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1 Introduction

While technological progress and innovation are generally presumed by economists to be

about significant improvements to productivity, quality of life and general well-being, there

is hardly any technology that does not involve harm (Acemoglu and Johnson, 2023). While

it is often the case that those harms are outweighed by the benefits, there are prominent

examples where this was not the case. The chemist Thomas J. Midgley was responsible

for the invention of freon for refrigeration and anti-knock petrol. The former led to the

release of chlorofluorocarbons and an expansion in the Ozone hole over the South Pole. The

latter led to lead pollution with health and other consequences. In each case, governments

determined that the harms outweighed the benefits and regulated a shift to alternative, but

at the time, more costly technologies such as hydrofluorocarbons and unleaded petrol. For

each of these alternatives, government regulation both stimulated adoption and, before that,

scientific research to improve the viability of those alternatives.

In other areas, switching once the harms were understood has proved more challenging.

At the beginning of the 20th century, automobiles were powered by both electric and internal

combustion engines, with the latter ‘winning’ out in terms of adoption. However, for many

decades, it has been known that petrol-powered cars resulted in more pollution than electric

vehicles (McLaughlin, 1954). Yet despite some regulatory interventions, it has only recently

occurred that some significant degree of switching to the alternative has occurred. Similarly,

at the beginning of its deployment following World War II, nuclear power generation could

be undertaken by heavy water or light water reactors. As Cowan (1990) documents, heavy

water reactors initially had lower ongoing costs than light water ones and were likely to

involve better safety outcomes. However, light water reactors were chosen for development

in nuclear-powered submarines, and this drove private companies to invest in that path as

a means of providing civilian power generation (the exception being Canada, which still has

a heavy water reactor). Light-water reactors advanced technologically while other designs

lagged behind. This made those reactors ubiquitous until safety concerns led to the halting of

new nuclear power generation altogether following the Three Mile Island disaster in the 1970s

(Bryan, 2017). The implication here is that one technological path can establish leadership,

making it costly to switch to others should harm become apparent.

At present, the potential harms involved in technological innovation are being actively

discussed and legislated with regard to artificial intelligence (AI). In the past decade, due

to advances in computational statistics using machine learning, there have been significant

advances that have allowed machines to engage more accurately and over a wider range of

prediction tasks that were previously possible (Agrawal et al., 2022). These advances have
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the potential impact on many tasks currently performed by human workers as well as poten-

tially to involve unintended consequences that may generate harm to security and political

processes (Russell, 2019). Learning from these historical examples, some have argued that

governments need to pre-emptively regulate both the adoption and direction of research as-

sociated with AI (Acemoglu, 2021). It has been noted that as AI develops along one path, it

may become difficult to scale back adoption ex post (Acemoglu and Lensman, 2024). Thus,

there is a call for pre-emptive regulation. While some of this regulation involves increased

ex-ante assessments of the dangers associated with AI adoption, many of the proposals have

involved interventions in pushing AI development toward outcomes that are ‘human-centric’

and more controllable (Brynjolfsson, 2022).

Several theoretical papers in economics have established that market forces left alone may

lead to distortions in the chosen direction of technological change away from paths that might

be less harmful (Bryan and Lemus, 2017), or promote insufficient diversity in scientific effort

across alternative paths (Acemoglu, 2011). Similarly, there are concerns more closely related

to AI and automation that the market promotes less efficient and more harmful avenues for

technological change (Acemoglu, 2023). While the mechanisms for such welfare sub-optimal

technological change differ between these models, there is a common policy conclusion that

the ex ante promotion of under-developed research paths would be welfare-improving.

This paper revisits these calls for ex ante regulation in light of the current debate re-

garding AI. The model presented here is inspired by that debate but is provided as an

examination of a generic general-purpose technology. The modelling innovation relative to

previous work explicitly takes into account that, at the outset, the potential harms regard-

ing alternative technological paths or architectures are uncertain, and it is in the context of

that uncertainty that any ex-ante regulatory intervention must be made. That said, there

is the potential for learning about the harms, although it is argued that this learning occurs

primarily on paths that achieve some degree of adoption so that harms, if any, can surface

or be dismissed. Thus, a regulator considering intervention must take into account not only

uncertainty along paths ‘the market’ may be pursuing but also regarding the alternative.

Two broad findings arise from this examination. First, while it is the case that diversifying

scientific resources across research paths can advance lagging technologies and reduce the

costs of interventions should harms emerge on one path, that is not the only means by which

scientific research can provide insurance against net harmful technologies being adopted.

The other avenue is to double down and provide more resources to the leading path so that

it advances to a sufficient level that its adoption involves net benefits even if harms should

become apparent. This pushes regulators away from diversifying scientific resources across

paths.
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Second, because of this, heavy-handed ex-ante interventions such as prohibiting adoption

or scientific research along a path can involve high costs relative to interventions that allow for

‘pricing in’ of potential harm. Two such alternative interventions are considered: Pigouvian

taxation and ex-post liability. It is shown that the latter, precisely because it not only

internalises harm but the prospect of harm when there is uncertainty, pushes agents in the

economy to make more socially optimal adoption and research choices.

The paper proceeds as follows. The next section sets up the baseline model involving

two potential technological paths that have differential appeals to different sectors in the

economy and for which the potential harms are unknown for each path. Section 3 then

characterises the decentralised equilibrium outcomes where both harms and their potential

are not taken into account by private decision-makers. Section 4 then considers the socially

optimal allocation and notes that changing scientific resource allocations across paths to take

into account potential harm involves subtle insurance motives that may not be equivalent

to more diversity in scientific research direction. Section 5 then examines and compares

the alternative regulatory instruments, both ex ante and ex post, that can be deployed by

regulators. Section 6 considers extensions, while a final section concludes.

2 Model Set-Up

The economy produces a unique final good from a continuum of sectors i ∈ [0, 1] in each

period t according to the production function:

Y (t) =

∫ 1

0

Yi(t)di

A representative consumer has linear preferences over this final good and discounts the future

at a rate of ρ > 0.

Firms in each sector choose the technology to adopt; either new technology architecture,

A or B.1 Qj(t) > 0 denotes the quality of technology j ∈ {A,B} at time t. For notational

convenience, xi(t) = 1 if sector i adopts architecture A in period t and xi(t) = 0 if it, instead,

adopts B.2

The impact of an architecture j’s quality on sectoral output is captured by a parameter

1Output for each sector in the absence of adopting the new technology is set at zero for simplicity.
Acemoglu and Lensman (2024) consider a choice between an old and new technology where it is the new
technology that carries potential external damage.

2The discussion here is of “sectoral” adoption of technology whereas, in the model below, it is individual
firms within a sector choosing a technology. As each firm within a sector is identical, it will turn out, in
equilibrium, that all firms in a sector make the same adoption choice in each period.
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ηi,j ≥ 0. For convenience, sectors are ordered so that ηi,A = 1 − i and ηi,B = i; that is,

the distribution of sector-specific productivities is uniform with half of the sectors having a

higher quality-adjusted productivity in architecture A (B), i ∈ [0, 1
2
) (i ∈ (1

2
, 1]).3 Under

these assumptions, the output of sector i can be written as:

Yi(t) = xi(t)(1− i)QA(t) + (1− xi(t))iQB(t)

Given the ordering assumptions on i, at any given time, a particular focus will be on Î(t),

which captures the productivity parameter for A such that all sectors, i ≤ Î(t) adopt A and

all sectors i > Î(t) adopt B, at time t.

2.1 Innovation

Improvements to the quality of any architecture j are enabled by innovation from a fixed

pool of scientists, S; a continuum on the unit interval. Each scientist has one unit of effort

that can be applied to one architecture or the other in each period. If scientists apply

total innovative effort, sj(t), to j in period t, then with probability h(sj(t)) this generates

Qj(t+ 1) = Qj(t) + ∆, for ∆ > 0, with Qj(t+ 1) = Qj(t) otherwise. h(.) is non-decreasing,

concave, continuously differentiable and satisfies the Inada conditions, limsj→0 h
′(sj) = ∞

and limsj→1 h
′(sj) = 0.4

It is assumed that the innovation is rival but perfectly excludable for the incremental

innovation; specifically, in selling an architecture with quality Qj(t), the previous quality

level, Qj(t − 1) is freely available to sectors. This is akin to a quality ladder model where

each quality step is excludable for one period only.5 Finally, it is assumed that, in the absence

of any innovation, Qj = 0.

2.2 Externalities

Note that A and B represent two distinct paths for a general-purpose technology that all

sectors can use. In addition, both can potentially give rise to external effects. The size of

the externality is assumed to depend on the number of sectors using a given architecture

and their individual scale (using output as a proxy); that is, Ei,j(t) = −ηi,jδj (in units of the

3This distributional assumption simplifies notation but does not play an important role in the results
below. The important characteristic is that sectors can be ordered according to the magnitude of their
comparative advantages of A or B adoption., holding quality constant.

4Note that, due to the assumptions here, sj(t), corresponds to both total effort and the share of scientific
effort devoted to j.

5See O’Donoghue et al. (1998) for a discussion of this assumption.
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final good) where δj ≥ 0 is common across sectors.6

A key assumption is that the value of δj is ex ante uncertain. To keep the analysis

simple, two assumptions are made. First, δj ∈ {0, δ} for each j and µ ∈ (0, 1) represents the

(common) prior that a given architecture has δj = δ. Second, δ ≥ ∆. This allows us to focus

on the interesting case where if an architecture has only advanced modestly, it is optimal to

abandon it.7

2.3 Time structure

Timing in the model consists of two time periods, t ∈ {1, 2}. At the beginning of each

period, scientists engage in research to determine the quality of a given architecture in that

period. Following the realisation of outcomes from that research in period t = 1, sectors

choose whether to adopt one technology architecture or not. Each sector chooses to adopt

one of the architectures by paying a sector-specific price, pi,j(t). That adoption generates

a signal of whether the technology architecture results in harm through a data-generating

process described below. Then, the process repeats in period 2, except that adoption resolves

any remaining uncertainty regarding potential harm. The particular focus of this paper is

on the policy-choices that are implemented at the beginning of period 2 following any signals

generated at the end of period 1.

2.4 Pricing

Each architecture is assumed to be marketed by a scientist-owned monopolist in each period.

Thus, if the number of scientists contributing to architecture A is sA(t) and Î(t) sectors adopt

A at t, those scientists share in vA(t) if an innovation is generated at the beginning of period

t. Here,

vA(t) =

∫ Î(t)

0

p̂i,j(t)di

and similarly,

vB(t) =

∫ 1

Î(t)

p̂i,j(t)di

Given this, scientists can charge a sector-specific price, pi,j(t) where:

p̂i,j(t) = ηi,jQj(t)−max{ηi,jQj(t− 1), ηi,−jQ−j(t)− p̂i,−j(t)}
6In a later section, the case where Ei,j(t) = −ηi,jδjQj(t) and damages scale with sectoral output is

discussed.
7A case that is also the focus of Acemoglu and Lensman (2024). The impact of differing magnitudes of

relative damage is discussed below.
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All scientists contributing research effort to that architecture share equally in these com-

mercial returns; thus, scientists contributing to A receive vA(t)
sA(t)

and those contributing to B

receive vB(t)
sB(t)

. This means that scientists with an innovation on a given architecture compete

with other scientists with an innovation on the alternative architecture for adoption by a

sector at any given time. As the competition is in price terms, then it is clear that, in

equilibrium, at least, p̂i,A(t) or p̂i,B(t) will be zero for a given sector i (with both being zero

if their characteristics are identical).

3 Decentralised Equilibrium

Without regulation, there is no incentive for scientists and firms to consider the external

effects of technology architectures should they exist. Let {qA(t), qB(t)} be the state of each

architecture where QA(t) = qA(t)∆ and QB(t) = qB(t)∆ and each qj(t) ∈ {0, 1, 2}. Note

that because there are no constraints on firms switching architectures in each period, in

equilibrium, the threshold, Î(qA(t), qB(t)), defining the sectors adopting A (viz B) is defined

by:

(1− Î(qA(t), qB(t))QA(t) = Î(qA(t), qB(t))QB(t) =⇒ Î(qA(t), qB(t)) =
QA(t)

QA(t) +QB(t)

Another threshold of interest concerns the outside options of firms in each sector when

considering adopting an architecture. For instance, a firm in sector i who does not purchase

an improvement to architecture A will purchase the alternative architecture only if (1 −
ηi,A)QB(t) is greater than ηi,AQA(t− 1). Thus, we can define ÎA(qA(t), qB(t)) as:

ÎA(qA(t), qB(t))QA(t− 1) = (1− ÎA(qA(t), qB(t)))QB(t)

=⇒ ÎA(qA(t), qB(t)) =
QA(t− 1)

QA(t− 1) +QB(t)

Note that ÎA(qA(t), qB(t)) ≤ Î(qA(t), qB(t)) and, thus, sectors i ≤ ÎA(qA(t), qB(t)) have an

outside option from not purchasing the improved quality QA(t) as continuing to use the

previous quality (which is freely available) while those i ∈ [ÎA(qA(t), qB(t)), Î(qA(t), qB(t))]

have an outside option of purchasing the current best version of architecture B.

3.1 Scientist Allocation at t = 1

As scientist and firm choices in period t = 1 do not constrain their choices in the next period

t = 2, they make choices to optimise their current payoffs. Consider the decision of firms to
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adopt architecture A. Firms in sector i, if offered a technology with quality QA(1), will only

purchase it only if pi,A ≤ ηi,AQA(1). Moreover, if the current best available quality for B is

QB(1), they will purchase A only if pi,A ≤ ηi,AQA(1)− ηi,BQB(1).

Scientists only generate a return if they produce an innovation in the current period. The

magnitude of that return will depend upon whether scientists working on the alternative

architecture have produced an innovation or not. Suppose that innovations arise on both

paths so that QA(1) = QB(1) = ∆. In this case, as an advance is required for production,

the only constraint on pricing technologies based on one architecture is that based on the

other. Thus, a sector, i, will adopt architecture A if ηi,A∆− p̂i,A ≥ ηi,B∆− p̂i,B. Let Î(1, 1) =

{i|ηi,A = ηi,B}. Note that for all sectors, i ≤ Î(1, 1), p̂i,B = 0. Thus, the maximum value of

p̂i,A is (ηi,A − ηi,B)∆. A similar calculation shows that for i > Î(1, 1), p̂i,B = (ηi,B − ηi,A)∆.

Note that because QA(1) = QB(1), Î(1, 1) =
1
2
. Thus, the total A-scientist returns are:

vA(1, 1) =

∫ 1
2

0

(ηi,A − ηi,B)∆ di

Recalling that ηi,A = 1− i and ηi,B = i, it can be seen that:

vA(1, 1) =

∫ 1
2

0

(1− 2i)∆ di =
∆

4

vB(1, 1) has the same value. Suppose that the outcomes of t = 1 research are QA(1) = ∆

while B has not advanced. Using a similar calculation for the case where both paths have

advanced and noting that Î(1, 0) = 1, we can derive:

vA(1, 0) =

∫ 1

0

(1− i)∆ di =
∆

2

Clearly, without the competitive pressure from architecture B, vA(1, 0) exceeds vA(1, 1). In

this case, vB(1, 0) = 0.

To determine the equilibrium allocation of scientists to each architecture, note that the

expected returns to each research path are:

VA(0, 0) =
h(sA(1))

sA(1)

(
h(sB(1))vA(1, 1) + (1− h(sB(1)))vA(1, 0)

)

VB(0, 0) =
h(sB(1))

sB(1)

(
h(sA(1))vB(1, 1) + (1− h(sA(1)))vB(1, 0)

)
Each scientist will choose a path that earns them the highest expected return. Let sA = s

and sB = 1 − s. Then, as vA(.) = vB(.), the only point where VA(0, 0) = VB(0, 0) is where
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ÎA(2, 2) Î(2, 2)0 1

∆

2∆

vA(2, 2)

=
∫ Î(2,2)

0
p̂i,A(2, 2)di

ηi,B2∆

ηi,B∆

ηi,A∆

ηi,A2∆

Figure 1: Scientist Returns to Architecture A for QA(2) = QB(2) = 2∆

s = 1
2
. Thus, scientists will allocate themselves in equal numbers to each path in equilibrium,

i.e., ŝ(1) = 1
2
, as otherwise scientists would have an incentive to switch to the path offering

the highest average return.

3.2 Scientist Allocation at t = 2

At t = 2, there are four possible outcomes for the state of the architecture at the beginning

of the period: {qA, qB} could be {1, 1}, {0, 0}, {1, 0} or {0, 1}. If a previous innovation

occurred during t = 1, it is now in the public domain, and any sector can utilize it at no

cost.

This has an impact on the pricing that can be achieved should there be innovations

in t = 2; in particular, sectors with a strong preference for a particular architecture may

prefer to continue to use the previous generation of technology rather than the alternative

architecture, even if it has advanced. To see this, suppose that QA(2) = QB(2) = 2∆ (i.e.,

both architectures have advanced from a starting point where (qA, qB) = (1, 1)). In a price-

setting game, all sectors where i ≤ Î(2, 2) adopt QA(2), with p̂i,A = ηi,A∆ for i ≤ ÎA(2, 2)

and p̂i,A = (ηi,A − ηi,B)∆ for i ∈ [ÎA(2, 2), Î(2, 2)]. This outcome is depicted in Figure 1.

Note that because QA(2) = QB(2), Î(2, 2) =
1
2
. Thus, total A-scientist returns are:

vA(2, 2) =

∫ ÎA(2,2)

0

ηi,A∆ di+

∫ 1
2

ÎA(2,2)

(ηi,A − ηi,B)2∆ di
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Recalling that ηi,A = 1 − i and ηi,B = i, note that, in this case, ÎA(2, 2) = {i|(1 − i)∆ =

i2∆} = 1
3
which leads to:

vA(2, 2) =

∫ 1
3

0

(1− i)∆ di+

∫ 1
2

1
3

(1− 2i)2∆ di =
∆

3

Again, considering a starting point where {qA, qB} = {1, 1}, if only one architecture, say A,

has an innovation, then it is easy to calculate that Î = 1
2
and ÎA(2, 1) =

2
3
. Therefore,

vA(2, 1) =

∫ 1
2

0

(1− i)∆ di+

∫ 2
3

1
2

((1− i)2∆− i∆) di =
5

12
∆

(Note that we state vA(qA, qB) and vA(qA, qB) both as functions of the state {qA, qB}.) To

determine the equilibrium allocation of scientists to each architecture, note that, at the

beginning of t = 1 when {qA, qB} = {1, 1}, the expected returns to each research path are:

VA(1, 1) =
h(sA)

sA

(
h(sB)vA(2, 2) + (1− h(sB))vA(2, 1)

)
=

h(s)

s
1
2

(
1− 1

3
h(1− s)

)
∆

VB(1, 1) =
h(sB)

sB

(
h(sA)vB(2, 2) + (1− h(sA))vB(1, 1)

)
=

h(1− s)

1− s
1
2

(
1− 1

3
h(s)

)
∆

Given the symmetry involved, the equilibrium allocation involves ŝ(2) = 1
2
.

Note that if {qA, qB} = {0, 0}, then the possible outcomes at t = 2 are the same as

those at t = 1. However, if, say, {qA, qB} = {1, 0}, if both paths advance at t = 2, then,

vA(2, 1) =
5
12
∆ as derived above while

vB(2, 1) =

∫ 1

2
3

(i∆− (1− i)2∆) di =
∆

6

If only one path advances at t = 2, then vB(1, 1) =
∆
4
as derived above while

vA(2, 0) =

∫ 1

0

(1− i)∆ di =
∆

2

Given this, the expected returns to each research path are:

VA(1, 0) =
h(sA)

sA

(
h(sB)vA(2, 1) + (1− h(sB))vA(2, 0)

)
=

h(s)

s
1
2

(
1− 1

6
h(1− s)

)
∆

VB(1, 0) =
h(sB)

sB

(
h(sA)vB(2, 1) + (1− h(sA))vB(1, 1)

)
=

h(1− s)

1− s
1
4

(
1− 1

3
h(s)

)
∆
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As VA(1, 0) > VB(1, 0) for s = 1
2
, it is clear that the equilibrium involves ŝ(2) > 1

2
. That is,

more scientists are allocated to the leading architecture than the lagging one. Intuitively, the

more advanced path can potentially earn a higher return than the other path regardless of

whether the other path advances or not, whereas the less advanced path can, at best, catch

up commercially. Hence, more scientists will choose to research in the more advanced path.

Interestingly, this outcome arises even though there are no constraints on sectors switching

their adopted architecture from their previously chosen architecture nor any constraints on

scientists in switching research paths.8

4 Socially Optimal Allocations

Two potential sources of social inefficiencies arise in the equilibrium without regulation.

First, firms and scientists do not consider externalities (if any) associated with any architec-

ture they may research or adopt. Second, firms and scientists are not long-lived; specifically,

their decisions at t = 1 do not take into account how this impacts the diversity of options

available for firms to adopt at t = 2. Here we consider the socially optimal allocation of

scientists to alternative research paths.

The social planner chooses {sA(t), sB(t), {xi(t)}i∈[0,1]}t=1,2 to maximise:

2∑
t=1

ρt−1E[Y (t)− E(t)]

Note, however, that since the level of the externality is unknown at t = 1, allocations at that

time will be based on its expected value, while those at t = 2 may take into account the

realised value of the externality.

4.1 Adoption at t = 2

Consider the social planner’s choice of which sectors should adopt which architecture follow-

ing a realisation of the magnitude of any externalities. Suppose that the realised values of

the relevant parameters are {δA, δB}; recalling that these are common across sectors. Let I

denote the threshold whereby sectors, i ≤ I adopt A and the remainder adopt B. In this

8In contrast to other models where innovation takes place on technologies at different steps on a quality
ladder, no scientist or firm owns or is tied to a particular architecture. Moreover, past innovations are freely
available.
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case, the social planner chooses I to maximise:∫ I

0

ηi,A(QA(2)− δA)di+

∫ 1

I

ηi,B(QB(2)− δB)di

The optimum satisfies:

I∗ =
QA(2)− δA

QA(2)− δA +QB(2)− δB

To focus on a case of interest, suppose that the maximum realised externalities are such that

δA, δB ≤ 2∆.9 Thus, at the lowest quality level for an architecture, it is still optimal for the

sector that most benefits from that architecture to adopt that technology. Thus, regardless

of quality, I∗ has the interior solution given above.

Note that when δA = δB (including the case where both are 0), the optimal adoption

level, I∗ = Î, the equilibrium adoption level. Thus, it is only when the architectures have

different realised externalities that it is optimal to deviate from the equilibrium adoption

level and favour adoption by sectors of the architecture with the lowest externality.

At I∗, the social welfare realised at t = 2 is:

vS(qA, qB, δA, δB) =
1
2

(
(qA∆−δA)2+(qB∆−δB)2+(qA∆−δA)(qB∆−δB)

qA∆−δA+qB∆−δB

)
where we recall that Qj(2) = qj∆.

4.2 Scientist Allocation at t = 2

The socially optimal allocation of scientists will be impacted by two factors that differ from

a decentralised allocation. One is, of course, knowledge of the extent of any externalities

that, as noted above, impacts on the socially optimal adoption of technology. The other is

that, in a decentralised allocation, scientists choose their research paths based on relative

average expected returns, whereas, as will be demonstrated, the socially optimal allocation

depends on relative marginal expected returns. In order to build intuition, it is instructive

first to consider the case where there are no externalities (i.e., either µ or δ are zero) before

moving to move beyond this case.

9Below alternative assumptions are considered, noting that the core assumption here captures the most
cases of interest.
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4.2.1 No externalities

In the absence of externalities, based on the current technology state, {qA, qB} at the begin-

ning of t = 2, the social planner chooses s to maximise:

V ∗(qA, qB, 0, 0) ≡ E[vS(qA, qB, 0, 0)] = h(s)h(1− s)vS(qA + 1, qB + 1, 0, 0)

+ h(s)(1− h(1− s))vS(qA + 1, qB, 0, 0)

+ (1− h(s))h(1− s)vS(qA, qB + 1, 0, 0)

+ (1− h(1− s))(1− h(s))vS(qA, qB, 0, 0)

The assumptions on h(.) ensure an interior equilibrium. Thus, s∗ satisfies the first-order

condition:

h′(s∗)

h′(1− s∗)
=

Ω(qA, qB, 0, 0)h(s
∗)− (vS(qA, qB + 1, 0, 0)− vS(qA, qB, 0, 0))

Ω(qA, qB, 0, 0)h(1− s∗)− (vS(qA + 1, qB, 0, 0)− vS(qA, qB, 0, 0))

where Ω(qA, qB, 0, 0) is the degree of substitutability between A and B, i.e.:

Ω(qA, qB, 0, 0) ≡ vS(qA, qB+1, 0, 0)+vS(qA+1, qB, 0, 0)−vS(qA+1, qB+1, 0, 0)−vS(qA, qB, 0, 0)

From this equation, it is clear that if qA = qB, then s∗ = 1
2
and scientists are equally allocated

across research paths just as in the decentralised equilibrium.

The case of interest, therefore, is when qA ̸= qB. To explore this, suppose that qA > qB

so that at the beginning of t = 2, A is the leading architecture, and B is the lagging

architecture. While pursuing research on each path involves an increment to quality of ∆ if

either architecture is improved, the intermediate sectors, which are more indifferent between

the two architectures, benefit as they do if both are improved. Thus, from a social welfare

perspective, improvements are substitutes with Ω(1, 0) = 1
12
∆. Importantly, vS(2, 0, 0, 0) =

∆ > vS(1, 1, 0, 0) =
3
4
∆ implying that more scientific resources are allocated to path A, the

leading architecture, than B, the lagging architecture. Thus, we have:

h′(s∗(1, 0))

h′(1− s∗(1, 0))
=

1− 1
3
h(s∗(1, 0))

2− 1
3
h(1− s∗(1, 0))

It is easy to see that at s = 1
2
, the left-hand-side is less than 1. As h(.) is concave this implies

that s∗(1, 0) > 1
2
. Improvements in the leading architecture have a higher marginal return

than for the lagging architecture as they have the potential to be spread across a broader

measure of sectors.

This outcome can be compared with the decentralised equilibrium scientist allocation.
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Note that, at that equilibrium,

VA(1, 0) = VB(1, 0) =⇒ h(ŝ(1, 0))/ŝ(1, 0)

h(1− ŝ(1, 0))/(1− ŝ(1, 0))
=

1− 1
3
h(ŝ(1, 0))

2− 1
3
h(1− ŝ(1, 0))

The RHS of this equation has the same structure as that for the earlier condition for the

social optimum. The difference is in the LHS which for the social optimum is the ratio of

marginal probabilities, whereas for the decentralised allocation, it is the ratio of average

probabilities of success on each respect research path.

The following lemma characterises the relationship between the socially optimal and

decentralised allocations when there are no externalities.

Lemma 1 Suppose that h′(s)
h(s)/s

is decreasing in s. Then (i) if s∗ = 1
2
, ŝ = s∗; and (ii) if

s∗ > (<)1
2
, ŝ > (<)s∗.

The proof is in the appendix. Lemma 1 demonstrates that the decentralised allocation typ-

ically results in a more concentrated allocation of scientists to one research path, which is

the same one that attracts a higher allocation of scientists in the socially optimal allocation.

Thus, the decentralised allocation is amplified relative to the socially optimal allocation.

These outcomes are depicted graphically in Figure 2. The reason is that when scientists

choose between alternative research paths, they are considering the relative average proba-

bilities of success on that path, and so neglect the impact that their own choice has on the

relative marginal probabilities of success. In particular, the probability of success for each

path depends on each scientist’s choice, but when a scientist switches from the lagging to

the leading path, the marginal negative impact on the less advanced path is higher than

the marginal positive impact on the probability that the more advanced path succeeds in

advancing further. The social planner takes these impacts into account, while scientists only

consider the latter positive impact on the path they pursue.

The result here is that there is socially too high a degree of concentration on the leading

research path that the lagging in a decentralised equilibrium arises from a distinct rationale

than similar results in the literature. For instance, Acemoglu (2011) provides a model where

a leading path has an advantage in that products along this path can be commercialised im-

mediately while those on a lagging path may have to wait until some event, such as changing

tastes, makes them commercially viable. The market then underprovides diversity due to

the asymmetric nature of private appropriation along the two competing paths. Bryan and

Lemus (2017) show that racing distortions, the value of being first to advance a technological

path, confers a negative externality on research incentives on the other path that is not taken

into account by scientists causing them to allocate too many resources to “quick wins.” Sim-
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1

h′(s)
h′(1−s)

h(s)/s
h(1−s)/(1−s)

s1
2

1−1
3
h(s)

2−1
3
h(1−s)

ŝ(1, 0)s∗(1, 0)

Figure 2: Socially Optimal versus Decentralised Scientist Allocations for {qA, qB} = {1, 0}

ilarly, scientists do not necessarily place sufficient value on the depth of research paths – in

terms of who many future innovations they might yield – and so may inefficiently devote too

many scientific resources to paths where innovation opportunities are front-loaded in time.

While Bryan and Lemus (2017)’s results do not specifically address issues of the optimal

level of diversity in research, they do identify some key distortions that arise. By contrast to

both of these papers, here the inefficient concentration of research following asymmetric ad-

vances in period 1 arises because scientists fail to consider the negative externality imposed

on other scientists if they switch from the lagging to the leading path and, thus, represents

a distinct but complementary externality to those already identified in the literature. It is

easy to imagine that a different model specification could emphasise a different externality

in scientist allocation without any change to the broad conclusions reached below.

It is useful to highlight some functional forms for h(.) that violate the assumed conditions

for Lemma 1 to examine their role. First, if h(s) = sa for a ∈ (0, 1), h′(s)
h(s)/s

= a for all s.

In this case, the ratio of the marginal probabilities for each path equals the ratio of average

probabilities, and so s∗ = ŝ even where qA ̸= qB. Thus, the condition in the lemma ensures

the potential for a divergence between socially optimal and decentralised allocations. Second,

if h(s) = log(1 + s), then h′(s)
h(s)/s

is decreasing in s but the Inada conditions do not hold;

namely, h′(0) = 1 and h′(1) = 2. While this does not alter the result that s∗ = ŝ = 1
2
when

qA = qB, when, say, {qA, qB} = {1, 0}, a corner solution arises for both the decentralised

equilibrium and social optimum with s∗ = ŝ = 1. Thus, the Inada conditions are necessary

for establishing an interior allocation.
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4.2.2 Externalities

When technology adoption potentially results in direct harm, as discussed above, the socially

optimal adoption choices of the technology can differ from the decentralised equilibrium

adoption. Specifically, if it is known that δj = δ, then the social planner will not want to

adopt j in any sector unless it has advanced to Qj = 2∆.

However, at the beginning of t = 2, the social planner is uncertain regarding the nature

of externalities but knows the current technology state, {qA, qB} and may, relying on signals

yet to be specified, have updated probabilities regarding the level of any externalities. Thus,

when choosing the allocation of scientists to each path, it chooses s to maximise:

E[V ∗(qA, qB, δA, δB)] =h(s)h(1− s)E[vS(qA + 1, qB + 1, δA, δB)]

+ h(s)(1− h(1− s))E[vS(qA + 1, qB, δA, δB)]

+ (1− h(s))h(1− s)E[vS(qA, qB + 1, δA, δB)]

+ (1− h(1− s))(1− h(s))E[vS(qA, qB, δA, δB)]

where the expectations here are with respect to {δA, δB}. The corresponding first-order

condition for s∗ is:

h′(s∗)

h′(1− s∗)
=

Ω(qA, qB)h(s
∗)− (E[vS(qA, qB + 1, δA, δB)]− E[vS(qA, qB, δA, δB)])

Ω(qA, qB)h(1− s∗)− (E[vS(qA + 1, qB), δA, δB)]− E[vS(qA, qB, δA, δB)])

Here is the degree of substitutability between A and B, Ω(qA, qB), is now stated taking into

account the planner’s uncertainty:

Ω(qA, qB) ≡E[vS(qA, qB + 1, δA, δB)] + E[vS(qA + 1, qB, δA, δB)]

− E[vS(qA + 1, qB + 1, δA, δB)]− E[vS(qA, qB, δA, δB)]

It is clear that if qA = qB and E[δA] = E[δB], then s∗ = 1
2
and scientists are equally allocated

across research paths just as in the decentralised equilibrium.

What if there are some asymmetries between the two paths? Consider, first, differences

in progress along each path; i.e., the case where {qA, qB} = {1, 0}. When, at that stage,

there is still uncertainty regarding whether externalities might arise on each path, then

a new social motive guiding the allocation of scientists emerges: insurance. However, the

insurance motive is subtler than common intuition might have suggested. Common intuition

on insurance is that diversification is valuable because it provides additional options should

harm emerge on a research path.

To see this, suppose that for each path, at t = 2, the belief that a path will be harmful
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remains symmetric and equal to µ. (Below, it will be argued that this is unlikely as there

will be some learning and updating, especially on the A path, but it is a useful starting

point). While Ω(1, 0) remains positive when there are externalities,10 Ω(1, 0) is decreasing in

δ, implying that A and B become less substitutable as the size of the externality rises. Note,

however, that E[vS(2, 0, δA, δB)] = ∆−µ1
2
δ > E[vS(1, 1, δA, δB)] = 1

4
(1−µ)(µ+3)∆ with the

difference between them decreasing in δ. That is, as the size of the externality increases, it

is optimal to reduce the share of scientists allocated to the leading path (A). The following

proposition summarises the comparative statics.

Proposition 1 Suppose that qA > qB and E[δA] = E[δB] = µ, then s∗(2) > 1
2
. s∗(2) is

decreasing in δ, increasing in ∆, and, for µ sufficiently high, increasing in µ.

The insurance motive pushes scientific resources towards the lagging technology when the

potential loss from externalities becomes high as the costs can potentially be spread across

more sectors ex post. The reverse intuition holds for a higher ∆ as this improves the return

to advancing the leading architecture relative to having the lagging, substitute architecture

catch up. As for the probability of an externality arising, µ, when µ is very high, the

likelihood of an externality is high, in which case the lagging architecture serves less of an

insurance role. Specifically, a poor outcome is highly likely on both architectures, but the

leading architecture, should it advance, can weather the externality. By contrast, when µ

is low, an increase in µ, raises the insurance value of allocating scientific resources towards

developing the lagging technology.

When there are externalities, how does the socially optimal allocation compare with

the decentralised outcome? Recall that, in the absence of direct externalities, the socially

optimal allocation involved a less concentrated allocation than the decentralised outcome.

When there are possible direct externalities, a simple intuition might suggest that the social

planner has a stronger incentive to prefer a more balanced allocation of scientists between

the two research paths as this mitigates the risk of advancing a path that also involves higher

realised external harm. However, this simple intuition turns out to be incorrect.

To see this, consider the case where it is maximally uncertain as to whether externalities

will arise or not; i.e., where µ = 1
2
. For this case, the following proposition can be proved.

Proposition 2 Suppose that µ = 1
2
. If δ ≥ 3

2
∆, then s∗ ≤ ŝ. If δ < 3

2
∆, it is possible that

s∗ > ŝ.

The proof is straightforward and omitted. The proposition shows that a sufficient condition

for the simple, intuitive result to arise involves the potential harm being sufficiently high (i.e.,

10Specifically, Ω(1, 0) = ∆(1−µ)(3(∆+3∆µ)−δ(1+5µ))
12(3∆−δ) .
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δ ≥ 3
2
∆). However, if the potential harm is relatively low (i.e., δ < 3

2
∆), this is a necessary

condition for the socially optimal allocation to be more concentrated than the decentralised

allocation. Intuitively, the best way to insure against the consequences of harm is to advance

the leading architecture further so that it can ‘pay’ for the harm by being adopted. This is

not an option for the lagging architecture. Therefore, it is an insurance motive but the way

in which insurance is provided is through an acceleration in research along one path rather

than diversification across paths.

The following result provides a case where the conditions in Proposition 2 can be necessary

and sufficient.

Corollary 2 Suppose that µ = 1
2
and h(s) = sa (with a < 1). s∗ ≤ ŝ if and only if δ ≥ 3

2
∆.

What this shows is for a case where the distortion from the decentralised allocation of

scientists is not present, the impact of direct externalities is clearer.

In effect, the insurance motive is subtle because insurance can be obtained both by

diversifying across paths and by investing more in the leading path, which can still be

valuable even if harm arises. Indeed, we can go further and show that diversified investment

is still desirable when it is known that one path involves harm, but the other does not.

For instance, suppose that qA = qB = 1 but that δA = 1 and δB = 0. A simple intuition

would suggest that, in this case, s∗ should equal 0 with all resources devoted to advancing

B (which, if this advance occurs, generates a surplus of vS(0, 2, δ, 0) = ∆. However, it is

possible that B does not advance. In this case, only a B technology product is available

(the A line not advancing and, therefore, being inefficient to adopt at all), and so total

surplus is vS(1, 1, δ, 0) =
∆
2
. By contrast, if some scientific resources are devoted to the B

technology, then there is some probability that both technologies advance generating surplus

of vS(2, 2, δ, 0) =
1
2
(2∆ + (2∆−δ)2

4∆−δ
or only A advances yielding vS(2, 1, δ, 0) =

1
2
(2∆ + (2∆−δ)2

3∆−δ

both of which exceed ∆
2
. Thus, as h(.) is concave, then s∗ > 0 even when harms are known

and asymmetric. Intuitively, the A technology has a higher value for some sectors, which is

realised, even with harm, if that technology advances.

What this section demonstrates is that from the perspective of allocating scientific re-

sources, there are no clear courses of action when uncertainty is resolved and even more

subtle interactions when uncertainty remains. This means that there are challenges and

trade-offs involved between alternative instruments for intervention; something which will

be addressed next.
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5 Regulatory Interventions

There is only an incentive to regulate the direction of technological change if the planner

receives some signal of the potential harm that might arise from one path. Absent this, in

this environment, both paths look equally attractive, and so there is no basis on which to

favour one of the other. Nonetheless, there is still potential for both ex ante and ex post

intervention if a signal of harm is received. In what follows, the policy options based on such

a signal are analysed.

Four policy options are available: (i) ban the adoption of an architecture, (ii) ban research

advancing an architecture, (iii) impose a tax on the adoption of an architecture of Ei,j and

(iv) subjecting adopters to ex post liability of Ei,j if harm occurs. The first three of these

are forms of ex ante regulation as they regulate prior to the realisation of research outcomes

in period 2. The final outcome is an ex post regulation because regulation only proceeds

after all activity has occurred. This section will evaluate and compare each of these options

contingent on the receipt of various policy signals outlined next.

5.1 Policy Signals

Before analysing the impact of the policy options, it is important to more precisely specify

the data-generating process for policy signals that the policy-maker might receive at the end

of period 1 that would trigger various policy outcomes in period 2. The core assumption

made here is that actual adoption of a technology architecture is required to receive a signal

about that architecture’s potential harmfulness.11

Suppose that in period 1, the scale of use of technology A is I1 and that of B is 1− I1.

Recall that the prior probabilities that harm arises are the same across architectures and are

µ for each. Moreover, these probabilities are independent. Given I1, if there is no signal of

harm, that probability is updated according to Bayes’ rule as given by the following formula:

µ̃A =
µ(1− I1)

µ(1− I1) + (1− µ)

µ̃B =
µI1

µI1 + (1− µ)

where µ̃j is the (posterior) probability that damage could arise from the use of j in t = 2

given that it has not arisen prior to that point in t = 1. The learning process assumed here

is that unless damage is observed during a period, the likelihood that damage will arise is

11Note that this differs from Acemoglu and Lensman (2024) who assume that learning can be passive. A
relaxation of this core assumption will be considered below.
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updated by lowering the posterior probability that damage will arise. This is essentially an

assumption that “no news is good news.” More precisely, it is an assumption that a signal

of harm reveals the state perfectly, while a signal there is no harm during a period involves

the possibility of a false positive. Finally, observe that if there is no adoption of, say, B in

period 1 (i.e., I = 1), then µ̃B = µ while µ̃A = 0; that is, if there is no indication in harm

from A when it operates at “full” scale, then the probability that it is harmful in period 2

falls to 0. In contrast, if I1 = I2 =
1
2
then µ̃A = µ̃B = µ

2−µ
.

How might signals trigger policy intervention? Clearly, if one or both architectures ad-

vance and one or both receive a signal that it is harmful, this will be a trigger for intervention.

When there is no adverse signal, either because neither architecture advances at t = 1 (and

is therefore not adopted) or when both advance without an adverse signal despite adoption

(leading to µ̃j < µ for both A and B), then there is no basis for intervention. It is possible,

however, that intervention may be triggered by relatively “good news” if one architecture

only advances but receives no adverse signal. In this case, the posterior probability of harm

is lower for the architecture that has advanced, raising the question of whether intervention

would be welfare-improving directed at the architecture that has not advanced.

Given this, suppose, without loss in generality, that A has advanced in period 1 (i.e.,

qA = 1). This implies that there are three possible scenarios at the end of period 1 that

would trigger potential interventions aimed at architecture A at the beginning of period 2:

1. (B harmful) qB = 1 and δA = δB = δ: B has advanced and both are known to be

harmful;

2. (B harm uncertain) qB = 1 and Pr[δB = δ] = µ̃B < 1 and δA = δ: B has advanced but

is not known to be harmful while A is known to be harmful;

3. (B has not advanced) qB = 0 and δA = δ: B has not advanced and A is known to be

harmful.

Note that it is also possible that qB = 1 and δB = δ and Pr[δA = δ] = µ̃A < 1 where B has ad-

vanced and is known to be harmful while A’s harm is uncertain. However, this is technically

equivalent to Scenario 2 above (B harm uncertain), and so is omitted from consideration.

In what follows, each policy option is considered for each of these four scenarios.

Before doing this, it is worthwhile noting another type of intervention for the scenario

where A only advances and does not receive a signal of harm. Given that this scenario in-

volves I1 = 1, it is known with certainty that A is ‘safe’ (i.e., µ̃A = 0) whereas the probability

that B is harmful remains at µ. In this situation, policymakers could preemptively enact

regulations targeting B. For instance, regulators could prevent any potential harm from B
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by either banning its adoption, banning further research on B or taxing B as if the harm

would occur. In each case, I2 = 1 (with all sectors adopting A) and sA = 1 as a result.

Expected social welfare would be h(1)
∫ 1

0
2∆ di+ (1− h(1))

∫ 1

0
∆ di = (1 + h(1))1

2
∆ in each

case. By contrast, if there was no intervention, if B advances, this leads to some value from

its use but also a probability, µ, that there is harm resulting from that use. If µ and/or δ is

relatively high, it may be worthwhile to intervene to ‘not take a risk’ on B. In what follows,

this type of intervention is set aside, although it does highlight the continuing theme here

that the trade-offs regarding intervention can be subtle.

5.2 Comparing Policy Options

Table 1 summarises the outcomes in terms of the allocation of scientists and the adoption of

A and B architectures in period 2 under various scenarios. Note that endogenous outcomes

are depicted with a ‘hat’ while policy requirements are hat-free. The endogenous items

in blue are those that are socially optimal. In what follows, each outcome is described

before turning to consider their rankings in terms of social welfare realised. In the appendix,

expected social welfare for each option is derived and is the basis for the results to follow.

5.2.1 Ban on Adoption

This policy involves banning the adoption of any technology architecture for which it is

known that δj = δ. If A is known to involve harm, its adoption is prohibited while, for B,

prohibition only arises if it has advanced and adopted in period 1, as this is the only case

where a signal of the harmfulness of adoption is generated and that signal realisation is that

it is harmful.

Recalling that there can be no perfect signal that B is safe given that 1 − I1 < 1, B’s

harm remains uncertain in two cases and in those all scientific resources are allocated to B

because there is no return from researching on A. Thus, with probability h(1), B advances

and, in so doing, competes with A at quality QA(2) = ∆. Note, however, there remains a

risk that B is harmful but this is not taken account in the adoption decision. In the one case

where B is known to be harmful, the adoption of both A and B are barred so there is no

research and total welfare is 0. The social welfare calculations are derived in the appendix.12

12Note that there is a potential time inconsistency issue. Because research on A is not prohibited, should it
occur and should A advanced to QA(2) = 2∆, then it is possible that a policy-maker who has not committed
to the ban may have an incentive to reverse the ban on A as 2∆ > δ. If this reversal were anticipated, this
would justify researching being conducted on the A architecture. This possibility is not evaluated here as it
is assumed that the planner’s policy implementations are time consistent.
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Scenario B harmful B harm uncertain B not advanced

(qA, qB, δA, δB) (1, 1, δ, δ) (1, 1, δ, δB) (1, 0, δ, δB)

Adoption
Ban

No Adoption
of A or B

I = ŝ = 0 =⇒ wp
h(1): B advances

I = ŝ = 0 =⇒ wp
h(1): B advances

Research
Prohibition

sA = sB = 0

Î = 1
2

sA = 0, ŝB = 1 =⇒ wp

1− h(1): Î = 1
2

h(1): Î = 1
3

sA = 0, ŝB = 1 =⇒ wp

1− h(1): Î = 1

h(1): Î = 1
2

Pigovian
Tax

ŝ = 1
2 =⇒ wp

h( 12 )
2: Î = 1

2

h( 12 )(1− h( 12 )): Î = 1

(1− h( 12 ))h(
1
2 ): Î = 0

ŝ ≥ 0 =⇒ wp

h(ŝ)h(1− ŝ): Î = 2∆−δ
4∆−δ

h(ŝ)(1− h(1− ŝ)): Î = 2∆−δ
3∆−δ

(1− h(ŝ))h(1− ŝ): Î = 0

ŝ ≥ 0 =⇒ wp

h(ŝ)h(1− ŝ): Î = 2∆−δ
3∆−δ

h(ŝ)(1− h(1− ŝ)): Î = 1

(1− h(ŝ))h(1− ŝ): Î = 0

Ex Post
Liability

ŝ = 1
2 =⇒ wp

h( 12 )
2: Î = 1

2

h( 12 )(1− h( 12 )): Î = 1

(1− h( 12 ))h(
1
2 ): Î = 0

ŝ ≥ 0 =⇒ wp

h(ŝ)h(1− ŝ): Î = 2∆−δ
4∆−(1+µ̃)δ

h(ŝ)(1− h(1− ŝ)): Î = 2∆−δ
3∆−δ+µ̃∆

(1− h(ŝ))h(1− ŝ): Î = 0

ŝ ≥ 0 =⇒ wp

h(ŝ)h(1− ŝ): Î = 2∆−δ
3∆−δ+µ∆

h(ŝ)(1− h(1− ŝ)): Î = 1

(1− h(ŝ))h(1− ŝ): Î = 0

Table 1: Research and Adoption Outcomes

5.2.2 Prohibition of Research

This policy involves prohibiting research from advancing any technology architecture for

which it is known that δj = δ. If A is known to involve harm, research on A is prohibited

while, for B, prohibition could only arise if it has advanced and adopted in period 1, where

a prohibition is put in place if the resulting signal is that it is harmful.

In this case, where B is still not known to be harmful, all scientific resources are allocated

to B. If B research is successful, then this creates competition for A and adoption moves

towards a greater number of sectors using B. That competition is beneficial as any sector

adopting A is welfare-reducing as ∆ < δ. When B is known to be harmful, there is no

further research. In this case, adopting either technology is welfare reducing but because

there is no ban on adoption that occurs in all sectors.

We are now in a position to compare the policies of a ban on adoption and a prohibition

on research. We can establish the following.

Proposition 3 A prohibition of research always results in lower expected social welfare than
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a ban on adoption.

The intuition is straightforward and can be seen in Table 1. An adoption ban leads to the

same research outcome as a research prohibition but ensures that there is no adoption of A

as QA(2) = ∆ which would be strictly welfare reducing. Such adoption can still occur when

there is a research prohibition only.

5.2.3 Pigouvian Taxation

Pigouvian taxation involves levying a sector-specific charge, τi,j = −Ei,j = ηi,jδ, on each

sector adopting a technology j that is known to be harmful. As it is assumed that A is

known to be harmful, then a full internalisation of the externality would imply a tax of

τi,A = −Ei,A = ηi,Aδ for all i < Î. Note that while this tax would eliminate the adoption

of A if QA(2) = ∆, A will still be adopted if QA(2) = 2∆. This plays an important role in

driving the social and private incentives to research in period 2 along the A path.

Once again, the full social welfare outcomes are stated in the appendix. It is instructive

to compare the outcomes under Pigouvian taxation with those from a ban on adoption.

It is often the case that Pigouvian taxation that fully internalises the external harm for a

decision-maker, here a sector adopting a harmful technology, leads to higher social welfare

outcomes than a ban on the decision that may lead to harm. This certainly is the case when

B is also known to harmful. In that situation, the Pigouvian tax leaves open the possibility

of adoption should there be further advances in one or both architectures and so expected

social welfare is higher than zero; the level that results from a complete ban on the adoption

of both architectures.

This simple intuition breaks down, however, when there continues to be uncertainty

regarding whether the B technology is harmful or not. In this case, while the A technology

is only adopted if that technology advances in period 2 (as ∆ < δ < 2∆), the B technology

might be adopted even if ∆ < µ̃δ. In this case, it is possible that in certain states expected

social welfare may be negative even under a Pigouvian tax. Nonetheless, it remains the case

that expected social welfare at the beginning of period 2 is higher under a Pigouvian tax

than a ban on adoption.

Proposition 4 A Pigouvian tax always results in a (weakly) higher expected social welfare

than a ban on adoption.

The reason that a Pigouvian tax socially dominates a ban on technology adoption even

when B harm is uncertain is because the B technology might be adopted even when A has

been banned. When ŝ → 0 under a Pigouvian tax, expected social welfare is the same as
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under a ban on adoption. However, it is possible that in some circumstances, ŝ > 0 under a

Pigouvian tax, leading to some A adoption that is superior to B adoption for some sectors

if 2∆− δ > ∆− µ̃δ.

The potential social inefficiency from a Pigouvian tax arises because B adopters do not

internalise the expected harm from their adoption. This insight leads to the following result

that demonstrates that a Pigouvian tax that fully internalises the harm from A adopters

leads to too little A adoption and too few scientists allocated to advancing A further.

Proposition 5 Under a Pigouvian tax of τi,A = ηi,Aδ for all i adopting A, when the harm-

fulness of B remains unknown, increasing the allocation of scientists to the A architecture

would raise expected social welfare.

The proof is a straightforward examination of the expected social welfare calculations in the

Appendix. Intuitively, when the harm to B remains unknown, its expected harm of µ̃δ or

µδ as the case may be, is not taken into account in either the adoption of B by sectors or

the returns to B research. If it were taken into account, both would be reduced. Thus, from

a social perspective, a Pigouvian tax whereby A adopters internalised fully the known harm

would result in too little research being directed towards improving A. One mechanism that

could achieve this would be to lower τi,A.

A natural question following this result is what the optimal Pigouvian tax would be. A

precise characterisation of this would be complex and really only establish that a second-best

outcome could be achieved with a tax that does not fully internalise A’s external harm; that

is, is lower than ηi,Aδ. The real issue is that the optimal tax needs to be contingent upon

the realised level of both architectures, which means it must be determined ex-post after

the realisation of research outcomes during period 2. The following result characterises the

optimal (ex post) tax on A:

Proposition 6 Suppose that B is not known to be harmful at the beginning of period 2 and

that h(sj) = saj (a ∈ (0, 1)). The optimal Pigouvian taxes following the realisation of period

2 research outcomes are as follows:

1. if QA(2) = QB(2) = 2∆, τ ∗i,A = ηi,j max{∆(1−3µ̃)δ
∆−µ̃

δ, 0};

2. if QA(2) = 2∆ and QB(2) = ∆, τ ∗i,A = ηi,j max{∆(1−2µ̃)δ
∆−µ̃

δ, 0}; and

3. if QA(2) = ∆ and/or QB(2) = 0, τ ∗i,A = ηi,Aδ.

The proof follows directly from maximising expected social welfare as calculated in the

appendix and noting that the assumption on h(.) guarantees that the scientist allocation is
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optimal as per Lemma 1. In its absence, the difference between the socially optimal and

regulated outcome will reflect the earlier results from Lemma 1.

These taxes are optimal because they are such that the adoption of A is optimal ex post

(that is, so that Î = QA(2)−δ
QA(2)−δ+QB(2)−µ̃δ

). Note that they may be contingent on the posterior

probability, µ̃, which itself depends on whether any B adoption occurred in period 1. The

higher is QB(2), the lower is τ ∗i,A. This is because it is when B is more competitive that, at

the margin, A’s competitiveness needs to be strengthened the most.

Interestingly, the proposition demonstrates that there are situations when it may be

optimal not to have a tax at all. That is, if either 2∆ − δ ≥ ∆ − µ̃δ ⇔ µ̃ ≥ δ−∆
δ

or

µ̃ ≥ 1
3
depending on the case. In these situations, the optimal policy would be a subsidy

to A rather than a tax. This reflects the observation made earlier that if µ is sufficiently

high, then the socially optimal insurance against harm from a technology is to develop a

technology sufficiently advanced to ‘pay’ for that harm rather than prevent the adoption of

harmful technology per se.

5.3 Ex post liability

When the Pigouvian tax can be applied ex post and tailored to the realisation of research

outcomes, the socially optimal outcome can be produced (at least when h(sj) = saj ). There

may be practical difficulties in doing this if the precise research outcomes cannot be observed

easily by the social planner. However, the final policy option of ex post liability is designed

to allow for some degree of tailoring to realised outcomes and, therefore, may result in higher

expected social welfare than Pigouvian taxation.

Ex post liability involves imposing a penalty on technology adopters if there is adoption

that results in realised harm. While in the model presented here, this possibility does not

change research and adoption decisions in period 1 (that is, a penalty may be imposed, but

its expectation does not alter the relative allocation of scientific resources nor the adoption

decisions), it does impact on period 2 decisions both in terms of realised outcomes prior to

that point (akin to the impact of a Pigouvian tax) but also in expectation of potential harm

(unlike a Pigouvian tax). Therefore, as is summarised in Table 1, in numerous scenarios, the

expectation of a penalty ex post generates a socially optimal adoption decision.

What restricts a socially optimal adoption decision is that it is assumed here that adopters

have limited liability in that their realised penalty cannot exceed the realised surplus when a

technology is adopted. Note that surplus is the liability metric because profits accrue to both

adopters of a technology and also providers of the technology (i.e., scientists). It is assumed

25



that both are liable for any realised harm.13 For instance, if technology adoption results in

surplus of ηi,j2∆, this can always fund a penalty of ηi,jδ. Hence, when both technologies

generate this surplus, the limited liability constraint is not binding, and adoption is socially

optimal.

However, if the adoption of a technology results in a surplus of ηi,j∆, this also defines the

maximum penalty, which is less than ηi,jδ. The limited liability constraint binds, and thus,

there may be too much adoption prior to the resolution of uncertainty regarding harm. The

only time, however, when this leads to sub-optimal adoption is when adopting technology A

generates a surplus of ηi,A2∆ while B generates a surplus of ηi,B∆. In this case, the limited

liability constraint applies for B but not for A, resulting in too little adoption of A feeding

into too few scientific resources devoted to advancing A. If liability were unlimited, this

distortion would not arise, and adoption would be socially optimal.

Nonetheless, even limited liability pushes adoption closer to a socially optimal level than

does Pigouvian taxation. For that reason, the following result can be demonstrated:

Proposition 7 An ex post liability regime always results in (weakly) higher expected social

welfare than a Pigouvian tax.

Thus, this completes the comparison of each of the four policy options. Put simply, the more

a policy instrument can adjust in its application to the realisation of uncertainty along both

the harm and research outcome dimensions, the closer the outcome will be to what would be

socially optimal. This favours policy options that are ex-post in nature and only determined

in their application following the realisation of uncertainty but where, in anticipation of

that adjustment, it impacts the expectations of the relevant decision-makers – scientists and

technology adopters.14

6 Extensions

Various assumptions were made in deriving the above results. In this section, these assump-

tions are re-examined, and the implications of generalising them are considered.

13This does not necessarily reflect how tort law might be applied, which may only find one of these agent
types liable, in which case the liability constraint will bind more strongly.

14Guerreiro et al. (2023) examines regulatory options with respect to AI and finds that a liability regime
is socially optimal in their context if liability is unlimited. They examine different margins of AI adoption
than the focus on the direction of technological change here.
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6.1 Learning from Research

The model thus far assumes that signals regarding harm arise from AI adoption. That is,

harm levels are surfaced through direct marketplace testing or ‘learning by doing.’ Harms

can also be signalled through research or what Gans (2024) calls ‘lab learning.’ This is the

type of learning considered by Acemoglu and Lensman (2024). The analogue to the earlier

updating formula would be that if there is no signal of harm following a research period, the

posterior probability of harm becomes:

µ̃A =
µ(1− s)

µ(1− s) + (1− µ)

µ̃B =
µs

µs+ (1− µ)

Thus, if all research is devoted to one path, the signal of harm will be perfect; otherwise,

there is some learning, but uncertainty remains.

From a policy perspective, the post-research probabilities of harm can be taken into

account when deciding whether to adopt technologies should they have been developed. As

harm only arises from adoption, this generates an incentive to conduct research in order

to evaluate harm and potentially avoid incurring any harm. This learning and the option

it affords are valuable for regulatory interventions that are contingent upon those signals,

such as banning adoption (or further research) and a Pigouvian tax. For ex post liability,

however, the new information can be used in decentralised scientist and adoption decisions

and will reduce errors.

Apart from these details, however, having lab learning rather than learning by doing

changes the overall regulatory picture along the lines outlined by Gans (2024) in that it po-

tentially introduces a precautionary motive to any AI adoption and would prioritise research

to surface harms should that be possible.

6.2 Higher and Lower Damage

If harm occurs, it has been assumed that δ ∈ [∆, 2∆). Within this range, it is socially

optimal to adopt technology along a path if it is sufficiently advanced (i.e., qj = 2) and not

otherwise. It is this assumption that generated a potential incentive to continue research

along a path even if the risk of harm had increased over time.

There are two changes that may arise if this assumption is relaxed. If δ < ∆, then it is

never optimal not to adopt a technology, even if it is known to be harmful. Thus, there is

no case for intervention to prohibit adoption, although there remains an incentive to push
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adoption towards a less harmful path should it exist. Otherwise, the incentives to choose

regulatory instruments that internalise externalities and risk remain.

If δ > 2∆, then it is never optimal to adopt a technology known to be harmful. This

strengthens the case for banning adoption and/or research along a harmful path, as it is no

longer the case that advancing the technology sufficiently can outweigh the costs it imposes.

Thus, this paper could be interpreted as favouring policies that allow the pricing-in of ex-

ternalities into private decisions so long as the harm evaluated is not too high. If that harm

is known to be substantial, this bolsters the case for prohibitions as regulatory instruments.

6.3 Damage that Scales

The final assumption worth examining is that the extent of damage is independent of the

quality of the technology adoption. By contrast, suppose that Ei,j(t) = ηi,jδjQj(t); that

is, damage scales with the quality of the technology. This is the main case considered by

Acemoglu and Lensman (2024).15 This implies that total social welfare at a given time is:∫ I

0

ηi,A(1− δA)QA(2)di+

∫ 1

I

ηi,B(1− δB)QB(2)di

The optimum sectoral adoption threshold satisfies:

I∗(t) =
QA(t)(1− δA)

QA(t)(1− δA) +QB(t)(1− δB)

Importantly, this implies that it is optimal to adopt a technology with Qj(t) > 0 regardless

of its quality if and only if δA < 1.

It can readily be seen that this specification simplifies the analysis of the model akin to

the cases of higher (δj > 1) and lower (δj < 1) damage considered in the previous subsection.

However, it does not allow the more complex trade-offs that arise in the intermediate case,

which is the focus of this paper.

However, this specification could open up various policy commitment issues that may be

pursued in future work. For instance, for δ always less than 1, a policy-maker may want to

commit to not adopting a technology with known harm so as to encourage scientific research

on the other technology path. However, when policymakers learn about the level of harm,

they may be unable to commit to de-adopting the technology. Thus, there may be a time

inconsistency issue that, in turn, makes certain decisions irreversible. As Gans (2024) argues,

irreversibility can change the value of learning about harm. Examining this would require a

15The case without such scaling is considered in the main model here is in an appendix in their work.
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more detailed model of the regulator than is provided here, and so it is left for future work.

7 Conclusion

This paper has examined the complex trade-offs involved in regulating the direction of tech-

nological innovation, with a particular focus on situations where potential harms from new

technologies are uncertain. The analysis reveals several key insights. First, the socially

optimal allocation of scientific resources between competing technological paths is not al-

ways straightforward. While diversification can provide insurance against potential harm,

there are also cases where concentrating resources on advancing a leading technology may

be preferable, even if that technology carries some risk of harm. Second, market forces alone

tend to result in an inefficiently high concentration of research effort on leading technological

paths. This stems from scientists failing to account for the negative externality their choice

imposes on the probability of success for the lagging path. Third, when regulating in the

face of uncertainty about potential harms, ex post policy instruments that can adjust to

realized outcomes tend to outperform ex ante prohibitions or restrictions. Specifically, the

analysis suggests that ex post liability regimes are likely to produce better outcomes than

Pigouvian taxes, which in turn outperform bans on adoption or research. Fourth, the opti-

mal regulatory approach depends critically on the magnitude of potential harm relative to

the benefits of technological progress. For very high levels of harm, prohibitions may become

optimal, while for lower levels, instruments that allow for pricing-in of risk are preferable.

Finally, there is an important distinction between learning about harms through research

versus through adoption. The possibility of ”lab learning” introduces additional complexity

to the optimal regulatory strategy.

These findings have important implications for current debates surrounding the regulation

of emerging technologies like AI. They suggest that policymakers should be cautious about

implementing heavy-handed ex ante restrictions on research or adoption paths. Instead, the

focus should be on developing robust mechanisms for ongoing assessment of potential harms

and flexible policy instruments that can adjust as uncertainty is resolved.

However, several important questions remain for future research. These include exploring

how different liability regimes might be structured to optimize incentives, examining the

implications of strategic behaviour by firms or researchers in anticipation of future regulation,

and investigating how international coordination (or lack thereof) impacts the efficacy of

different regulatory approaches.
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8 Appendix

8.1 Proof of Lemma 1

Suppose s∗ = 1
2
, then h′(s∗) = h′(1 − s∗) which implies that h(ŝ)/ŝ

h(1−ŝ)/(1−ŝ)
or ŝ = 1

2
. If

qA = qB = q, then h′(s∗(q,q))
h′(1−s∗(q,q))

= h(ŝ(q,q))/ŝ(q,q)
h(1−ŝ(q,q))/(1−ŝ(q,q))

= 1. In this case, s∗ = 1
2
.

Next, note that lims→0

(
h′(s)

h′(1−s)
− h(s)/s

h(1−s)/(1−s)

)
> 0 and lims→1

(
h′(s)

h′(1−s)
− h(s)/s

h(1−s)/(1−s)

)
< 0

by the assumed Inada conditions on h(.). If h′(s)
h(s)/s

is decreasing in s, h′(s)
h′(1−s)

and h(s)/s
h(1−s)/(1−s)

cross at exactly one point, which, as already demonstrated, is where s = 1
2
.

Note that qA ̸= qB if {qA, qB} = {1, 0} or {0, 1}. Consider the case where {qA, qB} =

{1, 0}. Note that
1− 1

3
h(s)

2− 1
3
h(1−s)

has the following properties: (i) it is decreasing in s; (ii) as

s → 0, this becomes 1
2− 1

3
h(1)

< 1; (iii) as s → 1, this becomes
1− 1

3
h(1)

2
< 1

2− 1
3
h(1)

; and (iv) that

∂
h′(s)

h′(1−s)

∂s
<

∂
1− 1

3h(s)

2− 1
3h(1−s)

∂s
, as h′(1)

h′(0)
= 0 <

1− 1
3
h(1)

2
. This implies that

1− 1
3
h(s∗(1,0))

2− 1
3
h(1−s∗(1,0))

< 1 and so s∗ > 1
2

and h(s∗)/s∗

h(1−s∗)/(1−s∗)
>

1− 1
3
h(s∗(1,0))

2− 1
3
h(1−s∗(1,0))

. Condition (iv) above then implies that ŝ(1, 0) > s∗(1, 0).

An analogous argument holds where s∗ < 1
2
.

8.2 Proof of Proposition 1

First, some preliminary calculations. Note that: vS(0, 0, δ, δ) = 0, vS(1, 0, δ, δ) = 0, vS(1, 1, δ, δ) =

0, vS(2, 0, δ, δ) =
1
2
(2∆ − δ), vS(2, 1, δ, δ) =

1
2
(2∆ − δ) and vS(2, 2, δ, δ) =

3
4
(2∆ − δ) while

vS(0, 0, 0, 0) = 0, vS(1, 0, 0, 0) =
1
2
∆, vS(1, 1, 0, 0) =

3
4
∆, vS(2, 0, 0, 0) = ∆, vS(2, 1, 0, 0) =

7
6
∆

and vS(2, 2, 0, 0) = 3
2
∆. Moreover, when the realisation of externalities is different we

have: vS(0, 0, δ, 0) = 0, vS(1, 0, δ, 0) = 0, vS(1, 1, δ, 0) = 1
2
∆, vS(2, 0, δ, 0) = 1

2
(2∆ −

δ), vS(2, 1, δ, 0) = 1
2
(∆ + (2∆−δ)2

3∆−δ
), vS(2, 2, δ, 0) = 1

2

(
2∆− (2∆−δ)2

4∆−δ

)
, vS(1, 0, 0, δ) = 1

2
∆,

vS(2, 0, 0, δ) = ∆ and vS(2, 1, 0, δ) = ∆.

Using these, the following can be calculated:

1. qA = qB = 1: E[vs(2, 2)] = 24∆2+δ2(4−µ)µ−6δ∆(2µ+1)
4(4∆−δ)

, E[vs(1, 1)] = 1
4
∆(1− µ)(µ + 3) and

E[vs(2, 1)] = E[vs(1, 2)] = 3δ2µ−δ∆(µ(µ+7)+7)+3∆2(7−µ)
6(3∆−δ)

;

2. qA = qB = 0: E[vs(1, 1)] = 1
4
∆(1−µ)(µ+3), E[vs(1, 0)] = (1−µ)1

2
∆ and E[vs(0, 0)] = 0;

and

3. qA = 1, qB = 0: E[vs(2, 1)] = 3δ2µ−δ∆(µ(µ+7)+7)+3∆2(7−µ)
6(3∆−δ)

, E[vs(2, 0)] = ∆− δµ
2
, E[vs(1, 1)] =

1
4
∆(1− µ)(µ+ 3), and E[vs(1, 0)] = (1− µ)1

2
∆.
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Given this, we have:

h′(s)

h′(1− s)
=

∆(1− µ) (h(s)(δ + 5δµ− 3(∆ + 3∆µ))− 3(µ+ 1)(3∆− δ))

∆(1− µ)h(1− s)(δ + 5δµ− 3(∆ + 3∆µ)) + 6(3∆− δ)(∆(µ+ 1)− δµ)

Note that at s = 1
2
, the numerator of the left-hand side is less than the denominator if:

−3∆(1−µ)(µ+1)(3∆−δ) < 6(3∆−δ)(δµ−∆(µ+1)) =⇒ −(1−µ)(1+µ)∆ < 2(δµ−∆(1+µ))

Note that at δ = ∆, this simplifies to −(1 − µ)(1 + µ) < −2 which holds for µ < 1. Thus,

by the concavity of h(.), s∗ > 1
2
. It is also straightforward to determine that the left-hand

side of the first order condition is increasing in δ, implying that s∗ is decreasing in δ. The

opposite is true for ∆.

With regard to µ, the left-hand side of the first-order condition is increasing in µ for µ

sufficiently low and decreasing thereafter. Specifically, the derivative of the left-hand side as

µ → 1 is equal to ∆((2∆−δ)h(s)−(3∆−δ))
(3∆−δ)(2∆−δ)

which is clearly negative.

8.3 Proof of Proposition 3

The only difference between the private and social returns happens when both advance and

B does not have an externality. In this case, a private scientist is comparing:

h(s)

s

(
(1− µ)h(1− s)

(2∆− δ)2

2(3∆− δ)
+ (1− (1− µ)h(1− s))

2∆− δ

2

)
and

h(1− s)

1− s
(1− µ)

(
(1− h(s))

∆

2
+ h(s)

∆2

2(3∆− δ)

)
whereas the social return is:

h′(s)

(∫ 1

0

(1− i)(2∆− δ)di− h(1− s)(1− µ)

(∫ 1

2∆−δ
3∆−δ

(1− i)(2∆− δ)di+

∫ 2∆−δ
3∆−δ

0

i∆di

))

= h′(1− s)

(
(1− µ)

∫ 1

0

i∆di− h(s)(1− µ)

(∫ 1

2∆−δ
3∆−δ

(1− i)(2∆− δ)di+

∫ 2∆−δ
3∆−δ

0

i∆di

))
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Compared with the private return allocation equation:

h(s)

s

(∫ 1

0

(1− i)(2∆− δ)di− h(1− s)(1− µ)

(∫ 1

2∆−δ
3∆−δ

(1− i)(2∆− δ)di+

∫ 2∆−δ
3∆−δ

0

i∆di

))

=
h(1− s)

1− s

(
(1− µ)

∫ 1

0

i∆di− h(s)(1− µ)

(∫ 1

2∆−δ
3∆−δ

(1− i)(2∆− δ)di+

∫ 2∆−δ
3∆−δ

0

i∆di

))

It can be seen that these only differ with respect to h′(s)
h′(1−s)

and (1−s)h(s)
sh(1−s)

.

8.4 Social Welfare under Each Policy Option

Here, for completeness, social welfare under each policy option is calculated reflecting the

main comparator outcomes in Table 1. The results from Propositions 4 - 7 follow from these

calculations as outlined in the text.

8.4.1 Ban on Adoption

1. (B harmful) qB = 1 and δA = δB = δ: No research would be undertaken in period 2

(or more specifically, any research would be inconsequential), and social welfare would

be V NoAd(1, 1, δ, δ) = 0.

2. (B harm uncertain) qB = 1 and δA = δ and δB remains uncertain with posterior

probability of µ̃B = µ
2−µ

as Î1 =
1
2
. As the adoption of A is prohibited, then there will

be no research devoted to extending it at t = 2 as no scientist can earn a return on

any advance. Therefore, sB will be as high as possible, resulting in ŝ = 0. Expected

social welfare will, therefore, be as Î2 = 0:

E[V NoAd(1, 1, δ, δB)] = h(1)

∫ 1

0

i(2∆− µ̃Bδ) di+ (1− h(1))

∫ 1

0

i(∆− µ̃Bδ) di

= 1
2
((1 + h(1))∆− δµ̃B)

3. (B has not advanced) qB = 0 and δA = δ: Again this implies that sA = 0 and so

sB = 1. Thus, E[V NoAd(1, 0, δ, δB] = h(1)
(
µ1

2
(∆− δ) + (1− µ)1

2
∆
)
= h(1)1

2
(∆− µδ).

8.4.2 Prohibition on Research

1. (B harmful) qB = 1 and δA = δB = δ: No research would be undertaken in period 2;

however, because both architectures have advanced, Î2 = 1
2
and so social welfare will

be V NoRes(1, 1, δ, δ) = 1
2
(∆− δ) < 0.
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2. (B harm uncertain) qB = 1 and δA = δ and δB remains uncertain with a posterior

probability of µ̃B: The prohibition on A research implies that all scientists will be

allocated to research on B. Thus, sB = 1 (or equivalently), ŝ = 0. Expected social

welfare will, therefore, be:

E[V NoRes(1, 1, δ, δB)] = (1− h(1))

(∫ 1
2

0

(1− i)(∆− δ) di+

∫ 1

1
2

i(∆− µ̃Bδ) di

)

+ h(1)

(∫ 1
3

0

(1− i)(∆− δ) di+

∫ 1

1
3

i(2∆µ̃B − δ) di

)
=

1

72
(54∆− 27(1 + µ̃B)δ + h(1)(δ(7− 5µ̃B) + 30∆))

3. (B has not advanced) qB = 0 and δA = δ: If research on A is prohibited, then all

scientists will research on B. Note, however, as the adoption of A is not prohibited,

and externalities are not internalised, then Î(2) = 1
2
if there is an advance in B;

otherwise, all sectors continue to adopt A. It is clear that this involves lower social

welfare than prohibiting the adoption of A as any use of A lowers social welfare given

that ∆ < δ. Social welfare is:

E[V NoRes(1, 0, δ, δB)] = (1− h(1))

∫ 1

0

(1− i)(∆− δ) di

+ h(1)

(∫ 1
2

0

(1− i)(∆− δ) di+

∫ 1

1
2

i(∆− µδ) di

)

= 1
2
(∆− δ) + h(1)

2∆ + (1− 3µ)δ

8

8.4.3 Pigouvian Tax

1. (B harmful) qB = 1 and δB = δ: In this case, a tax of τB = Ei,B(2) = −ηi,Bδ is

imposed on the adoption of B leading to an ex post optimal adoption of technologies

with Î(2) = 1
2
if both A and B advance to Qj(2) = 2∆, Î(2) = 1 if only A advances,

Î(2) = 0 if only B advances and no adoption if neither advance. Given this, the

decentralised allocation of scientists will be ŝ = 1
2
, which is also the socially optimal
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allocation. In this case, social welfare is:

E[V Tax(1, 1, δ, δ)] =h(1
2
)2

(∫ 1
2

0

(1− i)(2∆− δ) di+

∫ 1

1
2

i(2∆− δ) di

)

+ h(1
2
)(1− h(1

2
))

(∫ 1

0

(1− i)(2∆− δ)di+

∫ 1

0

i(2∆− δ)di

)
=h(1

2
)(4− h(1

2
))1

4
(2∆− δ)

2. (B harm uncertain) qB = 1 and δB remains uncertain with posterior probability of µ̃:

Social welfare is:

E[V Tax(1, 1, δ, δ)] =h(1− s)h(s)

(∫ 1

2∆−δ
4∆−δ

i(2∆− δµ̃B) di+

∫ 2∆−δ
4∆−δ

0

(1− i)(2∆− δ) di

)

+ h(1− s)(1− h(s))

∫ 1

0

i(2∆− µ̃δ) di

+ (1− h(1− s))h(s)

(∫ 2∆−δ
3∆−δ

0

(1− i)(2∆− δ) di+

∫ 1

2∆−δ
3∆−δ

i(∆− µ̃δ) di

)

+ (1− h(s))(1− h(1− s))

∫ 1

0

i(∆− µ̃δ) di

3. (B has not advanced) qB = 0 while µ̃ = µ: Research potentially occurs on both paths

in period 2. If neither advances, the social welfare (and private return) will be 0 as

A will not be adopted under Pigouvian taxation. If A advances while B does not,

then Î(2) = 1 and social welfare (and A return) is 1
2
(2∆ − δ). If B advances while

A does not, then Î(2) = 0 and the B return is 1
2
∆. Finally, if both advance, then

Î(2) = 2∆−δ
3∆−δ

with vA(2, 1) =
∫ 2∆−δ

3∆−δ

0 ((1− i)(2∆− δ)− i∆) di = (2∆−δ)2

2(3∆−δ)
and vB(2, 1) =∫ 1

2∆−δ
3∆−δ

(i∆− (1− i)(2∆− δ)) di = ∆2

2(3∆−δ)
. At the beginning of period 2, ŝ(2) will

equate the average returns to scientists researching on each path; that is:

h(ŝ(2))

ŝ(2))

(
h(1− ŝ(2))

∫ 2∆−δ
3∆−δ

0

((1− i)(2∆− δ)− i∆) di+ (1− h(1− ŝ(2)))

∫ 1

0

(1− i)(2∆− δ)di

)

=
h(1− ŝ(2))

1− ŝ(2))

(
h(ŝ(2))

∫ 1

2∆−δ
3∆−δ

(i∆− (1− i)(2∆− δ)) di+ (1− h(ŝ(2)))

∫ 1

0

i∆di

)
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or

h(ŝ(2))/ŝ(2)

h(1− ŝ(2))/(1− ŝ(2))
=

∫ 1
0 i∆ di−h(ŝ(2))

(∫ 1
2∆−δ
3∆−δ

(1−i)(2∆−δ) di+
∫ 2∆−δ

3∆−δ
0 i∆ di

)
∫ 1
0 (1−i)(2∆−δ)di−h(1−ŝ(2))

(∫ 1
2∆−δ
3∆−δ

(1−i)(2∆−δ) di+
∫ 2∆−δ

3∆−δ
0 i∆ di

)

Thus, at the beginning of period 2, expected social welfare is:

E[V Tax(1, 0, δ, δB)] =h(ŝ(2))h(1− ŝ(2))

(∫ 2∆−δ
3∆−δ

0

(1− i)(2∆− δ) di+

∫ 1

2∆−δ
3∆−δ

i(∆− µδ) di

)

+ h(ŝ(2))(1− h(1− ŝ(2)))

∫ 1

0

(1− i)(2∆− δ)di

+ (1− h(ŝ(2)))h(1− ŝ(2))

∫ 1

0

i(∆− µδ)di+ (1− h(1− s))(1− h(s))0

=h(ŝ(2))

(∫ 1

0

(1− i)(2∆− δ)di− h(1− ŝ(2))

∫ 1

2∆−δ
3∆−δ

(1− i)(2∆− δ) di

)

+ h(1− ŝ(2))

(∫ 1

0

i(∆− µδ)di− h(ŝ(2))

∫ 2∆−δ
3∆−δ

0

i(∆− µδ) di

)
=1

2

(
h(1− ŝ(2))

(
∆− µδ + h(ŝ(2)) (2∆−δ)((2∆−δ)µδ−∆(3∆−δ))

(3∆−δ)2

)
+ h(ŝ(2))(2∆− δ)

)
8.4.4 Ex Post Liability

1. (B harmful) qB = 1 and δB = δ. From Table 1, it can be seen that this generates the

same outcome as under a Pigouvian tax.

2. (B harm uncertain) qB = 1 and δB remains uncertain with posterior probability of µ̃:

Social welfare is:

E[V Liab(1, 1, δ, δ)] =h(1− s)h(s)

(∫ 1

2∆−δ
4∆−(1+µ̃)δ

i(2∆− δµ̃B) di+

∫ 2∆−δ
4∆−(1+µ̃)δ

0

(1− i)(2∆− δ) di

)

+ h(1− s)(1− h(s))

∫ 1

0

i(2∆− µ̃δ) di

+ (1− h(1− s))h(s)

(∫ 2∆−δ
3∆−δ+µ̃∆

0

(1− i)(2∆− δ) di+

∫ 1

2∆−δ
3∆−δ+µ̃∆

i(∆− µ̃δ) di

)

+ (1− h(s))(1− h(1− s))

∫ 1

0

i(∆− µ̃δ) di
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3. (B has not advanced) qB = 0 while µ̃ = µ: Research potentially occurs on both

paths in period 2. If neither advances, the social welfare (and private return) will

be 0 as A will not be adopted under ex post liability. If A advances while B does

not, then Î(2) = 1 and social welfare (and A return) is 1
2
(2∆ − δ). If B advances

while A does not, then Î(2) = 0 and the B return is 1
2
∆. Finally, if both advance,

then Î(2) = 2∆−δ
3∆−δ+µ∆

with vA(2, 1) =
∫ 2∆−δ

3∆−δ+µ∆

0 ((1− i)(2∆− δ)− i∆) di = (2∆−δ)2

2(3∆−δ+µ∆)

and vB(2, 1) =
∫ 1

2∆−δ
3∆−δ+µ∆

(i∆− (1− i)(2∆− δ)) di = ∆2

2(3∆−δ+µ∆)
. At the beginning of

period 2, ŝ(2) will equate the average returns to scientists researching on each path;

that is:

h(ŝ(2))

ŝ(2))

(
h(1− ŝ(2))

∫ 2∆−δ
3∆−δ+µ∆

0

((1− i)(2∆− δ)− i∆) di+ (1− h(1− ŝ(2)))

∫ 1

0

(1− i)(2∆− δ)di

)

=
h(1− ŝ(2))

1− ŝ(2))

(
h(ŝ(2))

∫ 1

2∆−δ
3∆−δ+µ∆

(i∆− (1− i)(2∆− δ)) di+ (1− h(ŝ(2)))

∫ 1

0

i∆di

)

Thus, at the beginning of period 2, expected social welfare is:

E[V Liab(1, 0, δ, δB)] =h(ŝ(2))h(1− ŝ(2))

(∫ 2∆−δ
3∆−δ+µ∆

0

(1− i)(2∆− δ) di+

∫ 1

2∆−δ
3∆−δ+µ∆

i(∆− µδ) di

)

+ h(ŝ(2))(1− h(1− ŝ(2)))

∫ 1

0

(1− i)(2∆− δ)di

+ (1− h(ŝ(2)))h(1− ŝ(2))

∫ 1

0

i(∆− µδ)di+ (1− h(1− s))(1− h(s))0

=h(ŝ(2))

(∫ 1

0

(1− i)(2∆− δ)di− h(1− ŝ(2))

∫ 1

2∆−δ
3∆−δ+µ∆

(1− i)(2∆− δ) di

)

+ h(1− ŝ(2))

(∫ 1

0

i(∆− µδ)di− h(ŝ(2))

∫ 2∆−δ
3∆−δ+µ∆

0

i(∆− µδ) di

)
=1

2
h(1− ŝ(2))

(
∆− µδ + h(ŝ(2)) (2∆−δ)((2∆−δ)µδ−∆(3∆−δ+µ∆))

(3∆−δ+µ∆)2

)
+ 1

2
h(ŝ(2))(2∆− δ)
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