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1 Introduction

Many countries regulate air pollution to safeguard human health. The prevailing regulatory

approach, including the U.S. Clean Air Act’s air quality standards, targets areas where

pollution levels exceed certain limits, while areas with lower exposure face little regulatory

scrutiny. This approach can be rationalized if the relationship between ambient pollution

concentrations and health is convex, with minimal health impact expected below a

“safety threshold” near established limits and health damages increasing more rapidly as

concentrations rise above these limits. While economic and regulatory models commonly

assume a convex pollution–health relationship, evidence confirming this shape remains

scarce, even though it frequently appears in regulatory discussions and revisions of existing

standards (Landrigan et al., 2018).

We study how the health effects of acute air pollution scale with exposure magnitude,

using wildfire smoke as a natural experiment to assess impacts on adult mortality and hospital

use in the U.S. Wildfires provide an important and useful setting for this analysis for several

reasons. First, they are a large and growing source of fine particulate matter (PM2.5), tiny

inhalable particles widely regarded as the component of wildfire smoke most harmful to

public health (Burke et al., 2021; U.S. EPA, 2021, 2024). Second, wildfire smoke plumes can

drift hundreds of miles from their source, and their daily locations and densities are directly

measured via satellite remote sensing, even in areas lacking ground-level pollution monitors

(Ruminski et al., 2006). Third, and importantly for our study, these plumes can significantly

elevate ambient pollution concentrations, with magnitudes that vary greatly depending on

wind patterns and plume density.

Our analysis relies on nationally comprehensive and spatially granular daily records of

wildfire smoke plumes, ambient air pollution concentrations, and mortality and hospital use

among U.S. adults aged 65 and over from 2007 to 2019. Our empirical strategy relates daily

smoke exposure to PM2.5 and health outcomes, leveraging cross-year variations in smoke in a

given county on the same day of the year. This strategy isolates the causal pollution–health
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relationship by flexibly controlling for potentially confounding cross-sectional and seasonal

differences. We first estimate PM2.5 concentration and health impacts separately for small

to large smoke exposures (“smoke shocks”). We then match, for each smoke shock, the

resulting effect on PM2.5 concentrations to the corresponding health response, tracing out

the concentration–response (C–R) relationship describing how health effects vary with the

magnitude of a pollution shock.

We present three main sets of findings. First, ground-level PM2.5 concentrations sharply

rise on days a county is exposed to a smoke shock. These effects vary widely depending

on smoke proximity and density and persist for about three days. Counties near but not

directly beneath a smoke plume see three-day PM2.5 levels rise modestly by 0.5–3.2 µg/m3

(5%–35% of the smoke-free daily mean), depending on the distance to the smoke. Counties

under a plume experience larger impacts of 5.2–14.4 µg/m3 (58%–158% of the smoke-free

daily mean), depending on smoke thickness. Accounting for the frequency of smoke shocks

and applying population weights, we estimate an average daily smoke impact of 1.65µg/m3,

indicating that smoke accounts for about 18% of ambient PM2.5 concentrations affecting the

U.S. population.

Second, smoke shocks coincide with substantially elevated deaths and emergency room

(ER) visits, with impacts persisting for roughly three days from the exposure date, aligning

with the period of elevated PM2.5 levels. We find no evidence of reduced mortality or ER

visits in the following weeks, indicating that short-run intertemporal substitution does not

explain the health impacts. We estimate that the average daily impact of smoke exposure

results in an additional 0.51 deaths and 9.7 ER visits per million adults, accounting for about

1 out of every 240 deaths (0.42%) and 1 out of every 145 ER visits (0.69%) in the sample.

When scaled to the population of 54.1 million U.S. residents aged 65 and over in 2019, these

effects translate to an annual impact of 10,070 premature deaths and 191,541 excess ER

visits.

Third, comparing how health impacts vary with the magnitude of the smoke shock reveals
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a striking, non-monotonic pattern: health impacts steeply increase when moving from small

to medium smoke shocks but level off and slightly decrease from medium to large shocks.

Plotting these health impacts against the corresponding PM2.5 impact of each smoke shock

reveals a strongly concave C–R relationship: small air pollution shocks have greater health

impacts per unit of PM2.5 than larger shocks. The C–R curve flattens at about 6 µg/m3 of

PM2.5 from smoke, beyond which larger shocks do not cause additional damages. We use

two-stage least squares (2SLS) instrumental variables (IV) estimation with smoke shocks as

instruments to recover the slopes along different portions of the C–R curves. PM2.5 from

larger shocks has smaller effects than PM2.5 from smaller shocks, corroborating the concavity

of the C–R relationship. On average, our IV estimates of the mortality effects of PM2.5 align

with those from Deryugina et al. (2019) using wind direction instruments, suggesting that

smoke’s health impacts primarily stem from PM2.5 and are comparable to those from other

sources.

A key insight from our analysis is that the marginal health cost of pollution shocks

is downward-sloping, contrasting with the upward-sloping marginal cost curves commonly

seen in other economic contexts. This result has important policy implications. Figure 1

illustrates the textbook example of public goods provision, where the socially optimal air

pollution level depends on the trade-off between the marginal private benefits (e.g., industrial

savings) of allowing an additional unit of pollution and its marginal costs (e.g., health

damages). Our finding that the pollution–health relationship is concave, rather than convex,

suggests that the optimal pollution level—the point at which the cost of further reducing

pollution exceeds the benefit—may be lower than previously thought.

This paper estimates C–R relationships for mortality and hospital use among U.S. adults

aged 65 and over, using a unified natural experiment and IV framework. Most prior studies

that derive C–R relationships are observational, comparing how outcomes relate to different

pollution exposure levels across places or contexts, such as comparing the effects of ambient

pollution exposure to those of cigarette smoking (Pope III et al., 2009; Crouse et al., 2012;
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Burnett et al., 2014). However, these comparisons can be prone to omitted variables bias and

sensitive to the choice of statistical model and estimation techniques (Dominici, Greenstone

and Sunstein, 2014). Numerous studies in economics have used natural experiments and

IV strategies to provide causal estimates of pollution impacts, but they generally estimate

a single average impact and do not identify the shape of the C–R relationship (Currie and

Neidell, 2005; Currie, Neidell and Schmieder, 2009; Currie, 2013; Schlenker and Walker, 2016;

Deryugina et al., 2019). One exception is Heft-Neal et al. (2023), who find a concave C–R

relationship between ER visits and wildfire pollution in California. While comparisons of

estimates from observational and IV research designs usually emphasize identification and

measurement error issues, our finding of a nonlinear C–R relationship shows that estimated

impacts can also differ substantially due to analyzing pollution variation at different levels

(Ishimaru, 2024).

This paper also adds to a growing multi-disciplinary literature on how wildfire

smoke impacts various aspects of human health and well-being, including physical health

(Jayachandran, 2009; Rangel and Vogl, 2019; Cullen, 2020; Heft-Neal et al., 2022; Qiu

et al., 2024), mental health (Molitor, Mullins and White, 2023), worker health and

earnings (Borgschulte, Molitor and Zou, 2022; Cabral and Dillender, 2024), health protection

behaviors (Burke et al., 2022), learning outcomes (Graff Zivin et al., 2020; Wen and Burke,

2022), and crime (Burkhardt et al., 2020) (see Bayham et al. (2022) for a recent review).

Our paper is the first to analyze how smoke affects both mortality and hospital use, using

daily observations at a national scale. The comprehensive and granular data enable us to

explore nonlinearities in smoke impacts, compare the C–R relationships for mortality and

hospital use, and quantify the aggregate burden of smoke on each domain.

Our research highlights several areas for further work. First, our C–R relationship

quantifies the short-run health impacts of acute air pollution shocks. While prior studies

have estimated that the long-run impacts of pollution exposure may exceed the short-run

impacts (Chay, Dobkin and Greenstone, 2003; Chen et al., 2013; Ebenstein et al., 2017;
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Deryugina and Reif, 2023), little is known about the shape of the long-term C–R relationship

or the long-term impacts of smoke pollution specifically. Second, lower marginal damages

at higher concentrations may emerge due to adaptation, such as defensive and avoidance

behaviors (Deschenes, Greenstone and Shapiro, 2017; Ito and Zhang, 2020; Graff Zivin and

Neidell, 2009, 2013; Barwick et al., 2024; Chen, Oliva and Zhang, 2022). Understanding

the behavioral basis of the C–R relationship could provide insights into designing effective

policies and fueling innovative solutions to improve health and resilience to pollution shocks.

2 Data and Measurement

Our main analysis sample is a balanced panel of all counties in the contiguous U.S. for

2007–2019. The sample consists of daily observations (about 14.7 million in total) with

measures of wildfire smoke exposure, ground-level ambient air pollution concentrations, and

health outcomes among adults aged 65 and older. We describe here the primary data sources

and measures used in the analysis.

2.1 Wildfire Smoke

We use wildfire smoke plume data from the National Oceanic and Atmospheric

Administration’s Hazard Mapping System (HMS) for 2007–2019. HMS produces daily,

satellite-based smoke analyses for North America, using infrared and visible band images.

Expert analysts evaluate these images to identify significant smoke plumes and manually

outline their extent and density with georeferenced polygons, categorizing densities as light,

medium, or thick based on appearance.

Figure 2 compares satellite-observed and HMS-recorded smoke plumes, featuring the

2013 Rim Fire’s impact in California and Nevada. Adjacent panels show daily HMS smoke

plumes for August 19–24, with shades indicating smoke density. Before August 22, smaller

fires spread smoke across the western U.S., a common pattern during the study period. On
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August 22, the Rim Fire intensified sharply, burning over 100,000 acres and generating thick

plumes that traveled hundreds of miles north, affecting distant areas in the following days.

Our primary smoke exposure measure comprises nine mutually exclusive and exhaustive

categories that we call “smoke shocks.” These shocks specify a county’s proximity to the

nearest wildfire smoke plume in bins from 0–100 km to >1,000 km, and the thickest density

(light, medium, or thick) if a plume covers the county. We consider a county to be covered by,

or within, a certain distance of a plume if at least 20% of its land area satisfies the condition.

Counties are assigned to the >1,000 km distance bin on days with no smoke reported.

Figure 3a reports the frequency of each smoke shock category in the sample, weighted

by county Medicare population. These frequencies represent the percentage of days older

Americans are exposed to each shock type. Smoke exposure is common: older Americans are

within 1,000 km of a smoke plume on 71.4% of days (nearly 3 out of every 4 days) and are

directly covered by a plume (of any thickness) on 7.7% of days, or about 28 days annually.

Figure A.1 shows the distributions of daily PM2.5 concentrations for each shock category,

showing a progressive increase in pollution with greater smoke intensity.

Figure 3b maps the average annual number of days each county is covered by smoke of any

thickness, while Figure 3c breaks down smoke days by year, highlighting substantial annual

variation in their number and geographic distribution. Smoke is pervasive across the U.S.,

particularly in the Midwest, where downwind emissions from western U.S. and Canadian

wildfires contribute to an average of 50 or more smoke days annually in Minnesota, North

Dakota, and Iowa. Southern regions, including eastern Texas, Louisiana, and the Florida

Panhandle, also frequently experience smoke from local and Central American fires.

2.2 Air Pollution

We use ambient air pollution data from the EPA’s Air Quality System, sourced from ground

monitors. We focus on PM2.5, particles with a diameter less than 2.5µm (PM2.5) that form

a major component of wildfire smoke and are considered particularly harmful to human
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health (U.S. EPA, 2021). We analyze other criteria pollutants and PM2.5 species (chemical

components) in supplemental analyses. Daily PM2.5 concentrations for each county are

calculated as the weighted average of 24-hour readings from monitors within 20 miles of the

county centroid, weighted by the inverse distance. PM2.5 is observed for 30% of the sample,

covering 56% of counties and 89% of the Medicare population.

2.3 Mortality and Hospital Use

We use Medicare administrative records for mortality and hospital use for beneficiaries aged

65 to 100, covering over 97% of the U.S. population in this age group (Heutel, Miller and

Molitor, 2021). The data include death dates and county of residence for all beneficiaries,

as well as all inpatient and outpatient ER visits for those in fee-for-service Medicare,

representing 69% of our sample. We also observe total costs for inpatient stays. Our

primary measure of hospital use is ER visits, including both outpatient visits and those

leading to admissions. In supplemental analyses, we examine additional measures: ER

admission spending, any hospital visit (outpatient or inpatient), and hospital admissions.

All county-level health measures are based on county of residence.

3 Wildfire Smoke Event Study

To motivate and support our research design for estimating C–R relationships, we begin by

estimating panel distributed lag and lead models relating air quality and health outcomes

to wildfire smoke exposure. We refer to this analysis as an “event study,” as it describes

the dynamics of air quality and health outcomes in the days before and after a smoke

exposure event. Our objectives are twofold: first, to validate our control strategy by

checking for pre-exposure effects; and second, to ensure that increases in pollution and

adverse health outcomes coincide with smoke arrival and to determine the appropriate post-

exposure window for capturing any delayed or offset health effects (e.g., harvesting).

7



3.1 Event Study: Research Design

To conduct our event study, we consolidate the daily smoke shocks shown in Figure 3a into

a single continuous exposure variable that we call the “smoke index.” We then estimate how

a one-unit change in the index relates to air quality and health outcomes in the days before

and after the exposure.

We construct the index variable SmokeIndexct as a scaled sum of the smoke shock variables

in county c on date t. Each shock is scaled by an estimate of its effect on same-day

PM2.5, calculated by estimating equation (2) using one-day PM2.5 as the dependent variable

(see Table A.1, column (2)). Thus, by construction, each one-unit increase in the index

corresponds to an increase of approximately 1µg/m3 in ground-level PM2.5 on the event day.

Our empirical strategy relates year-over-year deviations in smoke exposure for a given

county and day of the year (e.g., Orange County, CA, on July 1) to corresponding deviations

in ground-level PM2.5 and health outcomes. Specifically, using observations for each county

c and date t, we estimate the following regression:

Yct =
20∑

d=−20

βd SmokeIndexc(t−d) + [county × day-of-year FEs]ct

+ [county × day-of-week FEs]ct + [state × year × month FEs]ct + εct.

(1)

We estimate this equation separately for three primary outcomes Yct: ground-level PM2.5

(µg/m3), mortality (deaths per million people), and ER visits (visits per million people).

In supplemental analyses, we estimate this equation for additional outcomes, including

other criteria air pollutants, PM2.5 species, and health care metrics including ER admission

spending, hospital visits (outpatient or inpatient), and hospital admissions. Observations are

weighted by Medicare population and standard errors are two-way clustered at the county

and date levels to allow for arbitrary serial correlation within a county and spatial correlation

on a given date.

Equation (1) includes the smoke index variable for date t with 20 leads and lags. The
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key parameters of interest are the corresponding coefficients: βd captures how smoke affects

the outcome d days after the smoke event. These coefficients map the effects of smoke from

20 days before to 20 days after the event.

The primary controls are county-by-day-of-year fixed effects, isolating variation in smoke

exposure within a county and day of the year to address cross-sectional and seasonal

confounds. Our baseline also includes two secondary sets of controls: county-by-day-of-week

fixed effects account for county-specific day-of-week (Sunday, Monday, etc.) patterns in

outcomes like hospital visits, and state-by-year-by-month fixed effects account for arbitrary

regional trends and any policy or environmental influence common to all counties in a state

and month, like a particularly hot July in California. Since smoke shocks should not exhibit

strong day-of-week patterns and do vary significantly from year to year, these secondary

controls should have little impact on our estimates. Supplemental analyses report results

that omit or relax these secondary controls.

Our identifying assumption is that, with these controls, the residual variation in

SmokeIndex is as-if randomly assigned. The event-study specification provides a falsification

check: there should be no effects of smoke before its arrival, meaning β̂d should equal zero

for all d < 0. Because none of the leads or lags are normalized to zero, this check captures

any pre-exposure differences in levels, not just trends.

3.2 Event Study: Results

Figure 4a reports smoke event-study coefficients βd from equation (1). The left panel shows

ground-level PM2.5 outcomes, with a spike starting on the smoke event day (day 0) and

lasting about three days. The day 0 “on impact” effect—approximately a 1-µg/m3 increase

in PM2.5 per one-unit increase in the smoke index—reflects the index’s normalization, with

magnitudes on other days interpreted relative to this baseline. Importantly, PM2.5 levels show

no significant effects in the days leading up to the smoke event, except for a modest increase

the day before, likely due to smoke arriving the evening prior and affecting the previous day’s
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24-hour PM2.5 reading.1 The lack of pre-exposure effects supports our research design and

the assumption that PM2.5 would have remained flat absent the smoke shock. Additionally,

the smoke’s initial impact on PM2.5 fully persists into the next day, diminishes by about 50%

on day two, and mostly subsides by day three, indicating that a three-day event window is

appropriate for capturing the air quality impacts of smoke exposure.

The middle and right panels of Figure 4a extend the analysis to mortality and ER visit

outcomes. Given the smoke index’s normalization, the magnitude of the health responses

can be interpreted as the change per 1-µg/m3 on-impact increase in smoke-induced PM2.5.

The health effect dynamics generally mirror the air quality impacts, beginning on the smoke

event day and subsiding within three days. Mortality rises gradually, peaking two days after

the event, totaling about 0.5 additional deaths per million Medicare beneficiaries within

three days. ER visits increase more sharply, with around 6 additional visits per million

beneficiaries on the event day, and about 25% of this effect persisting into the next day. The

absence of subsequent reductions in mortality and ER visits within the 20-day post-event

window suggests that the health impacts are not merely accelerating outcomes that would

have occurred soon after (i.e., harvesting). Additionally, the lack of significant effects on

mortality and ER visits before the smoke event supports the validity of our research design

for health outcomes.

Figure A.2 shows that smoke exposure increases several key air pollutants, including

coarse particulate matter (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide

(SO2), and carbon monoxide (CO). PM2.5 exhibits the largest standardized rise—17% of

a standard deviation on the event day—highlighting it as a primary component of wildfire

smoke. Figure A.3 breaks down this increase into twelve primary PM2.5 species, including

organic carbon, sulfate, and nitrate, identifying elements that may drive the health impacts.

Figure A.4a shows that smoke exposure raises ER spending, hospital admissions, and visits,
1The HMS generates smoke files approximately twice daily, once shortly before sunrise and again shortly

after sunset. While nighttime smoke exposure is not captured in the smoke data, its impact is recorded by
pollution monitors.
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indicating that the increase in ER visits is not offset by a reduction in other types of hospital

care.

The event study findings validate our baseline control strategy and support using a three-

day post-event window to capture the cumulative impacts of wildfire smoke on PM2.5 and

short-term health outcomes. We incorporate both into our estimation of C–R relationships.

4 Concentration–Response Relationships

The event-study analysis shows that wildfire smoke sharply impacts ground-level air quality

and increases mortality and ER visit rates among older adults. In this section, we examine

how these effects scale with the intensity of smoke events. We first estimate how pollution

and health outcomes respond to smoke shocks of different magnitudes, then combine these

estimates to graphically represent the causal C–R relationships.

4.1 Concentration–Response: Research Design

We estimate the relationship between air pollution from wildfire smoke and health, allowing

for arbitrary nonlinearity in the effects of larger versus smaller smoke shocks, using the

following regression equation:

Y 3-day
ct =

∑
s∈S

βY
s 1(SmokeShockct = s) + [lead/lag of SmokeShock FEs]ct

+ [county × day-of-year FEs]ct + [county × day-of-week FEs]ct

+ [state × year × month FEs]ct + εct.

(2)

Our primary outcomes are ground-level PM2.5, mortality, and ER visits. In supplemental

analyses, we also examine ER admission spending, hospital visits (outpatient or inpatient),

and hospital admissions. The event-study results showed that smoke impacts on these

outcomes are concentrated within three days of exposure. To capture the cumulative three-
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day effects, we define Y 3-day
ct as the sum of the daily measures on the index day t and the

following two days.

The right-hand side of equation (2) is identical to equation (1) except we have replaced

the smoke index variable with a series of indicators 1(SmokeShockct = s) for whether county

c on date t was exposed to a smoke shock of intensity s, for all shocks S listed in Figure 3a.

We also include fixed effects for one lead and lag of the shocks to address serial correlation

in smoke exposure and isolate the date-t shock’s impact. The omitted shock category is

counties over 1,000 km from any smoke plume. Thus, the coefficients βY
s describe the effect

on outcome Y of exposure to a shock of intensity s, relative to having been at least 1,000

km from a plume. Observations are weighted by Medicare population, and standard errors

are clustered by county and date.

Using estimates from equation (2), we can trace out the pollution–health C–R relationship

by plotting the points
(
β̂H
s , β̂PM2.5

s

)
that pair the change in health outcome H with the

corresponding change in PM2.5 for each smoke shock s ∈ S. The curve serves as a visual IV

estimate of the health impact of PM2.5 using smoke shocks as instruments. Its slope reflects

the ratio of a smoke-induced change in health (the reduced form) to the corresponding change

in PM2.5 (the first stage), with changes in slope indicating a nonlinear relationship between

air pollution and health. In Section 5, we directly estimate the slope of the C–R relationship

using 2SLS estimation and discuss the exclusion restriction needed to interpret the slope as

reflecting the causal effect of PM2.5 on health.

We aim to attribute the effects estimated in equation (2) to wildfire smoke. A potential

challenge is that the wind patterns transporting smoke to an area may also carry pollution

from other sources. To disentangle the effects of smoke from generically polluted wind

directions as in Deryugina et al. (2019), we examine the sensitivity of our estimates to

including county-specific wind direction bins in 60-degree increments.
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4.2 Concentration–Response: Results

The left panel of Figure 4b plots estimates of βPM2.5
s from equation (2), showing how each

smoke shock s impacts three-day PM2.5 concentrations. The effects increase monotonically

with proximity to a smoke plume and coverage density. In counties near but not directly

covered by a plume, PM2.5 concentrations rise modestly by 0.5–3.2µg/m3 (5%–35% of the

mean of 9.1 µg/m3 on a smoke-free day, the reference category). Counties directly covered by

a plume experience larger increases of 5.2–14.4 µg/m3 (58%–158% of the smoke-free mean),

depending on the smoke’s thickness. These findings demonstrate that smoke significantly

impacts ambient pollution concentrations, with effects varying substantially based on wind

patterns and plume density, underscoring the value of smoke as a natural experiment to

explore how pollution effects scale with the magnitude of exposure.

To quantify wildfire smoke’s average contribution to ambient PM2.5, we combine the

PM2.5 effects of each smoke shock type with their frequency over the sample period.

Specifically, we calculate ∑
s∈S

β̂PM2.5
s Pr(SmokeShockct = s), (3)

where β̂PM2.5
s is the estimated PM2.5 effect from smoke shock s, and Pr(SmokeShockct = s)

is the fraction of the sample in which this type of smoke shock occurs (Figure 3a). This

sum equals 1.65 µg/m3 (Table A.1). Compared to the average daily PM2.5 concentration

of 9.1 µg/m3 on a smoke-free day (the reference category), these results imply that smoke

accounts for 18% of ambient daily PM2.5 in the sample. These findings complement National

Emissions Inventory estimates that wildfires produced 12% of PM2.5 emissions in 2007–

2019 (U.S. EPA, 2024). Our finding that population-weighted ambient PM2.5 concentrations

attributable to smoke exceed wildfire emissions over the sample highlights wildfires as a

significant contributor to pollution in populated areas.

The middle and right panels of Figure 4b present the estimated C–R relationships,

illustrating how smoke exposure impacts mortality and ER visits at different exposure levels.
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Each point on a curve corresponds to one of the nine smoke shocks from equation (2).

The horizontal position reflects the change in PM2.5 concentrations due to smoke (β̂PM2.5
s ),

while the vertical position indicates the corresponding change in the health outcome, either

mortality (β̂Mortality
s ) or ER visits (β̂ER

s ).

The resulting C–R relationships show that health impacts rise steeply with low to

moderate smoke exposure and then plateau at around 6 µg/m3, forming nonlinear, concave

shapes. The steep initial slopes suggest substantial health benefits from additional air quality

improvements, even on relatively clean days with little smoke exposure. The concavity of

these curves indicates that smaller pollution shocks have a greater health impact per unit of

PM2.5 than larger shocks. In fact, the largest shocks exhibit marginally lower impacts than

moderate ones; while these differences lack statistical significance, they point to potential

non-monotonic effects of pollution exposure on health, which might occur as people reduce

outdoor activities and avoid exposure on highly polluted days.

Figure A.4b shows similar concave and non-monotonic C–R relationships for ER

spending, hospital visits, and admissions. Figure A.5 Panel (a) shows that C–R relationships

for mortality and ER visits hold after controlling for county-daily wind direction and

temperature, helping isolate smoke effects from generic pollution and weather influences.

Panels (b) and (c) demonstrate robustness to relaxing secondary controls. Figure A.6 finds

similar C–R patterns across counties in the lowest, middle, and highest terciles of average

PM2.5 levels, indicating that observed nonlinearities in the overall C–R relationships are

not driven by cross-sectional treatment effect heterogeneity and underscoring that modest

pollution increases can have steep health impacts, even in low-pollution areas.

We calculate wildfire smoke’s aggregate contribution to elderly mortality and ER visits,

applying equation (3) but replacing the PM2.5 effects of each smoke shock with mortality

and ER visit effects (Table A.1). We estimate that smoke causes an average of 0.51 deaths

and 9.7 ER visits per million adults each day, implying that smoke exposure accounts for

about 1 in every 240 (0.42%) deaths and 1 in every 145 (0.69%) ER visits in the sample.
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When scaled to the U.S. population of 54.1 million adults aged 65 years and over in 2019,

this corresponds to 10,070 premature elderly deaths and 191,541 excess ER visits annually.

Wildfire smoke’s impact on mortality risk can be valued based on lives lost or life-years

lost. EPA guidelines specify assigning a common value of statistical life of $9.4 million

($2019) to each excess death, resulting in an estimated annual cost of $95 billion (U.S. EPA,

2010). The EPA approach does not adjust for the potentially lower life expectancy of those

who die from acute wildlife smoke exposure. We address this by valuing the life-years lost

from smoke exposure. We use a value of $136,000 ($2019) per life-year (Cutler, 2004) and

assume that those dying prematurely from wildfire smoke would have lived an additional

3.5 years (Deryugina et al. (2019)), yielding an annual mortality cost of $4.8 billion. By

comparison, wildfires cause $617 million in annual damages to structures, with federal and

state fire suppression and protection costs adding another $3.5 billion (National Institute of

Standards and Technology, 2017). These costs, though significant, are less than the estimated

annual mortality cost from smoke.

5 Two-Stage Least Squares Estimation

The C–R relationships presented above offer visual IV estimates of how PM2.5 impacts

mortality and ER visits. In this section, we directly estimate the slopes along different

portions of these curves using two-stage least squares estimation and discuss the exclusion

restriction needed to interpret the slopes as the causal effects of PM2.5 on health.
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5.1 Two-Stage Least Squares: Research Design

We are interested in the relationship between health outcomes and PM2.5, as described by

the following equation:

Y 3-day
ct = β [PM2.5]ct + [lead/lag of PM2.5]ct

+ [county × day-of-year FEs]ct + [county × day-of-week FEs]ct

+ [state × year × month FEs]ct + εct.

(4)

Estimating this equation via ordinary least squares (OLS) could lead to biased estimates

of β due to measurement error in PM2.5 and omitted variables that affect health and are

correlated with PM2.5. To address these issues, we use smoke shocks as instruments for PM2.5,

applying a two-sample 2SLS estimator (Angrist and Krueger, 1992). In the first stage, we

estimate equation (2) with three-day PM2.5 as the outcome, using observations where PM2.5

is observed. We then use the first-stage estimates to generate the predicted values, P̂M2.5, for

the full sample, as smoke exposure is measured for all observations. These predicted values

serve as the key independent variable in the second-stage regression, specified as follows:

Y 3-day
ct = βIV

̂[PM2.5]ct +
∑

s∈Sincluded

βY
s 1(SmokeShockct = s)

+ [lead/lag of SmokeShock FEs]ct + [county × day-of-year FEs]ct

+ [county × day-of-week FEs]ct + [state × year × month FEs]ct + εct.

(5)

The coefficient βIV captures a regression average of the C–R curve’s slope, calculated over

the portion of the curve determined by the smoke shocks excluded from the second-stage

regression controls, i.e., shocks not in Sincluded. This is because residual variation P̂M2.5 comes

only from the excluded instruments. We consider three sets of excluded instruments: “all”

shocks, where Sincluded is the empty set; “small” shocks, including only those without direct

smoke coverage; and “large” shocks, consisting of light, medium, or thick smoke coverage.
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The omitted smoke shock category in Sincluded is always the 0–100 km distance bin, marking

the dividing point between small and large shocks.

We calculate standard errors for all two-sample IV estimates via bootstrap, clustering

at both the county and date levels (Cameron and Miller, 2015). The bootstrap permits

calculating standard errors for linear combinations of parameters, even if they derive from

different equations. This allows us to formally test whether the slope of the C–R relationship

differs at smaller versus larger concentrations of PM2.5 by testing whether estimates of βIV

differ when based on different excluded instruments.

We also estimate equation (4) via OLS, which uses all residual variation in PM2.5 not

absorbed by the fixed effects in our regressions. By comparison, IV estimates rely only on

variation from drifting smoke plumes. Comparing the OLS and IV estimates is useful for

understanding whether and how conclusions about the pollution–health relationship depend

on these different sources of variation.

For smoke to be a valid instrumental variable for PM2.5, it must satisfy the relevance

condition and the exclusion restriction. The relevance condition requires smoke to be strongly

correlated with PM2.5, which we demonstrate by reporting first-stage F-statistics for each IV

regression.2 The exclusion restriction requires that smoke not be correlated with unobserved

determinants of health. Our control strategy addresses threats to this restriction arising from

cross-sectional or seasonal patterns. However, wildfire smoke carries a mix of potentially

harmful pollutants and may interact with weather conditions that directly affect health.

Supplemental analyses suggest that these potential violations of the exclusion restriction

are limited. Regarding weather interactions, Figure A.5 Panel (a) demonstrates that the C–R

relationships for mortality and ER visits hold after flexibly controlling for wind direction and

temperature. For multiple pollutants, we align with the broader pollution-health literature

by using PM2.5 as the primary air quality indicator, recognizing that PM2.5 inherently
2We report both the Cragg–Donald (1993) statistic, which assumes homoskedastic errors and can be

compared to the well-known Stock and Yogo (2005) critical values that are valid only under homoskedasticity,
and the Kleibergen–Paap (2006) statistic, which is robust to clustering at the county and date levels.
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encompasses a complex mixture of secondary particles derived from gaseous pollutants like

NO2 and SO2. Existing research has identified PM2.5 as the main driver of adult health

impacts from general pollution shocks, such as those resulting from changing wind direction

(Deryugina et al., 2019). Specifically for wildfire smoke, PM2.5 is the component widely

considered to pose the greatest risk to public health (U.S. EPA, 2021). Figure A.2 further

shows that, while smoke elevates several pollutants, its largest impact is on PM2.5 when

assessed on a standard-deviation scale.

To further validate interpreting smoke impacts as operating through PM2.5, we directly

compare our smoke IV estimate of mortality impacts with the wind direction IV estimate

from Deryugina et al. (2019). Larger smoke IV estimates could indicate that smoke PM2.5

is more harmful or that other pollutants in smoke contribute to health impacts, indicating

a potential exclusion restriction violation. However, Table A.2 shows that both instruments

yield comparable results. The wind direction estimate falls approximately midway between

our IV estimates for small and large smoke shocks, suggesting that smoke effects operate

through PM2.5 similarly to other PM2.5 sources.

5.2 Two-Stage Least Squares: Results

Table 1 reports estimates from equation (5). Panel A shows results for three-day mortality

outcomes. Using all smoke shocks as excluded instruments, column (1) shows each unit

of PM2.5 corresponds to 0.20 additional deaths per million, on average. For small shocks,

column (2) reports an increase of 0.37 deaths per million per unit of PM2.5, while column (3)

reports that large shocks have a small and statistically insignificant mortality impact relative

to a distance of 0–100 km from smoke. Panel B shows similar patterns for three-day ER

visits. In both panels, columns (4)–(6) show that estimates differ statistically across excluded

instruments, corroborating the concave patterns seen in Figure 4b.

Column (7) reports OLS estimates of equation (4): each additional unit of PM2.5

corresponds to 0.19 additional deaths and 1.40 additional ER visits per million over three
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days. The OLS estimates lie between the IV estimates for large and small shocks and

are similar to those using all shocks. This suggests that differences between IV and OLS

estimates may stem more from varying regression weights in the presence of heterogeneous

treatment effects (Ishimaru, 2024) than from bias, an explanation that has received little

attention in prior comparisons IV and OLS pollution impact estimates.

6 Discussion and Conclusion

After over half a century of regulation, air quality in the U.S. and many other developed

countries has improved substantially (Dominici, Greenstone and Sunstein, 2014). While

the health risks from elevated PM2.5 are widely acknowledged, some policymakers have

questioned the health benefits of further air quality improvements amid relatively low

ambient concentrations (U.S. EPA, 2020). Indeed, prevailing regulatory approaches assume

the C–R relationship to be convex, with severe pollution episodes causing the greatest risks

and pollution levels below a safety threshold causing little harm (McGartland et al., 2017;

National Research Council, 2009).

Our findings challenge these views. We present new causal evidence that exploits the

natural experiment of drifting wildfire smoke to show that the relationship between air

pollution exposure and health is concave: small increases in pollution cause significant health

impacts, while larger increases yield diminishing additional effects.

Evidence of a concave C–R relationship indicates significant health benefits of reducing

PM2.5 levels even in areas meeting regulatory standards. This evidence invites a reevaluation

of regulatory strategies, particularly in countries like the U.S. with relatively low average

pollution levels. By focusing on a broader range of pollution levels, especially smaller

and more frequent pollution events, policies can better protect public health. Our findings

indicate that further reductions in air pollution could significantly benefit health outcomes,

even in regions that comply with current air quality standards.
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Our findings also highlight the potential role of adaptation in the health effects of

pollution exposure. First, the concave C–R relationship suggests that individuals exposed

to large smoke shocks may adopt adaptive behaviors, such as avoidance, which reduces

marginal harm and bends the C–R relationship downward. Second, we find evidence of a

concave C-R relationship not only overall but also conditional on baseline pollution exposure.

This is consistent with individuals adapting to baseline pollution levels over time, even as

variability in pollution exposure above baseline significantly impacts health. Because air

pollution sources can never be eliminated entirely, our results suggest value in policies that

not only reduce population pollution exposure but also facilitate adaptation and resilience

to fluctuating air quality conditions.
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Figures and Tables

Figure 1: Role of the concentration–response function for optimal pollution abatement
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Notes: The figure shows the traditional conceptual framework for economic analysis of marginal cost versus marginal
benefits of pollution abatement. Adapted from Figure 1 of Pope III et al. (2015).
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Figure 2: Satellite-based smoke plumes (NOAA Hazard Mapping System)
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August 22, 2013
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Notes: The left panel shows an image acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua satellite of the
Rim Fire burning in central California near Yosemite National Park, on August 22, 2013. The image reveals hot spots outlined in red and a thick
smoke plume blowing northeast. The six panels to the right show a series of daily snapshots of the NOAA Hazard Mapping System (HMS) smoke
plumes data for August 19–24, 2013. Polygons represent wildfire smoke plume boundaries, and shading indicates whether HMS categorized the
smoke density as light, medium, or thick. The red rectangles show the extent of the NASA image in the left panel.
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Figure 3: Wildfire smoke exposure in the U.S., 2007–2019
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Notes: Panel (a) reports Medicare population-weighted frequency distribution of the smoke shock categories at the
county-daily level. Panel (b) shows annual average smoke days by county over the 2007–2019 period. Here we consider a
county to be exposed to smoke if at least 20% of its land area is covered by smoke plumes. Panel (c) breaks down smoke
days by year.
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Figure 4: Effects of wildfire smoke on air pollution and health
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Notes: Panel (a) reports event-study estimates from equation (1). The estimates reflect the effect of a one-unit increase in the smoke index in county c on date t on
ground-level PM2.5 (left), mortality (middle), and ER visits (right) on the date of the event (day 0 on the graph) and up to 20 days before (negative day values) and
after (positive day values) the event. Panel (b) reports estimated effects of exposure to smoke shocks of varying intensity using equation (2) (Table A.1, columns
(3)–(5) report regression details). Each estimate reflects the effect of exposure to a smoke shock of intensity s, relative to having been at least 1,000 km away from a
smoke plume. The effects of smoke exposure on ground-level PM2.5 (left) are positioned on the horizontal axis according to the category of smoke intensity; effects
on mortality (middle) and ER visits (right) are positioned on the horizontal axis according to the PM2.5 effect of the associated category of smoke intensity. All
regressions are weighted by the Medicare population in county c on date t. Shaded areas reflect 95% confidence intervals based on standard errors clustered at both
the county and date levels.
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Table 1: PM2.5 impacts on mortality and ER visits

(1) (2) (3) (4) (5) (6) (7)

2SLS excluded smoke instruments: IV differences OLS

All shocks Small shocks Large shocks (2)–(3) (2)–(1) (1)–(3)

A. 3-day deaths per million

PM2.5 0.20*** 0.37*** 0.033 0.34*** 0.17*** 0.17*** 0.19***
(0.041) (0.085) (0.034) (0.098) (0.059) (0.046) (0.019)

Excluded smoke instruments All Small Large
Included smoke instruments None Large Small
Cragg-Donald F-statistic 4485.5 2815.1 4699.5
Kleibergen-Paap F-statistic 47.5 42.2 55.6

Mean outcome 358.9 358.9 358.9 47.5 47.5 47.5 349.1
Sample size 14,594,910 14,594,910 14,594,910 358.9 358.9 358.9 3,320,622

B. 3-day ER visits per million

PM2.5 3.2*** 7.0*** –0.23 7.2*** 3.8*** 3.4*** 1.4***
(0.53) (1.1) (0.38) (1.2) (0.77) (0.59) (0.19)

Excluded smoke instruments All Small Large
Included smoke instruments None Large Small
Cragg-Donald F-statistic 4484.8 2811.1 4705.5
Kleibergen-Paap F-statistic 47.5 42.1 55.7

Mean outcome 4,326.2 4,326.2 4,326.2 47.5 47.5 47.5 4,160.5
Sample size 14,591,808 14,591,808 14,591,808 4,326.2 4,326.2 4,326.2 3,319,490

Notes: The table reports IV and OLS estimates of the relationships between PM2.5 (µg/m3) and mortality (three-day deaths per million) and ER
visits (three-day ER visits per million). Columns (1)–(3) present estimates of βIV from equation (5), which relates health outcomes to variation in
three-day PM2.5 predicted by the excluded smoke instruments. The columns correspond to three sets of excluded instruments: All shocks include all
smoke shock categories; small shocks are those without direct smoke coverage; and large shocks consist of light, medium, or thick smoke coverage.
Columns (4)–(6) show simple differences between the IV estimates from columns (1)–(3), as specified by the column labels. Column (7) presents OLS
estimates from equation (2), where smoke shock variables are replaced with PM2.5. Standard errors are clustered at the county and date levels. *: p
< 0.10; **: p < 0.05; ***: p < 0.01.
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Figure A.1: Distributions of PM2.5 concentration by smoke shock categories
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Notes: The plot shows the distribution of daily PM2.5 concentrations across the categories of wildfire
smoke shocks considered in the analysis. The distributions are color-coded according to the EPA’s Air
Quality Index, where orange and red zones represent air quality considered unhealthy for sensitive groups
and the general population, respectively. The numbers at each end of the distributions represent the 1st

and 99th percentiles.
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Figure A.2: Effects of wildfire smoke on criteria air pollution: Event study
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Notes: This figure reports event-study estimates from equation (1) for six criteria air pollutants. The outcome variables are standardized z-scores, with a mean of 0
and a standard deviation of 1. The estimates reflect the effect of a one-unit increase in the smoke index in county c on date t on ground-level pollutant concentration
on the date of the event (day 0 on the graph) and up to 20 days before (negative day values) and after (positive day values) the event. All regressions are weighted by
the Medicare population in county c on date t. Shaded areas reflect 95% confidence intervals based on standard errors clustered at both the county and date levels.
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Figure A.3: Effects of wildfire smoke on PM2.5 species: Event study
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Notes: This figure reports event-study estimates from equation (1) for various PM2.5 species (chemical components). The estimates reflect the effect of a one-unit
increase in the smoke index in county c on date t on ground-level pollutant concentration on the date of the event (day 0 on the graph) and up to 20 days before
(negative day values) and after (positive day values) the event. All regressions are weighted by the Medicare population in county c on date t. Shaded areas reflect
95% confidence intervals based on standard errors clustered at both the county and date levels.
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Figure A.4: Effects of wildfire smoke on health: Other health care outcomes
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Notes: Panel (a) reports event-study estimates from equation (1). The estimates reflect the effect of a one-unit increase in the smoke index in county c on date t on
total ER spending (left), hospital visits (middle), and hospital admissions (right) on the date of the event (day 0 on the graph) and up to 20 days before (negative day
values) and after (positive day values) the event. Panel (b) reports the concentration–response relationships with respect to PM2.5. All regressions are weighted by
the Medicare population in county c on date t. Shaded areas reflect 95% confidence intervals based on standard errors clustered at both the county and date levels.
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Figure A.5: Effects of wildfire smoke on air pollution and health: Robustness
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(a) Add county × 60-degree wind direction bins, 10-degree temperature bins fixed effects
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(b) Drop county × day-of-week fixed effects
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(c) Replace state × year × month fixed effects with state × year

Notes: This figure reports various versions of the C–R estimates. Each panel corresponds to a robust specification, and each
estimate reflects the effect of exposure to a smoke shock of intensity s, relative to having been at least 1,000 km away from
a smoke plume. The effects of smoke exposure on ground-level PM2.5 (left) are positioned on the horizontal axis according
to the category of smoke intensity. The effects on mortality (middle) and ER visits (right) are positioned on the horizontal
axis according to the PM2.5 effect of the associated category of smoke intensity. All regressions are weighted by the
Medicare population in county c on date t. Shaded areas reflect 95% confidence intervals based on standard errors clustered
at both the county and date levels.
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Figure A.6: Effects of wildfire smoke: Heterogeneity by county average PM2.5
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Notes: This figure reports heterogeneity of the C–R estimates conducted separately by counties’ average PM2.5 levels. The groups “terc1/2/3” correspond to counties
in the lower/medium/highest tercile of sample-average PM2.5 concentration. Each panel corresponds to a robust specification, and each estimate reflects the effect of
exposure to a smoke shock of intensity s, relative to having been at least 1,000 km away from a smoke plume. The effects of smoke exposure on ground-level PM2.5
(left) are positioned on the horizontal axis according to the category of smoke intensity. The effects on mortality (middle) and ER visits (right) are positioned on the
horizontal axis according to the PM2.5 effect of the associated category of smoke intensity. All regressions are weighted by the Medicare population in county c on
date t.
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Table A.1: Effects of wildfire smoke on air pollution and health

(1) (2) (3) (4) (5)

First stage Reduced form

Smoke shock
Sample frequency

(%)
1-day PM2.5

(µg/m3)
3-day PM2.5

(µg/m3)
3-day deaths per

million
3-day ER visits

per million

> 1,000 km from plume (ref. category) 28.58% – – – –

700–1,000 km from plume 11.50% 0.02 0.45*** 0.17 2.50
(0.07) (0.15) (0.20) (2.44)

500–750 km from plume 14.68% 0.22** 1.29*** 0.30 8.30***
(0.08) (0.19) (0.21) (2.67)

250–500 km from plume 16.87% 0.41*** 2.04*** 0.64*** 14.28***
(0.08) (0.19) (0.21) (2.87)

100–250 km from plume 12.12% 0.53*** 2.55*** 1.02*** 19.18***
(0.08) (0.21) (0.25) (3.02)

0–100 km from plume 8.59% 0.75*** 3.24*** 1.21*** 20.93***
(0.09) (0.25) (0.26) (3.20)

Light smoke 5.71% 1.91*** 5.24*** 1.33*** 22.74***
(0.12) (0.30) (0.29) (3.34)

Medium smoke 1.38% 2.72*** 6.85*** 1.63*** 18.80***
(0.22) (0.53) (0.43) (4.06)

Thick smoke 0.57% 5.48*** 14.39*** 1.42*** 17.38***
(0.51) (1.43) (0.54) (4.95)

Average daily effect of smoke 0.41*** 1.65*** 0.51*** 9.70***
(0.05) (0.12) (0.14) (1.92)

Mean daily outcome (ref. category) 9.0 9.1 122.8 1,408.8
Sample size 14,705,570 4,410,645 3,321,357 14,594,910 14,591,808

Notes: The table reports the sample frequency and estimated effects of the smoke shocks examined in the paper. Column (1) shows the population-
weighted sample frequency of each smoke shock category. Columns (2)–(5) represent separate regressions of equation (2). Columns (2)–(3) report the
first-stage effects of smoke on one- and three-day PM2.5, respectively. Columns (3)–(4) report the reduced-form effects of smoke on three-day mortality
and ER visits, respectively. In all regressions, the “>1,000 km from plume” category is used as the reference (omitted) category in the regression.
The average daily effect of smoke, reported below the shock-specific estimates, is calculated as the weighted sum of these estimates, each multiplied
by its corresponding sample frequency. Observations are at the county-day level, and all regressions are weighted by the Medicare population in each
county on each date. Standard errors are clustered at both the county and date levels. *: p < 0.10; **: p < 0.05; ***: p < 0.01.

A
-7



Table A.2: PM2.5 impacts on mortality: smoke versus wind direction IV

(1) (2) (3) (4)

2SLS excluded instruments:

All smoke shocks Small smoke shocks Large smoke shocks Wind direction

PM2.5 0.43*** 1.6*** 0.085 0.69***
(0.091) (0.38) (0.071) (0.061)

Cragg-Donald F-statistic 4721.9 1104.4 7318.5 298.1

Mean outcome 358.9 358.9 358.9 384.6
Sample size 14,594,910 14,594,910 14,594,910 1,980,549

Notes: The table reports smoke and wind direction 2SLS IV estimates of the relationship between one-day PM2.5 (µg/m3)
and mortality (three-day deaths per million). Columns differ in the instruments used to identify variation in PM2.5. Columns
(1)–(3) use smoke shocks as instruments and are estimated like columns (1)–(3) of Table 1 except that the endogenous variable
is one-day PM2.5. This is to align with the endogenous pollution measure used in the wind direction IV analysis of Deryugina
et al. (2019), whose focal IV estimate (Table 2, Panel B, column (1)) is reproduced in column (4). Smoke IV estimates in
this table are larger than the ones in Table 1 because the first-stage effects of smoke are smaller for one-day PM2.5 than for
three-day PM2.5 (Table A.1), borrowing intuition from the just identified IV setting (i.e., a single instrument) where the IV
estimate equals the ratio of the reduced form coefficient to the first stage coefficient. Observations in both the smoke and
wind direction analyses are at the county and date level, but there are some differences in the sample periods and control
strategies (see Deryugina et al. (2019) for details). For each IV regression, we report the Cragg–Donald (1993) first-stage
F-statistic, the statistic reported in Deryugina et al. (2019). Standard errors for the smoke IV estimates in columns (1)–(3)
are clustered at the county and date levels. The standard error for the wind direction IV estimate in column (4) is clustered
at the county level. *: p < 0.10; **: p < 0.05; ***: p < 0.01.
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