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ABSTRACT
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independent of the elasticity of demand. This result reflects pricing decisions by stores that factor 
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provides a theory of price markups that is an alternative to the familiar Lerner approach, which 
puts all the weight on the elasticity of demand.
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 Hotelling (1929) constructed a model of monopolistic competition in which stores were 

located along a finite straight line and consumers purchased goods from their nearest store.  

Because of locational advantages, stores had some degree of monopoly power, and this power 

entered into their pricing decisions.  The present analysis uses a circular version of the Hotelling 

model, usually labeled the Salop model and attributed to Salop (1979).1  A major technical 

advantage of the circle framework is that it allows for symmetric outcomes by avoiding issues 

related to the end points of a finite straight line.2 

 The finite straight line is an attractive framework in some contexts because the end points 

represent extremes of characteristics such as preferences of political parties about the size of 

government (Downs [1957]) or of religions about the degree of strictness (Barro and 

McCleary [2005]).  However, for most applications in industrial organization, these end-point 

features do not apply, and the circle model provides a more useful setting. 

 A central feature of the model is that each store’s pricing behavior involves competition 

from neighboring stores.  From the perspective of customers, the closest substitutes for each 

store are the adjacent ones.  This interaction between stores means that the threat of losing 

business at borders, rather than the elasticity of demand, is the key force in the determination of 

price markups.  These markups ultimately determine the extent of entry into the market and, 

thereby, the efficiency of market outcomes. 

 
1Salop (1979) cites Schmalensee (1978) for a prior application of the circular setting.   Moreover, the circular 
framework was used earlier by Vickrey (1964, Ch. 8), who referred to “… a simple loop (which may or may not be 
circular) …” 
2Salop (1979, p. 142) says: “The product space of the industry is taken to be an infinite line or the unit-
circumference of a circle.  While neither assumption is realistic, both allow the ‘corner’ difficulties of the original 
Hotelling model to be ignored and an industry equilibrium with identical prices by equally-spaced firms to obtain.”  
Hay (1976, p. 243) relied on a very long straight line:  “For most of the analysis we assume that the market is very 
long in comparison with the market size of the firm.  This enables us to avoid the analytic complications of market 
intervals at the end points of the market.” 
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I.  Circular Hotelling Model 

The economy, which can be viewed as a city, features consumers distributed uniformly 

around a circle with circumference H, as in Figure 1.  The parameter H represents the size of the 

city.  A number N of stores service the consumers.  Each store j produces goods at the same 

constant marginal cost, c.  (Hotelling [1929, p. 45] assumed that the marginal cost was zero.)  

Store j prices at Pj.  In addition to paying Pj for each unit of goods, a customer pays an amount 

per unit that increases linearly with the distance, z, from its nearest store, as in Hotelling (1929, 

p. 45).  This transportation cost per unit is represented by tz, where t>0 is a transport-cost 

parameter that depends on transportation technology and the value of customer time.  As stressed 

by Hotelling (1929, p. 45), “transportation cost” should be viewed as a metaphor for many 

differentiating characteristics of goods and stores that cause customers to prefer one seller over 

another for a given price charged.3  

As in Salop (1979), the stores are evenly spaced around the circle in Figure 1.  This even 

spacing of stores is an equilibrium outcome in the present model.  Store 1 is adjacent to stores 2 

and N, as shown.  Going to the right from its location, store 1 services customers out a distance 

h, which is the mid-point of the spacing, 2h, from store 2.  Similarly, going to the left, store 1 

services customers out a distance h, the mid-point of its spacing from store N. 

Customers located at distance h to the right of store 1 will be indifferent between buying 

from store 1 or store 2 and similarly to the left for store 1 versus store N.  Behavior at these 

borders will be crucial for the analysis but is neglected initially for expository purposes.  The 

spacing between stores, 2h, will satisfy the condition 

 
3Hotelling (1929, p. 45) says: “… there will be many causes leading particular classes of buyers to prefer one seller 
over another, but the ensemble of such consideration is here symbolized by transportation costs.” 
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(1)       ℎ = 1
2
𝐻𝐻
𝑁𝑁

. 

For now, the analysis takes the number of stores, N, as given.  However, in a full equilibrium, N 

and, hence, h will be determined from a free-entry condition. 

Consider the choice of price, Pj, for store j, given the prices and locations of the other 

stores (as in a Bertrand analysis).  In equilibrium, each store will charge the same price, Pj=P, 

and each customer will patronize its closest store.  Without loss of generality, take j=1 and 

consider only the market going to the right where store 2 is the relevant alternative to store 1.  

(The results going to the left, toward store N, will be analogous.)   

Denote by q(z) the quantity purchased of store 1’s goods by customers located at 

distance z from the store.  The effective price per unit faced by customers at position z, where 

0≤z≤h, is assumed to add a linear transportation cost, tz, to the price set by store 1: 

 (2)    𝑃𝑃∗(𝑧𝑧) = 𝑃𝑃 + 𝑡𝑡z, 

where the store subscript, 1 in this case, is omitted on P*(z) and P.  An assumption is that store 1 

charges each customer the same price regardless of their location. 

 Transportation costs can be reinterpreted as costs from consuming a good with 

characteristics that deviate from a customer's ideal type, as in Lancaster (1966) and 

Baumol (1967).  As noted by Schmalensee (1978 p. 309), “ … the formal correspondence 

between Lancastrian models with two characteristics and one-dimensional spatial models is 

almost exact.”  Helpman (1981, part 2) applied the Lancaster-type model to the Salop-style circle 

framework, with arc distances around the circle representing differences in product 

characteristics. 

 Equation (2) implies that transportation charges, which are tz per unit, are proportional to 

the quantity transported, q(z).  In some contexts, such as driving to and from a grocery store, 
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these charges might be independent of q(z) over some range.4  However, it seems reasonable for 

most applications to view transportation charges as proportional to q(z). 

 The quantity demanded of store 1’s goods by customers located at distance z from the 

store is assumed to take a constant-elasticity form:5 

 (3)    𝑞𝑞(𝑧𝑧) = 𝐴𝐴 ∙ [𝑃𝑃∗(𝑧𝑧)]−𝜂𝜂, 

where η≥0.6  The standard analysis requires η>1, but this restriction is ultimately unnecessary in 

the present model.  The parameter A>0 represents the scale of each consumer’s demand. 

A modeling device that turns out to be highly convenient treats q(z) as contributing an 

infinitesimal amount to the total quantity of goods demanded, Q, from store 1; that is, 

     𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞(𝑧𝑧). 

The total quantity, Q, sold by store 1 to customers to the right of the store’s location equals the 

integral of q(z) for 𝑧𝑧 going from 0 to h: 

     𝑄𝑄 = ∫ 𝑞𝑞(𝑧𝑧)𝑑𝑑𝑑𝑑ℎ
0 . 

Using the demand curve from Eq. (3) and making a change of variable from z to P*(z), the 

integral can be evaluated to get 

 
4Anderson and de Palma (2000) and Gu and Wenzel (2009) assume that transport charges are independent of the 
quantity shipped. 
5Anderson and de Palma (2000) and Gu and Wenzel (2009) show that this form of demand function is implied by a 
utility function of the form 𝑈𝑈 = 𝜂𝜂

𝜂𝜂−1
𝑞𝑞(𝑧𝑧)(𝜂𝜂−1)/𝜂𝜂 + 𝑞𝑞�, where 𝑞𝑞� is the quantity of a numeraire good and gross income 

is 𝑌𝑌 = 𝑃𝑃∗(𝑧𝑧) ∙ 𝑞𝑞(𝑧𝑧) + 𝑞𝑞�.  If all consumers have the same Y, customers located at higher z will effectively have lower 
net income because they spend more on transportation costs for a given q(z).  This net income difference would be 
exactly offset by lower residential rents if the only dimension of residential location that matters is its distance from 
the nearest store.  This result accords with the standard insight in urban economics, summarized in Brueckner 
(1987), whereby differences in rents represent compensating differentials for differences in commuting costs. 
6Hotelling (1929, pp. 45, 56) assumed η=0.  He says (p. 56): “The problem … might be varied by supposing that 
each consumer buys an amount of the commodity in question which depends on the delivered price.  If one tries a 
particular demand function the mathematical complications will now be considerable … “  Smithies (1941) and Hay 
(1976) extended the Hotelling analysis to allow for elastic consumer demand, though in the form of linear demand 
functions.  Anderson and de Palma (2000) and Gu and Wenzel (2009) allowed for a constant elasticity of demand, as 
in Eq. (3), but their restriction to η<1 limits the applicability of their setting. 
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 (4)   𝑄𝑄 = 𝐴𝐴
𝑡𝑡(𝜂𝜂−1)

[𝑃𝑃1−𝜂𝜂 − (𝑃𝑃 + 𝑡𝑡ℎ)1−𝜂𝜂], 

where η>1 is assumed at this stage. 

The marginal effect of P on Q follows from Eq.(4) as 

 (5)   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −�𝐴𝐴
𝑡𝑡
� ∙ �𝑃𝑃−𝜂𝜂 − (1 + 𝑡𝑡 𝜕𝜕ℎ

𝜕𝜕𝜕𝜕
)(𝑃𝑃 + 𝑡𝑡ℎ)−𝜂𝜂�. 

The essence of the Hotelling analysis is the term 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

, which indicates how an increment in P 

affects the location of the border between stores.  However, to see the relation to standard results 

on markup pricing, the analysis assumes to begin that 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 0. 

 The profit flow for store 1 (for sales to the right in Figure 1) is 

 (6)    𝜋𝜋 = (𝑃𝑃 − 𝑐𝑐)𝑄𝑄 − 𝑓𝑓, 

where 𝑓𝑓 > 0 is the fixed cost of operating a store.  (The �ixed cost could correspond to the rent 

paid on the store’s premises.  In the subsequent analysis, this fixed cost also covers sales to the 

left of store 1 in Figure 1.)  The first-order condition for choosing P to maximize 𝜋𝜋 follows from 

Eq. (6) as 

 (7)   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑄𝑄 + (𝑃𝑃 − 𝑐𝑐) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. 

Substituting into Eq. (7) for Q from Eq. (4) and for 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 from Eq, (5) (assuming 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 0) leads, 

if η>1, to the first-order maximization condition: 

 (8)  � 1
𝜂𝜂−1

� ∙ [𝑃𝑃1−𝜂𝜂 − (𝑃𝑃 + 𝑡𝑡ℎ)1−𝜂𝜂] = (𝑃𝑃 − 𝑐𝑐)[𝑃𝑃−𝜂𝜂 − (𝑃𝑃 + 𝑡𝑡ℎ)−𝜂𝜂]. 

 The results simplify if the maximal operative transport cost, th, is small compared to the 

price, P; that is, if the main component of the effective price, P*(z) in Eq. (2), is always the price 
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charged, P, rather than the transport cost, tz.  Ultimately, the required condition will be that the 

marginal production cost dominates over transport cost, so that 𝑡𝑡ℎ ≪ 𝑐𝑐 applies.  This 

approximation, which is explored in detail in the next section, allows for simplifications of the 

terms involving P+th in Eq. (8) by means of first-order Taylor approximations.  These 

approximations deliver the standard result, described in Lerner (1934), whereby P is a constant 

markup on marginal cost, c:7 

 (9)    𝑃𝑃 ≈ 𝑐𝑐 ∙ ( 𝜂𝜂
𝜂𝜂−1

), 

so that the markup ratio is 

 (10)    𝑃𝑃−𝑐𝑐
𝑐𝑐
≈ 1

𝜂𝜂−1
. 

Therefore, when the effect of P on the location of the border is neglected, the markup ratio is 

determined in the usual way by the elasticity of demand, η, with a higher elasticity implying a 

lower markup ratio.  Finite price, P, and profit, 𝜋𝜋, require η>1.  This restriction on the elasticity 

of demand is familiar but also likely to be unrealistic. 

 The price, P, shown in Eq. (9) is the one chosen by store 1.  However, the same price 

applies for each store around the circle in Figure 1 as long as the marginal cost, c, and the 

elasticity of demand, η, are the same in each territory.  The analysis now turns to the crucial 

influence on pricing behavior from the interactions at the borders between stores. 

 

II.  Hotelling Effect at the Borders 

 At the border between stores 1 and 2, where z=h in Figure 1, customers are indifferent 

between buying goods from store 1 or store 2 when the prices are the same.  Starting from a 

 
7The second-order condition for profit maximization is satisfied if η>1. 
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position of equal prices and holding fixed store 2’s price, a positive increment in store 1’s price, 

dP>0, would motivate customers located at the border to make all of their purchases from 

store 2.  Since q(h) is the quantity bought, the amount q(h)·dP is the extra cost imposed on 

buyers located at the border.  In response, the border has to shift leftward toward store 1; that is, 

dh<0 applies.  This change corresponds to a reduction by the magnitude tq(h)·dh in the amount 

paid by border customers for transport costs from store 1.  Similarly, the amount paid by border 

customers for transport costs from store 2 rises by the magnitude tq(h)·dh.  Thus, the difference 

between transport costs from store 1 compared to those from store 2 falls by the magnitude 

2tq(h)·dh.  In order for persons located at the new border to be indifferent between buying from 

store 1 or store 2, the magnitude of 2tq(h)·dh must equal that of q(h)·dP.  That is, 2tq(h)·dh + 

q(h)·dP=0 must hold.  Therefore, the key condition that connects the position of the border to the 

increment in price is:8 

 (11)    𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= − 1
2𝑡𝑡

. 

 Substituting the result from Eq. (11) into the expression for 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 in Eq. (5) implies 

 (12)   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −�𝐴𝐴
𝑡𝑡
� ∙ [𝑃𝑃−𝜂𝜂 − 1

2
(𝑃𝑃 + 𝑡𝑡ℎ)−𝜂𝜂]. 

Substitution of this result into the expression for 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 in Eq. (7) yields the new first-order 

maximization condition: 

 (13)  � 1
𝜂𝜂−1

� ∙ [𝑃𝑃1−𝜂𝜂 − (𝑃𝑃 + 𝑡𝑡ℎ)1−𝜂𝜂] = (𝑃𝑃 − 𝑐𝑐) ∙ [𝑃𝑃−𝜂𝜂 − 1
2

(𝑃𝑃 + 𝑡𝑡ℎ)−𝜂𝜂]. 

 
8This analysis requires N≥2, so that h≤H/4.  Otherwise, there is no border competition, and the solution is the 
standard one given in Eqs. (9) and (10). 
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The results again simplify if the maximal operative transport cost, th, is small compared 

to the price, P.  In this case, Eq. (13) simplifies using first-order Taylor approximations for the 

terms involving P+th to 

 (14)    𝑃𝑃 ≈ 𝑐𝑐 + 2𝑡𝑡ℎ. 

The markup ratio is then 

 (15)    𝑃𝑃−𝑐𝑐
𝑐𝑐
≈ 2𝑡𝑡ℎ

𝑐𝑐
. 

The second-order condition for profit maximization is satisfied if η≥0.  Note that the solution for 

the price markup in Eqs. (14) and (15) holds even when η≤1.  In the standard, Lerner-type 

analysis, this range for η has to be excluded to avoid infinite profit by producers.9 

 Table A1 in the appendix examines the accuracy of the approximations that underlie the 

derivation of Eq. (14).  The results can be expressed in terms of two parameters, η and 2th/c, 

where the latter term is the ratio of markup to marginal cost in the formula in Eq. (15).  Note first 

from Eq. (13) that Eq. (14) holds exactly if η=0.  Equation (14) also holds exactly if th=0.  More 

generally, Eq. (14) holds better as an approximation to the true solution for P when η and 2th/c 

are smaller.  For example, as shown in Table A1, if η≤5 and 2th/c ≤0.1, the true solution for P 

differs from c+2th by less than 3%.  Further, if η≤2 and 2th/c≤0.2, the true solution for P again 

differs from c+2th by less than 3%.  However, if η is very large, P can fall short of c+2th by 

substantial amounts for reasonable values of 2th/c.  The bottom line from Table A1 is that, in 

plausible ranges for η and 2th/c, such as η≤5 and 2th/c≤0.1 or η≤2 and 2th/c≤0.2, the formula for 

the markup ratio in Eq. (15) is a close approximation to the true solution.  This result, where the 

 
9The key mechanism in the Hotelling model is that a rise in P results in a contraction of the border, h, with h 
reaching zero for sufficiently high P.   When η≤1, this mechanism prevents a store from achieving infinite profit by 
charging an infinite price. 
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markup ratio equals 2th/c, contrasts with the standard Lerner formula in Eq. (10), which says that 

the markup ratio equals 1/(η-1) (when η>1).   

 In the literature on price markups, many studies mention the Lerner formula but make no 

use of it empirically.10  Instead, these studies, exemplified by de Loecker, Eeckhout, and Unger 

(2020), emphasize ways to measure price markups, following the lead of Hall (1988).  Although 

these results are useful, they do not relate observed price markups to “fundamentals,” which 

might include differences in the elasticity of demand or in factors that affect the substitutability 

of neighboring products.  In the Hotelling-type model, the latter group includes influences on the 

spacing between stores (or products), h, and the transportation-cost parameter, t. 

 There is a sense in which the results for the markup ratio in the present model accord 

with the standard formula based on the elasticity of demand in Eq. (10).  The standard result 

holds if η is interpreted not as the parameter in the individual demand curve in Eq. (3) but rather 

as the full magnitude of the elasticity of Q with respect to P—including the extensive margin 

whereby a store loses all of the business at its borders by raising its price.  In this setting, the 

micro-level elasticity of demand, η—effectively the intensive margin for quantity demanded—

does not affect the markup ratio as an approximation in a range of reasonable parameter values. 

 Return now to the assumption that stores are evenly spaced around the circle in Figure 1.  

Suppose that store 1 takes as given the positions of stores 2 and N.  Suppose, starting from a 

position equidistant between stores N and 2, that store 1 considers moving its location, say by a 

distance X to the right.  The market border with store N would then shift from a distance h to a 

distance h+X/2 from store 1’s location.  The border with store 2 would shift from a distance h to 

a distance h-X/2.  Therefore, the total distance covered by store 1 would remain at 2h.  However, 

 
10See, for example, Hall (2018, p. 2), Bond, et al. (2021, p. 4), and Syverson (2024, p. 5). 
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there is a shift toward customers who are relatively far from the store (in the region toward 

store N) and away from those who are relatively close (in the region toward store 2).  Because of 

the downward-sloping demand curve in Eq. (3), the more distant customers buy a smaller 

quantity and are less profitable for store 1.  Hence, on net, store 1’s profit declines.  It follows 

that store 1 would not move and is best off remaining equidistant between stores 2 and N.  That 

is, the equal-spacing pattern is an equilibrium outcome.11  Note that this result depends on the 

downward-sloping demand curve—the result would not apply under the common assumption 

that each household buys exactly one unit of the good (for example, in the version of the Salop 

model described in Tirole [1988, Section 7.1.2]).  The result also depends on the assumption that 

transportation charges are proportional to the quantity bought, q(z), rather than being 

independent of this quantity. 

 The results in Eqs. (14) and (15) are reminiscent of models of contestable markets, as 

described by Baumol, Panzar, and Willig (1982).  In those models, an individual firm’s markup is 

limited by the cost of production for potential entrants into a market, and marginal-cost pricing 

prevails under assumptions that include zero costs of entry and exit and equal access of all firms 

to all technologies.  A difference in the present, Hotelling context is that the relevant competition 

depends on actual participants in the market—neighboring stores—rather than hypothetical entry 

by potential participants.  Moreover, the Hotelling-type model does not predict marginal-cost 

pricing but rather price markups that depend on the distances between active stores in the market. 

 

 

 

 
11This conclusion accords with Vickrey (1964, p. 330). 
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III.  Free-Entry Condition 

 The analysis of entry in this section applies when Eq. (14) is an accurate formula for the 

price; that is, when P ≈ 𝑐𝑐 + 2𝑡𝑡ℎ.  The total quantity sold, Q, by store 1 (or any store) can then be 

determined from Eq. (4) to be: 

 (16)    𝑄𝑄 ≈ 2ℎ𝐴𝐴𝑐𝑐−𝜂𝜂, 

where the 2 reflects store 1’s sales on both sides of its location in Figure 1.  The associated profit 

is given from Eq. (6) by 

 (17)    𝜋𝜋 ≈ 4𝑡𝑡𝑡𝑡ℎ2𝑐𝑐−𝜂𝜂 − 𝑓𝑓. 

If 𝜋𝜋 > 0, there is an incentive for new stores to enter the market, thereby raising N and 

lowering ℎ = 1
2
𝐻𝐻
𝑁𝑁

 .12  The decrease in h lowers 𝜋𝜋 in Eq (17).  This process continues as long as 

𝜋𝜋 > 0.  If the integer constraint on N can be neglected, as will be satisfactory if N is large,13 the 

free-entry condition will be 𝜋𝜋 ≈  0.  Equation (17) then implies  

 (18)    2ℎ ≈ � 𝑓𝑓
𝑡𝑡𝑡𝑡𝑐𝑐−𝜂𝜂

. 

Therefore, under free entry, the spacing between stores, 2h, follows a square-root rule, whereby 

the spacing is larger the lower the transport cost per unit, t, the higher the fixed cost 𝑓𝑓 of 

operating a store, and the (approximate) quantity sold to each buyer, 𝐴𝐴𝑐𝑐−𝜂𝜂 .  The last two results 

apply because the fixed cost is effectively scaled by the quantity sold to each buyer.  Note that 

the spacing does not depend on the overall size of the city, represented by H in Figure 1. 

 
12The assumption here is that firms immediately relocate to preserve their equal spacing around the circle in 
Figure 1.  More realistically, the model applies to a long-run, steady-state situation, rather than to the dynamics of 
entry and exit. 
13For example, for New York City, with a central city population of 8 million in 2019, the New York State 
Comptroller reports that the number of retail businesses at that time was about 33,000, each servicing on 
average 242 domestic residents.  In this context, where N is 33,000, the integer constraint would be of no 
consequence.  Mankiw and Whinston (1986) discuss integer constraints for a related model. 
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 The solution for spacing, 2h, in Eq. (18) implies that the number of firms is given from 

Eq. (1) by 

 (19)    𝑁𝑁 = 𝐻𝐻
2ℎ
≈ 𝐻𝐻 ∙ �𝑡𝑡𝑡𝑡𝑐𝑐−𝜂𝜂

𝑓𝑓
. 

Therefore, N  is proportional to city size, H, and rises with the square root of the transport cost 

per unit, t, and the quantity sold to each buyer, 𝐴𝐴𝑐𝑐−𝜂𝜂 .  The number N varies inversely with the 

square root of the fixed cost, 𝑓𝑓, of operating a store. 

 The free-entry result in Eq. (18) implies from Eq. (14) that the price charged will be 

 (20)    𝑃𝑃 ≈ 𝑐𝑐 + � 𝑡𝑡𝑡𝑡
𝐴𝐴𝑐𝑐−𝜂𝜂

.  

That is, the markup on marginal cost, c, is increasing with the transport-cost parameter, t, and the 

fixed cost 𝑓𝑓 of operating a store and decreasing with the quantity sold to each buyer, 𝐴𝐴𝑐𝑐−𝜂𝜂 .  The 

markup does not depend on H, the overall size of the city.  The markup also does not depend (as 

an approximation) on the elasticity of demand, η, except for a positive effect that involves the 

quantity sold, 𝐴𝐴𝑐𝑐−𝜂𝜂 .  Moreover, the results hold for any η≥0, including Hotelling’s case where 

η=0. 

 The theoretical results can be related to the empirical analysis of Chevalier, Kashyap, and 

Rossi (2003) concerning pricing patterns of a major supermarket chain.  Their key finding is that 

markups for affected categories of products are relatively low at times of peak demand, notably 

during major holidays and events such as Christmas, Thanksgiving, and Lent.  Their empirical 

results rule out an explanation for this pricing pattern based on the elasticity of demand being 

unusually high at these times of peak demand.  This finding accords with the present model in 

that the price markup is not predicted to fall when the demand elasticity, η, rises in Eq.(14) for a 

given market size, 2h, or in Eq. (20), where 2h is determined by a free-entry condition.  In the 
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model, peak demand would be represented by a temporarily high value of the parameter A, 

which enters into the demand function in Eq. (3).  High A has no effect on the price markup in 

Eq. (14) but reduces this markup in Eq. (20), which factors in the free-entry condition.  An 

application of this last result to the setting of Chevalier, Kashyap, and Rossi (2003) depends on 

there being significant entry during peak demand periods.  Possibly this entry can take the form 

not of new stores but of longer store hours or increased advertising (a margin emphasized by 

Chevalier, Kashyap, and Rossi). 

 

IV.  Socially-Optimal Entry 

 Heuristically, there are two elements in the model that may cause the free-entry choices 

of spacing, 2h, and number of stores, N, from Eqs. (18) and (19) to deviate from socially-optimal 

values.  The first distortion is the markup, approximated by 2th in Eq. (14), which generates an 

excess of the effective price, P*, over social marginal cost, c+tz, in Eq. (3).  This excessive price 

leads to quantities of goods consumed that fall short of socially-optimal values.  That is, at the 

existing quantity sold, each household’s willingness to pay, P*, for an additional unit—

corresponding to the inverse-demand function implied by Eq. (3)—exceeds the social marginal 

cost, c+tz.  Therefore, the profit flow in Eq. (6), which is the signal for entry, is too low in the 

sense of falling short of the amount that corresponds to the socially-optimal quantity of goods 

produced.  On this ground, one would expect the free-entry choice of the number of stores, N, to 

be too low, corresponding to the choice of spacing, 2h, being too high. 

 The second distortion is that an entering firm’s profit includes revenue that is transferred 

from incumbent firms.  That is, there is a “business-stealing effect,”14 which is a private reward 

 
14This term appears in Mankiw and Whinston (1986, p. 49) and also in Tirole (1988, p. 284).  The business-stealing 
effect plays a large role in growth models that feature creative destruction, as in Aghion and Howitt (1992).  The 
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for entry that has no social benefit.  (The distortion here can be viewed as generated by the lack 

of property rights for incumbent firms in their profit flows.)  On this ground, one would expect 

the free-entry choice of the number of stores, N, to be too high, corresponding to a choice of 

spacing, 2h, that is too low.   

Tirole’s (1988, Ch. 7, p. 284) analysis of the Salop-Hotelling model finds that entry is 

excessive in that model: “… we compare the free-entry equilibrium with the allocation selected 

by a social planner.  We already know that the price charged by the firms is greater than the 

marginal cost.  However, in this case, where consumers all receive the same utility from the good 

and each consumes only one unit, this price introduces no distortion.”  Hence, Tirole’s 

conclusion that the free-entry equilibrium features too much entry applies because the analysis 

considers only the distortion from business-stealing. 

 Suppose in the present model that the social planner can dictate the spacing between 

stores, 2h, and the quantity of goods purchased, q(z), by each household.  However, the planner 

is assumed to accept the uniform distribution of consumers around the circle in Figure 1.  

Optimality entails the equation of each customer’s willingness to pay, corresponding to the 

demand price from the inversion of Eq. (3), to the social marginal cost, c+tz.  The socially-

optimal value of spacing, 2h can then be derived, following the approach of Mankiw and 

Whinston (1986, p. 50), by maximizing an expression for aggregate consumer surplus (netting 

out costs of producing and transporting goods and the fixed costs of operating stores).  The 

result, derived in the appendix, is that the social planner’s choice of store spacing, 2h, exceeds 

 
term creative destruction was used by Schumpeter (1942, p. 83):  “This process of Creative Destruction is the 
essential fact about capitalism.  It is what capitalism consists in and what every capitalist concern has got to live in.”  
Schumpeter’s analysis of creative destruction was heavily influenced in Schumpeter (1942, part I) by his reading of 
Karl Marx.  It is unclear whether Schumpeter’s vision was preceded by Picasso’s famous quote: “Every act of 
creation begins with an act of destruction.” 
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the free-entry choice (in Eq. [18]).  Correspondingly, the social planner’s choice of number of 

stores, N, falls short of the free-entry number (in Eq. [19]).  In this sense, the model accords with 

the excess-entry result of Tirole (1988).   

Recall that Tirole’s calculations correspond to assuming η=0, which eliminates the 

distortion associated with inefficiently low quantities of goods.  In the present model, η can be 

positive, but the main results also assume that the approximation 2th<<c is valid.  This condition 

generates a quantity distortion that is nonzero but quantitatively minor.  Therefore, the excess 

entry result still obtains.  For very high values of η, the results from the approximate solution 

become unsatisfactory as shown in Table A1 in the appendix.  In this range, the distortion from 

inefficiently low quantity becomes more important, and the excess-entry result need not apply. 

Free entry and socially-optimal entry have also been studied in non-spatial models of 

monopolistic competition, which include Spence (1976), Dixit and Stiglitz (1977), and Mankiw 

and Whinston (1986).  In this literature, free entry sometimes results in the socially optimal 

amount of entry, but this result is not general.  However, an important feature of these models is 

that the various products are treated symmetrically, with each good equally substitutable with 

each alternative good.  In contrast, the central feature of Hotelling-type models and related 

Lancaster-type models is the strong substitution with “neighboring” producers and products.  

This property underlies the markup-pricing result in Eq. (14), which is driven by the threat of 

losing business at the borders with adjacent stores.  This formula for markup pricing is, in turn, a 

key ingredient in the analysis of free entry and socially-optimal entry. 
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V.  Summary 

 In a circular Hotelling model, customers are uniformly distributed around a circle with 

circumference H and number of stores N.  Equal spacing of stores applies in equilibrium.  A 

customer’s transportation cost per unit is tz, where z is the distance from the nearest store.  The 

effective price paid per unit is P*=P+tz, where P is the price at the store’s location.  The 

marginal cost of production is the constant c, and the magnitude of the elasticity of each 

customer’s quantity demanded with respect to P* is the constant η. 

Stores serve customers out a distance h=H/2N.  If production costs dominate transport 

costs, each store’s equilibrium price approximates the markup 2th over marginal cost, 

independent of the elasticity of demand.  The key element in a store’s markup is the threat of 

losing all of the business at its borders.  In a free-entry equilibrium, h is larger the lower t, the 

higher the fixed cost of operating a store, and the smaller the scale of quantity demanded by each 

customer.  Given these factors, the number of stores, N, is proportional to city size, H, and the 

markup is independent of H. 

Two distortions affect the equilibrium:  the excess of price over marginal cost implies 

inefficiently low quantities of goods produced, and a business-stealing effect implies that a new 

entrant’s profit includes revenue transferred from incumbent stores.  In a plausible range for the 

parameters η and 2th/c, the business-stealing effect dominates, and entry is excessive. 

From the perspective of understanding price markups, the biggest contribution from 

Hotelling-type models is the emphasis on factors that influence the substitutability among 

neighboring producers and products.  This focus contrasts with the standard Lerner formula, 

which puts all the weight on the elasticity of demand. 
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Appendix 

 

I.  The Approximation in the Markup Formula 

 The result for the price markup, 𝑃𝑃 ≈ 𝑐𝑐 + 2𝑡𝑡ℎ in Eq. (14), is an approximation to the 

solution for P in Eq. (13) based on the condition 𝑡𝑡ℎ ≪ 𝑃𝑃.  Recall that the price P is determined 

exactly from 

(13) � 1
𝜂𝜂−1

� ∙ [𝑃𝑃1−𝜂𝜂 − (𝑃𝑃 + 𝑡𝑡ℎ)1−𝜂𝜂] = (𝑃𝑃 − 𝑐𝑐) ∙ [𝑃𝑃−𝜂𝜂 − 1
2

(𝑃𝑃 + 𝑡𝑡ℎ)−𝜂𝜂]. 

Table A1 reports solutions for P from Eq. (13) determined numerically for an array of settings for 

the two underlying parameters, which can be expressed as η and 2th/c.  The latter term is the 

ratio of the markup to marginal cost in the approximate solution in Eq. (15).  The table shows the 

results for P expressed as a ratio to c+2th, which is the approximate result for 𝑃𝑃 in Eq. (14).  The 

approximate solution is exact if η=0 or th=0, and the approximation works better the smaller η 

and 2th/c.  For example, if η≤5 and 2th/c ≤0.1, the true solution for P differs from c+2th by less 

than 3%.  Further, if η≤2 and 2th/c≤0.2, the true solution for P again differs from c+2th by less 

than 3%.  If η is very large, P can fall short of c+2th by substantial amounts for reasonable 

values of 2th/c.  However, the bottom line, based on η≤5 and 2th/c ≤0 or η≤2 and 2th/c≤0.2 in 

plausible circumstances, is that the approximation in Eq. (14) will typically be reasonably good. 
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Table A1 
 

Approximation for Price-Markup Solution 
 
 

 η=0 η=0.1 η=0.5 η=1 η=2 η=5 η=100 
2th/c P/(c+2th) 
0 1 1 1 1 1 1 1 
0.02 1 1 1 1 0.999 0.999 0.988 
0.04 1 1 0.999 0.999 0.998 0.995 0.970 
0.1 1 0.999 0.997 0.995 0.989 0.976 0.918 
0.2 1 0.998 0.990 0.982 0.967 0.933 0.842 
0.4 1 0.994 0.973 0.949 0.911 0.841 0.721 
1 1 0.983 0.922 0.858 0.763 0.628 0.505 
2 1 0.971 0.866 0.757 0.604 0.433 0.337 
5 1 0.960 0.809 0.652 0.444 0.265 0.202 

 

 

II.  Social-Planner Problem 

 The social planner effectively prices goods at the social marginal cost, which is c+tz for a 

household located at distance z from its nearest store.  The associated socially optimal quantity of 

goods is 𝑞𝑞(𝑧𝑧) = 𝐴𝐴 ∙ (𝑐𝑐 + 𝑡𝑡𝑡𝑡)−𝜂𝜂 from Eq. (3).  The consumer surplus, 𝛺𝛺(𝑧𝑧), for an agent at z is 

then 

 (A1)   𝛺𝛺(𝑧𝑧) = ∫ �(𝐴𝐴
𝑞𝑞

)1/𝜂𝜂 − 𝑐𝑐 − 𝑡𝑡𝑡𝑡� 𝑑𝑑𝑑𝑑𝑞𝑞(𝑧𝑧)
0 , 

where (𝐴𝐴
𝑞𝑞

)1/𝜂𝜂  is the demand price associated with q.  The integral can be evaluated to get 

 (A2)    𝛺𝛺(𝑧𝑧) = 𝐴𝐴(𝑐𝑐+𝑡𝑡𝑡𝑡)1−𝜂𝜂

𝜂𝜂−1
, 

where η>1 is assumed at this stage (but is ultimately an unnecessary restriction). 
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 The consumer surplus given in Eq. (A2) applies for z=(0,h) to the right of store 1 in 

Figure 1.  Including also the analogous term to the left of store 1, the total consumer surplus for 

all customers of store 1 is 

 (A3)    𝛺𝛺 = 2∫ 𝐴𝐴(𝑐𝑐+𝑡𝑡𝑡𝑡)1−𝜂𝜂

𝜂𝜂−1
𝑑𝑑𝑑𝑑ℎ

0 . 

Using a change of variable from z to c+tz, the integral can be evaluated to get 

 (A4)   𝛺𝛺 = 2𝐴𝐴
𝑡𝑡(𝜂𝜂−1)(𝜂𝜂−2)

[𝑐𝑐2−𝜂𝜂 − (𝑐𝑐 + 𝑡𝑡ℎ)2−𝜂𝜂]. 

The analysis at this stage assumes η>2, but this restriction (or η>1) is ultimately not needed for 

the results. 

 The consumer surplus in Eq. (A4) applies from Eq. (1) to N=H/2h markets.  The fixed 

cost of operations is Nf.  The social planner chooses h to maximize the overall net surplus: 

 (A5) 𝑁𝑁𝑁𝑁𝑁𝑁 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐻𝐻
ℎ
� 𝐴𝐴
𝑡𝑡(𝜂𝜂−1)(𝜂𝜂−2)

[𝑐𝑐2−𝜂𝜂 − (𝑐𝑐 + 𝑡𝑡ℎ)2−𝜂𝜂] − 𝑓𝑓
2
�. 

Setting the derivative of Eq. (A5) with respect to h to zero to get the first-order maximization 

condition leads to 

   𝑓𝑓
2

= 𝐴𝐴
𝑡𝑡(𝜂𝜂−1)(𝜂𝜂−2)

[𝑐𝑐2−𝜂𝜂 − (𝑐𝑐 + 𝑡𝑡ℎ)2−𝜂𝜂] − 𝐴𝐴ℎ
𝜂𝜂−1

(𝑐𝑐 + 𝑡𝑡ℎ)1−𝜂𝜂. 

Using the condition from before, th<<c, the right-hand side simplifies using first-order Taylor 

approximations for the terms involving c+th to 𝐴𝐴𝐴𝐴ℎ2𝑐𝑐−𝜂𝜂.  Therefore, the approximate solution is 

 (A6)    2ℎ ≈ � 2𝑓𝑓
𝑡𝑡𝑡𝑡𝑐𝑐−𝜂𝜂

. 
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 The social planner’s solution for store spacing in Eq. (A6) is the multiple by the square 

root of 2 of the free-entry solution in Eq. (18).  That is, the social planner’s spacing exceeds the 

free-entry one by about 40%, corresponding to having only about 70% of the number of 

stores, N. 
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Figure 1 

Salop-Hotelling Circular City 

 

 

 

 

 

 

 

 
Note:  Consumers are uniformly distributed around a circle with circumference H.  Stores are 
located at positions 1, 2, …,  N, with an equal spacing of 2h.  Store 1’s market extends out a 
distance h to the right and left of its location. 
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