the appropriate value for a researcher’s

time, and how should this value be priced against the quality considerations of the

empirical research they produce?

Yet we think that the idea of an empirical production function still nicely de-

scribes some useful points that should seem uncontroversial to most economists. Lo-

cating inside the frontier is suboptimal: instead of estimating a difficult-to-interpret

statistically-weighted average of LATEs, it’s possible under essentially the same as-

sumptions to estimate an unconditional LATE using the estimators in Section 4.2.

Locating outside of the frontier is not possible: using a linear IV estimator as if it

estimates an ATE, or even an unconditional LATE, might be typographically possible

to put on paper, but it is logically incoherent under the baseline LATE assumptions.

Locating on the frontier is the goal, but reasonable people can disagree about which

point on the frontier they prefer.
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5 Recommendations for Practice

In this section we distill the discussion of this chapter into concrete recommendations

for practitioners. We organize our recommendations around three steps:

Three steps for incorporating UHTE into an IV analysis

1. Assess the likely role of UHTE.

2. Reverse engineer, cautiously.

3. Forward engineer estimates of interpretable target parameters.

Throughout, we take it for granted that the instrument satisfies exclusion and outcome

exogeneity. Supporting these assumptions is an important part of a compelling IV

analysis, with or without UHTE.

Step 1: Assess the likely role of UHTE

All of the complications, subtleties, and caveats discussed in this chapter vanish under

the assumption that there is no UHTE. Our view is that UHTE is probably a generic

feature of economic environments. But it still makes sense to assess the source of

UHTE and its likely magnitude before embarking on an econometric quest that would

be much simpler if it could be convincingly assumed away.

The first task is to think about the nature of the treatment and outcome. Why

could treatment effects vary? Is there any reason to think that treatment effects would

not vary? We expect that the answer to this first question will be negative in almost all

cases: heterogeneous treatment effects cannot be ruled out on a priori grounds alone.

For example, if the outcome Yi is binary or discrete, treatment effects are almost

necessarily heterogeneous.71

In order to create difficulties, however, the UHTE needs to be systematic, in the

sense of being correlated with treatment choice. How plausible is it to assume that

the UHTE is asystematic? Answering this question requires considering the source of

endogeneity for which the IV is intended as a remedy. Does the treatment represent

the choice that some economic agent is making? If so, is it possible to write down a

plausible model in which the treatment choice is endogenous, but the agent makes their

choice without regard to its possible effects on the outcome variable? A compelling

71If the outcome is binary and the treatment is also binary, then Yi(1)− Yi(0) can take three values: −1,
0, or 1. The assumption that treatment effects are constant implies that the average treatment effect across
the population or within any subgroup must also be −1, 0, or 1.

95



positive answer may make it reasonable to assume that there is no UHTE.

To defend such an assumption, it seems like a reasonable exercise to consider ob-

served heterogeneity in treatment effects (OHTE). Given an assumption of no UHTE,

patterns of OHTE can be estimated with linear IV by interacting the treatment vari-

able with pre-determined covariates, such as sociodemographic characteristics. It’s

possible for there to be UHTE but no OHTE, or for there to be OHTE but no UHTE.

Nevertheless, it seems reasonable to support any assumption of no UHTE with com-

pelling evidence that there is also no OHTE. Compelling evidence in practice would

mean precisely estimated zeros for the interactions between treatment and background

characteristics.

Assessing the likely role of UHTE

� Is there any a prior reason to believe that treatment effects are constant?

� Is there a reasonable behavioral model under which there is UHTE, but eco-

nomic agents choose treatment without taking it into account?

� Is there compelling evidence on the lack of OHTE?

→ If the answer is “no” to all of these questions, then proceed to step two.

Otherwise, ask yourself the following question:

� Are you willing to maintain an explicit assumption that there is no UHTE?

→ If the answer is “yes,” then use linear IV estimators, and be sure to include

the explicit assumption of no UHTE when describing your empirical results.

If the answer is “no,” then proceed to step two.

Step 2: Reverse engineer with caution

Our discussion in Section 3 landed on the conclusion that reverse engineered interpre-

tations of linear IV estimates are often not applicable. However, there are important

cases in which these interpretations do apply. Reverse engineering arguments can be

successful in these cases, but the necessary assumptions need to be assessed carefully

and the interpretations reported accurately.

The first task is determining which setting in Table 3 is applicable and how this

interacts with the assumptions about the selection process. In particular, the number

of values that the treatment and instrument take is crucial for assessing whether the

standard monotonicity condition is reasonable. The most favorable cases are when
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both the treatment and instrument are binary or ordered. Unordered treatments re-

quire careful thinking about the appropriate selection model. Unordered instruments

require careful thinking about whether the standard monotonicity condition is likely to

be violated. Unfortunately, there are currently no appealing general-purpose alterna-

tives to the monotonicity condition. Average monotonicity has been suggested recently

(Frandsen et al., 2023), but as our discussion in Section 3.4 showed, it is generally no

easier to justify than the usual monotonicity condition, except on the narrow techni-

cal grounds that it is mathematically weaker. Full exogeneity is required for reverse

engineering in all settings.

The second task is determining whether the linear IV specification actually delivers

a weakly causal interpretation under full exogeneity and an appropriate monotonicity

condition. The primary concern here is satisfying the rich covariates condition. If the

instrument is independent of covariates, then rich covariates is automatically satisfied.

Otherwise, the covariate specification needs to be scrutinized. The Ramsey (1969)

RESET test for a linear regression of Zi on Xi is the primary tool for doing so; a

rejection of the RESET test is a rejection of rich covariates and so also a rejection of

the null hypothesis that the linear IV specification produces a weakly causal estimand.

If evidence is found that the estimand is not weakly causal, then there’s little point in

proceeding to its interpretation. One can try adjusting the specification by hand or

using machine learning tools to help select the specification, as illustrated in Section

4.2.3.

Assuming that the estimand is weakly causal, the third task is giving it a more

concrete interpretation. What factors determine the weights? Which subgroups receive

the most weight? The least weight? What counterfactual would the estimand describe?

How would one describe the counterfactual in a sentence, or explain it in words to a

colleague? If these task are hard for the researcher, it suggests that the interpretation

of the estimand is also going to be difficult for the consumer of the research as well.

In some cases, such as with ordered treatments, there may be multiple competing

interpretations to choose from or discuss jointly. Binarizing the instrument can ease

the interpretation challenges created by having multiple complier groups.

The fourth task is the simplest but most important: clearly and transparently

communicate the interpretation of the estimand and the assumptions on which the

interpretation rests. Be both correct and honest. Incorrectly describing an estimand

as “the LATE” is no better than incorrectly describing the exclusion or exogeneity as-

sumptions. Both errors amount to logically incoherent descriptions of causal inference.

The four tasks of compelling reverse engineering can be remembered with the

acronym JOSH:
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The JOSH method for reverse engineering

� Judge the setting.

� Obtain a weakly causal interpretation.

� Scrutinize the interpretation.

� Honestly communicate to the audience.

Step 3: Forward engineer estimates of interpretable target parameters

Valiant efforts at implementing the JOSH method of reverse engineering will still end in

failure if the setting is simply too complicated to obtain a weakly causal interpretation.

Our survey of reverse engineering suggests that this will often be so, as even moderate

departures from the baseline LATE setting can make it difficult to obtain a weakly

causal interpretation. Even when it is possible to reverse engineer a weakly causal

interpretation, an honest description of this interpretation may be convoluted, unclear,

or have only a loose connection to the motivating research question. These are all

reasons for pursuing forward engineering as a complement to reverse engineering.

Forward engineering requires choosing some target parameters. Which target pa-

rameters are useful necessarily depends on the context and the researcher’s motivation.

What can be said about any given target parameter depends on what assumptions are

made. This reflects the necessary trade-off captured in the empirical production fron-

tier (Figure 7). We recommend that researchers explore this frontier by reporting esti-

mates of interesting target parameters under several different sets of assumptions. The

linear-in-parameters specification that we used throughout much of Section 4 makes

this relatively easy to do, at least if one sticks to point identified settings. Considering

partial identification provides further flexibility for exploring the empirical production

frontier but raises the difficulty of implementation.

Some target parameters will necessarily be easier to draw conclusions about than

others. The unconditional LATE is often point identified nonparametrically while the

ATE seldom is. We don’t see this as a good reason to omit target parameters, either

because they are interesting but too difficult, or easy but not particularly interesting. It

is hard to disagree with Imbens’s (2010, pp. 414–15) advice to report both estimates of

nonparametrically identified quantities, like LATEs, together with estimates of target

parameters with higher “external validity.” As part of this, Imbens (2010) emphasizes

being clear about the degree to which estimates of these different quantities depend on
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different assumptions, another point that is hard to disagree with.

Our recommendation for forward engineering is to embrace these two points: esti-

mate LATEs and estimate other target parameters that are relevant to the empirical

question. Through it all, be clear and upfront about the role of the maintained as-

sumptions, an important part of which is reporting estimates under different sets of

assumptions. This recommendation shouldn’t be controversial. It comes with a cost

of more difficult implementation. How large of a cost this is depends on the setting.

Forward engineering is now relatively low cost for binary or multivalued treat-

ments. Estimating unconditional LATEs or the unconditional ACR with propensity

score weighting is simply a matter of estimating a logistic regression. Estimating

MTE curves involves estimating a binary or ordered logistic regression together with

some properly-specified linear regressions. Software is available in both R and Stata to

streamline either task, although the MTE software is currently limited to binary treat-

ments. Even applying machine learning methods like DDML is relatively low cost,

albeit potentially demanding computationally.

Deviating from binary or ordered treatments to unordered treatments raises the cost

of forward engineering considerably, and at current puts one into less-charted method-

ological territory. There are a number of successful empirical examples of forward

engineering that one can try to follow as a guide (see Section 4.6), however implemen-

tation will often require bespoke analysis and coding. This is not a reflection of the

difficulty of forward engineering, but rather the difficulty of unordered treatments, a

case for which there are also few meaningful reverse engineering results. The same com-

ments apply to the binary or ordered treatment case without the usual monotonicity

condition.

6 Conclusion

The literature on including UHTE for IV methods now spans several decades and has

been recognized in two Nobel prize awards to three scholars. Reflections on this work

have often focused on the question of whether LATEs are interesting quantities. See

for example the exchange between Deaton (2010), Imbens (2010), and Heckman and

Urzua (2010).

Our review suggests that this question is a bit of a red herring. As we showed in

Section 3, the LATE result is so specialized that empirical researchers, who by and

large use linear IV, often aren’t actually estimating LATEs. That’s not a problem

with the LATE, it’s a problem with the practice of what we’ve described as reverse

engineering: starting with an estimator and working backwards to an interpretation.
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The concept of a LATE is amenable to reverse engineering in a couple of stylized

baseline cases, but by and large the types of complications usually found in empirical

work invalidate simple interpretations of linear IV estimates as LATEs, or even as

“weakly causal” estimands. We expect that the same type of fragility will also be

found in other applications of reverse engineering once researchers start to consider

how different forms of misspecification interact with each other.72

The obvious alternative is also the oldest one: work forward, instead of backward.

As we showed in Section 4, there are now many well-developed and relatively low-cost

tools that can be used to forward engineer estimators that estimate specific target

parameters with clear interpretations, including LATEs. These estimators do not rely

on fundamentally different assumptions, they simply make the assumptions harder to

hide and easier to adjust than when reverse engineering. Many of the challenges about

modeling selection that arise in forward engineering also arise in reverse engineering.

But solving them is easier without self-imposing the straightjacket of the linear IV

estimator.

72As one example, Blandhol et al. (2022) show that Angrist’s (1998) interpretation of the OLS estimand
under selection on observables collapses unless the propensity score has implicitly been correctly specified.
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Appendices

A Potential outcomes or latent variables? It’s just notation . . .

Start with a latent variable model of form (3) with Yi = f(Di, εi). Let the potential outcomes

be defined as Yi(d) ≡ f(d, εi). If treatment states take values in a finite set D, then

Yi = f(Di, εi) =
∑
d∈D

1[Di = d]f(d, εi) ≡
∑
d∈D

1[Di = d]Yi(d) = Yi(Di).

So, starting with a latent variable model we have constructed potential outcomes that gener-

ate the same observed outcome, Yi. The assumption that D is finite is just to preserve the

familiarity of the summation; if D is infinite, then consider only the first and final equalities.

Conversely, suppose that there are potential outcomes Yi(d) for each treatment state in a

set D, which we again begin by assuming is finite and enumerated as D = {d0, d1, . . . , dJ}. Let

εij ≡ Yi(dj) and εi ≡ (Yi(d0), Yi(d1), . . . , Yi(dJ)). Then take

f(Di, εi) ≡
J∑
j=0

1[Di = dj ]εij .

This implies that

Yi =

J∑
j=0

1[Di = dj ]Yi(dj) ≡
J∑
j=0

1[Di = dj ]εij ≡ f(Di, εi).

So, starting with potential outcomes, we have constructed a latent variable model that generates

the same observed outcome, Yi. The assumption that D is finite is again unimportant; if D
were infinite then εi would represent the random function d 7→ Yi(d), and f would have domain

that includes these random functions.

B Definition of a weakly causal estimand

Blandhol et al. (2022) introduced the definition of a weakly causal estimand as a way of extend-

ing the logic of a non-negatively weighted average to estimands that might not be expressible

as a weighted average at all. To see how this could arise, consider an OLS estimator of Yi on

Di and covariates Xi, and let β denote the estimand corresponding to the coefficient on Di.

Suppose that Di ∈ {0, 1} is binary and that (Yi(0), Yi(1)) is independent of Di conditional on

Xi. Then a bit of Frisch-Waugh-Lovell algebra shows that

β = E [ω0(Xi) E[Yi(0)|Xi]] + E [ω1(Xi) E[Yi(1)|Xi]]

where ωd(x) =

E[(Di −X ′iδ)2]−1(x′δ)(1−E[Di|Xi = x]), if d = 0

E[(Di −X ′iδ)2]−1 E[Di|Xi = x](1− x′δ), if d = 1

with δ ≡ E[XiX
′
i]
−1 E[XiDi]. (89)
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In general, there is no way to rewrite (89) as a weighted average of treatment effects, like

(9), because ω0(x) 6= −ω1(x) except when E[Di|Xi] = X ′iδ. The notion that is captured by

analyzing the sign of the weights for an estimand with a form like (9) becomes more complicated

for an estimand that does not have that form, like β in (89).

Here we will develop that notion in a way that is a bit more abstract than in Bland-

hol et al. (2022) and also allows for unordered treatments. Let F denote a distribution for

({Yi(d)}d∈D, {Di(z)}z∈Z)|Xi, Zi, where D and Z are the set of values that the treatment and in-

strument take, respectively. Each F generates a distribution χ(F ) of observables (Yi, Di, Xi, Zi)

through the definition of potential outcomes and the distribution of (Xi, Zi), which is not mod-

eled, and is viewed as part of the definition of χ. An estimand is a function that takes a

distribution of observables such as χ(F ) and maps it into a number or vector of numbers

τ(χ(F )).73

Let F denote the subset of F that satisfy a set of assumptions. For example, in an IV

context with full exogeneity, F only includes F for which the joint distribution of Yi(d) and

Di(z) across all d and z is independent of Zi, conditional on Xi. Usually, F will also include

further assumptions, such as the monotonicity condition, which rules out F that allow for

certain types of choice groups, such as defiers.

Let F� ⊆ F denote a subset of F in F that share a property that we want to be reflected

in the estimand, τ(χ(F )). Let T � be a set of values for τ(χ(F )) that reflect this property. We

say that the estimand τ is faithful to the pair (F�, T �) if

F ∈ F� ⇒ τ(χ(F )) ∈ T �. (90)

For example, suppose Di is ordered, taking values d0, d1, . . . , dJ . Then F�+ could be the subset

of F in F for which EF [Yi(dj)−Yi(dj−1)|Gi = g,Xi = x] is non-negative for all j ≥ 1, all g, and

all x, where EF denotes expectation taken under F , and Gi is the usual group notation derived

from {Di(z)}z∈Z . The set T �+ could be the set of non-negative numbers. Then τ is faithful to

(F�+, T �+) if τ(χ(F )) ≥ 0 whenever F ∈ F is such that all treatment effects are non-negative.

For the ordered treatment case, Blandhol et al. (2022) say that τ is weakly causal if it is

faithful to both (F�+, T �+) and (F�−, T �−), where F�− is the subset of F for which all treatment

effects are non-positive and T �− is the set of non-positive numbers. Given (90), this means that

(i) if all treatment effects are non-negative, then the estimand is also non-negative, and (ii) if

all treatment effects are non-positive, then the estimand is also non-positive. This is the same

notion that is usually captured by the sign of the weights being non-negative in a decomposition

like (9), but formalized in a way that can also be applied to estimands like (89) that do not

have a weighted average decomposition.74

We can use this framework to extend the definition of a weakly causal estimand to the

73In what follows, τ could also just be some quantity that is determined by χ(F ); it need not necessarily
be an estimand in the sense of being the limit of some estimator.

74To show that an estimand is not weakly causal it suffices to find an F ∈ F�+ for which τ(χ(F )) < 0. For
example, to show that (89) is not weakly causal, one can construct an F such that EF [Yi(1)−Yi(0)|Xi = x] ≥
0 for all x, but with EF [Yi(0)|Xi = x] chosen to make β < 0. This is always possible when ω0(x) 6= −ω1(x),
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unordered case by choosing different pairs (F�, T �). Let F�0→`,+ denote the subset of F for

which the contrast EF [Yi(d`)− Yi(d0)|Gi = g,Xi = x] between a particular treatment state d`

and a base state d0 is non-negative for all g and x, ignoring the other treatment states. Keep

T+ defined as the set of non-negative numbers. Let F�0→`,− and T− be defined symmetrically

for the non-positive case. Then an estimand τ is weakly causal for the treatment contrast

between d` and d0 if it is faithful to both (F�0→`,+, T+) and (F�0→`,−, T−).

Notice that because F� ⊆ F , whether an estimand is faithful to (F�, T �) depends on

the maintained assumptions on F . For example, an estimand may not be weakly causal if F
includes F that do not satisfy a monotonicity condition, but might become weakly causal when

F is restricted to only include F that do satisfy a monotonicity condition. The nature of (90)

means that making F a smaller set makes it easier for an estimand to be faithful to any given

(F�, T �) pair. The literature on reverse engineering can be seen as an effort to choose τ and

F in a way that ensures τ is weakly causal.

C Deriving the average causal response and an alternative decomposition

We first derive (22), which to our knowledge has only appeared in the literature for the case

when dj = j are the integers. Start by decomposing the outcome as

Yi =

J∑
j=0

1[Di = dj ]Yi(dj) (92)

=

J∑
j=0

(1[Di ≥ dj ]− 1[Di ≥ dj+1])Yi(dj) = Yi(d0) +

J∑
j=1

1[Di ≥ dj ] (Yi(dj)− Yi(dj−1)) ,

where the final equality follows from a change of variables and dJ+1 in the summand when

j = J can be interpreted as any value larger than dJ . Taking the difference in conditional

expectation with respect to z and applying full exogeneity then gives

E[Yi|Zi = 1]−E[Yi|Zi = 0] =

J∑
j=1

E
[

(1[Di(1) ≥ dj ]− 1[Di(0) ≥ dj ]) (Yi(dj)− Yi(dj−1))
]
.

(93)

Under the monotonicity condition, the event that Di(1) < dj and Di(0) ≥ dj has probability

zero, so the difference in indicators only takes the value zero or one with positive probability.

because one can write β as

β = E[(ω0(Xi) + ω1(Xi)) EF [Yi(0)|Xi]] + E[ω1(Xi)(EF [Yi(1)− Yi(0)|Xi])]. (91)

Even if ω1(x) ≥ 0 for all x, the fact that ω0(x) 6= −ω1(x) for all x means that β = τ(χ(F )) depends on some
EF [Yi(0)|Xi = x], and therefore can change signs as F varies across F�+.
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Conditioning on the event that it is one leaves

E[Yi|Zi = 1]−E[Yi|Zi = 0]

=

J∑
j=1

P [Di(1) ≥ dj > Di(0)] E
[
Yi(dj)− Yi(dj−1)|Di(1) ≥ dj > Di(0)

]
.

The same algebraic argument can be applied to the denominator of the Wald estimand with

Yi replaced by Di =
∑J
j=0 1[Di = dj ]dj , yielding

E[Di|Zi = 1]−E[Di|Zi = 0] =

J∑
j=1

P [Di(1) ≥ dj > Di(0)] (dj − dj−1) .

Taking the ratio gives the right-hand side of (22), which is equal to the simple IV estimand

when the instrument is binary (recall (13)).

To derive the alternative group-based decomposition (23), let G(j) ≡ {(g(0), g(1)) ∈ G :

g(1) ≥ dj > g(0)} denote the subset of groups represented by the conditioning event in the unit

causal response (22), recalling that G is the set of groups who could have non-zero probability

under the monotonicity condition. Then (22) can be written as

C[Yi, Zi]

C[Di, Zi]
=

J∑
j=1

P[Gi ∈ G(j)]∑J
`=1 P[Gi ∈ G(`)](d` − d`−1)

E[Yi(dj)− Yi(dj−1)|Gi ∈ G(j)].

Focusing on the numerator, write

J∑
j=1

P[Gi ∈ G(j)] E[Yi(dj)− Yi(dj−1)|Gi ∈ G(j)]

=

J∑
j=1

E[Yi(dj)− Yi(dj−1)1[Gi ∈ G(j)]]

=

J∑
j=1

∑
g∈G

1[g(1) ≥ dj > g(0)] E[Yi(dj)− Yi(dj−1)1[Gi = g]]

=
∑
g∈G

g(1)∑
j=g(0)+1

E[Yi(dj)− Yi(dj−1)|Gi = g] P[Gi = g]

=
∑
g∈G

P[Gi = g] E[Yi(g(1))− Yi(g(0))|Gi = g].

The same argument applied to the denominator yields

J∑
`=1

P[Gi ∈ G(`)](d` − d`−1) =
∑
g′∈G

P[Gi = g′](g′(1)− g′(0)).

Expression (23) follows after multiplying and dividing each term in the numerator by g(1)−g(0).
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D Estimating the average causal response with covariates

Suppose that Di is multivalued and ordered, taking values d0, d1, . . . , dJ , as in Section 3.6.

Define Wi(z) ≡ Yi(Di(z)) as before. The second half of (36) did not depend on how many

values Di takes, so we still have:

E[Wi(1)−Wi(0)]

E[Di(1)−Di(0)]
=

E [E[Yi|Zi = 1, Xi]−E[Yi|Zi = 0, Xi]]

E [E[Di|Zi = 1, Xi]−E[Di|Zi = 0, Xi]]
,

But the interpretation of the left-hand side of this equality changes now that Di takes multiple

ordered values. Write Wi(z) ≡ Yi(Di(z)) like (92):

Wi(z) = Yi(d0) +

J∑
j=1

1[Di(z) ≥ dj ] (Yi(dj)− Yi(dj−1)) .

Then E[Wi(1)−Wi(0)] matches the expression (92) for the Zi-differenced conditional mean of

Yi derived when Zi was unconditionally exogenous:

E[Wi(1)−Wi(0)] =

J∑
j=1

E
[

(1[Di(1) ≥ dj ]− 1[Di(0) ≥ dj ]) (Yi(dj)− Yi(dj−1))
]
.

The rest of the derivation in Appendix C shows that the right-hand side is the numerator of

the ACR. The argument for the denominator follows the same logic with Wi(z) ≡ Yi(Di(z))

replaced by simply Di(z) =
∑J
j=0 1[Di(z) = dj ]dj .

E Derivations for marginal treatment effects

This appendix contains some derivations relevant binary marginal treatment effects for binary

treatments.

E.1 Derivations of weighting expressions

Consider the ATT expression given in (47) and Table 5. We derive this by iterating expecta-

tions:

E[Yi(1)− Yi(0)|Di = 1] = E

[
(Yi(1)− Yi(0))

1[Ui ≤ p(Zi, Xi)]

P[Di = 1]

]
= E

[
E [Yi(1)− Yi(0)|Ui, Xi, Zi]

1[Ui ≤ p(Zi, Xi)]

P[Di = 1]

]
= E

[
(mtr(1|Ui, Xi)−mtr(0|Ui, Xi))

1[Ui ≤ p(Zi, Xi)]

P[Di = 1]

]
= E

[∫ 1

0

(mtr(1|u,Xi)−mtr(0|u,Xi))
1[u ≤ p(Zi, Xi)]

P[Di = 1]
du

]
.

The third equality used full exogeneity and the definition of the MTR. The fourth equality

iterated expectation on Ui given Xi and Zi and used the normalization that the conditional

distribution of Ui is uniformly distributed.
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The linear-in-parameters representation (49) for the conditional mean of the observed out-

come is derived like this:

E[Yi|Di = 1, Pi = p̄, Xi] = E[Yi(1)|Ui ≤ p̄, Pi = p̄, Xi]

= E[Yi(1)|Ui ≤ p̄, Xi]

= E
[
E [Yi(1)|Ui, Xi]

∣∣Ui ≤ p̄, Xi

]
= E

[
mtr(1|Ui, Xi)

∣∣Ui ≤ p̄, Xi

]
=

1

p̄

∫ p̄

0

mtr(1|u,Xi) du,

where the second equality uses full exogeneity that the fact that Pi ≡ p(Zi, Xi) is a function

of Zi and Xi. A symmetric derivation for the untreated arm gives

E[Yi|Di = 0, Pi = p̄, Xi] =
1

(1− p̄)

∫ 1

1−p̄
mtr(0|u,Xi) du.

Putting them together and applying the linear-in-parameters assumption (48) produces (49):

E[Yi|Di, Pi, Xi] =
(1−Di)

(1− Pi)

∫ 1

1−Pi
mtr(0|u,Xi) du+

Di

Pi

∫ Pi

0

mtr(1|u,Xi) du

=
(1−Di)

(1− Pi)

∫ 1

1−Pi

dθ∑
k=1

θkbk(0|u,Xi) du+
Di

Pi

∫ Pi

0

dθ∑
k=1

θkbk(1|u,Xi) du

=

dθ∑
k=1

θkBik,

where Bik is as defined in (49).

Lastly, the expression (62) used to derive the LIV follows from

E[Di(Yi(1)− Yi(0))|Pi, Xi] = E [1[Ui ≤ Pi](Yi(1)− Yi(0))|Pi, Xi]

= E [1[Ui ≤ Pi]mte(Ui, Xi)|Pi, Xi] =

∫ Pi

0

mte(Ui, Xi) du,

again making use of the normalization that Ui is uniform given Zi and Xi, and so also given

Pi and Xi.

E.2 The normal selection model

This section provides detail on the derivation of (56). With the pre-normalization selection

equation the propensity score satisfies

p(z) ≡ P[Di = 1|Zi = z] = P[Vi ≤ ν(z)] = Φ (ν(z)) ,

106



noting that Vi has mean zero and variance one. Consider b4(d|u) = dΦ−1(u). Then

Bi4 = Di
1

Pi

∫ Pi

0

Φ−1(u) du where Pi = Φ (ν(Zi)) .

A change of variables to v ≡ Φ−1(u) leads to a mean of a standard normal truncated at Φ−1(Pi):

Bi4 = Di

∫ Φ−1(Pi)

−∞
v

φ(v)

Φ(Φ−1(Pi))
dv.

This can be expressed in terms of the inverse Mills’ ratio (e.g Hansen, 2022a, pg. 116), so that

Bi4 = −Di

φ
(
Φ−1(Pi)

)
Φ (Φ−1(Pi))

≡ −Diλ(Φ−1(Pi)).

The corresponding term for the untreated arm is derived similarly.

E.3 Saturated MTR specifications reproduce the LATE

We give a simple and general justification of the finding in Brinch et al. (2017) and Kline and

Walters (2019) that in saturated settings even a misspecified MTR reproduces the usual LATE.

For simplicity, suppose that Zi is binary and there are no covariates. Consider E[Yi|Zi = z] as

a target parameter. An MTR function parameterized by θ implies the following values for this

target parameter:

Eθ[Yi|Zi = z] = Eθ[Yi(0)] + Eθ[1[Ui ≤ p(z)](Yi(1)− Yi(0))],

where Eθ indicates expectation taken under the assumption that the MTR function is param-

eterized by θ. When the MTR follows the linear-in-parameters specification (48),

Eθ[Yi|Zi = z] =

dθ∑
k=1

θk

∫ 1

0

bk(0|u) du+ θk

∫ p(z)

0

(bk(1|u)− bk(0|u)) du.

The LATE formed from θ is then

Eθ[Yi|Zi = 1]−Eθ[Yi|Zi = 0]

p(1)− p(0)
=

dθ∑
k=1

θk

∫ 1

0

(bk(1|u)− bk(0|u))
1[p(0) < u ≤ p(1)]

p(1)− p(0)
du,

which matches the expression given in Table 5, with u = p(0), u = p(1), and mtr(d|u) =∑dθ
k=1 θkbk(d|u).

Given this observation, it suffices to show that if the implied regression specification (49)

is saturated, then Em[Yi|Zi = 1] = E[Yi|Zi = 1] even if the MTR function m is misspecified.

Saturation implies that for all values of d and z,

E[Yi|Di = d, Zi = z] = E[Yi|Di = d, Pi = p(z)] =

dθ∑
k=1

θkBk(d, p(z)), (94)
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where

Bk(d, p(z)) ≡
(

1− d
1− p(z)

)∫ 1

p(z)

bk(0|u) du+
d

p(z)

∫ p(z)

0

bk(1|u) du.

So, in particular,

E[Yi|Zi = z] = E[Yi|Di = 0, Zi = z](1− p(z)) + E[Yi|Di = 1, Zi = z]p(z)

=

dθ∑
k=1

θk (Bk(0, p(0))(1− p(0)) +Bk(1, p(1))p(1))

=

dθ∑
k=1

θk

(∫ 1

p(z)

bk(0|u) du+

∫ p(z)

0

bk(1|u) du

)

=

dθ∑
k=1

θk

∫ 1

0

bk(0|u) du+

dθ∑
k=1

θk

∫ p(z)

0

(bk(1|u)− bk(0|u)) du = Eθ[Yi|Zi = z].

Note that the same argument works for the sample as well: a saturated specification will

continue to satisfy the sample analog of (94) with E[Yi|Di = d, Zi = z] and p(z) replaced by

their conditional sample means, and with θk replaced by its estimator. The argument holds

outside of a regression context and doesn’t depend on the linear-in-parameters specification.

The driving observation is just that in a saturated model, even an incorrectly-specified MTR

function that is fit to the data will produce the same value of E[Yi|Di = d, Zi = z] for all values

of d and z, and so will also produce the same estimate of the LATE.
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Dal Bó, E., F. Finan, N. Y. Li, and L. Schechter (2021): “Information Technology and Government

Decentralization: Experimental Evidence From Paraguay,” Econometrica, 89, 677–701.
Daljord, Ø., C. F. Mela, J. M. T. Roos, J. Sprigg, and S. Yao (2023): “The Design and Targeting of

Compliance Promotions,” Marketing Science, 42, 866–891. 69
de Chaisemartin, C. (2017): “Tolerating Defiance? Local Average Treatment Effects without Monotonicity,”

Quantitative Economics, 8, 367–396. 30
de Chaisemartin, C. and X. D’Haultfoeuille (2018): “Fuzzy Differences-in-Differences,” The Review of

Economic Studies, 85, 999–1028. 45
de Chaisemartin, C. and Z. Lei (2023): “More Robust Estimators for Instrumental-Variable Panel Designs,

111



With An Application to the Effect of Imports from China on US Employment,” . 45
De Groote, O. and K. Declercq (2021): “Tracking and Specialization of High Schools: Heterogeneous Effects

of School Choice,” Journal of Applied Econometrics, 36, 898–916.
De Haan, M. and E. Leuven (2020): “Head Start and the Distribution of Long-Term Education and Labor

Market Outcomes,” Journal of Labor Economics, 38, 727–765. 91
Deaton, A. (2010): “Instruments, Randomization, and Learning about Development,” Journal of Economic

Literature, 48, 424–455. 16, 99
Depalo, D. (2020): “Explaining the Causal Effect of Adherence to Medication on Cholesterol through the

Marginal Patient,” Health Economics, n/a.
Dinkelman, T. (2011): “The Effects of Rural Electrification on Employment: New Evidence from South Africa,”

American Economic Review, 101, 3078–3108. 13
Dobbie, W., J. Goldin, and C. S. Yang (2018): “The Effects of Pre-Trial Detention on Conviction, Future

Crime, and Employment: Evidence from Randomly Assigned Judges,” American Economic Review, 108,
201–240. 43

Dobbie, W. and J. Song (2015): “Debt Relief and Debtor Outcomes: Measuring the Effects of Consumer
Bankruptcy Protection,” American Economic Review, 105, 1272–1311. 43

Donald, S. G., Y.-C. Hsu, and R. P. Lieli (2014): “Testing the Unconfoundedness Assumption via Inverse
Probability Weighted Estimators of (L)ATT,” Journal of Business & Economic Statistics, 32, 395–415. 52

Doyle Jr., J. J. (2007): “Child Protection and Child Outcomes: Measuring the Effects of Foster Care,” The
American Economic Review, 97, 1583–1610. 27

——— (2008): “Child Protection and Adult Crime: Using Investigator Assignment to Estimate Causal Effects
of Foster Care,” Journal of Political Economy, 116, 746–770.

Dubin, J. A. and D. L. McFadden (1984): “An Econometric Analysis of Residential Electric Appliance
Holdings and Consumption,” Econometrica, 52, 345. 87
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