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ABSTRACT

The optimal income taxation problem has been extensively studied in one-
period models. This paper analyzes optimal income taxation when consumers work
for many periods. We also analyze what information, if any, that the
government learns about abilities in one period can be used in later periods to
attain more redistribution than in a one-period world. When the government
must commit itself to future tax schedules, intertemporal nonstationarity of
tax schedules could relax the self-selection constraints and lead to Pareto
improvements. The effect of nonstationarity is analogous to that of
randomization in one-period models. The use of information is limited since
only a single lifetime self-selection constraint for each type of consumer
exists. These results hold when individuals and the government have the same
discount rates. The planner can make additional use of the information when
individual and social rates of time discounting differ. In this case, the
limiting tax schedule is a nondistorting one if the government has a lower

discount rate than individuals.
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I. INTRODUCTION

Govetﬁments make some, but only limited, use of age-dependent income tax
schedules. In the U.S., the elderly benefit from a larger standard deduction
in the Pederal income tax, and the subsidies provided through the Social
Security system (which depend on individual earnings histories) can be viewed
as an age-dependent transfer.

At first glance, this seems anomalous. Surely by the time an individual
is, say, age 50, the government has accumulated an enormous amount of
information about him. The government could make use of an individual's
lifetime work history in designing tax schedules. This argument seems
particularly forceful under the now widely accepted argument that limited
information about individual abilities (combined with distributional
objectives) provides the reason for distortionary tax#tion.

Upon further reflection, this failure may not be quite so anomalous. For
if individuals knew that future tax rates would depend on current income, it
would affect their current behavior. While the government might be able to
use the information accumulated during an individual's lifetime to reduce the
distortion in later years, doing so would increase the distortion in earlier
years.

Indeed what appears mora anomalous is that individuals act as if they
assume that the government will not base future taxes on their current income,
even though there is no explicit commitment to this. But this is also less of
a paradox than it first appears: individuals save, even though the government
has not committed itself not to confiscate their wealth. The government's
desire to maintain a reputation can lead it to act as if it could make binding

commitments not to use information in one period to engage in first best lump



sum taxation in later periods. We analyze here the intertemporal structure of
income taxation when the government can commit itself to lifetime tax
schedules. It is easy to show that, with the possibility of commitment,
optimal tax schedules will immediately lead individuals to reveal their ability
levels. This information is of no value to the government since it has, in
effect, committed itself not to use that information.

With preferences and productivity unchanged over time and the usual
assumptions of quasi-concave indifference curves, we might expect the
mathematics simply to confirm the optimality of what is commonly observed: tax
schedules that do not vary with age. But in many cases, this does not hold.
Upon further reflection, this result.should not have been unexpected. Even
with concave utility functions, the self-selection constraints introduce a
nonconvexity. Just as earlier one-period analyzes had suggested that the
optimum entailed random taxation (see, for example, Stiglitz {1982]), the
optimum may entail nonstationary tax schedules. By varying tax rates over
time, the government can simulate the outcome that would have occurred with
randomization.

When the govermment can commit itself, we show:

(1) If first best is not optimal in a one period model, it is not optimal
in later periods of a multi-period model.

(2) The self-selection constraint creates a potential nonconvexity which
implies that sometimes it may be desirable to have different tax functions in
different periods.

(3) When the tax structure differs across periods, the information from
the first period incorporated in later periods' schedules is only an

individual's ability class. The planner uses this to incorporate a large



penalty in later periods for an agent who acts in the second period as if his
ability differs from‘that revealed in the first, thus forcing agents to be
consistent in their behavior across periods.

These results follow from noting that a multiperiod optimal tax model and
a one period model with random taxation as discussed in Stiglitz [1982] are
essentially the same. The analogy between random tax;tion and nonstationary
taxation is suggestive, but there are differences between the two. The random
tax model has no restrictions on the relative frequencies with which different
schedules are offered. With an infinite horizonm, it is possible to duplicate
exaétly the random solution. However, in a finite period model, restrictions
exist on the frequency with which bundles can be offered over time. In
addition, the multiperiod model may be more restrictive if it has period-by-
period government budget constraints instead of one intertemporal constraint.
Despite these extra restrictions, similar arguments show that different tax
schedules in different periods may be desirable. Intertemporal nonstationarity
is an alternative method of implementihg random taxes that does not require
either ex ante or ex post violations of horizontal equity.

The discussion above applies when the government discounts the future at
the same ra;e as individuals. When the government values the future more than
individuals, more systematic use of age-dependent tax schedules than just
mimicking randomization is possible. Over time, the government can approach
the first-best allocation with nondistortionary redistribution.

To some readers, randomization may seem a mathematical curiosity, of
limited interest to policy design.1 However, some of the argumeﬁts against
implementing randomization are less serious criticisms against nonstationarity

of tax schedules. - With the latter, as we have noted, it is still possible not



to violate ex post horizontal equity. Intertemporal changes in the tax
schedule only require keeping track of individuals' ability types, which may be
far simpler than implementing a randomization procedure which needs to be
perceived as fair and appropriate. Furthermore, the gains from using random
taxes may well be large; Brito et al. [1986b] give an example in which these
gains may be equivalent to as much as 127 of aggregate resources. With this in
mind, one does not wish lightly to dismiss the use of age-dependent tax
schedules. .

Section II presents the basic model and summarizes bothsimple
characterization results for efficient tax structures and necessary and
sufficient conditions for randomization to be desirable. Section III presents
our results for the model with equal discount rates. Section IV considers the
problem when the government has a different discount rate from individuals and

Section V contains our conclusions.

II. THE INTERTEMPORAL MODEL

Considgr a society composed of two different classes of individuals
denoted A and B. The individuals within each class are identical but the two
classes differ either in tastes or abilities. The government is assumed
initially not to know té which class any individual belongs but to know the
numbers of individuals in each class, denoted N;, i = a, b. Individuals
discount future utility at the rate p. In each period individuals consume a
single good, C, and earn income, Y. Within any period, all members of each
class have the same utility function over these bundles
vi(c, ¥), 1 = a, b, with avi/ac = vi > 0 and avi/ay = v < 0.2 1Individuals

live for M periods and have a lifetime utility function ia g pt'lvi, i=a,b.
t=1



The maximum income that individuals in each class can earn per period is
bounded from above by Ki so that Yi s ki, 1 = a, b. The marginal rate of
substitution for individual i is denoted MRSi(C, ¥) = -vi/vi > o,

i =a, b.

The following assumptions are made about Vi(C, Y):

(Al) vi(c, Y), i = a, b, is twice continuously differentiable in C and Y;

(A2) vi(c, Y), &+ = a, b, is strictly concave in C and Y;

(A3) MRS3(C, Y) and MRSP(C, Y) differ at almost every (C, Y) bundle and, in
particular, the indifference curves are not tangent to the no-tax budget
line at the same bundle.

Assumption (Al) is made for convenience in exposition but can be relaxed

without difficulty. Assumption (A2) of concavity (instead of quasiconcavity)

insures that lifetime discounted utility describes convex preferences.

Assumption (A3) is crucial to guarantee that the groups actually have different

preferences since, if their indifference curves coincide, redistribution

between groups is impossible. Assumption (A3) allows multiple crossings of the
indifference curves. With multiple crossings, there will be bundles at which
the indifference curves of the two groups are tangent, having equal marginal
rates of substitution. Such tangencies are not ruled out as long as they form

discrete curves in the (C, Y) plane.3

A special case satisfying these
assumptions is that considered in Stiglitz {1982] in which the utility
functions Vi(C, Y) arise from common underlying preferences over consumption
and labor with the classes A and B having different abilities (and wages).
Indifference curves of the classes cross only once.* As shown in Brito, et al.

[1988a], such a "single crossing" assumption is unnecessary for much of the

characterization of Pareto efficient tax schedules.



A major theme of this paper is that nonstationary tax schedules may be
used by the government to mimic the effects of randomization in the single
period problem. Baron and Besanko [1984] and Laffont and Tirole [1988] report
that, with commitment by the principal, nonstationary reward schedules are of
no value. However, they use particular functional forms for which
randomization is not desirable in one-shot settings. We consider general
utility functions, including those for which randomization may be useful in
single-period applications.

Brito et al. [1988b] present necessary and sufficient conditions for
randomization and characterize the optimal randomization in the single period
version of this model. Our results there include the following:

1) if consumers are sufficiently risk-averse, there exists a randomization
scheme which preserves horizontal equity;

2) with ordinal preferences for the two groups which are nearly identical,
no randomization is desirable unless one group is much more risk averse
than the other;

3) the optimal randomization scheme requires at most three distinct
consumptién bundles to-be included in the lottery offered one type of
consumers; and

4) if a local randomization is desirable with some probability vector over
three bundles, then for any other probability triple, there exists three
bundles such that randomization over those bundles at the given
probabilities is feasible aﬁd improves on the deterministic solution.>
Individuals are unable to save or to borrow across periods and ﬁhus face

M separate budget constraints. This assumption is made to focus purely on the

role of information transfer across periods in affecting taxation without



complicating the analysis with possibility of wealth or interest taxation. 1In
the first period, every individual faces the same tax function Tl(Yl) since
the government has no basis upon which to distinguish individuals. There-
after, the government can recall the incomes reported in previous periods by
that individual and can condition the tax functions on previous periods'
income. Thus, the tax function in period t > 1, is written as
TH(Y.|Y},..-,¥e-1). The government cannot condition current taxes on current
or past behavior of others.® Taking the sequence of tax functions as given,

each individual chooses lifetime consumption and income to solve the following

maximization:
M s :
Max £ pt-lvi(ct, vh
(Cy,¥3) t=1

s.t. cisvyl -1yl
ci syl - rovipvd, . oviip, e =2,

The solution gives lifetime consumption and income vectors as functions of the
vector of tax functions, gicrd, ..., ™), icrl, ..., ™).

Given the choices by individuals in each class and subject to budget
balance requirements, the government chooses the set of tax functions to
maximize social welfare (to be defined below). We can transform the decision
on tax functions into a choice of lifetime consumption-income vectors for each
class with (33, 98) and (CP, ¥P) sustainable by a system of tax functions if
and only if lifetime self-selection constraints are satisfied for each class.
There is only one lifetime constraint for each class and not period by period
self-selection constraints. In the first period, individuals decide whether or
not to reveal their type when choosing their current income based on the entire

7



lifetime consequences that follow. If individuals reveal their type in the
first period, the government knows thereafter who they are and can prevent them
from acting as if they belonged to a different class. Any attempted deviation
could be punished by impoéition of a large penalty. After revealing through
first period choices, individuals in later periods can no longer choose any
bundle other than the one the government desires them to consume. Hence, after
the first period, the government's choices are constrained only because of its
initial commitment. It is well known that in the single period problem,
optimality requires separation, that is, the government chooses tax schedules
such that individuals reveal their types. Because the government can commit
itself, and separation is desirable in a single period problem, separation will
occur in every period.

We consider two separate budget balance requirements for the government.
One possibility is that the government has a single multiperiod budget
constraint ¢ Gt'l[NaT§ + Nngl 2 0, where TE is the tax revenue raised
from group iiin period t and 8 is the discount factor faced by the government.
Alternatively, the government could be required to balance its budget
_separately in each period with NaTg + Nng 20, t=1,...,M. Clearly, the
second is a tighter constraint on the government's choices. It reflects more
closely the goal of considering pure information transfer between periods and
is consistent with individuals' inability to save. On the other hand, the
single multiperiod constraint is justifiable if the government has
possibilities not available to individuals, such as a storage technology
feasible only on a large scale or access to a world @arket closed to trade by

individuals.’



The government maximizes the present discounted value of a weighted sum
of lifetime utilities where the weights a and (1 - a) are arbitrary and can
vary to change the distribution between the groups. The government's discount
factor & need not equal that of individuals. When they are equal (8 = p), the
government's maximization corresponds to finding the multiperiod Pareto
frontier as a varies from 0 to 1. When they differ (8 = p), the problem is no
longer a Pareto problem since the government does not respect individuals'
intertemporal preferences. While much literature analyzes why private and
social discount rates could differ, these do not constitute our major reason
for considering & * p. The major focus is on the case of equal diséount rates.
Allowing them to differ gives rise to a case which serves as a useful benchmark
for comparison when discussing the uses of information in the optimal tax
structure. The use of information across periods when & = p is much less
systematic than when & = p.

We consider two maximization problems, (P;) and (P;), depending upon
which budget constraint is used. For the single multiperiod constraint the

problem is:8

M
(P)) Max T 8t"l{aNVA(CE, ¥§) + (1 - a)NpVP(CR, YP)I
t=l

M C
s.t. tz‘.lpt'l[w(c}:, v - viel, vhrz o i =a b, ey

M
t2:l<5t‘1[na(cg - ¥2) + Ny(cR - ¥Rl s 0 "
X

osvyiskl, i=a, b, t=1,....4

ctz20, i=a, b, t=1,....4



For the separate constraints on each period, the problem is identical except
M

that the constraint I 6t'l[Na(C% -Y3) + Nb(CE - YE)] S 0 is replaced by:
t=l

(Py) Na(C2 - ¥3) + Np(cR - YD) s 0, €=1,...,M :ue

fhe Lagrange multipliers on the self-selection constraints in both problems are
denoted A; and Ap, but their values will differ between the two problems. The

Lagrange multiplier on the single budget balance constraint in (Pl) is denoted

by u while Mg, t = 1,...,M, denote the multipliers on each period's budget

balance constraint in (P;).

IIT. QPTIMAL TAXATION WHEN & = p

Let Cé(a) and Y%(a). i=a, b, and t = 1,...,M, be the solutions to (Pl)
as functions of a. Let Vit(a) denote the optimal utility in period t of
individuals in class i for (Pl)' Vi°, i = a, b, is the one period utility when

no taxes are imposed. All proofs are deferred to the Appendix.
Theorem I: The optimal solution to (Py) satisfies the following properties:

Mo M M . . M
(1)  If T ptlvi(a) 2 vio £ pt-l then § ot-lvi(cd(a), Yi(a)) < © pt-lvit(a),
t t
=l t=1 t=l t=1

i=a, band j = i.

M ) M o . M )
(11) If I pt-lvit(q) = ¢ pt'lVI(C%(a), Y%(a)) then I pt-lvit(a) >
t=1 t=] t=]l

M
£ ot lvi(ci(a), Yi(a)), & = a, b and j = i.
t=l

(iii) u> 0

(1v) If Ay = 0 then ¢J(a) = ci(a), ¥)(a) = vi(a) and MRsI(CcI(a), i) = 1,

10



i=a, b, j2i, t=1,...,M

(v) For i=a, band j=1i, if A; > 0 then at each t = 1,...,M either:

1 < mrsicd(a), ¥i(a)) < MRsE(Ci(a), ¥i(a))
mrsi(cia), i) < mrsi(cd(a), Y@ <1

mrsicl(@), ¥ia)) = mrsiccl(a), vi(a) =1

Part (i) asserts that, at the optimum, a group which has higher utility than

in the no tax situation cannot have a binding self-selection constraint, while
part (ii) rules out both groups having binding self-selection constraints.

Part (iii) guarantees that the optimum is production efficient. Part (iv)
considers the optimal allocation for a group whose bundle is not desired by the
other group. Such a group's allocation is stationary over time at a
nondistorted bundle, that is, at a bundle where the MRS equals 1. Finally,
part (v) considers the allocation to a group whose bundle is acceptable to the
other group. In each period, the MRS of that group at its bundle must lie
between the marginal rate of transformation (which equals unity) and the MRS of
the other grou; at that bundle. However, the MRT and the MRS of the other
group could have any relation to each other and this relation could differ in
different periods. Distortions exist in all periods, except for the
possibility that in some periods a bundle is assigned at which the MRS's of
both groups equal 1. Generically, such a bundle will not exist. Hence,
information. learned in the first period is not used to move to the first best
allocation in later periods. If the government uses. the informaﬁion it learns
in specifying tax functions after the first, it is commited to making only a

limited use of this information.
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Theorem I does not show that the government uses information gained in
the first period to affect later period taxes. In fact, a simple repetition of
the one period nonrandom solution satisfies all the first order conditions for
(P;). However, despite the apparent symmetry of the first order conditioms,
multiple asymmetric solutions may arise in the form of nonstationarity of the
optimal consumption-income vectors. Such nonstationary solutions arise from
the same nonconvexity of the self-selection constraints that make random
solutions in the'one period problem optimal. In fact, the following theorems
show that there is an exact analogy between existence of a nondegenerate
solution to the random tax problem and a nonstationary solution to (Py).

Let ¥i(a) = g ot lvi(ci(a), Yi(a))/ g pt°l, i = a, b, be the

t=l t=1
average utility achieved by each group over its lifetime. Let the normalized
utility possibility frontier be the utility possibility frontier in average

utilities.

Theorem II: Assume p = 8 2 2/3 and M = =, Then, for every a, there exists-a
solution to (Pl). This solution involves nonstationarity if and only if
randomization ;s desirable in the one period problem. In addition, the
normalized Pareto frontier arising in (Pl) is identical to that in the one

period case.

With an infinite horizon and a large enough discount factor, any one
period random solution can be exactly duplicated by a deterministic
nonstationary solution. The circumstances from Brito, et al. [1988b] listed
above under which randomization arises in the one period optimal solution are

thus sufficient for nonstationary solutions in the multiperiod context. When
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M is finite or & is small, nonstationarity can arise even if the optimal

randomization cannot be duplicated.

Theorem III: If &=p and if M is finite or & < 2/3, then, for any a, the

solution to (Pl) is nonstationary only if the one-period solution involves
randomization. The solution to (P;) is nonstationary if a local randomization
would improve on the one-period deterministic solution or if the one-period
solution involves nonlocal randomization, & 2 2/3, and M is sufficiently large.
When the solution is nonstationary, the normalized Pareto frontier for (Pl)

may be interior to that in the one period random problem.

(Pz) is the case of pure information transfer across periods since neither
the government nor individuals can borrow or save. It is not possible to
duplicate the one period random solution by nonstationarity unless the
randomization is over bundles such that cth . yih . (Nj/Ni)(Yj -¢cd), n=1,
2, 3, that is, in the random solution, the government raises the same revenue
in each contract. This condition will not generally hold. Consider the case
when all groups have the same additively separable utility function over
consumption and leisure but differ in ability. Then only income is random in
the optimal random solution. This solution cannot be duplicated by a
nonstationary solution in (Py). Nevertheless, nonstationarity may still arise
in (Pz) as long as randomization arises in the one-period problem.

The only significant difference between the results for (P;) and those
for (P) is that it cannot be Qhovn that the same bundle is given in every
period to group j if group’i's self-selection constraint is not binding.

However, any nonstationarity for group j is over bundles with no distortion.
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Theorem IV: If p = §, nonstationarity is possible in the solution to (P3) and
arises only if randomization is used in the cne period problem. The normalized
Pareto frontier found in (P;) is generally interior to that in (P;) whenever

the solution to (P)) involves nonstationarity.

IV. OPTIMAL TAXATION WHEN & = p

When the government and individuals have different discount rates,
systematic nonstationarity arises in the optimal solution. To contrast with
the nonsystematic nonstationarity when & = p, only results for (Pl) are given.
Similar results hold if period-by-period budget balance is required or if
additional randomization is allowed. Note that similar results arise if the
two classes had different private discount rates instead of identical private
rates different from the government's.

The first order conditions in (P) are:

(6% 1aN, + A0t 11(3V3/aC3) - ALet l(avP/acd) - pet-IN, = o, (1a)
t=1,...,M

(657 1aN, + Agpt711(ava/a¥R) - apet-l(avP/av}) - wst-ln, = o, (1b)
t=1,...,M ]

(65 1(1-a)Ny + Appt 11(avB/ack) - A pt 1(ava/ach) - ust-lyy, = o, (le)
t=1,...,M

(65 1(1-a)Ny + Apet 11(avB/aYD) - A ot 1(ava/aYD) + uet-ly, = 0, (14)
t=1,....M

When & > p, it follows from these conditions that as t increases, the
economy approaches the single periocd first best UPF for any values of A; and
Ap. Because of the distortions in early periods, the normalized UPF based on

average utilities is interior to the first best UPF.
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Theorem V: Consider (Pl) when 8§ > p and M = », Assume that the utility
functions satisfy the conditions that 1im(av3/3¢)/(3VP/ac) and
timb(ava/av)/(avb/av) are finite. Thegjowhen Ap = 0 and A, > O,

liﬁ MRSb(CE, YE) = 1. Since MRS®(C?, Y?) = 1, for all t, as t grows, the

g;:imum approachég the period-by-period Pareto frontier.

As the following example shows, the assumptions of this theorem can be
satisfied. With identical, additively separable utility functions (vi(el,yiy =
v(Ci)-y(¥i/w;)) and w, > wp,, (3V3/3C)/(3VP/3C) = 1 at all C. The maximum
income earned by the able exceeds that earned by the unable (K® > KP). Hence,
even if 3y/3L goes to infinity as L approaches its maximum value of Ki/wi,
since Kb/wa < K&/w,, then ay(Kb/wa)/aY and limb(ava/aY)/(EVb/aY) are finite.

Different discount rates cause the govzzﬁment and individuals of type A to
have different intertemporal preferences for income. The government places a
higher value on the future than do individuals. Therefore, trade between them
is possible. The government can offer type A individuals higher current
utility and lower future utility while doing the reverse for typé B (as
compared to the solution when & = p), while maintaining the self-selection
constraints. Doing this increases social welfare. To see this, note that from
equation (la) and (1b), 8V3/3C3 = -3V3/3Y3 = uN,/[aN, + A,(p/&)T71]. It
follows that the marginal utility of consumption rises over time indicating
that consumption declines. As t goes to infinity, aava/acg goes to . For
group B consumption, (1 - a)(avb/acg) =+ (Aa/Nb)(p/é)t'l(ava/BCE). Since
lim inf CE > 0, at least eventually avb/acE declines with CE rising. As t goes

to infinity, (1 - a)(avb/acg) goes to u. Thus, in the limit, the solution is
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not only Pareto optimal, but it is first best in the sense of being the same as

the solution to the one period problem without self-selection constraints.?

V. CONCLUSIONS

Qur results indicate that, when the government respects individual
discount rates, only in a weak sense does the optimal tax system incorporate
any information about individuals learned from their responses over time.
First, if the government is able to randomize in each period, then no benefit
is gained by keeping track of what individuals have earned in past periods. A
lottery can be offered in each period, independent of other periods, satisfying
self-selection constraints and yielding the best possible outcome. Second, if
the government cannot randomize directly, then it can duplicate randomization
by intertemporal nonstationarity. Such nonstationarity requires that the
government keep track of individuals' past behavior since, after the first
period, some individuals would like to choose different bundles than those
assigned to them. Third, the information on>past earning experience does not
vield systematic increases in the value of the government's objective functionm.
The time patte;n of tax schedules is not motivated by attempts to gather
information about abilities, but is designed to provide lifetime utilities
consistent with the self-selection constraints.“ Only the first period choice
by individuals is relevant information; after that, individuals are assigned a
single bundle in éach period.

By contrast, if the government discounts the future at a different rate
from individuals, then there is systematic change in thé buﬁdles given to
individuals over their lifetimes. In the limit, the distortions may be

eliminated. This arises because the different intertemporal preferences of the
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government and individuals leaves room for "trade" between them. Over time
the differences between the utilities of the groups grows larger.
i

These results show that nonstationarity over time and randomization within
each period can substitute for each other in the optimal intertemporal income
tax. It is not clear which approach is preferable since each has some
advantages.

First, they are not perfect substitutes. Even if the government has a
single intertemporal budget constraint, nonstationarity is guaranteed to do as
well as randomization only with an infinite horizon and a sufficiently large
discount factor. If the government has a separate budget constraint in each
period, the optimal randomization cannot be completely duplicated by
intertemporal variability, so that randomization along with nonstationarity
would be needed to reach this Pareto frontier.

Second, political and administrative difficulties could prevent
implementation of either method. On one hand, the government may be reluctant
to incorporate randomization explicitly in the tax code. This is especially
true since the optimal randomization requires individuals to declare their type
and then receive at random.a tax schedule before choosing their labor supplies.
The optimal randomization can generally not be implemented by random collection
or enforcement after labor supply decisions. On the other hand, intertemporal
nonstationarity requires keeping track of past incomes to determine »
individuals' current tax payments. However, this is simplified since the
government needs only to recall each individual's type as revealed by past
decisions.

Third, it is desirable that the system be fair, and to increase acceptance

of the tax system by society, it is desirable that the system be perceived as
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. fair. A standard notion of fairness is horizontal equity, that individuals in
the same circumstances be treated the same. Randomization satisfies
horizontal equity ex ante but not ex post. Before the random selection, all
individuals of the same type face the same lottery. After receiving a random
draw of tax functions, individuals of the same type will be induced to chocse
bundles which need not yield the same utility. Intertemporal nonstationarity
achieves horizontal equity both ex ante and ex post in each period.
Individuals of the same type are induced to choose the same bundles as each
other in every period even though the choice varies over time.

Fourth, both procedures induce differences in the bundles chosen by
individuals of a type either within a period in an expected sense under
randomization or over time under nonstaticnarity. With strictly concave
utility functions, individuals desire to reduce these differences. Under
randomization, individuals might gain by purchasing insurance counteracting the
randomness in the tax system. If such policies were forbidden, then similar
effects could be achieved by trades with other individuals of the same type.
For the same reason, under nonstationarity, individuals desire to smooth
consumption and leisure over time by saving or berrowing. Saving or insurance
serves to counteract the weakening of self-selection constraints which
motivated the asymmetry of bundles in the first place. The ability to save or
buy insurance will be a factor in the decision to reveal one's type truthfully.
The choice between nonstationarity or randomness may depend upon whether it is
easier to prevent saving or insurance. If these are desirable for other
reasons or cannot be prevented, then the simple repe;ition of the solution to
tﬂe nonrandom one-period problem may be the best feasible solution. However,

the opposite problem arises if only symmetric solutions are allowed when
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individuals have nonconvex opportunity sets. Individuals might randomize
consumption bundles to convexify budget sets, and to attain self-selection,
more distortionary taxation would have to be imposed. Prohibiting gambling

would, under these circumstances, be welfare increasing.
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Footnotes

Examples of papers exploring the role of randomization in adverse
selection and other problem include Weiss [1976], Stiglitz [1982],
Fellingham, Kwon and Newman [1984], Maskin and Riley [1984], and Arnott
and Stiglitz [forthcoming].

The utility functions defined over {C, Y} can be derived from the more

fundamental utility functions defined over goods and leisure.

For the one-period problem, Guesnerie and Seade [1982] derived some
results without global single crossing, but they assumed that MRS's were
not equal at the optimal bundles. We only assume that tangencies do not
lie on the no-tax budget line and show that the MRS's are not equal at an
optimum. They also imposed Inada-type conditions on preferences, which

we do not.

Let L1 be hours worked and w; the wage rate of group i. Then Lia Y/wy
and vi(c, Y) = u(c, Y/w;) where U is the common utility function over C
and L. If A is the more able group (w, > wy), then MRS3(C, Y) <

MRSP(C, Y) at each (C, Y), provided an additional assumption on U(C,L) is
satisfied. Note that MRSI(C,Y) = -[Up(C,L})/w;Uc(C,L1)]. If wy > wp, then
L2 < Lb, .The result holds if the direct effect of the higher wage is not
countered by the effects of a lower L on the MRS. Differentiating
-[UuL(C,Y/w) /wUc(C,¥/w)] with respect to w yields dMRS(C,Y)/dw = (Up/wU.)-
(L/wz)d(-UL/Uc)/dL. A sufficient condition for dMRS(C,Y)/dw < 0 is
d(-Up/Uc)/dL 2 0 which holds if C is not inferior. See Sadka [1976].

A local randomization scheme is one in which, even for only arbitrarily
small deviations from the deterministic solution, the value of social

welfare is increased.

This constrasts with Harris [1987]. If the government knows that half the
population are type A and half type B, it can "force" truthful revelation

in a Nash equilibrium by imposing heavy penalties on all individuals if
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more than half claim to be of a particular type. We find these Nash

equilibria unpersuasive.

Alternatively, the government faces a new cohort each period and is
constrained to use the same tax structure for all cohorts. Such a
framework gives rises to a single within period budget constraint when
redistribution across cohorts is possible. The independent problems in
each period are identical to the problem with a single intertemporal

constraint.

A self-selection constraint may hold with equality so that one of the
groups may be indifferent between the two bundles offered. The solution
requires that all individuals in the group choose the bundle aimed at
that group. This can be achieved by assuming that the government can
assign indifferent individuals to whichever group it desires. Given that
the government does not know to which group a particular individual
belongs, this is not a reasonable assumption. An alternative view is that
the solution is really an e-equilibrium. Although it cannot itself be
achieved, a bundle arbitrarily close to that solution can be found which
satisfies resource balance and which has the self-selection constraint
hold with strict inequality. If the self-selection constraints must hold
with strict inequality, then there may exist no solution to the

maximization problem.

If & < p, trade is still possible but tends to go in the opposite
direction. A characterization of this solution is more difficult because
the interior first order conditions may violate transversality

conditions.
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APPENDIX

PROOFS OF THEOREMS

PROOF OF THEOREM I: (i) Replace the lifetime consumption and income vectors or

lotteries by their mean values. Given concavity, the utilities of these mean
values repeated in each period is greater than the utility in the no-tax
situation. The violatién of budget balance then follows as in the prnofs in
the random one period problem. See Brito, et al. [1988b].

(ii)-(v) See Brito, et al [1988b}; Theorem II}. G.E.D.

PROOF OF THEOREM II: The proof requires the following lemma.

Lemma I: Consider an infinite sequence defined by (1 - ®)xtL,
t=1,...,». Consider three numbers 0j, My, M3 with Iy > 0 and
M +0; + 03 = 1. If 2/3 s x <1, then there exists a partition, ii‘ sf the
positive integers indexing the terms of the sequence such that

(1-x)t xtla=m, i=1,2,3.

tEIi

Proof: Construct the desired partition by the following procedure. Define
Q:, Q: and Q: as the sums of the terms in each partition using the first ¢
terms of the sequence. For r = 1, one of Qi = 1 - x and the rest are zero.
Let S, = Q: + Q: + Q: = ; (1 - x)xt"!. By summing, it follows that i - Se =

t=]
xt. If x 2 2/3 then for all r, (1 - xX)xt~l s Lyl 1/3(1 - Sp.y). That is,

the rth term is less than one-third the sum of the remaining terms including
itself. Thus, the rth term can always be put into at least one of the partial
sums without exceeding that Hi' Then for all r, the partitions can be formed
with I - Qi'l 20, i=1, 2, 3. As r goes to infinity, ; (1 ~ x)xt-1 goes

-
to one so that Q: + Q: + Q: goes to 1. It then follows c;ai Q] goes to My as

r goes to infinity. Q.E.D.
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Note that if x < 2/3, then there exist triples I, i =1, 2, 3, which cannot
be found as the sum of terms in a partition of the sequence (1 - x)xt,

t=®l,...,%, qu example, consider I} = [I; = I3 = 1/3, and x = 1/2.

Proof of Theorem: First, for any a, the random one-period solution can be
duplicated in (Py). For some j, k(j) = 1 with (cdl, ¥il) received by j with
certainty, while for i = j, k(j) S 3 can hold at an optimal solution. Hence,
there exist (Cih, vih) and Tih» B =1, 2, 3 in an optimal solution. Consider
(Pl) and multiply the objective function, the self-selection constraints, and
o

the budget constraint by the constant (1/ % pt'l) =1 - p. This leaves the
solution unchanged. From Lemma I, there ::la partition of the integers such
that % (1 - p)t'1 = T;n, h =1, 2, 3. Then assign (cih, ¥ih) to i in all
periogzlg € I, h=1, 2, 3, and assign (le, i1y to j in all periods. By
construction, this is feasible in (Pl) since it is feasible in the one period
problem.

Second, this solution is optimal in (Pl). If it were not optimal, then

there would exist a feasible lifetime bundle (Ci, Yi), i = a, b, such that

[aN, T pt7lva(ea, 93) + (1 - a)Ny T pt71vP(2R, )11 - o) >

t=l ta=l
3 - . L .
ag; £ T (ptD) (1 - p)vi(cih, YiR) + aiNgvi(cdl, vil) -
h=l tely .
3

i/~ih vih Semil wily s o ) ] )
asNy hilnih vi(cin, yiny + uijVJ(CJ , Y1), i =a, b, and j = i. Since
p < 1 and since V3(C3, Y?) and VP(CP, YP) have upper bounds given the bounds on

C3 and Y3, there would exist a finite T such that

T T
[aN, T ot lva(e2, 93) + (1 - AN, % ot lVBEER, &)1l - o) >
t=]1 . tal .
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3

agN; T mpvi(eih, yih) + agngvi(edl, vil). (A1)
h=l
3 -
Since T £ pt'l < 1/(1 - p), the inequality (Al) will still hold if the left
h=l tely T
hand side is multiplied by 1/[(1 - p) T pt1]. Similarly, for T large enough,

t=1
a self-selection constraint which held with inequality will still hold with

inequality while one that held with equality will be violated by, at most, an
arbitrarily small €. Similarly, resource balance will be violated by, at most,
an arbitrarily small e. If the self-selection constraint violated is

that for group i, then there exists a & > 0, such that substituting ?i =

Yi + &, for Yi, will have all constraints satisfied and still leave (A39)

satisfied. Then the lotteries ((Ci, Y%), m;,) and ((Cg, ?g), "jt) with wj, =

- T
Tie ® ;:\""1/?-‘4‘.1;:|""1 are feasible in the one period problem and yield a higher
value than the optimum, which is a contradiction.
This shows existence by construction of an optimal solution. Since the

solution duplicates that of the one period problem, the remainder of the

theorem follows immediately. Q.E.D.

PROOF OF THEOREM III: If the optimal solution in the one period problem is

nonrandom for both a and b, this can be duplicated in (Pl)' If this were not

the optimum, a better solution would have an analogous lottery which would be

feasible in the one period problem and have a higher value than the nonrandom

optimum, a contradiction. Hence, one period randomization is necessary for

multiperiod nonstationarity. When M is finite or & < 2/3, only a subset of the

probability simplex g ®ih = 1 can be achieved by intertemporal variation in
h=1

the optimal bundles. If the optimal lotteries in the one period problem

involve probabilities in the attainable subset, then the optimal solution can
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be duplicated. If not, but a local randomization does improve the
deterministic outcome, then, as shown in Brito, et al. [1988b], a local
randomization with any probabilities improves on thg deterministic solution.
Thus, randomization with probabilities from the attainable part of the simplex
will improve on the deterministic solution and these can be duplicated by
nonstationary solutions in (Pl). For 8 2 2/3, if a random one period optimum
exists, it will achie;e a strictly higher value of the objective function than
the nonrandom one period solution. For M sufficiently large but finite, a
nonstationary solution can come sufficiently close to the nonrandom solution to
improve on the best nonstationary solution. When some nonstationarity is
desirable, but the optimal random solution can not be duplicated, the outcome
on the normalized Pareto frontier will be interior to that in the one period

problem. Q.E.D.

PROOF OF THEOREM IV: A nonrandom one period solution is feasible to repeat in
every period in (P;). If there exists a different solution to (P3) which is
superior, then # feasible lottery exists which would improve on the one period
optimal solutiqn, a contradiction. Hence, randomization in the one period
problem is necessary for nonstationary in (P;).

The following example shows that nonstationarity is possible. Assume
that A, > 0 in the one period problem ;nd that vi(c,Y) = ¢(c) - v(¥/wy). If
Li= Y/wi, there exists a local randomization for any probabilities M) + 0I5 +

I3 = 1 around the nonrandom one period solution if

v ) v )

>
v 2msP(c®, 1) v Bemms®e®, v™))
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(see Corollary II of Brito et al. [1988b]). These conditions do not depend
upon y(C). Hence, randomization will arise for all functions y(C), including
$(C) = d4C, with individuals risk neutral over consumption. The random cne
period solution can be duplicated in (Py) if & 2 2/3 and M is infinite. 1In
each period, budget balance may not be satisfied. Define E, = N (C® - Y2) +
Nb(CE - YE) where A's bundles are constant over time. From overail budget
balance, I ét'lEt = 0. Substituting C? = C? - Et/N for C2 in each perlod.
ensures ;:iiod by periocd budget balance. Then I &t~ 1ca = Cca E s t-l . E
ét‘lEt/N ca p st-l, This change leaves th:-itlllty of bot;,i and B ;:im
A's bundle unch:;;ed since 2 d &t lCa =4 c2 2 8t°! and the sequence of Y3
was unchanged. Thus, withtlinear utility fo: ionsumption, the individuals in
group A are willing to engage in the borrowing or lending which had previcusly
been done with the rest of world. Alternatively, since in this example, the
B's were also risk neutral the consumption of the A's could have been
unchanged at C2 but the consumption of the B's could have been adjusted to
maintain budget balance. If the utility functions of the two groups differ but
A is still risk neutral, it might be necessary to have A's consumption be
nonstationary.. In this case, the normalized Pareto frontier in (P;) is the

same as that in (Py). 1In other cases, the need to have period by period

balance can reduce the utility levels in (P;) below those in (Py). Q.E.D.

Note that the example in the above proof with utility linear in
consumption can be generalized. If with linear utility the nonstationary
solution is strictly better than the stationary one, then a nonstationary

solution will still be better when p(C) has some curvature.
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PROOF OF THEOREM V : Given A, = 0, equations (la) and (1b) yield

MRS3(C, Y2) = 1, for all t. Divide equation (lc) by 8%71(3vP/3cR) and (1d)

by &t-1(avb/ayd).

(1 - )Ny - A (p/8)t"11(3va/acR)/ (aVP/aCR)T - N,/ (3VP/acR) = o, (A2a)
t=l,...,M

(1 - @)Np - A (p/8)E"1[(av3/3YR)/(aVP/3YR)] - uNy/(avP/aYR) = o, (A2b)
t=1,...,M

Since 3vi/aC is finite for C > 0 and 1im(3V3/5C)/(aVP/C) is finite,
C»0
lim sup(p/6)t~1[(3v3/acR)/(3v3/CR)] = 0. Hence, should lim sup(3VP/3C) = =
T toe
then after some £’ the left hand side of (A2a) would be strictly positive

violating the first order condition. Thus, no Cg sequence goes to zero,

guaranteeing that lim inf CE > 0. Similarly, from (A2b), lim sup YE < kb.

Tt

Therefore, lim sup(p/&)t~ 1(avb/acb) = 11m sup (p/8)t" 1 (BVb/BYb) = Q.
Given this, divide (lec) and (1d) by ét 1 and solve for MRSb(C s Yg) =

-(avb/ayR)/ (avP/ach).

t-1 b
by . N, - A (p/8)5T(aVA/aY)
t

MRSb(C:, Y (A3)

t-1 a b
uN + Aa(p/é) (8V /act)

then lim MRSP(CP, YD) = 1. Q.E.D.

Lbee
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