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Introduction

The import of prosumers—an individual or business that both produces and consumes within
a specific market—nhave increasingly grown in modern economies. Experts argue that within
the energy sector, prosumers are essential for promoting future sustainable energy practices
and transitioning toward a greener future. This is because such actors can provide grid
stability, accelerate adoption of renewable energy sources, and have experienced
considerable growth in recent years. For example, investments in residential photovoltaic
(PV) systems have increased rapidly over the past decade; as of 2022, it was estimated that
residential distributed PV rooftop systems account for more than 23% of total installed PV
capacity around the globe [1]. Expert projections suggest that the share of PV capacity
amongst residential consumers in developed countries will increase significantly over the

next several years [2].

For their part, governments around the globe have recognized the value of prosumers
and are increasing subsidies for the installation of rooftop PV systems. At the grid level, the
installation of such systems can lead to reductions in greenhouse gas emissions and help to
stabilize electricity distribution networks — particularly during periods of peak load [3]. At
the household level, the installation of such systems can lead to lower expenditures on
electricity and increased home values [4]-[7]. Implicitly, many of these benefits rest on the
assumption that households do not adjust consumption patterns following the adoption of a
PV system.

Unfortunately, there is a growing body of empirical work documenting increased
consumption following the installation of residential PV systems. This phenomenon has been
labeled the “solar rebound” effect with estimates of the change in consumption ranging from
5.8 to 41 percent [8]-[15]. Conceptually, there are multiple channels that could underlie both
the existence and magnitude of “solar rebound” [16]. Some of these channels, e.g.,
remuneration schemes and relative differences in the price of electricity bought from and
sold to the grid, are neoclassical in nature. Other channels, e.g., moral licensing, inattention,
and peer influence, are behavioral in nature [16]-[22].

In this study, we step back from this debate to explore the economics of prosumers

more generally. To do so we use a common tool in the economics literature on energy
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conservation — a home energy report — to explore behavioral effects on the household
electricity production and use with rooftop PV systems. We leverage the home energy report
by conducting a natural field experiment in collaboration with an energy services provider
in Sweden.! Our experimental approach provides a secondary benefit in that although there
is a large literature exploring the effect of peer comparisons on residential energy use [24]-
[30], we are unaware of any prior work exploring the use of such strategies to manage the
actions of prosumers. Given the rapid diffusion of rooftop PV systems and the pervasiveness
of “solar rebound”, this is an important gap in the literature.

A key aspect of our study is that we observe hourly data on electricity consumption,
purchases from the grid, and sales back to the grid for over 700 of the company’s clients.
The data span a 32-month period starting in December 2020. Households in the experiment
were randomized into either a treatment or control group. Starting in December of 2021,
households in the treatment group were sent an electronic Home Energy Report (eHER) on
a bi-weekly basis. The eHER contained both descriptive and injunctive information
regarding both overall electricity consumption and electricity purchased from the grid.

Results from our field experiment provide evidence that HERs are an effective
strategy to manage the energy use of prosumers and thus moderate “solar rebound”.
Households receiving the eHER reduce average weekly consumption by approximately 9.80
percent. Yet, the estimated Average Treatment Effect (ATE) masks substantial heterogeneity
across seasons. For example, the average treatment effect is significantly greater during
periods of increased production — April to September. During winter months, the impact of
the eHER is substantially lower and, in many weeks, is statistically insignificant.

We observe similar heterogeneity when examining the effect of the eHER on
behavior across the different hours of the day. During the overnight and early morning hours
— lam to 6am - the estimated hourly treatment effects are negative but statistically

insignificant. During the morning and early afternoon hours — 7am to 3pm — the estimated

1We label our work as a natural field experiment following the nomenclature in Harrison and List [23]. Sweden
is a key test case country because the share of PV capacity coming from residential households is more than
twice the world's average, accounting for more than half of the grid-connected PV power. This provides the
variation possible to explore the economics of prosumers.



hourly treatment effects are statistically significant and correspond to approximate 5 percent
reductions in average hourly consumption. The estimated hourly treatment effects increase
substantially in the late afternoon and evening hourly. Between 4pm and midnight, the
estimated average hourly effects fluctuate in the range of 7 to 10 percent and reach a peak

during the 6pm hour.

As a final set of results, we examine changes in sales to, and purchases from, the grid
over the course of the day. Relative to counterparts in the control group, treated customers
increase sales to the grid during daylight hours — 5am to 5pm - and reduce sales in the
evening and pre-dawn hours — 7pm to 4am. We observe the opposite pattern when examining
purchases from the grid. Treated customers purchase significantly more from the grid during
the late evening/early morning hours — 11pm to 3am — than counterparts in the control group.
In contrast, we observe a significant reduction in purchased electricity during daylight hours
—5am to 6pm. Viewed in its totality, such patterns suggest that the observed hourly treatment

are driven by a combination of load shifting and conservation.

The remainder of our study proceeds as follows. Section Il describes the natural field

experimental design. Section 111 summarizes the empirical results. Section IV concludes.

Il. Field Experiment

Our natural field experiment was implemented in collaboration with a Swedish company
specializing in metering and IT systems for energy efficiency and renewable energy. Data
from the experiment were drawn from a sample of 705 residential customers who were
randomized into either a treatment (488 households) or control (217 households) group.
Figure 1 provides a timeline of the experiment. Households in the treatment group were sent
an electronic Home Energy Report (eHER) via email on a bi-weekly basis starting in
December 2021. In total, customers in the treatment group received 36 eHER’s with the final
report delivered on August 13", 2023. Supplementary Table 1 provides information on the

number of eHERs delivered in each month of the experiment.?

2 The eHER was sent every third week during Christmas and the summer holidays. Supplementary Figure 2
displays the spatial distribution of households in our experiment; the majority of which reside in the southern
portion of the country.



Appendix Figure 1 provides a sample of the eHER which is comprised of different
sections, each of which provides information on the customer’s energy consumption and
efficiency along with a set of energy-savings tips. The main feature of the eHER was a
section providing both descriptive and injunctive information about the household’s overall
electricity consumption and purchases from the grid. The descriptive information compared
the household’s overall electricity consumption and purchases from the grid over the last 8
weeks with that from two distinct reference groups — a set of similar customers and a set of
the most energy efficient customers.®

Control group: 217 households
|

First eHER Last eHER
| |
I Biweekly eHER I
| |
7 December 2021 13 August 2023

(488 households)

|.|'
36 eHER delivered

Fig. 1| Overview of the timeline in the experiment. The treatment group was randomly assigned in December

2021. eHERSs are delivered via email every second week.

The descriptive norm was conveyed as two distinct messages. The first provided a
comparison of the customer’s average consumption compared to that of their most efficient

neighbours. Specifically, the first message read
On average, you consumed XX% more energy than your most efficient neighbours

The second message displayed how the household’s average consumption ranked relative to
the set of like households. The message was displayed in a colored box with different icons

and background colors, and read

Your rank: AA out of BB similar households

3 The set of similar customers included at least 20 other households who lived in the same geographic area as
the recipient. The set of the most energy-efficient customers was based on the 15" percentile of users.
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The color of the text box depended on the household’s relative rank. For consumers whose
average consumption fell within the top 25% of referential others, the text box was
illuminated in green. For those whose average consumption fell in the 25" to 75 percentiles,
the text box was illuminated in blue. And for those whose average consumption was in the

upper quartile, the text box was illuminated in red.

The injunction norms were similarly conveyed in two forms. The first was one of
three emojis — a winking face (Great - green), a slightly smiling face (Good - blue), and a
neutral face (Moderate - red) — based upon the household’s average weekly consumption
over the past eight-week period relative to the set of like and efficient neighbours. Customers
whose average consumption was less than the efficient neighbour received the winking face
(Great) emoji. Customers whose consumption fell between that of the efficient and average
neighbour received the smiling face (Good) emoji. And those whose average consumption
over the eight-week period exceed that of the average neighbour received the neutral face

(moderate) emoji.
The second part of the injunctive norm was a general message

Is saving energy important to you? For more than 80% of our customers saving
energy important value. Even little deeds can have a large impact. Discover our tips

to consume less and better.

The statement was designed to convey the importance of energy conservation and remind
households that even small actions can matter. In this regard, the statement shares similarity

with fund-raising appeals reminding donors that every penny counts [31]-[32].

The final section of the eHER offered tailored information providing tips for saving
energy. The tips focused on two distinct behaviors (a) curtail strategies to manage everyday
consumption and (b) investments for improving the energy efficiency of the home. An

example curtailment message is the following;

A microwave takes 15 minutes to do the same job as 1 hour in an oven. Use a

microwave instead of your oven 4 times a week and save money.
A typical message focusing on energy efficient investments is;

Add insulation to walls of your building to improve energy efficiency.
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The number of tips provided to each household was endogenously determined, with the most

efficient households receiving fewer tips.

We have access to data on hourly electricity consumption, purchases from the grid,
production, and sales back to the grid from December 7th, 2020, to August 13th, 2023. We
also had access to some demographics, such as home size, number of household members,
the age of the homeowner, and the zip code. However, it should be noted that demographics
were not available for all households in our sample. Based on the analysis of the pre-
treatment period presented in the supplementary material, households in the treatment group
had higher consumption on average than households in the control group. We address this
issue in the empirical analysis by using fixed effects in the regression model and showing

parallel trends pre-treatment.
I11. Field Experimental Results
Weekly effects

We estimate heterogenous treatment effects through a difference-in-differences setting.
Our approach builds upon recent advances in the economics literature, which allow the
researcher to estimate models that include multiple treatments and effects that are
allowed to differ across multiple time periods [33]-[36]. The analysis aims to examine
our intervention's effect on energy efficiency (average weekly consumption) and demand

response (consumption across different hours of the day).

Figure 2 displays time-varying estimates for the effect of our treatment on average
weekly consumption over each of the 88 weeks of the post-intervention period. The
figure displays two distinct patterns. First, evaluated over the course of the experiment,
the estimated ATE corresponds to an approximate 9.8 percent decrease in average weekly
electricity use. The estimated treatment effect is significantly larger than the range of
estimates for similar programs in Europe [24], [37] and the United States [38]. The
estimated treatment effect is also larger than the weighted average in [39] for studies
reporting estimates from interventions utilizing some form of a social comparison but
comparable to effects reported in [40] for weekly social comparison reports amongst

households residing in apartments in India’s National Capital Region.



There are several potential reasons why the effect sizes we observe are larger than
those in prior work. First, the average home size for households in our sample is 178
square meters, approximately 45 percent larger than the average size (122 square meters)
for a one- or two-dwelling building in Sweden. We observe similar differences in average
weekly consumption amongst households in our sample (~35 kWh/week) and the average
Swedish household (~24.09 kWh/week). Past work has documented that peer-
comparisons' effect is larger amongst the highest user groups [37]. We would thus expect

larger average treatment effects in our setting than those observed in prior work.

50,000
|

Impact on weekly
electricity consumption (watts)

-50,000

-100,000

T T T T
01jan2022 01jul2022 01jan2023 01jul2023
Week

Fig. 2 | ATT on electricity consumption. The graph shows the ATT on electricity consumption
(in watts) weekly. The period of analysis is from 07 December 2021 to 13 August 2023.

Second, past work has documented a direct relationship between the frequency
with which customers observe peer comparisons and the resulting treatment effect. For
example, [41] shows significant differences in the effect of monthly vs quarterly HERs.

Given that households in our study received the eHER every other week, it is not



surprising that the effects we observe are larger than those in past work where peer-
comparisons were delivered on a less frequent basis. Finally, we cannot rule out that
households in our sample increased electricity consumption following the installation of
the solar PV system. Mechanically, any such “solar rebound” effect would distort
counterfactual consumption and provide an additional margin for the eHER to induce

change, mitigation of distortions related to “solar rebound”.*

The second distinct pattern observed in Figure 1 is marked seasonal differences
in the effect of the eHER on weekly consumption. During the late Fall through early
Spring months (November through March), peer comparisons have little to no impact on
observed consumption patterns. For example, over these months, the estimated weekly
treatment effects range from an approximate 7.8 percent increase in consumption during
the week of the 28th of March 2022 to a 15.7 percent decrease in consumption during the
week of the 7th of November 2022. Moreover, fewer than 50 percent (18 out of 38) of

the estimated weekly effects are statistically significant at the p < 0.05 level.

Peer comparisons, in contrast, have a more pronounced impact on average weekly
consumption during the mid-Spring through mid-Fall months (April through October).
For example, over this period, 92 percent (46 out of 50) of the estimated weekly treatment
effects are statistically significant at the p < 0.05 level. The median treatment effect over
this sample is a 15,6 percent decrease in consumption, while the largest estimated
treatment effect is a 22,7 percent reduction in use amongst treated households in the week
of 19" of June 2023.

The seasonality observed in the estimated treatment effects mirrors seasonal
differences in daylight hours and, hence, the amount of electricity produced by the
rooftop PV systems of the households in our sample. As displayed in Figure 3, the
average watts/hour produced in the pre-intervention period by households during the
months of November through March is approximately one-half to one-eighth of that
produced from April through August. However, the estimated seasonality runs counter to
differences in both average wholesale (day ahead) prices and aggregate electricity

4 Such argument shares similarity with findings in [42] which decomposes the estimated effect of a critical
peak pricing experiment into distortions in consumption on counterfactual (non-CPP) days and reductions in
use that would have arisen in the absence of such distortions.
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demand in Sweden across different months of the year. The estimated effects are also
counter to prior work in Finland [26] documenting that peer comparisons have a greater

impact on average monthly consumption during winter months.

In part, such differences may capture an “income effect” whereby prosumers
perceive energy conservation as an opportunity for financial gain by selling excess
electricity back to the grid. Mechanically, such opportunities are directly related to solar
PV production and inversely related to the need for energy intensive activities such as
heating. Intuitively, one would thus expect prosumers to perceive the potential for

financial gain to be more pronounced (salient) during summer months.

Yet, it is important to note that such perceptions are misguided. Under net
metering, there is a broader set of financial gains from conservation efforts — even during
winter months or other periods where consumption exceeds production. During such
periods, conservation efforts and increased reliance upon self-produced electricity allow
prosumers to forego on VAT (25%) and a 5 cent per MWh energy tax imposed on grid-
purchased electricity. From a policy perspective, such misperception and the dampened
incentive to conserve during winter months is concerning as aggregate domestic

production and corresponding average wholesale prices spike during the winter months.®

4000

——— cControl group

3200

2400

Production (wh)

|
\>
/

\
|/
/

Month

Fig. 3| Electricity production from PV systems by month and treatment group. The graph shows
the electricity production from PV panels (in watts) by month and treatment group. The analysis
period is pre-treatment, from 07 December 2020 to 06 December 2021.

5 For example, whereas aggregate domestic electricity production in the first month of our treatment period
(January 2022) exceeded 16.5 terawatt hours, aggregate domestic production was approximately 31 percent
lower (~11.43 terawatt hours) in June 2022 and more than 39 percent lower (~9.98 terawatt hours) in June
2023 [43].
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Hourly treatment effects

We next explore the effect of our treatment on intraday patterns of consumption and how
these reflect changes in both purchases from and sales back to the grid. Figure 4 displays
average intraday electricity production by the households in our sample (Panel A) and the
estimated hourly average treatment effects (ATEs) of the eHER on hour-by-hour electricity
consumption. As noted in Panel A, average hourly electricity production varies widely over
the course of a day. For example, average hourly production is effectively zero in the evening
and overnight hours (19:00 to 03:00) and peaks in the late morning between the 09:00 and
12:00 hours.

4,000

Panel A ———— Control group

———— Treatment group

\
/

N\
AN

N\
2
2

T T T T T T T T T T T T T T y T y
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Panel B

05

sumption (log wats)

-.05

-15

Hourly ATE on con:
1

Fig. 4 | Electricity production and ATE on electricity consumption. The first panel of the
graph shows the average electricity production from PV panels (in watts) by hour of the day
and by treatment group. The second panel shows the ATE on electricity consumption (in watts)
by hour of the day. The period of analysis is from 07 December 2021 to 13 August 2023.

Panel B of Figure 4 displays temporal variation in the estimated hourly treatment
effect — as measured by differences in log watt/hours consumed — over the course of the day.
During the overnight and early morning hours (01:00 to 06:00), the hourly average treatment
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effects are small in magnitude — approximately 2 to 2.5 percent reductions in consumption —
and statistically insignificant. Starting with the 07:00 hour, the estimated treatment effects
nearly double and remain relatively constant until the mid-afternoon (15:00 hour). During
this period, treated households consume approximately 5 percent less in every hour than
counterparts in the control; differences that are statistically significant at the p < 0.05 level.
The estimated hourly treatment effects steadily increase during the 16:00 and 17:00 hours
and subsequently stabilize through the midnight hour. Over these evening hours, treated
households consume approximately 10 percent less per hour than counterparts in the control

group; differences that are statistically significant at the p < 0.05 level.

It is interesting to note that those hours with the largest estimated treatment effects
are distinct from hours with greatest average solar PV production. This suggests that the
intraday impacts of the eHER are not driven entirely by desires to increase sales to the grid.
To better understand factors that determine the observed hourly impacts, we next explore the
effect of the eHER on intraday patterns of purchases from and sales to the grid and the extent
to which these changes reflect intraday differences in the average spot market price for
electricity. As many of the households in our sample have in-home battery storage systems,
there is a financial incentive to purchase electricity for storage during periods with low
electricity prices and to consume produced and stored electricity in periods with highest
prices.® As noted earlier, such intraday shifts allow prosumers to forego paying a VAT

(25%) and an additional 5 cents per MWh energy tax imposed on grid-purchased electricity.

Figure 5 and Figure 6 display intraday estimates of the hour-by-hour ATEs for sales
back to and purchases from the grid, respectively. As displayed in the figures, the estimated
impacts vary substantially across hours of the day. For example, relative to counterparts in
the control group, treated customers reduce sales back to the grid in the evening and
overnight (19:00 to 03:00) hours. However, such customers sell approximately 8 to 23
percent more electricity back to the grid between the 05:00 and 17:00 hours with the
estimated difference spiking in the afternoon (13:00 to 16:00) hours.

& Unfortunately, we do not have information on which households in our sample have in-home battery storage
systems. We only know that a large majority of our partner’s customers, elect to bundle the purchase of the
rooftop solar PV and in-home battery storage systems.
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Fig. 5| Hourly ATE on electricity sales back to the grid. The graph shows the ATT on electricity
sales (in watts) back to the grid by hours of the day. The period of analysis is from 07 December
2021 to 13 August 2023.

Figure 6 plots the estimated hourly average treatment effects for purchases from the
grid. As displayed in the figure, the intraday pattern of ATEs is opposite that for sales back
to the grid. For example, relative to counterparts in the control group, treated households
purchase approximately 3 to 8 percent more electricity in the late evening and overnight
(21:00 to 03:00) hours than counterparts in the control groups; differences that are
statistically significant at the p < 0.05 level from the 23:00 to the 02:00 hour. Starting with
the 05:00 hour treated households purchase significantly less electricity from the grid than
counterparts in the control group; a pattern that lasts throughout the 18:00 hour. During this
time period, the estimated treatment effects correspond to reductions in purchases from the
grid in the range of 8 to 24 percent. As with sales back to the grid, the estimated treatment
effects are relatively stable from the 07:00 to 12:00 hours and peak during the 14:00 and
15:00 hours.

13



>

purchases (log watts)
-1

Hourly ATE on electricity

-2

|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T

0123456 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23
Hour

Fig. 6 | Hourly ATE on electricity purchases from the grid. The graph shows the ATT on
electricity purchases (in watts) from the grid by day hours. The period of analysis is from 07
December 2021 to 13 August 2023.

A natural question arises: what drives the observed intraday patterns of treatment
effects on sales to and purchases from the grid? Under net metering, there is financial
incentive for households to reduce purchases from the grid during hours of the day where
the spot market price for electricity is high. To do so, there are multiple strategies that a
prosumer can follow. One possible strategy is to intertemporally substitute consumption
between periods of high and low prices. A second strategy is to intertemporally substitute
consumption from periods with low levels of solar PV production to periods with higher
levels of production. A third strategy, for households with in-home battery storage systems,
is to charge the battery during periods of low spot prices either through storage of produced
electricity or purchases from the grid and to consume the stored electricity during peak

periods when prices are highest.

Given that we observe significant reductions in overall electricity consumption and
reductions in consumption every hour of the day, we can rule out intertemporal substitution
as a primary driver of the observed intraday dynamics on purchases from and sales back to
the grid. To better discern the relative importance of the remaining two strategies, it is

important to document intraday variation in electricity prices. Figure 7 presents average
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hourly prices over the course of our experiment for both the pre- and post-intervention

periods.

As noted in the figure, spot market prices were significantly higher in the post-
intervention period than those observed in the pre-intervention period for all hours of the
day; an impact driven by the Russian invasion of Ukraine and subsequent reductions in
supplies of natural gas to the European Union. Yet, the observed differences reflect a level
shift but have no discernible impact on the intraday pattern of price variation. In both periods
prices spike and peak twice during the day and subsequently fall in the overnight hours. The
first spike occurs in the mornings and peaks around the 08:00 hours; a period that coincides
with individuals waking up and getting ready for work/school. The second spike occurs in
the late afternoon and peaks around the 18:00 hour; a period that coincides with individuals
returning from work/school. Although prices dip by approximately 30-40 percent between
the two peaks, average hourly prices during these hours are significantly higher than those

observed in the overnight hours.

§ -| ———*—— pre-treatment period /\
e post-treatment period \\ / \

100
/
\
/

Spot price
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Fig. 7. Intraday variation of electricity spot prices by treatment period. This figure shows the changes
in the intraday variation of electricity spot prices between the pre-and post-treatment periods.

Given observed intraday variation in spot market prices, there is financial incentive
for households to charge batteries in the overnight hours to store energy for use later in the

day - e.g., periods where the household would otherwise be a net consumer of electricity
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from the grid. To the extent that receipt of the eHER increases the salience of such financial
incentives, we would thus expect to observe simultaneous increases in purchases from the
grid and reductions in sales back to the grid during the overnight hours — a pattern
documented in Figures 5 and 6.

By a similar line of reasoning, there is financial incentive for households to
intertemporally substitute consumption from evenings when in-home production is relatively
low but spot market prices are still high to morning and afternoon hours when both in-home
production and spot market prices are relatively high. Given that we observe an overall
reduction in consumption in all hours of the day, we would expect such impacts to be less
pronounced in the morning and afternoon hours than during the evening hours (particularly
between the 17:00 and 19:00 hours which correspond to the evening price peak). This is the

precise pattern of intraday variation in the hourly ATEs displayed in Panel B of Figure 4.

Viewed in its totality, the intraday pattern of treatment effects observed in Figures 4
through 6 suggest that receipt of the eHER makes financial incentives afforded prosumers
more salient. In doing so, the eHER not only induces overall conservation efforts but also
intertemporal substitution in both overall consumption and net purchases from the grid. That
intraday conservation decisions are so responsive to financial incentives is noteworthy given
that observed variation in conservation efforts across seasons. As noted early, such effects
are less pronounced in winter and early spring months. Given that aggregate electricity
production and average wholesale prices spike during these months, the financial returns to
conservation efforts in such months are greater than those afforded in months with lower

average prices.

IVV. Conclusions

We explore the economics of prosumers through the lens of a natural field experiment
amongst Swedish households. A key aspect of our study is that we observe hourly data on
electricity consumption, purchases from the grid, and sales back to the grid for over 700
households. By using a home energy report as our policy instrument to affect behavioral
change, we are permitted a unique exploration into the choices of prosumers. More narrowly,
we view our results as also having implications for the design and use of peer comparisons

as a tool to manage resource use. Specifically, our findings suggest that such interventions
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lead to economically meaningful and statistically significant reductions in overall electricity
consumption. In this regard, our paper contributes to a growing body of work exploring the
use of behavioural interventions to influence the use of energy-efficient technologies to
minimize rebound effects [18].

More broadly our empirical findings have implication for settings whereby
households can use storage to facilitate load shifting via new/greater intertemporal
substitution possibilities. In this regard, our findings speak to a growing body of work
exploring the impact of real-time pricing on consumer well-being and intraday patterns of
electricity consumption [28], [44]-[48]. Specifically, our findings suggest that peer
comparisons and similar programmes influence intraday patterns of consumption by making
salient opportunities for financial gain associated with (i) shifting use from periods with low
levels of solar PV production to periods with higher levels of production and (ii) charging
in-home storage systems during periods with low spot prices and subsequently using the

stored electricity during peak periods when prices are greatest.

Of course, our results may be specific to the context that we study; particularly
features of the eHER and characteristics of the households in our sample. For example,
households in our sample are larger and use more electricity than the median household in
Sweden. Prior work has documented heterogeneity in the effect of HERs on energy use with
the impacts more pronounced for the highest users [37]. Similarly, households in our sample
are drawn disproportionately from the two southern bidding zones in Sweden and face higher
average prices than counterparts in the northern parts of the country.’

Intuitively, one would expect that the impact of peer comparisons on energy
consumption would depend, in part, on the underlying marginal price of a kWh. Yet, we are
unaware of studies that systematically explore how prices impact the efficacy of social
comparisons. Further investigations in this area is needed to verify the generalizability of our
findings and the promise of HERs as a tool to attenuate ‘solar rebound’. Likewise, such

patterns depend on regulatory context defining the relative preferences and beliefs

" The electricity grid in Sweden is divided into four bidding zones (or regions) for which prices on both the
day-ahead and spot market can vary. Prior to 2020, prices across the four zones were approximately equal.
Since then, prices in the two southern zones have been 2 to 2.5 times higher than those in the two northern
regions.
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prosumers’ face when purchasing electricity from and selling electricity back to the grid [49].
The extent to which our results generalize to settings with differential incentives is an open
question. Yet, we should note that our policy instrument has features that are conducive to
scaling [49]. Future work should explore this question as it speaks directly to the design of

tariff systems and the benefits that arise through the adoption of rooftop solar PV systems.

Moreover, it is important to caveat that we find no evidence that the eHER makes
salient differences in savings associated with conservation efforts across seasons. In
percentage terms, we observe lower rates of conservation in winter months even though
consumers face significantly higher prices than during spring and summer months. Further
investigation is needed to understand why we observe differences in the salience of intraday
and inter-seasonal variation in prices on the efficacy of the eHER. One possibility for this
divergence is differences in the time horizon over which prices fluctuate. Conceptually, time
preference and discounting could have differential impacts on the perceived benefits of load
shifting when facing intraday variation in pricing and energy efficiency when facing inter-
seasonal variation in average monthly prices. Alternately, reduced conservation in winter

months could reflect preferences for comfort and the inelasticity of demand for heating.
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Appendix
Experimental design

The company has a customer base of over 5,000 individuals, though only 800 have opted to
share their electricity consumption and production data. While our partnering company can
access production data, prosumers' consumption data can only be accessed through
electricity utilities with written consent. App. Fig. 1 displays the eHER that the customers

received via email.

@ Checkwatt Smart services for more sustainable energy usage Home Energy

S\rurdvdgen 3A, 182 33 Danderyd S5weden
www.checkwatt.se Report

Here's how you compare to neighbors

@ Great

Sk

3602
ak -

3291 3258
i 2806 P e 2793 Good
RS e N ©
Mo - 1976 v '1'{::";' ~=g 1830 . 1848
The— T8
1k
® Moderate
[}
> & s A 2 5 ® 5 =
p*u p*" p"'e p"'-‘ 99_@‘ & & & S’Q ﬁ,“
& o I e ,p“'\ o & .\o“ﬂl o & o,
* * i L » v v * 32% more
+ You 9 energy

than your efficient

* Your "Average Nelghbors” consist of randomly selected households with common features os yours, -
i 9 ¥ v : 7 i neighbaors

* Your "Efficient Nelghbars” consist of 20% of the outperformed average neighbars.

=% Your rank: 10th out of 20 similar neighboors

Is saving energy important to you?

For more than 80% of our customers saving energy is an important value. Even little deeds
can have a large impact. Discover our tips to consume less and better.

Useful tips for maximum savings

Dishwasher Local Heating oy Electric water heater
{-_-. Select an energy-efficient e' To cover the needs of the * Choose the copacity of
dishwasher (category A +, S local heating, prefer , . your electric water heater
A ++ or A +++), The replacement of a inverter air conditioners, which for based on your needs. Set the water
closs B energy-efficient dishwasher the same performance it consumes temperature around 40 - 50 °C and
with o closs A + energy-efficient the one-third of the electricity make sure thot the electric water
leads to energy savings of up to 21%, compared to electric heaters, heater has reinforced insulation,
Light bulbs - Lighting Electric Cooking Stove
% Choose high energy-efficient light bulbs (class A, f__ Choose a class A energy-efficient oven,
- A + or A ++). The replacement of a class B - Replacing a closs C energy-efficient electric
energy-efficient light bulb with a class A + energy-efficient stove with o class A energy-efficient leads to an energy
light bulb leads ta energy savings of up to 70%. saving of 27%.

You can receive personilized tips by visiting this link.

App. Fig. 1 | Home energy report. The figure shows the HER that consumers receive translated into
English.
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Methodology

Econometric estimation

To estimate the average treatment effect (ATE) and considering potential heterogeneity, we
estimate a fixed effects panel regression using as controls the time-varying treatment
indicator, T; ¢, interacting it with the hour of the day and weekly indicator variables following
Wooldridge [27]:

140 24
Yie=a;+we+ T+ X + h: + Z we x Ty + Z hy * Ti: +ei;

i=1 i=1

where y; . is the output of interest (e.g., electricity consumption in levels), a; and w, are
individual and time-fixed effects (weeks), respectively, w and h are indicator variables for
weeks and hours of the day, respectively, X; , is the electricity production, and e; , is the error
term. Thus, we saturated all possible treatment combinations and times corresponding to an

effectively treated unit.

A key point from this new literature is that the classic difference-in-differences method
extended for many periods and units produces biased estimators for the treatment effect in
staggered settings and the presence of heterogeneity. For mitigating potential biases,
Wooldridge® [27] proposes to allow for sufficient heterogeneity by interacting the time-
varying treatment indicator and simply interacting it with other time indicator variables like
hour and week. To test robustness, we estimate the weekly effect using other similar

methodologies [28], and the results remain similar qualitatively.

Table Al shows the estimated average treatment effect on a weekly basis for the entire
experimental period. Electricity consumption decreases by 34,344 watts per week. This
translates to approximately a 9.8% decrease (the percentage decrease is estimated by dividing
34,344 by the average weekly electricity consumption of the treatment group, 350,013

watts).

& We thank Jeffrey Wooldridge for providing valuable suggestions regarding the estimated model.
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Table Al: Estimation of the Average Treatment Effect

Delta method

coefficient std. err. [90% conf. interval]
ATE -34,344.15 5,199.64 -42,896.80 -25,791.50
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Supplementary information

Data

The company collects hourly data regarding electricity production and sales back to the grid
and receives information from utility companies for the electricity a household purchases from

the grid. Thus, electricity consumption is not directly observed; instead, it is derived from the:
consumption; = production; + purchases; — sales;

To deal with potential data mismeasurements and outliers, we keep only data between the lower

5t and higher 95™ percentile.

Supplementary Table 1. shows the distribution of eHERs by month.

Month # of eHERSs Month # of eHERSs
December 2021 1 November 2022 2
January 2022 2 December 2022 2
February 2022 2 January 2023 2
March 2022 2 February 2023 2
April 2022 2 March 2023 2
May 2022 2 April 2023 2
June 2022 2 May 2023 2
July 2022 1 June 2023 2
August 2022 1 July 2023 1
September 2022 2 August 2023 1

October 2022 1

Pre-treatment period

Supplementary Table 2 summarizes the statistics for the control and treatment groups during
the pre-treatment period from 07 December 2020 to 06 December 2021. The results indicate
that the control and treatment groups are well-balanced regarding electricity production and

demographics. However, there is a statistically significant difference in electricity



consumption, purchases, and sales. The treatment group consumes more electricity than the
control group, leading them to purchase more electricity from the grid and sell less to the grid.

Fixed effects should be included in the panel estimation to account for household differences.

Supplementary Table 2. Summary statistics by control and treatment group

Control Treatment
Mean std Obs. Mean std Obs.
Electricity
con?\tjvr/nhp;tlon 1,787.37 1,756.33 1,506,008 2,264.86 1,764.12 3,947,466
Electricity
pro((\J/l\l/J/%t)lon 844.12 1,728.54 1,506,008 906.05 1,801.12 3,947,466
Electricity
pu(r\;:vk)ﬁ;es 1,468.71 1750.622 1,506,008 1,861.97 1,819.60 3,947,466
Electricity
E"\;av'ﬁf) 525.46 1,350.24 1,506,008 503.20 1,310.37 3,947,466
House size
(sg. meters) 177.17 63.58 1,126,252 178.31 52.49 2,893,965
Household members 283 1.13 723,263 287 1.21 2,322,917
Age of homeowner 55 79 9.95 845,854 59.05 11.68 1,547,736

(years)

Notes: The table shows descriptive statistics between the control and treatment groups for the pre-
treatment period, 07 Dec. 2020 — 05 Dec. 2021. Variables include the hourly amount of electricity (in
watts/hours) a household Consumes, Produces, Sells back to the grid, and Purchases from the grid. It
also presents summary statistics for three control variables: home size, Household members, and
homeowner age. We don’t have observations for these three variables from all households since some
didn’t respond to the company’s survey.

Supplementary Fig. 1 shows the distribution of electricity consumption between the treatment
and control groups, revealing that the distribution, apart from the mean, shares common
characteristics. Supplementary Fig. 2 illustrates that nearly all households are in southern
Sweden and that the spatial distribution between the two groups is evenly distributed.
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Supplementary Fig. 1. Electricity consumption histogram by control and treatment
group. The graph shows the probability distribution of households’ hourly electricity
consumption (in watts) for the pre-treatment period, 07 Dec. 2020 — 06 Dec. 2021.
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Supplementary Fig. 2. Spatial distribution of control (red) and treatment
(blue) groups. The graph shows the spatial distribution across Sweden of
control (in red color dots) and treatment groups. Each dot in the map indicates
a household.



Supplementary Figure 3 presents a visual representation of the electricity consumption of
both the control and treatment groups during the pre-treatment period. The figure highlights
that the electricity consumption of both groups follows a similar trend, which substantiates
the validity of the parallel trend assumption. Maintaining a constant difference in the
outcome variable between the control and treatment groups is crucial to identifying the
treatment effect accurately. Therefore, the parallel trend assumption confirms that the
groups were comparable before the treatment was administered, and any observed
differences in outcomes can be attributed to the treatment effect.
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Supplementary Fig. 3. Parallel trend assumption between control and treatment group.
The graph shows the evolution of the hourly electricity consumption (in watts) by the control
and treatment groups from 07 Dec. 2020 to 06 Dec. 2021 (pre-treatment period) to test the
parallel trend assumption.

Customers’ reactions to eHER

Case 1: A customer shared an interesting experience with us. He received his first rounds of

electronic Health Records (eHERS) and activated a new service for his heat pump. The service

4



was supposed to optimize the use of the heat pump at the spot price of electricity. However, he
noticed that his energy performance had worsened compared to his group's. Upon
investigation, he discovered that the service was running the heat pump at night when the spot
price was low, but the pump's efficiency was also low due to low outside temperatures. On the
other hand, the service did not run the heat pump during the daytime when the price was high.
As a result, the direct electricity heating function is triggered, leading to higher energy

consumption.
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