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In the long run, we are all dead. Nonetheless, when studying the short-run dynamics of economic 
models, it is crucial to consider boundary conditions that govern long-run, forward-looking 
behavior, such as transversality conditions. We demonstrate that machine learning (ML) can 
automatically satisfy these conditions due to its inherent inductive bias toward finding flat 
solutions to functional equations. This characteristic enables ML algorithms to solve for transition 
dynamics, ensuring that long-run boundary conditions are approximately met. ML can even select 
the correct equilibria in cases of steady-state multiplicity. Additionally, the inductive bias 
provides a foundation for modeling forward-looking behavioral agents with self-consistent 
expectations.
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1 Introduction

But this long run is a misleading guide to current affairs. In the long run we are all

dead, J.M. Keynes, A Tract on Monetary Reform (1923), p. 65.

Newton believed that his laws of motion do not guarantee the stability of the solar

system: he concluded that God periodically intervenes to keep things going smoothly,

E. Sober, Ockham’s Razors: A User’s Manual (2015), p. 60. Refers to Newton’s

Letter to Richard Bentley dated February 11, 1693

Steady states play a paradoxical role in dynamic economic models. On one hand, they are

only reached asymptotically (“long after we are dead,” as Keynes would put it), and the model’s

short-run behavior often differs significantly from them. On the other hand, steady states are

crucial for solving these models. Researchers commonly impose long-run assumptions based on

economic reasoning, such as transversality conditions, to ensure consistent short-run dynamics.

However, imposing these conditions often complicates solving models, particularly those with

many dimensions. Generally, these conditions require solving the model over a broad range of

possible values of the state variables. For example, recursive formulations necessitate accurate

solutions for arbitrary values of the state variables, even though the solution may only be relevant

from a single initial condition.

This paper presents two key contributions. First, we demonstrate that it is possible to meet

long-run boundary conditions without strictly enforcing them as a constraint on the model’s

dynamics. Specifically, we show how machine learning (ML) methods enable us to conduct short-

run simulations while still satisfying boundary conditions, even in scenarios with multiple steady

states, due to the inductive bias inherent in ML algorithms. Inductive bias, a concept widely

discussed in the philosophy of science and ML, reflects a preference for simplicity and parsimony

(akin to Ockham’s razor) when fitting a general model with limited observations.

Inductive bias is also closely related to the double descent phenomenon, which describes the

ability of highly parameterized models —such as deep neural networks with thousands, millions,

or even billions of parameters— to escape the classical bias-variance tradeoff and achieve minimal

errors in fitting and forecasting (see Belkin et al., 2019, and Belkin, 2021).1 We document how

1While it might seem counterintuitive that a model with billions of parameters could be considered “simple,”
counting parameters is not the correct measure of parsimony in a function space (the space in which dynamic model
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neural networks, with four orders of magnitude more parameters than grid points (the “data” in

this context), can solve economic models, producing parsimonious solutions with minimal errors

that adhere to long-run constraints. This contribution justifies the accuracy of ML methods,

including deep learning, in solving high-dimensional models (e.g., large spatial models used to

analyze climate change as in Cruz and Rossi-Hansberg, 2023), even those with multiple steady

states and hysteresis.

The intuition behind why the inductive bias delivers the results is straightforward. Economists’

assumptions, such as the transversality condition, reject explosive trajectories of the model’s

state (or co-state) variables because they violate the boundary conditions that discipline agents’

forward-looking forecasts. If we measure these explosive trajectories as functions, their functional

(semi-)norms are large.2 In contrast, trajectories that satisfy the long-run boundary conditions

have small functional (semi-)norms. Inductive bias reflects a preference for solutions with small

functional (semi-)norms (in whatever context they appear). Thus, ML tends to select solutions

that satisfy long-run conditions, even without being explicitly programmed to search for them.

Our second contribution is to argue how inductive bias can serve as a micro-foundation for

modeling forward-looking behavioral agents. Instead of relying on ad hoc behavioral rules, we

propose equipping agents with a general ML model, such as a richly parameterized deep neural

network, and allowing them to learn from a few observations. Inductive bias ensures that agents

will learn a solution that (i) is easy to compute, (ii) exhibits minimal errors, and (iii) satisfies the

necessary long-run constraints. Moreover, by periodically retraining the neural network, long-run

errors are minimized. As Sober’s quote at the beginning of this paper suggests, periodic interven-

tion —here, retraining— ensures that long-run behavior remains stable and smooth. Remarkably,

this periodic retraining leads to approximately time-consistent policies.

In this way, we may enable economists to construct behavioral approximations of forward-

looking agents while limiting “additional ‘free parameters,’ unrestricted by theory,” which was

a central goal of the rational expectations revolution (Lucas and Sargent, 1981, and Sargent,

2024). Thus, our work builds on the tradition of Sargent (1993, p.16) and Evans and Honkapohja

(2001, p.69-70), who connected perfect-foresight models, transversality conditions, stability, and

solutions reside). Instead, complexity is assessed within the function space of the solutions themselves, using tools
such as Kolmogorov complexity, the Vapnik-Chervonenkis dimension, Rademacher complexity, and other related
concepts depending on the context.

2In a deterministic model, the solutions themselves are the functions. In stochastic or recursive models, the
function (semi-)norm applies to the policy itself, which generates the divergent trajectories.
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bounded rationality. By having agents solving a problem with a bias toward min-norm solutions,

our results are akin to the sparsity models of Gabaix (2014) and Gabaix (2023) and the new

classes of attention cost functions in Caplin et al. (2022).3

After formally introducing inductive bias, we apply it to understanding transversality in two

canonical models: the linear asset pricing model and the neoclassical growth model. Building on

the established knowledge of these models, we demonstrate how ML methods implicitly (or explic-

itly) regularize solutions to achieve min-norms that satisfy boundary conditions without directly

calculating long-run behavior. Moreover, the solutions exhibit excellent short-run accuracy.

In the case of the neoclassical growth model, we also highlight the connection between our

results and the classical turnpike theorems (see McKenzie, 1976, and Marimón, 1989). These

theorems establish that models with long —but finite— horizons share almost identical short- to

medium-run dynamics with infinite-horizon models. ML methods seem to “understand” turnpike

theorems.

We deliberately chose two simple models to support our case. Attempting to illustrate our

arguments with a large model (e.g., a mid-sized New Keynesian model) would be a fool’s errand.

The many moving parts of a complex larger model would obscure the intuition and make it difficult

to establish benchmarks for evaluating our solution.

Indeed, both applications transparently underscore that long-run boundary conditions —such

as transversality and no-bubble conditions— arise from economic assumptions essential for model

consistency.4 These are not merely technical conditions; they are intrinsic to the economics of

rational expectations. While these long-run boundary conditions that discipline forward expecta-

tions may not always be explicitly stated, they are implicitly present when solving infinite-horizon

control problems or using recursive methods.

In linear models, boundary conditions are often articulated in terms of stability. For example,

in Blanchard and Kahn (1980) and Klein (2000), these conditions are satisfied by selecting the

unique non-explosive solution through spectral methods. Checking the eigenvalues for a linear,

3As an example, Gabaix, 2014, p. 1694, discusses the role of axioms in his framework and their connection to
the compressed sensing literature, where underdetermined problems are solved using a min-norm assumption (e.g.,
the ℓ1 norm, nuclear norms, etc.).

4The classic literature on rational expectations carefully articulates these assumptions in economic terms. For
example, Sargent and Wallace (1973) introduce an asymptotic boundary condition that “the money supply [is]
not expected to increase too swiftly.” Similarly, Blanchard and Kahn (1980) emphasize the need to “rule out
exponential growth of the expectation.” Knife-edge stability is also a common feature of monetary models that
assume perfect foresight or rational expectations, as discussed in Obstfeld and Rogoff (1983).
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time-invariant policy provides a sufficient condition to eliminate unstable trajectories that violate

transversality. In global methods, boundary conditions are frequently applied implicitly (e.g.,

during steady-state calculations) or may appear to be bypassed, such as in collocation on a

compact space. However, they remain a necessary condition for optimality (e.g., see Ekeland and

Scheinkman, 1986, and Kamihigashi, 2005).5

In summary, we lay the theoretical groundwork for using deep learning to find equilibria in

dynamic models. Examples of this burgeoning literature include Ebrahimi Kahou et al. (2021),

Maliar et al. (2021), Azinovic et al. (2022), Han et al. (2022), Kase et al. (2022), Barnett et al.

(2023), Fernández-Villaverde et al. (2023), Jungerman (2023), Duarte et al. (2024), and Payne

et al. (2024). Interestingly, these studies do not directly impose transversality conditions, and none

explicitly address the issue. Alternatively, Ebrahimi Kahou et al. (2024) demonstrate how to solve

a min-norm problem using kernel methods, which provably satisfy transversality conditions.

We also connect our work to the recent literature on behavioral macroeconomics, such as

Gabaix (2020), Caplin et al. (2022), and Gabaix (2023). The key difference between that literature

and our approach is that while parametric methods like rational inattention identify the unique

solution to a well-posed parametric problem, we document a bias toward particular solutions in

optimization problems with multiple solutions. Finally, our exploration of how ML can construct

self-consistent expectations echoes the ideas found in Bianchi et al. (2022).

The remainder of the paper is organized as follows. Section 2 introduces the concept of

inductive bias and its role in ML. Section 3 presents our first canonical model, the linear asset

pricing model. Section 4 describes our second canonical model, the neoclassical growth model.

Section 5 concludes. A technical appendix provides additional results.

2 Inductive Bias in ML

Before we can interpret inductive bias in the context of dynamic, forward-looking models, we

need to understand it in the context of solving functional equations. Let X be a space and write

the economic model as a set of functional equations ℓ(x, f) = 0 for all x ∈ X where f : X → R.

For example, in a growth model, the ℓ(x, f) might be a combination of the Euler equation residual

at a particular capital level x and the resource constraint where f is the investment policy.

5Appendix B explains why these conditions are traditionally overlooked in low-dimensional problems solved
globally and why this approach becomes inadequate in high-dimensional contexts.
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A typical solution method in economics parameterizes a policy (or value) function with fθ ∈
H(Θ), where H is a hypothesis class of function approximations. In our case, we will deal with

high-dimensional parameterizations (e.g., neural networks with many parameters θ ∈ Θ).

A simple algorithm, which generalizes classic approaches such as collocation, is to find a fθ

that interpolates the equations of the economic model at a finite set of points. We can either

choose a grid or sample N points D ⊂ X and minimize the empirical risk (ERM):

min
θ∈Θ

{
1

N

∑
x∈D

||ℓ(x, fθ)||22

}
. (1)

Solving for this minimum only requires gradients of a scalar loss.6 This helps ensure that gradient-

based optimization algorithms solving problem (1) do not scale exponentially with |θ| due to the

curse of dimensionality. In fact, optimization algorithms where |θ| ≫ N are typically faster and

more reliable than |θ| ≈ N in this class of problems.

Assuming thatH(Θ) is flexible and highly overparameterized (|θ| ≫ N), optimization methods

can reliably find a fθ such that we get interpolation, i.e., ℓ(x, fθ) ≈ 0 for all x ∈ D. However,

given the over-parameterization, there are many θ ∈ Θ that could interpolate the data.

Thus, the key question is to characterize toward which solution the ML approximations con-

verge in practice. Rather than just choosing a random interpolating function —which might have

an arbitrary degree of overfitting— ML algorithms converge in practice toward the “simplest”

interpolating solutions. This is called the inductive bias in the ML literature. The classic inter-

pretation of inductive bias is Ockham’s razor, i.e., the simplest solution should be the most likely.

However, what does “simple” mean in this context?

Inductive bias and the min-norm solution. One framework for how to define “simplest” is

as the min-norm interpolating solution (Belkin, 2021). More formally, when solving ERM with a

highly overparameterized approximation, we can (always loosely, and sometimes formally) think

6Alternatively, we can solve the underdetermined nonlinear system of equations ℓ(x, fθ) = 0 for all x ∈ D.
However, the Jacobian is enormous and dense, so it is usually more efficient to solve problem (1). Efficiently
calculating gradients with automatic differentiation is the core feature of ML libraries such as Pytorch, Tensorflow,
and JAX.
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of the argmin of problem (1) as equivalent to solving:

f ∗
θ ≡ min

fθ∈H(Θ)
∥fθ∥ψ (2)

s.t. ℓ(x, fθ) = 0, for all x ∈ D, (3)

where ψ is some function semi-norm. That is, it finds the simplest function, measured by ψ, that

interpolates the data according to condition (3).7

In general, we will not be able to characterize ψ directly, as it depends on a combination of

H(Θ), ℓ(·, ·), and the optimization method used to solve problem (1). While this is an interpreta-

tion of the argmin of problem (1) rather than a direct optimization problem itself, equations (2)

and (3) provide a useful intuition we will use throughout this paper.

Inductive bias and the double descent phenomenon. As we mentioned before, we will be

dealing with highly parameterized neural networks ℓ(x, fθ). Classic statistics intuition suggests

that having excess parameters makes it more likely to overfit, leading to large ||ℓ(x, fθ)||22 outside
of D and excess sensitivity to the details of H and to initial conditions for the optimization

algorithm. Surprisingly, this is not what one finds in practice.

The argmins of problem (1) with neural networks are often nearly the same function for a

significant portion of X \ D. To be more precise, for two different initial conditions of θ ∈ Θ, the

minimization will converge to two different θ1 and θ2, but where the functions themselves are in

an equivalence class. That is, fθ1(x) ≈ fθ2(x) for a surprisingly large region of x ∈ X \ D. As

long as Θ is large, the exact features of H(Θ) become less important, and different approximation

architectures behave similarly.

The general theory for why ML methods select min-norm solutions is, thus, connected to

the literature on double descent and generalization theory.8 Double descent is the phenomenon

where, counterintuitively, the seemingly inescapable bias-variance tradeoff —where adding too

7The precise min-norm of the inductive bias is provable in some cases, such as in overparameterized linear
regression and ridgeless kernel regression (Hastie et al., 2022) and kernel methods (Ebrahimi Kahou et al., 2024),
and holds for some limiting cases of neural networks (Belkin, 2021, and Ma and Ying, 2021).

8The ML literature is still exploring the double descent phenomenon and generalization and their connection to
inductive bias. The prevailing view is that double descent arises from a combination of the optimization algorithms
used, the intrinsic complexity of the data, and the geometry of the loss function within the parameter space. Since
flat minima occupy a disproportionately large volume in high-dimensional spaces, the bias toward these minima
is mostly independent of the optimization method employed. See Smith et al. (2021), Chiang et al. (2022), and
Zhang et al. (2021). Spiess et al. (2023) provide recent examples of double descent in causal inference econometrics.
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many parameters leads to overfitting— seems to disappear if one adds vastly more parameters

(even trillions in some large language models!). That is, the cure to overfitting is to keep adding

parameters, not eliminating them. While ML practitioners have known of the double descent

phenomenon since the late 1980s (Vallet et al., 1989), researchers in computer science and statistics

are still exploring its theoretical foundations.

Inductive bias and long-run expectations. For this paper, we take the min-norm interpre-

tation as given and wait for the computer scientists to make progress on characterizing it precisely.

But we can take this interpretation as given since it has been robustly confirmed across many

algorithms and hypothesis classes H. We know that, with sufficient parameters, ML algorithms

are biased to choose the flattest solution among all functions that interpolate the data.9

Returning to our primary objective of solving dynamic models and modeling behavioral agents,

these flat interpolating solutions correspond to the unique, non-explosive solutions that satisfy

long-run boundary conditions. In particular, we will demonstrate in our examples that by solv-

ing problem (1) without explicitly imposing the long-run boundary conditions, the min-norm

solutions, as interpreted by problem (2), will approximately satisfy these boundary conditions in

many cases, even when D contains no points near a steady state. From a behavioral economics

perspective, the ML solution that is consistent with both the laws of motion and Ockham’s razor

is the one that meets our constraints on the long-run expectations of forward-looking agents.

Simulating ergodic distributions and steady states. Given that the solutions we just dis-

cussed only approximately fulfill the long-run conditions, they will only be approximately stable.

This is in contrast to linear rational expectations equilibria that are stable by construction. Given

that our goal is to show that one can focus on short-run dynamics without directly imposing long-

run dynamics, this is not an inherent limitation of ML methods. We build on a long tradition in

applied mathematics by assuming that agents may consider a data-generated process for forecasts

motivated by Ockham’s razor even if it slowly diverges in the long run, as long as they periodically

can re-optimize to refine the errors. As we mentioned in the introduction, this is a useful frame-

work for thinking about how behavioral agents solve their optimization problems in practice, i.e.,

choosing parsimony over stability.

9A function is flat when all of its derivatives exist and are zero. Hence, an inductive bias toward flat functions
would penalize those derivatives. In that sense, an inductive bias is a form of interpretable regularization.
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However, these errors mean that we need to be careful in calculating the steady state (or ergodic

distribution) when we do not have provable stability and convergence. Small deviations from

stability accumulate in the long run, leading to numerically unstable calculations of the steady

state and ergodic distributions, which could feed back into errors in the short-term dynamics,

especially if instability biases the D in problem (1).10 Nonetheless, in many applications (e.g., the

responses to climate change in spatial models), knowing the steady state and ergodic distributions

is irrelevant, and ML methods work without any problem.

Examples. To illustrate the theory and its implications, the remainder of this paper examines

two classic examples with well-established baselines: (i) a linear asset pricing model, which for-

mally demonstrates the sufficiency of this condition and clarifies its connection to function norms,

and (ii) the neoclassical growth model, the canonical forward-looking model with saddle-path

dynamics, which further elucidates links to turnpike theory. Although we illustrate the results

using deterministic sequence space models, the same principles apply to recursive and stochastic

versions.11 One of the most surprising findings is that this approach remains effective even in

the presence of steady-state multiplicity and hysteresis, as seen in the neoclassical growth model

with a concave-convex production function. The algorithm succeeds despite being unaware of the

existence of multiple steady states or the appropriate domain of attraction of each of them.

Although intentionally low-dimensional, these examples offer valuable insights into how economists

can leverage deep learning to solve high-dimensional models while satisfying transversality con-

ditions. Later, we will revisit the broader argument that these conditions stem from behav-

ioral assumptions and propose that inductive bias might lead to economically justifiable —and

computable— approaches to equilibrium selection and approximately time-consistent policies for

behavioral macroeconomics.

3 Linear Asset Pricing

We start showing our results with the basic model of risk-neutral asset pricing, which has

traditionally served a pedagogical role in exploring long-run boundary conditions for models with

10Without ensuring stability, simulations may (almost surely) diverge. Furthermore, adding too many points in
the fitting process close to the (possibly misspecified) steady state or ergodic distribution would distort the relative
error compared to the short-run dynamics of interest.

11See Appendix B for the formulation of the neoclassical growth model in a state-space representation.
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forward-looking agents (e.g., Ljungqvist and Sargent, 2018). Linearity will help us to illustrate the

connection between multiplicity, asymptotic boundary conditions, and norms in function spaces.12

3.1 Model

The risk-neutral price, p(t), of a claim to an exogenous stream of dividends, y(t), is given by

the recursive equation:

p(t) = y(t) + βp(t+ 1), (4)

where β ∈ (0, 1) is the discount factor and t = {0, 1, · · · ,∞}. The interpretation is standard but

worth repeating: the price of a claim to the asset today is the period payoff plus the forecast of the

discounted price of the asset tomorrow.13 While the model is cast in discrete time, the notation

uses the continuous extension p : R → R, careful only to evaluate (4) for discrete t.14

Forward-looking behavior and multiplicity. This recursive structure of equation (4) cap-

tures the inherent forward-looking nature of the asset pricing problem. The price at time p(t)

cannot be known without forecasts of p(t+ 1) and inductively p(t+ 2), . . . p(t+∞), showing the

connection between long-run forecasts and asymptotic boundary conditions.

Given the simple linear structure, one can characterize the set of solutions to (4) as:

p(t) = pf (t) + ζβ−t, (5)

where ζ ≥ 0 and pf (t) ≡
∑∞

τ=0 β
τy(t + τ) represents the price based on fundamentals (i.e., the

discounted present value of dividends). The bubble, p(t)− pf (t) = ζβ−t, is explosive for all ζ > 0

since β < 1. From the perspective of the risk-neutral agent, this multiplicity captures that there

are many internally consistent, fully rational forecasts of future prices that fulfill the problem’s

12See Blanchard (1979) and Brunnermeier (2017) for details. Beyond its pedagogical value, linear asset pricing
serves as the foundational framework for studying fiat currency, hyperinflation, and other pure bubbles in economics
(e.g., Flood and Garber, 1980, and Brunnermeier, 2017). Bianchi and Nicolò (2021) present a general approach to
deal with the problem of indeterminacy in linear rational expectations models.

13The requirement on the y(t) primitive is that it does not grow faster than β−1 (i.e., limt→∞ |y(t+1)/y(t)| < β−1)
to ensure that present discounted values are well defined. For example, dividends could follow a recursive state-
space model, as in Ljungqvist and Sargent (2018), with bounds on the spectral radius of the evolution equation.

14ML methods tend to work better in continuous time, as discussed in Fernández-Villaverde et al. (2023) and
Ebrahimi Kahou et al. (2024). We stay in discrete time for simplicity.
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recursive structure, each mapping to a different-sized bubble at time zero (i.e., p(0)− pf (0) = ζ).

Asymptotic boundary conditions. An economic interpretation of the multiplicity of solu-

tions to equation (4) is that there are many possible paths where the agent rationally forecasts a

bubble growing asymptotically, but only one where the agent’s long-run forecasts do not diverge

relative to discounting. This leads to the no-bubble condition:

0 = lim
t→∞

βtp(t). (6)

Economically, this boundary condition is motivated by stability. Agents who believe the

boundary condition (6) reject asset price forecasts, which can perpetually grow faster than the

discount rate, leading to constraints on their long-run expectations.15 With this condition, the

system (4) and (6) is now a well-posed problem with the unique solution, p(t) = pf (t).

This simple model illustrates a central computational challenge in economics. With forward-

looking agents, the dynamics of short-term forecasts (e.g., p(t) for t ≪ tN ≡ maxD) can only

be made by imposing an asymptotic condition (6). Otherwise, any p(0) ≥ pf (0) is a possible

equilibrium price. Because of this, even if we have no intrinsic interest in forecasting long-run

dynamics, we nevertheless must consider the entire sequences of p(t) for {t = 0, · · · ,∞}, subject
to the distant boundary condition (6) to have an internally consistent model of the short run.

Below, we will demonstrate how we may be able to fulfill these long-run, economically impor-

tant boundary conditions without actually solving for limT→∞ βTp(T ) directly.

Stability and function norms. The no-bubble condition is a special case of a broader class

of transversality conditions, which often arise out of conditions to ensure stability in optimal

control, as we will see in Section 4. In optimal control, a policy is stable if it will not diverge, and

transversality conditions ensure that repeated applications of a policy rule fulfill that condition.

Intuitively, the key to our methods is that the solution that fulfills the transversality condition

is the stable one, which we see in our case (5). Among all of the possible solutions, the asymptotic

boundary condition (6) selects the least explosive one.

15See Tirole (1982) and Brunnermeier (2017) for a discussion of how bubble terms violate the transversality
condition and its connection to expectations. More broadly, many models directly connect long-run boundary
conditions and explosive price paths. For instance, in the monetary models of Brock (1974), Brock (1975), and
Obstfeld and Rogoff (1983), the solutions that violate the transversality condition correspond to either explosive
paths of asset prices or the relative price of capital.
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To formalize a comparison of different functions that solve (4), consider a function semi-norm,

i.e., ||p||ψ. An important example is a Sobolev norm defined on t ∈ [0, T ] where ||p||2W 1,2 ≡∫ T
0
|p′(t)|2dt. In particular, functions with larger derivatives, p′(t), will have larger norms, and

explosive functions have exploding norms relative to flat ones since limT→∞ |p′(T )| = ∞.16

Coming back to our specific problem, explosive solutions will have larger norms than those

based entirely on fundamentals. Take the general solution that characterizes solutions without

applying a boundary condition in equation (5), recall that ζ ≥ 0, and apply the triangle-inequality

to compare its norm to the pf (·) that uniquely solves the problem with a no-bubble condition:

∥p∥ψ ≡ ∥pf + ζβt∥ψ ≤ ∥pf∥ψ + ζ ∥βt∥ψ. (7)

The norm is minimized when ζ = 0, and in that case ∥pf∥ψ = ∥p∥ψ. To see that these are the

same function, up to an equivalence class, compare the solutions: ∥p− pf∥ψ ≡ ∥pf + ζβt− pf∥ψ =

ζ∥βt∥ψ. Hence, ζ = 0 implies ∥p− pf∥ψ = 0.17

We introduced theW 1,2 norm for illustrative purposes and because it is representative of norms

in ML that are biased toward flatness by penalizing the gradients. Since we only used the triangle

inequality in the proof, these results hold for any semi-norm ψ. Therefore, we can have some

confidence that these methods are not sensitive to the choice of norm ψ in practice.

3.2 Min-Norm Solution

The previous section showed us that the unique solution to the model with the asymptotic

boundary condition is the smallest (and hence flattest, given relevant norms that penalize gradi-

ents) solution to the dynamic, forward-looking equation (4). Coming back to ML, its inductive

bias toward flatter functions fortuitously aligns with both the behavioral assumptions on forward-

looking agents and the long-run boundary conditions those assumptions imply. In a divine coin-

cidence, “small” solution functions are both the preferred choice of ML methods and economic

assumptions on long-run expectations of agents.

16Focusing on a closed interval with a finite T for the norms to exist is innocuous here, and can be relaxed by
adjusting our definition of norms. For instance, Van et al. (2007) use exponential discounting of functions in the
definition of norms.

17If we have a semi-norm, rather than a norm, then it only provides an equivalence class, ∥pf − p∥ψ = 0 rather
than ensuring p and pf are identical pointwise. While this is not an issue in this particular example, it can be
relevant when considering two functions in an equivalence class that fulfill the model equations, and long-run
boundary conditions could have economically relevant differences. In that case, one needs to adapt the approach.
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Next, we examine how well this observation works in practice at selecting the unique, non-

explosive solution. To implement the simple algorithm with neural networks, first define an

approximation pθ ∈ H(Θ) for a highly parameterized neural network. Next, for X = [0,∞)

choose D ≡ {t1, · · · , tN} ⊂ X and minimize (4) numerically:

min
θ∈Θ

1

N

∑
t∈D

[pθ(t)− y(t)− βpθ(t+ 1)]2 , (8)

where our baseline example generates dividends using y(t+1) = c+(1+g)y(t), for y(0) = y0, c > 0

and g ≥ −1. This is just a particular case of problems (1) and (3).

Given the connection between problems (1) and (3), we interpret the solution to problem (8)

according to:

min
pθ∈H(Θ)

∥pθ∥ψ (9)

s.t. pθ(t) = y(t) + βpθ(t+ 1), for all t ∈ D.

Outside of some specific cases, we do not know the precise ψ that the inductive bias of the

ML algorithm leads to, but this interpretation nevertheless provides us with intuition. In fact, we

know from equation (7) that the results are not sensitive to the particular semi-norm.18

Parameterization. The parameter values of the model are set at β = 0.9, c = 0.01, and

y0 = 0.08 and we consider g = −0.1 and g = 0.02. The first g leads to prices reaching a steady

state, while the second leads to prices growing indefinitely, but given that g < β−1 − 1, there is

a well-defined price on a balanced growth path (BGP). We do not provide g to the algorithm or

calculate a BGP but give our function approximation the ability to scale a neural network output

exponentially. More concretely, when g > 0, our H is chosen to be pθ(t) = exp(ϕt)NN(t; θNN),

where θ ≡ {ϕ, θNN}, ϕ ∈ R, and NN(t; ·) is a neural network to be defined.19

Results. For our numerical solutions, we fit problem (8) using a choice of hypothesis spaceH(Θ),

where pθ(t) = NN(t; θ) (or pθ(t) = exp(ϕt)NN(t; θNN)). Neural networks serve as a broad class of

18See Blanc et al. (2020), Damian et al. (2021), and Ma and Ying (2021) for more on characterizing the approx-
imate function norms of the inductive bias. In some limiting cases, it can be proven to be W 1,2.

19Insights from problem structure will often achieve better generalization (e.g., Ebrahimi Kahou et al., 2021,
encode symmetry in the design of H(Θ) to improve the generalization of the approximation).
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approximators, encompassing many approximations familiar to economists, such as splines and

orthogonal polynomials. We employ neural networks because they showcase how our arguments

function with a maximally flexible functional form, but inductive bias is present in all ML models.

Our baseline example uses p(t; θ) ≡ f(W1 · σ(W2 · σ(W3 · σ(W4t + b4) + b3) + b2) + b1) where

f(·) = log(1 + exp(·)) to ensure positivity and σ(·) = tanh(·) is the hyperbolic tangent function

applied pointwise. The components of θ ∈ Θ areW4 ∈ R128×1,W3 ∈ R128×128,W2 ∈ R128×128,W1 ∈
R1×128, b4 ∈ R, b3 ∈ R128, b2 ∈ R128, and b1 ∈ R. In ML terminology, this would be referred to as a

multilevel perceptron (MLP) with four hidden layers, 128 nodes for the hidden layers, tanh as the

activation function, and a final layer of Sofplus. To give a sense of the degree of overfitting, we use

30 grid points with 50K parameters, i.e., overparameterized by about four orders of magnitude.20

For the grid, we use D = 0, 1, 2, . . . , 29, where the key performance metric is to compare

the solution relative to pf (x) for x ∈ D. While our focus is on the short term, we also plot an

extrapolation region for t > 30 to assess how closely the steady state is forecasted and to gauge

stability. Recall that when g = 0.02, there is a BGP rather than a steady state. In this case, we

check whether the model accurately learns g to enforce the no-bubble condition for the short run

(i.e., whether log(1 + g) ≈ ϕ given the pθ(t) = exp(ϕt)NN(t; θNN) approximation).

Previously, we asserted that, in practice, inductive bias would yield the same interpolating

function up to an equivalence class. Since this statement may be sensitive to accumulated numeri-

cal errors, we rerun the optimizer from different initial conditions for θ and report the median, 10th,

and 90th percentiles. The primary metric is the relative error, εp(t) ≡ (pθ(t)− pf (t))/pf (t)where

our goal is to ensure that the inductive bias results in low errors in the short to medium run.21

Figure 1 plots our results. The dotted line represents the closed-form baseline, the solid line

depicts the median, and the shaded region illustrates the 10th to 90th percentiles. The top left

panel compares the solutions for g = −0.1, while the top right panel shows the corresponding

relative errors. The bottom left panel contrasts the solutions for g = 0.02, and the bottom right

panel plots the relative errors.

The inductive bias toward the min-norm solution results in highly accurate approximations in

the short run. The approximations perform well even in the extrapolation region for t > 30, despite

20The results are not especially sensitive to the design of H as long as the problem dimensionality is high enough
and multiple layers are used.

21For these examples, we use the Limited Memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) optimizer due
to its robustness and speed, and calculate the gradients of the objective function (8) using all of D (i.e., full batch).
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Figure 1: Solutions to problem (8) for an ensemble of 100 initial conditions for θ.

this not being our primary objective. The difference between pθ(t) and pf (t) is imperceptible in

the short run, as seen in the two left panels. For the stationary case with g = −0.1, the relative

errors up to t = 10 are within numerical precision on average and well within 0.1% even at the

90th percentile of experiments. Even in the non-stationary case, up to t = 10, the solutions are

close to numerical precision, and the 90th percentile of errors remains around 0.5%.

Although the dispersion of solutions in the extrapolation region of the BGP is small, it is still

present: the median error is approximately 0.5%, with the 90th percentile errors reaching nearly

2% at t = 30, as shown in the bottom right panel. Nevertheless, this outcome reinforces the

effectiveness of our methods, as it demonstrates that an imperfect characterization of the long

run does not result in substantial errors in the short run, even without knowledge of g.

We can also apply the min-norm interpretation to H. By leveraging our economic understand-

ing of the problem’s structure, we allowed H to rescale itself using pθ(t) = exp(ϕt)NN(t; θNN),
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where ϕ ∈ R is learned. In this context, our neural network is inclined to select the ϕ that mini-

mizes the norm of the NN(t; θ) function. This result reveals a strong bias toward the closed-form

solution ϕ = log(1 + g), as it minimizes the explosiveness of NN(t; θNN) when rescaled by its

learned ϕ. Other solutions with different ϕ values require more explosive NN(t; θNN) to compen-

sate, leading to higher norms. This highlights that deep learning solutions are not merely black

boxes; successful outcomes depend on integrating economic insights into the design of H.22

In summary, our results indicate that over-parameterized neural networks learn the steady

state and there is strong evidence of the bias toward flat functions. The approximate functions

remain flat even in regions where data were not provided during the optimization process.

Behavioral interpretation We can consider our solution method as a behavioral approxima-

tion of agents with an inductive bias. That is, agents would train their neural networks with just

a few observations (30) and, by applying Ockham’s razor, consider that asset pricing trajectories

that lead to more stable solutions are the most likely. While the solution does not exactly choose a

stable path, as we can see with the slight divergences in the long run in the top panels of Figure 1,

it gets the short-term correct to numerical precision. In other words, a behavioral agent does

rather well in terms of pricing assets.

Even more surprisingly, the policies are approximately time-consistent. If we re-optimized at

t = 5, for example, the agent would similarly choose a path with low error in the short run that

is (slightly) unstable in the long run. Inductively, with a sufficiently fast re-optimization of the

sequential problem, the inductive bias would lead the solution to stay close to the steady state.23

4 The Neoclassical Growth Model

The neoclassical growth model serves as a classic example of the importance of transversality

conditions in ruling out sub-optimal paths. As in our previous example, we will analyze these

conditions with an emphasis on the behavioral foundations of the boundary conditions and their

connection to inductive bias. To push the argument further, in Section 4.3, we examine a model

22In Appendix A.4, we present a case where the functional form is misspecified.
23This is analogous to model predictive control (MPC), a control-theory method commonly used in industry that

solves finite-horizon control problems periodically, in contrast to the infinite-horizon open-loop control that finds
a single time-invariant policy that is never updated. Under reasonable regularity conditions, the MPC solutions
are approximately time-consistent and converge to the open-loop infinite-horizon solution (Mayne et al., 2000).
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inspired by Skiba (1978) that features multiple steady states. Despite the added complexity —

stemming from the nonlinear nature of the growth model and the need to satisfy both initial values

and boundary conditions— the saddle-path characteristics of these problems lead the inductive

bias to select even more stable solutions than those discussed in Section 3.

4.1 Model

We follow the standard treatment of the neoclassical growth model in Acemoglu (2008) and

Ljungqvist and Sargent (2018) with a log utility. Then, we can jump straight to the dynamic

system of equations that characterize the optimal path:

k(t+ 1) = z(t)1−αf (k(t)) + (1− δ)k(t)− c(t), (10)

c(t+ 1) = βc(t)
[
z(t+ 1)1−αf ′(k(t+ 1)

)
+ 1− δ

]
, (11)

0 = lim
t→∞

βtc(t)−1k(t+ 1), (12)

given β ∈ (0, 1), δ ∈ (0, 1), and an initial condition k(0) = k0. Equation (10) is the law of motion

derived from the resource constraint, equation (11) is a forward-looking Euler equation, and

equation (12) is a forward-looking transversality condition that prevents capital from accumulating

too fast relative to the marginal utility of consumption, c(t)−1.

The total factor productivity (TFP) process, z(t), follows z(t+1) = (1+g)z(t) given a growth

rate 0 ≤ g < 1/β − 1 and initial condition z(0) = z0. Our baseline production function is

f(k) = kα for α ∈ (0, 1), which has a unique steady state (or BGP) and transition dynamics

toward it. Section 4.3 will move toward a concave-convex production.

Forward-looking behavior and saddle-path stability. Given only the initial condition k0

and equations (10) and (11), the system has multiple steady states with associated transition

dynamics unless the transversality condition is imposed. In the simple case of z(t) = 1 for all t,

there are two possible equilibria: one with kmax(t), where the limit approaches the global maxima

of output at f ′(k∗max) = δk∗max at that point c∗max = 0, and another, k(t) and c(t), with interior c∗

and k∗, where the economy converges to the saddle-path with positive consumption.24

24There is a trivial third steady state (which we ignore) with k = 0 that is not an attracting basin, cannot be
reached unless k0 = 0, and is unstable for any perturbation of k0. The case where g > 0 for the TFP process is
similar but requires rescaling by the geometric growth rate.
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As in our previous example, while the role of the transversality condition (12) is to ensure the

self-consistency of forecasts, it also eliminates multiplicity numerically. The transversality condi-

tion eliminates the limt→∞ kmax(t) = k∗max as a possible steady state because, if limt→∞ cmax(t) = 0,

then the marginal utility of consumption goes to infinity, which makes the transversality condi-

tion (12) impossible to fulfill given that capital accumulation is limited by the resource constraint.

While the Euler equation (11) could be consistent with trajectories that have maximal output

and no consumption in the limit, a transversality-violating trajectory would require the agent to

forecast an (asymptotic) infinite marginal utility of consumption.

Stability and function norms. Consider the case of numerically solving the undetermined

system of equations (10) and (11) subject to k(0) = k0, but without imposing the transversality

condition (12). As discussed above, there are two possible capital and consumption trajectories,

but only one of them fulfills transversality.

To provide intuition for why our methods are successful despite the possible multiplicity of

solutions, we need to explain why the trajectories that lead to no consumption and maximal output

have a higher norm than the saddle-path solution. The key reason for this, in this formulation of

the problem, is that k∗max ≫ k∗. In our parameterization, the output maximizing capital level is

approximately 10-20 times larger. Consequently, since the output maximizing trajectory, kmax(t),

and the saddle-path optimal trajectory, k(t), grow from the same k(0) = k0 initial condition,

the trajectories of the output maximizing capital will be steeper. Hence, we would expect that

||kmax||ψ > ||k||ψ for norms that penalize gradients, as does ψ = W 1,2.

In other words, among all the solutions of (10) and (11), the optimal one has the smallest

norm because of the saddle-path nature of this problem. All sub-optimal solutions are (locally)

explosive. In contrast, the optimal solution is non-explosive.25

4.2 Min-Norm Solution

As in the case of linear asset pricing, we solve the model without applying the long-run

boundary condition and rely on the inductive bias of the ML algorithms to select the min-norm

solution.

25One can reformulate this problem in terms of the co-state variable (i.e., the marginal utility) to see this with
an even more stark result. In this formulation, the sub-optimal paths are globally explosive. See Appendix A.5 for
a detailed discussion, especially the right panel of Figure A.5.
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First, define an approximation kθ ∈ H(Θ) for a highly parameterized neural network. Next,

for X = [0,∞) choose D ≡ {t1, · · · , tN} ⊂ X and minimize (11) subject to k(0) = k0:

min
θ∈Θ

[
1

N

∑
t∈D

(
c(t+ 1; kθ)

c(t; kθ)
− β

[
z(t+ 1)1−αf ′(kθ(t+ 1)

)
+ (1− δ)

])2

+ (kθ(0)− k0)
2

]
, (13)

where z(t) = z(0)(1 + g)t, and consumption is defined as a function of kθ through the feasibility

constraint:

c(t; kθ) = z(t)1−αf(kθ(t)) + (1− δ)kθ(t)− kθ(t+ 1).

As before, we will use (2) to interpret solutions to problem (13) as the interpolating solution that

minimizes some norm, ||kθ||ψ.

Results. The baseline parameters are f(k) ≡ kα, β = 0.9, α = 0.33, δ = 0.1, k0 = 0.4, z(0) = 1,

and g = 0. We choose D = {0, 1, 2, . . . , 29} and minimize equation (13) with a choice of H(Θ).

The baseline example uses k(t; θ) = NN(t; θ) for a neural network with four hidden layers, 128

nodes for the hidden layers, tanh as the activation function, and a final layer of Softplus.26

We solve the ERM using L-BFGS and all of D. The relative errors are εk(t) ≡ kθ(t)−k(t)
k(t)

and

εc(t) ≡ cθ(t)−c(t)
c(t)

. Our goal is to ensure that inductive bias leads to low errors in the short to

medium run, even if there may be a small degree of instability in the long run.

Figure 2 shows our results. The left panel plots the median of the approximate solutions

for capital and consumption, kθ(t) and cθ(t), compared to a benchmark (dashed lines) solved

with value function iteration. Despite not being provided the transversality condition (12), the

approximation always provides the correct dynamics. The right panel shows the median, and the

shaded region the 10th to 90th percentiles for the errors relative to the baseline, εk(t) and εc(t).

The errors are close to numerical precision in the short to medium run. In the long-run

extrapolation region, where T > 30, the relative error grows, albeit slowly, and with a median

error of less than 0.1% for kθ(t). This confirms that inductive bias will (1) choose the correct

trajectories consistent with the transversality condition; (2) small extrapolation errors, in the

long run, do not feed back to large errors in the short run; and (3) the solution is almost but not

quite, stable. The last point suggests that while this has fairly accurate extrapolation, we should

26In the case with g > 0, we let the approximation choose to scale a neural network exponentially with kθ(t) =
exp(ϕt)NN(t, θNN) where θ ≡ {ϕ, θNN}. We will not provide the approximation with the g and let it decide whether
it wants to normalize the solution
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Figure 2: Ensemble of 100 initial conditions for θ solving (13) with g = 0 and k0 = 0.4.

be cautious in using ML methods for the simulation of long-run and ergodic distributions. Almost

stable is not always good enough for simulating a steady-state or ergodic distribution.

Results with a BGP. Next, we solve the same model with g = 0.02 and show that the inductive

bias still leads to the correct solution. As before, when we solve a version with a BGP, we will

neither manually detrend nor provide g to the approximation.

Figure 3 plots the results. The left panels show the median of the approximate capital and

consumption paths, kθ(t) and cθ(t), with the baseline solutions as dashed lines. The right panels

show the median, and the shaded region the 10th to 90th percentiles for the errors relative to the

baseline, εk(t) and εc(t).

The short- to medium-run errors are extremely small, and even the extrapolation region has

roughly a median error of 0.1% for consumption at t = 50 despite the exponential growth and the

extrapolation. The inductive bias has led the approximation to choose a min-norm solution and

a rescaling despite not being given the growth rate, the transversality condition, or the BGP. The

intuition is the same as that for the asset pricing example with growth. If k(t) is approximated by

a exp(ϕt)NN(t; θNN), the ϕ that leads to the smallest norm for the NN(t; θNN) is ϕ ≈ log(1 + g).

All other ϕ lead to explosive NN(t, θNN) functions as t→ ∞. See Appendix A.3 for more details.

State-space formulation. Appendix B shows that the transversality condition (12) is also

required in a recursive state-space formulation. In that case, the inductive bias toward min-norm
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Figure 3: Ensemble of 100 initial conditions for θ solving (13) with g = 0.02 and k0 = 0.4.

solutions applies to the policy function of the state space. To sketch out the logic: without

applying the transversality condition, multiple solutions are fulfilling the Euler equation and

resource constraints for an investment policy k′(·) such that kt+1 = k′(kt). As in the sequential

case, we would need to show that the inductive bias toward flat min-norm solutions chooses the

correct policy (i.e., that the min-norm solution is the correct one).

To see this, use the Sobelev norm ||k′||W 1,2 ≡
∫
k∈X ||∇kk

′(k)||2dk on a compact subset of the

domain. Policies that, on average, exhibit larger gradients (i.e., are less flat) will then have larger

norms. Hence, higher values of ||k′||W 1,2 will result in greater variations in the underlying state

when these policies are applied to iterate trajectories. Specifically, in scenarios where kt+1 = k′(kt),

larger norms of policy functions will cause kt to explode relative to policies with smaller gradients.27

27In principle, higher norms of ||k′||W 1,2 could lead to a more volatile kt, but our model does not exhibit cyclical
behavior. The inductive bias here is sensitive to the formulation of the problem. For example, if one approximates
the c(·) function instead of k′(·), the min-norm solution may not be sufficiently separated from the other solutions
that violate transversality. See our more complete discussion in Appendix A.5.
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Robustness. Appendix A.1 shows that we achieve nearly as accurate short- to medium-run

forecasts with a sparser and irregular grid, even with as few as nine points, using the same

number of parameters for H(Θ).

Another practical concern is whether it is necessary, as it is with shooting and similar ap-

proaches, to pick tN ≡ max{D} close to the steady state but not so large that the solutions

diverge due to numerical instability. Appendix A.2 demonstrates that the methods are still ac-

curate when fit with D = {0, 1, · · · , 9}, well below the point of convergence to the steady state.

The short-run errors are a fraction of a percent and only reach a median relative error of roughly

0.25% at the extrapolation threshold.

Appendix B.3 provides an example of where these methods are unsuccessful, which is illus-

trative of the importance of choosing the right problem formulation. Recall that the key to the

success of inductive bias was that k∗max ≫ k∗, which helped ensure that ||kmax||ψ ≫ ||k||ψ. Hence,
it was relatively easy for optimization algorithms to use inductive bias to regularize and choose

k(t) rather than the kmax(t) that fulfills the Euler equation but not transversality. Instead, if

we approximate using c(t), c∗max = 0 and c∗ > 0 may not be cleanly separated (and hence ||c||ψ
will be harder to disentangle from the ||cmax||ψ through regularization). The consequence is that

solving the formulation with c(t) is more likely to find the incorrect solutions that fulfill the Euler

equations but not transversality.28

Finally, Appendix A.4 fits a misspecified function form of a BGP version and shows that it

still achieves a good approximation even when given an incorrect functional form.

Behavioral interpretation and turnpikes. The interpretation of inductive bias from the

perspective of behavioral macro is that the agents choosing the k(t) policy are biased toward the

one that is less explosive.29 A more specific interpretation of the neoclassical growth model is that

the inductive bias is toward solutions on the turnpike.

Turnpike theorems (see McKenzie, 1976, and Marimón, 1989) show that models with long

28See Appendix B.3. The key to these methods is to scale and approximate the system so that failures in
transversality result in an explosive norm, which ML algorithms can easily correct through inductive bias. In this
case, writing the model in terms of k(t) or the marginal utility of consumption, u′(c(t)) = 1/c(t), would work
well. The most useful guidance comes from the transversality condition limt→∞ βtλ(t)k(t) = 0. This suggests that
formulating the problem using the co-state variable, λ(t), is often the most reliable approach.

29This statement is loose because the trajectories are only locally explosive since the resource constraint limits
the growth of capital in the long run, albeit at a high level. Other formulations, such as solving for the marginal
utility u′(c) = c−1 or co-state variables, would have explosive trajectories in the limit.
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—but finite— horizons have almost the same short- to medium-run dynamics as infinite-horizon

models. Even if trajectories have local transition dynamics at t = 0 and the terminal point T , for

a large enough time frame, it is optimal to remain close to the time-invariant steady state except

close to 0 and T . The implication is that in order to solve finite-horizon models, one can find the

turnpike to use as a boundary condition and solve for the transition dynamics from t = 0.

Relating this to our paper, inductive bias favors transition dynamics that tend toward the

turnpike without explicitly characterizing it, given that the turnpike trajectory is the unique path

that does not diverge. The tradeoff we face is that, despite having very accurate local dynamics

from t = 0, ML methods may not precisely identify the turnpike. A policy at t = 0 might be

insufficiently stable under commitment. If the agent never re-evaluated her policy, she would

fail to stay on the turnpike. However, since our focus is on short-run dynamics, the imperfect

time consistency of long-run policies is not a significant concern. From a behavioral perspective,

periodically recalculating these solutions to refine local dynamics would ensure stability.

4.3 Multiple Steady-States and Hysteresis

When there are multiple steady states, each with its domain of attraction, how would inductive

bias move us toward the correct steady state for a given initial condition?30

To show how ML methods work in practice, we solve the same model as before but replace the

production function with f(k) ≡ max{kα, b1kα − b2} for b1 > 1 and b2 > 0 as inspired by Skiba

(1978). In that case, there are two sets of steady states, denoted (k∗1, c
∗
1) and (k∗2, c

∗
2), with different

domains of attraction. As before, without applying transversality, there will be a (k∗max, 0) that

would solve the problem with vanishing consumption, but inductive bias eliminates it.

Let a = 0.5, g = 0, b1 = 3, and b2 = 2.5. This parameterization leads to steady states k∗1 = 2.75

and k∗2 = 4. The model is solved, as before, by choosing a D and minimizing function (13), where

the only change relative to the previous method is the new f(·) and f ′(·). In particular, we do

not provide the algorithm with any hints that there are multiple steady states.31

Figure 4 plots the results of this experiment for various initial conditions crossing between the

30To understand the challenge, consider how this problem is solved using classical methods: (1) solve the spectral
problem with the Jacobian to find potential fixed points; (2) use the second-order conditions to determine which
points are attracting basins; (3) identify the domains of attraction to divide the state space; and (4) for a given
initial condition, select the appropriate steady state as the boundary condition.

31Unlike the previous examples, we solve the ERM problem with the Adam optimizer, which is slower than
L-BFGS but introduces more inductive bias.
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Figure 4: Solutions to (10) and (11) with a convex-concave production function.

two domains of attraction. The left panel shows the capital paths for various initial conditions for

capital, while the right panel shows the corresponding consumption paths. For clarity, we do not

split the trajectories close to the boundary between the two regions (which occurs at the unstable

root) since this approach is not intended to sharply characterize basins of attraction.32

The inductive bias chooses solutions converging to the correct set of steady states even in

the presence of steady-state multiplicity. ML accurately generates transition dynamics from each

initial condition toward the appropriate domain of attraction.

To understand why ML chooses the correct steady states, notice that there are two forces

at play. Inductive bias plays a role in both of them. First, the discontinuity in the marginal

product of capital would introduce a discontinuity in the Euler equation (11) were trajectories to

pass between the two regions. Discontinuities in the Euler equation lead to large changes in k(t),

which the inductive bias avoids. Second, any trajectories moving toward the wrong steady state

would require steeper transitions since they first need to move closer to the domain of attraction.

Regardless of the source of higher gradients, an inductive bias toward flat solutions rejects those

trajectories. The success of this experiment opens up the possibility of solving complex economic

models with significant hysteresis and multiple steady states, as we see in many spatial models.

32In practice, it seems to get close to the boundaries between the regions but eventually makes mistakes. We
urge caution in cases where the domains of attraction are very close. In that case, traditional methods are required.
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5 Conclusion

This paper presents a theoretical framework and two applications to explore how ML methods

can solve short-term transition dynamics while maintaining consistency with forward-looking ex-

pectations. The central insight is that transversality conditions —essential boundary conditions

that ensure the consistency of forward-looking expectations— can be approximately satisfied

through an inductive bias toward flat and simple interpolating solutions, in line with Ockham’s

razor. Beyond its role in this paper, inductive bias is also fundamental to the double descent

phenomenon in ML. It underpins the success of deep learning across a wide range of problems in

economics and other fields.

While we demonstrated these methods using simple, interpretable, deterministic problems

with well-established theory and reference implementations, the success of this approach suggests

that ML may help solve high-dimensional problems that are otherwise infeasible due to the curse

of dimensionality. However, the findings also caution against hastily adopting ML methods to

solve models without reference implementations. First, satisfying transversality conditions can be

sensitive to problem formulation. Second, nearly stable solutions may still fall short in numerically

simulating ergodic distributions and steady states without periodic policy refinement. However,

in many situations, this is not a concern since the steady state or ergodic distributions are not of

interest in themselves.

In our core results, we emphasized that long-run boundary conditions are behavioral assump-

tions shared by both agents and economists to ensure self-consistent dynamics. Specifically, we

solve for policy functions from the agents’ perspective that satisfy Euler equations and other in-

tertemporal conditions, given a well-specified process for future dynamics. The agents’ inductive

bias leads them to select solutions consistent with stable long-run expectations, ultimately result-

ing in a self-consistent rational expectations equilibrium. This suggests a future direction where

ML models could serve as the foundation for behavioral macroeconomics, with the evolution of

the underlying environment and state space being both dynamic and learned.
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Appendix A Robustness

This appendix contains additional robustness results for the neoclassical growth model of

Section 4 in the main text.

A.1 Sparse Grids

In our baseline example, we choose D ≡ {0, . . . 29} and minimize equation (13) to find a kθ(t)

where |θ| ≈ 40, 000. Alternatively, we use a sparser set of grid points and interpolate when t /∈ D.

In particular, consider a grid with more points close to the area with high curvature and fewer

closer to the steady state, DSparse 1 ≡ {0, 1, 2, 4, 6, 8, 12, 16, 20, 24, 29}, and another grid with fewer

points spread evenly over the domain, DSparse 2 ≡ {0, 1, 4, 8, 12, 16, 20, 24, 29}.
Figure A.1 shows the results of these two experiments for an ensemble of 100 initial conditions.

The left panel compares the benchmark solution, k(t), relative to the kθ(t) for DSparse 1 and

DSparse 2. The right panel compares the benchmark c(t) against the corresponding cθ(t). In both

cases, the shaded areas show the 10th and the 90th percentiles.

The distribution of the relative error of kθ(t) is small, even in the extrapolation region. In the

case of cθ(t), the error is so small that the 10th and 90th percentile ranges are not visible. This

experiment establishes that we can achieve very accurate solutions with sparse grids, even though

1Bowdoin College, 2University of Pennsylvania, 3Morningstar, and 4University of British Columbia, Vancouver
School of Economics.
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Figure A.1: Solutions to equation (13) with DSparse 1 and DSparse 2.

the problem remains overparameterized by around four orders of magnitude. ML algorithms do

not intrinsically require a large amount of data as long as they have a strong inductive bias.

A.2 Solving on a Short Horizon

A challenge in solving for transition dynamics of models with classic algorithms, such as

shooting methods, is the difficulty in choosing the T at which point the solution is close to a

steady state. If T is too small, we move toward the steady state too quickly. If T is too large,

numerical instabilities can accumulate as the solution iterates forward. Choosing the value of T

is an art and requires a good prior on the speed of convergence for a particular model.

To test whether this concern holds with our methods, we solve our model by minimizing

equation (13) with the same H(Θ), but choose D ≡ {0, 1, · · · , 9}. Not only are there few grid

points, but the tN = 9 is far below the point of convergence to the steady state.

Figure A.2 shows the results of this experiment for an ensemble of 100 initial conditions. The

left panel shows the median of the approximate capital paths, denoted by kθ(t) and the benchmark

solution. The right panel shows the median of the approximate consumption paths, denoted by

cθ(t) and the benchmark solution. The shaded areas represent the 10th and 90th percentiles.

The conclusion is that for the short- to medium-run dynamics, the solutions are very accurate,

and the lack of grid points close to the steady state does not feed back to large errors in the short

run (as it would with a shooting method). The extrapolation errors are larger than in the baseline
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Figure A.2: Solutions to equation (13) with D ≡ {0, 1, · · · , 9}.

case, but getting the long run right was not the goal of the exercise. As discussed, extrapolating

and simulating to the steady state is dangerous in general because these solutions are not provably

stable. This experiment suggests that the ML methods relying on the inductive bias are not very

sensitive to choosing data close to the steady state as long as they are not used to extrapolate

too far out of the sample.

A.3 Learning the Scaling Factor

When designing theH(Θ) with a BGP, we added in a learnable rescaling: kθ(t) = exp(ϕt)NN(t, θNN),

where θ ≡ {ϕ, θNN}. Given a D with a large maximum value tN , the min-norm solution for

NN(t; θNN) is achieved by setting ϕ = log(1 + g)—at which point NN(t; θNN) could be non-

explosive. However, if tN is relatively small, then we would not expect the approximation to

exactly choose the ϕ = log(1 + g) case. A smaller ϕ might yield a lower norm NN(t; θNN) for

interpolating a particular D. How well, then, does the algorithm learn g?

Taking the results of Figure 3, which generated solutions using 100 initial conditions, Fig-

ure A.3 plots a histogram of the approximated ϕ and compares them to the true growth rate,

g = 0.02. The results show that the min-norm is biased toward smaller growth rates, as we

might expect. However, the solutions in Figure 3 are still extremely accurate. The variations in

ϕ within Figure A.3 have compensated changes to NN(t; θNN). A very accurate approximation of

the growth rate is not necessary to achieve accurate short- and medium-run dynamics.
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Figure A.3: The distribution of the learned eϕ− 1 for the ensemble of 100 seeds used in Figure 3;
g = 0.02, shown as the dashed line.

A.4 Learning a Misspecified H(Θ)

In Figure 3, we used economic insights to choose a H(Θ) that included a term for exponential

growth. Is it still helpful to suggest problem structure when designing H(Θ) if the suggestion is

misspecified?
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Figure A.4: Solutions to problem (13) with the misspecified kθ(t) = t ·NN(t; θ)+k0 and g = 0.02.

To analyze this case, we solve a version where the scaling is assumed to be linear rather than

exponential. In particular, kθ(t) = t · NN(t; θ) + k0. The linear scaling allows some degree of

4



growth but as tN → ∞, the NN(t; θ) would still need to have an infinite norm in order to capture

the true dynamics of the BGP.

Figure A.4 displays the solutions to problem (13) with this specification for 100 initial condi-

tions. The left panel shows the benchmark and the median of the solution for capital, while the

right panel does the same for consumption. Although the 10th and 90th percentiles are included,

they are so close to each other that they remain indistinguishable even after zooming in.

Compared to the well-specified case of Figure 3, the long-run extrapolation slowly diverges

(and would continue to do so for any finite tN), but this does not cause any issues for the short-

and medium-run dynamics.

A.5 Function Norms and the Transversality Condition

Section 4 characterized the set of functions fulfilling the Euler equation and resource constraints

as (i) kmax(t), cmax(t), with steady states k∗max such that f ′(k∗max) = δ and c∗max = 0; and (ii)

k(t), c(t) with interior steady states k∗ and c∗. The transversality condition (12) eliminated the

first solution to prevent the marginal utility of consumption, u′(c) = c−1, from becoming infinite.

When relying on the inductive bias of the function norms in lieu of the transversality condition,

we must argue that ||kmax||ψ > ||k||ψ for a large class of norms, ψ. To see this, Figure A.5

plots the two solutions to the under-determined system. The blue curves show a set of capital,

consumption, and marginal utility paths, denoted respectively by kmax(t), cmax(t), and u
′ (cmax(t)),

that violate the transversality condition. The black curves show the optimal paths that satisfy

the transversality condition and that eventually converge to k∗, c∗. Focusing on the left panel, we

see that the path of the kmax(t) function has much steeper changes than that of k(t). Therefore,

for a large class of norms and semi-norms, which penalize either the average level or gradients, we

have ∥kmax∥ψ > ∥k∥ψ.
The middle and right panels of Figure A.5 also provide intuition on why these methods can be

fragile to the right formulation. While ∥kmax∥ψ > ∥k∥ψ for a large norm given the big spread

between k∗ and k∗max, this is not the case for c(t). If a norm penalized the gradients (e.g.,∫ T
0
|c′(t)|dt), then the norms of ||cmax||ψ and ||c||ψ would be similar. If the level enters the norm, it

may even bias the solution toward the wrong answer (i.e., where c∗max = 0). The right panel shows

the other extreme, where using the marginal utility makes an even starker difference between

the two solutions. The general advice, true for both the sequential formulation and the state-
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Figure A.5: Comparison between the optimal solution and those violating the transversality
condition.

space version, is that it is best to approximate functions that are most explosive if they violate

transversality. Co-state variables are the best; state variables often work well, but jump variables

are often bounded in a way that makes min-norm solutions harder to disentangle. We see that a

similar issue holds in Appendix B.3 for the recursive formulation.

Appendix B State-Space Formulation

This appendix describes the recursive state-space formulation of the neoclassical growth model,

in contrast to the sequence-space baseline of Section 4. Inductive bias will serve a similar role in

providing a sufficiency condition for transversality, but it will involve norms of the policy functions

rather than the trajectories themselves.

B.1 Model

For the state-space (k, z) ∈ R2
+, equations (10) and (11) become:

u′(c) = u′(c′)β
[
z′1−αf ′(k′) + 1− δ

]
(B.1)

k′ = z1−αf(k) + (1− δ)k − c (B.2)
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where k′, c′, and z′ are the next period capital, consumption, and TFP, respectively, and u(c) =

log c. All model primitives and parameters remain the same as in the baseline. The transversality

condition (12) must hold for all initial conditions in the state-space formulation:

0 = lim
T→∞

βTu′ (cT (k0, z0)) kT+1(k0, z0) for all (k0, z0) ∈ R2
+. (B.3)

In this notation, kT+1(k0, z0) requires iterating the k
′(·, ·) policy and z′ = (1+g)z law of motion

T + 1 times from (k0, z0). Consumption, cT (k0, z0), is found by first iterating to find (kT , zT ) and

then using equation (B.2) to calculate cT = z1−αT f(kT ) + (1− δ)kT − k′(kT , zT ).

Transversality with classic methods. The iteration of the policy k′(·, ·) in equation (B.3)

links stability and transversality. If k′(·, ·) was explosive —e.g., |∇kk
′(k, z)| > 1 for k and z above

some threshold— capital would explode until it asymptotically approached the capital maximizing

the BGP (or k∗max if g = 0) via equation (B.1). This, in turn, would lead to an infinite marginal

utility of consumption in equation (B.3), violating transversality.

In practice, classical methods do not apply the transversality condition as a limit and instead

enforce it indirectly in several ways:

• For sequence-space methods, a steady state is found (perhaps after detrending the BGP),

which is then used as a terminal boundary condition with shooting methods. Those ap-

proaches implicitly use the transversality condition when solving for the correct steady

state.

• Linear rational expectations models and LQ control, such as those in Blanchard and Kahn

(1980) and Klein (2000), select the non-explosive root via spectral methods.

• With global solution methods, such as projection and collocation, the transversality is im-

plicitly fulfilled by restricting the domain for the state space. For example, in the growth

model, we might approximate with Chebyshev polynomials on a compact hypercube on

[kmin, k̄] × [zmin, z̄]. If we chose k̄ < k∗max and kmin < k∗, then policy functions violating

transversality are rejected since they cannot fulfill the Euler equation before hitting corners.

Alternatively, by bounding c ≥ cmin > 0, algorithms implicitly reject functions that fail

transversality by bounding the marginal utility of consumption, u′(c) ≤ u′(cmin) <∞.

7



In low dimensions, where we have a strong prior on the relevant regions of the state space,

economists can artfully tinker to ensure that a compact hypercube is placed at the appropriate

location and does not contain the solutions violating transversality. Moreover, by plotting the

dynamics of the model, we can see when simulations diverge (see Fernández-Villaverde et al.,

2016, p.10).1

However, this process is not feasible in high dimensions since we cannot constrain ourselves

to a compact hypercube and may not have a good prior on the location of a steady state. Even

evaluating whether transversality conditions are fulfilled for a given policy is computationally

infeasible since it requires iterating the policy function for all initial conditions.

Notice here the connection to the issue of stability in ML methods. Simple forward itera-

tions can accumulate numerical errors and be numerically unstable when the solution is only

“approximately” stable. This phenomenon appears even in small models.

B.2 Min-Norm Solution

We approximate the capital policy, k′θ(·, ·) ∈ H(Θ), using a highly parameterized neural net-

work. Choose D ⊂ R2
+ with N points and minimize the equivalent of equation (13):

min
θ∈Θ

1

N

∑
(k,z)∈D

[
u′
(
c(k, z; k′θ)

)
u′
(
c(k′θ(k, z), (1 + g)z; k′θ)

) − β
[
(1 + g)zf ′(k′θ(k, z))+ 1− δ

]]2

. (B.4)

Consumption is defined through the feasibility constraint for a given policy for capital k′θ(·, ·):

c
(
k, z; k′θ

)
≡ f(k) + (1− δ)k − k′θ(k, z). (B.5)

Following the interpretation of ERM as a minimum norm solution, we can think of solutions

to equation (B.4) as finding:

min
k′θ∈H(Θ)

||k′θ||ψ (B.6)

s.t.
u′
(
c(k, z; k′θ)

)
u′
(
c(k′θ(k, z), (1 + g)z; k′θ)

) = β
[
(1 + g)zf ′(k′θ(k, z))+ 1− δ

]
, for all (k, z) ∈ D. (B.7)

1This is part of the appeal of perturbative solutions, which are provably stable even in high dimensions (if
properly pruned).
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The norm in problem (B.6) typically depends on gradients due to its bias toward flat solu-

tions. For example, it might have properties similar to those of a Sobolev norm ||k′θ||2W 1,2 ≡∫
||∇k′θ(k, z)||22dF (k, z) for some measure F over the state space, or on a compact subset of the

domain.

To informally argue why this bias would choose the non-explosive solution, consider iterat-

ing the policy function kt+1 = k′θ(kt, zt). A bias toward solutions with smaller gradients with

|∇kk
′
θ(k, z)| < 1 for large k will lead to policies that have smaller changes in capital, kt+1−kt. If a

steady state exists, it will reach the kt ≈ k′θ(kt, zt) fixed point. Iterating forward with the policy,

the bias leads to trajectories that fulfill the transversality condition (B.3). In Appendix B.3. we

demonstrate this by plotting the k′θ(·, ·) for the trajectories that fulfill the Euler equation with

and without transversality.

Results. We solve the minimization problem (B.4) for β = 0.9, α = 0.33, δ = 0.1, g = 0,

z0 = 1, and k0 = 0.4. In our baseline case, D is a uniform grid of 16 points between k1 = 0.8 and

kNk
= 2.5. When g ̸= 0, we can use a grid D ≡ {k1, · · · , kNk

}×{z1, · · · , zNz} of N = Nz×Nk total

points, but the methods could use sampled or simulated points in the state-space. The design

of H(Θ) is a neural network NN(k, z; θ) identical to the sequential version of the model, except

that it takes two inputs (k, z) rather than the univariate t. As before, we solve with the L-BFGS

optimization algorithm, which is fast and requires little tuning.

Figure B.1 shows the median of solutions for capital (top row) and consumption (bottom

row) for an ensemble of 100 initial conditions. The consumption path c̃(t) is calculated with

equation (B.5) given the trajectory of the state space. The benchmark solutions, k(t) and c(t),

are obtained using value function iteration. The left panels show the median of the approximate

capital, k̂(t), and consumption, ĉ(t), paths, along with the benchmark solutions (i.e., k̂(t) and

ĉ(t) are the results of iterating the solution from a particular initial condition). The right panels

show the median of the relative errors for capital, εk(t) ≡ (k̂(t) − k(t))/k(t), and consumption,

εc(t) ≡ (ĉ(t) − c(t))/c(t). The shaded regions show the 10th and 90th percentiles. The gray

region in the top-left panel shows the interpolation region, defined as the convex hull of D. The

dashed parts of the curves show the median of the relative errors in the extrapolation region. The

shaded regions show the 10th and 90th percentiles of the solutions for the 100 random seeds for

optimization of θ.
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Figure B.1: Solutions obtained by solving problem (B.4) for g = 0.

The results show that the inductive bias rules out solutions that violate the transversality

conditions in all cases and achieves a good approximation despite only using 16 data points. Even

when k0 is outside the minimum value of D, the errors are small. An inductive bias leads to good

generalization behavior even outside of the convex hull of Conv(D).

BGP. Since we know that the solution will be homothetic when g = 0.02, we now design H(Θ)

as k′θ(k, z) ≡ z ·NN(k/z, z; θ). We set D as the cartesian product of 16 points in [0.8, 3.5] for capital

with 8 points in [0.8, 1.8]. As before, using a small D highlights the strength of the inductive bias.

This implementation minimizes the problem (B.4) with different H(Θ) and D for 100 seeds on

the initial condition for the optimizer.2

Figure B.2 shows the results for a simulated trajectory from k0 = 0.4 and z0 = 1 and compares

2In the exactly homothetic case, we could further simplify this to a univariate NN(k/z; θ), but we leave in the
z parameter as a check for cases that are almost homothetic and as a further check that the inductive bias avoids
overfitting.
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Figure B.2: Solutions to problem B.4 for g = 0.02.

the dynamics given the benchmark solution. The left panel shows the median of the approximate

capital path, denoted by k̂(t). The right panel shows the median of the approximate consumption

path, denoted by ĉ(t). The shaded regions show the 10th and 90th percentiles.

The results indicate that, even in the case of growing TFP, the solution is very accurate in the

short run, and the differences relative to the benchmark are difficult to see even after zooming in

on the graph. The long-run extrapolation is less accurate than in the benchmark (where we could

manually rescale due to homotheticity). In other words, we can obtain very accurate short- and

medium-run solutions, even though the initial condition for capital lies outside the interpolation

region.

B.3 Failures of Euler Residuals Minimization

Appendix A.5 discussed the importance of choosing the right formulation of the problem to

ensure that the inductive bias toward min-norm solutions would select the solution that fulfills

transversality. This issue is often even more stark in state-space formulations of the problem.

Understanding this phenomenon is especially important before we move toward high-dimensional

problems in macroeconomics, where failures of transversality are less obvious.

We demonstrate this problem by comparing an equivalent formulation of the neoclassical

growth model where we approximate cθ(k, z) to our previous results in Figures B.1 and B.2. The

inductive bias toward min-norm solutions will consistently choose the wrong solution that violates
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transversality.

Let z = 1 and g = 0 for simplicity, approximate cθ(k) ∈ H(Θ) with a neural network, and

implicitly define the investment choice as k′
(
k; cθ

)
≡ f(k) + (1 − δ)k − cθ(k). The equivalent to

the ERM objective function (B.4) becomes:

min
θ∈Θ

1

N

∑
k∈D

[
u′
(
cθ(k)

)
u′
(
cθ
(
k′(k; cθ)

)) − β
[
f ′(k′(k; cθ))+ 1− δ

]]2

︸ ︷︷ ︸
≡εcE(k)

. (B.8)
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Figure B.3: Comparison between approximating the policy function for capital k′(k) vs. the
consumption function c(k) with a deep neural network.

Figure B.3 shows the comparison between approximating the policy function for capital k′θ(·)
vs. approximating the consumption function c(·) with a deep neural network.3 The left panels

3Primitives and parameters are identical to our baseline case. Given the parameters, the steady-state solution
fulfilling transversality is k∗ ≈ 2.0.
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show the results using the baseline k′θ approximation, as in Figure B.1, but plots the Euler error

in the top panel and the policy function k′θ(k) in the bottom panel. The k′(k) in the bottom panel

crosses the 45-degree line around k∗ ≈ 2.0, which is the closed-form steady state. The top right

panel instead plots the square Euler error when approximation the cθ function, while the bottom

right panel plots the implied k′(k; cθ) policy from k′
(
k; cθ

)
≡ f(k) + (1 − δ)k − cθ(k). The solid

curves show the medians, and the shaded regions show the 10th and 90th percentiles over 100

different seeds.

Approximating the consumption functions with a neural network leads to solutions that violate

the transversality condition. Given the cθ approximation, the squared Euler residual error, εcE(k),

is defined in equation (B.8) and when approximating with k′θ, an equivalent definition of εkE(k)

exists from equation (B.4). The Euler errors in both cases are very small and close to numerical

precision, so the optimizer has a solution that interpolates the Euler equation and implicitly fulfills

the resource constraint on D. If anything, the Euler errors are smaller for the cθ approximation.

However, the bottom right panel does not have the k′(k) intersecting the 45-degree line. It has

chosen a cθ such that ∇kk
′(k; cθ) > 1 for all k. This leads to explosive k̃(t) trajectories and fails

the transversality condition in all cases.

The reason why the inductive bias works in the wrong direction in this formulation can be

seen if we return to the middle panel of Figure A.5. The consumption trajectory that violates

transversality converges to 0 and would have a smaller norm for many ψ that penalizes the level of

the function. Even without penalizing the level, the slope of the solution fulfilling transversality

is not systematically smaller in absolute value.

To conclude, low Euler (or value-function) errors are insufficient to ensure that an ML algo-

rithm has successfully solved the problem, and inductive bias with the wrong problem formulation

might systematically choose the policy that violates transversality. The broad advice is to ensure

that the problem is formulated in a way that violations of transversality lead to explosive behavior

(e.g., diverging states or formulating in terms of the marginal utility or co-state variables).
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