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ABSTRACT

The optimal income tax problem, since it requires self-selection
constraints which define nonconvex feasible sets, is one of the many problems
in economics for which randomization in the solution may be desirable. For a
two-class economy, we characterize the optimal random tax schedules and we
present necessary and sufficient conditions for the desirability of local
randomization. The standard single-crossing restriction on preferences is not
required for these results. We also show that randomization can be beneficial
without violating (ex post as well as ex ante) horizontal equity. Lastly, we

give an example to demonstrate that the gains from randomization may be large.
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I. INTRODUCTION

Asymmetric information is an important factor in many areas of
economics, including optimal income taxation, regulation, and labor contracts.
The presence of asymmetric information adds self-selection or incentive
compatibility constraints to an uninformed principal'’s maximizafion problem.
The self-selection constraints produce fea;ible sets which are generally not
convex. Given the nonconvexity, the uninformed may find it desirable to offer
random schedules of opportunities to the informed. Weiss [1976], Stiglitz
[1982], Fellingham, Kwon, and Newman [1984], Maskin and Riley [1984], and
Arnott and Stiglitz [1988] have demonstrated benefits from randomization in a
variety of contexts.

Several unresolved problems leave unclear the significance and relevance
of these results. First, those papers utilize special assumptions on
preferences, such as separability over commodities and ''single-crossing”
across types of individuals, without exploring how readily these can be
relaxed. Second, only sufficient conditions for randomization to improve
locally upon the deterministic solution have been found, and these sufficient
conditions are not easy to interpret. It is therefore difficult to assess
whether randomization is desirable only when preferences are in some way
anomalous or whether it yields benefits in many circumstances. Third, it is
unclear whether randomization is only a theoretical curiosity or whether it
could be implemented in practice. Important practical considerations are the
complexity and administrative feasibility of the randomization scheme. In
addition, there are questions of ethical acceptability, in partic;lar
concerning horizontal equity--equal treatment of equals. While individuals of
the same type are treated identically ex ante, randomization induces gx post

utility differences within a class. This may be especially objectionable in



optimal taxation. It may also be an obstacle in principal-agent problems.
Often, agents supply effort after resolution of the randomness. If they care
about their relative status in a way that affects productivity, then
inequitable random solutions may fail to yield gains over nonstochastic ones.
Finally, previous work has only shown that deterministic solutions can be
improved upon without deriving the optimal random solution. Thus, the
magnitude of the gain from randomization is unknown. If the gains are small,
randomization would not be worth the costs of its implementation.

In this paper, we treat each of these problems for an optimal income tax
model with two classes of individuals and two commodities. The results
directly translate to other two-class selection models. Unlike previous
literature, we make no special assumptions about preferences other than
concavity. We derive necessary and sufficient conditions for some local
randomization to improve on the nonrandom solution. Essentially, these
duplicate the sufficient conditions, such as those found by Stiglitz [1982],
for a 50-50 randomization over two bundles. The set of preferences for which
some randomization can be beneficial is the same as that for which a 50-50
randomization is desirable. Nevertheless, the generalization allows us to
understand better the gains from randomizing. It also allows us to consider
other questions such as whether randomization is desirable if the two classes
have preferences which differ only slightly.

We also derive a sufficient condition for the desirability of nonlocal
randomization. This condition and its proof add much insight into the value
-of randomization. Randomization can be desirable with any pair of ordinal
preferences which differ at the nonrandom solution, provided that the utility
function of the class whose self-selection constraint binds is sufficiently

concave. The proof constructs a randomization over bundles which are



indifferent for the class for wh?ch they are intended. While this is not
necessarily the optimal randomization, it shows that random solutions need not
violate ¢x post horizontal equity. If horizontal equity were a political
constraint on tax schedules, the gains from randomization might be reduced,
but not eliminated.

Finally, we give an example in which we calculate the first-best, the

nonrandom second-best, and the random second-best Pareto optima.

Randomization has a major effect on the outcome. In this example,
randomization allows the first-best Pareto frontier to be attained even when
one group's self-selection constraint is strictly binding, despite the
nonrandom second best being quite far from the unconstrained frontier! In our
numerical example, at some points on the frontier, society would be willing to
give up over 12% of its resources, rather than give up the ability to use
random solutions.

Therefore, random solutions can be significant in selection models.
They can arise for any set of ordinal preferences and the gains can be quite
large. It may thus be a mistake to disregard the possibility of randomization

in such models.

I1. THE BASIC MODEL AND A CHARACTERIZATION THEOREM
A. Structural Assupptiops

Consider a society composed of two different classes of individuals,
denoted A and B. Individuals within each class are identical, but individuals
in different classes differ either in tastes or abilities. The government
does not know to which class any individual belongs, but does know the numbers
of individuals in each class, denoted Ni’ i = a, b. Individuals consume a

single good, C, and earn income, Y. People in each class have a utility



function over these bundles Vi(C, Y), i = a, b, with avijac = Vé > 0 and

avi/aY = V§ < 0. The maximum income that individuals in each class can earn

is bounded from above by Ki, so that Y! < Ki, i = a, b. The marginal rate of

substitution for an individual is denoted MRSi(C, Y) = -v§/vé >0, i = a,b.
The following assumptions about Vi(C, Y) are made throughout:

(A1) Vi(C, Y), i = a, b, is twice continuously differentiable in C and Y;

(A2) Vi(C, Y), i = a, b, is strictly concave in C and Y;

(A3) MRS8(C, Y) and HRSb(C, Y) differ at almost every (C, Y) bundle and
those points where the MRS's are equal do not lie on the no-tax budget
line.

Assumption (Al) is made for convenience in exposition but can be relaxed

without difficulty. Assumption (A2) of concavity instead of quasiconcavity

insures that expected utility functions describe convex preferences.

Assumption (A3) is crucial to guarantee that the groups actually have

different preferences since, if their indifference curves coincide,

redistribution between groups is impossible. Assumption (A3) allows multiple
crossings of the indifference curves of the two classes. With multiple
crossings, there will be bundles at which the indifference curves of the two
groups are tangent. Such tangencies are not ruled out as long as they form
only a discrete set of curves in the (C, Y) plane.1

A special case satisfying these assumptions is that considered in

Stiglitz [1982) in which the utility functions Vi(C, Y) arise from common

underlying preferences over consumption and labor with the classes A and B

having different abilities (and wages). Let L1 be hours worked.and w; the

wage rate of group i. Then ti= Y/w; and Vi(C, Y) = U(C, Y/wi) where U is the
common utility function over C and L. If A is the more able group (w, > wy)

then MRSB(C, Y) < MRSP(C, Y) at each (C, Y).2



Because the government lacks information about abilities, it must offer
a common set of opportunities to all individuals. With randomization, the
opportunities may be lotteries over tax schedules. For any tax schedule, each
type of individual will have a unique best consumption-income bundle on that
schedule. For a tax schedule T, let (Ci(T), Y(T)) be the utility-maximizing
bundle for group i. We will take the standard approach in selection problems
of solving directly for the consumption-income bundles subject to seleetion
constraints. We can then derive a tax schedule which supports these choices.3
Our approach here is to study the properties of Pareto efficient tax
schedules, rather than those which maximize social welfare. (The two
approaches are clearly closely related since, by verying the welfare weights

for the groups, we can effectively map out the entire constrained Pareto

frontier.)

B. Timing of the Randomizati

The random action by the government is assumed to take place after
individuals reveal their types, but before they decide their levels of effort.
The government constructs two lotteries of tax schedules, one intended for
individuals in group A and one for those in group B. Each individual must
decide which lottery to participate in. Then, at random, & tax schedule is
assigned to the individual. The individual, given his tax schedule, decides
on the amount of income to produce. Since the individual has already declared
his type, every schedule can be constructed to allow only one (C, Y) bundle to
be chosen, even if ﬁhe individual has misrevealed his type. Thus, each
lottery can be viewed as a lottery over different (C, Y) bundles -- one for
each possible tax schedule that may be drawn. We call this timing post-

revelation pre-effort randomization.



Two other timing sequences are also possible. One of these resolves the
uncertainty before agents reveal types to the tax authority. The government
randomly assigns tax schedules to individuals without knowing their types.
Each tax schedule in the lottery is equivalent to a pair of (C, Y) bundles,
one intended for each type. Considering the government's problem as a choice
of (C, Y) bundle, each pair of bundles must satisfy self-selection
constraints. We will call this pre-revelation randomization.

The other alternative to our randomization scheme is to resolve the
uncertainty after effort choices are made. In all outcomes, agents of the
same type produce the same pre-tax income, but consumption differs depending
upon the amount of tax.r When individuals reveal their types (by choosing
effort levels), these lotteries can be viewed as ones in which only
consumption differs. This situation arises when tax laws are randomly
enforced. This set of lotteries is feasible whether agents choose effort
before or after resolution of the uncertainty. We denote this sequence post-
revelation post-effort randomization. Figure 1 shows the timing of all three
schemes.

We consider post-revelation pre-effort randomization since its outcome

dominates, at least weakly, the other two sequences.

Iheorem I: Post-revelation pre-effort randomization dominates either post-
revelation post-effort randomization or pre-revelation pre-effort

randomization.

All proofs are deferred to the Appendix.
If pre-effort randomization is not feasible, post-effort randomization
might still be desirable for some sets of preferences. Similarly, if post-

revelation pre-effort randomization is not possible, pre-revelation



randomization can be desirable if thefe are nonconvexities in the utility
possibility frontier (see Stiglitz [1982]). This possibility exists because
pre-revelation randomization can relax the government's budget constraint.
There exists similar alternative timings of randomization in situations where
both moral hazard and adverse selection are present. For insurance markets,
the same three possibilities would arise if individuals of different risk
classes (known to them) chose the level of care. Arnott and Stiglitz [1988]
consider randomization in insurance markets with either adverse selection or

moral hazard, but not both together.

cC. Ihe Optimal Tax Probleq

To specify formally the government's optimization with the possibility
of random taxation, consider the lotteries to be offered to the two groups A
and B. Each group will be offered a set of bundles and a probability for each
bundle in the set. The lotteries thus are Li((Cih, Yih), ﬂih), i=a, b, and
h=1,..., k(i) where k(i) is some finite number. The government can choose
both the bundles and the probabilities in each lottery. The maximization

problem with randomization is:
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e is s weight which can be varied to find the entire Pareto frontier, X; and
are the multipliers on the self-selection and resource constraints. The upper
bounds Mi and K! bound the feasible set.®

The objective function and constraints incorporate gx ante expected
values. For the self-selection constraints and the government's objective
function, this is reasonable. The government designs the tax scheme and
individuals decide which type to declare before realization. It is therefore
of no consequence if, gx post, someone prefers the bundle obtained by someone
of the other type. However, production occurs after the realization of the
random process. Having total consumption exceed incomes in some realizations
is not feasible even if expected total consumption and income are equal,5
Despite this, an ex gnte resource constraint can be appropriate under some
randomization procedures. Assume the government places one tax function for
each individual of a particular type into an urn and the individuals who
reveal that type draw without replacement. Then the gx_gnte expected net tax
paid by sn individual is exactly paid per person ex post by the group. Other
procedures could also justify an gx gpnte constraint.® We assume such a

procedure is used.

D. Existence and Characterization of the Ootipal Taxes
Under our assumptions, & solution to the optimal tax problem always

exists.



Theorem II: For every a, there exists a pair of lotteries
r8(ceh, v8h), m ), h=1,..., k(a) and LP((CPP, YPR), my), =1, k(D)

which solves the government's maximization problem.

To characterize the optimal lotteries, let Vi°, i = a, b, be the optimal
utilities in the no-tax situation, let ((CiP(a), YiR(a)), m5p(a)), i =8, b,
h=1,.... k(i), be the optimal lotteries as a function of a, and let

k(1) , ,
Evi(a) = § myp(a)vicciP(a), YiR(a)), i = 8, b, be the optimal expected

utilities achieved as functions of a. The deterministic problem is identical

to this with the imposition of constraints that k(a) = k(b) = 1.

Theorem III: The solution to (1) satisfies the following properties:
(i) The self-selection constraint does not bind for any group whose expected
utility is greater than in the no-tax situation. That is,

. : k(j) o : .
if EVi(a) 2 VI® then, I m(@viccii(@), ¥if(e)) < EVi(a), i = &, b,
h=1

j ¢ i
(ii) A self-selectiQn constraint can bind for at most one group. That is,
if EVi(a) = k§3)njh(a)vi(cih(a), viR(a)) then EVi(a) >
k(i) 5-1.
I m(0viciPa), YiPa)), i = a, b, and j ¥ i.
h=1
(&ii) Production efficiency is satisfied in that total consumption equals
total income. That is, u > 0.
(iv) 1f the self-selection constraint of one group is not binding, then it is
not desirable to randomize the other group's bundle which is

undistorted. That is, if Xi = 0, then k(j) = 1 and

MrsJ(cil(a). Yil(a)) = 1, i = a, b, and j # i.



(v) There is no benefit to randomizing over more than three bundles. At
each random bundle, the MRS of the group consuming there must lie
between the MRS of the other group and the MRT (which equals 1). That
is, for i = a, b, and j # i, if A{ > 0, then an optimal solution exists
with k(j) € 3 and at each h = 1,..., k(j), either

1 < MRs(ciP(a), viP(a)) < MRSi(CiP(a), YiP(a)),
MRsi(ciP(a), YIP(a)) < MRsI(ciP(a), YIP(a)) < 1, or (2)
nRsi(cJ'h(u)_, viP(a)) = MrRsi(cib(a), vib(a)) = 1.

Conditions (i)-(iv) are essentially the same as in the deterministic optimal
tax problem with utilities replaced by expected utilities. (See Brito, et gl.
[1990).) Note that condition (ii) holds at the optimum even if multiple
crossings of the indifference makes it feasible to have both self-selection
constraints binding. Condition (v) differs somewhat from the deterministic
case since the possibility of MRSL = MRSJ = 1 cannot be ruled out at one of
the random bundles. Note that, at one of the random bundles, both MRS's may
exceed 1, while at another they may both be smaller. If a stronger single
crossing assumption were made, then both MRS's would have to be strictly
greater than 1 at all of the random bundles or strictly less at all of the
random bundles.

At the optimum, at most one class could face a nondegenerate lottery and
that lottery never requires more than three bundles. Theorem III does not
tell us whether either group actually faces a nondegenerate lottery. First
order conditions are of little use for showing that a nondegenerate lottery
exists or for finding the random solution, since the solution when

randomization is prohibited also satisfies the first order conditions when

10



randomization is allowed. To see this, denote the nonrandom solution as a
lottery over k(i) bundles where each bundle is identical to the optimal
nonrandom bundle. First order conditions with respect to T are trivially
satisfied and those with respect to cih and Yih reduce to those in the
deterministic problem. Hence, a nondegenerate random solution exists only
when multiple solutions to the first order conditions exist, with the extra
solutions asymmetric (and not readily apparent). However, since the self-
selection constraints involve the difference in utilities at different bundles
and therefore do not define convex sets, multiple solutions are possible. In

the next section, we consider when randomization can be shown to be desirable.

I11. NECESSARY AND SUFFICIENT CONDITIONS FOR PANDOMIZATION

Solving for the optimal random solution, except for special examples,
can be quite difficult. Instead, in this section, we consider conditions
under which the optimal deterministic solution can be improved upon by
introducing randomness in the solution. Whether randomization is desirable
depends on the concavity of the utility representations and on the shapes of
the indifference curves. In Theorem IV, we focus on the utility
representations and show that for any pair of indifference curves which differ
at the optimal deterministic bundle, randomizing is beneficial prpvided the

utility representation is sufficiently concave. /.

Theorem JV: Consider any vi and vJ satisfying assumption (Al)-(A3) and any a
such that the self-selection constraint of class i is strictly binding

(Xi > 0) in the deterministic problem. Then there exists a concave increasing
transformation of vi such that k(j) > 1 holds at the optimum, whether or not

vi is similarly transformed.

11



To establish this result, we randomize over a set of bundles between any
of which j is indifferent, but i is not. See Figure 2 for an illustration of
the construction. The transformation of utility that makes i's utility
function more concave reduces tha desirability of j's lottery for individuals
in group i. This weakens i's self-selection constraint and allows for
adjustments which raise j's expected utility. Having the initial randomiza-
tion over two bundles which are chosen to be indifferent to the optimum
nonrandom bundle given to j is a convenient way to demonstrate that an
improvement over the deterministic solution exists. This particular
randomization has a special property--it does not violate horizontal equity
(defined as identical agents having equal utilities even if they have
different budget sets). All type j's obtain equal utility, although with
different consumption bundles. The randomization causes utilities to be
stochastic only for type i's who would mimic type j's. 1In equilibrium, of
course, no imitation occurs. While this may not be the optimal randomization,
it remains feasible even when gx post horizontal equity is required.

The argument underlying Theorem IV is not limited to models with just
two classes of individuals but generalizes directly to models with any finite
set of classes of individuals. Consider the solution to the optimal tax
problem when randomization is prohibited. Consider any bundle (C°, Y°) which
is assigned to only one class and which some other classes view as indifferent
to the bundles assigned to them. Replacing (C°, Y°) with some lottery over
bundles on the same indifference curve for the class to whom it is assigned
will weaken the self-selection constraints of the other classes who are
indifferent to taking (C%, Y®), provided those classes have sufficiently
concave utility representations. Only when a pooling equilibrium exists will

it not necessarily be possible to replace the deterministic bundle with a

12



random one over bundles which yield the same utility to all groups assigned
the original bundle.

In Theorem IV, only the utility function of individuals in group i is
transformed. However, making the utility function of individuagls in group j
more concave &8s well does not change the result since the randomization we use
in establishing the result involves bundles over which j is indifferent.
Hence, the result also applies to situations in which the two groups have the
same utility functions but differ in ability.

Theorem IV shows that the desirability of randomization cannot be ruled
out by looking just at indifference maps, since randomization can arise for
essentially any indifference maps under some utilitv representation. On the
other hand, the shape of the indifference map does have some effect on whether
randomization is desirable. To investigate this, we restrict attention to
local randomization. A local randomization is improving if, for any positive
£, there exists a lottery each of whose outcomes is within ¢ of the
deterministic solution and which is Pareto preferred to it. The next theorem
gives a necessary and sufficient condition for local randomization which
depends in part on the curvature of indifference curves. Assume A, > 0 in the
deterministic solution to the problem so that the marginal tax rate is not
zero at (Cb, Yb). Let Hi(Cb, Yb) be the Hessian of the utility function of

type i at (cP, YP).

Theorem y:_ Assume A, > 0 in the nonrandom solution and consider any
probability triple (m;, m,, T3), at least two of which are positive and

b
Ty 4 M, + My = 1. Let 8 = [vc(cb,yb)l1-nnsb(cb,yb)|]/
[VZ(Cb,Yb)ll-HRSB(Cb,Yb)I]. There exists some local randomization with these
probabilities around the nonrandom solution which improves on that solution

iff the matrix Hb(Cb,Yb) - BHB(Cb,Yb) is not negative semidefinite.

13



The condition in Theorem V depends upon properties of the indifference
map directly through the ferm 8 and indirectly through the Hessians H® and i
which are affected by both the curvative of indifference curves and the degree
of concavity of the utility function. Both Hessians H® and HP are negative
definite. Essentially, by taking the difference between them, the condition
is satisfied or violated depending upon which of them is more concave at B's
bundle. If VP is more concave, then HP will dominate H® and the difference
between them will also be negative definite and local randomization will tend
not to be desirable. If V2 is more concave, then the difference between the
two Hessians is less likely to be negative definite and local randomization
will be beneficial. This is complicated by the fact that H? is multiplied by
8. From Theorem ITI(V), |1-MRSP(CP,¥P)| < |1-MRS®(C®,Y8)|. Hence, although
Vg(cb,Yb) and Vt(cb,Yb) are hard to compare in general, there is some
tendency for 8 to be less than 1. This in turn increases the extent to which
the concavity of V2 must exceed that of vP for local randomization to be
desirable. To summarize, local randomization is desirable if and only if the
utility function of the group actually consuming the bundle is significantly
less concave than that of the group whose self-selection constraint is binding
at that bundle.

When the indifference curves of the two groups have very different
slopes, then 8 will tend to be smaller than 1 and local randomization is less
likely to be desirable. It does not follow that if the two groups have very
similar preferences the possibilities for local randomization are increased
since both will not only be near each other but will also be close to 1. In
fact, as shown in the next corollary, if the preferences of A's and B's are
similar, local randomization is not desirable. Assume the utility functions

belong to a family parameterized by & scalar P, so that they become

14



VA(C, Y, P,) and VP(C, Y, Pp).

Corollary [: Assume that preferences are related such that at all P = P, =
Py vé&(c, Y, P) = F(Vb(C, Y, P)). Then, for P, near Py, no local

randomization is desirable unless F is sufficiently concave.

A special case satisfying the assumptions needed for this result is the
standard case of two classes with identical preferences but different
abilities. If the abilities are close to each other, no local randomization
is desirable regardless of which group the redistribution favors.® Both
Theorem IV and Corollary I show that concavifying utility makes randomization
desirable. Theorem IV concerns the degree of concavity of each utility
function separately, while Theorem V and Corollary I involve the concavity of
one utility function relative to the other. For P, near Py, if both functions
undergo the same transformation, no local randomization will be desirable.
Theorem IV demonstrates that, if ordinal preferences differ between the
groups, randomization will be desirable if the common transformation is
extreme enough. -Thus, this randomization must be a nonlocal randomization of
bundles offered a group in a lottery.

A crucial point about Theorem V is that the condition for local
randomization given any probability triple is independent of the
probabilities. If local randomization can improve on the deterministic
solution given one probability triple then it will be beneficial for any
probability triple. Any restrictions on the possible probabilities which
prevent the optimal randomization from being -achieved will not prevent the
deterministic solution from beingldominated by some other suboptimal

randomization.
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In order to see that the condition of Theorem V can be satisfied,
consider the special case where all individuals have identical additive
utility functions over consumption and labor with the groups differing only in

ability.

Cozollarv Il: Consider the utility functions Vi(C, Y) = ¢(C) - !(Y/wi),
i = a, b, where the w; are ability parameters with 0 < Wp < wy. To satisfy
concavity of Vi, ¥ is concave and ¥ convex. Let Li = Y/wi.

(1) No randomization, local or nonlocal, is desirable either if Xa >0
and L¥'"'(L)/¥(L) 2 -2 at all L or if Xy > 0 and L¥'''(L)/¥' '(L) <
-2 at all L.

(ii) Consider any probabilities (ﬂl, Ty, ﬂ3) with at least two positive
and with m; + M, + M3 = 1. There exists some local randomization
with these probabilities around the nonrandom optimum which
improves on the nonrandom solution iff:

() )
Xy > 0 and 2 > L (3)

waz(1 - Mrs?ccb, vPy) wbz(l - MrsP(cb, ¥Py)

) W)
or xb > 0 and 2 b,.a ,a > 2 a aa (&)
w “(MRST(C%,¥%)-1) W “(Rs®(c®,¥%)-1)

Consider condition (3). Since w, > w, and 1 - MRs8(cP, yby > 1 -
HRSb(Cb, Yb) > 0, the denominator of the LHS exceeds that of the RHS in (3).
Hence, !"(Yb/wa) must exceed !"(Yb/wb) by a sufficient amount for this
condition to be satisfied. Since Yb/wa < Yb/wb, this can be satisfied by a

LI

sufficiently negative value of ¥ A sufficient condition for (3) to be

16



satisfied is that the derivative of !"(Y/w)/[wz(l - MRS)) with respect to w be
positive. Taking this derivative yields the following sufficient condition

for the desirability of local randomization:
LY ULY/F(L) < -2 - [TN(L) + T(L))/[we'(C) - T'(L)] (5)

where wy'(C) - ¥'(L) = w¥'(C)(1 - MRS(CP, YP)) > 0. This is stricter than the
necessary condition for randomization in part (i) since it requires
LY ''(L)/T"(L) to be strictly less than -2 by a finite amount.

These necessary conditions for randomization with A, > 0 and Ay, > 0 are
both violated unless L¥'"(L)/¥"(L) = -2. Thus, randomization is desirable
nowhere on the utility possibility frontier (UPF) if L¥'"(L)/¥"(L) = -2.9
Furthermore, randomization cannot be desirable both with Xa > 0 and Xb >0
unless LY'"(L)/¥"(L) + 2 changes sign along the UPF as labor supply changes.
Since sufficient conditions for local randomization with 3, > 0 and X, > 0 are
opposite in sign, randomization will be desirable somewhere on the UPF for

many allowable ¥(-) functions.10

1v. BENEFITS OF RANDOMIZATICON: AN EXAMPLE

The potential desirability of randomization in self-selection problems
has been shown in several contexts. In this paper, we have given a more
intuitive explanation of why randomization can yield improvements and have
sought to determine the scope of randomization by deriving & necessary and
sufficient condition for some local randomization to be preferred to the
nonrandom solution. These results do not specify the optimal randomization
and, therefore, do not give any insight into the magnitude of the gain from
using randomized solutions. In the following example, the problem is

explicitly solved and the optimal random and nonrendom solutions explicitly

17



compared. Although the example has special features, it shows that the gains
from randomization can be quite large. Hence, in general, randomization
cannot be disregarded as only a minor modification of the nonrandom solution.
Assume an infinite population with two types of individuals which have
equal measure. Each consumes a commodity, C, and leisure, R = 1-Y. The two
types have equal earning ability but different tastes. We use\a slightly
. different notation here to reflect this difference. There is no need to
transform the problem to get a common budget constraint. Their von Neumann-
Morgenstern utility functions are U2(C2, R8) = log €% + log R® and UP(cP, RD)
=cb+ log RP. € and R are constrained by an aggregate production possibility
frontier C + R = K. For convenience in analyzing the solution, we consider

only the case of K > 4. The first best Pareto problem can then be written as:

ub(ua, X) = Max cP + log &P (6)
s.t. log C? + log R® 2 2 log U®
c® +cb+ R84+ RP =K

ce, cb, r8, RP 2 0

The maximized value function Ub(Ua, K) is a representation of the utility
possibility frontier. Explicitly solving this problem yields the solution:

c8=R8 =08 cP=K-1-208 andRP =1, if U® € (R-1)/2

c8 =R® = 8, cb =0, and RP = K - 208, if U8 2 (R-1)/2

Substituting these solutions into the utility functions yields the first best
Pareto frontier.
b=k -1 - 208 if U8 < (R-1)/2

ub

log(K-2U8) if (K-1)/2 € U8 < K/2
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For any values of ﬁa and K, the first best solution can be checked to
see if either type would prefer the bundle of the other type of individual.
It then follows that for 0 < ve <kt - 1, type A individuals prefer the
bundle given to type B's. For kt - 1< ve < U*, neither self-selection
constraint binds where U* is implicitly defined by 30* 4+ 1nU* =K - 1 for
which K¥ -1 < U* < K - 1 holds. Finally, for U" < U® < K/2, the self-
selection constraint of type B individuals is binding. See Figure 3.

Consider the nonrandom second best problem with self-selection:

&b(ba’ K) = Max Cb + log RP _ (N
s.t. log C® + log R& 2 2 log ba

c@ +R& + cP + RP = ¢

log C® + log R? 2 log cb + log RP

cb + log RP 2 €® + log R®

ca, re, cb, RP 2 0

From the first best results, for 0 < ba < Ké - 1, the constraint log ce +

log R® 2 log cb + log RP holds with equality and the constraint

¢ + log RP > C@ + log R® holds with strict inequality. For k¥ - 1 <

ba < U*, neither self-selection binds and the second best solution is also

the first best one. For U™ < U < K/2, log C® + log R® > log cb + log RP and

chb + log RP = c& + log R® must hold at the second best solution.
Randomization is never desirabie in the region when neither self-

selection constraint binds. In this problem, for ue large enough that the

self-selection constraint for type B individuals binds, randomization is also

not desirable. In that circumstance, only the type A bundie could be random.

But, if type A consumption or leisure were random, its certainty equivalent

level would be less than its expected value. Replacing the random
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distribution by its certainty equivalent would leave the self-selection and
Pareto constraints still satisfied. Extra resources would also become
available. This would allow an increase in both types' utilities. Thus,
since we are interested in the benefits of randomization, the second best
problem is solved only in the region with 0 < e < Xé - 1 and the type A
self-selection constraint binding.

For low levels of X and 65, Cb may equal zero in the second best
solution. Note that the self-selection constraint for type A's is always
satisfied if C, = 0 and thus no randomization is necessary. For U8 2 1 and K
> 4, cP > 0 holds in all second best optima. For 1 € vl < K4 - 1, the self-
selection constraint and the minimum utility constraint for type A's bind.

The solution is C® = R® = U8, P = [k - 208 + (K2 - 40%K)?]/2, and RP =
[K - 208 - (K2 - 40%K)%]/2. 1In this region, UP = log [(K - 20 -

(k2 -4UK)%)/2] + [K - 208 + (K2 -40%K)?]/2. The first and second best
Pareto frontiers are shown in Figure 4.

Consider the possibility of randomization when 1 € v < Ki - 1. 1fch
is random, the self-selection constraint for type A individuals is now
log C® + log R? 2 E(log Cb) + log RP. Consider any random solution with
E(Cb) =cb where Cb is the first best solution. Then the resource constraint
continues to be satisfied. The minimum utility constraint is unaffected. The
uti;ity of type B's is unchanged. Now consider the self-selection constraint.
If, in the randomization, CP = 0 arises with any probability ® > 0, then
E(log CP) = - = and the self-selection constraint is satisfied for C® and R®
at their first-best levels.

0f course, this solution violates gx post horizontal equity. A solution
almost as good which satisfies horizontal equity can be found. Let C? =0,

B =K -1-20%/01-m, R =[1-mR})/(1 - 7) and R} determined to

20



satisfy log R? = Cg + log [(1 - ﬂR?)/(l - m)]. As T goes to zero, R?
converges to eK'l'ZUa. The bundles (O, R?) and (Cb, (1 - ﬂR?)/(l - m)) lie
on the same indifference curve for type B individuals. As T goes to zero, the
(Cg, Rg) bundle arises almost all the time and is arbitrarily close to the
first best bundle. The bundle (0, R?) arises with small probability. Thus,
E(Ub) is approximately equal to the first Best level.

Next, we show that significant gains can result by achieving the first
rather than the second best. Consider U® = 1. Consider the first best and
assume society discards a fraction § of the available resources K such that
the first best and nonrandom second best yield the same outcome. Since there
is only a single resource constraint, 1-5 is equivalent to Debreu's [1951]
coefficient of resource utilization. That is, 8 solves (1 - §)K - 3 =
(K -2+ (K2 - 4K)¥7/2 + log ([K - 2 - (K2 - 4k)%]/2). Solving for 1 - &

yields:
1 -8 =1/2+ [4+ (R - 4K))/2K + [log ([K - 2 - (K2 - a0}/))/x

At K= 4, 1 - § =1 and no resources can be discarded. The maximum value of §
occurs approximately at K = 9.5 where § is approximately equal to 12.7%.

Of course, this example has two significant special features. ub is
linear in RP so type B's are risk neutral with respect to this commodity while
U® is so highly risk averse with respect to C2 that as C® goes to zero, U2

goes to negative infinity. Both of these assumptions can be relaxed and

randomization will remain desirable, but the benefits will decline.

V. CONCLUSIONS
The use of a random solution creates gx post asymmetries among

individuals within the same class. Given strictly concave utility functions,
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the individuals would like to reduce the asymmetries. This could be done in
several ways. Either the individuals in a class could directly pool risks
with each other or they could seek to buy insurance against the uncertainty
induced by the randomization in the tax schedules. Either of these would
frustrate the government's attempt to relax the self-selection constraints
through the use of randomization. These problems may not be severe since
individuals might find trade in leisure hours difficult. To use randomization
successfully, the government must inhibit the access of individuals to other
markets. To rule out risk pooling, the government would have to be able to
monitor individuals to be certain that income reported by one individual was
actually earned by that individual and not by someone else. In ruling out
insurance against government randomization, the government would have to
careful not to prevent socially desirable insurance against exogeneous
uncertainty.

This type of problem is not unique to randomization. If the government
is restricted to nonstochastic tax schedules, similar problems arise. The
consumption-income opportunity sets defined by the optimal tax schedules are
nonconvex. Individuals would seek to frustrate the government's exploitation
of nonconvex schedules by engaging in tfades or by gambling to convexify their
opportunity sets. If the governmen£ cannot prevent these types of behavior,
further constraints on the feasible set of non-random tax structures need to
be imposed. It is unclear whether the administrative problems in preventing
these types of responses to the government policies are greater with
randomization or without. One simplifying feature of a practical
randomization scheme is that the probabilities need not be chosen optimally
for randomization to be desirable.

In summary, we have offered a general characterization of the random
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solution to the optimal income tax problem and have presented conditions under
which randomization is desirable in order to gain insight into the question of
whether randomized solutions are merely a curiosum or whether they should be
significant in the design of government policies. Randomization loosens self-
selection constraints. We have argued that random solutions need not violate
horizontal equity, can arise for any pair of ordinal preferences for the two
classes which differ provided one or both classes have significantly concave
utility representations, and can yield significant gains over nonrandom

solutions.
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Lootpotes

Brito, et gl. [1990], characterize the deterministic optimal income tax
problem under these weak assumptions for the case of n classes.
Guesnerie and Seade [1982] also establish properties of the solution

without assuming single crossing.

This requires an additional assumption on U{(C,L). Note that MRSi(C,Y)
=- [UL(C,L)/w;Ua(C,LH)]. If w, > wy then L& < LP. The result holds if
the direct effect of the higher wage is not countered by the effects of
a lower L on the MRS. Differentiating =[Up(C,Y/w)/wlp(C,Y/w)] with
respect to w yields dMRS(C,Y)/dw = (UL/wUC) - (L/wz)d(-UL/UC)/dL‘ A
sufficient condition for dMRS(C,Y)/dw < 0 is d(-UL/UC)/dL 2 0 which
holds if C is not inferior. See Sadka [1976].

The schedule T(Y) need not be differentiable. In fact, it will

generally be nondifferentiable at the incomes chosen by the two groups.

In the deterministic problem, the bounds on yi along with resource
balance automatically bound ci, Here, bounds on cih do not follow from
the expected resource constraint since that constraint bounds the
products ﬂihcih only. As some T;; goes to zero, the corresponding cih
could be made arbitrarily large. ML could be chosen sufficiently large

to bound the feasible set without affecting the solution.

1f some Cil exceeds NEKa + Nbe (maximum total production), even if it
arises with very low probability, the outcome is not feasible when this
bundle arises. Such gX post violations of feasibility can clearly occur
even if the MI are set to restrict each CiP to be less than Na](a + Nbe.

An alternative justification of the constraint is that each individual
of a revealed type draws a tax schedule at random from the same
distribution. As the number of individuals gets large, the distribution
of ex DOst resource balance will always have values violating the
constregint. However, the law of large numbers implies that the per

capita violation of the constraint goes to zero. Thus if the
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consumption vectors are reduced by ¢, the probability that the
constraint is satisfied goes to 1 as the population grows. Hence, the
solution can be viewed as an t-equilibrium. Obtaining only an -
equilibrijum with randomization is not a real restriction since that is
all that a deterministic solution can achieve. At least one self-
selection constraint holds with equality at the optimum. Some
individuals then are indifferent over two bundles only one of which is
it desirable for them to choose. Guaranteeing that these individuals
select the appropriate bundle can only be done by deviating slightly
from the optimal bundles.

Maskin and Riley [1980] have a similar result that a sufficient
concavification of the utility function can make randomization
desirable. Their result is for a continuum of individuals with
identical preferences but different abilities. They require the
additional assumption that preferences ordinally are additive in

consumption and labor and are linear in consumption.

This result holds not just because little redistribution is desired when
individuals have similar abilities so that neither self-selection
constraint binds. In the deterministic problem, if a = 0 and the A's
are more able, redistribution is carried out until A's self-selection

constraint binds. Randomization will not improve on this solution.

1f ¥ = KylnL + K,L, where K; < 0 and K, > 0, then L¥"'/¥'" = -2 so that
randomization will never occur. (¥' > 0 holds for this function at
small values of L.) If there is quadratic disutility of labor with ¥ =
KLZ, then (i) of Corollary II is satisfied so that randomization does
not occur when X\, > 0. Substituting into (4) shows that local
randomization cannot occur when ), > 0. Whether nonlocal randomization

can occur is unclear.

Stiglitz [1982] derived the conditions in Theorem V and Corollary II as
sufficient for local randomization over two bundles arising with equal
probability. The results here are stronger: these conditions are both

necessary and sufficient for the existence of a local randomization that
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improves on the nonrandom solution. The same condition applies for any
arbitrarily given probabilities over three bundles. Due to an error in
calculation, Stiglitz [1982] asserts a result opposite that of Corollary
I.
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EROOFS OF THEOREMS

PROOF OF THEOREM ]: Pre-effort randomization has a lottery over (C,Y) bundles
that differ in both arguments. In post-effort randomization, all bundles in
the lottery have the same Y. The extra flexibility available to the
government makes pre-effort randomization at lesst weakly superior.

In pre-revelation randomization, the government randomly assigns a tax
schedule to each individual. Corresponding to the tax schedules are a pair of
bundles, one for each type. Every such pair must satisfy self-selection
constraints. Post-revelation pre-effort randomization imposes self-selection
constraints only on expected utilities over the lotteries. This latter
constraint is weaker and thus the government's objective function may attain a

higher value. . Q.E.D.

PROOF OF THEOREM II: The constraint set is nonempty since the deterministic

solution yields a set of degenerate lotteries which are feasible in the
problem with randomization. The constraint set is closed and all variables
(Mins cih, yihy gre bounded. Hence, the constraint set is compact. The

continuous objective function then attains a maximum on the nonempty compact

constraint set. Q.E.D.
- k(i) .
ERQOF OF THEOREM III: (1) Let Ci(a) = I m,(a) Cif(a) and
h=1
_. k(i) . . ,
Yie) = I wih(u)Ylh(u), i = a, b. Then, since V}(C!, Y!) is strictly concave
h=1

vi(Cita), Yi(a)) 2 EVi(a), with strict inequality if the type i lottery is
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nondegenerate. If, contrary to the statement of the theorem,

k(j) . . . C o . .

I njh(u)vl(th(u), viP(e)) = EVi(e), then Vi(Ci(a), Yi(a)) 2 EVi(a), with
h=1

strict inequality if the type j lottery is nondegenerate, also follows from

strict concavity. By assumption, EVi(a) 2 vi® so that vi(Ti(a), Yi(a)) 2 viO
and Vi(aj(u), ?j(u)) 2 Vi° must hold. Since the indifference curve through

vio is tangent to the line C = Y, Ei(u) > Yi(a) and Ci(a) > ?j(u) must hold.

- - _. _. k(i)
Hence, Ni(Cl(u) - Yi(a)) +Nj(CJ(a) - Yi(a)) > 0 must hold. But Ny I
: . k() . — h=1,
Tip@ (€M) - ¥ila)) Ny T @@ - ¥IPe)) = N (Eie) - Tia) +
h=1

Nj(aj(u) - ?j(u)), so resource balance would be violated if the self-
selection constraint for i holds with equality.

(ii) Even with randomization, the point (V&°, vPO) must lie on the
constrained ufility possibility frontier. There exists oq such that Vi(uo) =
vi® i = a,b. TFor any ata,, either V8(a) > V8% or VP(a) > VP°. From (i), the
group better off than in the no-tax case cannot have a binding self-selection
constraint. Thus, both self-selection constraints cannot bind.

(iii) Any increased resources can always be given to the group whose
self-selection constraint is not binding without violating any other
constraint. Since this will raise the value of the objective function, the
multiplier on the resource constraint is strictly positive.

(iv) Consider the first order conditions with respect to each cih and
yih In each condition, nih multiplies every term, so it drops out leaving
;onditions identical in form to those in the deterministic problem. Since
A\; = 0, it is immediate that at each h, MRsi(cih, vih) = 1.

To see that k(j) > 1 is not needed at an optimum, consider the case
where the s?1§-selection constraint for group i holds with strict inequality

k(i

(that is, I wyviceih, yihy > gngvicedh, viP)). Having k(j) > 1 ina
h=1
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nondegenerate lottery (some "jh and "jk positive and (th, th) ¥ (Cjk, ij))
" cannot be optimal. With the probabilities fixed, consider a change in the
(th, th) which moves each closer to the ﬁean bundle without changing the
mean. Such a shift will continue to satisfy both the bounds on the cih ang
vJh and the resource balance constraint. The probabilities do not change,
satisfying the constraints that they sum to 1.From concavity, :gi)ﬂjhvi(cjh’

th) will rise but since the self-selection constraint for i holds with strict

inequality, if the shift is not too large,this constraint will still hold.
k(i)

Since I njhvi(cjh, yihy rises, theself-selection constraint for group j must
h=1

still hold. Thus, the bundles after the shift yield a feasible lottery.
k(i) . o

Since I ﬂthJ(CJh, yI0) rises, the objective function rises showing that the
h=1

prior bundle was not optimal.

(v) The first order conditions with respect to cJP and YiP are the
same as those in the deterministic problem since the "jh cancel from the
conditions. To show the condition on the MRS's, it is enough to consider only
degenerate lotteries. Assume Xa > 0 so that from (ii), Xb = 0 must hold. The

first order conditions with respect to cb and Yb are:

]
(o]

(1 - a)Ny vR(ch, ¥h) - A va(ch, vP) - Ny

(1 - a)Np VB(EP, ¥P) - 3,vB(Ch, ¥2) +

n
(o]

Solving for pNp and combining terms yields:
(1 - 0)N[VB(CP, ¥P) + vD(CP, ¥P)] = 3, [va(cP, ¥P) + vE(cP, ¥P))
or: (1 - a)NpvR(cP, ¥Py[1 - MRSP(CP, ¥P)) = 2 va(cP, ¥Py[1 - MRSE(CP. YP))

Adding Xan(Cb, Yb)MRSb(Cb, Yb) to both sides, combining terms, and

substituting the first order condition for cb yields:
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UNI1 - MRSP(CP, ¥P)] = x va(cP, YP) MrsP(cP, vP) - Mrse(cb, b))
Since X, (by assumption) and {4 (from part (iii)) are positive, the result
follows. Unlike the solution when random solutions are prohibited, both MRS's
equal to unity can not be ruled out.

If )\, > 0, similar manipulations of the first order conditions for C2
and Y? show the required results.

To see that k(j) > 3 is not required, consider the optimal lotteries.
Fix the quantities (Cih, Yih), i=a, b, and h =1,..., k(i), making (1) -a
linear programming problem in the T.h. From part (iv), one of the lotteries
is degenerate with "ji = 1. From part (1ii), at most one self-selection
constraint can bind. Thus, of the five original constraints, at most three (a
self-selection constraint, the resource balance constraint, and the constraint
that the probabilities in the nondegenerate lottery sum to 1) are binding. A

solution exists with the number of nonzero variables no greater than the

number of binding constraints. Q.E.D.

PROOF OF THEOREM IV: The proof requires the following lemma.

Lemma I: Consider any utility function U(X), any bundles x1, XZ, and
X3 with UxY) > UX2) and U(X3) > U(X?), and any m, 0 < 7 < 1. There exists
some concave increasing transformation V(X) = F(U(X)) such that ﬂV(Xl) +

(1 - MVXd < v(x3).

Proof: It is sufficient to provide an example of a transformation under which
the result holds. Let U2 = U(X2) and consider F (U) = (U - u2)L/n Then
Vn(XZ) = (U(XZ) - UZ)l/n = 0 for all n. The result then reduces to there
existing an n* with ﬂVn*(Xl) < Vn*(X3). This in turn follows 1if there exists
an 0" for which V w(X3)/Vpa(X1) = [(U(X3) - vZ)/(uexly - U2)]1/B > 7. since

Lim{ (U(x3) - U2)7(ucxly - U2)]Y/D = 1 and since m < 1, the existence of the

N-be
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required n* follows. Q.E.D.
Proof of Theorem: Given a, let (ct, viy and (cd, YJ) be the solutions to the
deterministic problem. Since A; > 0 and MRSj(Cj(u), Yj(u)) ¢ 1, there must
exist two bundles (CJ1, vi1) and (€32, vi2) with vi(cil, vil) =

ivi(cd?, vi2) = vi(cd(a), Yi(a)) and such that cil - vil > ci(a) - Yi(a)

> cJ2 - Y32, Therefore, a # (0 < @ < 1), must exist with #ecdl - yily 4

(1 - 9)(ci2 - vi%) = ci(e) - vi). vicd?, vi2) > vicch), Yit) >
viccil, vi1) since j's indifference curve through (CJ(z), Yi(a)) lies between
i's indifference curve and the 45° line through that bundle. (For the
nonrandom solution, the possibility that MRSj(Cj(u), ¥i(a)) = MRSi(Cj(a),
Yj(u)) =1 can be ruled out, in contrast to Theorem II(v); see Brito et al.
[1990].) See Figure 5. From Lemma I, there exists a transformation of vi such
that #F(viccdl, vily) + Fviccica), Yi(a))) = Fvicci(e), Yi(a)). Since
vicedl, yily = vi(ci2, vi2) = vi(ci(a), Yi(a)), #vi(cil, vily +

(1 - wmviccd?, viz) > viccice), Yi(a)) so the self-selection constraint for j
continues to be satisfied. The self-selection constraint for i is now
satisfied with strict inequality. Hence, all constraints hold. If

1 > MRsI(ci(a), Yi(a)) > MRSi(CI(a), Yi(a)), the bundles (cil, vil) and (ci?,
sz) can be chosen close enough to (Cj(u), Yj(u)) so that 1 > MRSj(le, le)
and 1 > MRSI(CI2, ¥I?). Then consider the bundles (CI! + &;, Y3l + &,) and
(Cjz + 62, vi2 + 62). 61 and 62 are chosen so that Vj(Cj1 + 61, yil + 61) =
V-j(Cj2 + 85, yiz 4 §,). These continue to satisfy resource balance. For
small enough 8;, 8§, > 0, it will still follow that #F(vi(cil + s,

vil 4 5.)) + (1 - MF(viCIZ + 85, Y32 + 6,)) < Fvicci(a), Yi(a)) so i's
self-selection constraint still holds. Since 1 > MRSJ at both bundles, V-j(Cj
+ 8y, Y3+ 8y) > viccil, vil) and vi(ci2 + 8,5, ¥I2 + 8y) > vi(ci2, vI2),

Hence, the lottery ((CIl + &, Yil 4+ 81), (cI2 + 85, YI2 + 65), ) is
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feasible, raises j's welfare and thus improves upon the nonrandom solution
(cd(a), Yie)). 1£ 1 < MRsI(CI(a), Yi(a)) < MRSE(CI(a), Yi(a)) a similar proof
follows with (€31 - &), ¥l - 6,) and (cI2 - &,, ¥i2 - 5,) forming the lottery

improving on (Ci(a), Yi(a)). Q.E.D.

PROOF OF THEOREM V: Since this proof is complicated (and tedious), we begin
by presenting & map of the basic steps in it. The proof is developed in five
parts. Part (1) develops conditions that are necessary and sufficient for an
arbitrary lottery to improve on the deterministic solution. The lottery must
satisfy self-selection, not violate resource balance, and raise B's expected
utility. ‘These conditions are given in (A1), (A4) and (A3). Part (2)
specifies the nature of an improving local randomization by specifying three
differentiable paths through the deterministic solution each parametrized by
the same arbitrary variable t. These paths are then differentiated twice with
respect to t to derive necessary and sufficient conditions for a local
randomization to be beneficial, that is, to satisfy the requirements in (Al),
(A4), and (A3). The local version of those conditions is given in (A13),
(A14). and (Al15). In part (3), these conditions are algebraically combined to
determine a single inequality (A20) which is necessary and sufficient for the
existence of an improving local randomization. A crucial step in this
deriQation is the recognition that the second derivatives of the bundles along
the path are not directly restricted. This condition (A20) still involves
first derivatives of the three paths with respect to t. In part (4),
necessity of the condition in Theorem V is proven by showing that it is
implied by (A20). Finally, in part (5), sufficiency of the condition in

Theorem V is proven by showing that condition implies (A20).
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(1) Conditions for Bepeficigl Randomizatiop:

From Theorem III, X, > 0 implies Ay = 0 and so it is not desirable to
randomize A's tax schedule. Furthermore, the optimal randomization to offer B
need involve at most three tax schedules. This result carries over to finding
jotteries which improve on the nonrandom solution even if the optimal lottery
is not found. That is, if a lottery over k > 3 bundles is better than the
nonrandom solution, a lottery over just 3 bundles must exist which also does
better. Hence, we can restrict the analysis to lotteries (T, Cbh, th),

h =1,2,3, where Im, = 1. Let (ce, Y8, cP, YP) denote the nonrandom solution.

A lottery exists which improves upon (C2, Y&, cP, Py if, holding

(c®, Y?) fixed:

va(cb, ¥P) 2 m,va(cPh, ybh) (A1)
N,(C® - ¥8) + NyIm (cPP - yPR) <o (A2)
Im,vP(cbh, yPhy 2 vP(cP, ¥H) (a3)

and at least one of (Al) to (A3) holds with strict inequality. (Al) and (A2)
guarantee the lottery is feasible while (A3) says that B's expected utility
does not decline. (Al) can be replaced by an equality since, if it held with
strict inequality, a mean preserving contraction of the lottery would continue
to satisfy (A2) and would raise ImVP(CPP, YPR) jeaving (A3) satisfied. Since
(A1) is assumed to hold with strict inequality, a small rise in

ZnhVa(Cbh, th) would not violate it. Of course, such a shrinkage would cause
(A1) to hold with equality before all randomness was eliminated, or else there
would exist a nonrandom vector better than (C&, Y&, Cb, Yb), a contradiction.
If (A2) holds with strict inequality, C® could be raised to get an improvement

while, if (A3) holds with strict inequality, the improvement is direct. Since
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Ng(C® - ¥8) + Np(C® - YP) = 0, equation (A2) can be rewritten as
tm,(cPP - ybhy - cb 4 yP <0 (A4)

(2) Descripotion and Derivation of Bepeficial Local Randomjzation

Consider any probability vector (“1’ To, T3). A local randomization
is a path (cP(r), YR(t)), h=1,2,3 with (cPco), YP(0)) = (cb, ¥P), all h, and
such that for all t > 0 at least fwo bundles with nonzero probabilitieé differ
from each other. From (Al), (A2), and (A4), a local randomization is

improving for this probability vector if a path exists such that for all small

t > 0:
mmvecchee), Yhee)) = vaceb, v9) (AS)
Im, (Yh(e) - chee)) 2 ¥P - P (A6)
tmvPechce), YRee)) 2 vP(cb, vh) (A7)

Differentiating (A5)-(A7) with respect to t around t = 0 and recalling that

MRSt = -vi/vi yields:

h .
mmy, (S - rs®c®, vh) dx§£91, =0 (48)
ar"o) _ acoy
mmy, (L0 dCLO, 5 o (A9)
h h
tmy, (4L0 L arsPec®, v e (A10)

Substituting (A8) into (A9) and (Al0) yields:

(1 - mRs®(c®, ¥P)) m dx;ﬁgl >0 (A11)

A8



h
MRs®(c?, %) - MrsP(c®, YP)] In hﬂxﬁigl >0 (A12)

From (2), 1 - MRS&(cP, YP) and MRS8(CP, YP) - MRSP(CP, YP) must have
opposite signs so that (All) and (Al2) can both hold if and only if

h h
o Qxafgl = 0 which from (A8) implies that Im_ ggafgl = 0. Thus, the first

order effects along an improving path must be zero. The gain to randomization

I

must come from second order effects. If either the second derivatives of net
resources or of B's expected utility are positive, then, since the first
derivatives are zero at t = 0, for t > O the first derivatives, and hence the
functions, will become positive as required. These second derivatives at

t = 0 are:

2 h 2.h
mm, 5P+ om (VAP vy Sl v;(cb, Py &Ly -0 (a3

h dt dt
2 2.h
z,,h[uf_gm -8 5 (A16)
dt dt
Bh b b, 42¢70) . b, b by d2¥M(0)
i st 4 Im P, v + (P, ) 120 (A15)
h ht'c dt2 y dt2

h ) h h h
ih o (4C (022 yi b yb d¥ (0) dC (0) i b b dy (03,2
where S ( qt ) VCC(C L YP) +2 It 3t ch(C , YO) + ( It )
Viyy(Cb. Yb). From the fact that the utility functions are strictly concave,
for any h with dCh(O)/dt or th(O)/dt not zero, sih must be negative. For

convenience, the arguments of partials of vl are deleted since all partials

sre evaluated at (Cb, Yb).

Substituting (A13) into (Al4) and (A15) yields

2.h
z= (1 - Mrs?) pn, SXLOL, 5 s8R 8 5 (A16)
h dt2 h c

A9



24h

(Rs® - Mrs®) pm, SILBL 4 ogn (PR D) - (s®R Ry 2 0 (A17)
dt ¢
2,h
Solving (Al6) for Inh d-}LéQl and substituting into (Al7) gives:
dt
b _ b b _ a
ORS = L) 5y s® Ve (em sPy/vb > (RS - MRE) (A18)
(1 - MRS®) (1 - MRS®)

From (2), 1 - MRS, 1 - MRSP, and MRSP - MRS® all have the same sign. Hence,

(Al18) can be rewritten as

£n, soP In, 50 IMrs P- Mrs®|

b h 5
- > 220 (419)
:|1 - RSP ve|1 - MRs? |1 - MRs®||1 - MRsP

Given any (my, m,, T3), a path (CP(t), YP(t)), h = 1,2,3, yields a local

h h
randomization which improves on the nonrandom solution iff at ixaigl,
2-h h
'Q—E—égl and -—x—i-l are such that Inh QS—LQl = Inh gxaigl = 0 but, for
dt

some h, —E—L—l, _X_Lﬂl) # 0, and (A13), (Al6), and (Al19) hold with a strict
inequality in (A16) or (Al19). Note that since (1 - MRS®) # 0 and d2YP(0)/dt?
are otherwise unrestricted, for any (dCh(O)/dt, th(O)/dt), h=12,3,
szh(O)/dtz, h = 1,2,3, can be chosen to make Z defined in (Al16) take any
nonnegative value. Given this choice of szh(O)/dtz, h=1,2,3, dZCh(O)/dtz,
h = 1,2.3. can always be chosen to make (Al13) hold. It therefore follows that
local randomization is desirable iff there exists a (dCP(0)/dt, dyP(0)/dt),

h=1,2,3, such that

g, sPh fn, b

h L
> (A20)
Wl -mrs®l VA1 - mRs?

Al0



Necessity of (A20) follows directly from (A19). Sufficiency of (A20) holds
since, using (Al6), dZYh(O)/dt'2 can be chosen to make Z arbitrarily small so

that (A19) holds.

(4) Necessitv of the Copdition in Theorem V:

Note that PP = qHP(CP, YP)qt and 58P = qHE(CP, YP)qt where q=
(dCh(O)/dt, th(O)/dt) and qt is the transpose of q. If (A20) holds, then for
at least one h, (quqt)/(V:|1-MRSb|) > qHaqt/(VZ]l-MRSa[) must hold. Cross
multiplying by VZIl-MRSb| and substituting 6 = v:|1-MRsb|/(v§]1-MRsa|) gives
quqt > SqHaqt or q(Hb-BHE)qt > 0. This implies that HP-8H® cannot be

negative semidefinite as asserted.

(5) Sufficiency of the Condition in Theorem V:

1f HP-BH® is not negative semidefinite, then there exists a a £ R? such
that é(Hb-BHa) ét > 0. Multiplying out and substituting for 6 yields
(qbq®)/ (V2| 1-MRSP| > (qHq®)/(VE|1-MRSE|).

Consider any allowable Ty, m,, and T (that is, m; 20, all i and
Eﬂi = 1). Since at least two of these must be strictly positive, without
loss of generality, we can relabel so that My > 0 and M, > 0. To show
sufficiency, we will show there exists at least two different vectors, the sum
of whose quadratic forms with HP - gye equals that for q. Thus (A20) is

satisfied. To see this, consider the following five equations in the

varisbles q% = (%, q), h=1, 2, 3:

[
(=]

1 2 3
T4, + T4, + m3q) = (A21)

W
o

1 2 3
T4, + T4, + Taq, = (A22)

All



nl(qi)z + ﬂz(qf)z + ﬂ3(qf)2 = (g2 : (A23)
n(ay)? + my(qd)? + n3(an? = ()2 (A24)

11 22 33 _: ¢
T1939, * 72379, * T39,9; = 919 (A25)

First, to show that (A21)-(A25) have at least one solution, consider the
following values, qi = qg =0, qf = -(ﬂl/ﬂz)qi = [my/(mp(my + wz))]*él and
qg = - (ﬂl/ﬂz)qé = [my/(my(my + ﬂz))]iéz. Substituting shows these are in
fact a solution.

To conclude, we show that any solution to (A21)-(A25) defines an
allowable path that satisfies (A20). For any solution, let (dCh(O)/dt,
dyP(oy/dt) = qP, h =1, 2, 3. From (A21) and (A22), Im (dCP(0)/dt) =
I, (d¥P(0)/dt) = 0 as required. From (A23) to (A25), Im(qPHP(qM®) = qHPq®

and Iﬂh(qhHa(qh)t) = qHaqt. Substituting these into the assumption that

éHbét > BéHaét vields (A20) as required. Q.E.D.
PROOF _OF COROLLARY ]: bt
t
qH q b qi’q
Let Q(F,, P) = |1 - MRS®] - |1 - MRS®| From Theorem V, local
a vb a
[+ [+

randomization is desirable at some P, 4 Py, if Q(Pg, Pp) > 0 for some q. At
P, = Pp. no redistribution is possible since the indifference maps are

identical. Hence, at the deterministic optimum MRS = MRSP= 1. Hence

Q(Fg, Pb) = 0. Differentiating Q with respect to P, around P, = P, =P

yields
dQ(F, P) d|1 - MRS®| qHPq®  d|1 - MRSP| gH%q®
- (A26)
dp_ dp_ VZ dp_ v

A12



Since V& = F(VP), v& = F'vb, va&_ =F'vb_ 4 F (VD)2 va_ = F'V?Y + F"(vg)z,

c? cc yy
and Va = F' Vb + F"VEV? When P, = Py, substituting these into (qHaqt)/Vg
yields:
qHeq quqt VbF" ( )2
= + q; - q; (A27)
. v: v: F

Substituting (A27) into (A26) yields

dQ(P,P) qHq® d|1 - MRS?| d|1 - MRSP|
T S ST @ ‘
a v a a
b 1"
VeF df1 - MRS®|
ST (q1 - qz) T E— (A28)
a

For there to be redistribution toward B's with Xa > 0, from Theorem III(v),
dMRS?/dP, and dMRSb/dPa must have the same sign and dMRS?/dP, must be larger
in magnitude. Note that

dMRSP/dP, = (3MRSP/3CP)(dCb/dP,) + (aMRSP/aYP)(dYP/dP,) and since P, is not an

argument of HRSb, around Pa = Pb'

LRs? _ QHE__ _MEE.

The discussion above showed that dMRS4/dP,, dHRSb/dPa, and 3MRS%/3P, must all

have the same sign. Given this, (A28) becomes:

QDI e J—VbF"( 2| LRSS (430)
dP, v: ] 3P, | Froot91 7 92 I dP,

For F" near zero, dQ(P, P)/dP, < O must hold showing the undesirability of

Al3



randomization. Q.E.D.

EROQF OF CORQLLARY II: (i) Assume X, > 0. Since both groups share identical

preferences over consumption, there is no benefit from any consumption
randomization for B. To see this, assume there exists a feasible
randomization for B over the three bundles: (Cbl, Ybl), (Cbz, sz), and (Cb3.
Yh3). Let C = ﬂblcbl + qb2¢cb2 4 ﬂb3Cb3. Consider the lottery (6 -6, Ybl).
(C - &, YP2), (C - &, YP3) where & solves ®(C - §) = I mPhy(cbh) Note that
§ 2 0 holds since ¢ is concave. This lottery is also feasible since it
satisfies A's self-selection constraint. B's expected utility is the same as
in the original lottery. The extra resources (6) can be used to give both A
and B higher utilities than in the original lottery. Thus, consumption
randomization is suboptimal for these preferences. Let t® be the consumption

level in all bundles of the optimal lottery. Then (A1)-(A3) become:

Empn ¥ (YRR, = w(Cy) - wie®) + 1(vPiwy) (A31)
EmpyYPR 2 €D - b4 yb (832)
Iy F(YPR/u ) < w(@P) - w(eP) + a(vP/uy) (433)

For (A32) and (A33) to hold, Eb > Cb must hold. |[To see this, assume
TP < P and Jet ¥ = Im;YPP.  From convexity of ¥, ¥(¥/wy) < rnPhycyPhyuby.
Since Y 2 CP - cP + Y, then w(CP) - ¥(¥P/wy) 2 w(CP) - ¥(Y/w,) follows from
1> HRSbe. Yb) (which in turn follows from Theorem III(v) and the single
crossing property of MRS® and MRSP for this utility function). (See Figure
6). These two inequalities violate (A33).]

Consider M(w) EImp; ¥(YPR/w) - ¥(YP/w) where from (A31),
M(w,) = ¥(Cb) - w(CP). Equation (A33) will hold iff M(wp) < M(w,). Since

Wh < Wg, 8 sufficient condition for this never to hold is aM/3w £ 0 for all w

Al4



between w, and w,. Differentiating yields

aM/aw = -[ Iy YPPY (YPhsuy - YPY'(vP/uy [ w? (A34)
so that aM/3w € 0 follows if

I YO (YRR /) - ¥PbE'(YP/w) 2 0 \ (A35)
Adding and subtracting Y!'(?/w) to (A35) yields

[ Imp YO (YR - Yo' (Y] + (¥ (F/w) - YPE'(YP/W)] 2 0 (A36)

Since Eb > Cb as shown above, it follows from (A32) that Y > Yb. From
convexity of ¥, ¥ 2 0 so that Y¥'(¥/w) - YP¥'(YP/w) 2 0. Hence, a

sufficient condition for (A36) is
Imp YO (YRR ) - YT (Y/w) 2 0 (A37)

Condition (A37) in turn follows if the functibn Y¥'(Y/w) is convex in Y at all

values of Y. Differentiating Y?' twice yields the condition:
20°(T/w) fw + YT (Y/w) /wd 2 0 ' (A38)

Substituting L = Y/w shows that the condition in (i) is sufficient for
M(wy) 2 M(w,) with (A33) always violated and thus that randomization can never
yield an improvement if it holds.

(ii) Since Zﬂh(dCh(O)/dt = 0 was shown in the proof of Theorem VI and
since there is no consumption randomness here as shown above, dC/dt = 0 must

hoid. Then the condition in Theorem V reduces to

N va
yy yy
>
|1 - MRS®} |1 - MRs®|
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Substituting for ng and V;y and the fact that 1 > MRS >-HRSe gives the
condition in (3). '

The proofs for y, > 0 follows similarly recognizing that if Xy > 0 then
(2) implies that HRSb(Ce, Yé) > HRSb(Ce, Y8) > 1. To prove (i), it now
follows that G2 < C2 must hold which then implies ¥8 < Y2, The result is
that Y¥'(Y/w) concave means randomization cannot occur. The proof of

. condition (4) also follows from Theorem V as in (3), reversing the A's and B's

in the condition of Theorem V. Q.E.D
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ALTERNATIVE TIMINGS OF RANDOMIZATION

PRE- TION PRE-EFF T
Tax schedules Lottery Individuals Individuals
B —
designed occurs . chooseamong — work and
bundies consume
(reveal type)
PQOST-REV ION PRE-EFFORT RAN IZA
Tax schedules Individuals Lottery individuals
designed choose among occurs - work and
lotteries consume
(revealtype)

POST-REVELATION POST-EFEQRT RANDOMIZATION

Tax schedules individu als Individuals Lottery individuals
designed choose - work occurs . consume |
among lotteries
(reveal type)

FIGURE 1



FIGURE 2

This randomization along B’s indifference curve maintains B’s
expected utility, but it lowers A’s expected utility from B’s
bundle when A is very risk averse.



FIGURE 3

THE COMPETITIVE EQUILIBRIUM



ub

U® = oGl K-2U2 1K= -aU%K "t =) 2
< PK2UH KT ey E) 2

fo

UP = logl(K-2-(K~-4K:" =+ 2!
< IK-2e1KeaK: 42

- mw e - .. - -

+ ua
: K1
2

FIGURE 4
THE UTILITY POSSIBILITY FRONTIER
The outer line is the first best utility possibility frontier.

The inner lines are segments of the second best utility
possibility frontier without randomization for K > 4.
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FIGURE 6
1f & < c®, then 1 > MRSP(cP, ¥P) > Mrs2(cP, YP) implies that

vP (P, ¥P) < vP(cP, YP) where ¥P > YP + TP - P,





