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This paper examines and finds that the answer is likely to be no. The environment examined 
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1 Introduction

Recent advances in artificial intelligence (or AI) are all significant improvements in compu-

tational statistics, specifically, the statistics of prediction (Agrawal et al., 2018), through

machine learning based on neural networks. AI prediction is powered by data. There is

data that is used as an input to AI algorithms to generate specific predictions. That data

comprises personal information for, say, recommendation engines or prompts for generative

AI. However, data was also used to create the AI algorithms in the first place. Extending

on the neural metaphor that underlies machine learning, such data is called training data.

Such data is used to determine the parameters (or weights) in the AI algorithm.

This paper examines a specific challenge that may impact the creation of suitable training

data that comes from users’ efforts. Such effort might be used to classify existing data and

identify suitable outputs to assist in supervised learning. However, contributors might also

provide useful information that can be used directly as training data in, say, generative

AI. The question is whether the use of such data in AI training might cause feedback that

impacts the creation of such data in the future.

Consider data such as users’ written materials, artistic choices, and answers to questions

in conversations and on platforms can be used to train AI algorithms to generate predictions

of outputs from natural language prompts. Perhaps nowhere has this been seen more clearly

than in generative AI tools for computer coding. These tools are trained on a corpus of

open-source and other code. Moreover, by using sources where users post their coding

issues, requests or queries and other users provide responses to those posts, generative AI

can more tightly predict the appropriate responses to coding-related queries.

One platform that gained initial attention is Stack Overflow. On Stack Overflow users

post queries regarding computer code that contributors answer. The contributors are not

paid, although they are rewarded with various badges that can be displayed publicly and a

reputation score. The more valuable contributions are found to be, the greater the rewards.

As of 2022, there were over 24 million answers to 35 million questions. These were all publicly

available and were used as training data by generative AI providers. One of those, OpenAI’s

ChatGPT, was able to provide answers to queries that might have otherwise been posted to

Stack Overflow. One study found that ChatGPT’s launch in 2022 caused an estimated 16

percent reduction in queries posted to Stack Overflow (del Rio-Chanona et al., 2023). This

raised concerns that the availability of training data for future AI may be constrained by

the use of AI today.

ChatGPT is such a good programmer that the savvy developers I know aren’t

using Stack Overflow anymore – and yet it’s partly by studying Stack Overflow
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that ChatGPT became such a good programmer. ...

Where will this process take us? Stack Overflow was special because it drew

out practical know-how that had, till then, lived only in programmers’ brains; it

condensed and organized that knowledge so that everyone could see and benefit

from it. Chatbots that slowly siphon traffic away from sites like Stack Overflow

obviously threaten that process. ... (Somers, 2023)

The concern is that the use of user-contributed training data might give rise to a ‘doom loop’

where AI eats its own source. “[I]f LLMs like ChatGPT present substitute traditional ways

of searching and interrogating the web, then they will displace the very human behavior

that generated their original training data.... As people begin to use LLMs instead of online

knowledge repositories to find information, contributions to these repositories will likely

decrease, diminishing the quantity and quality of these digital public goods.” (del Rio-

Chanona et al., 2023)1 The reduction in user contributions on Stack Overflow suggested

there was some substitution, but there was also evidence that this effect was limited, as

the answers given were possibly of higher quality and the questions were, on average, more

complex (Gallea, 2023).

In this paper, I present a simple model to address the question of whether, in domains

where training data come from user contributions, the launch and subsequent use of AI

products that potentially reduce the demand for such contributions will lead to a dearth of

training data upon which to continue to improve those AI products? The simple intuition

expressed above is that AI can cause a situation where less data is available for training

and less incentive to contribute such data. However, the question here is: When this is

investigated in a model that describes what drives user contributions in the first place, is

the outcome one where AI faces intrinsic future limitations? The answer, as we shall see, is

that AI is unlikely to do harm in the ways that commentators are concerned about.

2 A Simple Model of User Contributions

The model here is inspired by the query-and-answer format of Stack Overflow. There are

n contributors available. Users post queries (or questions), the answers for which have an

expected value to all users of V . There is a cost to a contributor for supplying an answer.

That cost is made up of a common cost, C, representing the broad difficulty of the problem

and an idiosyncratic cost, ci, which is the cost incurred by contributor i. Idiosyncratic costs

1There was also a residual concern that contributors may use ChatGPT to provide answers on Stack
Overflow in order to game reputational rewards (Xu et al., 2023). Stack Overflow prohibited such AI use,
which seemed to have an effect; see Borwankar and Khern-am nuai (2023).
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are independently and identically distributed according to an atomless, F (ci) on (0, c̄] ⊂ R+.

It is assumed that V ∈ (C,C + c̄). If an answer is provided, all contributors receive a payoff

αV that reflects the value they place on answers being available to users in general. That is

less than the value to a general user, i.e., α is assumed to be less than 1. In addition, if a

contributor provides an answer themselves, they receive additional utility of u that may be

intrinsic or based on career concerns or reputational signalling (Lerner and Tirole, 2002).2

We focus on the interesting case where u ≤ C.3

The timeline for the model is as follows:

1. A user posts a query to the platform.

2. One contributor is selected at random to answer the query. If the query is answered,

that contributor receives a payoff of αV + u− (C + ci) and other contributors receive

payoffs of αV .

3. If a query is not answered, one period advances (at a discount factor of δ) and stage 2

is repeated with the selection of a new contributor.

The assumption that one contributor is selected at random can be interpreted as any contrib-

utor who sees a query believes they are the only person seeing it at that time (for instance,

time periods could be arbitrarily short).4

As noted above, by providing an answer, a contributor with cost realisation ci, earns an

expected payoff of αV + u − (C + ci). If i does not contribute, then the query remains,

and someone else may answer it. This is where a potential free-rider effect arises as the

contributor can still realise αV , albeit with some delay. To calculate the expected payoff,

v0 from not contributing, suppose that there exists a ĉ such that all those contributors with

ci ≤ ĉ contribute while others do not. In that case,

v0(ĉ) = F (ĉ)αV + (1− F (ĉ))δv0(ĉ) ⇔ v0(ĉ) =
F (ĉ)

1− (1− F (ĉ))δ
αV

We can find ĉ by equating this with the payoff from contribution, that is:

αV + u− (C + ĉ) = δ
F (ĉ)

1− (1− F (ĉ))δ
αV

2This type of signalling has been found to account for a significant portion of motivation on Stack
Overflow (Xu et al., 2020), and for open source software contributions (El-Komboz and Goldbeck, 2024).

3u itself can be a design choice for a contribution platform; however, here we do not examine these
considerations. See Ghosh and Hummel (2011), Ghosh and McAfee (2011), Ghosh (2013) and Easley and
Ghosh (2016).

4Engers and Gans (1998) have a similar set up in their model of refereeing but with fixed delay costs
and no explicit individual incentives to contribute.
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This assumes that ĉ ≤ c̄ (if not, ĉ = c̄). Note that ĉ is increasing in αV and u − C and

decreasing in δ. Intuitively, a higher ĉ implies that a random contributor is more likely

to answer the query only when their personal payoff u − C and common payoff, αV , is

higher. The reason for the latter is that the contributor internalises the delay in public good

generation, which is positively related to the level of the common payoff. Similarly, when δ

is higher, the contributor becomes more patient and hence, less willing to contribute.

3 The Model with Artificial Intelligence

Suppose now that an AI product is available that is trained on the queries and their answers.

In this situation, a user can query the AI rather than post a query on the platform and, if

possible, receive an answer immediately. The user can evaluate whether the AI answer is

suitable or not and, if not, post the query to the platform. It is supposed that it is costless

for users to query the AI, and therefore, they will all do so before posting to the platform.

It is also assumed that the AI is more likely to be able to answer an easier question,

implying that the least costly queries will not be posted on the platform. This selection

effect does not change the distribution of idiosyncratic contributor costs but does change

the probability that a contributor will be able to answer any given posted query. That is,

if all problems for which total cost is less than C + c can be undertaken by the AI, then

the probability that a random contributor has a cost that is higher than this but lower than

some threshold ĉ is F (ĉ) − F (c). This is a lower probability than would occur without the

AI product being available.

Given this, the following proposition can be demonstrated.

Proposition 1 Suppose that the AI can answer (without cost and immediately) all queries

with a cost less than C + c where c > 0. In equilibrium, if given the opportunity to answer

a problem given C, without AI, contributors with ci ≤ ĉ provide answers, and, with AI,

contributors with ci ≤ ĉAI provide answers with ĉAI > ĉ. AI increases the realised social

value for any given query.

Proof. Assume, for the moment, that ĉAI ∈ (c, c̄]. The equilibrium condition for ĉAI is

αV + u− (C + ĉAI) = δ
F (ĉAI)− F (c)

1− (1− (F (ĉAI)− F (c)))δ
αV

Note that the right-hand side of this equation is at ĉ = ĉAI strictly lower than the right-hand

side of the equilibrium condition for ĉ which implies that ĉAI > ĉ. Given that u ≤ C, the

overall production of answers has a lower cost with AI. Turning to realised social value, note
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that, for a given query of difficulty, C, with AI, the total expected social value is:

F (c)V + (F (ĉAI)− F (c))V + (1− F (ĉAI))δ
F (ĉAI)− F (c)

1− (1− (F (ĉAI)− F (c)))δ
V

which is greater than F (ĉ)V + (1−F (ĉ))δ F (ĉ)
1−(1−F (ĉ))

V , the expected social value without AI.

Note that as α ≤ 1, by the assumption that V ≤ C + c̄, the threshold by which

αV +u−C = ĉAI will necessarily imply that ĉAI ≤ c̄, as per the (holding) assumption made

above.

Turning now to evaluate the other (holding) assumption, i.e., whether ĉAI > c, sup-

pose that ĉAI ≤ c. In this case, with AI, the right-hand side of the contribution equation

is 0, which implies that a contributor will set its threshold, ĉAI so that αV + u − C = ĉAI .

If ĉAI ≤ c̄, this will be equilibrium threshold. Note that it is possible that ĉAI < c if

αV + u− C < c. In this case, no contributors will answer queries in equilibrium. However,

this also implies that c > ĉ. Thus, the realised social value is F (c)V , which is again greater

than the social value without AI as c > ĉ.

The intuition for this result is straightforward. As the AI answers easier queries, then the

probability that a random contributor can handle a query falls. Consequently, the expected

future payoff for a contributor who does not answer also falls, increasing their incentive

to handle a marginally harder set of queries. Thus, with AI, the set of queries handled is

[0, c] ∪ (c, ĉAI ] = [0, ĉAI ] which is larger than the set of queries handled without AI, [0, ĉ].

This implies that the set of training data expands proportionately to ĉAI − ĉ. Of course, it

is possible that c > ĉAI . In this case, while the set of training data falls to zero, there are no

problems that the AI cannot answer, so social value is higher. Moreover, contributor welfare

is also higher as the AI answers more queries, saving on personal contributor costs as u ≤ C.

The model here assumes that the AI performs without cost, is immediate and provides

answers of the same quality as contributors. If AI were costly, took some time and provided

answers of lower quality, then these results would continue to hold so long as these differences

were not too large. This is because users post queries and will only be satisfied with the AI

result if it is of high quality relative to any cost they might incur in using the AI (including

paying for the costs of the AI itself). In other words, the user’s choice to use an AI determines

whether any strict inefficiency associated with AI use translates into actual AI use.
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4 Using Pay to Stimulate User-Contributions

The above analysis has shown that while the availability of AI products trained on user

contributions may obviate the demand for those user contributions, this substitution does

not impact the range of training data generated because it is focused on data that can be

more easily generated. When this occurs, user contributions become more concentrated

on providing more costly training data and, thus, expand the overall quantum of available

training data. Over time, this dynamic, which is powered by selection driven by user intent,

will not lead to a dearth of training data; indeed, it will be the opposite.

That said, the analysis here takes place at the level of individual queries. If a platform,

such as Stack Overflow, which is advertising-funded, has a significant enough reduction in

revenue, it may fail to cover its fixed costs and become unavailable. In this case, some funding

from AI providers to support a user contribution platform may be required to sustain the

flow of training data. Moreover, training data may be focussed on particular areas, and

the improvement of AI products on that dimension may reinforce that focus. For instance,

computer languages that have a greater user share may experience stronger network effects

as a result of a virtuous circle, while those with a lower user share may experience a strong,

vicious circle. This may create “algorithmic monocultures” (Kleinberg and Raghavan, 2021)

that may be less robust to changes and harm overall decision-making.

One thing the use of user contributions to train AI products might change is u, which

is the intrinsic reward contributors obtain. The model above treats this as an exogenous

parameter, but it could be related to design choices that the contribution platform imple-

ments (Barbosu and Gans, 2022). For instance, it may be determined by reputational tokens

that users bestow on contributors. If an AI answers a significant number of queries, then

the allocation of those tokens will change. This could increase the reward per answer or

decrease it if fewer users awarding tokens. If u were to decline significantly, either because of

design issues or perhaps user repugnance involving in ‘gifting’ their contributions as training

data to commercial AI providers, then there is a sense in which AI availability may cause a

reduction in the generation of training data and end up harming overall quality and social

welfare.

If this reduction in voluntary contributions to generate training data were to arise, a

commercial AI provider may, instead, offer monetary payments as a substitute incentive

mechanism. To see how this might work, suppose that an AI provider is able to pay for

accurate answers to user queries. We will assume that this involves ideal conditions whereby

the provider can perfectly evaluate whether an answer is accurate ex post (e.g., by running

the suggested code). Suppose that the pay is w per answer. Suppose also that u = 0 in this
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environment.

As the answers are still a public good, they are valuable if provided directly or used

to train an AI that can provide them. Thus, as before, from a contributor perspective, an

answer provided is valued at αV regardless of whether they, someone else or an AI provides

it. Given this, the contribution threshold that determines whether a selected contributor

will answer a query becomes:

αV + w − (C + ĉAI(w)) = δ
F (ĉAI(w))− F (c)

1− (1− (F (ĉAI(w))− F (c)))δ
αV

This is the same as before, except that u has been substituted for w.

Suppose that an individual answer used for training is valued by an AI provider at R in

terms of increased revenue. First, note that if c > αV −C, then increasing w to C + c−αV

is necessary for any contributor to answer the query and provide data for training. This will

only be worthwhile if R ≥ C + c − αV . However, while necessary, these conditions are not

sufficient for wages to generate contributions.

Second, note that if c ≤ αV − C, holding ĉAI fixed, offering a higher w can raise the

probability a selected contributor provides an answer. This accelerates the provision of

answers. This implies that ex ante, for a given query, the AI provider’s expected discounted

profit is given by:
F (ĉAI(w))− F (c)

1− (1− (F (ĉAI(w))− F (c)))δ
(R− w)

Note, however, that for a given w, ĉAI(w) is (from the contribution equation) given by:

ĉAI(w) = w − C +
(
1− δ F (ĉAI(w))−F (c)

1−(1−(F (ĉAI(w))−F (c)))δ

)
αV

Solving for w and substituting in, we obtain the AI provider’s profits as:

F (ĉAI(w))−F (c)
1−(1−(F (ĉAI(w))−F (c)))δ

(
R−

(
ĉAI(w) + C −

(
1− δ F (ĉAI(w))−F (c)

1−(1−(F (ĉAI(w))−F (c)))δ

)
αV

))
For convenience, assume that the marginal acceleration as w rises is given by:

A(w) ≡
∂
(

F (ĉAI(w))−F (c)
1−(1−(F (ĉAI(w))−F (c)))δ

)
∂ĉAI

dĉAI

dw

= (1−δ)f(ĉAI)
(1−(1−(F (ĉAI(w))−F (c)))δ)2

1

1+
(1−δ)f(ĉAI )

(1−(1−(F (ĉAI (w))−F (c)))δ)2

= (1−δ)f(ĉAI)
(1−δ)f(ĉAI)+(1−(1−(F (ĉAI(w))−F (c)))δ)2
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Then, the marginal effect on profits from increasing w is:

A(w)(R− ĉAI − C + αV )− F (ĉAI(w))−F (c)
1−(1−(F (ĉAI(w))−F (c)))δ

dĉAI

dw
− δA(w)2αV

The last two terms are negative. Thus, while a higher wage does accelerate performance,

it does so for other contributors as well, which has the inframarginal effect of decelerating

performance. Without further information, it is not clear whether an AI provider would

choose to pay for training data generation.

To consider this further, suppose that the AI provider starts from a position where w = 0.

In this case, the goal is to create conditions under which ĉAI(w) > c. Note that at ĉAI = c,

A(0) = f(c)
1−δ+f(c)

. Therefore, the marginal effect of w on profits at c is:

f(c)
1−δ+f(c)

(
R− c− C + (1− δ f(c)

1−δ+f(c)
)αV

)
This is positive if and only if:

c < R− C + (1−δ)(1+f(c))
1−δ+f(c)

αV

This is compared to the condition whereby contribution is efficient if c < R − C + αV .

Therefore, there exist some efficient contributions that the provider will not end up paying

for (that is, where the marginal effect of w on profits is negative).

5 Conclusion

The generation of training data is a critical component in developing and improving AI

prediction algorithms. This paper has examined one of the economic considerations that

arise in this process. Using user-contributed data for AI training does not necessarily reduce

the quantity or quality of such data over time. Although AI may substitute for some user

contributions, it is likely to focus on easier queries, leading to a greater concentration of user

efforts on more complex and valuable contributions. In addition, the scope for explicit pay

to alleviate concerns that may arise in terms of the overall ongoing scale of contributions is

shown, by the same mechanism, to be muted in scope.
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