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1 Introduction
A fundamental issue in antitrust policy is the trade-off between the market power and
efficiency effects of mergers. The increase in market power raises prices for consumers;
however, potential efficiency gains can counteract this effect, rendering the net impact of
mergers on welfare ambiguous (Williamson, 1968). Although there is extensive literature
on the price effects of mergers, we have limited evidence on how mergers affect efficiency
(Whinston, 2007; Asker and Nocke, 2021).� With little guidance from empirical evidence,
researchers analyzing the competitive effects of mergers often rely on hypothetical effi-
ciency gains (Farrell and Shapiro, 2010; Nocke and Whinston, 2022; Berger et al., 2023).�

A major challenge in analyzing the efficiency effects of mergers is distinguishing true
efficiency gains from other potential merger effects, such as changes in market power, buyer
power, and product quality. Due to the limitations of common production datasets, most
productivity studies rely on revenue-based productivity (TFPR), derived from revenues
and input expenditures, rather than quantity-based measures (Foster et al., 2008; Atalay,
2014). Using TFPR is particularly problematic in merger analysis because changes in
market power, buyer power, or quality can affect TFPR even without any efficiency gains.
This makes it difficult to identify the true efficiency effects of mergers.�

In this paper, we provide large-scale evidence on the efficiency effects of mergers while
tackling these challenges. We focus on acquisitions in the US electricity generation indus-
try between 2000 and 2023. Four key features of this industry allow us to overcome the
difficulties in quantifying merger efficiencies. First, we observe, at the hourly frequency,
the physical quantities of both output and the primary input, the consumption of fuel,
which makes up 79% of operational cost. Using this high-frequency data, we construct
an efficiency measure (heat rate) and analyze how it changes around the time of acquisi-
tion. Second, electricity is a homogeneous product, eliminating potential quality changes
that could confound our analysis. Third, the power generation industry experienced a
significant number of acquisitions during the sample period. Our sample includes 505
transactions with 3,515 generator ownership changes, representing an average of 4.5% of
the industry’s annual capacity. These ownership changes exhibit significant heterogeneity
in transaction, firm, and plant characteristics, which we leverage to study the mechanisms

�Weinberg (2008), Ashenfelter and Hosken (2010), and Kwoka (2014) provide reviews of the literature on the
price effects of mergers.

�As an example, consider these quotes from Nocke and Whinston (2022): “there is a clear need for much
better evidence on the efficiency effects”; “we observe that the literature on efficiency effects of horizontal
mergers is extremely limited”; “...there is remarkably little solid empirical evidence on this point.”

�The examination of efficiencies is a standard part of merger review; see Section 3.3 of the Merger Guidelines
(DOJ and FTC, 2023).
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of efficiency gains. Finally, electricity generation is an important industry, with efficiencies
leading to positive externalities through decreased emissions (EPA, 2018b).

Our analysis begins with a difference-in-differences estimator, comparing the efficiency
of acquired plants to those not involved in acquisitions. We find that, on average, the
efficiency of acquired plants increases by 2% after acquisitions. However, this average
effect masks significant heterogeneity from the two types of ownership changes observed
in the data: parent and subsidiary level ownership changes. Ownership changes only at
the parent level do not affect efficiency, whereas changes in subsidiary ownership result
in a 5% increase. This finding highlights the influence of the direct owner in power plant
operations. Finally, examining the timing of efficiency gains, we observe improvements
beginning five months post-acquisition, stabilizing after eighteen months. This suggests
that new owners require time to implement efficiency-improving changes.

Efficiency increases in electricity generation can manifest in various ways, not all of
which are necessarily welfare-improving. For instance, generators incur additional costs
when adjusting production levels, known as ramp costs, so acquirers might improve
efficiency by reducing production and ramping (Borrero et al., 2023). Alternatively, they
can use generators more intensively at the expense of reliability (Borenstein et al., 2023). To
understand the nature of efficiency effects, we study other generator outcomes indicative of
performance, including output, capacity utilization, outages, and emissions. We find that
acquired generators increase generation by 7.3%, raise capacity utilization by 2.2%, and
experience a 33% reduction in outages following the acquisition. These results suggest that
acquirers improve other dimensions of plant performance beyond efficiency, and efficiency
gains occur without deterioration in other performance indicators.

While evidence of efficiency gains after mergers is important, understanding the un-
derlying mechanisms is essential for informing antitrust policy and generalizing findings
from this industry to others. With this motivation, the remainder of the paper conducts a
comprehensive mechanism analysis by investigating heterogeneity in the efficiency effects
and modelling sources of efficiency gains in power plants.

We start by analyzing the characteristics of generators, firms, and transactions that
may be informative about efficiency effects. We find that generators with above-median
capacity experience a 3.3 pp larger efficiency increase than those with below-median
capacity. This difference perhaps reflects greater incentives to improve efficiency in larger-
capacity units, as any improvement in efficiency would yield higher returns. Regarding
firm characteristics, efficiency improvement is 4.1 pp higher when the acquirer is larger
than the median and 5.8 pp higher when the acquirer is a serial acquirer. These results
suggest that a firm’s experience in plant operation and acquisition is an important predictor
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of post-acquisition efficiency gains. Finally, we examine the differential impact of cross-
market acquisitions on efficiency, finding that they result in efficiency gains 3.9 pp lower
than within-market acquisitions.

We then proceed to a more structural analysis to uncover the mechanisms behind
efficiency gains. We identify three mechanisms through which a firm can increase the
efficiency of electricity generation: (i) improving the performance of individual gener-
ators (productive efficiency), (ii) optimizing production allocation dynamically within a
generator to reduce ramping (dynamic efficiency), and (iii) improving the allocation of
production across generators (portfolio efficiency). We develop a testable prediction for
each mechanism and quantify their contributions by modeling the efficiency of generators.
In particular, relying on a Leontief electricity production function as a microfoundation,
we model the heat rate as a function of output, ramp rate, and weather conditions (tem-
perature and humidity). The availability of hourly production data allows us to estimate
this function for each generator separately for pre- and post-acquisition periods, thereby
directly measuring the change in production function due to acquisitions.

We test the role of the first mechanism, productive efficiency, by quantifying the effi-
ciency change due to shifts in the heat rate curve, controlling for ramp and weather condi-
tions. For dynamic efficiency, we analyze the variation of an acquired plant’s production,
with less variation over time indicating dynamic efficiency. To quantify its contribution,
we use the estimated production function model and calculate the efficiency increase due
to changes in the post-acquisition production distribution while keeping the heat rate
curve as in the pre-acquisition technology. Finally, to evaluate portfolio efficiency, we es-
timate the efficiency improvements in the acquirer’s existing plants within the acquisition
market, as portfolio efficiency implies that the efficiency of those generators will improve
post-acquisition.

We find that productive efficiency accounts for most (three-quarters) of the total ef-
ficiency gain. The average heat rate curve of acquired generators shifts downward after
acquisition at every production level, suggesting that acquirers improve generators’ in-
ternal efficiency. We also find evidence supporting an increase in dynamic efficiency.
Following acquisitions, generators’ coefficient of variation (CoV) of production decreases,
explaining the remainder of the efficiency increase. We find no evidence to support the
portfolio efficiency mechanism.

Having established the role of productive efficiency, the next natural question is how
acquirers improve productive efficiency. There are two potential channels: (i) operational
improvements, which involve, for example, installing control software, implementing ef-
fective maintenance, providing personnel training, or adopting best practices, and (ii)
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capital investments, which involve equipment upgrades. Process improvements suggest
transfers of intangible capital post-acquisition (Atalay et al., 2014), whereas capital up-
grades indicate either credit constraints faced by the former owner or insufficient incentives
to make efficiency-improving capital investments (Midrigan and Xu, 2014). Although the
large-scale nature of our study precludes us from directly observing what changes inside
the plant, we supplement our efficiency data with two additional datasets to distinguish
between these mechanisms: (i) data on plant managers and (ii) data on capital expenditures
and non-fuel costs.

Starting with the manager data, we find that 55% of acquired power plants change
managers within one year of acquisition. These new managers are 5 pp more likely to
have a master’s degree and 4 pp more likely to have a bachelor’s degree than managers of
non-acquired plants. In contrast, we find no evidence of increased capital expenditures or
non-fuel costs after acquisitions. Therefore, the new owners appear to improve efficiency
through low-cost operational improvements rather than high-cost capital investments.
This analysis contributes to the growing body of evidence suggesting that acquisitions
serve as a mechanism for transferring within-organization knowledge to newly acquired
assets (Hortaçsu and Syverson, 2007; Bloom et al., 2012; Atalay et al., 2014; Eliason et al.,
2020).

Efficiency gains through operational improvements point to superior capabilities of
acquirers in plant operation and utilization compared to target firms. To further explore
this and understand how acquisitions reallocate assets within the economy, our final
analysis estimates and compares the productivity of target and acquirer firms. We find
that high-productivity firms buy underperforming assets from low-productivity firms
and make the acquired assets as productive as their existing assets after acquisitions.
On average, acquirers are 1.7% more productive than the targets, and assets sold by the
target firms underperform their other assets by 3%. These findings suggest acquisitions
allocate assets to firms with both relative and absolute advantages in utilizing those assets,
providing evidence for both the “high-buys-low” and “like-buys-like” theories of merger
gains in the literature (Jovanovic and Rousseau, 2002; Rhodes-Kropf and Robinson, 2008).

As with all retrospective merger analyses, an identification challenge in our paper is the
potential endogeneity of mergers. To address this concern, we implement several strategies
and robustness checks. First, our specification incorporates a rich set of controls along
with flexible time trends (fuel, technology, vintage, and state), accounting for factors that
potentially influence selection into acquisitions. Second, we analyze the timing of the effect,
demonstrating parallel trends between the treated and control groups three years before
acquisitions and an increase in efficiency starting a few months after acquisitions. Third,
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we show that our results are robust to the empirical method, sample period, acquisition
definition, data frequency, and different efficiency measurements. Fourth, we examine
whether other important changes in the plant, such as manager changes or minority
acquisitions, generate comparable efficiency effects and find no effects.

We conclude the introduction by noting that our results do not characterize the full
impact of acquisitions, as we have identified only one component of the merger welfare
analysis. Furthermore, the magnitude of the efficiency effect identified in this paper might
not extend to industries with significantly different production techniques or acquisition
motives compared to electricity generation. Although we focus on a single sector to
leverage the available data and numerous acquisitions, we provide detailed evidence of
mechanisms to draw broader lessons from this sector.

Contribution to the Literature This article contributes to the literature on the effects of
mergers on productivity. As noted by Whinston (2007) and Asker and Nocke (2021) in the
two latest IO handbooks, there is a limited number of papers on the productivity effects
of mergers. Among these studies, Blonigen and Pierce (2016) apply the De Loecker and
Warzynski (2012) method to separately identify the effects of mergers on market power
and productivity in the US manufacturing plants. Their findings suggest an increase in
market power but no evidence of a productivity effect. Kulick (2017) studies mergers in the
US ready-mix concrete industry, finding that prices rose due to increased market power
despite a 6% productivity increase in acquired plants. Braguinsky et al. (2015) examine the
effects of consolidation in the early 20th-century Japanese cotton spinning industry. They
find that although acquirers were not more productive conditional on operation, they were
more profitable due to better inventory management and higher capacity utilization. After
acquisitions, the acquirers improve capacity utilization in the acquired plants, raising both
productivity and profitability.�

This article contributes to the literature studying efficiency in the power generation
industry, which has focused mainly on the effects of deregulation that began in the 1990s
(Knittel, 2002; Bushnell and Wolfram, 2005; Fabrizio et al., 2007; Davis and Wolfram, 2012;
Hausman, 2014; Cicala, 2015, 2022). These studies compare the performance of plants in
states that pursued restructuring to those in states that did not, generally finding a positive

�Evidence of cost savings from other industries includes meat products (Nguyen and Ollinger, 2006), railroads
(Bitzan and Wilson, 2007; Chen, 2024), electricity distribution (Kwoka and Pollitt, 2010; Clark and Samano,
2022), radio (Jeziorski, 2014), banking (Focarelli and Panetta, 2003), and healthcare (Dranove and Lindrooth,
2003; Harrison, 2011; Schmitt, 2017). These studies typically analyze firm costs, which include both input
prices and firm productivity. Another strand of literature provides evidence on efficiency effects by analyzing
a single merger. Some examples are the Molson and Coors merger (Grieco et al., 2018) and Miller and Coors
merger (Ashenfelter et al., 2015) in the brewing industry, and Boeing-McDonnell Douglas merger (An and
Zhao, 2019) in the aerospace industry.
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impact of restructuring on plant operations.� Our paper differs from this literature, as we
analyze the effects of ownership changes rather than deregulation on productivity.� We
primarily focus on the post-deregulation period and exclude forced divestitures due to
deregulation from our sample. In the literature studying electricity markets, our paper
also relates to Hortaçsu and Puller (2008) and Hortaçsu et al. (2019), who study the
heterogeneity of firms’ strategic bidding ability in wholesale electricity auctions and how
ownership changes potentially affect strategic ability.

Finally, this paper contributes to the recent wave of retrospective merger research that
examines the impact of mergers on various firm outcomes. This literature has advanced
our understanding of cross-market mergers (Lewis and Pflum, 2017; Dafny et al., 2019),
vertical mergers (Luco and Marshall, 2020), monopsony power (Prager and Schmitt, 2021),
buyer power (Craig et al., 2021), price effects (Bhattacharya et al., 2022; Brand et al.,
2023; Brot-Goldberg et al., 2024), quality (Eliason et al., 2020; La Forgia and Bodner,
2023), product availability (Atalay et al., 2024), firm entry (Fan and Yang, 2020), capacity
utilization (Kalnins et al., 2017), employment (Geurts and Van Biesebroeck, 2019), and
political influence (Moshary and Slattery, 2024). We complement this body of work by
studying how mergers affect efficiency and providing evidence of the mechanisms.

2 Institutional Background and Plant Productivity
This section begins with the institutional background of the power generation sector,
followed by an overview of mergers and acquisitions in the industry. We then discuss
power plant operation and our approach to measuring plant productivity.

2.1 The Power Generation Sector in the US

The US electric power sector accounts for roughly 2% of the US GDP (Bradley & Asso-
ciates, LLC, 2017). Before the 1990s, US electricity generation was predominantly supplied
by regulated and vertically integrated utilities. These entities typically served a specific
territory and controlled all components of the sector, including generation, transmission,
and distribution. The returns of these utilities were regulated through rate-of-return on
capital investments and cost-of-service regulation (Joskow et al., 1989). This highly regu-
lated market structure provided minimal incentives for efficiency improvements, leading
to significant inefficiencies in electricity generation (Fabrizio et al., 2007; Cicala, 2015).

�MacKay and Mercadal (2023) find that, despite decreasing generation costs, wholesale prices increased due
to market imperfections.

�Bushnell and Wolfram (2005) also study the impact of ownership changes on power plant efficiency. Their
study focused on utility divestitures in the context of industry deregulation. By contrast, our study examines
ownership changes that occurred after deregulation.
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In the 1990s, the industry underwent significant deregulation. In many states, electric-
ity generation was decoupled from transmission and distribution, with most generators
transitioning to market-based compensation. This shift coincided with the establishment
of independent system operators (ISOs), which manage the electricity grid and organize
the wholesale market for electricity. By 2020, about 70% of US electricity demand was
serviced through seven ISOs (EIA, 2020).�

2.2 Acquisitions in the Power Sector

Large power companies are often structured into multiple subsidiaries under a single
parent company, each serving distinct locations and segments of the power sector. These
parent companies frequently own assets in generation, transmission, and distribution
within the same region, although some operate subsidiaries across various parts of the
country. Following the deregulation wave in the 1990s, there was a notable increase in
mergers and acquisitions among these entities (Davis and Wolfram, 2012). Moreover,
financial firms, particularly private equity firms and bank funds, began investing heavily
in the power generation sector (Andonov and Rauh, 2023).

Acquisitions in the power sector can be categorized into two types: (i) asset acquisi-
tions and (ii) subsidiary acquisitions. Asset acquisitions involve a firm selling parts of its
power plant portfolio, with the acquired assets placed under a subsidiary of the acquiring
company. Subsidiary acquisitions occur when a parent company acquires another com-
pany’s subsidiary, including all its assets. In asset acquisitions, both parent and subsidiary
owners change, whereas in subsidiary acquisitions, only the parent owner changes.� For
a visual explanation of these acquisition types, see Figure OA-2.

Proposed power plant acquisitions in the US electricity sector are subject to review by
the Federal Energy Regulatory Commission (FERC), the Department of Justice (DOJ), and
state Public Utility Commissions (PUC) (Niefer, 2012). FERC conducts its review under
Section 203 of the Federal Power Act to determine if the merger aligns with the public
interest (FERC, 2012). The DOJ’s review focuses on the potential anticompetitive effects.
If either the DOJ, FERC, or PUC finds consumer harm, they may challenge the merger or
require remedies.� Despite reviews by three government agencies, most proposed power
plant mergers over the past two decades have gained approval (Hempling, 2018).

�We use ISO as an umbrella term for both ISOs and regional transmission organizations.
�In some cases, two companies merge to form a new entity, and power plants become part of this new entity.
These cases typically fall under subsidiary acquisitions.

�To give some examples, in 2005, the Exelon-PSEG merger was not completed after failing to get approval
from the New Jersey PUC (Morris and Oska, 2008; Wolak and McRae, 2008). In 2012, following the DOJ’s
request, Exelon Corporation and Constellation divested three plants in Maryland (Bushnell et al., 2012).
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Firms cite various motives for acquisitions, including synergies, financial benefits, and
complementarities between different asset types.�� Since fuel represents a large portion of
operational costs, fuel efficiency improvements are often cited as a primary source of cost
savings post-acquisition.��

2.3 Electricity Production and Efficiency Measure

A major challenge in analyzing merger efficiencies is the scarcity of suitable data, as most
industries lack reliable cost and physical productivity measures (Asker and Nocke, 2021).
The US power generation industry is unusual in this respect because of the availability of
high-frequency fuel efficiency data. This section describes the efficiency measures used in
this study and explains the production process at power plants.

A power plant is an industrial facility that generates electricity. As of 2020, there were
11,070 utility-scale electric power plants in the US (EIA, 2020). Typically, power plants
include multiple generators, transforming different forms of energy (primarily heat, wind,
or solar) into electricity using various production technologies. Our research focuses on
fossil fuel generators as their efficiency is more easily measured with available data.

Fossil fuel generators produce electricity using the heat energy released from burning
fuels (coal, natural gas, and oil).�� In this process, the input is measured as the heat content
of the fuel used in generation, while the output is measured as the electricity generated.
This leads to a natural efficiency metric, called heat rate, which indicates how efficiently a
generator converts fuel into electricity. Heat rate is calculated as the ratio of the fuel’s heat
content, in million British thermal units (MMBtu), to the generator’s electricity output in
megawatt-hours (MWh). Our measure of efficiency is the inverse of heat rate:

Fuel Efficiency (Inv. Heat Rate) ⇤
Energy Output (MWh)
Energy Input (MMBtu) . (1)

Heat rate is the critical determinant of generator efficiency since fuel is the major input,
representing 79% of operating costs.�� For this reason, it is a standard efficiency metric in

��For many acquisitions in our sample, we access investor presentations and conference calls, which allow us to
identify the stated motives. Examples include (i) improvements in management (AES-DPL merger), (ii) cost
synergies of $175 million per year (NRG-GenOn merger), (iii) annual cost savings of $150 million (Mirant-RRI
Energy merger), and (iv) benefits of geographic, fuel, market, and earnings diversification (Vistra-Dynegy
merger). Other motives include increasing the consumer base, diversifying the portfolio across technologies
and regions, and accelerating efforts to comply with potential future environmental regulations.

��As an example, Figure OA-1 shows a slide from an investor presentation for the 2018 Dynegy and Vistra
Energy merger, where firms claim that heat rate improvements will lead to $30 million cost savings.

��In thermal power plants, water is heated to generate steam, which moves through a turbine attached to a
shaft. As the steam flows, it causes the shaft to spin, driving a generator that produces electricity.

��Based on the author’s calculations; see Section B.5 for methodology.
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Figure 1: Representative Heat Rate Curve
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Note: The green line represents the typical heat rate curve in electricity generation, showing how heat rate
changes with the production level. The blue bars represent a hypothetical distribution of production as a
function of generator capacity.

the industry, commonly used by regulatory agencies and firms (EPRICA, 2014; EIA, 2015).
Most importantly for this paper, fuel efficiency provides key advantages in analyzing

the efficiency impacts of acquisitions. First, fuel efficiency is a quantity-based measure
derived from input and output quantities rather than from revenues and input expendi-
tures. Consequently, it is not directly affected by changes in input or output prices due to
buyer and market power effects, allowing us to distinguish efficiencies from other merger-
induced changes. Second, electricity is a homogeneous product, precluding any potential
impacts on quality.�� Finally, the efficiency measure relies primarily on sensor data rather
than survey responses, as is common in many other industries.��

Several factors can influence the heat rate in a power plant. Figure 1 displays a hypo-
thetical example of a heat rate curve, where the green line represents the heat rate and
the blue bars represent a typical production distribution as a percentage of capacity. As
suggested by the heat rate curve, a power plant’s efficiency depends on its production
level, typically reaching its peak when operating near full capacity. Moreover, fluctuations
in production significantly affect efficiency. Given that electricity cannot be stored on a
large scale and demand varies over time, power plants must frequently adjust their pro-
duction in response to changing market conditions. These adjustments, known as ramp

��Some post-acquisition changes, such as reliability and environmental performance, might be viewed as
aspects of the ’quality’ of electricity generation. We will analyze these aspects later in the paper.

��It is worth noting that our efficiency measure is fuel efficiency rather than TFP and does not account for
non-fuel inputs. While non-fuel inputs play a less significant role in electricity generation compared to other
manufacturing industries, and substitution from fuel to other inputs is limited (Fabrizio et al., 2007), we
explore them in Section 6. We also provide a theoretical foundation of fuel efficiency based on a Leontief
production function in Section 5.2.
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Figure 2: Distribution of Residual Log Productivity
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Note: This figure shows the distribution of residual yearly log productivity of fossil fuel generators in the US
between 2000 and 2023, after controlling for year, standard deviation of heat rate, generator age, fuel type,
technology, capacity, boiler manufacturer and model.

costs, reduce the overall efficiency of electricity generation (Borrero et al., 2023).
Although the electricity generation may appear relatively mechanical, the efficiency

of generators in the US shows notable variation as in other manufacturing industries
(Syverson, 2011). Figure 2 shows the distribution of annual residual log productivity of
generators after controlling for a rich set of observables, including ramp, generator age,
fuel type, technology, capacity, boiler manufacturer, and model.�� The difference between
the 90th and 10th percentiles of log productivity is 0.46, indicating that generators in the
top decile are 60% more productive than those in the bottom decile.�� The large dispersion
in residual productivity highlights the role of unobserved heterogeneity in efficiency and
suggests that there is substantial room for efficiency improvements in many power plants.

Improving the heat rate performance of a generator can be achieved in two main
ways: (i) operational improvements and (ii) capital upgrades. Operational improvements,
generally lower cost than capital upgrades, include a range of practices such as installing
control software, continuously monitoring unit and equipment performance, promptly
repairing equipment impacting heat rate, training personnel, and implementing effective
maintenance.�� Every year, power plant managers convene at the Heat Rate Improvement

��We provide the details of this estimation procedure in Section B.1.
��The 90-10 percentile ratio of 0.6 is smaller than typical findings in other manufacturing sectors (Syverson,

2011), likely because we condition on a richer set of observables than in other settings. Other researchers
have also observed the heterogeneity in power plant productivity. Sargent & Lundy, LLC (2009), in a
study commissioned by the EPA, finds that the heat rates of coal-fired power plants range from 5 to 32.7
MMBtu/MWh. Staudt and Macedonia (2014) examine factors contributing to heat rate variation, including
facility size, capacity factor, and coal type, and find considerable unexplained variability in heat rate.

��Several software products are available to monitor and improve power plant performance, such as PI Data
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Conference to discuss these practices (EPRI, 2022).�� The second approach to improving
plant efficiency is by upgrading critical equipment, such as boilers, fuel feeders, and
cooling systems, as old equipment deteriorates and new technology becomes available.

A critical factor influencing operational practices in a power plant is managerial and
engineering input. As documented in detail in Bushnell and Wolfram (2009), the skills
of key personnel can profoundly impact power plant performance. These personnel are
responsible for continuously monitoring unit and equipment performance, conducting
periodic tests to assess equipment condition, and planning production and maintenance
schedules. Bushnell and Wolfram (2009) notes the operator’s impact as follows: “the act
of balancing all of these input parameters was described by one manager as playing the
piano and one star operator was considered a virtuoso on the instrument.”��

Improving power plant efficiency is also crucial for environmental reasons. The higher
a plant’s efficiency, the less fuel it requires, directly leading to reduced emissions of local
pollutants and greenhouse gases. As a result, enhancing fuel efficiency can be an effective
method to mitigate emissions, a fact acknowledged by policymakers in the EPA’s Clean
Power Plan (EPA, 2018b).

3 Data and Summary Statistics
Our primary objective is to compile a dataset that allows us to construct a measure of
generator efficiency and identify ownership changes. In this section, we outline our data
sources and present summary statistics.

3.1 Data Sources

We combine data from the FERC, the Environmental Protection Agency (EPA), the Energy
Information Administration (EIA), the North American Electric Reliability Corporation
(NERC), S&P Global Market Intelligence (GMI, formerly SNL Financial), and Velocity Suite

Historian, EtaPRO/Virtual Plant, and Emerson Enterprise Data Server. Heat rates can also be improved with
turbine enhancements such as blade and seal repairs, cycle control optimization, boiler improvements, and
deposit removal. Boiler improvements involve heat transfer surface maintenance, burner system inspection,
and intelligent soot blower utilization. For methods of heat rate improvements and other examples, see EPRI
(2009); EIA (2015); Emerson Process Management (2016); Environmental Defense Fund (2017).

��Figure OA-3 highlights a few case studies of heat rate improvements from the 2015 conference, as reported
in Fitzgerald and Gelorme (2015). The following quote is particularly noteworthy: "For years we’ve talked
about heat rate, but let’s be honest, in reality, it hasn’t driven maintenance and operational activities to a
great degree”.

��As another example of the importance of personnel, PacifiCorp Energy states in their 2016 Heat Rate
Improvement Plan Document that “Continuous improvement and management of unit heat rates is the
responsibility of all plant personnel” and “good management of heat rate requires that plant management
make optimizing heat rate a priority each day” (PacifiCorp Energy, 2016).

11



at the firm, plant, and generator levels for fossil fuel-fired power plants in the continental
US from January 2000 to March 2023. This section briefly describes the datasets, while
Appendix A provides more detailed information on the data sources, variable construction,
and descriptive statistics.

Generator and Plant Level Data. We use data from EIA, EPA, FERC Form 1, Velocity Suite,
and GMI to construct generator- and plant-level datasets. For generators, the information
includes the installation year, fuel type, technology type, capacity, boiler model, and boiler
manufacturer. For plants, we construct data on regulation status, location, ISO, and FERC
region. In addition, for approximately 35% of power plants, we have information on the
number of employees, non-fuel costs, and capital expenditures.��

Production Data. We use the EPA’s Continuous Emissions Monitoring Systems (CEMS)
to obtain hourly input and output data. This dataset provides generation, heat input, and
various emissions for nearly all fossil fuel units in the US.�� Additionally, CEMS provides
information on the environmental programs each generator is subject to and the scrubbers
used for various pollutants. We merge this dataset with our generator- and plant-level
data as detailed in Appendix A.1.

Ownership and Acquisition Data. We construct a dataset on fossil fuel generator acqui-
sitions by combining two separate datasets on ownership and transactions from GMI, as
well as information from company press releases and newspaper articles.�� The owner-
ship data include all shareholders and their shares at both subsidiary and parent company
levels. The transaction data provide details on transferred assets, transaction size, buyer
and seller, announcement and closing dates, conference call transcripts, and descriptions.
Given that virtually all power plant acquisitions in this industry require notification to
regulatory agencies, this dataset provides comprehensive coverage of transactions during
the study period.�� It is well-known that ownership datasets may misidentify acquisitions
by interpreting firm name changes and restructurings as ownership changes (Davis et al.,

��The data source for capital expenditures and non-fuel inputs is FERC Form 1 and Rural Utilities Service
(RUS) Form 12, which is available only for major electric utilities as defined by FERC.

��Every fossil-fuel generator in the US with a capacity greater than 25 MW must comply with the EPA CEMS
program. This sample represents approximately 95% of the US fossil fuel generating capacity.

��GMI, previously known as SNL Financial, collects data for the US electricity sector using regulatory filings
from agencies like the Securities and Exchange Commission (SEC), FERC, Rural Utilities Service (RUS), EIA,
and state-regulated utilities (GMI, 2024). Additionally, it uses news aggregators to capture news articles,
press releases, and corporate announcements. GMI has been widely used by researchers to study electricity
markets (Davis and Hausman, 2016; Borenstein and Bushnell, 2018; Abito et al., 2018; Jha, 2020).

��Before 2019, all power plant transactions required FERC approval regardless of size. On February 21,
2019, the FERC issued a rule setting a $10 million threshold for approval and $1 million threshold for
notification within 30 days. See https://www.ferc.gov/news-events/news/ferc-issues-final-rules-revising-
utility-merger-hydropower-regulations, accessed on June 30, 2024.
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2021; Arora et al., 2021). We address this issue by cross-referencing transaction and own-
ership data and reviewing transaction descriptions, press releases, and news articles as
detailed in Appendix A.5.

Maintenance and Outage Data. We obtain event-level data on outages, capacity reduc-
tions (derates), and maintenance from the Generating Availability Data System (GADS)
database through a data-sharing agreement with NERC. This dataset covers all generators
with a capacity over 20 MW, which are required to report events affecting their generation
capabilities to NERC. Available from 2013 to 2021, the data include each event’s start and
end times, type, and cause. The generator names are anonymized in this dataset, but infor-
mation on capacity, state, fuel type, and monthly production hours is available. Using this
information, we match this data to CEMS units using an algorithm described in Section
A.7, achieving a match rate of 92.8% based on capacity.

Personnel Data. We compile monthly data on plant personnel from 2000 to 2020 using
an EPA database of plant representatives, including names, tenure start and end dates,
and contact information. We successfully matched about 70% of the personnel names to
their LinkedIn profiles, thereby obtaining their title and education. Using LinkedIn data,
we verified that 78% of the listed personnel are plant managers, while the remainder are
primarily environmental compliance personnel and engineers. Thus, we consider plant
representatives to be plant managers for the purposes of this study.

Other Datasets. We collect hourly data on ambient temperature and humidity from
Velocity Suite for power plants in our sample, as weather conditions can affect generation
performance. We also obtain firm-level industry classifications and the publicly listed
status from GMI.

3.2 Construction of the Generator and Acquisition Sample

Our initial sample includes all electricity generators in the contiguous US that operated
between January 2000 and March 2023 and are subject to CEMS regulations (5,876 gen-
erators). From this set, we exclude cogenerators that produce both steam and electricity,
reducing the sample to 5,264 generators.

For acquisitions, we start with 5,216 generator acquisitions involved in any firm-to-firm
transaction between January 2000 and March 2023. We eliminate acquisitions before a
unit becomes operational and after its retirement (534) and minority acquisitions where
less than 50 percent of the shares change ownership (864).�� Additionally, to eliminate the

��A retired power plant may change ownership due to the value of its land or salvageable equipment or to
transfer environmental cleanup responsibilities to the new owner.
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Figure 3: Summary Statistics on Power Plant Transactions
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(b) Distribution of Transaction Size

Note: Panel (a) shows the annual percentage of fossil fuel electricity generation capacity that changed
ownership in the US from 2000 to 2023. Panel (b) displays the distribution of transaction sizes based on
fossil fuel generation capacity in the US during the same period. In Panel (b), the unit of observation is a
transaction, with the largest five transactions labeled.

potential confounding effects of deregulation, we exclude ownership changes resulting
from forced divestitures (615). We identify divestitures using the EIA Electricity Monthly
Reports, Cicala (2015), Abito et al. (2024), and other data sources described in Appendix
A.4. These restrictions reduce our sample to 3,515 generator acquisition events.

3.3 Descriptive Statistics on US Power Plant Acquisitions

This section presents descriptive statistics on fossil fuel power plant acquisitions. We
demonstrate that the industry has undergone a substantial number of acquisitions, with
significant heterogeneity in transaction, firm, and plant characteristics.

Figure 3(a) shows the share of fossil fuel electricity generation capacity that changed
ownership between 2000 and 2023.�� On average, 4.5% of the industry capacity changes
ownership annually, with some year-to-year fluctuations. As seen in Figure 3(b), these
transactions vary widely in generation capacity. While most transactions include a few
plants, there are some moderately-sized transactions involving 5,000–10,000 MW capacity,
as well as several large ones over 10,000 MW capacity.�� This heterogeneity indicates that
our evidence is not solely from a few large mergers, and we can test the heterogeneity of
the effect by different transaction characteristics.��

��We define an acquisition as a change in ownership when a different firm gains the majority of the generator’s
shares post-acquisition. In a small number of cases where no firm holds more than 50% of the shares, an
acquisition is defined as a change in the largest shareholder.

��Table OA-1 lists the 25 largest transactions during the sample period.
��Despite many acquisitions in the study period, there has been no significant change in market concentration

in the US as shown in Figure OA-4, which reports the national market shares of the largest 5, 10, 20, and 30
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Table 1: Summary Statistics

All
Units

All
Acquisitions

First
Acquisitions

Subsidiary/Parent
Change

Only Parent
Change

(1) (2) (3) (4) (5)

Panel A. Generator Characteristics

# of Units 5264 3515 2048 1089 1142
# of Plants 1581 1223 744 380 405
# of Unique Units 5264 2048 2048 1089 1142
# of Unique Plants 1581 726 726 373 400
% Gas 0.71 0.82 0.77 0.89 0.68
% Coal 0.18 0.09 0.12 0.04 0.17
% Other Fuels 0.10 0.09 0.11 0.07 0.15
% Cross-Market - 0.57 0.58 0.51 0.57
% in ISO 0.69 0.77 0.74 0.81 0.70
Avg. Unit Capacity 173.04 164.43 171.28 155.77 171.16

(184.75) (159.01) (173.39) (145.02) (179.41)
Avg. Installation Year 1986.37 1990.59 1989.29 1994.60 1984.43

(20.08) (16.24) (17.27) (14.25) (17.86)

Panel B. Firm Characteristics

# of Acquirer Firms - 244.00 182.00 126.00 61.00
# of Target Firms - 224.00 159.00 111.00 70.00
Avg. # of Units Acquirer Owns - 45.81 45.94 50.72 39.35

- (53.40) (49.20) (54.88) (39.54)
Avg. # of Units Target Owns - 32.13 33.91 37.51 38.07

- (47.23) (49.57) (50.64) (53.30)
Avg. Acquirer Firm Capacity - 5244 5595 6369 6391

- (8698) (9112) (9605) (9507)
Avg. Target Firm Capacity - 7314 7466 8312 6200

- (9862) (9335) (9948) (7532)

Panel C. Transaction Characteristics

# of Transactions - 505 318 213 72
Avg. Transaction Size in # of Units - 7.0 6.4 5.1 15.9

- (12.9) (11.2) (7.8) (19.9)
Avg. Transaction Size in Capacity - 1191 1164 812 2909

- (2378) (2039) (1491) (3510)

Note: This table includes summary statistics on acquisitions of fossil fuel-generating US units between 2000
and 2023. A description of the sample’s construction can be found in Section 3.2. Each column reports
the counts and characteristics of the data at varying sample restriction levels. Column (1) reports statistics
from all generators in the data. Column (2) reports data from acquired generators. Column (3) restricts
the acquisition sample to the first acquisition of each generator. Column (4) reports statistics for the first
acquisition involving both subsidiary and parent owner changes for each generator, while Column (5) focuses
on the first parent-only owner change for each generator, where applicable. The numbers in parentheses
represent the standard deviation. The market definition for cross-market is the power control area. In
Columns (2-5), the number of unique plants may differ from the total plant count, as in rare cases, units
within the same plant were acquired at different times. Average acquirer and target characteristics report
information before acquisitions. All capacity information is reported in MW.
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Table 1 presents summary statistics on generators, firms, and transaction characteristics.
Our sample consists of 505 transactions, covering 3,515 distinct acquisition events that
involve 2,048 unique generators. Most of these generators are gas-fired (82%) and operate
within an ISO (77%). About half of the acquisitions are cross-market transactions, where
the acquirer does not own existing capacity in the acquisition market. The sample includes
244 unique acquirers and 224 unique target firms, with acquirers owning slightly more
units than targets on average.

In Column (3), we present the same statistics, but this time for the first acquisition of
each generator, which forms our baseline sample in the empirical analysis. The observable
unit characteristics are similar between this subsample and all acquisitions (Column (2)),
suggesting that focusing on first acquisitions is unlikely to introduce selection bias. Com-
paring acquired generators with all generators in our sample (Column (1)), we find no
meaningful differences in capacity, average installation year, and whether they operate in
an organized market. However, we note differences in fuel type, with acquired generators
more likely to be gas-fired (77% vs 71%). This trend primarily comes from the large num-
ber of coal power plant retirements in the 2010s, fewer acquisition opportunities due to
coal plants being more likely to be in regulated states, and the uncertainty about the future
of coal power plants (Davis et al., 2022). To address potential identification challenges
arising from this and other potential differences, we control for monthly trends by fuel
type, technology, capacity, and installation year in our empirical specifications.

Finally, Columns (4-5) categorize the generators into two acquisition types we identi-
fied: those involving both subsidiary and parent ownership changes and those involving
only parent ownership changes. Typically, a subsidiary is the legal entity that owns the
power plant, while the parent company owns the subsidiary. Some transactions (asset
acquisitions) involve changes in both subsidiary and parent ownership, whereas others
(subsidiary acquisitions) involve changes only in parent ownership. Columns (4-5) show
that these transaction types differ mainly in size, with parent-only ownership changes
being significantly larger (an average of 15 vs 5 units). This is consistent with the nature of
parent-only ownership changes, which often involve taking over a large part of the target’s
portfolio.

We next document the firm composition in the industry. Figure 4 displays the evolution
of ownership shares by the primary activity of the company (utilities, industrials, and
financials) and by company type (publicly listed, private, government-owned). Panel (a)

firms by capacity owned. The concentration fluctuates but remains broadly stable due to significant entry
and exit in the industry. Some examples can be seen in Figures OA-5 and OA-6, where we report firms with
the largest capacity increase and decrease between 2010 and 2023.
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Figure 4: Share of Generation Capacity by Firm Type

0

25

50

75

100

2000 2005 2010 2015 2020

Pe
rc

en
t S

ha
re

 o
f T

ot
al

 C
ap

ac
ity

Financials Industrials
Other Utilities

(a) Primary Activity of Owner

0

25

50

75

100

2000 2005 2010 2015 2020

Pe
rc

en
t S

ha
re

 o
f T

ot
al

 C
ap

ac
ity

Government Institution Other Private Company
Private Investment Firm Public Company

(b) Company Type of Owner

Note: Panel (a) shows the percent share of fossil fuel generation capacity in the US between 2000 and 2023
by the primary industry type of the parent company. Panel (b) shows the same statistics by categorizing
parent owners into Public Companies, Private Investment Firms, Private Companies, and Government
Institutions. These financial firms primarily include private equity firms, pension funds, and bank funds.
The classification is taken from GMI.

indicates an increasing presence of financial firms in the industry. The share of total
capacity owned by financial firms rose from 3% in 2000 to 20% in 2023, suggesting a
substantial reallocation of assets from utilities to financial firms. Panel (b) highlights that
publicly listed firms own slightly more than half of the industry capacity, with their share
remaining stable over time. Finally, government institutions—primarily local governments
in rural areas, except the Tennessee Valley Authority—own 12% of total capacity.

The returns of power plants in certain states are subject to regulation. One might be
concerned about the role of regulations in this industry as they change the incentives to
improve efficiency after an acquisition. However, as shown in Table 1, most acquisitions
(77%) occur in organized markets where electricity prices are determined through compet-
itive auctions.�� This trend is also reflected in the geographic distribution of acquisitions
in Figure OA-7.

4 Empirical Results
Our empirical strategy aims to identify the effects of acquisitions on power plant produc-
tivity and other key operational outcomes. For this purpose, we implement a difference-
in-differences research design that compares productivity trends of acquired generators to
those that were never or not-yet acquired. The main advantage of our empirical setting is

��While some power plants in ISOs are regulated, this represents a small number of plants.
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the availability of a high-frequency measure of generator productivity, which enables us
to track changes in productivity immediately before and after acquisitions.

We find that acquisitions increase the productivity of power plants by 2% on average;
however, with significant heterogeneity across acquisition types. In particular, ownership
changes at both the subsidiary and parent owner levels lead to a 5% efficiency gain,
whereas ownership changes only at the parent company level have no effect. We conclude
this section by examining the heterogeneity of the efficiency effect and studying how
acquisitions affect other plant outcomes, such as generation and outages.

4.1 Effects of Acquisitions on Efficiency

We estimate the effects of acquisitions on efficiency using a regression of the following
form:

yit ⇤ �1 {Pre-year 1} + �2 {Post-year 1} + �3 {Post-year 2} + �4 {Post-year 3} + Xit + ↵i + µt + ✏it , (2)

where yit is the log efficiency of generator i at week t (measured as inverse heat rate),
↵i and µt are generator and week fixed effects, respectively.�� The controls, Xit , in our
preferred specification include ambient temperature and humidity, a dummy variable
for each environmental regulation indicating whether the generator is subject to that
regulation, and pollution control device (scrubber) indicators for NOx , SO2 and PM.��
Controlling for factors related to environmental regulations is important, as policy changes
over the past two decades may influence firms’ acquisition decisions or directly affect plant
efficiency due to scrubber installations.

In addition to these variables, we control for monthly time trends by state, installa-
tion year, fuel type, capacity bins, and technology type.�� By incorporating state-specific
time trends, we account for changes in electricity demand and supply of non-fossil fuel
generation. Furthermore, the time trends for generator characteristics allow for different
efficiency trajectories based on generator type. For example, generators might experience a

��Even though the underlying data are hourly, we estimate this specification at the weekly frequency to alleviate
computational complexity and reduce noise in the hourly data. We later perform a robustness check with
daily frequency.

��These programs are Clean Air Interstate Rule NOx Program, Nitrogen Oxides Budget Trading Program,
Cross-State NOx Program, Ozone Transport Commission Program, State Implementation Plan NOx Program,
Regional Greenhouse Gas Initiative, Clean Air Interstate Rule Ozone Season Program, Cross-State Ozone
Season Program (Group 1-2), New Hampshire NOx Program, Mercury and Air Toxics Standards, Clean Air
Interstate Rule SO2 Program, Cross-State Ozone Season Program (Group 1-3), Cross-State SO2 Program,
New Source Performance Standards for Toxics, Texas SO2 Program.

��Capacity bins are categorized as follows: 0-50MW, 50-100MW, 100-250MW, 250-500MW, 500-2000MW; fuel
types include gas, coal, and other; and technology types distinguish between combined cycle and other
technologies.
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decline in efficiency over their lifespans, which can be nonlinear and vary by their vintage.
We capture this variation by including installation-year-by-month fixed effects.

The model in Equation (2) includes coefficients of interest, �1 to �4, to estimate effi-
ciency effects from one-year pre-acquisition to three years post-acquisition.�� We include
�1 to examine potential pre-acquisition productivity effects, which could arise due to an-
ticipation effects or disruptions in the production process. The regression coefficients are
normalized relative to the period two years before the acquisition, and standard errors
are clustered at the plant level. We exclude acquired generators from the sample three
years after their first acquisition to ensure that their post-treatment periods are not used as
controls for other units. This means that we use only the first acquisition of each generator
in our baseline empirical model, with a robustness check that includes all acquisitions
presented in Section 7.

It is worth noting that the unit of analysis is a generator rather than a plant. Although
the same firm usually owns all the generators within a plant, generators often have distinct
production profiles, maintenance schedules, and even retirement years (Gowrisankaran
et al., 2022). Therefore, we think the generator is the right level of analysis, and it is
maintained throughout the paper unless otherwise stated.

Table 2 presents results with various sets of control variables (Columns 1-4) and differ-
ent acquisition types based on subsidiary and parent owner changes (Columns 5-6). Our
preferred specification with the full set of control variables in Column (4) demonstrates
efficiency increases following ownership changes. The efficiency of acquired generators
increases by 0.6% one year after acquisition and reaches 2% after two years. The efficiency
increase is robust to including a rich set of controls and time trends, and there is no ef-
ficiency change in the year leading up to the acquisition. Overall, these findings suggest
that acquisitions lead to some improvements in generator efficiency.

Columns (5-6) of Table 2 test whether the efficiency effect differs by the type of own-
ership change.�� Column (5) shows the estimates only for acquisitions with ownership
changes at both the parent and subsidiary levels. By contrast, Column (6) includes own-
ership changes at only the parent level. The results suggest significant heterogeneity in
the efficiency change based on acquisition type. When only the parent owner changes, the
effect is small and not statistically significant, whereas both subsidiary and parent owner-

��Specifically, {Pre-year 1} is an indicator variable for 1 to 12 months pre-acquisition; {Post-year 1} for 0 to 12
months post-acquisition, {Post-year 2} for 13 to 24 months post-acquisition, and {Post-year 3} for 25 to 36 months
post-acquisition.

��When estimating the effects of acquisition on one subsample of acquired units, we exclude the other acquired
generators from the regression rather than grouping them with the never-acquired units so that they are not
used as control units.
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Table 2: Effects of Acquisitions on Generator Productivity

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

All
Acquisitions

Types

Subsidiary
and Parent
Changes

Only
Parent

Changes
(1) (2) (3) (4) (5) (6)

Dependent Variable: Log of Efficiency

Pre-acquisition (1 Year) 0.002 0 -0.003 -0.003 -0.002 -0.007
(0.003) (0.003) (0.003) (0.003) (0.005) (0.003)

Post-acquisition (1 Year) 0.018 0.015 0.006 0.006 0.015 -0.01
(0.005) (0.005) (0.005) (0.005) (0.007) (0.005)

Post-acquisition (2 Years) 0.035 0.034 0.02 0.02 0.039 -0.003
(0.008) (0.007) (0.007) (0.007) (0.009) (0.007)

Post-acquisition (3 Years) 0.039 0.036 0.02 0.02 0.049 -0.008
(0.009) (0.009) (0.008) (0.008) (0.012) (0.008)

Ambient Temp. & Humidity X X X X X X
Unit & Week FE X X X X X X
State by Month FE X X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X

R
2 0.707 0.726 0.752 0.753 0.763 0.764

# of Observations 1.838M 1.838M 1.838M 1.838M 1.494M 1.575M
# of Never-Treated Units 2311 2311 2311 2311 2311 2311
# of Treated Units 2046 2046 2046 2046 1089 1142

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and �4 from estimating Equation (2). Columns
(4-6) present our baseline specification, where we allow for time trends to vary flexibly by unit characteristic
and include weather, scrubber, and environmental program controls. Unit characteristic fixed effects include
installation year, fuel, technology, and unit capacity bins. The dependent variable is the logarithm of the
inverse heat rate. Standard errors are clustered at the plant level. Table OA-2 presents the same analysis
results but for the subsample of acquisitions with both subsidiary and parent company changes.

ship changes lead to an efficiency increase of 4.9%. One might expect the efficiency effects
to differ in these two cases because the subsidiary owners typically exert direct control
over power plant operations and personnel, whereas the parent owners exercise indirect
control through actions such as appointing directors, approving capital expenditures, and
setting performance targets (Akey and Appel, 2021). Furthermore, changes at the parent
level are more likely to be financial acquisitions, potentially driven by motivations such as
diversification and environmental policy considerations rather than efficiency gains (An-
donov and Rauh, 2023). Overall, our results highlight that efficiency gains are influenced
by the level of ownership change in the corporate structure and whether the direct owner
changes.

After demonstrating the impact of acquisitions on generator efficiency, we shift our
focus to the dynamic effects. Our goal is to determine the timing of efficiency changes
and to test for different pre-treatment trends between the acquired and other generators.
To this end, we estimate the change in efficiency around the time of acquisition using the
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Figure 5: Dynamic Effects of Acquisitions on Productivity
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Note: This figure presents the coefficient estimates of �̂s where s 2 (�36, 36) from Equation (3) along with
95% confidence intervals. The dependent variable is the logarithm of the inverse weekly heat rate. The unit
of observation is generator-week. Standard errors are clustered at the plant level.

following specification:

yit ⇤

’
s2(�36,36)

�̂sDi(t0+s) + Xit + ↵i + µt + ✏it , (3)

where Di(t0+s) is a monthly indicator variable equal to 1 for generator i if it is acquired in
month t

0, and zero otherwise. Xit includes the same control variables as before. Since
we find efficiency effects only in acquisitions where both the subsidiary and parent owner
change, we focus exclusively on those acquisitions hereafter.

The estimates of dynamic effects are shown in Figure 5. The pre-acquisition coefficients
are small and statistically insignificant, indicating similar productivity trends between
acquired and non-acquired generators before acquisition. The difference between these
groups remains small until five months post-acquisition, at which point the efficiency
of acquired plants begins to diverge. On average, the efficiency of acquired generators
increases by 5% eighteen months post-acquisition and then stabilizes. Not observing
efficiency gains immediately after acquisitions suggests that the new owner requires time
to implement efficiency improvements.

To interpret our results on efficiency gain as causal, we rely on the assumption that an
acquisition creates a discontinuous change in power plant behavior, and any unobservable
efficiency trends that might lead to selection would be gradual enough to be distinguish-
able from the more discrete acquisition effect. Our data-rich setting offers key advantages
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for this assumption to hold, as we observe production at short intervals and incorporate
flexible time trends that account for factors likely to influence selection into acquisitions.
Additionally, parallel trends holding three years pre-acquisition, coupled with the produc-
tivity increase beginning just a few months post-acquisition, further suggest that efficiency
gains are not likely caused by unobserved confounding factors.

Still, ownership changes are, of course, not random, and unobservable factors could
influence efficiency without acquisitions. If acquirers observe these factors, that might lead
to reverse causality, with acquisitions made in anticipation of efficiency gains. Although
we cannot eliminate all potential identification threats or account for every unobservable
factor, we conduct several robustness checks to ensure our results are robust to various
specification choices and identification threats. For example, one possible scenario is
that the acquirer observes that the target plant’s manager will retire soon and decides
to buy the plant, anticipating that the new manager will improve efficiency. To address
such a concern, we estimate the effects of manager changes on efficiency in the absence
of mergers and find no efficiency increase (Figure OA-8). In addition, we do a battery
of robustness checks, including matching estimators, the Callaway and SantAnna (2021)
estimator, estimation with daily data, estimation with net generation, weighted estimation,
and placebo tests with minority acquisitions. We find that the results are robust to these
specification choices.�� See Section 7 for a summary of robustness checks and Appendix F
for the corresponding results.

The results so far suggest that the efficiency of power plants improves following own-
ership changes. Yet, it is important to recognize that efficiency gains in power plants can
occur in various ways, not all of which are socially beneficial. For instance, generators
might improve their average efficiency by decreasing production and reducing ramping,
but this could lead to increased production from a high-cost generator. Alternatively, new
owners might operate generators more intensively, increasing their short-term efficiency
but potentially causing increased outages and declining long-term performance. In the
rest of this section, we provide additional analyses to gain insights into efficiency gains
while reserving a more formal investigation of underlying mechanisms for the next section.

We examine the effect of ownership changes on various operational outcome mea-
sures, including generation, capacity utilization, operating hours, outages, and the carbon
intensity of production. Capacity utilization is defined as the average hourly production

��We emphasize that our estimates report the average treatment effect on the treated (ATT), specifically the
efficiency effects of the proposed acquisitions. In our setting, the ATT, not the average treatment effect
(ATE), is the primary and policy-relevant object of interest because we want to learn the effects of actual
acquisitions, not hypothetical ones that would occur at random.
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Table 3: Effects of Acquisitions on Generator Performance Measures

Dep. Var. Total
Generation

Capacity
Utilization

Operating
Hours

Forced
Outages/Derates

Log CO2
Intensity

(1) (2) (3) (4) (5)

Pre-acquisition (1 Year) -169.221 0.003 -1.556 -0.003 0.006
(175.659) (0.004) (0.78) (0.013) (0.005)

Post-acquisition (1 Year) 192.18 0.006 -0.096 -0.026 -0.01
(253.427) (0.005) (1.155) (0.015) (0.007)

Post-acquisition (2 Years) 457.981 0.013 0.584 -0.034 -0.037
(312.616) (0.006) (1.305) (0.019) (0.009)

Post-acquisition (3 Years) 527.331 0.015 0.985 -0.063 -0.046
(343.504) (0.006) (1.393) (0.019) (0.012)

Ambient Temp. & Humidity X X X X X
Unit & Week FE X X X X X
Unit Characteristic by Month FE X X X X X
Scrubber & Enviro. Prog. FE X X X X X

Pre-acquisition Mean 7207.429 0.665 45.116 0.188 -
R

2 0.797 0.595 0.695 0.243 0.859
# of Observations 2.612M 1.494M 2.612M 0.705M 1.418M
# of Controls 2311 2311 2311 1383 2026
# of Treated Units 1089 1089 1089 409 977

Note: This table presents the coefficient estimates of �1 , �2 , �3 , and �4 from estimating Equation (2). Unit
characteristic fixed effects include state, installation year, fuel type, technology type, and unit capacity bins.
The unit of observation is generator-week. Standard errors are clustered at the plant level. The number of
observations in Column (4) is lower than the rest because the outage and maintenance data begin in 2013.
Some units in Column (5) are missing because their CO2 emissions always equal zero in the data. The
corresponding event study figure for each regression is reported in Figure OA-11.

as a proportion of capacity over a week, conditional on operation. Operating hours are
calculated as the total hours a unit is operational in a given week. For outages, which are
available between 2013 and 2021, we calculate the share of hours in a given week a unit
experiences a forced outage or derate. Finally, the CO2 intensity is calculated by divid-
ing CO2 emissions by generation. Using these outcome measures, we estimate the same
specification as in Equation (2).

The coefficient estimates in Table 3 indicate improvements in plant performance across
multiple dimensions. In Column (1), we find that acquired generators increase their
generation by 7.3% compared to the baseline following the acquisition, so the efficiency
improvements do not come at the expense of a decline in production.�� Columns (2-3)
suggest that generation increases at both the intensive and extensive margins. We observe
that acquired power plants increase capacity utilization by 1.5 pp and operating hours
by 1 hour, though the latter is not statistically significant at the 5% level. The increase

��This regression also offers indirect evidence that acquirers do not exert market power by withholding the
output of the acquired generators.
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in utilization can be viewed as another source of productivity gain, as the generator
produces more output conditional on the existing capital and labor stock, as argued
in Braguinsky et al. (2015). Moving to Column (4), the results indicate improvements
in reliability, with a reduction in forced outages and derates of 6.3 pp, suggesting that
efficiency gains are achieved without compromising reliability. Finally, we note a 4.6%
decrease in CO2 intensity, mirroring the results on efficiency gains, as CO2 emissions are
inversely proportional to heat input.

4.2 Discussion of Results

Our findings in this section reveal that acquisitions lead to a 5% increase in efficiency, but
only when both subsidiary and parent owners change. Additionally, acquired generators
increase production and utilization, reduce outages, and improve emission intensity. How
large is the average 5% efficiency gain? To interpret this finding, it is helpful to compare
our estimates to the average within-generator productivity growth in this industry, which
is only 0.3% annually.�� Given this modest within-generator productivity growth, the
efficiency gains due to ownership changes are particularly noteworthy.

We also estimate the reduction in CO2 emissions attributable to acquisitions. As de-
tailed in Appendix B.3, our analysis assumes that efficiency gains begin after each unit’s
first acquisition and that their production levels remain unchanged post-acquisition. Un-
der these assumptions, we calculate a cumulative decrease of approximately 360 million
tons in CO2 emissions due to acquisitions from 2000 to 2023. This reduction is equivalent
to the savings from replacing 800 TWh of gas-fired electricity generation with renewables.

4.3 What Predicts Efficiency Gains: Heterogeneity Analysis

This section explores whether efficiency gains are associated with observable plant or
firm characteristics. While these findings do not establish causality, they help derive
insights applicable to other industries by documenting transaction characteristics that
could predict efficiency gains. For this estimation, we modify Equation (2) by interacting
treatment indicators with observable variables Zit :

yit ⇤ �1 {Pre-year 1} + �2 {Post-year 1} + �3 {Post-year 2} + �4 {Post-year 3} + �̄1 {Pre-year 1} ⇥ Zit+

�̄2 {Post-year 1} ⇥ Zit + �̄3 {Post-year 2} ⇥ Zit + �̄4 {Post-year 3} ⇥ Zit + Xit + ↵i + µt + ✏it . (4)

��Refer to Figure OA-9, which illustrates the average year-to-year within-generator productivity growth for
generators not involved in acquisitions. The productivity growth fluctuates around zero, averaging a 0.3%
annual increase over the sample period.
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Table 4: Heterogeneous Effects of Acquisitions on Productivity

Interaction Var. (Z) Capacity
>Median

Age
>Median

Serial
Acquirers

Firm Size
>Median

Cross-Market
Acquisitions

(1) (2) (3) (4) (5)

Dependent Variable: Log of Efficiency

Post-acquisition (1 Year) ⇥ Z 0.023 -0.001 0.014 0.012 0.002
(0.011) (0.012) (0.012) (0.012) (0.012)

Post-acquisition (2 Years) ⇥ Z 0.035 0.004 0.059 0.049 -0.021
(0.015) (0.016) (0.016) (0.017) (0.015)

Post-acquisition (3 Years) ⇥ Z 0.034 -0.011 0.058 0.041 -0.039
(0.018) (0.02) (0.02) (0.02) (0.019)

Ambient Temp. & Humidity X X X X X
Unit & Week FE X X X X X
Unit Characteristic by Month FE X X X X X
Scrubber & Enviro. Prog. FE X X X X X

R
2 0.763 0.763 0.763 0.763 0.763

# of Observations 1.494M 1.494M 1.494M 1.494M 1.494M
# of Units 2311 2311 2311 2311 2311
# of Acquisitions 1089 1089 1089 1089 1089

Note: This table presents the coefficient estimates of �̄2 , �̄3 , and �̄4 from estimating Equation (4). Each
column reports results from a different regression by varying the interaction variable, Z. Unit characteristic
fixed effects include state, installation year, fuel type, technology type, and unit capacity bins. The unit
of observation is generator-week, and the dependent variable is the logarithm of the inverse weekly heat
rate. Standard errors are clustered at the plant level. Appendix B.4 provides details about the heterogeneity
variables. See Table OA-3 for the full set of estimates, including �1 through �4 and �̄1 through �̄4.

We estimate this equation separately for a set of generator, firm, or transaction charac-
teristics that might be indicative of efficiency gains. In particular, we consider generator
capacity, generator age, whether the acquirer is a serial acquirer, acquirer size, and whether
the acquisition is a cross-market acquisition. Details on the construction of these variables
are provided in Appendix B.

Results, reported in Table 4, reveal that the efficiency increase is 3.4% larger when the
generator capacity is higher than the median of acquired generator capacity. This suggests
that acquirers might have stronger incentives to improve efficiency in larger plants, where
the returns on such improvements are potentially higher. We do not find any significant
differential effect with respect to generator age, as shown in Column (2). Next, we turn
to firm characteristics: whether the acquirer is a serial acquirer and acquirer size (total
owned pre-acquisition fossil fuel generation capacity). The results, reported in Columns
(3-4), indicate that efficiency improvement is 5.8% higher when the acquirer is a serial
acquirer and is 4.1% higher when the acquirer firm is larger than the median acquirer.
These findings suggest that a firm’s experience in plant operation and acquisitions could
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explain efficiency gains. They also align with and complement the findings of Hortaçsu
et al. (2019) that large power firms are more sophisticated in bidding in wholesale electricity
market auctions.��

Finally, in Column (5), we explore whether the efficiency effects differ for cross-market
acquisitions. We categorize a generator acquisition as a cross-market acquisition if the
acquirer owns no fossil fuel generation capacity in the acquisition market (defined as a
power control area). One might expect different efficiency impacts in cross-market acqui-
sitions due to the absence of market power effects. On the one hand, the efficiency effects
of within-market mergers might be smaller because they can remain profitable without
efficiencies due to increased market power. On the other hand, within-market merger
efficiencies could be higher because merging entities need to demonstrate efficiencies to
gain approval. Additionally, within-market mergers might benefit from synergies or firm
specialization specific to the acquisition market. We find that cross-market acquisitions
exhibit 3.9% lower efficiency gains compared to within-market acquisitions. Although this
result does not identify the mechanism for lower efficiency gains in cross-market acquisi-
tions, the next section provides further insights by analyzing within-market portfolio-level
synergies.

5 Mechanisms

This section proposes mechanisms of efficiency gains, tests them empirically and quantifies
their role using a model of production in power plants. The key finding is that the majority
of efficiency gains come from increasing productive efficiency within a generator.

5.1 Mechanisms of Efficiency Improvements

Three mechanisms could explain the estimated efficiency gains: (i) productive efficiency,
(ii) dynamic efficiency, and (iii) portfolio efficiency. We first define these mechanisms and
then develop a testable prediction for each one.

Productive Efficiency. Productive efficiency arises when the plant’s new owner imple-
ments operational processes or invests in new equipment that improves efficiency. This
mechanism occurs solely through increasing the generator’s efficiency, enabling it to pro-
duce more with less fuel for a given production level. Therefore, it is independent of
changes in the ramp profile or synergies with other plants in the same market. As illus-

��Hortaçsu et al. (2019) explore a counterfactual scenario in which large firms acquire smaller ones and improve
their bidding operations. The evidence presented in this paper essentially validates the counterfactual
hypothesis proposed by Hortaçsu et al. (2019). For further discussion, see Section 6.2.
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Figure 6: Illustration of Mechanisms of Efficiency Gains
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Note: Each panel illustrates the mechanisms of efficiency increase described in Section 5.1.
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trated in Figure 6(a), an implication of productive efficiency is a lower heat rate curve,
leading to the following testable prediction:

Prediction 1: If acquirers improve productive efficiency, the generator’s heat rate curve
shifts down.

Dynamic Efficiency. Dynamic efficiency arises from changes in generation level over time.
As discussed in Section 2.3, a key aspect of power generation is that efficiency is influenced
by both the level of production and changes in production. Generators that experience
significant production shifts incur ramp costs, which reduce overall efficiency. Power
plants must manage these ramp costs due to the stochastic nature of electricity demand,
which requires coordination between trading desk personnel responsible for submitting
supply bids and plant operators overseeing production. Jha and Leslie (2021) notes that
uncertainty in residual demand or mismanagement in production can significantly in-
crease ramp costs. Figure 6(b) illustrates the dynamic efficiency effect, showing a more
concentrated production distribution and, therefore, lower ramp costs post-acquisition. A
testable hypothesis derived from this mechanism is:

Prediction 2: If acquirers improve dynamic efficiency, the variation of generation goes
down.

Portfolio Efficiency. The third mechanism to improve efficiency is portfolio effects. Elec-
tricity markets are complex, characterized by stochastic demand, dynamic transmission
constraints, and the need to meet demand in real time. To address these challenges, market
operators exist to ensure coordination, aggregate information from generators, and allocate
production to the lowest-cost generators through high-frequency auctions. However, some
inefficiencies may still persist due to frictions and asymmetric information between the
market operator and firms, possibly arising from firms lacking appropriate tools or incen-
tives to share information with the market operator (Mansur and White, 2012). Therefore,
operating multiple power plants in the same market could lead to portfolio-level efficien-
cies through ramp synchronization and efficient production allocation (Reguant, 2014).
This effect is illustrated in Figure 6(c), where the acquirer re-optimizes the production
allocation between power plants after acquisition. As this mechanism only occurs when
firms have multiple plants in the same market, a testable hypothesis for portfolio efficiency
is:

Prediction 3: The efficiency of the acquirer firm’s existing plants in the acquisition market
improves, while it remains the same in other markets.
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5.2 Quantifying Productive Efficiency Using Production Functions

We start by testing for productive efficiency using an empirical strategy guided by Predic-
tion 1. In particular, we estimate a production function for generators, where we model
heat rate with the following equation:

yit ⇤ fi⌧(Qit ,Xit) + ✏it , (5)

where yit ⇤ log(Fuelit/Qit) is log heat rate, and Qit is production of generator i at hour
t. The other variables, Xit , include ambient temperature, ambient humidity, and the
ramp rate defined as the hourly change in production, (Qit � Qit�1)/Ci , where Ci denotes
generator capacity. Subscript i denotes the generator, t denotes the hour, and ⌧ indicates
the pre- or post-acquisition period.

As described in Bushnell and Wolfram (2005), this form of heat rate modeling can
be micro-founded from a Leontief electricity production function. To see this, assume
electricity is produced according to the following production function:

Qit ⇤ min(gi(Fit ,Xit)✏it , hi(Kit , Lit)!it), (6)

where Fit , Kit , Lit are fuel, capital and labor inputs, ✏it is unobserved, time-varying
fuel efficiency, Xit are observable factors affecting fuel efficiency, and !it is total factor
productivity. This Leontief production function, under a cost minimization assumption,
implies that Qit ⇤ gi(Fit ,Xit)✏it . Assuming gi(·) is strictly monotone in Fit , it can be
inverted to write Fit ⇤ g

�1
i
(Qit ,Xit)✏it . Dividing both sides by Qit and taking the logarithm

yields the functional form in Equation (5).
Importantly, the production function in Equation (5) is indexed by i and ⌧, where ⌧

equals 1 in the post-acquisition periods and 0 in the pre-acquisition periods. Therefore,
we estimate a generator-specific production function separately for the pre- and post-
acquisition periods, with fi0 representing the production technology of generator i before
the acquisition and fi1 representing it afterward.

It is worth highlighting the benefits of estimating generator-specific production func-
tions. The form in Equation (5) accommodates heterogeneity in production technology
across generators through the generator-specific and time-varying production function fi⌧.
Since fi⌧ captures productivity differences across generators and over time, the production
function literature generally interprets ✏it as an ex-post shock (or measurement error) to
output that is orthogonal to inputs. Thus, our model is likely to be robust to transmission
bias, which creates a correlation between productivity level and inputs (Marschak and
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Figure 7: Estimates of Average Heat Rate Curves
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Note: This figure shows estimates of average heat rate curves three years before acquisition and three years
after acquisition. Panel (a) shows this for the acquired generators group, and Panel (b) shows this for the
control group constructed by a matching procedure detailed in Section C.4. The treated group sample is
the same as Column (5) of Table 2. Figure OA-10 reports the confidence band for the difference between the
two heat rate curves obtained from a bootstrap procedure. Further details of the estimation procedure are
provided in Section B.2.

Andrews, 1944; Ackerberg et al., 2015). Furthermore, through a time-varying production
function, we model the effects of acquisitions not only on the productivity level but also
on the production technology.

We can estimate a flexible production model due to the availability of hourly data, as
it provides a large number of observations for each generator, even within a limited time
frame around acquisitions. This highlights the advantages of a data-rich environment,
contrasting with the production function literature, which often imposes an industry-level
functional form due to data limitations (De Loecker and Syverson, 2021).

We use a nonparametric local polynomial regression to estimate the functions fi0 and
fi1 for each acquired generator as detailed in Appendix B.2. To estimate fi1, we use three
years of post-acquisition data, while fi0 is estimated using data from three years prior to
the acquisition. We then measure the changes in productivity by calculating the difference
between the post-acquisition and pre-acquisition heat rate curves for each generator and
then averaging these differences. Specifically, we calculate:

�C(Q) ⇤ cpost(Q) � cpre(Q) ⇤ 1
Nacq

Nacq’
i⇤1

�
fi1(Q , X̄i) � fi0(Q , X̄i)

�
,

where Nacq represents the number of acquired generators and Q 2 [10, 100] is the pro-
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duction level as a percentage of capacity.�� The terms cpre(Q) and cpost(Q) denote the
average heat rate at production level Q before and after acquisition, respectively. The
control variables are set to X̄i , which is 0 for ramp rate, and the pre-acquisition medians
for temperature and humidity to isolate the effects of post-acquisition changes in these
variables. Thus, �C(Q), known as the average structural function (Blundell and Powell,
2003), represents the change in the average heat rate at each production level controlling
for ramp and weather conditions.

We also construct a control group by matching each acquired generator to those never
acquired in a different market based on capacity, age, fuel, and technology type, as detailed
in Appendix B.2. We then apply the same estimation procedure to these control generators
to quantify changes in the heat rate curves without acquisitions.

Figure 7(a) reports cpost(Q) and cpre(Q) for the acquired generators, while Figure 7(b)
displays these curves for the control group. Comparing pre- and post-acquisition heat rate
curves reveals a downward shift in the heat rate curve for acquired generators at every
production level, with larger effects near the generator’s capacity. In contrast, the control
group’s heat rate curve remains stable.�� We also calculate a confidence band for the
difference between the pre- and post-acquisition heat rate curves of acquired generators,
as presented in Figure OA-10, confirming that the difference is statistically significant.
These results provide direct evidence that the acquirers increase the productive efficiency
of the acquired generators by improving their heat rates.

Having estimated the heat rate curves, we can now quantify the total efficiency gain
from the downward shift in heat rate curve. To do this, we integrate the difference between
the post- and pre-acquisition curves as follows:

� ⇤
1

Nacq

Nacq’
i⇤1

æ �
fi1(Q , X̄i) � fi0(Q , X̄i)

�
dFi0(Q),

where Fi0(Q) represents the pre-acquisition production distribution of generator i. This
calculation maintains the production distribution from the pre-acquisition period and
quantifies efficiency gains solely from changes in the heat rate curve. The result indicates a
3.9% (CI: 2.9%, 4.8%) increase in efficiency, accounting for approximately three-quarters of
the total efficiency gain observed in the event study. Therefore, most of the efficiency gain
stems from increased productive efficiency attributable to the acquirers’ improvements to

��The utilization values start at 10% because production at lower capacity levels is rare and tends to yield noisy
estimates.

��The slight shift in the heat rate curve of control generators is consistent with the within-generator aggregate
efficiency growth documented in Figure OA-9.
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Table 5: Regression Results on Dynamic Efficiency Mechanism

Dep. Var. CoV of Heat Rate CoV of Utilization Number of Ramps
(1) (2) (3)

Pre-acquisition (1 Year) -0.001 0 -0.058
(0.006) (0.004) (0.093)

Post-acquisition (1 Year) -0.015 -0.015 -0.263
(0.007) (0.006) (0.137)

Post-acquisition (2 Years) -0.026 -0.025 -0.367
(0.008) (0.007) (0.156)

Post-acquisition (3 Years) -0.029 -0.029 -0.432
(0.01) (0.008) (0.159)

Ambient Temp. & Humidity X X X
Unit & Week FE X X X
Unit Characteristic by Month FE X X X
Scrubber & Enviro. Prog. FE X X X

Pre-acquisition Mean 0.235 0.364 3.499
R

2 0.195 0.528 0.452
# of Observations 1.476M 1.476M 1.476M
# of Never-Treated Units 2309 2309 2309
# of Treated Units 1089 1089 1089

Note: This table presents coefficient estimates of �1 , �2 , �3 , and �4 in Equation (2) from a regression of the
CoV of heat rate, CoV of utilization, and number of ramps on treatment dummies. The CoVs are calculated
from hourly data every week; thus, the regressions use weekly data. Unit characteristic fixed effects include
state, installation year, fuel type, technology type, and unit capacity bins. The number of observations in
Columns (1-2) is smaller because CoV cannot be calculated for some weeks due to small sample size. Figure
OA-12 reports each regression’s corresponding event study figure.

the generator’s internal operations.

5.3 Quantifying Dynamic and Portfolio Efficiency

We next assess the role of dynamic efficiency. Prediction 2 posits that increased dynamic ef-
ficiency results in reduced production variability post-acquisition. To test this, we consider
three measures of production variability: the CoV of heat rate, the CoV of utilization, and
the number of ramps.�� These metrics collectively provide insights into how acquisitions
influence the production dynamics of a generator.

We estimate our baseline regression using these measures as outcome variables and
report the estimates in Table 5. Post-acquisition, we observe significant reductions in all
measures of production variability. Specifically, the CoV of heat rate decreases by an
average of 0.029 from a pre-acquisition mean of 0.235, and the CoV of utilization drops

��We define a ramp event as a change in production where the output increases from below 20% to above 80%
of the plant’s capacity or decreases from above 80% to below 20% within a period of less than three days.
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by 0.029 from a pre-acquisition mean of 0.364. We also find a significant decline in the
number of ramps, showing a 12% decrease from the pre-acquisition level.

We can also quantify the contribution of the dynamic efficiency effect using the pro-
duction model developed in Section 5.2 as follows:

1
Nacq

Nacq’
i⇤1

 æ
fi1(Q̄ , X̄i)dFi1(Q̄) �

æ
fi1(Q̄ , X̄i)dFi0(Q̄)

!
,

where Q̄ includes the production level and ramp rate, X̄i includes ambient temperature
and humidity, and Fi1(Q̄) and Fi0(Q̄) denote the distributions of production post- and pre-
acquisition. This calculation essentially poses the following counterfactual question: What
would be the efficiency difference if the generator had the post-acquisition heat rate curve
( fi1) in both the pre- and post-acquisition periods while only changing the production
profile from Fi0 to Fi1? In other words, it controls for production technology and captures
efficiency effects only due to changes in the production distribution. This calculation yields
an efficiency gain of 1.7% (CI: 0.0%, 4.2%), corresponding to 30% of the total effect.��

It is important to recognize that improvements in dynamic efficiency can arise from
various factors. One potential factor is increased productive efficiency: a marginal gen-
erator in the dispatch curve that becomes more efficient after acquisition may operate
infra-marginally more often, leading to reduced ramping. Another explanation could be
decreased outages and forced maintenance, which would reduce ramping between in-
active and operational modes. Furthermore, the acquirer may change the power plant’s
operations or improve coordination between the bidding desk and plant operators. Al-
though our analysis does not separate the impact of these individual sources, it highlights
the importance of ramping costs in improving power plant efficiency.

In the final analysis of this section, we test the portfolio efficiency mechanism. Pre-
diction 3 implies that portfolio efficiency arises when the acquirer’s existing generators
located in the acquisition market become more efficient while those in other markets do
not. To test this, we estimate Equation (2) separately for two subsets of the acquirer’s exist-
ing generators: those in the acquisition market (Figure 8(a)) and those in different markets
(Figure 8(b)). The results indicate that regardless of location, acquirers’ generators show
no efficiency improvements, suggesting limited scope for portfolio efficiency effects.

The analysis in this section focused only on marginal cost gains from fuel efficiency.
Acquisitions may also reduce fixed costs or result in non-fuel cost savings. For example,
decreased ramping can reduce wear and tear, thus lowering maintenance expenses and

��The productive and dynamic efficiency effects do not sum to exactly 100% due to noise in estimation.
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Figure 8: Effects of Acquisitions on Acquirers’ Existing Plants

−0.02

−0.01

0.00

0.01

0.02

Pre−Year (1) Post−Year (1) Post−Year (2) Post−Year (3)

 Time

 %
 C

ha
ng

e 
in

 P
ro

du
ct

iv
ity

(a) Acquisition Markets

−0.02

−0.01

0.00

0.01

0.02

Pre−Year (1) Post−Year (1) Post−Year (2) Post−Year (3)

 Time

 %
 C

ha
ng

e 
in

 P
ro

du
ct

iv
ity

(b) Non-acquisition Markets

Note: Panel (a) shows coefficient estimates from a regression of log efficiency on relative time indicators
�1 , �2 , �3 , and �4 where existing units of the acquirer in the acquisition market are treated. Panel (b) shows
the results from the same regression, except that existing units of the acquirer outside the acquisition market
are treated. Error bars show 95% confidence intervals. Standard errors are clustered at the plant level.

prolonging the lifespan of capital. Additionally, acquisitions may generate economies of
scale in maintenance and bidding (Haldi and Whitcomb, 1967; Hortaçsu and Puller, 2008).
Although these fixed cost efficiencies could be large, they are generally not considered
in merger analysis (Röller et al., 2006) and cannot be accurately measured with our data.
Therefore, they fall outside the scope of this paper.

6 How Do Acquirers Improve Productive Efficiency?
So far, our analysis has demonstrated efficiency improvements following ownership changes,
mainly due to increased productive efficiency. This result raises a natural follow-up ques-
tion: How do acquirers achieve these efficiency gains? We will now address this question.

6.1 Productive Efficiency: Operational Improvements or Investment?

In Section 2.3, we proposed two potential mechanisms to improve a power plant’s produc-
tive efficiency. The first mechanism involves implementing low-cost operational improve-
ments, such as personnel training, efficient production management, best practices, and
improvements in repairs and maintenance. Such improvements would indicate a knowl-
edge transfer from the acquirer to the acquired plant. The second mechanism entails
high-cost capital investments by acquirers to upgrade existing equipment, suggesting that
the previous owner faced credit constraints or lacked the incentives to make efficiency-
improving capital investments.

Disentangling these two sources is useful not only for understanding the nature of
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Figure 9: Effects of Acquisitions on Manager Change
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Note: This figure shows coefficient estimates of a manager change dummy on �̂s where s 2 (�36, 36). The unit
of observation is generator-week. Error bars show 95% confidence intervals. Standard errors are clustered
at the plant level.

efficiency gains but also for informing antitrust policy. For efficiencies to be recognized in
merger evaluations, they must be merger-specific.�� Efficiencies from relaxing capital con-
straints would not be merger-specific, as they could also be attained through alternative
means, such as raising new capital or minority investment. In contrast, knowledge trans-
fers can be considered merger-specific because they involve exchanging organizational
knowledge and intangible capital between the merging entities, a process that is unlikely
to occur outside of a merger (Atalay et al., 2014).

We aim to disentangle the sources of productive efficiency improvements using addi-
tional data on manager changes, capital investments, non-fuel inputs, and maintenance.
Specifically, we investigate whether power plants undergo personnel changes and increase
capital expenditures post-acquisition. The former would suggest operational changes,
whereas the latter would provide evidence for the role of capital investment. Moreover,
by analyzing non-fuel inputs and maintenance, we evaluate the possibility of substituting
fuel with other inputs to achieve efficiency gains.

We use the dynamic difference-in-differences specification in Equation (3) to explore
whether acquired plants experience more managerial changes than non-acquired plants.
The dependent variable is set to 1 if the power plant manager is replaced in a given month
and 0 otherwise. Results shown in Figure 9 reveal a significant increase in managerial
changes post-acquisition: acquired plants are 15 pp more likely to experience a change

��The 2023 Horizontal Merger Guidelines state, “the merger will produce substantial competitive benefits that
could not be achieved without the merger under review.” (DOJ and FTC, 2023)

35



within one month and 45 pp within two months, relative to the non-acquired plants.
Using LinkedIn data, we also analyze the qualifications of new managers and find that
new managers are 5 pp more likely to hold a master’s degree and 4 pp more likely to have
a bachelor’s degree than those involved in changes without mergers.

The results on manager changes raise an important question: Can the efficiency gains
be solely attributed to manager changes? To explore this, we estimate the efficiency effects
separately for acquisitions with and without manager changes (reported in Table OA-4) and
for manager changes without acquisitions (reported in Figure OA-8). The findings indicate
that manager changes without acquisitions have no significant efficiency effects, whereas
acquisitions without manager changes still lead to large efficiency improvements. Hence,
we conclude that manager changes alone are not sufficient to generate efficiency gains, and
firms cannot achieve efficiencies simply by replacing their manager. Our interpretation
of these results is that manager changes indicate significant operational changes and that
managers and organizational changes are complementary in generating efficiency gains.
These insights echo the common findings in the literature on the role of management
practices and organization in explaining productivity differences (Bloom and Van Reenen,
2010; Macchiavello and Morjaria, 2022).

Next, we examine the changes in capital expenditures and non-fuel inputs after acqui-
sitions, acknowledging that this analysis relies on a different and more limited dataset.
Specifically, data on capital expenditures, number of employees, and non-fuel intermedi-
ate input costs are available only for a subset of plants reporting to FERC, and they are
annual, unlike the hourly heat rate data. Therefore, while these findings provide useful
insights, they warrant cautious interpretation given these data limitations.

The coefficient estimates in Table 6 suggest that acquired plants do not increase capital
expenditures. The coefficient estimate for capital expenditures is -24%, but it is imprecise
due to the small sample size. Nevertheless, it is still possible to reject the hypothesis
that capital expenditure increases by more than 5% at the 10% significance level.�� The
estimates for non-fuel materials costs and labor in Columns (2-3) are also noisy, but they
similarly provide evidence against large increases. These findings suggest that efficiency
increases do not come from capital expenditures; instead, operational improvements are
the key drivers of increases in productive efficiency.

In our final analysis, we examine how maintenance changes after acquisition, as it could
also be viewed as an input in electricity generation. Moreover, maintenance is important

��Further evidence against the capital expenditure hypothesis comes from the timing of efficiency gains and
operating hours. Significant capital investments typically require more than five months to implement and
usually involve considerable downtime, neither of which we observe.
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Table 6: Effects of Acquisitions on Non-fuel Costs and Maintenance

Dep. Var. Log Capital
Expenditures

Log Non-fuel
Costs

Log Number
of Employees

Maintenance
Probability

(1) (2) (3) (4)

Pre-acquisition (1 Year) -0.214 -0.335 -0.22 -0.013
(0.161) (0.4) (0.111) (0.009)

Post-acquisition (1 Year) -0.052 -0.112 -0.326 -0.024
(0.163) (0.211) (0.124) (0.012)

Post-acquisition (2 Years) -0.236 0.095 -0.06 -0.038
(0.17) (0.267) (0.136) (0.014)

Post-acquisition (3 Years) -0.236 -0.304 -0.003 -0.048
(0.176) (0.297) (0.156) (0.014)

Ambient Temp. & Humidity X X X X
Unit & Week FE X X X X
Unit Characteristic by Month FE X X X X
Scrubber & Enviro. Prog. FE X X X X

Pre-acquisition Mean - - - 0.096
R

2 0.896 0.704 0.946 0.15
# of Observations 0.018M 0.018M 0.017M 0.705M
# of Controls 1472 1643 1553 1383
# of Treated 176 203 148 409

Note: This table presents the coefficient estimates from estimating the effects of acquisitions on capital
expenditures, non-fuel intermediate input costs, number of employees (all observed at the annual frequency),
and maintenance (observed at the weekly frequency). Standard errors are clustered at the plant level. Note
that the capital expenditure information is available only for major electric utilities as defined by the FERC.

in its own right to understand plant performance because decreased forced maintenance
might indicate better equipment management by new owners, which would increase
production, as the generator would go offline less often for maintenance. We analyze
the probability that a generator undergoes maintenance in a given week. The results in
Column (4) suggest that maintenance probability decreases after acquisitions, indicating
that more maintenance duration is not the primary means of improving efficiency.

6.2 Who Acquires Whom: Productivity of Acquirer and Target Firms

This section estimates the productivity levels of acquirer and target firms to determine
whether (i) acquirers are more productive than target firms and (ii) acquirers have a com-
parative advantage in utilizing acquired assets. This analysis not only provides evidence
on the mechanisms of efficiency improvements but also offers insights into the broader
economic implications of ownership changes. Acquisitions, as a key mechanism of re-
source reallocation among firms, can lead to allocative efficiency gains in the economy
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Figure 10: Efficiency of Acquirer and Target Firms
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Note: Regression estimates from Equation (7). Red, blue, and black bars show the change in the acquirer’s
existing assets, the target’s assets, and the acquired assets, respectively. Error bars indicate 95% confidence
intervals. The efficiency of the acquirer’s assets in the pre-acquisition periods is normalized to zero. Standard
errors are clustered at the plant level.

by transferring assets from less productive to more productive firms or enabling better
utilization of these assets.

We modify our baseline specification in Equation (2) by including three sets of indi-
cator variables to estimate the efficiency levels of three distinct asset types: (i) acquired
generators, (ii) the acquirer’s existing generators not involved in the transaction, and (iii)
the target’s existing generators not involved in the transaction. Formally, we estimate the
following specification:

yit ⇤

3’
j⇤1
✓1 j {Pre-year, 1-3} j + ✓2 j {Post-year, 1-3} j + Xit + µt + ✏it , (7)

where j represents the asset types listed above and yit is log productivity.�� This specifi-
cation estimates the efficiency of the target’s assets, acquirer’s assets, and acquired assets
around the time of acquisition. Note that this regression does not include generator fixed
effects, as we aim to estimate level differences in productivity rather than changes. How-
ever, we account for generator characteristics by controlling for generator age, capacity,
technology, fuel type, and scrubbers. We restrict the sample to transactions where both
the acquirer and target own generators not involved in the transaction.�� We normalize
the efficiency of the acquirer’s generators to zero in the pre-acquisition period.

��For the acquired plants, we exclude the first year after acquisition to estimate the long-term effects of
acquisitions.

��This subset accounts for 67% of all acquisitions.
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Figure 10 presents the estimated coefficients for three groups: the acquirer’s existing
assets (in red), the target’s existing assets (in blue), and the acquired assets (in black). First,
we observe that acquisitions do not significantly impact the productivity of existing assets,
with the productivity levels of both acquirer and target remaining stable around the time
of acquisition. Notably, however, acquirers have a productivity level 1.7% higher than
target firms. As a result, acquisitions reallocate assets from less to more productive firms,
although the difference in productivity is relatively modest.

Next, we compare the productivity of acquired plants with the acquirer and target’s
existing plants. A key observation is that target firms tend to sell their underperforming
assets: the sold plants are 3% less productive than other plants in the target’s portfolio.
What happens to these underperforming plants after acquisition? The efficiency of these
plants improves by 5%, reaching the same efficiency level as the acquirer’s other plants.

The findings in this section indicate that high-productivity firms buy underperforming
assets of low-productivity firms and make the acquired asset as productive as its existing
assets after the acquisition. This pattern corroborates our earlier conclusion that efficiency
improvements come primarily from operational improvements through knowledge trans-
fers. Furthermore, these results also provide empirical evidence about the theories of
merger gains in the literature. One common theory, the Q theory of mergers (Jovanovic
and Rousseau, 2002), posits that there are inherent productivity differences between firms,
and acquisitions transfer assets from low- to high-productivity firms. This implies a “high-
buys-low” pattern. According to another theory proposed by Rhodes-Kropf and Robinson
(2008), assets and firms could be complementary, with firms having varying degrees of
capability in operating different assets. This implies a “like-buys-like” pattern. Our results
lend support to both theories of mergers by demonstrating that assets are allocated to firms
with relative and absolute advantages in utilizing them.

This analysis also serves as an important input for merger analysis, particularly in
determining post-merger marginal costs for firms with different efficiencies (Farrell and
Shapiro, 1990). A key question in this context is the transferability of efficiency between
firms, as prior research has highlighted that organizational challenges in integrating firms
can hinder the transfer of productivity-improving practices (Weber and Camerer, 2003;
Malmendier et al., 2018). Our empirical analysis contributes to this question by providing
evidence that efficiency could be transferable in the context of power plant acquisitions.

A natural question arising from this section’s findings and the paper’s overall conclu-
sions is why previous owners do not implement the operational improvements. Given
that our study is an industry-level analysis rather than a firm-level case study, we cannot
provide a definitive answer to this question. Nonetheless, it is important to note that
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our results align with substantial evidence of persistent firm-level productivity differences
in various industries (Syverson, 2011; Gibbons and Henderson, 2012). We interpret our
evidence to suggest that some firms develop intangible capital over time for more efficient
power plant operation, and this within-organization knowledge is transferable through
ownership changes. This can occur in many forms, for example, by transferring asset-
specific expertise (Hortaçsu and Syverson, 2007; Atalay et al., 2014), operational strategies
(Eliason et al., 2020) or managerial practices (Bloom et al., 2012). Therefore, acquisitions
provide a channel for spreading intangible capital across firms, which is less likely to be
achieved through other means.��

7 Robustness Checks
In this section, we explore the robustness of our findings by considering alternative specifi-
cations. Detailed descriptions of this analysis and the corresponding results are provided
in Appendix C and Appendix F.
Estimation Frequency: Our main analysis uses weekly data to estimate the effects of
acquisitions, as this aggregation reduces noise in the hourly data and is computationally
convenient. To assess the robustness of our findings, we conduct the same estimation
using daily frequency. The results, reported in Figure OA-13, remain consistent at the
daily frequency, although there is a slight increase in standard errors.
Acquisition Sample: In our baseline specification, we focus only on each generator’s first
acquisition to avoid using data from post-acquisition periods. As a robustness check, we
extend our analysis to include all acquisitions of generators during the sample period. The
findings, reported in Column (4) of Table OA-5, Figure OA-15, and Table OA-8, suggest a
slightly smaller effect than our baseline result, indicating that the efficiency gains may be
lower with subsequent acquisitions.
Weighting by Capacity: Our main specification estimates the average effects without
accounting for the varying capacity sizes of acquired generators. In a robustness check,
we weigh observations by capacity, which provides a more accurate measure of total cost
savings. The results from this specification suggest similar efficiency effects, indicating
that the evidence does not primarily come from small units (Column (2) of Table OA-5,
Table OA-7, and Figure OA-18).
Estimation with Net Generation: While our primary analysis uses gross generation due

��This source of efficiency gains differs from the technology-related synergies studied in the merger literature.
Some examples include economies of density in the ride-hailing industry (Rosaia, 2020), congestion-related
efficiency in the telecommunications industry (Elliott et al., 2023), and reduction in shipping distance in the
beer industry (Miller and Weinberg, 2017).
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to its high-frequency availability, we also conduct a robustness check using net generation
data from EIA. The results, reported in Figure OA-17, Column (3) of Table OA-5, and Table
OA-9, are broadly similar to our main findings, though the effect is slightly lower.
Estimation after 2010: A potential concern in our analysis is the impact of deregulation,
which overlaps with our sample period for a few years in the early 2000s. Although we
exclude ownership changes corresponding to divestitures, we conduct a robustness check
by restricting our analysis to acquisitions after 2010. The results are reported in Column
(3) of Table OA-5 and Figure OA-14.
Matching Difference-in-Differences: We match each acquired generator with never-
acquired comparable units. For each unit, we first create a pool of potential control
units that share the same fuel type and technology but operate in different markets to
prevent spillover effects. We then match these generators based on capacity and age us-
ing a least-squares distance metric, with weights inversely proportional to each variable’s
standard deviation. Results are presented in Column (5) of Table OA-5 and Figure OA-17.
Staggered Difference-in-Differences: Recent developments in econometrics suggest that
the two-way fixed effects difference-in-differences approach might produce a weighted av-
erage of all potential combinations of pairwise difference-in-differences estimators, where
the control unit in the pair could be a unit that is treated at a different time (Callaway and
SantAnna, 2021; Goodman-Bacon, 2021). To address this issue, we estimate cohort-specific
treatment effects using the Callaway and SantAnna (2021) method. The results, reported
in Figure OA-16, are similar to our baseline results.
Placebo Tests: We use minority acquisitions as a placebo test against potential unobserv-
able characteristics driving both acquisitions and efficiency changes. If such unobservables
exist, they would likely influence minority acquisitions as well. The results, reported in
Column (6) of Table OA-5 show no change in power plant efficiency following minority
acquisitions.

8 Concluding Remarks
By reallocating resources between firms, acquisitions affect a significant portion of the
economy. Despite their importance, there is limited systematic evidence of their effects on
productivity. This study provides detailed empirical analyses of the efficiency effects of
ownership changes by examining a large sample of power plant acquisitions between 2000
and 2023 in the US.

Our empirical results can be summarized into three principal findings. First, acquired
plants experience, on average, a 2% increase in fuel efficiency within five to eighteen
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months after acquisitions. This effect is more pronounced, rising to 5%, for acquisitions
involving changes at both the subsidiary and parent owner levels. Second, acquired
generators demonstrate improved operational performance: they produce more, increase
their capacity utilization, and decrease their outage frequency and emission intensity.
Finally, the new owners improve productivity by changing operational processes rather
than by making capital investments.

Our findings draw on a large number of acquisitions in the power generation industry
and high-frequency data on physical productivity. Using physical measurements in this
homogeneous product setting allows us to disentangle the productivity effects from other
potential merger effects, such as changes in market power, buyer power, or product quality.
With high-frequency data, we can treat mergers as discrete events and compare generator
productivity immediately before and after acquisitions. Finally, by aggregating evidence
from numerous acquisitions, we have the statistical power to uncover the mechanisms that
generate efficiency gains.

The results of this paper have important policy implications, as they provide direct
input for evaluating the trade-off between market power and efficiency resulting from
mergers. Our results present a mixed view of whether mergers generate efficiencies. On
the one hand, we document that mergers in the electricity generation sector can generate
efficiencies that are large and through a mechanism that could be considered merger-
specific. On the other hand, not all mergers generate efficiencies; we find that parent
ownership changes do not increase efficiency, which tend to be larger and are less likely to
influence plants’ operations. In conclusion, the main message of our paper is that while
efficiency effects in mergers should not be ruled out, they necessitate careful analysis
tailored to the circumstances of each merger.
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