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ABSTRACT

This paper examines the impact of rising U.S.-China geopolitical tensions on three main 
dimensions of science: STEM trainee mobility between these countries, usage of scientific works 
between scientists in each country, and scientist productivity in each country. We examine each 
dimension from a “U.S.” perspective and from a “China” perspective in an effort to provide 
evidence around the asymmetric effects of isolationism and geopolitical tension on science. Using 
a differences-in-differences approach in tandem with CV and publication data, we find that 
between 2016 and 2019 ethnically Chinese graduate students became 16% less likely to attend a 
U.S.-based Ph.D. program, and that those that did became 4% less likely to stay in the U.S. after
graduation. In both instances, these students became more likely to move to a non-U.S.
anglophone country instead. Second, we document a sharp decline in Chinese usage of U.S.
science as measured by citations, but no such decline in the propensity of U.S. scientists to cite
Chinese research. Third, we find that while a decline in Chinese usage of U.S. science does not
appear to affect the average productivity of China-based researchers as measured by publications,
heightened anti-Chinese sentiment in the U.S. appears to reduce the productivity of ethnically
Chinese scientists in the U.S. by 2-6%. Our results do not suggest any clear “winner,” but instead
indicate that increasing isolationism and geopolitical tension lead to reduced talent and
knowledge flows between the U.S. and China, which are likely to be particularly damaging to
international science. The effects on productivity are still small but are likely to only grow as
nationalistic and isolationist policies also escalate. The results as a whole strongly suggest the
presence of a “chilling effect” for ethnically Chinese scholars in the U.S., affecting both the
U.S.’s ability to attract and retain talent as well as the productivity of its ethnically Chinese
scientists.
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1 Introduction

Over the past few decades, the production of science has become increasingly geograph-
ically distributed and interconnected. Graduate students in countries like the U.S., the
U.K., and Canada are increasingly born abroad (Bound, Turner and Walsh, 2009; Free-
man, 2013) and scientists are a notably mobile group (Franzoni, Scellato and Stephan,
2012). For instance, the percentage of science and engineering Ph.D. degrees granted by
U.S. universities earned by foreign-born individuals has nearly doubled since the 1980s,
now accounting for 39% of all science and engineering Ph.D. graduates coming out of the
United States (NSF NCSES). The diffusion of knowledge and ideas has correspondingly
become more international, in large part driven by diaspora networks (Kerr, 2008; Oettl
and Agrawal, 2008; Miguelez, 2018), while publications with authors from multiple coun-
tries now account for 23% of global publications and 40% of U.S.-based publications (NSF
NCSES). Furthermore, there is growing evidence that international collaboration and tal-
ent flows lead to higher-impact science (e.g. Hsiehchen, Espinoza and Hsieh, 2015; Free-
man and Huang, 2015) while access to frontier knowledge–regardless of its geographic
location–is critical for scientific progress (Iaria, Schwarz and Waldinger, 2018).

As science becomes more international, however, it becomes more susceptible to in-
ternational conflicts and geopolitical tensions. As we know from history, international
conflict can deeply negatively impact science. World War I, for instance, led to a reduc-
tion in international knowledge flows, reduced international scientific cooperation, and
a decline in the productivity of scientists who relied on frontier knowledge from abroad
(Iaria, Schwarz and Waldinger, 2018). The expulsion of professors from Germany in the
years leading up to World War II changed the trajectory of U.S. science (Moser, Voena
and Waldinger, 2014) and damaged German Ph.D. student outcomes (Waldinger, 2010).
More recently, the Russian invasion of Ukraine has led to a decline in Ukrainian scientist
productivity and has hindered the exchange of scientific knowledge and ideas (Ganguli
and Waldinger, 2023).

But broad geopolitical tensions may be different from outright war in the ways in
which science is affected. Unlike with warfare, in the presence of geopolitical tension, sci-
entists are not typically forcibly expelled or killed, physical capital is not typically dam-
aged, and cross-border collaborations are often still permitted. Instead, any changes are
likely to be driven by a mix of explicit government policy that targets particular foreign
groups, where it exists, and nationalist or targeted anti-foreign sentiment. The degree to
which such sentiment may affect the production of science–and whether there are impor-
tant asymmetries in terms of how seriously science in different countries is affected–is
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not well understood. One might expect that negative sentiment towards foreigners from
a particular geopolitical “enemy” could influence whether those individuals are still in-
terested in staying or moving to the country, or whether they’d rather go to a country
without such negative sentiment towards them. Such changes in mobility might be most
pronounced among the young trainee scientists that make up the largest flow of scien-
tific talent, both when locating to their doctoral program and in choosing their first post-
doctoral job. Relatedly, any changes in mobility flows, communication, or collaboration
due to increased hostility are likely to also influence the degree to which knowledge can
flow between countries. Finally, scientist productivity is likely to be affected, both if nega-
tive sentiment reduces available funding and collaboration opportunities or creates a hos-
tile environment in which it is difficult to be productive, and if there is disruption in cross-
border knowledge diffusion and information transfer. In short, geopolitical tensions–both
those stoked by explicit policies and those stoked by growing negative sentiment–might
influence mobility and retention of trainee scientists, the scientific works that scientists
are exposed to and can build on, and their resultant productivity.

In recent years, one particular source of geopolitical tension–that between the U.S. and
China–has received particularly close attention. In this paper, we examine the impact of
the rising geopolitical tensions between the two countries on three dimensions of science–
trainee mobility and retention, cross-border knowledge flows, and scientist productivity–
using a difference-in-differences style empirical design. Importantly, we examine each
dimension from both a “U.S.” perspective and from a “China” perspective. Many of the
policies tied up in the rise of tensions between the U.S. and China, as will be described in
more detail later, were driven by an inherently nationalistic motivation to reduce reliance
on the other country and, in the process, to strengthen each country’s scientific capabil-
ities. Our goal in examining the impact on each country is to begin to identify whether
each country “won” or “lost” in the years since 2016, providing some evidence around
the asymmetric effects on science of isolationism and geopolitical tensions.

To quantify the impact of U.S.-China tensions on these three dimensions, we rely on
rich data from a collection of publicly posted CVs on ORCID (Open Research and Con-
tributor ID), a website where academics can create and share a digital CV, allowing us to
track the employment and education history of researchers. Critically, these data allow
us to examine mobility for scientists at early stages of their career, even before they have
produced any publications. In addition, we utilize bibliometric data from Dimensions,
a database of the metadata from scientific publications, enabling us to track knowledge
flows using citation data and changes in scientists’ publication productivity over time.
In all analyses, we focus on STEM research and trainees given the particular focus of the
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American and Chinese governments on STEM.
Understanding the impact of U.S.-China tensions on science is particularly important

given that the relationship between the U.S. and China, until recently, was arguably one
of the most important scientific relationships in the world. About a third of visa holders
enrolled in U.S. Science and Engineering Ph.D. programs are from China (NSF NCSES)
while a quarter of U.S.-based Science and Engineering publications have at least one au-
thor based in China (NSF NCSES). But around 2016, that relationship began to come un-
done, as we document in more detail in Section 2. In particular, statements by individuals
associated with the Trump campaign, formal policies enacted by the Trump administra-
tion, and legal investigations into ethnically Chinese scientists significantly impacted eth-
nically Chinese scientists in the U.S. A 2021 survey found that 50.7% of Chinese scientists
(as defined by ethnicity, regardless of citizenship)–as compared to 11.7% of non-Chinese
scientists–reported considerable fear of U.S. government surveillance, which had both af-
fected their plans to stay in the U.S. and their willingness to work with scientists in China
(Lee and Li, 2021). At the same time, anti-Chinese sentiment among U.S. adults ticked
up from around 55% in 2015 to 66% in 2020 according to the Pew Research Center. In
our analysis, we study the impact of this shift in policy and sentiment. We consider the
“treatment” to begin in 2016, but we are careful to include dynamic treatment effects to
account for the fact that tensions gradually escalated over several years, rather than the
treatment being encapsulated in one discrete policy change.

It is important to recognize that the escalation of tensions between the U.S. and China
was not solely instigated by the United States. From the outset, the Xi administration
adopted a markedly nationalist stance.1 In turn, many of the U.S. policies emerged as
countermeasures to China’s practices of forced technology transfers and corporate espi-
onage. However, these measures by the Chinese government were not overtly aimed at
the U.S. until recently. Consequently, it appears that the fundamental shift in dynamics
primarily stems from changes in U.S. policy.

We employ a difference-in-differences empirical design to quantify the impact of these
growing U.S.-China tensions on trainee mobility and retention, knowledge flows, and
scientist productivity. Such an approach is critical given the concurrent development of
Chinese science during this period. Simply estimating the correlation between U.S.-China
geopolitical tensions and, for example, the propensity of Chinese students to study or
work in the U.S., could lead to bias; as Chinese science continues to advance, prospective
Chinese Ph.D. students may become more likely to stay in or return to China. Hence, for

1Made in China 2025, a national strategic plan and industrial policy that aims to achieve independence
from foreign suppliers is one of the clearest examples of this policy shift.
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each major component of our analysis, we are careful to both select an appropriate control
group and to show an event-study plot to examine whether there is a clear trend break
around 2016.

Our results and analysis are presented in three sections. In the first part of the article,
we focus on trainee mobility and retention. Specifically, we examine whether ethnically
Chinese prospective graduate students enroll less in U.S.-based graduate programs (mo-
bility) and then whether they are less likely to stay in the U.S. after graduation if they do
attend a U.S.-based graduate program (retention). Here, our treatment group is ethnically
Chinese trainees and our control group is non-ethnically Chinese trainees. The choice to
focus on ethnically vs. non-ethnically Chinese individuals allows for explicit examina-
tion of the effect of anti-Chinese sentiment–as opposed to particular policy changes–on
trainee mobility and retention; none of the policies during our time-frame explicitly ban
ethnically Chinese trainee scientists. We show that ethnically Chinese graduate students
became both less likely (16%) to attend a U.S.-based graduate program and, if they did
attend a U.S.-based graduate program, 4% less likely to stay in the U.S. after graduation.
In both instances, these students become more likely to move to a non-US anglophone
country instead. The results extend to ethnically Chinese students who are not actually
from China, suggesting that an important mechanism is a chilling effect resulting from
the anti-Chinese sentiment in the U.S.

In the second part of the article, we examine the impact of growing U.S.-China geopo-
litical tensions on cross-border knowledge flows in both directions. Specifically, we ex-
amine whether Chinese scientists become less likely to use scientific research produced
by U.S. authors and whether U.S. scientists become less likely to use scientific research
produced by Chinese authors. In both cases, the U.K. is the control group.2 We document
a sharp decline in Chinese reliance on U.S. science as measured by citations. Specifically,
among Chinese publications, the share of references citing U.S. research declined by about
4-6% after 2016. The impact is more striking for the share of citations to recently published
articles, where the share of citations on Chinese publications to U.S. publications declined
by 10-12%. However, the decline in cross-border knowledge flows appears to be asym-
metric; we see no such decline in the propensity of U.S. scientists to cite Chinese research.

Finally, in the third part of the article, we study the effect on scientist productivity
in China and in the U.S. On the China side, we compare the publication counts of “U.S.-
reliant” China-based scientists to matched “U.K.-reliant” China-based scientists before
and after 2016. Here, we expect China-based scientists that had predominantly built on
U.S. scientific work to be the most impacted by growing tensions, given our knowledge

2We describe in more detail the choice of the U.K. as a control group in Section 4.
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flows results. Surprisingly, however, we find no statistically significant decrease in the
amount of scientific output of previously “U.S.-reliant” China-based scientists relative to
those who had heavily utilized U.K. science. On the U.S. side, we compare publication
counts of ethnically Chinese, U.S.-based scientists to matched non-ethnically Chinese,
U.S.-based scientists before and after 2016. The choice to compare ethnically Chinese to
non-ethnically Chinese scientists reflects the view that ethnically Chinese scientists in the
U.S. are particularly deeply impacted by the growing U.S.-China tensions. In particular,
the United States Department of Justice’s (DOJ) investigations into ethnically Chinese
scientists during the China Initiative and general anti-Chinese sentiment in the U.S. may
have impacted the ability of these scientists to continue to be productive. Indeed, we find
that the scientific productivity for ethnically Chinese U.S.-based researchers declined by
2-6% relative to the matched non-ethnically Chinese researchers after 2016, suggesting a
chilling effect in the U.S.

Our paper builds on existing work on the effect of the China Initiative, an important
policy launched in 2018. Specifically, Aghion et al. (2023) and Jia et al. (2022) examine the
effect of the China Initiative on the productivity of researchers in China and in the U.S. re-
spectively, with particular emphasis on the mechanism of cross-border collaboration. We
contribute to–and differ from–this work in four ways. First, while the aforementioned
papers focus on one-sided productivity effects (China alone and the U.S. alone respec-
tively), we explore two-sided effects (the U.S. side and the China side), allowing some
evaluation of asymmetries in the ways in which each country’s scientific communities
are impacted. Second, while we also examine the impact on scientist productivity, we
explore different mechanisms: the channels of reduced knowledge flows and of being
ethnically Chinese. Third, we also consider the impact on two other key dimensions of
science beyond productivity: mobility and knowledge diffusion. Hence, while the em-
phasis of these earlier papers was on cross-border collaboration, this paper focuses on
cross-border human capital and knowledge flows. And fourth, we go beyond the evalu-
ation of the China Initiative to explore the effect of tensions more generally. Our results
suggest that a chilling effect on science actually began before the China Initiative formally
started, indicating that geopolitical tensions in the absence of formal targeted programs
can impact science.

More generally, this paper is related to the broader literature on the effect of war, con-
flict, and geopolitics on science. We know that major geopolitical events can disrupt inter-
national knowledge flows and reduce scientific productivity, as in the case of World War
I (Iaria, Schwarz and Waldinger, 2018) or the collapse of the Soviet Union (Abramitzky
and Sin, 2014). But what is less clear, and which our results shed light on, is whether
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general hostility at a scale much lower than either of those events is also likely to have
an impact. Our results suggest that it is not just major geopolitical events like war that
can disrupt international science; growing nationalist and anti-foreign sentiment can also
have a significant impact.

With regard to mobility, prior work has shown that war and conflict cause large em-
igration flows of academics for instance during World War II (Waldinger, 2012; Becker
et al., 2021), after the collapse of the Soviet Union (Borjas and Doran, 2012; Ganguli,
2017), and more recently during Russia’s invasion of Ukraine (Ganguli and Waldinger,
2023). Our results build on this literature by showing, as referenced above, that even
geopolitical tensions at a much lower level than the formal expulsion of academics or
violent warfare can lead to a significant shift in scientist mobility. In addition, while exist-
ing work has shown that these types of tensions can result in scientist exit, ours indicates
that it can also result in fewer immigrant scientists in the focal countries more generally.
Given the large literature linking immigrants to innovation (Bernstein et al., 2022; Hunt
and Gauthier-Loiselle, 2010; Moser and San, 2020) and the evidence indicating disastrous
long-run effects on universities in the sending countries (Waldinger, 2016) and positive
ones on universities and science in the receiving countries (Agrawal, McHale and Oettl,
2017), a shift in where scientists migrate to has major implications for the global geogra-
phy of science.

Our findings also have significant policy implications. The U.S. and China are cur-
rently discussing whether to renew the 45-year-old U.S.-China Science and Technology
Cooperation Agreement, which has fostered the close scientific relationship between the
two countries since 1979. Our results suggest that further deterioration of this relationship
would lead to a loss of young Chinese talent on the U.S. side, reduced access to frontier
knowledge on the Chinese side, and a hit to scientific productivity. More generally, as
isolationism and geopolitical tensions beyond these two countries continue to increase
around the world, our results provide a compass regarding expected broader effects on
talent and knowledge flows.

2 Empirical Context
Our study focuses on the years around a significant negative shift in U.S.-China rela-
tions. Formal scientific cooperation between the two nations has existed since 1979, when
Jimmy Carter and Deng Xiaoping signed the U.S.-China Science and Technology Coop-
eration Agreement. Today, each country is the other’s largest scientific research partner,
and three million students from China have studied in the United States (USCET, 2023).
However, starting around 2015-2016, the relationship began to deteriorate.
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First, the Trump presidential campaign in 2015 and 2016 focused heavily on anti-
Chinese sentiment. Indeed, Donald Trump’s book Great Again: How to Fix Our Crippled
America, which outlined his political agenda, included quotes such as “there are people
who wish I wouldn’t refer to China as our enemy. But that’s exactly what they are. They
have destroyed entire industries...cost us tens of thousands of jobs, spied on our busi-
nesses, stolen our technology, and have manipulated and devalued their currency.” The
Trump administration ushered in a transformation in U.S. policy towards China, built on
the view that China’s rise came at the expense of the United States.

Second, formal policies enacted by the Trump administration increased political and
economic tensions between the two countries. In 2018, the Trump administration began
setting tariffs on Chinese goods with the goal of reducing the U.S.-China trade deficit and
reducing Chinese intellectual property (IP) theft and technology transfer. In response,
the Chinese government took retaliatory action, accusing the Trump administration of
nationalist protectionism in violation of World Trade Organization (WTO) rules. Tit-for-
tat retaliatory measures continued until January 2020 although the tariffs continue to be
in place. Although the U.S.-China Trade War was not focused on science explicitly, it
amplified economic tensions and negative sentiment more generally and was at least in
part a response to the concern that China was stealing American IP.

Finally, and perhaps most relevant to this paper, legal investigations by the FBI and
the U.S. DOJ into Chinese and Chinese-American scientists under suspicion of IP theft
on behalf of the Chinese government began to take off during this time frame as well.
In 2015, for example, seven Chinese and Chinese-American scholars were arrested under
suspicion of espionage on behalf of the Chinese government, most notably Xiaoxing Xi,
a prominent physicist at Temple University who was later found to be innocent.3 Start-
ing in 2018, DOJ prosecution of perceived Chinese spies in U.S. research was formalized
into a policy known as the “The China Initiative”. As the FBI Director stated about the
program, “the Chinese government doesn’t play by the same rules of academic integrity
and freedom that the U.S. does. We know they use some Chinese students in the U.S. as
non-traditional collectors of our intellectual property. We know that through their ‘Thou-
sand Talents Plan’ and similar programs, they try to entice scientists at our universities to
bring their knowledge to China.” Under the initiative, the DOJ brought charges against
162 defendants according to the MIT Technology Review4, but after significant criticism
that the program used racial profiling and was biased against researchers of Chinese de-

3For more detail, see https://www.nytimes.com/2015/05/20/technology/6-chinese-men-indicted-
in-theft-of-code-from-us-tech-companies.html and https://www.science.org/content/article/chinese-
american-physicist-pleads-not-guilty-technology-theft

4https://www.technologyreview.com/2021/12/02/1040656/china-initative-us-justice-department/
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scent, it was shut down in 2022. In addition, the FBI barred some Chinese scholars from
entering the U.S. altogether5 and revoked some Chinese student visas.6 These actions
heightened fears about either being a Chinese scientist working in the U.S. or being an
American scientist collaborating with Chinese colleagues.

Consistent with this series of events, anti-Chinese sentiment in the U.S. increased sub-
stantially starting around 2016 and climbed through the subsequent years. According to
the Pew Research Center, anti-Chinese sentiment ticked up from around 55% in 2015 to
66% in 2020 as shown in Figure 1 below.

The changing policy environment and sentiment had a particularly striking impact on
the experience of ethnically Chinese scientists working in the U.S. A 2021 survey found
that 50.7% of Chinese scientists (as defined by ethnicity, regardless of citizenship)–as com-
pared to 11.7% of non-Chinese scientists–reported considerable fear of U.S. government
surveillance, which had both affected their plans to stay in the U.S. and their willingness
to work with scientists in China (Lee and Li, 2021). A survey of U.S.-based scientists of
Chinese descent found that 72% “do not feel safe as an academic researcher”; 42% are
“fearful of conducting research”; and 61% have thought about leaving the United States
(Xie et al., 2023). In yet another survey, this one focused on the career plans of Chi-
nese graduate students, the authors found that 34.8% of Chinese students (compared to
17.6% for non-Chinese students) had “experienced professional challenges as a result of
race/nationality/country of origin” (Houlette, Lee and Li, 2023). Faculty protests against
investigations of Chinese scholars cited concerns regarding a growing “chilling effect” on
academic research by creating a hostile environment for Chinese and Chinese-American
researchers in the U.S.7

Importantly, these changes have not been entirely one-sided. Many of the U.S. poli-
cies were a response to, for example, forced technology transfer in China and significant
corporate espionage by China in the United States.8 The Chinese government has also im-
plemented a wide range of nationalist policies intended to improve self-reliance. For ex-
ample, the Thousand Talents Program, which began to develop in the early 2000s, and the
Junior Thousand Talents Program, implemented in 2013, have long aimed to encourage
Chinese (senior and junior, respectively) academics to return to China from abroad. As a
more recent example, in March 2020, China’s government changed its incentive scheme
for academics in China to no longer encourage publication in international journals. But

5https://www.nytimes.com/2019/04/14/world/asia/china-academics-fbi-visa-bans.html
6https://www.nytimes.com/2018/07/25/us/politics/visa-restrictions-chinese-students.html
7See, for example, letters by faculty at Stanford, Yale, University of Pennsylvania, and Princeton.
8See for example https://www.nytimes.com/2017/08/01/business/trump-china-trade-intellectual-
property-section-301.html
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these policies have typically not targeted the U.S. explicitly in the same way until recently,
and they have been of a more gradual nature. As a result, we view the primary change
in treatment, and the significant increase in geopolitical tensions, to be originating on the
U.S. side.

In our analysis, we study the impact of the growing U.S.-China tensions and growing
anti-Chinese sentiment in the U.S. that we describe above on STEM science and scientists.
As is apparent from the description in this section, there was no singular discrete change,
and so while we consider the policy “treatment” to begin in 2016, we are careful to include
dynamic treatment effects to account for the fact that tensions gradually escalated over
several years.

3 Data
Our analysis investigates how the rise of U.S.-China tensions starting in 2016 impacted
STEM trainee mobility (graduate student enrollment and retention), usage of scientific
works, and scientific productivity in STEM fields. For the first two outcomes, we utilize
data from curriculum vitae (CVs) posted on Open Research and Contributor ID (OR-
CID), a website where academics can publicly post their CV in a standardized format.
For the latter two outcomes, we utilize datasets constructed from data about scientific
publications listed in Dimensions, a database with metadata about the near-universe of
scientific works published in academic journals. From those two raw data sources (CV
data and Publications data), we construct six datasets for our analysis. Figure 3 provides
an overview of these constructed datasets while Table 1 provides summary statistics for
each. Details about their construction is provided below.

3.1 CV Data

We construct two datasets from the curriculum vitaes (CVs) available on ORCID. Each
CV in ORCID includes an individual’s name as well as their self-reported educational
background and employment history.

Utilizing the information on these CVs, we constructed additional variables for our
analysis. We marked if and when the individual enrolled in a degree program, if this pro-
gram was in the U.S., if this program was at the doctoral level, and whether the individual
held a job in the U.S. immediately after studying at a U.S. institution. In addition, we as-
signed them an academic field based on their department affiliation and inferred based
on their name if they were of Chinese ethnicity. Details of the procedures for determining
field and inferring ethnicity are provided in Appendix A.4.

The ORCID website contains over 14 million CVs. We collected the publicly available
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CVs posted on the site as of 2022. We restricted to individuals reporting complete educa-
tional backgrounds, which amounts to 1.8 million CVs. We further restrict to those who
graduated from STEM programs, a total of 836,495 CVs.9

We call the set of individuals who entered doctoral programs between 2008 and 2019
the Doctoral Student dataset. Additionally, we require these individuals to have listed at
least one prior degree pursued before doctoral study10. This dataset includes 128,928
individuals, 16% of whom are ethnically Chinese.

We call the set of individuals who take jobs after graduating from U.S. institutions
between 2008 and 2019 the U.S. Graduates dataset. We further require these individuals to
have received their U.S. degree less than three years before starting their job. That dataset
contains information about 50,890 individuals, 18% of whom are ethnically Chinese.

Tables 1a and 1b present simple descriptions of these data. We use these two datasets
to track the enrollment of new students into doctoral programs as well as the jobs taken
by graduates of U.S. institutions.

The Doctoral Student and U.S. Graduates datasets represent a selected subset of all
doctoral students and graduates from these countries and time period. As individuals
need to actively sign up to use the ORCID service and fill out a digital CV on the site, the
individuals represented in our Doctoral Student and U.S. Graduates datasets are likely to
be those who are particularly research active rather than a truly representative sample.
Appendix Table A3 makes this clear by comparing the number of publications as well
as the probability of having grant funding on publications for authors with ORCID iDs
versus those without. As shown in that table, authors with ORCID iDs generally perform
stronger on a variety of research measures, including producing publications and earning
grants. While our sample is not representative of all doctoral students and graduates, for
our analysis we are most interested in the individuals who are most likely to contribute
to future science. Therefore, focusing on this group of students and graduates is useful
for this purpose.

Given the importance of ethnically Chinese scientists in this paper, we might be con-
cerned that ORCID users who are ethnically Chinese differ from those who are not eth-
nically Chinese, and specifically, that they might have noticeably different research out-
comes prior to the onset of rising tensions in 2016. Appendix Table A3 shows the mean
attributes of these two groups. Reassuringly, while ethnically Chinese researchers also

9The following 11 fields are considered STEM: Agriculture, Biological Sciences, Biomedical and Clinical
Sciences, Chemical Sciences, Earth Sciences, Engineering, Environmental Sciences, Health Sciences, In-
formation and Computing Sciences, Mathematical Sciences, and Physical Sciences (Australian Bureau of
Statistics, 2020; Porter, Hawizy and Hook, 2023)

10As we will show later, this is important for being able to infer nationality.
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appear to achieve stronger research outcomes, we do not observe interactions between
ORCID self-selection and being ethnically Chinese.

3.2 Publications Data

We construct three datasets using the bibliometric information about published scientific
works available in Dimensions.11 For each publication in their database, Dimensions
provides the names of the authors, the journal of the publication, the scientific field of the
publication, the year the article was published, the addresses of the authors, and the list
of articles referenced in the citations and bibliography. In addition, Dimensions provides
algorithmically disambiguated author identifiers enabling the tracking of authors across
publications.

As of 2023, the Dimensions data contains over 140 million publications and 1.8 billion
citations in the bibliographies of those publications. Of those articles, we focus on the 51
million published between 2008 and 2019.

For each publication, we construct additional variables based on the publication’s
metadata. We create a flag for if all of the authors have affiliation addresses in China,
the U.S., or the U.K. We refer to these publications as being written by Chinese, U.S.,
or U.K. research teams respectively. For each author on each publication, we also flag
if that author’s modal affiliation address country between 2008-2012 was either China
or the U.S. If the modal country for an author during that time was China, we call the
researcher “China-based.” We similarly define “U.S.-based” researchers.

Using this data, we create three datasets. First, for analyzing if China-based scien-
tists changed their usage of U.S.-produced scientific works, we create a dataset which we
call the Publication-Citation Shares dataset. Following the methodology of Iaria, Schwarz
and Waldinger (2018), for each research article in Dimensions, we create two observa-
tions. The first observation contains measures of how much the focal publication relies
on scientific works produced by research in the U.S., and the second observation con-
tains measures of how much the focal publication relies on scientific works produced by
research in the U.K. Articles that do not cite any previous works are removed. Further,
we focus only on the observations produced from the references of STEM articles writ-
ten by China-based research teams between 2011 and 2019. This amounts to 4,285,470
observations from 2,142,735 publications.

We compute multiple measures of the usage of science from these countries: raw, re-
cent, frontier, and recent frontier. We calculate the share of the publication’s total citations

11Dimensions is similar to other bibliometric databases, such as Web of Science and Scopus, but has been
shown to have a wider coverage of scientific journals represented in their data (Singh et al., 2021).
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that reference articles produced in the U.S. and the U.K. (“raw”). We also calculate the
share of the publication’s citations to recent works, defined as papers from the preced-
ing five years, to research from each country (“recent”). Finally, we recalculate each of
these measures using only citations to frontier research (“frontier” and “recent frontier”
respectively). We follow Iaria, Schwarz and Waldinger (2018) in defining the frontier as
research ending up in the top percentile of its field’s citation distribution. This reflects the
relative importance of these papers among works closer to the scientific frontier. More
details on how we construct these usage measures are provided in Appendix A.2.

Second, for examining if U.S.-China tensions impacted the usage of Chinese science
by U.S.-based researchers, we create a dataset which we call the U.S.-U.K. Publications
dataset. This dataset contains STEM papers published by U.S. and U.K. research teams
between 2011 and 2019. For each publication, we again compute multiple measures of the
usage of science (raw, recent, frontier, and recent frontier) but in reverse: measuring that
of Chinese science among U.S. and U.K. publications.12 This dataset includes 2,847,700
publication observations and enables us to track how researchers in the U.S. and U.K.
changed their usage of Chinese-produced scientific knowledge.13

Finally, for examining if U.S.-China tensions have impacted the productivity of Chi-
nese and U.S. scientists, we create a panel dataset which we call the Researcher Panel. The
observations in this dataset are created by constructing a strongly balanced panel of the
authors listed on publications in the Dimensions data in the years between 2008 and
2019.14 For each researcher-year observation, we include the number of publications by
that author in that year, as well as quality-adjusted measures, such as the number of pub-
lications weighted by the impact factor of the journal that those papers were published
in.

When analyzing the effect of the rising U.S.-China tensions on the productivity of
China-based researchers, we use a sub-sample of the Researcher Panel. Specifically, to ex-
amine the researchers who heavily utilize foreign sciences, we filter the Researcher Panel
to China-based STEM researchers15 who published five or more publications between
2008 and 2012 as well as at least one publication between 2013 and 2019.

When analyzing the effect of the rising U.S.-China tensions on the productivity of U.S.
researchers, we again filter the Researcher Panel to a subset of interest. Specifically, we

12We define a publication as being produced in China according to the publication’s correspondence author.
See Appendix A.2 for details.

13Unlike the Publication-Citation Shares dataset, the U.S.-U.K. Publications dataset is not disaggregated.
This is because we are interested in citations to only one country–China–among these publications.

14Our analysis focuses on the 2013-2019 period. We use the years 2008-2012 for computing metrics, such as
how active researchers were and where they were located.

15Fields are defined by the modal field of their publications.
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filter the Researcher Panel to U.S.-based STEM researchers who published at least one
publication between 2013 and 2019.

For both panels of China-based STEM researchers and U.S.-based STEM researchers,
we apply the Coarsened Exact Matching (CEM) method (Iacus, King and Porro, 2012) re-
spectively to match on pre-analysis observables, as will be described in more detail later,
to ensure that the treatment and control researchers are comparable groups. After the
CEM procedure, the final China-based STEM researcher panel includes 12,073 unique in-
dividuals with 76,605 researcher-year observations. The final U.S.-based STEM researcher
panel includes 231,296 unique individuals with 853,087 researcher-year observations.

Table 1, Panels C-E present basic summary statistics of these data. More detailed
summary statistics for all five datasets can be found in Appendix A. Appendix A6 and
Appendix A8 reports the balance between the treated and control group after the CEM
procedure.

4 Analysis and Results

Leveraging the datasets described above, we analyze the effect of the rising U.S.-China
tensions starting in 2016 on STEM trainee mobility (doctoral student enrollment and U.S.
graduate retention), usage of scientific works, and scientific productivity in STEM fields in
the subsequent years. For each outcome, we utilize a difference-in-differences framework
for computing the effect. The advantage of this empirical approach is that it allows us
to isolate the treatment effect from other contemporaneous changes, such as changes in
the appeal of U.S. doctoral programs, the rise in both quantity and quality of Chinese
science, and factors impacting the productivity of scientists. In addition to the difference-
in-differences estimates, for each analysis, we also estimate and plot event-study models.
These models are useful for both assessing the validity of the difference-in-differences
parallel trends assumption and for tracing the potentially dynamic nature of the treatment
effect. For each outcome, we specify the difference-in-differences model to compare a
group likely to have been impacted by the rise in tensions (treated group) with a group
that was unlikely to have been unaffected, but whose trend in outcome could plausibly
serve as a counterfactual (control group).

In the following sections, we explain our approach to analyzing each outcome in de-
tail. A summary of these approaches can also be found in Table 2.
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4.1 STEM Trainee Mobility

4.1.1 Enrollment in U.S. Doctoral Programs

Foreign doctoral students enable and enhance the scientific work done by U.S. universi-
ties (Black and Stephan, 2010). Indeed, one of the U.S.’s great advantages in attracting top
global STEM talent is derived from its strong higher education system.16

Attracting these talented trainees–and retaining them post-graduation–has long been
seen as economically and competitively important for the U.S. to retain its edge in scien-
tific research. But the U.S.-China tensions described in Section 2 suggest that the U.S. may
have become a less attractive destination for Chinese STEM trainees.

Therefore, we begin by examining how growing U.S.-China tensions starting in 2016
affected the enrollment of ethnically Chinese students in doctoral programs at U.S. uni-
versities relative to their non-ethnically Chinese counterparts. Specifically, we estimate
the following difference-in-differences model using observations from the Doctoral Stu-
dent dataset:

Yi = β1Treati + β2Postt(i) + β3(Treat∗i Postt(i)) + γXit + ϵi (1)

In this equation, i is a doctoral student and t(i) is the year that student began their doc-
toral studies. The outcome of interest is Yi, which is an indicator for if the student enrolled
in a U.S. doctoral program. The treatment group for this analysis are students who are
ethnically Chinese, and the control group are students who are not ethnically Chinese.
Postt(i) is defined as an indicator for if the student began their doctoral studies in 2016
or later. Xit contains fixed effects for the year, the scientific field of a student’s doctoral
studies, and the country where the student received their prior academic degree. The
parameter of interest from this equation is β3, which is the effect of the rising U.S.-China
tensions on enrollment in U.S. programs.

This approach overcomes many of the obvious empirical challenges that would arise
if one simply compared doctoral enrollment at U.S. universities before and after 2016.
Enrollment in doctoral programs across the globe and at U.S. universities fluctuates over
time for a variety of socio-economic reasons. By using a difference-in-differences ap-
proach, we are able to control for general increases and decreases in doctoral program
enrollment. Furthermore, by comparing the enrollment of ethnically Chinese students
with that of non-ethnically Chinese students, we isolate the treatment effect due to the
rise in tensions as opposed to the general fluctuations in the appeal of U.S. universities’

16As an illustration of this strength, 19 out of the top 30 positions in the 2023 Times Higher Education
Supplements’ ranking of the world’s universities are held by institutions in the United States.
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doctoral programs.
Table 3 presents the results from estimating Equation 1. Column (1) reports the esti-

mated impact on the likelihood of enrolling in a U.S. doctoral program to be -3.7 proba-
bility points (SE = 0.78 pp). This amounts to a 16% decline relative to the sample mean.

If ethnically Chinese students were less likely to enroll in U.S. doctoral programs,
where did they pursue their degrees? Table 3 Columns (2) and (3) report the estimated
effects on the likelihood of enrolling in a U.K. or non-U.S. anglophone university respec-
tively. The estimated treatment effects in both columns are positive and significant. The
estimated effect on the likelihood of enrolling in a non-U.S. anglophone university, shown
in Column (3), is 2.1 probability points (SE = 0.66 pp). This amounts to a 12% increase over
the sample mean. Taken together, these findings are consistent with the explanation that
other anglophone universities substituted for U.S. universities among ethnically Chinese
Ph.D. students after 2016.

We also estimate an event-study model of the evolving effect of growing U.S.-China
tensions on enrollment in U.S. doctoral programs, both to examine the pre-trends and to
trace the dynamics effects after 2016. The event-study model specification is the follow-
ing:

Yi = βTreati +
2014

∑
k=2008

δkTreati +
2019

∑
k=2016

τkTreati + γXit + ϵi (2)

The variables in this equation are the same as in Equation 1. From this equation, the δk

are estimates of the difference in the enrollments of ethnically Chinese students and non-
ethnically Chinese students in the years before treatment. If these coefficients are near
zero, it provides evidence that these two groups had similar trends in their enrollment in
U.S. programs prior to 2016. We are also interested in the τk coefficients, which provide
the change in enrollment for the ethnically Chinese group relative to the non-ethnically
Chinese students in the years after the increase in U.S.-China tensions.

Figure 4 plots the estimated δk and τk coefficients from Equation 2. Prior to 2016, the
rates at which ethnically Chinese and non-ethnically Chinese students enrolled in U.S.
doctoral programs followed similar trends. Beginning in 2016, however, the rate that
ethnically Chinese students enrolled in U.S. programs began declining (relative to that
of non-ethnically Chinese students) and continued declining through at least 2019. For
example, in 2018, the probability that an ethnically Chinese Ph.D. student enrolled in a
U.S. doctoral program decreased by 5 probability points relative to the rate in 2015.

While the rise in U.S.-China tensions starting in 2016 specifically targeted China, they
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may have also impacted ethnically Chinese individuals regardless of their nationality
due to the possible broader “chilling effect” discussed in Section 2. In order to test this,
ideally we would examine if ethnically Chinese students from nations other than China
also became less likely to enroll in U.S. programs. Since we do not observe nationality, we
proxy it with the location of the institution where a student completed their prior degree.

Table 4, Column (1), shows the estimate of Equation 1 when defining the treatment
group as those with a previous degree from a Chinese university. The results in Col-
umn (1) reveal an effect size of -4.2 probability points (SE = 1.0 pp) on the probability
of attending a U.S. doctoral program. In Column (2), we estimate Equation 1, defining
the treatment group to be those with a previous degree from a non-Chinese university.
The estimated effect is -1.5 probability points (SE = 0.86 pp). These two coefficients are
statistically different from zero and each other at the 10% level. While the difference in
the effect on these two groups implies that those of Chinese nationality experienced a
larger decline in the rate of enrolling at U.S. doctoral programs, these estimates reveal
that growing U.S.-China tensions did not exclusively impact students of Chinese nation-
ality. Indeed, the negative impact on ethnically Chinese students of other nationalities
highlights that tensions affected the enrollment of students based on their ethnicity in
addition to their nationality.

The effect of U.S.-China tensions may have varied depending on a students’ previous
experience within the U.S. Therefore, we next test if having previous experience at a U.S.
university attenuated the effect of U.S.-China tensions on the probability of enrolling in a
U.S. doctoral program.

Table 4, Column (3), shows the results of estimating Equation 1 with the treatment
group defined to be those ethnically Chinese students who earned their prior degree from
a U.S. university. For this group, the estimated coefficient is slightly negative but not
statistically significant. In Column (4), we repeat this exercise but redefine the treatment
group to be those whose prior degree was from a non-U.S. university. For this group, the
estimated effect is -4.0 probability points (SE = 0.88 pp). These results suggest that U.S.-
China tensions may have differentially impacted the enrollment of students without prior
experience in the U.S. While both those who had recently attended a degree program in
the U.S. and those without that previous experience decreased their rate of entering a U.S.
doctoral program, those without prior experience decreased their rate of enrolling in the
U.S. by almost four times the probability points.

The results in this section document how U.S.-China tensions emerging in 2016 de-
creased the enrollment of ethnically Chinese students in U.S. doctoral programs. Instead,
in the years following 2016, ethnically Chinese students enrolled in non-U.S. anglophone
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universities at increased rates. Significantly, the effects extended to those of Chinese eth-
nicity regardless of their nationality, suggesting the presence of a broader “chilling effect”
for all ethnically Chinese trainees. Finally, ethnically Chinese students whose prior de-
gree was in the U.S. did not experience the same decline in enrolling in U.S. doctoral
programs as those without this prior experience. The results suggest that the U.S. may be
losing STEM talent to other anglophone countries as a result of anti-China policies and
hostilities.

4.1.2 Retention of U.S. Graduates

Retaining trained and talented scientists may be equally as important for a nation’s eco-
nomic competitiveness as attracting such talent. We examine if the rise in U.S.-China
tensions in 2016 impacted the rate that graduates of U.S. institutions remained in the U.S.
upon completing their degrees.

Table 5 displays the results from estimating the difference-in-differences specification
of Equation 1 using the U.S. Graduates dataset, where each observation is an individ-
ual graduating from a U.S. institution. As in the previous section, we define the treated
group as ethnically Chinese graduates and the control group as non-ethnically Chinese
graduates. Column (1) reports the estimated impact of treatment on the likelihood that a
U.S. graduate’s first job remains in the U.S. as -3.6 probability points (SE = 0.95 pp). This
amounts to a 4% decline from the sample mean.

In order to study the dynamic effects of U.S.-China tensions, Figure A7 plots the co-
efficients on the leads and lags from Equation 2 estimated on observations from the U.S.
Graduates dataset. The dependent variable is an indicator for whether a U.S. graduate
takes a U.S. job following graduation. The plot shows estimates that are not significantly
different from zero until after 2016, highlighting that the rate that ethnically Chinese grad-
uates’ jobs remained in the U.S. tracked with that of non-ethnically Chinese graduates for
many years prior to 2016. Following 2016, the (relative) rate for ethnically Chinese gradu-
ates trends downward, becoming statistically significant starting in 2017 and continuing
to decline through 2019.

Since the relative rate at which ethnically Chinese graduates of U.S. institutions re-
main in the U.S. decreased, where did they take jobs instead? Table 5, Columns (2) and (3),
report the estimated effects of U.S.-China tensions on the likelihood that a U.S. graduate’s
first job is in the U.K. or in a non-U.S. anglophone country, respectively. The estimated
treatment effect is significant only in the latter case. Column (3) estimates the effect of
the treatment on the likelihood that a graduate’s job is in a non-U.S. anglophone country
as 0.85 probability points (SE = 0.36 pp). This amounts to an increase over the sample
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mean of nearly 33%. These estimates imply, once again, that some substitution occurred
to positions in other anglophone countries.

As before, the changes we observe in the likelihood that a U.S. graduate’s first job is in
the U.S. may be different for ethnically Chinese individuals from China versus ethnically
Chinese individuals from outside of China. To investigate this possibility, we estimate
Equation 1 again with the treated group defined as those whose prior degree is from
China. The results, shown in Table 5, Column (4), reveal an effect size of -5.9 probabil-
ity points (SE = 1.6 pp) on the probability of retention following graduation. In Column
(5), we define the treated group as those whose prior degree is from an institution out-
side of China. The estimated effect is very slightly negative and statistically insignificant.
These results suggest that the effect of U.S.-China tensions on the professional mobility
of ethnically Chinese U.S. graduates is largely driven by (nationally) Chinese diaspora
researchers.

These results, while noisier, are consistent with ethnically Chinese U.S. graduates sub-
stituting positions with U.S. employers for those in other anglophone countries after 2016.
Despite their significance, these estimates, as well as the visual evidence for substitution,
are less pronounced than in the doctoral students context from the previous section. We
also note that, while Chinese ethnicity appeared to impact trainees’ university enrollment
outcomes independently of Chinese nationality, we do not find the same pattern in the
context of professional outcomes. This may be attributable to the difference in stakes be-
tween university outcomes and job market outcomes, with the higher stakes in the latter
case limiting choice.

4.2 Building on U.S. and Chinese Research

Prior literature indicates that the mobility of scientists correlates with the diffusion of
scientific knowledge (Bernstein et al., 2022; Hunt and Gauthier-Loiselle, 2010; Moser and
San, 2020; Agrawal, McHale and Oettl, 2017). In particular, graduates of foreign doctoral
programs who return home may bring back new ideas, scientific techniques, and personal
connections that may influence the direction of their future work. We investigate if the rise
in U.S.-China tensions, and the subsequent decline in the mobility of graduate students
and trained scientists, also influenced the usage of scientific knowledge by research teams
in the U.S. and China.

We first examine how Chinese researchers’ usage of scientific works produced by U.S.
research teams changed because of worsening U.S.-China tensions. In the subsequent
sub-section, we examine the U.S. side and determine if the usage of Chinese research by
U.S. researchers similarly changed after 2016.
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In these analyses examining changes in the research that U.S. and Chinese scientists
reference in their work, we make comparisons using U.K. research and researchers as
controls for their counterparts from the U.S. The U.K. serves as a suitable control for the
U.S. in this analysis for a number of reasons. First, the U.S. and the U.K. enjoy similar
levels of government support and national preference for research as reflected in their
R&D workers per capita (Figure A1). Second, both pursue similar types of research as
evidenced in the composition of their publications’ fields (Figure A2). Third, both coun-
tries are top destinations (i.e., first and second place) for nationally Chinese researchers
studying abroad (Figure 2). Beyond these quantitative similarities, the U.S. and the U.K.
share a dominant language and cultural lineage. Thus, we assume that the U.K.’s research
trajectory in and after 2016 adequately models a U.S. counterfactual in the Post period.

4.2.1 Chinese Researchers Building on U.S. Science

Following the approach of Iaria, Schwarz and Waldinger (2018), we estimate a difference-
in-differences model using observations from the Publication-Citation Shares dataset in
which the focal publications were written by research teams in China. In this analysis, we
compare the citations of Chinese researchers to U.S. publications versus to U.K. publica-
tions. Specifically, we estimate the following specification:

Yij = β1Treatij + β2Postt(i) + β3(Treat∗ijPostt(i)) + γXijt + ϵij (3)

In this equation, i is a scientific publication produced by a Chinese research team, and
j represents either the U.S. or U.K. The outcome of interest is Yij, which is the share of
publication i’s references citing papers produced in country j. The variable t(i) is the
year that publication i was published. The treatment group for this analysis contains
the observations in which j = U.S., and the control group contains observations where
j = U.K. The variable Postt(i) is defined as an indicator for if publication i came out in
2016 or later. Xit contains fixed effects for the citing publication. The parameter of interest
from this equation is β3, which can be interpreted as the effect of U.S.-China tensions
on the share of references among Chinese publications going to U.S.-produced research
(versus U.K.-produced research).

This difference-in-differences approach, and setting up the analysis as examining the
relative share of citations to U.S. research versus U.K. research, addresses two potential
identification concerns. First, norms regarding citing and referencing previous works
change over time. By including fixed effects collinear with the year of publication, we
negate any concern that these changes are impacting our estimates of the treatment ef-
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fect. Second, Chinese research has been increasing in quality over time. Therefore, re-
gardless of any changes in international relations, Chinese researchers may be relying
more on Chinese-produced research rather than research produced elsewhere over time.
By comparing the relative share of U.S.-produced papers to U.K.-produced papers in the
reference lists of Chinese publications, we isolate the impact of U.S.-China tensions on
the usage of U.S. research from the general trend in Chinese researchers relying less on
non-Chinese research.

Table 6 shows estimated coefficients from Equation 3 using publications by Chinese
research teams. Column (1) shows the estimated impact of worsening U.S.-China ten-
sions as -1.4 probability points (SE = 0.44 pp). This amounts to a 11% decline from the
sample mean and a 6.5% decline from the China-U.S. average citation share to U.S. pub-
lications.17 Column (2) reports the estimated impact of growing U.S.-China tensions on
the share of recent references, defined as references to research articles published in the
previous five years, to be -1.4 probability points (SE = 0.25 pp) or a 16% decline from the
sample mean and a 10% decline from the China-U.S. average. That this decline is greater
(in percentage terms) suggests that increasing U.S.-China tensions may have had greater
influence on the dissemination of recent research. One might be concerned that the re-
sults are driven by a reduction in citing low-quality research. To test if this is the case,
we repeat the analyses from Columns (1) and (2) using dependent variables capturing
citations to research in the top 1% of its field’s citation distribution, which we call “fron-
tier research” and “recent frontier research.” Columns (3) and (4) report the estimated
impacts on these quality-adjusted shares, revealing a significant reduction in citations to
frontier U.S.-based research and suggesting that this concern is unfounded.

We also estimate an event-study model in order to trace the dynamic effects of U.S.-
China tensions and to examine the evidence in support of the parallel trends assumption
underlying the previous difference-in-differences estimates. The event-study model spec-
ification is as follows:

Yij = βTreatij +
2014

∑
k=2008

δkTreatij +
2019

∑
k=2016

τkTreatij + γXijt + ϵij (4)

The variables in this equation are the same as Equation 3. From this equation, the δk are
estimates of the difference in the citation shares to U.S. research versus U.K. research in
the years before the 2016. If these coefficients are near zero, it provides evidence that the

17We provide the percentage change relative to the China-U.S. average given the sizable level difference
between the average China-U.S. and China-U.K. citation rates.
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usage of research from these two countries tracked in the period prior to 2016. The τk

coefficients document the change in relative citation share to U.S. produced research in
the years following 2016, giving insight into the dynamic effect of the rise in U.S.-China
tensions.

The event-study coefficients confirm that the change in the citation share of U.S. re-
search on Chinese papers came about as an abrupt change, starting in 2016, and has con-
tinued to decline in the years since. Figure 6 shows the estimated coefficients when the
dependent variable is the raw share of each paper’s total publications. These shares move
in parallel in the years prior to 2016, but following that year there is a dramatic decline
in the rate of referencing U.S. sources. The coefficient on the year 2018 is -1.4 probability
points (SE = 0.43 pp), which indicates that just two years after the U.S.-China tensions re-
ally began to take off, the share of citations to U.S. sources in the papers of Chinese teams
had already declined by 6.3% relative to 2015. Appendix D includes event studies for
recent, frontier, and recent frontier research. The results remain qualitatively unchanged
in terms of direction and significance, and the magnitude of the impact for recent fron-
tier references more than doubles. This implies that the impact of U.S.-China tensions on
Chinese researchers was particularly pronounced for citations to works on the scientific
cutting edge.

4.2.2 U.S. Researchers Building on Chinese Science

Did U.S. research teams similarly change their usage of Chinese-produced scientific knowl-
edge? To investigate that question, we compare the share of references in the publications
of U.S. research teams made to works from China with the share of references in the pub-
lications of U.K. research teams made to works from China.

This approach is different than the one that we used for analyzing if the usage of U.S.
sources by Chinese researchers had changed. In that analysis, we examined the share of
citations to U.S. sources versus the share of citations to U.K. sources on Chinese publi-
cations, which allowed us to account for secular trends, such as the rising quality and
quantity of scientific works produced in China that might decrease the share of citations
to foreign works more generally. In analyzing the U.S.-side, a similar approach would
not be appropriate, since no other country could serve as a control that could plausibly
provide a counterfactual to the unique changes occurring in China’s scientific produc-
tion over the past two decades. Therefore, instead, we examine the share of citations to
works from Chinese scientists in the papers of U.S. and U.K. researchers. In doing so,
we can control for the changes in Chinese produced science, while isolating the effect of
U.S.-China tensions on the usage of China-produced scientific works in the publications
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of U.S. researchers.
We estimate the difference-in-differences model for this analysis with the specification

in Equation 3 and observations from the U.S.-U.K. Publications dataset. Specifically, we
estimate the following:

Yi = β1Treati + β2Postt(i) + β3(Treat∗i Postt(i)) + γXit + ϵi (5)

In this equation, i is a scientific publication produced by a U.S. or U.K. research team.
The outcome of interest is Yi, which is the share of publication i’s citations that go to
papers produced in China. The variable t(i) is the year that publication i was published.
The treatment group for this analysis is the set of observations in which publication i
is authored by a U.S. research team, and the control group includes observations where
publication i is authored by a U.K. research team. The variable Postt(i) is defined as an
indicator for if the publication i came out in 2016 or later. Xit contains fixed effects for
the year and the scientific field of the publication. The parameter of interest from this
equation is β3, which can be interpreted as the effect of U.S.-China tensions on the share
of references to Chinese produced research among publications by U.S. research teams,
relative to U.K. research teams.

Table 7 shows the estimates when the dependent variable is the overall share of cita-
tions, the share of recent citations, the share of frontier citations, and the share of recent
frontier citations. Although all of the coefficients are negative, they are all small in mag-
nitude and none reach statistical significance. Figures 7 and A11, which display the leads
and lags from event-study models of the citation shares from U.S. research teams, show
a similar pattern. These plots reveal a mild and statistically insignificant decrease in the
rate that U.S. papers cite China in 2018 and 2019.

Both Figure 7 and the associated event studies demonstrate that following the rise in
U.S.-China tensions, U.S. researchers did not meaningfully change their citation habits
with respect to Chinese scientific sources. The small and statistically insignificant coef-
ficients both before and after 2016 demonstrate that the propensities of the U.S. and the
U.K. to cite Chinese research moved in parallel throughout this period.

Ultimately, these results demonstrate a shift in the works that Chinese researchers
build their publications on. Since 2016, Chinese researchers decreased their usage of U.S.
produced science in the citations of their publications. As this decrease can be seen in the
relative usage of U.S. produced research versus U.K.-produced research, the shift goes be-
yond any contemporaneous increase in the quality of Chinese science that may be causing
Chinese researchers to rely less on science from non-Chinese science more generally. In
contrast, U.S. researchers did not change their usage of Chinese-produced research in a
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statistically significant manner. This implies that the majority of the effect of U.S.-China
tensions after 2016 were felt in the knowledge flows from the U.S. to China and much less
so on the knowledge flows from China to the U.S.

4.3 Productivity Impact on STEM Researchers

The rise in U.S.-China tensions may have impacted the productivity of Chinese researchers
building on U.S. science as well as U.S. researchers building on Chinese science. There
are multiple mechanisms by which productivity could have been affected: because re-
searchers interacted less with researchers from the other country, because fewer graduate
students and trainees went back and forth between these countries, because visa restric-
tions made attending conferences harder, because scientists became more hesitant about
collaborating internationally with one another due to fear of legal consequences or out-
right discrimination, or because of a decline in knowledge flows between the two coun-
tries. In this section, we estimate the effect of U.S.-China tensions on productivity, as mea-
sured by the number of scientific papers produced by researchers in the years before and
after 2016. The mechanisms that we focus on in the analysis are changes in knowledge
flows from the U.S. to China on the China side and the increased challenges ethnically
Chinese researchers in the U.S. faced with regards to obtaining funding, attending con-
ferences, and collaboration opportunities on the U.S. side. We elaborate in more detail on
each below.

Our empirical strategy for estimating the impact of U.S.-China tensions on researchers
in China is motivated by our results in the previous section, where we found that pub-
lications produced by China-based researchers significantly shifted away from referenc-
ing scientific works published by authors in the U.S. Therefore, for examining the pro-
ductivity of China-based researchers, we define the treated group as the China-based
researchers whose work heavily cites scientific works produced by U.S. (but not U.K.) au-
thors in the years prior to 2016. We define the control group, for this analysis, as China-
based researchers whose work heavily cites scientific works produced by U.K. (but not
U.S.) authors.

Our empirical strategy for estimating the impact of U.S.-China tensions on ethnically
Chinese researchers in the U.S. is motivated by our results on STEM trainee mobility.
In particular, our previous results demonstrated that ethnically Chinese students signifi-
cantly changed their mobility patterns following the rise of U.S.-China tensions in 2016.
Similar dynamics to the ones that dissuaded or denied ethnically Chinese students from
enrolling in U.S. programs and accepting jobs in the U.S. post-graduation may have also
impacted the productivity of ethnically Chinese scientists in the U.S. Therefore, for an-
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alyzing the productivity of U.S. researchers, we define the treated group as ethnically
Chinese researchers in the U.S. and define the control group as non-ethnically Chinese
researchers in the U.S.

While the treatment and control groups for studying the changes in productivity
among both the Chinese and the U.S. are chosen to provide plausible counterfactual
trends, we also match treated researchers with control researchers based on observable
characteristics and scientific works in the period before our analytical window. We take
this extra step because there is immense heterogeneity across researchers in our data.
Comparing researchers who are in different fields of science, at different stages in their
careers, or on different trajectories would be unlikely to isolate and provide meaningful
estimates of the rise in U.S.-China tensions. Therefore, in investigating the effect on pro-
ductivity for both the Chinese and U.S. sides, we estimate the difference-in-differences
analyses using only the set of researchers who can be matched. We detail the matching
procedure below.

4.3.1 Productivity Impact on China-based Researchers

For assessing the impact of rising U.S.-China tensions starting in 2016 on the productivity
of Chinese researchers, we again estimate both differences-in-differences and event-study
specifications. The data used for this exercise is the sub-sample of observations from the
Researcher Panel associated with research-active China-based scientists: researchers who
are China-based STEM scientists, who published five or more publications between 2008
and 2012 and at least one publication between 2013 and 2019.

We define the treated group as researchers who predominately cite scientific publica-
tions from the U.S., and we define the control group as researchers who predominately
cite publications from the U.K. Precisely, the treated group includes researchers who are
in the 75th percentile or higher within their field for the portion of their citations that go
to publications from the U.S. and are below the 25th percentile for their field for their ci-
tation share to publications from the U.K. The control group is similarly defined as being
above the 75th percentile in citation share within the field to the U.K. and below the 25th

percentile in citation share within the field to the U.S.
In order to isolate the effect of the rise in tensions and boost the precision of our esti-

mates, we further select our sample by matching researchers from the treated and control
observations by employing the CEM procedure. Specifically, we match researchers from
the treated and control groups based on the following observables: number of publica-
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tions produced between 2008-2012 (in 10 bins), career age as of 2012 (in 4 bins),18 the
number of actively publishing years between 2008-2012,19 if the researcher is affiliated
with a university, if the researcher is located in a Tier 1 city,20 and if the researcher is lo-
cated in a New Tier 1 city.21 In addition, we included the level and the growth rates for
the number of publications and impact-factor-weighted publications between 2013 and
2015 as matching covariates. A comparison of the treatment and control groups across
these covariates can be found in Appendix Table A6.Ultimately, the sample on which we
analyze the productivity impact on China-based researchers contains 11,975 unique indi-
viduals (76,086 observations). Of those, 5,982 are in the treated group (researchers who
predominately cite scientific publications from the U.S.) and 5,993 unique individuals in
the control group (researchers who predominately cite scientific publications from the
U.K.).22

We estimate the following differences-in-differences specification:

Yit = β1Treatit + β2Postt(it) + β3(Treat∗itPostit) + γXit + ϵi (6)

In this equation, i is a researcher and t(i) is the year. The outcome of interest is Yit, which
is the number of publications researcher i published in year t in the baseline specification.
Postt(i) is defined as an indicator for 2016 or later. Treatit are the researchers who heavily
utilize U.S.-produced research. Xit contains individual fixed effects and year fixed effects.
Because the outcome of interest is a count variable, we estimate this specification using a
Poisson (PPML) model.

For examining the dynamic effects and examining the pre-trends, we estimate the
following event-study specification:

Yij = βTreatij +
2015

∑
k=2013

δkTreatij +
2019

∑
k=2016

τkTreatij + γXijt + ϵij (7)

The variables in this equation are the same as Equation 6.

18Defined as the number of years since they began actively publishing.
19The number of years between 2008-2012 that a person published at least one publication.
20Tier 1 cities include Beijing, Shanghai, Guangzhou, Shenzhen.
21New Tier 1 Cities include Chengdu, Chongqing, Hangzhou, Wuhan, Nanjing, Tianjin, Suzhou, Xi’an,

Changsha, Shenyang, Qingdao, Zhengzhou, Dalian, Dongguan, Ningbo.
22The original dataset contains 12,073 unique researchers tracked over the 2013 to 2019 period (76,605

researcher-year observations), but since we use researcher fixed effects, researchers with no variation
in the number of publications per year drop from the sample. The sample after fixed effects contains
10,425 unique individuals (54,265 observations). Of those, 5,206 are in the treated group and 5,219 unique
individuals in the control group
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Table 8 shows the coefficients from estimating the difference-in-differences model on
this panel, where the dependent variable varies across each column. Using the number
of publications as the dependent variable, Column (1) reports the estimated effect as -
0.024 (SE = 0.016). This effect size is not statistically significant and small in magnitude,
implying that the average impact of U.S.-China tensions on the productivity of Chinese
researchers who heavily relied on U.S. knowledge was negligible relative to those relying
on U.K. sources.

While the overall effect on the treated group’s productivity is small and not statisti-
cally significant, it is possible that researchers changed where they published their pa-
pers. For example, these researchers may have found it more challenging to publish in
U.S.-based journals after 2016. To test this, Column (2) shows the results of estimating the
difference-in-differences specification with a dependent variable of the number of publi-
cations in U.S. journals23. The coefficient estimate is -0.003 (SE = 0.027), which is again
small and not distinguishable from zero. In summary, the rise in U.S.-China tensions–
and in particular the change in knowledge flows from the U.S. to China–did not appear
to significantly impact the research productivity of China-based researchers who relied
on such knowledge flows prior to these tensions.

The result that China-based researchers who built predominantly on U.S. science ex-
perienced mostly small or zero decreases in their production of scientific works is con-
firmed when examining the dynamics. Figure 8 plots the coefficients from estimating
the event-study model in Equation 7. The plots show noisy estimates with only a slight
decline.

One would not expect researchers in all scientific fields to be impacted equally. In
particular, certain fields, such as AI and semiconductors, are seen as being more relevant
to national security or to strategic economic competitiveness. Researchers in such fields
may have faced particular pressure to become self-reliant, and both governments have
placed particular effort at containing knowledge in such strategic areas within national
borders. Hence, we expand our analysis to examine field heterogeneity. Unfortunately,
due to power concerns, we cannot get to the level of “AI", for example, but we can exam-
ine computer science more generally. For this exercise, we assign researchers to a sub-field
based on the modal field in which they published.24.

As expected, there is indeed significant heterogeneity across fields that aggregate ef-
fects mask, as shown in Table 9 and Figure 9. While U.S.-reliant China-based researchers

23The country of the journal is determined by the location of its publishing house.
24Because our sample for this analysis is relatively small, we pool some sub-fields together as indicated in

Table 9
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in most fields do not experience any productivity changes relative to U.K.-reliant re-
searchers, biology is a clear outlier. U.S.-reliant biologists experienced a decrease in pro-
ductivity relative to their U.K.-reliant counterparts. The coefficient for these researchers is
-0.128 (SE = 0.038) in the number of publications and -0.167 (SE = 0.075) in the number of
U.S.-based publications. Similarly, though weak, U.S.-reliant researchers in Engineering
and Information and Computing Sciences experienced a relative productivity decrease of
5.7% (SE = 0.031) in the number of publications, and 5.1% (SE = 0.050) in the number of
U.S.-based publications. Interestingly, U.S.-reliant Physicists in China experienced an in-
crease in productivity, 17.5% (SE = 0.063) in the number of publications, and 18.8% (SE =
0.084) in the number of U.S.-based publications. We do not detect any statistically signifi-
cant effects for other STEM fields, as reported in Table A18 and Figure A12. This increase
in productivity in the field of Physics may be reflective of investments made by the Chi-
nese government and institutions into specific areas of science, such as those related to
materials science and semiconductors.

We also investigate the impact on the quality of publications produced. In this section,
we measure quality by weighting publications by the impact factor of the journal the
publication appeared in.25 Table 8, Column (3), shows the estimated effect on the number
of impact-factor-weighted publications is -0.005 (SE = 0.018). Column (4) reports that
the estimated effect for U.S.-based publication is -0.005 (SE = 0.032). As with the raw
productivity outcomes, both estimated coefficients are negative but small in magnitude
and not statistically different from zero.

As before, we also examine heterogeneity in quality across sub-fields of science, shown
in Table 9 Panel C and Panel D and Figure 9. As before, U.S.-reliant biologists experi-
enced the largest negative effect on productivity, even when adjusting for quality. For
these researchers, we estimate an 11.9% (SE = 0.043) decrease in the number of impact-
factor-weighted publications and a 14.4% (SE=0.085) decrease in the number of impact-
factor-weighted publications in U.S.-based journals. Similarly, U.S.-reliant physicists ex-
perienced an 18.5% (SE = 0,071) increase in the number of impact-factor-weighted publi-
cations and a 21.3% (SE=0.094) increase in the number of impact-factor-weighted publica-
tions in U.S.-based journals relative to the control group. We do not detect any statistically
significant effects for other STEM fields, as reported in Table A18 and Figure A12.

Ultimately, these results indicate that the rise in tensions–and more specifically, the
decline in knowledge flows from the U.S. to China–did not significantly influence the
rate or quality of publications produced by the average Chinese STEM researcher who

25We do not use citations to the articles themselves for quality weighting because, given that we are ana-
lyzing recent years, the citation data would be truncated.
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had previously relied on U.S.-produced research during the time-frame analyzed. How-
ever, there is some important field-specific heterogeneity. While China-based researchers
in physics saw an increase in the (quality-adjusted) quantity of their publications in the
years following the rise of U.S.-China tensions, other fields, notably biology, engineer-
ing, and computer science, experienced significant declines. One explanation for the
disproportionately large, negative effects on China-based biologists might be the U.S.
National Institutes of Health (NIH)’s investigations into biologists that had relationships
with China, as documented by Jia et al. (2022).26 The NIH campaign discouraged col-
laboration of any kind between U.S.-based and China-based researchers and institutions,
which may have both reduced knowledge flows and led to a productivity hit among
China-based researchers that had previously relied on those flows and relationships.

4.3.2 Productivity Impact on U.S. Researchers

The rise in U.S.-China tensions may have also impacted the productivity of U.S.-based
ethnically Chinese STEM researchers. In this section, we analyze that possibility using
another sub-sample of the Researcher Panel dataset. We select the U.S.-based STEM re-
searchers who published at least one publication between 2008 and 2012. For this analy-
sis, we define the treated group as ethnically Chinese researchers and the control group
as non-ethnically Chinese researchers.

Again, to increase precision and hone in on the treatment effect of the rising tensions,
we match each treated researcher with a control researcher based on various observations
from the years 2008-2012: number of publications, career age if the researcher is affiliated
with a university, the fraction of the researcher’s coauthors who are foreign, number of
distinct foreign coauthors if the researcher ever had listed a foreign address if the re-
searcher ever listed funding from a foreign entity, and if the researchers’ coauthors list
funding from a foreign entity. We also match on the level and growth rate in the number
of publications produced by the researcher, the number of impact-factor-weighted publi-
cations, the number of collaborators, and the number of China-based collaborators over
2013-2015. Table A8 in the Appendix reports the summary statistics of the covariates and
a comparison of these covariates across treatment and control groups. In total, the sample
on which we analyze the productivity impact on U.S.-based researchers contains 646,752
observations, with 29,587 unique ethnically Chinese individuals, and 129,032 unique non-
ethnically Chinese individuals.27

26More information about the NIH campaign can also be found here: https://www.science.org/content/
article/pall-suspicion-nihs-secretive-china-initiative-destroyed-scores-academic-careers.

27The original dataset contains 231,296 unique researchers, but since we use researcher fixed effects, re-
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Table 10 shows the results of estimating Equation 6 with the number of publications
per year as the dependent variable. As before, we include researcher and year fixed ef-
fects. Across all four measures of productivity, shown in Columns 1-4, the same result
holds: that the rise in U.S.-China tensions significantly negatively affected the produc-
tivity of U.S.-based ethnically Chinese researchers. Specifically, Column (1) shows the
estimated effect on the number of publications is -0.020 (SE = 0.007). Column (2) reports
that the estimated effect on the number of publications in U.S.-based journals is -0.053
(SE = 0.008). Column (3) shows the estimated treatment effect on impact-factor weighted
publications is -0.031 (SE = 0.009). Column (4) reports the estimated effect on impact-
factor weighted U.S.-based publications is -0.060 (SE = 0.011). The magnitudes of the
estimates reveal that the impact was both statistically and economically meaningful, with
the average U.S-based ethnically Chinese researcher experiencing a 2% decrease in over-
all productivity and 6% decrease in production of impacted-weighted publications in U.S.
journals relative to their non-ethnically Chinese colleagues.

Figures 10 display the leads and lags from event-study models of the above four vari-
ables of interest. These plots reveal a clear trend break starting in 2016. The decline in the
productivity of ethnically Chinese U.S.-based researchers relative to their non-ethnically
Chinese colleagues can be seen through 2019, revealing that the effect was not purely
transient.

Both Table 10 and Figure 10 demonstrate that following the rise in U.S.-China ten-
sions, both productivity and publication quality of ethnically Chinese STEM scholars
in the U.S. decreased, as compared to non-ethnically Chinese STEM scholars. That the
estimated impact is found in the relative productivity of ethnically Chinese researchers
versus non-ethnically Chinese researchers based in the U.S. provides further evidence
that U.S.-China tensions post-2016 have had a chilling effect for ethnically Chinese re-
searchers.

Next, as before, we investigate the heterogeneity of the effect on productivity across
scientific sub-fields, highlighting fields considered by both governments to be of national
importance. In particular, we show results for the fields at the center of the U.S. CHIPS
Act, such as those related to semiconductors, advanced computing, advanced commu-
nications technology, advanced energy technologies, quantum information technologies,
and biotechnology.28. As before, we are limited by sample size and can only look at fields

searchers with no variation in the number of publications per year drop from the sample.
28The U.S. CHIPS Act invested $280 billion to bolster U.S. semiconductor capacity on U.S. soil in

an effort to bolster supply chain resilience and counter China. More information can be found
at https://www.whitehouse.gov/briefing-room/statements-releases/2022/08/09/fact-sheet-chips-and-
science-act-will-lower-costs-create-jobs-strengthen-supply-chains-and-counter-china/
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at an aggregate level, but this still provides an indication of whether researchers in more
sensitive areas experience different changes in productivity.

Table 11 and Figure 11 report the difference-in-difference coefficients for Biological
Sciences, Biomedical/Clinical Sciences and Health Sciences, and Engineering, Informa-
tion, and Computing Sciences. It is clear that, once again, there are significant differ-
ences in productivity impact across fields. In particular, ethnically Chinese researchers
in Biomed and Health appear to see the largest negative productivity hit. Specifically,
the estimated difference-in-differences coefficients for Biomedical/Clinical Science and
Health Sciences are -0.039 (SE = 0.009) for number of publications, -0.067 (SE = 0.011) for
U.S.-based publications, -0.052 (SE = 0.011) for impact-factor-weighted publications, and
-0.080 (SE=0.014) for impact-factor weighted publications in U.S.-based journals. Once
again, this is consistent with the NIH investigations discussed in Jia et al. (2022).

We do not detect statistically significant effects for other STEM fields, as reported in
Table A22 and Figure A14, with the exception of Engineering, Information, and Comput-
ing Sciences which surprisingly saw an increase in productivity.

The results in this section underscore the asymmetry in the effect of the rise of U.S.-
China tensions on scientific productivity in the two countries. Whereas the average
China-based researcher who relied heavily on U.S. science saw little impact to their pro-
ductivity, U.S.-based ethnically Chinese researchers experienced a meaningful decrease
in their average production of scientific publications. Furthermore, while both U.S. and
Chinese researchers saw declines in the production of biology papers, Chinese researchers
boosted the quantity and quality of their work in Physics, while U.S. researchers boosted
their production of Engineering, Information, and Computer Science publications. These
differences in gains and losses by field likely reflect both policy and investment choices
made by each country and their respective institutions. The largest effects on both sides
appear to be in biology and health, while researchers in other scientific fields that have re-
ceived special attention from each government due to national security concerns, such as
Computer Science and Physics, surprisingly have not seen negative productivity effects.

4.4 Robustness Checks

While our results are consistent across the different analyses conducted above, we also
perform a number of additional tests to assess the robustness of our results to different
specifications, sample restrictions, and measurement choices.

First, our main empirical specifications define the “treatment” (i.e. the rise of ten-
sions between the U.S. and China) as beginning in 2016 and continuing in the years after.
Given that the treatment is not a singular policy change, one might wonder if this choice
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correctly reflects the timing of the rise in U.S.-China tensions.
There are a variety of reasons that we believe 2016 is the right year to define the

treatment as beginning. The chart in Figure 1 shows that sentiment shifted distinctively
starting after 2016, with a stark rise in anti-Chinese sentiment. Additionally, for each
analysis we ran in the previous section, we estimated event-study models. These event
studies display mostly flat pre-trends with sharp trend breaks starting in 2016.

Second, we validate defining ethnically Chinese graduate students as the treatment
group in the STEM Trainee Mobility analysis by running a permutation test. In this test,
detailed in Appendix B, we compare our estimates of changes in enrollment in U.S. doc-
toral programs based on the treated group being ethnically Chinese students with the es-
timates that would result from randomly assigning treatment status among the trainees
in our data. In essence, this is a placebo test since if the treatment group is correctly
defined then permutations of samples from the untreated group should result in insignif-
icant estimates. After 100 simulations, the estimates from our main analysis fall in the far
tail of the distribution of estimates from the simulated treatment statuses. We find this
result reassuring that the rise of U.S.-Chinese tensions did specifically impact ethnically
Chinese students.

Third, one might wonder if our results are primarily driven by changes in the quality
of research being conducted in China rather than a reflection of changes in the tensions be-
tween the U.S. and China. Our choice of treatment and control groups for our difference-
in-differences analyses specifically seek to address these concerns. For example, when
examining the changes in the mobility patterns of STEM graduate students, we examine
the differences between ethnically Chinese and non-ethnically Chinese students, thus al-
lowing us to control for changes in the appeal of Chinese graduate programs in STEM. In
the analysis of Chinese teams citing U.S. scientific workers, we make comparisons with
the citations of U.K. works. Again, this allows us to control for the general increase in
the scientific quality of Chinese works, while isolating the differential negative effect on
usage of U.S. works beyond the change in usage of U.K. works.

Fourth, we consider the robustness of our analysis to potential measurement error
by estimating our main analyses using a variety of different dependent variables. For
example, in our analysis of U.S. and Chinese research building on each others’ works,
we examine the effect of the rise in U.S.-China tensions on the usage of frontier research.
While in our main analysis, we define frontier research as that which lands in the top
1% of the field citation distribution, in Appendix D, we show the results if we set this
threshold at 3% and 5%. Across these different ways of measuring frontier research, we
find similar results. We perform similar robustness checks for our analysis of the mobility
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of STEM trainees and the productivity of U.S. and Chinese researchers.
In our analysis of the productivity impacts on Chinese sciences, we defined the treat-

ment group as China-based researchers who predominately cite US sciences. In this anal-
ysis, we use the threshold for US reliance as above 75th percentile in citation shares to US
publications and below 25th percentiles in citation shares to UK publications. As robust-
ness checks, we estimate our main analyses using a variety of different thresholds and
apply the CEM procedure. As shown in Appendix A20 we find similar results.

Fifth, we consider the robustness of our results to changes in the sample selection
criteria used. For example, our main analysis focuses only on STEM trainees, citations
in STEM research articles, and the productivity of STEM researchers. In Appendix D,
we relax that restriction and present the results when pooling STEM and Social Sciences
together or examining Social Science alone. The results are substantively similar.

Sixth, understanding that applicants to U.S. doctoral programs compete for a limited
number of open slots, we consider the possibility that the decline in ethnically Chinese
U.S. doctoral students is driven by an increase in qualified applicants from India. Fig-
ure A5 presents the raw fraction of incoming U.S. doctoral students that are nationally
Chinese or nationally Indian. We do not observe prominent growth in nationally Indian
Ph.D. enrollees in and after 2016, alleviating concern about a supply shock of this sort.

Lastly, each of our difference-in-differences estimates of the treatment effect relies on
the assumption of parallel trends. If this assumption is violated then it is possible that
our estimates are simply spurious noise due to the randomness in the data rather than
estimates of the true effect of the rise of U.S.-China tensions.

While the pre-trends estimated in our various analyses are quite flat, we also ad-
dress this potential concern by estimating the “Honest DiD” approach for each of our
difference-in-differences specifications. This approach takes the variation from the pre-
treatment period and projects out a worse-case scenario for the post-treatment period.
The test then compares the estimated treatment effect against the magnitude of variation
projected from the pre-treatment period. This approach is a very high bar to clear. In-
deed, it is primarily intended for analyzing difference-in-differences specifications when
there is a distinct, discrete, and sharp treatment. Our context does not match that crite-
ria, as our treatment is a combination of changes in sentiment and policy that began in
2016 but evolved in the subsequent years. The results of these tests, which can be found in
Appendix B-Appendix G, therefore show predictably noisy estimates. Because of the mis-
match of this test with the empirical context studied, we are cautious about interpreting
these estimates.

Overall, our results are consistent across analyses, variations in empirical specifica-
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tions, variations in the measurement of key dependent variables, and variations in sample
selection criteria.

5 Discussion and Conclusion
Our results reveal that U.S.-China tensions, by the end of 2019, had already significantly
disrupted talent and knowledge flows and led to reduced productivity for scientists in
the U.S. Specifically, we have shown, first, regarding STEM trainee mobility and reten-
tion, that ethnically Chinese graduate students became both less likely (16%) to attend a
U.S.-based Ph.D. program and, if they did attend a U.S.-based program, were less likely
(4%) to stay in the U.S. after graduation. In both instances, these students become more
likely to move to a different English-speaking country instead. We have also shown a
decline in Chinese usage of U.S. science as measured by citations, but no such compara-
ble decline in U.S. usage of Chinese science. And finally, we find negative productivity
effects for scientists in the U.S., although not in China: ethnically Chinese scientists in the
U.S. were 2-6% less productive after 2016, while China-based scientists that had relied
on U.S. frontier knowledge did not appear to be any less productive after 2016, with the
exception of biologists. The results as a whole strongly suggest the presence of a “chilling
effect” for ethnically Chinese scholars in the U.S., affecting both the U.S.’s ability to attract
and retain talent as well as the productivity of its ethnically Chinese scientists. The results
on the China side are less clear; while there is less knowledge flowing from the U.S. to
China, we do not see any clear productivity impact.

Beyond what we present here, disruptions brought about by geopolitical tensions can
have long-lasting effects on scientific productivity. The impact of the movement of top hu-
man capital away from U.S. STEM doctoral programs, for example, is likely to take time
beyond the time-frame of our data. In addition, tensions have only gotten worse since
2019, with the anti-Asian sentiment that the COVID-19 pandemic inspired and with the
increasingly nationalistic policies of both the U.S. and China, such as the 2022 U.S. CHIPS
and Science Act which emphasizes domestic research and requires research universities
to certify that no researchers or students are participating in a "malign foreign talent re-
cruitment program" or the 2022 Chinese government directive nicknamed “Delete Amer-
ica” aimed at driving U.S. technology out of the country. Our results document some
of the negative consequences of growing geopolitical tensions on science and speak to
the possible dangers of industrial policies that seek to cut out parts of the world. Efforts
by the U.S. and China to improve their innovative capacity through export controls and
emphasis on home-grown technology could potentially also lead to some combination of
reduced productivity for their own researchers, reduced usage of frontier knowledge, and
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the loss of top talent. Indeed, other countries that can refrain from aligning into camps
may even benefit; For example, as our analysis showed, anglophone countries appear
to be attracting ethnically Chinese trainee scientists that are no longer going to the U.S.
Given well-established links in the literature between immigrant scientists and innova-
tion, this could also lead to a shift in the location of innovation.

But there is still much to be learned. For instance, although we show declines in
enrollment and retention of ethnically Chinese students at U.S. programs, we are unable
to quantify the resulting effect on the quality composition of talent in the U.S. using the
ORCID sample. Given that uncertainty resulting from a higher student visa refusal rate
decreases student quality at U.S. universities (Chen, Howell and Smith, 2023), however, it
seems possible that average talent quality would decline in our context as well. We leave
a closer examination of the effects on student quality composition to future work.

In addition, although we view our three sets of results to be intimately connected–
because the movement of scientists is an effective means of transferring scientific knowl-
edge (Stephan, 2006), and thus a decline in Chinese graduate students in the U.S. is likely
to lead to a decline in the knowledge being transmitted between the two countries, which
can ultimately impact productivity–the links between the three findings are not precisely
pinned down. Future work should more explicitly examine the degree to which cross-
border knowledge flow declines are driven by changes in patterns of mobility.

Finally, more work could and should be done to estimate an overall welfare effect.
While this paper clearly outlines some adverse effects on scientific progress, these have
not been weighed against the imperatives of national security. In certain areas of science,
collaboration between the two nations may pose no threat to national security, yet still suf-
fer due to geopolitical strife. Conversely, in other domains, the interruption of knowledge
exchange may have significant military implications. Our analysis has already revealed
considerable heterogeneity in effects across scientific fields. More finely segmenting sci-
ence into such domains, a task which may require new methods of classification, will
enable policymakers to better analyze the balance of potential national security interests
against potential impacts on science.
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6 Figures and Tables

Figure 1: Pew Research Center Survey on Growing Anti-Chinese Senti-
ment in the U.S.
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Figure 2: Statista: Chinese Students’ Preferred Destinations for Studying
Overseas in 2015 and 2022
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Figure 3: Summary of Data Sources & Sample Construction
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Figure 4: Event Study for Propensity to Enroll in a U.S. University

Notes: This plot reports event-study coefficients from a regression predicting enrollment in a U.S. univer-
sity. The treated group is ethnically Chinese doctoral students, and the control group is non-ethnically
Chinese doctoral students. The regression includes cohort, prior degree country, and field fixed effects.
Standard errors are clustered at the field-year level.
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Figure 5: Event Study for Likelihood of U.S. Retention

Notes: This plot reports event-study coefficients from a regression predicting whether post-graduation jobs
remain in the U.S. The treated group is ethnically Chinese U.S. graduates, and the control group is non-
ethnically Chinese U.S. graduates. The regression includes cohort and field fixed effects. Standard errors
are clustered at the field-year level.
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Figure 6: Event Study for Chinese Researchers Building on U.S. Science

Notes: This plot reports event-study coefficients from a regression predicting the unadjusted size of refer-
ence shares on Chinese papers. The treated group is reference shares citing the U.S., and the control group
is reference shares citing the U.K. The regressions include fixed effects for the citing paper. Standard errors
are clustered at the field level.
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Figure 7: Event Study for U.S. Researchers Building on Chinese Science

Notes: This plot reports event-study coefficients from a regression predicting the unadjusted share of ref-
erences citing Chinese research using U.S. and U.K. publications. The treated group is U.S. papers, and the
control group is U.K. papers. The regressions include fixed effects for publication years and research fields.
Standard errors are clustered at the field level.
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Figure 8: Event-Study Plots for Productivity Change among China-based
Researchers

(a) DV:Pubs (b) DV: U.S. Pubs

(c) DV: IF wt Pubs (d) DV:IF wt U.S. Pubs

Notes: This plot reports event-study coefficients from the Poisson regression using the China-based re-
searcher panel. The dependent variable is in subfigure title. The treated group is the China-based re-
searchers predominately citing US sciences, and the control group is the China-based researchers predom-
inately citing UK sciences. The regressions include individual fixed effect and year fixed effect. Standard
errors are clustered at the individual level.
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Figure 9: Coefficient Plots for Productivity Change among China-based
Researchers, by Researcher’s Modal Field

(a) DV:Pubs (b) DV: U.S. Pubs

(c) DV: IF wt Pubs (d) DV:IF wt U.S. Pubs

Notes: This plot reports coefficient from the Poisson regression using the China-based researcher panel for
each field. The dependent variable is in subfigure title. The treated group is the China-based researchers
predominately citing US sciences, and the control group is the China-based researchers predominately
citing UK sciences. The regressions include individual fixed effect and year fixed effect. Standard errors are
clustered at the individual level.
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Figure 10: Event-Study Plots for Productivity Change among U.S.-based
Researchers

(a) DV:Pubs (b) DV: U.S. Pubs

(c) DV: IF wt Pubs (d) DV:IF wt U.S. Pubs

Notes: This plot reports event-study coefficients from the Poisson regression using the U.S.-based re-
searcher panel. The dependent variable is in subfigure title. The treated group is the U.S.-based ethnically
Chinese researchers, and the control group is the matched non-ethnically Chinese researchers. The regres-
sions include individual fixed effect and year fixed effect. Standard errors are clustered at the individual
level.
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Figure 11: Coefficient Plots for Productivity Change among U.S.-based Re-
searchers, by Researcher’s Modal Field

(a) DV:Pubs (b) DV: U.S. Pubs

(c) DV: IF wt Pubs (d) DV:IF wt U.S. Pubs

Notes: This plot reports coefficient from the Poisson regression using the U.S.-based researcher panel for
each field. The dependent variable is in subfigure title. The treated group is the U.S.-based ethnically Chi-
nese researchers, and the control group is the matched non-ethnically Chinese researchers. The regressions
include individual fixed effect and year fixed effect. Standard errors are clustered at the individual level.
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Table 1: Basic Summary Statistics Across Datasets

Panel A: Doctoral Student Dataset
Mean SD Min p50 Max

Ph.D. first year 2,012.79 2.88 2,008 2,013 2,019
Enrolls in U.S. university 0.24 0.43 0 0 1
Enrolls in U.K. university 0.09 0.29 0 0 1
Enrolls in non-U.S. anglo. university 0.17 0.37 0 0 1
Treatment = ethnically Chinese 0.16 0.37 0 0 1
Observations 128,928

Panel B: U.S. Graduates Dataset
Mean SD Min p50 Max

Job first year 2,014.92 3.16 2,008 2,016 2,019
Job in U.S. 0.85 0.35 0 1 1
Job in U.K. 0.01 0.10 0 0 1
Job in non-U.S. anglo. country 0.03 0.16 0 0 1
Ethnically CN 0.18 0.38 0 0 1
Observations 50,890

Panel C: Publication-Citation Shares
Mean SD Min p50 Max

Citing U.S. 0.50 0.50 0 .5 1
Share of raw references 0.13 0.15 0 .0667 1
Share of recent references 0.09 0.15 0 0 1
Share of frontier references (1%) 0.19 0.28 0 0 1
Share of recent frontier references (1%) 0.16 0.29 0 0 1
Observations 4,247,176

Panel D: U.S.-U.K. Publications Dataset
Mean SD Min p50 Max

U.S. publication 0.83 0.38 0 1 1
Share of raw citations to China 0.02 0.04 0 0 1
Share of recent citations to China 0.03 0.07 0 0 1
Share of frontier citations to China (1%) 0.01 0.06 0 0 1
Share of recent frontier citations to China (1%) 0.02 0.09 0 0 1
Observations 2,847,700

Panel E: China-based Researcher Panel
Mean SD Min P50 Max

Num Pubs 3.68 3.56 1 3 72
Num Pubs in US-based journals 1.06 1.59 0 1 52
Num Impact Factor wt Pubs 7.94 9.17 1 5.03 294
Impact Factor wt US-based Pubs 2.62 4.96 0 1.46 241
Predom. Cite US 0.50 0.50 0 1 1
Observations 76,086

Panel F: U.S.-based Researcher Panel
Mean SD Min p50 Max

Num Pubs 2.61 2.92 1 2 175
Num Pubs in US-based journals 1.52 2.04 0 1 58
Impact Factor wt Pubs 7.58 11.02 1 3.92 515
Impact Factor wt US-based Pubs 4.85 8.55 0 2.32 335
Ethnic CN 0.19 0.39 0 0 1
Observations 853,087

Notes: This table provides basic descriptive statistics for the data we construct in Section 3. The panel title
describes the unit of analysis for each dataset. Panels A and B summarize the data for analyzing student
mobility (student level), Panels C and D for scientific knowledge flows (publication-share and publication
level), and Panels E and F for researcher productivity (researcher by year level).
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Table 2: Applications of Differences-in-Differences Across Analyses

Sample Main DV Treated Control

Student
Mobility

China Doctoral Students Enrolls in U.S. Ethnically
Chinese

Non-
ethnically
Chinese

U.S. U.S. Graduates Job in U.S. Ethnically
Chinese

Non-
ethnically
Chinese

Knowledge
Flows

China Publication-Citation
Shares Size Citing U.S. Citing U.K.

U.S. U.S.-U.K. Publications
Citation Share

to Chinese
Research

U.S.
Publication

U.K
Publication

Researcher
Productivity

China China-Based Researchers # of
publications

Predominantly
Citing U.S.

Predominantly
Citing U.K.

U.S. U.S.-Based Researchers # of
publications

Ethnically
Chinese

Non-
ethnically
Chinese

Notes: This table describes the differences-in-differences components for each analysis. Treatment is mod-
eled as taking effect for the treated group in and after 2016. Additional considerations for each specification
are described in Section 4.

Table 3: Main Treatment Effects on Student Mobility Among Ethnically
Chinese Researchers

(1) (2) (3)
Enrolls in U.S. Enrolls in U.K. Enrolls in Anglo.

Treatment = ethnically 0.0319∗∗∗ -0.0197∗∗∗ -0.0234∗∗∗
Chinese=1 (0.00456) (0.00376) (0.00490)

Treatment = ethnically -0.0371∗∗∗ 0.00851∗∗ 0.0208∗∗∗
Chinese=1 × Post-2016=1 (0.00778) (0.00388) (0.00656)
Field FE Y Y Y
Cohort FE Y Y Y
Prior Country FE Y Y Y
Model OLS OLS OLS
Mean DV 0.239 0.0910 0.169
Observations 128910 128910 128910

Notes: This table presents difference-in-differences coefficients describing the impact of Chinese ethnicity
on the probability of enrolling in a U.S. university after 2016. Standard errors are clustered at the field-year
level. The dependent variable for each model is in the column heading. The sample includes all doctoral
students in STEM fields between 2008 and 2019, with the post-treatment period being after 2016. (* p <

0.10, ** p < 0.05, *** p < 0.01)
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Table 4: Treatment Effect Heterogeneity by Prior Institutional Affiliation
Country

(1) (2) (3) (4)
Enrolls in U.S. Enrolls in U.S. Enrolls in U.S. Enrolls in U.S.

Treatment = ethnically Chinese 0.132∗∗∗
from China=1 (0.0119)

Treatment = ethnically Chinese -0.0423∗∗∗
from China=1 × Post-2016=1 (0.0102)

Treatment = ethnically Chinese 0.0116∗∗∗
not from China=1 (0.00407)

Treatment = ethnically Chinese -0.0150∗
not from China=1 × Post-2016=1 (0.00856)

Treatment = ethnically Chinese 0.00161
from U.S.=1 (0.00675)

Treatment = ethnically Chinese -0.00802
from U.S.=1 × Post-2016=1 (0.0138)

Treatment = ethnically Chinese 0.0455∗∗∗
not from U.S.=1 (0.00523)

Treatment = ethnically Chinese -0.0401∗∗∗
not from U.S.=1 × Post-2016=1 (0.00871)
Field FE Y Y Y Y
Cohort FE Y Y Y Y
Prior Country FE Y Y Y Y
Model OLS OLS OLS OLS
Mean DV 0.239 0.239 0.239 0.239
Observations 128910 128910 128910 128910

Notes: This table presents difference-in-differences coefficients describing the impact of Chinese ethnicity
on the probability of enrolling in a U.S. university after 2016, depending on the country of their prior
institutional affiliation. Standard errors are clustered at the field-year level. The sample includes all
doctoral students in STEM fields between 2008 and 2019, with the post-treatment period being after 2016.
The coefficients in Columns (1) and (2) are statistically different at the 10% level, p = 0.051. The coefficients
in Columns (3) and (4) are statistically different at the 10% level, p = 0.062. (* p < 0.10, ** p < 0.05, *** p <

0.01)
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Table 5: Main Treatment Effects on U.S. Retention for Post-U.S. Graduation
Jobs

(1) (2) (3) (4) (5)
Job in U.S. Job in U.K. Job in Anglo. Job in U.S. Job in U.S.

Ethnically CN=1 -0.00119 -0.00613∗∗∗ -0.0131∗∗∗
(0.00767) (0.00188) (0.00308)

Ethnically CN=1 × -0.0360∗∗∗ 0.00330 0.00845∗∗
Post-2016=1 (0.00946) (0.00222) (0.00363)

Treatment = ethnically Chinese -0.0591∗∗∗
from China=1 × Post-2016=1 (0.0161)

Treatment = ethnically Chinese -0.00524
not from China=1 × Post-2016=1 (0.0177)
Field FE Y Y Y Y Y
Job Year FE Y Y Y Y Y
Model OLS OLS OLS OLS OLS
Mean DV 0.853 0.00949 0.0255 0.847 0.847
Observations 50890 50890 50890 33899 33899

Notes: This table presents difference-in-differences coefficients describing the impact of Chinese ethnicity
on the probability that a post-graduation job is in the U.S after 2016. Standard errors are clustered at the
field-year level. The dependent variable for each model is in the column heading. The sample includes all
U.S. graduates from STEM programs between 2008 and 2019, with the post-treatment period being after
2016. The coefficients in Columns (4) and (5) are statistically different at the 5% level, p = 0.044. (* p < 0.10,
** p < 0.05, *** p < 0.01)

Table 6: Main Treatment Effects on Knowledge Flows among Chinese Pub-
lications

DV: Share Size

(1) (2) (3) (4)
Raw Recent Frontier Recent Frontier

Treated = citing U.S.=1 0.182∗∗∗ 0.124∗∗∗ 0.280∗∗∗ 0.247∗∗∗
(0.0137) (0.0150) (0.0186) (0.0231)

Treated = citing U.S.=1 -0.0139∗∗∗ -0.0140∗∗∗ -0.0143∗∗∗ -0.0321∗∗∗
× Post-2016=1 (0.00438) (0.00256) (0.00514) (0.00552)
Citing Paper FE Y Y Y Y
Model OLS OLS OLS OLS
Mean DV 0.126 0.0853 0.193 0.162
Observations 4247176 4051996 3341386 2309406

Notes: Robust standard errors in parentheses with standard errors clustered at the field level. The depen-
dent variable is in the column heading. The analysis sample is reference shares of Chinese publications
citing U.S. or U.K. research. The analysis period is 2011-2019, where the post treatment period is 2016-2019.
‘Treated’ refers to reference shares citing U.S. research, with those citing U.K. research serving as the control
group. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 7: Main Treatment Effects on Knowledge Flows among U.S. and U.K.
Publications

DV: Share Size

(1) (2) (3) (4)
Raw Recent Frontier Recent Frontier

Treated = U.S. publication=1 -0.000459 -0.000339 -0.000539 -0.000439
(0.000587) (0.000813) (0.000338) (0.000568)

Treated = U.S. publication=1 -0.000167 0.000216 -0.000112 -0.000182
× Post-2016=1 (0.000665) (0.000986) (0.000518) (0.000836)
Field & Year FE Y Y Y Y
Model OLS OLS OLS OLS
Mean DV 0.0166 0.0264 0.0109 0.0166
Observations 2847446 2769601 2361126 1836494

Notes: Robust standard errors in parentheses with standard errors clustered at the field level. The depen-
dent variable is in the column heading. The sample is all U.S. and U.K. publications with U.S. or U.K.
research teams during the analysis period. The analysis period is 2011-2019, and the post treatment period
is 2016-2019. ‘Treated’ refers to publications in the U.S., with U.K. publications serving as the control group.
* p < 0.10, ** p < 0.05, *** p < 0.01.

Table 8: Main Treatment Effects on Productivity among China-based Re-
searchers

(1) (2) (3) (4)
Pubs US Pubs IF wt Pubs IF wt US Pubs

Predom. Cite US=1 × Post-2016=1 -0.024 -0.003 -0.005 -0.005
(0.016) (0.027) (0.018) (0.032)

Indiv FE Y Y Y Y
Year FE Y Y Y Y
Model Poisson Poisson Poisson Poisson
CEM Y Y Y Y
Mean DV 3.298 1.120 6.892 2.668
Observations 54,265 48,397 54,265 48,397

Notes: Robust standard errors in parentheses and clustered at the person level. The dependent variable
is in column header. The analysis sample is China-based researcher panel. The analysis period is 2013-
2019, where the post treatment period is 2016-2019. “Predom Cite US” refers to the Chinese researchers
whose fraction of pre-2013 raw citation share is greater than the within-field 75th percentile to U.S. papers
and below the 25th percentile to U.K. papers. The control group is Chinese researchers with above 75th

percentile within field U.K. citation share and below 25th percentile within field U.S. citation share. The
regression is weighted by the CEM matching weights. All specifications include the post dummy, year
fixed effects, and individual fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 9: Main Treatment Effects on Productivity among China-based Re-
searchers, By Focal Researcher’s Modal Field

DV:Num Pubs

(1) (2) (3) (4) (5)
All

STEM
Biological
Sciences

Biomed.
& Health

Engineering
Info & CompSci

Physics

Predom. Cite US=1 × Post-2016=1 -0.024 -0.128∗∗∗ -0.006 -0.057∗ 0.175∗∗∗

(0.016) (0.038) (0.028) (0.031) (0.063)
Indiv FE Y Y Y Y Y
Year FE Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y
Mean DV 3.298 2.956 3.134 3.634 3.150
Observations 54,265 5,342 17,982 16,541 2,858

DV:Num Pubs in US-based journals

(1) (2) (3) (4) (5)
All

STEM
Biological
Sciences

Biomed.
& Health

Engineering
Info & CompSci

Physics

Predom. Cite US=1 × Post-2016=1 -0.003 -0.167∗∗ 0.008 -0.051 0.188∗∗

(0.027) (0.075) (0.044) (0.050) (0.084)
Indiv FE Y Y Y Y Y
Year FE Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y
Mean DV 1.120 0.896 1.091 1.327 1.483
Observations 48,397 4,908 16,843 14,264 2,505

DV:Num Impact Factor wt Pubs

(1) (2) (3) (4) (5)
All

STEM
Biological
Sciences

Biomed.
& Health

Engineering
Info & CompSci

Physics

Predom. Cite US=1 × Post-2016=1 -0.005 -0.119∗∗∗ 0.031 -0.044 0.185∗∗∗

(0.018) (0.043) (0.033) (0.034) (0.071)
Indiv FE Y Y Y Y Y
Year FE Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y
Mean DV 6.892 6.324 6.662 7.396 6.481
Observations 54,265 5,342 17,982 16,541 2,858

DV:Impact Factor wt US-based Pubs

(1) (2) (3) (4) (5)
All

STEM
Biological
Sciences

Biomed.
& Health

Engineering
Info & CompSci

Physics

Predom. Cite US=1 × Post-2016=1 -0.005 -0.144∗ 0.024 -0.078 0.213∗∗

(0.032) (0.085) (0.055) (0.054) (0.094)
Indiv FE Y Y Y Y Y
Year FE Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y
Mean DV 2.668 2.068 2.663 3.113 3.286
Observations 48,397 4,908 16,843 14,264 2,505

Notes: Robust standard errors in parentheses and clustered at the person level. The dependent variable
is in panel header. The analysis sample is China-based researcher panel. The analysis period is 2013-
2019, where the post treatment period is 2016-2019. “Predom Cite US” refers to the Chinese researchers
whose fraction of pre-2013 raw citation share is greater than the within-field 75th percentile to U.S. papers
and below the 25th percentile to U.K. papers. The control group is Chinese researchers with above 75th

percentile within field U.K. citation share and below 25th percentile within field U.S. citation share. The
regression is weighted by the CEM matching weights. All specifications include the post dummy, year
fixed effects, and individual fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01..
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Table 10: Main Treatment Effects on Productivity among U.S. based Re-
searchers

(1) (2) (3) (4)
Pubs US Pubs IF weighted Pubs IF weighted US Pubs

Ethnic CN=1 × Post-2016=1 -0.020∗∗∗ -0.053∗∗∗ -0.031∗∗∗ -0.060∗∗∗
(0.007) (0.008) (0.009) (0.011)

Indiv FE Y Y Y Y
Year FE Y Y Y Y
Model Poisson Poisson Poisson Poisson
CEM Y Y Y Y
Mean DV 2.667 1.628 7.892 5.286
Observations 646,752 615,735 646,752 615,735

Notes: Robust standard errors in parentheses and clustered at the person level. The dependent variable
is in column header.The analysis sample is U.S.-based researcher panel. The analysis period is 2013-2019,
where the post treatment period is 2016-2019. ‘1[Ethnic CN]’ refers the treatment group: being ethnically
Chinese, as identified by name. The control group is non-ethnically Chinese researchers. The regression is
weighted by the CEM matching weight. All specifications include the post dummy, year fixed effects, and
individual fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 11: Main Treatment Effects on Productivity among U.S.-based Re-
searchers, By Focal Researcher’s Modal Field

DV:Num Pubs

(1) (2) (3) (4) (5)
All

STEM
Biological
Sciences

Biomed.
& Health

Engineering
Info & CompSci

Physics

Ethnic CN=1 × Post-2016=1 -0.020∗∗∗ -0.023∗ -0.039∗∗∗ 0.085∗∗∗ -0.037
(0.007) (0.014) (0.009) (0.019) (0.037)

Indiv FE Y Y Y Y Y
Year FE Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y
Mean DV 2.667 1.960 3.030 2.254 2.420
Observations 646,752 81,874 439,524 58,555 12,247

DV:Num Pubs in US-based journals

(1) (2) (3) (4) (5)
All

STEM
Biological
Sciences

Biomed.
& Health

Engineering
Info & CompSci

Physics

Ethnic CN=1 × Post-2016=1 -0.053∗∗∗ -0.075∗∗∗ -0.067∗∗∗ 0.088∗∗∗ -0.043
(0.008) (0.019) (0.011) (0.024) (0.050)

Indiv FE Y Y Y Y Y
Year FE Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y
Mean DV 1.628 1.105 1.924 1.171 1.554
Observations 615,735 76,857 426,088 52,452 10,882

DV:Impact Factor wt Pubs

(1) (2) (3) (4) (5)
All

STEM
Biological
Sciences

Biomed.
& Health

Engineering
Info & CompSci

Physics

Ethnic CN=1 × Post-2016=1 -0.031∗∗∗ -0.030 -0.052∗∗∗ 0.090∗∗∗ -0.049
(0.009) (0.020) (0.011) (0.023) (0.046)

Indiv FE Y Y Y Y Y
Year FE Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y
Mean DV 7.892 6.621 9.330 5.236 6.357
Observations 646,752 81,874 439,524 58,555 12,247

DV:Impact Factor wt US-based Pubs

(1) (2) (3) (4) (5)
All

STEM
Biological
Sciences

Biomed.
& Health

Engineering
Info & CompSci

Physics

Ethnic CN=1 × Post-2016=1 -0.060∗∗∗ -0.046∗ -0.080∗∗∗ 0.083∗∗∗ -0.026
(0.011) (0.027) (0.014) (0.030) (0.058)

Indiv FE Y Y Y Y Y
Year FE Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y
Mean DV 5.286 3.851 6.507 2.961 4.131
Observations 615,735 76,857 426,088 52,452 10,882

Notes: Robust standard errors in parentheses and clustered at the person level. The dependent variable
is in column header.The analysis sample is U.S.-based researcher panel. The analysis period is 2013-2019,
where the post treatment period is 2016-2019. ‘1[Ethnic CN]’ refers the treatment group: being ethnically
Chinese, as identified by name. The control group is non-ethnically Chinese researchers. The regression is
weighted by the CEM matching weight. All specifications include the post dummy, year fixed effects, and
individual fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01..
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A Data Construction
In this section, we provide additional details on the construction of the datasets used for
analysis.

A.1 Enrollment and Retention Dataset
For analyzing the enrollment and retention of students at U.S. institutions, we leveraged
data from ORCID. The ORCID website provides annual compilations of all public profiles
on their platform. We downloaded the 2022 release of that data. We then parsed the CVs
for all listed educational degrees and employment history. The ORCID website contains
over 14 million CVs. We restricted to individuals reporting complete educational back-
grounds, which amounts to 1.8 million CVs. We further restricted to those who graduated
from STEM.29 programs, a total of 836,495 CVs.

For analyzing changes in the likelihood of enrolling in U.S. doctoral programs, we
classified each educational degree by its level based on common words and abbreviations
for academic degree titles (e.g., "Ph.D.," "PhD," "Doctoral," or "Ed.D"). We discarded
individuals lacking terminal degrees at the doctoral level as well as individuals who did
not claim at least one degree prior to their doctorate. For each remaining individual,
we extracted the location (country) and enrollment year for their doctoral degree as well
as the location of their prior degree. This amounts to 128,928 individuals enrolling in
doctoral programs between 2008 and 2019.

For analyzing if graduates of U.S. institutions choose to remain in the U.S., we re-
turned to the ORCID CVs, again restricting to individuals with complete educational
backgrounds involving STEM. Further, we retained observations only for individuals
whose terminal degree was from a U.S. institution. For each individual, we used their
employment history to identify jobs started within three years following their U.S. grad-
uation year. We extracted the location and employment start date from the earliest of
these post-graduation jobs. This amounts to 50,890 individuals graduating from U.S. in-
stitutions beginning a post-graduation job.

Detailed summary statistics on both of these samples are provided in Table A1 and
Table A2.

One might wonder how the individuals with ORCID CVs compare to the broader
population of scientists and researchers. While there is no comprehensive way to com-
pare these populations, we examine the differences in the number of publications in the

29The following 11 fields are considered STEM: Agriculture, Biological Sciences, Biomedical and Clinical
Sciences, Chemical Sciences, Earth Sciences, Engineering, Environmental Sciences, Health Sciences, In-
formation and Computing Sciences, Mathematical Sciences, and Physical Sciences (Australian Bureau of
Statistics, 2020; Porter, Hawizy and Hook, 2023)
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Dimension database for researchers with and without ORCID iDs. As seen in Table A3,
individuals with ORCID iDs tend to be more active and have more publications than
those without ORCID iDs. While recognizing this contrast is important for evaluating the
generalizability of our results, we also think that focusing our analysis on this subset of
research active scientists is informative given their significant contribution to science.

In addition, those with ORCID iDs are less likely to be ethnically Chinese. This does
not pose a problem for our analysis for a number of reasons. First, our empirical approach
estimates and plots event studies showing that the enrollment and employment of ethni-
cally Chinese and non-ethnically Chinese scientists trended similarly in the years prior to
2016. This implies that whatever selection there was among ethnically Chinese scientists
with using ORCID, it did not manifest in contrasting trends that would raise concerns
about our difference-in-differences estimates. Second, if the lower rate of ethnically Chi-
nese scientists being on ORCID is because ORCID is more popular among U.S.-based
scientists, again our analysis would be focused on a sub-population that is particularly
relevant for the policy evaluation we conducted.

Table A1: Summary Statistics for Doctoral Students Dataset

Mean SD Min p25 p50 p75 Max Count
Ph.D. first year 2,012.79 2.88 2,008 2,010 2,013 2,015 2,019 128,928
Ph.D. last year 2,017.22 2.89 2,008 2,015 2,017 2,019 2,033 128,928
Treatment = ethnically Chinese 0.16 0.37 0 0 0 0 1 128,928
Time since previous degree 1.27 2.08 -18 0 1 2 10 128,928
Origins
Prior degree in U.S. 0.18 0.38 0 0 0 0 1 128,928
Prior degree in China 0.12 0.33 0 0 0 0 1 128,928
Prior degree in India 0.10 0.30 0 0 0 0 1 128,928
Prior degree in U.K. 0.07 0.26 0 0 0 0 1 128,928
Prior degree in Brazil 0.05 0.22 0 0 0 0 1 128,928
Destinations
Enrolls in U.S. university 0.24 0.43 0 0 0 0 1 128,928
Enrolls in U.K. university 0.09 0.29 0 0 0 0 1 128,928
Enrolls in Chinese university 0.08 0.27 0 0 0 0 1 128,928
Enrolls in Indian university 0.08 0.27 0 0 0 0 1 128,928
Enrolls in Brazilian university 0.04 0.20 0 0 0 0 1 128,928
Enrolls in non-U.S. anglo. university 0.17 0.37 0 0 0 0 1 128,928
Research fields
Science & Engineering program 0.79 0.41 0 1 1 1 1 128,928
Medicine/Health program 0.21 0.41 0 0 0 0 1 128,928

Notes: the unit of observation is an individual student enrolling in a Ph.D. program. The sample includes
only students enrolling in STEM (Science, Technology, Engineering, and Medicine) programs. We discard
observations for students who began Ph.D. programs 10 or more years after finishing their prior degree.
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Table A2: Summary Statistics for U.S. Graduates Dataset

Mean SD Min p25 p50 p75 Max Count
Job first year 2,014.92 3.16 2,008 2,013 2,016 2,018 2,019 50,890
Graduation year 2,014.46 3.30 2,005 2,012 2,015 2,017 2,019 50,890
Ethnically CN 0.18 0.38 0 0 0 0 1 50,890
Terminal degree is Ph.D. 0.71 0.45 0 0 1 1 1 50,890
Lag from degree to job 0.46 0.80 0 0 0 1 3 50,890
Destinations
Job in U.S. 0.85 0.35 0 1 1 1 1 50,890
Job in U.K. 0.01 0.10 0 0 0 0 1 50,890
Job in Canada 0.01 0.11 0 0 0 0 1 50,890
Job in Germany 0.01 0.09 0 0 0 0 1 50,890
Job in China 0.02 0.13 0 0 0 0 1 50,890
Job in non-U.S. anglo. country 0.03 0.16 0 0 0 0 1 50,890
Research fields
Science & Engineering program 0.77 0.42 0 1 1 1 1 50,890
Medicine/Health program 0.23 0.42 0 0 0 0 1 50,890

Notes: the unit of observation is an individual student graduating from a U.S. institution. The sample
includes only students graduating from STEM (Science, Technology, Engineering, and Medicine) programs.
We retain observations only for graduates whose first post-graduation job begins within three years of
graduation.

Table A3: Comparison of Researchers in Dimensions With and Without
ORCID iDs

No ORCID Has ORCID Total
10,125,703 (84.6%) 1,841,893 (15.4%) 11,967,596 (100.0%)

Years active after 2008 2.735 5.570 3.171
Publications (lifetime) 4.989 15.308 6.577
Pre-2016 publications 1.801 3.072 1.997
Post-2016 publications 3.187 12.230 4.579
SJR-weighted publications (lifetime) 10.334 34.811 14.102
Pre-2016 SJR-weighted publications 3.675 6.822 4.160
Post-2016 SJR-weighted publications 6.659 27.989 9.942
# of grants (lifetime) 0.071 0.252 0.099
# of research organizations (lifetime) 1.074 2.132 1.237
STEM field 0.755 0.816 0.765
HASS field 0.101 0.161 0.110
Missing field 0.143 0.023 0.125
Missing publications 0.077 0.008 0.066
Ethnically CN 0.198 0.133 0.188

Notes: the unit of observation is a researcher whose first publication in Dimensions was after 2008. We
observe that researchers with ORCID profiles have generally stronger research attributes.

A.2 Knowledge Flows Dataset
Dimensions provides the bibliometric data we use to examine the impact of U.S.-China
tensions on scientific knowledge flows. The Dimensions data covers over 1.8 billion ci-
tations connecting over 140 million publications, providing a comprehensive and global
view of the academic citation landscape (Thelwall, 2018; Singh et al., 2021). Publication
references serve as a large-scale and observable proxy for scientific knowledge flows in
the form of trace data (Iaria, Schwarz and Waldinger, 2018). As such, we derive datasets
from Dimensions describing the citation behavior of papers written by Chinese, U.S., and
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U.K. research teams between 2011 and 2019, proceeding in two steps: (1) identifying pub-
lications by research teams in each nation and (2) quantifying the degree to which each
cites prior research from foreign countries.

First, for each publication in Dimensions, we create flags for if all of the authors with
location data list an affiliation address in China, the U.S., or the U.K. We refer to these
publications as being written by Chinese, U.S., or U.K. research teams respectively. We
discard publications where authors list addresses from more than one of these three coun-
tries (e.g., publications where all authors claim a Chinese address but one author also
claims a U.S. address). Further, we discard publications that are not categorized as be-
longing to a STEM field. This amounts to 2,123,588 publications associated with Chinese
research teams and 2,847,700 publications associated with U.S. or U.K. research teams
issued between 2011 and 2019.

We then employ four measures of how publications build on research produced in
other countries. Given a focal publication (citing paper), we identify the publications on
its reference list (cited papers). For each cited paper, we assign an origin based on the
affiliation address of its corresponding author. If the cited paper has no corresponding
author, but involves researchers exclusively from one country, we assign that country.
Otherwise, we leave the cited paper’s origin country blank. Then, we use the assigned
locations to construct four measures of usage per country. First, we calculate the “raw”
usage of a given country’s research by taking the simple fraction of cited papers assigned
to that country. Second, we calculate the “recent” usage of a country’s research by tak-
ing the fraction of cited papers published within five years of the citing paper that we
assigned to that country. Third, we calculate the “frontier” usage of a country’s research
by taking the fraction of cited papers landing in the top 1%, 3%, or 5% of its field’s cita-
tion distribution (using Dimensions’ field citation ratio measure) that we assigned to that
country. Finally, we calculate the “recent frontier” usage of a country’s research by taking
the fraction of cited papers satisfying both of these restrictions that we assigned to that
country.

In analyzing knowledge flows between the U.S. and China, we make comparisons
with U.K. researchers and U.K. produced research. We believe that these comparisons
can serve as useful counterfactual trends for a variety of reasons. First, the U.S. and U.K.
are top destinations for Chinese students. Second, researchers per capita tracks similarly
for the U.S. and the U.K., as shown in Figure A1. Lastly, as shown in Figure A2, U.S.
and U.K. researchers have similar distributions across scientific fields of their quality-
weighted publications.

In Table A4, we provide summary statistics on the dataset used for analyzing the
changing usage of U.S. produced research by China-based researchers. An observation
in this dataset is a publication-citation share, where the citation share represents either
citations to U.S. produced research or citations to U.K. produced research. These citation
shares come from the papers of Chinese research teams.
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Figure A1: Per Capita Researchers Across Countries

Notes: This plot presents the number of researchers per capita for various countries between 2008 and
2019. The data is sourced from the World Bank via the UNESCO Institute for Statistics (UIS). We observe
that the U.S. and the U.K. exhibit both similar levels and similar trends.

Table A4: Summary Statistics for Publication-Citation Shares Dataset

Mean SD Min p25 p50 p75 Max Count
Citing U.S. 0.50 0.50 0 0 .5 1 1 4,247,176
Share of raw references 0.13 0.15 0 0 .0667 .2 1 4,247,176
Share of recent references 0.09 0.15 0 0 0 .125 1 4,051,996
Share of frontier references (1%) 0.19 0.28 0 0 0 .333 1 3,341,386
Share of recent frontier references (1%) 0.16 0.29 0 0 0 .25 1 2,309,406
Citing paper attributes
Publication year 2,015.69 2.56 2,011 2,014 2,016 2,018 2,019 4,247,176
Number of fields 1.24 0.46 1 1 1 1 5 4,247,176
Field: biology 0.11 0.31 0 0 0 0 1 4,247,176
Field: biomedical 0.21 0.41 0 0 0 0 1 4,247,176
Field: chemistry 0.20 0.40 0 0 0 0 1 4,247,176
Field: engineering 0.38 0.48 0 0 0 1 1 4,247,176
Field: health 0.02 0.15 0 0 0 0 1 4,247,176
Field: physics 0.07 0.26 0 0 0 0 1 4,247,176
Science & Engineering program 0.81 0.40 0 1 1 1 1 4,247,176
Medicine/Health program 0.22 0.42 0 0 0 0 1 4,247,176

Notes: the unit of observation is a publication-citation share citing the U.S. or U.K. All citing papers belong
to STEM fields and are written by Chinese research teams.

In Table A5, we provide summary statistics on the dataset used for analyzing the
changing usage of China produced research by U.S. research teams. An observation in
this dataset is a publication written by a U.S. or U.K. research team, and the outcome of
interest is the share of their references citing China produced research.
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Figure A2: Fraction of Countries’ Quality-Weighted Publications Belong-
ing to Fields (2011-2015)

Notes: This plot graphs the fraction of countries’ quality-weighted publications belonging to each of the
selected STEM fields. Publications are quality-weighted by the SJR score of their publishing journal. We
observe that research in the U.S. distributes among fields similarly to that of the U.K. relative to other
countries. The data is constructed using Dimensions.
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Table A5: Summary Statistics for U.S.-U.K. Publications Dataset

Mean SD Min p25 p50 p75 Max Count
Publication year 2,015.05 2.59 2,011 2,013 2,015 2,017 2,019 2,847,700
Number of fields 1.25 0.48 1 1 1 1 5 2,847,700
U.S. publication 0.83 0.38 0 1 1 1 1 2,847,700
Share of raw citations to China 0.02 0.04 0 0 0 .0137 1 2,847,700
Share of recent citations to China 0.03 0.07 0 0 0 0 1 2,769,843
Share of frontier citations to China (1%) 0.01 0.06 0 0 0 0 1 2,361,343
Share of recent frontier citations to China (1%) 0.02 0.09 0 0 0 0 1 1,836,702
Share of references citing U.S. 0.47 0.22 0 .324 .48 .622 1 2,847,700
Share of references citing U.K. 0.08 0.14 0 0 .0417 .103 1 2,847,700
Research fields
Field: biology 0.14 0.35 0 0 0 0 1 2,847,700
Field: biomedical 0.48 0.50 0 0 0 1 1 2,847,700
Field: chemistry 0.08 0.27 0 0 0 0 1 2,847,700
Field: engineering 0.13 0.34 0 0 0 0 1 2,847,700
Field: health 0.15 0.35 0 0 0 0 1 2,847,700
Field: physics 0.06 0.24 0 0 0 0 1 2,847,700
Science & Engineering program 0.48 0.50 0 0 0 1 1 2,847,700
Medicine/Health program 0.57 0.50 0 0 1 1 1 2,847,700

Notes: the unit of observation is a publication. The sample includes only publications associated with
STEM fields whose authors are based in the U.S. or U.K. Publications with no citations are dropped from
the dataset.

A.3 Productivity Dataset
We use Dimensions’ bibliometric data to examine the impact of U.S.-China tensions on re-
searcher productivity. The advantages of the Dimensions dataset here are twofold. First,
the dataset is comprehensive, with 140 million publications across fields and countries.
Second, it links the publications to other valuable information such as researchers, organi-
zations, and research grants. Finally, Dimensions’ attention to researcher disambiguation,
powered by algorithms, enables the construction of a reliable researcher panel.

For analyzing the productivity effect on China- and U.S.-based scientists, we create a
panel dataset which we call the Researcher Panel. We define “China-based” (“U.S.-based”)
researchers as those for whom China (the U.S.) is the majority country reported on pub-
lication addresses between 2008 and 2012. To classify the primary field of the focal re-
searcher, we use the all-time modal field of their publications. We again restrict to re-
searchers operating in STEM fields.

The Researcher panel is created by constructing a strongly balanced panel of these
authors using their publication records in the years between 2008 and 2019. We choose
2019 as the end year to avoid shocks to scientific productivity associated with COVID-19.
For each researcher-year observation, we include the number of publications by that au-
thor in that year, as well as quality-adjusted measures, such as the number of publications
weighted by the impact factor of the journal that those papers were published in.

When analyzing the effect of the rising U.S.-China tensions on the productivity of Chi-
nese researchers, we focus on a sub-sample of China-based STEM researchers who pub-
lished five or more publications between 2008 and 2012 as well as at least one publication
between 2013 and 2019. For each China-based researcher, we calculated the fraction of
references on their 2008-2012 publications that cited the U.S., U.K., and China, locating
cited papers using the same approach as in Section A.2. We use the citation measures
to construct the treatment and control group in our China side analysis. Specifically, the
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treated group includes researchers who are in the 75th percentile or higher within their
field for the portion of their citations that go to publications from the U.S. and are be-
low the 25th percentile for their field for their citation share to publications from the U.K.
The control group is similarly defined as being above the 75th percentile in citation share
within field to the U.K. and below the 25th percentile in citation share within the field to
the U.S.

Due to the heterogeneity in prolificacy and quality, a direct comparison between
China-based researchers who predominantly cite U.S. science and those who predomi-
nantly cite U.K. sciences may not be appropriate. To construct a more suitable compari-
son group, we employed the coarsened exact matching (CEM) method described in Iacus,
King and Porro (2012). CEM coarsens the covariates into strata and matches the treated
and untreated units based on the strata. In the China-based researcher analysis, we use
the following covariates in the matching process: the number of publications before 2013,
proxied career age as of 2012, the number of actively publishing years between 2008 and
2012, whether the researcher has a university affiliation, whether the researcher is lo-
cated in a Tier 1 City, or New Tier 1 Cities, the average and growth rate of the number
of publications between 2013 and 2015, the level and the growth rate of the number of
impact-factor-weighted publications between 2013 and 2015 30. The descriptive statistics
of the matching covariates are shown in Table A6. The CEM algorithm matched 11,975 in-
dividuals, out of which 5,982 who predominately cite scientific publications from the U.S.
and 5,993 who predominately cite publications from the U.K. We use matching weights
generated by the CEM algorithm in the associated regression analyses.

To demonstrate the balance between our treated and matched control groups for
China-based researchers, we provide summary statistics on the attributes of these groups
in Table A6. In addition, we show summary statistics on the publications of these groups
in Table A7.

30The career age and the number of publications produced between 2008-2012 are evenly split in 4 and 10
bins respectively when matching.
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Table A6: China-based Researcher Panel Descriptive Statis-
tics: CEM Matching Variables

(1) (2) (3) (4)
All Matched Matched-Untreated Matched-Treated

Num Pubs in 2008-2012 13.38 8.081 8.135 8.027
(10.41) (4.124) (4.147) (4.101)

Career Age 7.322 5.895 5.953 5.837
(4.419) (3.450) (3.533) (3.363)

Num Active Years in 2008-2012 3.825 3.429 3.429 3.430
(1.076) (1.012) (1.013) (1.011)

1[University] 0.655 0.656 0.657 0.656
(0.475) (0.475) (0.475) (0.475)

1[Tier 1 Cities] 0.352 0.348 0.326 0.370
(0.477) (0.476) (0.469) (0.483)

1[New Tier 1 Cities] 0.344 0.351 0.351 0.352
(0.475) (0.477) (0.477) (0.478)

Growth Rate of Num Pubs 2008-2012 -0.000222 0.0135 0.0130 0.0140
(0.194) (0.190) (0.196) (0.184)

Num Pubs 4.481 2.404 2.391 2.418
(5.120) (1.546) (1.552) (1.539)

Growth Rate of IF-wt Pubs 2008-2012 0.0114 0.0300 0.0283 0.0316
(0.254) (0.248) (0.253) (0.244)

Num Impact Factor Weighted Pubs 9.680 4.605 4.403 4.807
(13.20) (3.458) (3.332) (3.568)

Observations 132,272 11,975 5,993 5,982

Notes: Standard deviation in parentheses.

Table A7: China-based Researcher Panel Descriptive Statis-
tics: Outcome Variables

(1) (2) (3) (4)
All Matched Matched-Treated Matched-Untreated

Num Pubs 4.481 2.404 2.391 2.418
(5.120) (1.546) (1.552) (1.539)

Num Pubs in US-based journals 1.312 0.717 0.621 0.813
(1.895) (0.843) (0.776) (0.895)

Num Impact Factor Weighted Pubs 9.680 4.605 4.403 4.807
(13.20) (3.458) (3.332) (3.568)

Impact Factor Weighted US-based Pubs 3.315 1.583 1.277 1.889
(6.058) (2.123) (1.788) (2.373)

Observations 132,272 11,975 5,993 5,982

Notes: Standard deviation in parentheses.

For analyzing the relative productivity effect on U.S.-based STEM researchers, we
subset the Researcher Panel to the U.S.-based researchers who published at least one pub-
lication between 2008 and 2013. We included the same fields, as well as the same sets of
covariates. Additionally, we constructed a set of variables to proxy the propensity toward
foreign collaboration for the U.S.-based researchers: whether the focal person listed any
foreign address, whether the focal researcher cited any foreign funding sources, the num-
ber and fraction of distinct foreign coauthors, and whether the focal person has coauthors
who have foreign funding. We imputed their ethnicity (see Section A.4) from their name
and created a binary indicator for being ethnically Chinese as our treatment indicator.

66



For the U.S. side, we are interested in examining ethnically Chinese researchers, as
the China Initiative disproportionally prosecuted and discriminated against ethnic Chi-
nese researchers in the U.S. However, active U.S. researchers who are ethnic Chinese be-
have very differently from non-ethnic Chinese, in terms of prolificacy, impact, size and
composition of collaborator pool, and topic. Similar to the China side, to construct the
appropriate control group, we employed the CEM technique. With ethnic Chinese as
treatment status, we used all pre-analysis covariates and pretreatment characteristics be-
tween 2011 and 2015 and matched within the modal field. The pre-analysis covariates
include the number of publications before 2013, proxied career age as of 2012, the num-
ber of actively publishing years between 2008 and 2012, whether the researcher has a
university affiliation, fraction of the coauthors that are foreign, number of distinct foreign
coauthors, whether the researcher has a Chinese coauthor, whether the researcher listed
any foreign address, whether the researcher listed any foreign funding, and whether the
researcher has coauthors with foreign funding. The pretreatment characteristics include
the average and growth rate of the number of publications between 2013 and 2015, the
level and the growth rate of the number of impact-factor-weighted publications between
2013 and 2015, the level and the growth rate of number of collaborators between 2013
and 2015, and the level and the growth rate of number of Chinese collaborators between
2013 and 2015. Table A8 reports the summary statistics of the covariates. The algorithm
matched 231,296 individuals, out of which 129,032 individuals are non-ethnically Chinese
and 29,587 individuals are ethnically Chinese. The generated CEM weight will be applied
in the regression analysis.

To demonstrate the balance between our treated and matched control groups for U.S.-
based researchers, we provide summary statistics on the attributes of these groups in
Table A8. In addition, we show summary statistics on the publications of these groups in
Table A9.
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Table A8: U.S.-based Researcher Panel Descriptive Statistics :
CEM Matching Variables

(1) (2) (3) (4)
All Matched Matched-Untreated Matched-Treated

Num Pubs in 2008-2012 9.604 4.057 3.900 4.756
(16.44) (5.261) (5.095) (5.892)

Career Age 10.53 4.491 4.355 5.097
(9.885) (4.378) (4.228) (4.945)

Num Active Years in 2008-2012 2.921 2.070 2.020 2.291
(1.509) (1.250) (1.225) (1.336)

1[University] 0.442 0.428 0.419 0.465
(0.497) (0.495) (0.493) (0.499)

Fraction of Foreign Coauthors 0.115 0.0163 0.0135 0.0288
(0.197) (0.0709) (0.0643) (0.0935)

Num of Distinct Foreign Coauthors 3.980 0.311 0.248 0.593
(11.66) (1.541) (1.327) (2.237)

1[Have Foreign Address] 0.242 0.0283 0.0235 0.0494
(0.428) (0.166) (0.152) (0.217)

Fraction of Foreign Coauthors 0.115 0.0163 0.0135 0.0288
(0.197) (0.0709) (0.0643) (0.0935)

1[Have Foreign Funding] 0.280 0.0476 0.0378 0.0909
(0.449) (0.213) (0.191) (0.288)

1[Have Coauthors with Foreign Funding] 0.811 0.738 0.722 0.808
(0.392) (0.440) (0.448) (0.394)

Growth Rate of Num Pubs 2008-2012 -0.00147 -0.00387 -0.00226 -0.0101
(0.345) (0.315) (0.314) (0.318)

Num Pubs 2.818 1.739 1.717 1.836
(3.725) (1.343) (1.325) (1.416)

Growth Rate of IF-wt Pubs 2008-2012 -0.00813 -0.0145 -0.0135 -0.0184
(0.540) (0.524) (0.521) (0.535)

Num Impact Factor Weighted Pubs 8.589 4.713 4.558 5.400
(15.96) (5.138) (4.984) (5.725)

Growth Rate of Num CN Collab 2008-2012 0.0157 0.00411 0.00202 0.0122
(0.246) (0.144) (0.0964) (0.254)

Num Chinese Collaborator 0.287 0.0552 0.0190 0.216
(1.990) (0.557) (0.284) (1.139)

Growth Rate of Num Collab 2008-2012 0.0347 0.0334 0.0337 0.0324
(0.562) (0.539) (0.544) (0.519)

Num Collaborator 12.66 7.891 7.699 8.742
(17.97) (6.759) (6.575) (7.465)

Observations 675,195 231,296 188,790 42,506

Notes: Standard deviation in parentheses.
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Table A9: U.S.-based Researcher Panel Descriptive Statistics
:Outcome Variables

(1) (2) (3) (4)
All Matched Matched-Untreated Matched-Treated

Num Pubs in 2008-2012 9.604 4.057 3.900 4.756
(16.44) (5.261) (5.095) (5.892)

Career Age 10.53 4.491 4.355 5.097
(9.885) (4.378) (4.228) (4.945)

Num Active Years in 2008-2012 2.921 2.070 2.020 2.291
(1.509) (1.250) (1.225) (1.336)

1[University] 0.442 0.428 0.419 0.465
(0.497) (0.495) (0.493) (0.499)

Fraction of Foreign Coauthors 0.115 0.0163 0.0135 0.0288
(0.197) (0.0709) (0.0643) (0.0935)

Num of Distinct Foreign Coauthors 3.980 0.311 0.248 0.593
(11.66) (1.541) (1.327) (2.237)

1[Have Foreign Address] 0.242 0.0283 0.0235 0.0494
(0.428) (0.166) (0.152) (0.217)

Fraction of Foreign Coauthors 0.115 0.0163 0.0135 0.0288
(0.197) (0.0709) (0.0643) (0.0935)

1[Have Foreign Funding] 0.280 0.0476 0.0378 0.0909
(0.449) (0.213) (0.191) (0.288)

1[Have Coauthors with Foreign Funding] 0.811 0.738 0.722 0.808
(0.392) (0.440) (0.448) (0.394)

Growth Rate of Num Pubs 2008-2012 -0.00147 -0.00387 -0.00226 -0.0101
(0.345) (0.315) (0.314) (0.318)

Num Pubs 2.818 1.739 1.717 1.836
(3.725) (1.343) (1.325) (1.416)

Growth Rate of IF-wt Pubs 2008-2012 -0.00813 -0.0145 -0.0135 -0.0184
(0.540) (0.524) (0.521) (0.535)

Num Impact Factor Weighted Pubs 8.589 4.713 4.558 5.400
(15.96) (5.138) (4.984) (5.725)

Growth Rate of Num CN Collab 2008-2012 0.0157 0.00411 0.00202 0.0122
(0.246) (0.144) (0.0964) (0.254)

Num Chinese Collaborator 0.287 0.0552 0.0190 0.216
(1.990) (0.557) (0.284) (1.139)

Growth Rate of Num Collab 2008-2012 0.0347 0.0334 0.0337 0.0324
(0.562) (0.539) (0.544) (0.519)

Num Collaborator 12.66 7.891 7.699 8.742
(17.97) (6.759) (6.575) (7.465)

Observations 675,195 231,296 188,790 42,506

Notes: Standard deviation in parentheses.

A.4 Ethnicity & Field Imputation
This paper uses measures of ethnicity and scientific field distilled from self-reported
names and departments, respectively. To impute ethnicity, we employ the Python pack-
age ethnicseer using individuals’ full names. We use ethnicseer specifically because it can
classify ethnicity with the granularity our analysis requires (e.g., Chinese ethnicity instead
of Asian). In addition, Torvik and Agarwal (2016) find that ethnicseer agrees with Ethnea
(another popular ethnicity imputation package) 94% of the time for ethnically Chinese
names, suggesting our approach is comparable with that of other researchers. We do not
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use the non-Chinese ethnicities imputed by ethnicseer other than to classify individuals as
“non-ethnically Chinese.”

To infer scientific fields for ORCID researchers, we leverage academic department
data self-reported on education spells. We use the FoR (Field of Research) framework
from ANZSRC (Australian and New Zealand Standard Research Classification) to map
unstructured department data onto 22 distinct research fields (Australian Bureau of Statis-
tics, 2020). For example, a researcher whose department contained the substring “biolog”
might be assigned to the field “biological sciences.” When a researcher’s listed depart-
ment contains multiple relevant substrings, we rely on the last one to infer field. For
example, a researcher listing their department as “computational biology” would be as-
signed to the field “biological sciences” by the substring “biolog” (as opposed to “com-
puter sciences” by the substring “comput”).

B Additional Enrollment Results and Robustness Checks
In this section, we provide additional results regarding the enrollment of graduate stu-
dents in U.S. doctoral programs.

In Table 3, we documented that following the rise in U.S.-China tensions, an increas-
ing share of ethnically Chinese doctoral students enrolled in non-U.S. anglophone pro-
grams relative to non-ethnically Chinese doctoral students. In Figures A3(a) and A3(b),
we estimate and plot event studies for the enrollment in U.K. universities and all non-U.S.
anglophone universities. While the pre-trends are noisy and not perfectly flat for enroll-
ment in U.K. universities, the event study for non-U.S. anglophone universities reveals a
distinctive increase in enrollment in the years following 2016.

Figure A3: Event Studies for Propensity to Enroll in English Speaking Al-
ternative Universities

(a) Enrolls in U.K. University
(b) Enrolls in Non-U.S. anglophone Uni-
versity

Notes: These plots report event-study coefficients from regressions predicting enrollment
in U.K. or non-U.S. anglophone universities. The treated group is ethnically Chinese doc-
toral students, and the control group is non-ethnically Chinese doctoral students. The re-
gressions includes cohort, prior degree country, and field fixed effects. Standard errors are
clustered at the field-year level.
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We conduct a series of additional analyses and demonstrate the robustness of our
findings regarding enrollment in U.S. programs. In Table A10, we repeat our analysis of
enrollment in U.S. programs for subsets of areas of study. In Column (1), we show the
results for Social Science. In Column (2), we show the results for Social Science and STEM
together. In Column (3), we show the results for Engineering. The estimated coefficients
on the interaction between the student being ethnically Chinese and the observation com-
ing from after 2016 are all negative and significant at the 5% level. This implies that across
these different areas of study the negative impact on enrollment occurred.

Table A10: Main Treatment Effects on Mobility among Ethnically Chinese
Researchers Across Fields of Study

(1) (2) (3)
Enrolls in U.S. Enrolls in U.S. Enrolls in U.S.

Treatment = ethnically 0.0161 0.0297∗∗∗ 0.0426∗∗∗
Chinese=1 (0.0105) (0.00415) (0.00629)

Treatment = ethnically -0.0498∗∗ -0.0386∗∗∗ -0.0323∗∗∗
Chinese=1 × Post-2016=1 (0.0196) (0.00757) (0.0108)
Field FE Y Y Y
Cohort FE Y Y Y
Prior Country FE Y Y Y
Model OLS OLS OLS
Sample Social Sciences Social + STEM Engineering
Errors Clustered Clustered Robust
Mean DV 0.214 0.234 0.243
Obs 30283 159210 35250

Notes: Standard errors in parentheses, either clustered at the field-year level or robust. The dependent
variable is a binary variable capturing whether the student enrolled in a U.S. university. The analysis
sample is all doctoral students. The analysis period is 2008-2019, where the post treatment period is
2016-2019. * p < 0.10, ** p < 0.05, *** p < 0.01.

Next, in Table A11, we re-run our difference-in-differences estimates for the enroll-
ment in U.S. programs while varying the maximum number of years permitted between
a researcher’s Ph.D. and their prior degree. Reassuringly, the estimated coefficients on
the main effect and interaction terms are largely unchanged.
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Table A11: Main Treatment Effects on Enrollment among Ethnically Chi-
nese Researchers with Lag Sensitivity Checks

(1) (2) (3) (4)
Enrolls in U.S. Enrolls in U.S. Enrolls in U.S. Enrolls in U.S.

Treatment = ethnically 0.0319∗∗∗ 0.0321∗∗∗ 0.0320∗∗∗ 0.0342∗∗∗
Chinese=1 (0.00456) (0.00460) (0.00431) (0.00494)

Treatment = ethnically -0.0371∗∗∗ -0.0371∗∗∗ -0.0367∗∗∗ -0.0394∗∗∗
Chinese=1 × Post-2016=1 (0.00778) (0.00782) (0.00773) (0.00814)
Field FE Y Y Y Y
Cohort FE Y Y Y Y
Prior Country FE Y Y Y Y
Model OLS OLS OLS OLS
Max Time Since Prior Degree 10 Years 15 Years 5 Years 1 Year
Mean DV 0.239 0.237 0.244 0.259
Obs 128910 130838 121608 91649

Notes: Standard errors clustered at the field-year level in parentheses. The dependent variable is in the
column heading. The analysis sample is all global Ph.D. "seekers." Each column varies the maximum
number of years permitted between a researcher’s Ph.D. and their prior degree. The analysis period is
2008-2019, where the post treatment period is 2016-2019. * p < 0.10, ** p < 0.05, *** p < 0.01.

Given that we implement a difference-in-differences empirical approach, we run ad-
ditional analyses to test our estimates robustness to the possibility of non-parallel trends.
We do this using three methods. First, in Figure A4(a) we visualize the possibility of a par-
allel trends violation using the Stata pretends package based on the work of Roth (2022).
Second, in Figure A4(b), we run the HonestDiD estimation procedure for sensitivity anal-
ysis based on Rambachan and Roth (2023). Finally, in Figure A4(c), we run a permutation
test.
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Figure A4: Parallel Trends Tests for Enrollment in U.S. Doctoral Programs
Results

(a) pretrends Test (b) honestdid Test

(c) ritest Test
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Figure A5: Raw Fraction of New Doctoral Students Enrolling in U.S. By
Nationality

Notes: This figure plots the raw fraction of new doctoral students enrolling in U.S. universities by
nationality. We infer the nationality of an incoming doctoral student based on the country of their prior
degree. We include plots for nationally Chinese and nationally Indian doctoral students.
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C Additional Retention Results and Robustness Checks
In Table 5, we documented that following the rise in U.S.-China tensions, an increasing
share of ethnically Chinese graduates of doctoral programs took positions in non-U.S.
anglophone universities. In Figures A6(a) and A6(b), we estimate and plot event studies
for taking jobs in the U.K. and all non-U.S. anglophone countries. These plots are noisy,
and any change in years after 2016 are less obvious.

We conduct a series of additional analyses and demonstrate the robustness of our
findings regarding retention of grad students in U.S. programs.

First, in Table A12, we repeat our analysis of taking a position in the U.S. after grad-
uation for subsets of graduates based on the area of study. In Column (1), we show the
results for Social Science. In Column (2), we show the results for Social Science and STEM
together. In Column (3), we show the results for Engineering. The estimated coefficients
on the interaction between the student being ethnically Chinese and the observation com-
ing from after 2016 negative and significant in Columns (2) and (3), but positive and
significant in Column (1). This implies that graduates of STEM programs experienced
qualitatively different effects than those in the social sciences.

Table A12: Main Treatment Effects on Mobility among Ethnically Chinese
U.S. Graduates Beyond STEM

(1) (2) (3)
Job in U.S. Job in U.S. Job in U.S.

Ethnically CN=1 -0.181∗∗∗ -0.0293∗∗∗ 0.0286
(0.0178) (0.00955) (0.0183)

Ethnically CN=1 × 0.0467∗∗ -0.0217∗ -0.0635∗∗∗
Post-2016=1 (0.0235) (0.0115) (0.0210)
Field FE Y Y Y
Cohort FE Y Y Y
Prior Country FE Y Y Y
Model OLS OLS OLS
Sample Social Sciences Social + STEM Engineering
Errors Clustered Clustered Robust
Mean DV 0.786 0.839 0.809
Obs 13423 64313 7778

Notes: Standard errors in parentheses, either clustered at the field-year level or robust. The dependent
variable is a binary variable capturing whether the student’s post-graduation job was in the U.S. The
analysis sample is all global Ph.D. "seekers." The analysis period is 2008-2019, where the post treatment
period is 2016-2019. * p < 0.10, ** p < 0.05, *** p < 0.01.

Next, we examine the subset of graduate students who completed a doctoral degree
and look at the probability of remaining in the U.S. after completion of that degree. Fig-
ure A7 shows the event study for these individuals. The pattern, similar to the full sample
used in the main text, shows flat pre-trends and a distinctive trend break following 2016.

Table A13 confirms these results by estimating the difference-in-differences specifica-
tion using the subset of individuals graduating with a doctoral degree. Column (1) shows
the results for taking a job in the U.S. Column (2) shows the results for taking a job in the
U.K. Column (3) shows the results for taking a job in a non-U.S. anglophone country. The
significant coefficient on the interaction terms in Column (1) and Column (3) reveals that
these doctoral grads are relatively less likely to take a position in the U.S and relatively
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Figure A6: Event Studies for Likelihood of Migration to English Speaking
Alternative Employers

(a) Job at U.K. Employer (b) Job at Non-U.S. anglophone Employer

Notes: These plots report event-study coefficients from regressions predicting whether a post-graduation
job at a U.K. or non-U.S. anglophone employer. The treated group is ethnically Chinese U.S. graduates, and
the control group is non-ethnically Chinese U.S. graduates. The regressions include cohort and field fixed
effects. Standard errors are clustered at the field-year level.

more likely to take a position in a non-U.S. anglophone country. The results do not show
an increasing migration to the U.K.

Table A13: Main Treatment Effects on Mobility among Ethnically Chinese
U.S. Graduates (Ph.D. Only)

(1) (2) (3)
Job in U.S. Job in U.K. Job in Anglo.

Ethnically CN=1 0.0206∗∗∗ -0.00825∗∗∗ -0.0158∗∗∗
(0.00689) (0.00223) (0.00351)

Ethnically CN=1 × -0.0304∗∗∗ 0.00396 0.00820∗
Post-2016=1 (0.00955) (0.00264) (0.00424)
Field FE Y Y Y
Job Year FE Y Y Y
Model OLS OLS OLS
Mean DV 0.845 0.0121 0.0297
Observations 36015 36015 36015

Notes: Robust standard errors in parentheses without clustering. The dependent variable is in the column
heading. The analysis sample is all jobs taken after 2008 by U.S. graduates earning degrees after 2005. The
analysis period is 2008-2019, where the post treatment period is 2016-2019. * p < 0.10, ** p < 0.05, *** p <

0.01.

In Table A14, we re-run our difference-in-differences estimates for taking a job in the
U.S. while varying the maximum number of years permitted between a researcher’s job
and graduate degree. Reassuringly, the estimated coefficients on the main effect and in-
teraction terms are largely unchanged.
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Figure A7: Event Study for Likelihood of U.S. Retention (Ph.D. Only)

Notes: This plot reports event-study coefficients from a regression predicting whether post-graduation jobs
remain in the U.S among Ph.D. graduates only. The treated group is ethnically Chinese U.S. graduates, and
the control group is non-ethnically Chinese U.S. graduates. The regression includes cohort and field fixed
effects. Standard errors are clustered at the field-year level.
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Table A14: Main Treatment Effects on Mobility among Ethnically Chinese
U.S. Graduates with Lag Sensitivity

(1) (2) (3)
Job in U.S. Job in US Job in US

Ethnically CN=1 -0.00119 0.00251 0.00592
(0.00767) (0.00769) (0.00748)

Ethnically CN=1 × -0.0360∗∗∗ -0.0372∗∗∗ -0.0385∗∗∗
Post-2016=1 (0.00946) (0.00949) (0.00960)
Field FE Y Y Y
Cohort FE Y Y Y
Prior Country FE Y Y Y
Model OLS OLS OLS
Max Time Since Prior Degree 3 Years 2 Years 1 Year
Mean DV 0.853 0.857 0.863
Obs 50890 48634 45537

Notes: Standard errors clustered at the field-year level in parentheses. The dependent variable is in the
column heading. The analysis sample is all jobs taken after 2008 by U.S. graduates earning degrees after
2005. Each column varies the maximum number of years permitted between a researcher’s job and their
graduate degree. The analysis period is 2008-2019, where the post treatment period is 2016-2019. * p <

0.10, ** p < 0.05, *** p < 0.01.

Lastly, we run additional analyses to test our estimates robustness to the possibility
of non-parallel trends. We do this using three methods. First, in Figure A4(a) we visu-
alize the possibility of a parallel trends violation using the Stata pretends package based
on the work of Roth (2022). Second, in Figure A4(b), we run the HonestDiD estimation
procedure for sensitivity analysis based on Rambachan and Roth (2023). Finally, in Fig-
ure A4(c), we run a permutation test.
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(a) pretrends Test for U.S. Graduate Jobs (b) honestdid Test for U.S. Graduate Jobs

(c) ritest Test for U.S. Graduate Jobs
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D Additional Knowledge Flows Results and Robustness
Checks for Chinese Researchers Building on Science Pro-
duced in U.S.

In our main analysis, we investigate if Chinese researchers changed their usage of scien-
tific works produced in the U.S. in the years following 2016. In the plots below, we plot
event-study coefficients predicting the share of citations on the papers of researchers in
China that cites U.S. sources relative to U.K. sources. Figure A9(a) uses a dependent vari-
able of recent publications, which are defined as publications produced in the previous
five years. Figure A9(b) uses a dependent variable of frontier publications, defined as top
cited papers in a scientific field. Finally, Figure A9(c) shows the results with a dependent
variable of recent-frontier works. All of the figures show a distinctive trend break at the
2016.

We also run our analysis on subsets of publications from outside of STEM fields in
order to test if the effect is more-widespread. In Table A15, we show the estimated
difference-in-differences results for Social Science papers. We estimate this with a depen-
dent variable of the raw share of citations, the share of recent citations, frontier citations,
and recent-frontier citations. Except for the raw share of citations, all of the other interac-
tion terms reveal negative and significant effects on the share of U.S. social science works
being cited.

Table A15: Main Treatment Effects on Knowledge Flows among Chinese
Publications (Social Sciences)

DV: Share Size

(1) (2) (3) (4)
Raw Recent Frontier Recent Frontier

Treated = citing U.S.=1 0.202∗∗∗ 0.148∗∗∗ 0.279∗∗∗ 0.246∗∗∗
(0.0231) (0.0200) (0.0327) (0.0306)

Treated = citing U.S.=1 -0.00467 -0.0191∗∗∗ -0.0101∗∗ -0.0517∗∗∗
× Post-2016=1 (0.00327) (0.00551) (0.00439) (0.00818)
Citing Paper FE Y Y Y Y
Model OLS OLS OLS OLS
Sample Social Sciences Social Sciences Social Sciences Social Sciences
Mean DV 0.158 0.116 0.209 0.176
Observations 179782 161124 142528 100140

Notes: Robust standard errors in parentheses with standard errors clustered at the field level. The depen-
dent variable is in the column heading. The analysis sample is reference shares of Chinese publications
citing U.S. or U.K. research. The analysis period is 2011-2019, where the post treatment period is 2016-2019.
‘Treated’ refers to reference shares citing U.S. research, with those citing U.K. research serving as the control
group. * p < 0.10, ** p < 0.05, *** p < 0.01.

We conduct a series of additional analyses and demonstrate the robustness of our
findings.

In Table A16, we highlight that our results regarding citations to frontier works are
not driven by the cutoff point at which we define a paper as being a frontier work. In this
table, we repeat our analysis for frontier works with a threshold of the work being in the
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Figure A9: Event-Study Plots for Chinese Researchers Building on U.S.
Science

(a) Predicting Share Size (Recent) (b) Predicting Share Size (Frontier)

(c) Predicting Share Size (Recent Frontier)

Notes: These plots report event-study coefficients from regressions predicting adjusted sizes of reference
shares on Chinese papers. The treated group is reference shares citing the U.S., and the control group is
reference shares citing the U.K. The regressions include fixed effects for the citing paper. Standard errors
are clustered at the field level.
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top 3% or 5% of works in its field of science. The results are fairly similar across these
specifications.

Table A16: Main Treatment Effects on Knowledge Flows among Chinese
Publications (Other Frontier Thresholds)

DV: Share Size

(1) (2) (3) (4)
Frontier (3%) Recent Frontier (3%) Frontier (5%) Recent Frontier (5%)

Treated = citing U.S.=1 0.247∗∗∗ 0.211∗∗∗ 0.231∗∗∗ 0.194∗∗∗
(0.0188) (0.0223) (0.0182) (0.0211)

Treated = citing U.S.=1 -0.0131∗∗∗ -0.0273∗∗∗ -0.0125∗∗∗ -0.0256∗∗∗
× Post-2016=1 (0.00463) (0.00455) (0.00449) (0.00445)
Citing Paper FE Y Y Y Y
Model OLS OLS OLS OLS
Mean DV 0.172 0.140 0.161 0.130
Observations 3727442 2946932 3863692 3232964

Notes: Robust standard errors in parentheses with standard errors clustered at the field level. The depen-
dent variable is in the column heading. The analysis sample is reference shares of Chinese publications
citing U.S. or U.K. research. The analysis period is 2011-2019, where the post treatment period is 2016-2019.
‘Treated’ refers to reference shares citing U.S. research, with those citing U.K. research serving as the control
group. * p < 0.10, ** p < 0.05, *** p < 0.01.

Given that we implement a difference-in-differences empirical approach, we run ad-
ditional analyses to test our estimates robustness to the possibility of non-parallel trends.
We do this using three methods. First, in Figure A10(a) we visualize the possibility of
a parallel trends violation using the Stata pretends package based on the work of Roth
(2022). Second, in Figure A10(b), we run the HonestDiD estimation procedure for sensi-
tivity analysis based on Rambachan and Roth (2023). Finally, in Figure A10(c), we run a
permutation test.
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Figure A10: Parallel Trends Tests for Chinese Reliance on U.S. Science Re-
sults

(a) pretrends Test (b) honestdid Test

(c) ritest Test
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E Additional Knowledge Flows Results and Robustness
Checks for U.S. Researchers Building on Science Pro-
duced in China

In our main analysis, we investigate if U.S. researchers changed their usage of scientific
works produced in China in the years following 2016. In the plots below, we plot event-
study coefficients predicting the share of citations to the papers of researchers in China
when comparing U.S. versus U.K. researchers. Figure A11(a) uses a dependent variable
of recent publications, which are defined as publications produced in the previous five
years. Figure A11(b) uses a dependent variable of frontier publications, defined as top
cited papers in a scientific field. Finally, Figure A11(c) shows the results with a dependent
variable of recent-frontier works. All of the figures show relatively flat plots across years.

We also run our analysis on subsets of publications from outside of STEM fields in
order to test if the effect is more-widespread. In Table A17, we show the estimated
difference-in-differences results for Social Science papers. We estimate this with a de-
pendent variable of the raw share of citations, the share of recent citations, frontier cita-
tions, and recent-frontier citations. Again, the insignificant and small estimated interac-
tion terms do not indicate meaningful changes in the usage of Chinese research.

Table A17: Main Treatment Effects on Knowledge Flows among U.S.-U.K.
Publications (Social Sciences)

DV: Share Size

(1) (2) (3) (4)
Raw Recent Frontier Recent Frontier

Treated = U.S. publication=1 -0.000456 -0.000209 -0.000784∗ -0.000713
(0.000331) (0.000493) (0.000475) (0.000577)

Treated = U.S. publication=1 0.000138 0.000398 0.000336 -0.000110
× Post-2016=1 (0.000271) (0.000511) (0.000260) (0.000517)
Field & Year FE Y Y Y Y
Model OLS OLS OLS OLS
Sample Social Sciences Social Sciences Social Sciences Social Sciences
Mean DV 0.00581 0.00954 0.00512 0.00808
Observations 662080 629124 557060 410616

Notes: Robust standard errors in parentheses with standard errors clustered at the field level. The depen-
dent variable is in the column heading. The analysis sample is reference shares of Chinese publications
citing U.S. or U.K. research. The analysis period is 2011-2019, where the post treatment period is 2016-2019.
‘Treated’ refers to reference shares citing U.S. research, with those citing U.K. research serving as the control
group. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure A11: Event-Study Plots for U.S. Researchers Building on Chinese
Science

(a) Predicting Share Size (Recent) (b) Predicting Share Size (Frontier)

(c) Predicting Share Size (Recent Frontier)

Notes: These plots report event-study coefficients from regressions predicting adjusted shares of references
citing Chinese research using U.S. and U.K. publications. The treated group is U.S. papers, and the control
group is U.K. papers. The regressions include fixed effects for publication years and research fields. Stan-
dard errors are clustered at the field level.
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F Additional Productivity Results and Robustness Checks
for Chinese Researchers

We report the heterogeneity by field analysis of each STEM field below in Figure A12 and
Table A18.

While our main results on the effect do not show significant changes in Chinese re-
searcher productivity, we probe this result with variations of the empirical specification
and sample.

First, we examine if the results hold when also examining social science research. In
Table A19, we run the analysis pooling social science and STEM researchers together. The
results are consistent with the main analysis and does not show a significant change in
the productivity of these researchers after 2016.

Table A19: Main Treatment Effects on Publications among Researchers in
China, STEM + Social Sciences

(1) (2) (3) (4)
Pubs US Pubs CN Pubs IF weighted Pubs

Predom. Cite US=1 × Post-2016=1 -0.025 -0.003 -0.005 -0.005
(0.016) (0.027) (0.018) (0.031)

Indiv FE Y Y Y Y
Year FE Y Y Y Y
Model Poisson Poisson Poisson Poisson
CEM Y Y Y Y
Mean DV 3.292 1.118 6.883 2.666
Observations 54,605 48,677 54,605 48,677

Robust standard errors in parentheses and clustered at the person level. The dependent variable is in column header. The analysis
sample is China-based researcher panel. The analysis period is 2013-2019, where the post treatment period is 2016-2019. “Predom Cite
US” refers to the Chinese researchers whose fraction of pre-2013 raw citation share is greater than the within-field 75th percentile to
U.S. papers and below the 25th percentile to U.K. papers. The control group is Chinese researchers with above 75th percentile within
field U.K. citation share and below 25th percentile within field U.S. citation share. The regression is weighted by the CEM matching
weights. All specifications include the post dummy, year fixed effects, and individual fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01.

Next, we examine the robustness of our findings when varying the definition of the
treatment and control. We begin by running our main specification but change the share
of citations thresholds at which we define a Chinese researcher to be reliant on U.S. or
U.K. produced research. Table A20 shows the results for the thresholds of 75%, 50%, and
90%. Each of these results show not statistically significant effects on productivity.

Lastly, we consider if the results would be different if we defined the treatment and
control group based on their usage of only recently published works. In Table A21, we
repeat the estimation in that way and again find not significant change in productivity.
We also estimate the event study for this definition of treatment and control group and
plot the coefficient in Figure A13. These plots do not show significant declines overall.
The total number of publications does show a slight decrease in the years following 2016,
however, this decrease is not statistically significant.
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Figure A12: Coefficient Plots for Productivity Change among China-based
Researchers, by Researcher’s modal field

(a) DV:Pubs (b) DV: U.S. Pubs

(c) DV: IF wt Pubs (d) DV:IF wt U.S. Pubs

Notes: This plot reports coefficient from the Poisson regression using the China-based researcher panel for
each field. The dependent variable is in subfigure title. The treated group is the China-based researchers
predominately citing US sciences, and the control group is the China-based researchers predominately
citing UK sciences. The regressions include individual fixed effect and year fixed effect. Standard errors are
clustered at the individual level.
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Table A18: Main Treatment Effects on Productivity among China-based
Researchers, By Focal Researcher’s Modal Field

Panel A: DV:Num Pubs

(1) (2) (3) (4) (5) (6) (7)
Agri, Earth

& Environment
Biological
Sciences

Biomed.
& Health

Chemical
Sciences

Engineering
Info & CompSci Math Physics

Predom. Cite US=1 × Post-2016=1 -0.060 -0.128∗∗∗ -0.006 0.013 -0.057∗ 0.061 0.175∗∗∗

(0.053) (0.038) (0.028) (0.051) (0.031) (0.086) (0.063)
Indiv FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y Y Y
Mean DV 3.376 2.956 3.134 3.342 3.634 2.552 3.150
Observations 4,692 5,342 17,982 5,401 16,541 1,449 2,858

Panel B: DV:Num Pubs in US-based journals

(1) (2) (3) (4) (5) (6) (7)
Agri, Earth

& Environment
Biological
Sciences

Biomed.
& Health

Chemical
Sciences

Engineering
Info & CompSci Math Physics

Predom. Cite US=1 × Post-2016=1 -0.093 -0.167∗∗ 0.008 -0.079 -0.051 0.078 0.188∗∗

(0.112) (0.075) (0.044) (0.096) (0.050) (0.142) (0.084)
Indiv FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y Y Y
Mean DV 0.836 0.896 1.091 0.884 1.327 1.010 1.483
Observations 3,946 4,908 16,843 4,571 14,264 1,360 2,505

Panel C: DV:Num Impact Factor wt Pubs

(1) (2) (3) (4) (5) (6) (7)
Agri, Earth

& Environment
Biological
Sciences

Biomed.
& Health

Chemical
Sciences

Engineering
Info & CompSci Math Physics

Predom. Cite US=1 × Post-2016=1 -0.041 -0.119∗∗∗ 0.031 0.005 -0.044 0.082 0.185∗∗∗

(0.054) (0.043) (0.033) (0.060) (0.034) (0.089) (0.071)
Indiv FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y Y Y
Mean DV 7.301 6.324 6.662 7.029 7.396 4.873 6.481
Observations 4,692 5,342 17,982 5,401 16,541 1,449 2,858

Panel D: DV:Impact Factor wt US-based Pubs

(1) (2) (3) (4) (5) (6) (7)
Agri, Earth

& Environment
Biological
Sciences

Biomed.
& Health

Chemical
Sciences

Engineering
Info & CompSci Math Physics

Predom. Cite US=1 × Post-2016=1 -0.056 -0.144∗ 0.024 -0.189 -0.078 0.054 0.213∗∗

(0.113) (0.085) (0.055) (0.128) (0.054) (0.159) (0.094)
Indiv FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y Y Y
Mean DV 2.051 2.068 2.663 2.279 3.113 2.055 3.286
Observations 3,946 4,908 16,843 4,571 14,264 1,360 2,505

Notes: Robust standard errors in parentheses and clustered at the person level. The dependent variable
is in panel header. The analysis sample is China-based researcher panel. The analysis period is 2013-
2019, where the post treatment period is 2016-2019. “Predom Cite US” refers to the Chinese researchers
whose fraction of pre-2013 raw citation share is greater than the within-field 75th percentile to U.S. papers
and below the 25th percentile to U.K. papers. The control group is Chinese researchers with above 75th

percentile within field U.K. citation share and below 25th percentile within field U.S. citation share. The
regression is weighted by the CEM matching weights. All specifications include the post dummy, year
fixed effects, and individual fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01..
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Table A20: Main Treatment Effects on Productivity among China-based
Researchers, By Different Threshold Definitions of Reliance

Panle A: Treatment: Cite Share to US above 75pctile and to UK below 25pctile
(1) (2) (3) (4)

Pubs US Pubs IF wt Pubs IF wt US Pubs
Predom. Cite US (>75pct)=1 × post=1 -0.024 -0.003 -0.005 -0.005

(0.016) (0.027) (0.018) (0.032)
Indiv FE Y Y Y Y
Year FE Y Y Y Y
Model Poisson Poisson Poisson Poisson
CEM Y Y Y Y
Mean DV 3.298 1.120 6.892 2.668
Observations 54,265 48,397 54,265 48,397

Panel B: Treatment: Cite Share to US above 50pctile and to UK below 50pctile
(1) (2) (3) (4)

Pubs US Pubs IF wt Pubs IF wt US Pubs
Predom. Cite US (>50pct)=1 × post=1 -0.006 -0.004 0.001 -0.018

(0.007) (0.010) (0.008) (0.012)
Indiv FE Y Y Y Y
Year FE Y Y Y Y
Model Poisson Poisson Poisson Poisson
CEM Y Y Y Y
Mean DV 4.904 1.551 10.921 3.962
Observations 307,413 286,030 307,413 286,030

Panel C: Treatment: Cite Share to US above 90pctile and to UK below 10pctile
(1) (2) (3) (4)

Pubs US Pubs IF wt Pubs IF wt US Pubs
Predom. Cite US (>90pct)=1 × post=1 0.034 0.069 0.055 0.066

(0.042) (0.074) (0.047) (0.083)
Indiv FE Y Y Y Y
Year FE Y Y Y Y
Model Poisson Poisson Poisson Poisson
CEM Y Y Y Y
Mean DV 2.682 0.908 5.223 2.024
Observations 7,843 6,676 7,843 6,676

Notes: Robust standard errors in parentheses and clustered at the person level. The dependent variable
is in panel header. The analysis sample is China-based researcher panel. The analysis period is 2013-
2019, where the post treatment period is 2016-2019. “Predom Cite US” refers to the Chinese researchers
whose fraction of pre-2013 raw citation share is greater than the within-field 75th percentile to U.S. papers
and below the 25th percentile to U.K. papers. The control group is Chinese researchers with above 75th

percentile within field U.K. citation share and below 25th percentile within field U.S. citation share. The
regression is weighted by the CEM matching weights. All specifications include the post dummy, year
fixed effects, and individual fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01..
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Table A21: Main Treatment Effects among Chinese Researchers, using re-
cent citation share as treatment

(1) (2) (3) (4)
Pubs US Pubs IF wt Pubs IF wt US Pubs

Predom. Cite US Recent=1 × Post-2016=1 -0.029 -0.009 -0.016 -0.016
(0.019) (0.030) (0.021) (0.034)

Indiv FE Y Y Y Y
Year FE Y Y Y Y
Model Poisson Poisson Poisson Poisson
CEM Y Y Y Y
Mean DV 3.119 1.041 6.324 2.386
Observations 45,956 41,062 45,956 41,062

Notes: Robust standard errors in parentheses and clustered at the person level. The dependent variable is in column header. The
analysis sample is China-based researcher panel. The analysis period is 2013-2019, where the post treatment period is 2016-2019.
“Predom Cite US” refers to the Chinese researchers whose fraction of pre-2013 recent citation share is greater than the within-field
75th percentile to U.S. papers and below the 25th percentile to U.K. papers. The control group is Chinese researchers with above 75th

percentile within field U.K. citation share and below 25th percentile within field U.S. citation share. The regression is weighted by the
CEM matching weights. All specifications include the post dummy, year fixed effects, and individual fixed effects. * p < 0.10, ** p <
0.05, *** p < 0.01.
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Figure A13: Productivity Change among Chinese Researchers, using re-
cent citation share to define treatment

(a) DV:Num Pubs (b) DV: U.S. Pubs

(c) DV: IF Weighted Pubs (d) DV:IF Weighted U.S. Pubs

Notes: This plot reports event-study coefficients from the Poisson regression using the China-based re-
searcher panel. The dependent variable is in subfigure title. The treated group is the China-based re-
searchers predominately citing US sciences, as defined by recent citation share, and the control group is the
China-based researchers predominately citing UK sciences. The regressions include individual fixed effect
and year fixed effect. Standard errors are clustered at the individual level.
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G Additional Productivity Results and Robustness Checks
for U.S. Researchers

We report the heterogeneity by field analysis for each STEM field below in Figure A14
and TableA22.

We examine if the results regarding changes in ethnically Chinese U.S.-based researchers
hold when also examining social science research. In Table A23, we run the analysis when
pooling social science and STEM researchers. The results show a significant change in the
productivity of these researchers, demonstrating our main results are not driven by ex-
cluding social science researchers.

Table A23: Main Treatment Effects on Publications among U.S.-based re-
searchers, STEM + Social Sciences

(1) (2) (3) (4)
Pubs US Pubs IF weighted Pubs IF weighted US Pubs

Ethnic CN=1 × Post-2016=1 -0.018∗∗∗ -0.052∗∗∗ -0.030∗∗∗ -0.060∗∗∗
(0.007) (0.008) (0.009) (0.011)

Indiv FE Y Y Y Y
Year FE Y Y Y Y
Model Poisson Poisson Poisson Poisson
CEM Y Y Y Y
Mean DV 2.628 1.599 7.726 5.170
Observations 674,045 638,616 674,045 638,616

Notes: Robust standard errors in parentheses and clustered at the person level. The dependent variable is in column header.The
analysis sample is all active U.S.-based researchers in STEM fields. The analysis period is 2013-2019, where the post treatment period
is 2016-2019. ‘1[Ethnic CN]’ refers the treatment group: being ethnically Chinese, as identified by name. The control group is non-
ethnically Chinese researchers. The regression is weighted by the CEM matching weight. All specifications include the post dummy,
year fixed effects, and individual fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01.

We also examine the robustness of our findings by implementing both a permuta-
tion test as well as the HonestDiD estimation procedure for sensitivity analysis based on
Rambachan and Roth (2023). Figure A15 shows the results of the permutation test, while
Figure A16 shows the results of HonestDiD.
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Figure A14: Coefficient Plots for Productivity Change among U.S.-based
Researchers, by Researcher’s modal field

(a) DV:Pubs (b) DV: U.S. Pubs

(c) DV: IF wt Pubs (d) DV:IF wt U.S. Pubs

Notes: This plot reports coefficient from the Poisson regression using the U.S.-based researcher panel for
each field. The dependent variable is in subfigure title. The treated group is the U.S.-based ethnically Chi-
nese researchers, and the control group is the matched non-ethnically Chinese researchers. The regressions
include individual fixed effect and year fixed effect. Standard errors are clustered at the individual level.
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Table A22: Main Treatment Effects on Productivity among U.S.-based Re-
searchers, By Focal Researcher’s Modal Field

DV:Num Pubs

(1) (2) (3) (4) (5) (6) (7)
Agri, Earth

& Environment
Biological
Sciences

Biomed.
& Health

Chemical
Sciences

Engineering
Info & CompSci

Mathmatical
Sciences

Physical
Sciences

Ethnic CN=1 × Post-2016=1 0.012 -0.023∗ -0.039∗∗∗ 0.043 0.085∗∗∗ 0.017 -0.037
(0.033) (0.014) (0.009) (0.028) (0.019) (0.055) (0.037)

Indiv FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y Y Y
Mean DV 2.353 1.960 3.030 2.167 2.254 1.794 2.420
Observations 24,208 81,874 439,524 27,035 58,555 3,309 12,247

DV:Num Pubs in US-based journals

(1) (2) (3) (4) (5) (6) (7)
Agri, Earth

& Environment
Biological
Sciences

Biomed.
& Health

Chemical
Sciences

Engineering
Info & CompSci

Mathmatical
Sciences

Physical
Sciences

Ethnic CN=1 × Post-2016=1 -0.109∗∗ -0.075∗∗∗ -0.067∗∗∗ 0.032 0.088∗∗∗ -0.019 -0.043
(0.044) (0.019) (0.011) (0.035) (0.024) (0.083) (0.050)

Indiv FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y Y Y
Mean DV 1.298 1.105 1.924 1.188 1.171 0.897 1.554
Observations 21,945 76,857 426,088 24,622 52,452 2,889 10,882

DV:Impact Factor wt Pubs

(1) (2) (3) (4) (5) (6) (7)
Agri, Earth

& Environment
Biological
Sciences

Biomed.
& Health

Chemical
Sciences

Engineering
Info & CompSci

Mathmatical
Sciences

Physical
Sciences

Ethnic CN=1 × Post-2016=1 0.029 -0.030 -0.052∗∗∗ 0.079∗∗ 0.090∗∗∗ -0.039 -0.049
(0.037) (0.020) (0.011) (0.036) (0.023) (0.065) (0.046)

Indiv FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y Y Y
Mean DV 4.850 6.621 9.330 6.048 5.236 3.974 6.357
Observations 24,208 81,874 439,524 27,035 58,555 3,309 12,247

DV:Impact Factor wt US-based Pubs

(1) (2) (3) (4) (5) (6) (7)
Agri, Earth

& Environment
Biological
Sciences

Biomed.
& Health

Chemical
Sciences

Engineering
Info & CompSci

Mathmatical
Sciences

Physical
Sciences

Ethnic CN=1 × Post-2016=1 -0.049 -0.046∗ -0.080∗∗∗ 0.058 0.083∗∗∗ -0.004 -0.026
(0.047) (0.027) (0.014) (0.044) (0.030) (0.104) (0.058)

Indiv FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Model Poisson Poisson Poisson Poisson Poisson Poisson Poisson
CEM Y Y Y Y Y Y Y
Mean DV 2.793 3.851 6.507 3.826 2.961 2.197 4.131
Observations 21,945 76,857 426,088 24,622 52,452 2,889 10,882

Notes: Robust standard errors in parentheses and clustered at the person level. The dependent variable
is in column header.The analysis sample is U.S.-based researcher panel. The analysis period is 2013-2019,
where the post treatment period is 2016-2019. ‘1[Ethnic CN]’ refers the treatment group: being ethnically
Chinese, as identified by name. The control group is non-ethnically Chinese researchers. The regression is
weighted by the CEM matching weight. All specifications include the post dummy, year fixed effects, and
individual fixed effects. * p < 0.10, ** p < 0.05, *** p < 0.01..
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Figure A15: ritest Robustness Check for Productivity Change among U.S.-
based Researchers

(a) DV:Pubs (b) DV: U.S. Pubs

(c) DV: IF wt Pubs (d) DV:IF wt U.S. Pubs
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Figure A16: honestdid Robustness Check for Productivity Change among
U.S.-based Researchers

(a) DV:Pubs (b) DV: Pubs

(c) DV:US Pubs (d) DV: U.S. Pubs

(e) DV:IF wt Pubs (f) DV: IF wt Pubs

(g) DV:IF wt U.S. Pubs (h) DV:IF wt U.S. Pubs
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