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1 Introduction

At least since Keynes (1936), economists have hypothesized that waves of “spontaneous optimism”

generate business cycles. But what drives these fluctuations in beliefs and how much do they

matter? The Narrative Economics of Shiller (2017, 2020) postulates that contagious narratives

induce aggregate shifts in beliefs and drive macroeconomic events. Our aim is to make progress

toward understanding the business-cycle relevance of economic narratives.

We introduce a framework within which the macroeconomic importance of narratives can be

studied theoretically, empirically, and quantitatively. Motivated by the literature on narratives and

firm organization (see e.g., Vaara, Sonenshein, and Boje, 2016), we define narratives as subjective

and potentially incorrect models of the world. By altering beliefs, narratives influence economic

actions such as hiring. Moreover, motivated by Shiller (2017), we allow narratives to gain or

lose prevalence over time for two distinct reasons: direct feedback from their prevalence, as in

epidemiological models, and indirect feedback from the economic activity that narratives induce,

as in models of learning. We refer to these forces as contagiousness and associativeness, respectively.

Theoretically, we embed narratives in a real business cycle model. We characterize the unique

equilibrium of this model and find that narratives generate belief-driven fluctuations in economic

activity. Our model formalizes the notion that narratives can “go viral” out of nowhere: small

and transitory fundamental shocks can generate large and persistent movements in the economy

as a new narrative takes over. Finally, we show that the dynamic, general-equilibrium effects of

narratives can be identified given firm-level panel data on narratives and decisions.

Empirically, we develop a method to measure narratives and their influence. Specifically, we ap-

ply natural-language-processing methods to measure narratives in the universe of earnings calls and

10-K regulatory filings, in which all US public firms discuss “perspectives on [their] business results

and what is driving them” (SEC, 2011). We find that optimistic narratives predict greater hiring by

firms. Moreover, optimism does not predict positive future fundamentals. This is consistent with

our interpretation that optimism captures a non-fundamental narrative and inconsistent with the

alternative interpretation that optimism encodes firm-level news about fundamentals. Moreover,

narrative optimism spreads contagiously and associatively among firms. Together, these estimates

empirically discipline how narratives affect decisions and how they spread.

Quantitatively, we adopt a “micro-to-macro” approach to understand the effect of narratives

on the macroeconomy. We find that fluctuations in narrative optimism account for 32% and 18%

of the output reductions over the early 2000s recession and Great Recession, respectively. We

further find that stable aggregate fluctuations in narrative optimism can arise from the interaction

among many specific and individually viral narratives. Taken together, our analysis suggests that

narratives are a significant cause of macroeconomic fluctuations.

Model. In our framework, narratives are the common building blocks of agents’ heterogeneous

beliefs. We formally define an economy’s narratives as a set of prior distributions that agents

can combine with outside data to form beliefs. This is motivated by the realist and interpretative
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schools of narrative analysis in organizational economics (Vaara, Sonenshein, and Boje, 2016), which

postulate that narratives provide a lens through which individuals understand the world. At an

individual level, we model narrative adoption as a Markov process that depends on one’s own past

narrative, the relative prevalence of narratives in the population, and endogenous economic states.

The second feature incorporates the possibility of contagion emphasized by Shiller (2017). The

third feature allows agents to associate certain macroeconomic states with certain more plausible

models, as would be natural in any model of learning.

We embed this notion of narratives in a real business cycle model. Specifically, the agents are

heterogeneous firms, the fundamental is aggregate productivity, and the two available narratives

are optimism and pessimism about productivity. The remaining microfoundations are intentionally

standard, following the literature on business cycles with dispersed information (Lorenzoni, 2009;

Angeletos and La’O, 2010): the consumption, production, and labor supply side of the model is a

real variant of the standard model of Woodford (2003b) and Gaĺı (2008).

Theoretical Results. Our main results analytically characterize how narratives can generate

non-fundamental fluctuations in aggregate output, hysteresis, and boom-bust cycles.

We first establish that there is a unique equilibrium in which aggregate output is log-linear

in aggregate productivity and a non-linear function of the fraction of optimists in the population.

We refer to the latter effect as the non-fundamental component of aggregate output, because it is

driven by the state of narratives rather than any fundamental change in productivity. We decompose

this component into a partial-equilibrium effect of optimism on firm hiring as well as a general-

equilibrium narrative multiplier driven by strategic complementarities: even if a firm is pessimistic,

the presence of other, more optimistic firms causes them to produce more. The equilibrium effect

of narratives is smaller if firms have access to more precise information, as this leads them to rely

less on narratives to form their beliefs. However, because of the narrative multiplier, the power of

the truth to stop false narratives is weakest exactly when narratives are strongest. Importantly, as

equilibrium is unique, fluctuations in our model are not driven by sunspots or movements between

multiple equilibria.

We next describe the dynamics of the fraction of optimists in the population (“optimism”),

the key new state variable in our economy. For a fixed level of aggregate productivity, we show

that there always exists a steady-state level of optimism, but there may be multiple. We provide

a necessary and sufficient condition for a particularly extreme type of steady-state multiplicity:

if narratives are sufficiently contagious and/or the narrative multiplier is sufficiently large, then

unanimous optimism and unanimous pessimism are both stable steady states. That is, in the

economy’s unique equilibrium, contagious optimism or contagious pessimism can “go viral” or die

out entirely, depending on the initial prevalence of optimism.

Our characterization of narrative dynamics implies three key properties of narrative business

cycles. First, under the aforementioned conditions of high contagiousness and a high narrative

multiplier, the economy can feature narrative hysteresis: history determines whether the econ-

omy is optimistic and high-output or pessimistic and low-output. Second, productivity shocks
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have endogenously persistent effects on output because of narrative evolution. This can generate

hump-shaped impulse responses to perfectly transitory shocks. In cases consistent with narra-

tive hysteresis, transitory shocks can even have permanent effects because a new narrative takes

hold. This represents an important difference relative to models of dispersed information (see e.g.,

Woodford, 2003a; Lorenzoni, 2009; Angeletos and La’O, 2010), in which one-time shocks can have

persistent effects only if fundamentals are themselves persistent (otherwise there is nothing to learn

about over time). Third, when hit by repeated shocks, the economy can experience boom-bust

cycles because of fluctuations between high and low optimism. In the hysteresis case, these can

take the form of slow oscillations between periods of stable extreme pessimism (reminiscent of “lost

decades”) and stable extreme optimism (reminiscent of “roaring decades”).

We finally show how the model can be identified using information on relative choices of op-

timistic versus pessimistic firms, the updating process of firms’ narratives (in particular, the ex-

tent of social contagion), and otherwise standard macroeconomic parameters that control general-

equilibrium effects. This motivates us to take a “micro-to-macro” approach in the remainder of the

paper, the final result of which will be a quantitative appraisal of the properties identified above.

Measurement. To empirically evaluate our framework and quantify its predictions, we construct

a dataset comprising US public firms’ narratives and decisions. To measure narratives, we apply

natural-language-processing methods to the text of firms’ end-of-year 10-K reports and earnings

conference calls. We argue that these text datasets are ideal for measuring narratives because they

include unstructured information on how managers rationalize and interpret economic outcomes

and they can be readily linked to firms’ choices. Specifically, we construct a textual proxy for nar-

rative optimism by computing the intensity of positive and negative sentiment using the financial

dictionary introduced by Loughran and McDonald (2011). To complement our study of narrative

optimism, we apply two other techniques to measure more granular narratives. Our first such tech-

nique computes the similarity between firms’ language and the language that best characterizes

the Perennial Economic Narratives introduced by Shiller (2020) using a method that has also been

applied in Hassan, Hollander, Van Lent, and Tahoun (2019) and Flynn and Sastry (2024). These

“narratively identified narratives” are motivated by the historical evidence of relevance and conta-

giousness provided by Shiller (2020). Our second granular technique estimates a Latent Dirichlet

Allocation (LDA) model (Blei, Ng, and Jordan, 2003), which extracts an underlying set of topics

based on the frequency with which certain words co-occur within documents. This unsupervised

method allows the data to speak flexibly about firms’ narratives. We combine these measures of

firms’ narratives with Compustat data on their decisions and financial performance.

Empirical Results. First, we estimate how narrative optimism affects firm decisions. Our model

implies that the partial-equilibrium effect of optimism on hiring is identified in a firm-level panel

regression that controls for firm and time fixed effects, which sweep out narratives’ correlation with

aggregate fundamentals and their equilibrium effects. Implementing this strategy, we estimate a

partial-equilibrium effect of optimism on hiring of 3.6 percentage points. We moreover show that

the effect of optimism on hiring is quantitatively robust to controlling for canonical measures of
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firm-level fundamentals: productivity, leverage, stock returns, and Tobin’s Q.

The key threat to our interpretation that narratives drive the positive effect of optimism on

hiring is that optimism may reflect news about future firm-level fundamentals that is not captured

by our controls. That is, optimism could capture information about firms’ future prospects that is

available inside the firm but not to an outside econometrician. Two simple tests distinguish between

the narrative interpretation and the news interpretation. First, under the news interpretation,

optimism must be predictive of strong future performance of the firm, such as greater profitability

or positive stock returns. Second, under the news interpretation, firms must have more optimistic

forecasts for future performance, but these should not be predictably more optimistic than realized

future performance.

Implementing these two tests, we find that measured optimism is non-fundamental and predicts

over-optimistic beliefs. Specifically, in firm-level local projection regressions, we find that optimism

negatively predicts future stock returns and profitability. That is, firms that are currently optimistic

and accelerating hiring do worse, not better, in the near future. Second, using managerial guidance

data from IBES, we show that optimism in language predicts that managers’ sales forecasts exceed

realizations. That is, managers predictably overestimate firm performance after writing optimistic

reports or giving optimistic earnings calls. Notwithstanding our rejection of the “news” explanation,

to further isolate a plausibly exogenous shifter of narratives that is necessarily independent of news,

we also study changes in optimism driven by plausibly exogenous changes in CEOs (i.e., those

caused by death, illness, personal issues, or voluntary retirement, as coded by Gentry, Harrison,

Quigley, and Boivie, 2021). This strategy yields quantitatively similar effects of optimism on hiring.

We next estimate how narrative optimism spreads across firms. Our model implies that we

can recover the contagiousness and associativeness of optimism by estimating a firm-level linear

probability model for the likelihood that a firm remains or becomes optimistic. We find that

greater aggregate optimism and higher aggregate real GDP growth are associated with a greater

probability that a firm is optimistic in the following year—that is, optimism is contagious and

associative. We also find evidence of contagiousness and associativeness at the industry level when

we non-parametrically control for aggregate conditions with time fixed-effects. Moreover, both these

aggregate and industry-level results are robust to controlling for future economic conditions. This

finding is inconsistent with the key threat to our interpretation: that aggregate optimism drives

future optimism through its correlation with omitted positive news about economic conditions.

To further test the validity of our interpretation, we construct a granular instrumental variable

(Gabaix and Koijen, 2020) for aggregate optimism based on idiosyncratic shocks to the optimism

of large firms. We find similar results using this approach.

Quantification. We finally calibrate our model to quantify the extent to which fluctuations

in narratives explain historical business cycle fluctuations and understand the extent to which

narratives generate hysteresis. We leverage the fact that our empirical estimates identify both the

partial equilibrium effects of narratives on hiring and the nature of narrative diffusion.

We first study the extent to which narratives generate non-fundamental fluctuations in output.
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Decomposing aggregate output into the components attributable to optimism versus fundamentals,

we find that measured aggregate movements in optimism account for 32% of output loss during

the early 2000s recession and 18% during the Great Recession. More systematically, fluctuations in

optimism account for 19% of output variance as well as 33% of the short-run (one-year) and 79%

of the medium-run (two-year) autocovariance in output. Thus, narrative dynamics lead to strong

endogenous persistence (internal propagation): the model generates persistent business cycles even

with close to i.i.d. shocks.1 This represents an important difference between our model of narratives

and those of noise shocks or dispersed information (see e.g., Woodford, 2003a; Lorenzoni, 2009;

Angeletos and La’O, 2010), which require persistent exogenous shocks to explain the time series.

We next study the potential for narrative hysteresis. For optimism, we quantitatively reject the

theoretical condition required for hysteresis in both optimism and output dynamics. But we do not

reject this condition for many granular (narratively identified and topic) narratives, implying that

it is possible for these narratives either to die out or “go viral” depending on initial conditions.

Finally, we study an enriched model that allows multiple latent narratives to form a basis for

overall optimism, to evaluate Shiller’s (2020) hypothesis that many narratives may be mutually

reinforcing. Surprisingly, we find that the interaction of many jointly evolving and highly conta-

gious narratives that can individually feature hysteresis nevertheless underlie stable fluctuations in

emergent aggregate optimism and output.

Related Literature. Our work relates to a large literature on belief-driven business cycles.

Some studies postulate that shocks directly to beliefs affect aggregate supply and/or demand and

cause fluctuations (e.g., Lorenzoni, 2009; Angeletos and La’O, 2010, 2013; Angeletos, Collard, and

Dellas, 2018; Benhima, 2019; Christiano, Ilut, Motto, and Rostagno, 2008; Benhabib, Wang, and

Wen, 2015; Nimark, 2014; Chahrour, Nimark, and Pitschner, 2021). Others focus on the interaction

of other shocks with fixed belief differences (e.g., Caballero and Simsek, 2020; Guerreiro, 2022), the

tendency of agents to over-extrapolate via diagnostic expectations (e.g., Maxted, 2020; Bordalo,

Gennaioli, Shleifer, and Terry, 2021; Bianchi, Ilut, and Saijo, 2024), or the effects of slow and/or

misspecified learning (e.g., Marcet and Sargent, 1989a,b; Eusepi and Preston, 2011; Adam, Marcet,

and Beutel, 2017; Kozlowski, Veldkamp, and Venkateswaran, 2020). Our work can be understood

as micro-founding both belief dynamics and belief disagreement through the social transmission of

narratives, as well as providing novel evidence for the importance of narratives.

The emphasis on social dynamics is shared with a literature on macroeconomic models of

epidemiological “contagion” in beliefs (Carroll, 2001; Burnside, Eichenbaum, and Rebelo, 2016;

Carroll and Wang, 2022; Jamilov, Kohlhas, Talavera, and Zhang, 2024). This relates to a theoretical

literature studying the survival dynamics of competing heterogeneous models (e.g., Brock and

Hommes, 1997; Molavi, Tahbaz-Salehi, and Vedolin, 2021; Bohren and Hauser, 2021). To this

literature, we add direct measurement of narrative dynamics and the connection to qualitative and

quantitative macroeconomic predictions. In particular, we show why joint modeling of macro and

1Normatively, we show that contagious optimism can be welfare-improving even if it is unfounded. Quantitatively,
we find that optimism is welfare-improving and welfare-equivalent to a 1.3% production subsidy.
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belief dynamics is necessary to assess whether macroeconomic narratives can “go viral.”

We relate to an empirical literature that proposes techniques to measure narratives following

Shiller (2017): Andre, Haaland, Roth, and Wohlfart (2022) implement open-ended surveys to

understand narratives underlying inflation, Goetzmann, Kim, and Shiller (2022) measure narratives

about financial crashes in news media, and Macaulay and Song (2022) measure how news coverage

of narratives affects sentiment on social media. Our empirical approach differs in its use of text data

from firms to extract narratives, uncover their effects on decision-making, and study their spread.

Our analysis therefore relates to a literature studying the relationship between firm-level outcomes

and their language (e.g., Loughran and McDonald, 2011; Hassan, Hollander, Van Lent, and Tahoun,

2019) and measured beliefs (e.g., Gennaioli, Ma, and Shleifer, 2016; Coibion, Gorodnichenko, and

Ropele, 2020). In contrast to these papers, we calibrate a model to match our firm-level findings

and study the general equilibrium consequences of narratives for the business cycle.2

Outline. The paper proceeds as follows. In Section 2, we introduce our macroeconomic model

with contagious narratives. In Section 3, we provide theoretical results on macroeconomic dynamics.

In Section 4, we describe our data and measurement. In Section 5, we describe our empirical results.

In Section 6, we quantify the role of narratives. In Section 7, we study an enriched model that

features multiple narratives. Section 8 concludes.

2 A Narrative Business-Cycle Model

We first describe our framework, incorporating contagious narratives into an otherwise standard

real business cycle model.

2.1 Narratives and Beliefs

What are Narratives? In the literature on narratives and firm organization, narratives are char-

acterized as a common set of stories that allow people to make sense of the world (see, e.g., Isabella,

1990; Maitlis, 2005; Loewenstein, Ocasio, and Jones, 2012). To be specific, Vaara, Sonenshein, and

Boje (2016) review the organizational literature on narratives and describe two perspectives on

what narratives are and how they impact decisionmakers. The first is the realist approach, in which

“narratives [act] as data to be used to explain or understand other phenomena.” The second is

the interprative approach, in which narratives “provide a means for individual, social and orga-

nizational sensemaking and sensegiving.” Under both approaches, narratives provide models that

agents combine with experience to understand the world. Motivated by this, we model narratives as

models that agents combine with information to arrive at their beliefs. Formally, this corresponds

to associating narratives with prior beliefs.

2Bachmann and Elstner (2015), Barrero (2022), and Ma, Ropele, Sraer, and Thesmar (2020) share this approach
of combining information on firms’ beliefs with a macroeconomic model. They study the different but complementary
question of whether firms’ biased beliefs induce quantitatively significant misallocation.
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Our approach is different from how some in the economics literature have modeled narratives

as encoding causal reasoning (Spiegler, 2016; Eliaz and Spiegler, 2020; Andre, Haaland, Roth, and

Wohlfart, 2022; Macaulay and Song, 2022), as formalized by Pearl (2009) in directed acyclic graphs

(DAGs). In our analysis, we prefer to take the broader view of narratives as priors without the

specific structure of DAGs for three reasons: narratives are not necessarily causal, there is empirical

evidence that people are not good at engaging in causal reasoning, and, to study equilibrium, it

is both inessential and ill-posed to consider causation. In our framework, narratives do provide

explanations or rationalizations for why people think in a certain way, but those explanations need

not be causal. We now make our three arguments more precise.

First, narratives expressed in communication and writing are not necessarily causal. In partic-

ular, as Bruner (1991) writes in his foundational work on the interpretative approach to narratives:

The loose link between intentional states and subsequent action is the reason why

narrative accounts cannot provide causal explanations. What they supply instead is

the basis for interpreting why a character acted as he or she did.

Given the inherent complexity of emergent macroeconomic phenomena, we argue that Bruner’s

argument may be especially applicable. Consistent with this, the nine “Perennial Economic Nar-

ratives” identified by Shiller (2020) as prevalent and important all resist a simple causal structure

(e.g., “Panic versus Confidence” or “Labor-Saving Machines Replace Many Jobs”).3 Thus, we argue

that it is natural to model narratives as providing models, which naturally provide interpretations

that explain actions without reliance on one specific causal structure.

Second, a large literature in psychology documents that the majority of people are incapable

of performing simple causal (“if . . ., then . . .”) reasoning. For example, in the Wason (1966; 1968)

Card Test, the experimenter places four cards showing “3,” “8,” “Blue,” and “Red” on a table

and asks the subject to flip two cards to test the claim that “if a card shows an even number on

one face, then its opposite face is blue.” The finding, which has since been replicated many times

(Manktelow, 2021), is that the vast majority of respondents get the answer wrong.4 “If, then”

reasoning underlies the “do” operator at the heart of Pearl’s (2009) DAG-based formalization of

causality. The inability to perform a single chain of “if, then” reasoning makes it dubious that

people are able to engage in the long chains of reasoning that may be necessary to provide a fully

causal account of macroeconomic phenomena.

Third, to study how people make decisions, it is necessary only to understand their preferences

and their beliefs. Concretely, under any consequentialist objective (which nests expected utility

theory), it does not matter to a firm why its productivity and demand are high, it matters only that

3The full list is: Panic versus Confidence; Frugality versus Conspicuous Consumption; The Gold Standard versus
Bimetallism; Labor-Saving Machines Replace Many Jobs; Automation and Artificial Intelligence Replace Almost All
Jobs; Real Estate Booms and Busts; Stock Market Bubbles; Boycotts, Profiteers, and Evil Businesses; and The
Wage-Price Spiral and Evil Labor Unions.

4In a famous follow-up experiment, Cosmides and Tooby (1992) show that respondents are more likely to be
correct (but still often incorrect) when the experiment is re-contextualized to the more familiar task of identifying
underage drinking.
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its productivity and demand are high. If we are willing to assume, as we do, that narratives do not

affect preferences, then it is essential only to understand how narratives affect agents’ beliefs. This

renders the DAG formalism redundant. A more fundamental issue is that equilibrium reasoning

cannot be expressed in the form of a DAG, since interactions are not acyclic. To give one stylized

example: in the Keynesian cross, consumption affects income and income affects consumption. This

is a cycle and cannot be represented in the DAG formalism. The same applies in the macroeconomic

model that we study (for instance, because firms’ hiring affects wages which affect firms’ hiring).

Narratives in Our Model. Motivated by the reasons described above, we postulate that narra-

tives are described by a small set of prior beliefs about a time-varying exogenous state. Specifically,

time is discrete and indexed by t ∈ N, and the exogenous macroeconomic state is θt ∈ Θ ⊆ R. In

equilibrium, as we will see shortly, agents’ beliefs about θt will also govern their prior beliefs about

endogenous objects (e.g., GDP, wages, and what narratives will catch on in the future).

We describe narratives, indexed by k ∈ K, as probability distributions Nk,t ∈ ∆(Θ) within the

set of narratives k ∈ K. In our model, the fundamental θt describes the strength of productivity.

Thus, a pessimistic narrative NP,t corresponds to the view that “productivity in the economy is

low on average,” while an optimistic narrative NO,t corresponds to the view that “productivity in

the economy is high on average.”

Agents combine narratives to form priors about the fundamental by placing a vector of weights

λt = {λk,t}k∈K ∈ Λ ⊆ ∆(K) on each narrative. An agent with narrative weights λt has an induced

prior distribution over fundamentals given by the following linear combination of distributions:

πλt(θt) =
∑
k∈K

λk,tNk,t(θt) (1)

for all θt ∈ Θ. Continuing the example, an agent who is fully pessimistic might place weight λP,t = 1

on the pessimistic narrative and complementary weight λO,t = 0 on the optimistic narrative, so

their subjective probabilities for each state θt are π(θt) = NP,t(θt).

In our analysis, we will assume that log θt evolves according to an AR(1) process:

log θt = (1− ρ)µ+ ρ log θt−1 + σνt (2)

where νt ∼ N(0, 1) is i.i.d.. For simplicity, for our main theoretical analysis, we will suppose

that there are two competing narratives about the macroeconomic state: an optimistic narrative

under which µ = µO and a pessimistic narrative under which µ = µP , where µO > µP . The true

distribution of the fundamental need not coincide with either narrative. Firms either believe the

optimistic narrative or the pessimistic narrative. Hence, each agent i ∈ [0, 1] has a prior belief

regarding the fundamental that can be described as:

N
(
[λitµO + (1− λit)µP ] (1− ρ) + ρ log θt−1, σ

2
)

(3)

where λit = 1 corresponds to an agent believing in the optimistic narrative, and λit = 0 corresponds
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to an agent believing in the pessimistic narrative. In Appendix B.5, we show that our results are

unchanged if narratives correspond to idiosyncratic (as opposed to aggregate) fundamentals. In

Appendix B.6, we extend our analysis to allow for multiple narratives that differ in the mean,

persistence, and volatility of productivity. In Section 7, we will enrich the model to allow optimism

to be driven by a large set of underlying and more specific narratives.

2.2 Narrative Dynamics

How do Narratives Spread? In a static setting, narratives correspond to heterogeneous beliefs.

Therefore, the core distinguishing feature of a theory of narratives is how they evolve. We suppose

that narratives can spread in two distinct and potentially complementary ways.

The first channel is contagion: narratives spread between people as a function of their preva-

lence. Shiller (2020) writes that “contagion is the heart of narrative economics.” He argues that

failure to model narrative contagion is an important shortcoming of existing macroeconomic models:

We need to incorporate the contagion of narratives into economic theory. Otherwise,

we remain blind to a very real, very palpable, very important mechanism for economic

change, as well as a crucial element for economic forecasting. If we do not understand

the epidemics of popular narratives, we do not fully understand changes in the economy

and in economic behavior.

In our analysis, we will define contagiousness as the propensity of a narrative to spread as a

function of its prevalence, holding all else fixed. We will not take a stand on the deep origins

of contagiousness. These might correspond, as Shiller (2020) hypothesizes, to features such as

“human interest, identity, and patriotism.” We will take contagiousness as a primitive property of

a narrative and study macroeconomic dynamics conditional on contagiousness.

The second channel is association: narratives are more likely to spread when they better describe

the world. This is the standard view in economic theories in which belief dynamics are governed

by learning. In the context of “Narrative Economics,” associativeness implies (for example) that

a narrative that is obviously contradicted by data may fail to catch on even if it is contagious.

Moreover, failing to account for association may lead an observer to spuriously attribute the spread

of a narrative to contagion even when it does not exist: for example, the observation that people

become more optimistic when the economy is doing well does not imply the existence of contagion.

Thus, contagion alone is not sufficient for an adequate theory of narrative dynamics.

Contagion and Association in Our Model. We now formalize these notions. We summarize

the prevalence of narratives by the cross-sectional distribution of narratives in the population,

Qt ∈ ∆(Λ). This represents the distribution of agents’ distributions of narrative weights at some

time period. For example, in an economy populated by only optimists λO = (0, 1) and pessimists

λP = (1, 0), with some abuse of notation we can collapse the distribution of narratives into the scalar

sufficient statistic Qt =
∫

[0,1] λit di ∈ [0, 1], which corresponds to the fraction of the population that
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is optimistic. We also define Yt ∈ Y as a relevant endogenous macroeconomic outcome. Specifically,

this will correspond to aggregate output.

In full generality, we describe the dynamics of narratives via an updating rule Pt : Λ × Y ×
∆(Λ) → ∆(Λ), which returns the probabilities {Pt,λ′(λ, Y,Q)}λ′∈Λ that an agent with narrative

weights λ changes their weights to λ′ when the endogenous state is Y and the distribution of

narratives in the population is Q. Hence, conditional on realized endogenous outcomes given by Yt

and distribution of narratives given by Qt, the next period’s distribution of narratives is:

Qt+1,λ′ =
∑
λ∈Λ

Qt,λPt,λ′(λ, Yt, Qt) (4)

The dependence on Yt allows us to capture association, where the endogenous state of the economy

leads agents to adopt narratives that best describe that state (e.g., “aggregate output is high,

therefore productivity is high”). The dependence on Qt allows us to capture contagion, as the

distribution of narratives itself affects the likelihood that people retain or switch to a narrative.

In our main analysis with two narratives (optimism and pessimism), we need to describe the

probability that optimists remain optimistic, PO, and the probability that pessimists become op-

timistic, PP . We specify that both probabilities depend on aggregate output Yt, the fraction of

optimists in the population Qt, and an aggregate narrative shock to how agents update εt, which

has distribution G. This shock captures shifts in economic narratives that are wholly unrelated to

economic conditions. Hence, the fraction of optimists evolves according to:

Qt+1 = QtPO(log Yt, Qt, εt) + (1−Qt)PP (log Yt, Qt, εt) (5)

We assume that PO and PP are continuous and almost everywhere differentiable. In Section 7, we

extend this model to allow for many jointly evolving narratives.5

2.3 Technology and Preferences

The consumption, production, and labor supply side of the model is intentionally standard, follow-

ing Angeletos and La’O (2010), and is a real variant of the models described in Woodford (2003b)

and Gaĺı (2008). There is a continuum of monopolistically competitive intermediate goods firms

of unit measure, indexed by i, and uniformly distributed on the interval [0, 1]. They hire labor Lit

monopsonistically at wage wit to produce a differentiated variety in quantity xit that they sell at

price pit according to the production function:

xit = θitL
α
it (6)

where α ∈ (0, 1] is the return-to-scale in production and θit is the firm’s Hicks-neutral productivity.

Narratives correspond to different beliefs about the distribution of the common component

5See Appendix B.3 for a discussion of how our approach differs from imposing Bayesian learning dynamics.
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of firms’ productivity. Concretely, firm productivity θit is comprised of a common, aggregate

component θt, an idiosyncratic time-invariant component γi, and an idiosyncratic time-varying

component θ̃it:

θit = θ̃itγiθt (7)

Firms know that log γi ∼ N(µγ , σ
2
γ), know their own value of γi, and believe that log θ̃it ∼ N(0, σ2

θ̃
)

and independently and identically distributed (i.i.d.) across firms and time. We assume that firms

can observe all previous macroeconomic outcomes. Firms receive idiosyncratic Gaussian signals

about log θt with noise eit ∼ N(0, σ2
e) that is i.i.d. across firms and time: sit = log θt + eit. We

define the signal-to-noise ratio as:

κ =
1

1 + σ2
e

σ2
θ

(8)

which indexes how much firms update their beliefs about aggregate productivity upon receiving the

signal sit. By allowing for these signals, our model nests the case in which beliefs are fully driven

by narratives (κ = 0) as well as the case in which narratives have no bearing on the posterior beliefs

that are relevant for decisions (κ = 1).

A final goods firm competitively produces aggregate output Yt by using a constant elasticity of

substitution (CES) production function:

Yt =

(∫
[0,1]

x
ε−1
ε

it di

) ε
ε−1

(9)

where ε > 1 is the elasticity of substitution between varieties.

A representative household consumes final goods Ct and supplies labor {Lit}i∈[0,1] to the inter-

mediate goods firms with isoelastic, separable, expected discounted utility preferences:

U
(
{Ct, {Lit}i∈[0,1]}t∈N

)
= E0

[ ∞∑
t=0

βt

(
C1−γ
t

1− γ −
∫

[0,1]

L1+ψ
it

1 + ψ
di

)]
(10)

where household expectations are arbitrary (and potentially correct), γ ∈ R+ indexes the size of

income effects in the household’s supply of labor, and ψ ∈ R+ is the inverse Frisch labor supply

elasticity to each firm.

Finally, we define the composite parameter:

ω =
1
ε − γ

1+ψ−α
α + 1

ε

(11)

which indexes the strength of strategic complementarity. So that complementarity is positive but

not so extreme that the model features multiple equilibria, we assume that ω ∈ [0, 1). This requires

that income effects in labor supply do not overwhelm aggregate demand externalities (in the sense

of Blanchard and Kiyotaki, 1987) and that these externalities are not too large.
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2.4 Equilibrium

We study a standard rational expectations equilibrium. All agents optimize, firms form their expec-

tations by combining all available information with their narratives, narratives spread dynamically

in accordance with the law governing association and contagion, and all markets clear. Formally:

Definition 1 (Narrative Rational Expectations Equilibrium). An equilibrium is a path for all

variables:

E =
{
Yt, Ct, Qt, θt, εt, {Lit, xit, pit, wit, λit, sit, θ̃it}i∈[0,1]

}
t∈N

(12)

1. Narrative weights λit and the fraction of optimists Qt follow a Markov process consistent with

Equation 5.

2. Firms’ production xit maximizes expected profits under the household’s stochastic discount

factor given their narrative weights λit, signals sit, and knowledge of E.

3. Consumption Ct and labor supply {Lit} are consistent with household expected utility maxi-

mization.

4. All markets clear.

3 Macroeconomic Dynamics with Narratives

We now study the equilibrium dynamics of narratives and output in our model. We find that

narratives induce non-fundamental fluctuations in the economy and have the potential to generate

endogenous persistence and hysteresis. Moreover, we show how to use firm-level panel data to

identify the model’s parameters and test its predictions.

3.1 Characterizing Equilibrium Dynamics

To solve for equilibrium production, it suffices to solve for intermediate goods production. These

firms maximize expected profits, as priced by the representative household:

Πit = Eit[C−γt (pitxit − witLit)] (13)

These firms act as monopolists in the product market and monopsonists in the labor market.

To characterize intermediate goods firms’ optimal production, we solve for the equilibrium

conditions implied by household optimization, final goods optimization, and market clearing. First,

the final goods firm maximizes profits taking as given the prices set by intermediate goods firms.

This implies the constant-price-elasticity demand curve, pit = Y
1
ε
t x
− 1
ε

it . Increases in aggregate

output shift out this demand curve via aggregate demand externalities. Second, the intratemporal

Euler equation of the representative household implies that labor supply is given by Lψit = witC
−γ
t .

Third, given the production technology of the firm, when it commits to producing xit, its implied

labor input is given by Lit = θ
− 1
α

it x
1
α
it . Finally, by imposing goods market clearing Ct = Yt, we

12



obtain that each intermediate goods firm solves the following profit maximization problem:

max
xit

Eit
[
Y −γt

(
Y

1
ε
t x

1− 1
ε

it − Y γ
t θ
− 1+ψ

α
it x

1+ψ
α

it

)]
(14)

Taking the first-order condition of this program, we have that optimal production solves:(
1− 1

ε

)
Eit
[
Y

1
ε
−γ

t

]
x
− 1
ε

it =
1 + ψ

α
Eit
[
θ
− 1+ψ

α
it

]
x

1+ψ−α
α

it (15)

where the left-hand side is the marginal expected revenue of the firm from expanding production

and the right-hand side is the marginal expected cost of this expansion. A given firm’s narrative

affects their expected marginal costs of production, via the expectation of idiosyncratic productivity,

and their expected marginal benefits of production, via the expectation of aggregate output (which

encompasses aggregate demand externalities, asset pricing forces, and wage pressure). Moreover,

these beliefs about output depend on the narratives held by other firms.

Substituting this best reply into the final goods production function, any equilibrium conditional

on any process of narrative evolution solves the following functional fixed-point equation:

log Yt =
ε

ε− 1
logEt

[
exp

{
ε−1
ε

1+ψ−α
α + 1

ε

(
log

(
1− 1

ε
1+ψ
α

)

− logEit
[
exp

{
−1 + ψ

α
log θit

}]
+ logEit

[
exp

{(
1

ε
− γ
)

log Yt

}])}] (16)

where the outer expectation operator integrates over productivity shocks (θ̃it, γi), narrative loadings

λit, and signals sit.

By employing a functional guess-and-verify argument, we obtain that the model has a unique

quasi-loglinear equilibrium in which log output depends linearly on log aggregate productivity and

non-linearly, but separably, on the fraction of optimists in the population:

Theorem 1 (Equilibrium Characterization). There exists a unique quasi-loglinear equilibrium:

log Y (log θt, log θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt) (17)

Moreover, in the unique quasi-loglinear equilibrium, we have that:

f(Qt) =
1

1− ω
ε

ε− 1
log

(
1 +Qt

[
exp

{
ε− 1

ε
αδOP

}
− 1

])
(18)

where δOP is given by:

δOP =
1

α

1+ψ
α

1+ψ−α
α + 1

ε

(
1 +

κω

1− κω

)
(1− κ)(1− ρ)(µO − µP ) (19)

Proof. See Appendix A.1, which also provides the formulas for a0, a1 > 0, and a2 > 0.
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Before discussing the implications for and intuition behind this result, we first discuss the

important issue of whether there exist other equilibria that are not the unique quasi-loglinear

equilibrium. We show that the unique quasi-loglinear equilibrium is the only equilibrium that

survives a natural refinement that requires an equilibrium to obtain as a limit of economies with

bounded fundamentals as that bound is taken to be large. We believe that this refinement is

of independent interest and could be used in dispersed information economies with unbounded

fundamentals in which the uniqueness of equilibrium is an open question outside of the log-linear

class, such as Angeletos and La’O (2013) and Benhabib, Wang, and Wen (2015).

Remark 1 (The Unique Quasi-Loglinear Equilibrium is the Unique Equilibrium Under a “Bound-

edness” Refinement). Theorem 1 establishes uniqueness within the quasi-loglinear class. As best

replies and aggregation are non-linear and the space of fundamentals is not compact, one cannot

use classical arguments based on Blackwell’s sufficient conditions to ensure that the fixed point

operator implicit in Equation 16 is a contraction. In reality, of course, productivity is bounded

(potentially for some extremely large bound), and using unbounded fundamentals is a simplifying

approximation of reality. Hence, we might regard an equilibrium that does not survive this re-

finement as a product of the artifice of unbounded fundamentals. In Appendix A.1, we show that

there is a unique equilibrium when fundamentals are restricted to lie in a compact set (Lemma

1). Moreover, the claimed quasi-loglinear equilibrium is an ε-equilibrium for any ε > 0 for some

sufficiently large support for fundamentals (Lemma 2). Hence, the quasi-loglinear equilibrium is

the limit of the unique equilibrium with bounded fundamentals as the bound becomes large.

3.2 Narratives Drive Non-Fundamental Fluctuations in Output

We now unpack the economics of Theorem 1 to study how narratives drive non-fundamental fluctu-

ations in output and examine the ability of information to prevent narratively driven fluctuations.

The Effect of Optimism on Output. First, we observe that optimism affects output in a way

that is separable from fundamentals via the function f . This function is non-linear because firms’

heterogeneous priors induce heterogeneity in production conditional on productivity and hence also

misallocation. Notwithstanding this non-linearity, it turns out that it is useful to summarize the

role of optimism by computing the difference in aggregate output when everyone in the economy

is optimistic versus when everyone in the economy is pessimistic:

∆t ≡ log Y (log θt, log θt−1, 1)− log Y (log θt, log θt−1, 0) (20)

By Theorem 1, we observe that ∆t = ∆ = f(1)− f(0), which has an intuitive structure:

Corollary 1 (The Effect of Optimism on Output). The effect on aggregate output of moving from

a fully pessimistic economy to a fully optimistic economy, ∆t, is invariant to time and the state of

the economy and is given by:

∆ =
1

1− ω × α× δ
OP (21)
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In this expression, as we will later justify formally, δOP is the partial equilibrium effect of a

firm’s optimism on the amount of labor the firm hires when we hold fixed the behavior of all other

firms and fundamentals. To find the general equilibrium effect of this on aggregate output, Theorem

1 implies that we can first convert the effect of hiring into the output effect via the returns-to-scale

parameter α and then apply a narrative multiplier 1
1−ω . This multiplier is large when strategic

complementarities in production arising from aggregate demand externalities are much larger than

strategic substitutability that arises from income effects in household labor supply. This multiplier

captures the intuitive idea that even a pessimistic firm will produce more if a large fraction of other

firms is optimistic, as this optimism increases aggregate demand.

The Power of the Truth. Second, this result formalizes and provides nuance for Shiller’s (2020)

argument that “the truth is not enough to stop false narratives.” Specifically, let us define the power

of the truth as |∂∆
∂κ |. This measures how the effect of narratives on firms’ hiring and aggregate output

changes as they receive more precise information about productivity.

Corollary 2 (The Power of the Truth). The power of the truth |∂∆
∂κ | is positive and increasing in

the precision of private information κ. The power of truth is strictly increasing in the precision of

private information if and only if strategic complementarity is strictly positive (ω > 0).

The key implication of this result is that providing information to agents is least effective at

stopping narratives exactly when narratives are at their most powerful. Conversely, when private

information is precise and narratives are weak, the marginal effects of better private information

are strong. In this sense, the ability of information to prevent narratives faces an adverse selection

problem: narratives are the hardest to stop exactly when they are the strongest.

This result depends critically on the presence of general equilibrium interactions and strategic

complementarity. That is, when there is no strategic complementarity and ω = 0, the power of the

truth is constant. To see this, observe that:

∆ ∝
(

1 +
κω

1− κω

)
(1− κ)(µO − µP ) (22)

where the constant of proportionality does not depend on κ. Thus, when ω = 0, we have that the

power of the truth is given by |∂∆
∂κ | ∝ (µO − µP ), which depends on the differences in beliefs across

narratives but not the precision of agents’ information. Intuitively, providing more information

simply scales down how much agents rely on their narratives. The aforementioned adverse selection

problem arises when there is strategic complementarity and ω > 0 because increasing the precision

of private information now has a second effect: agents know that other agents will be responding

more to their signals and relying less on their priors. Because agents want to produce more when

others produce more, agents’ narratives about fundamentals become paradoxically more important

as they now use narratives more aggressively in forecasting the actions that others will take. This

effect dampens the ability of information to stop narratives and it does so by more exactly when

information is weakest and narratives are strongest.
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3.3 The Dynamics of Narratives and Output

We now use the characterization of output in Theorem 1 to describe the economy’s dynamics via

a first-order nonlinear stochastic difference equation for aggregate optimism.

Corollary 3 (Narrative Dynamics). In the unique quasi-loglinear equilibrium, the fraction of op-

timists Qt evolves according to Qt+1 = T (Qt, log θt, log θt−1, εt), where

T (Qt, log θt, log θt−1, εt) = QtPO(a0 + a1 log θt + a2 log θt−1 + f(Qt), Qt, εt)+

(1−Qt)PP (a0 + a1 log θt + a2 log θt−1 + f(Qt), Qt, εt)
(23)

This result has two important implications. First, narratives can be self-propagating. For-

mally, holding fixed the fundamental and narrative shocks (log θt, log θt−1, εt), optimism evolves

non-linearly: individuals’ proclivity to hold onto their current narrative, social contagiousness, and

associativeness shape the spread of narratives via PO and PP . Second, narratives provide a prop-

agation channel through which fundamental shocks can have endogenously persistent effects. For

example, a one-time productivity shock today can increase aggregate output and thereby increase

future optimism through the associativeness mechanism. Moreover, this increased optimism can

then self-propagate even in the absence of subsequent shocks. We now unpack and formalize these

ideas by characterizing the properties of the dynamical system for narratives and output.

Steady-States and Narrative Hysteresis. We begin by isolating the propagation of narra-

tives without shocks. Formally, let Tθ(Q) = T (Q, θ, θ, 0) denote the transition map for aggregate

optimism when aggregate productivity is fixed and there is no narrative shock. We say that a

level of optimism Q∗θ is a deterministic steady state for the level of productivity θ if it is a fixed

point of the corresponding map, Tθ(Q
∗
θ) = Q∗θ. The following result establishes that a deterministic

steady state always exists and provides necessary and sufficient conditions for extreme optimism

and pessimism to be (stable) steady states.

Theorem 2 (Steady State Multiplicity and Stability). The following statements are true:

1. There exists a deterministic steady-state level of optimism for every θ ∈ Θ.

2. There exist thresholds θP and θO such that: Q = 0 is a deterministic steady state for θ if

and only if θ ≤ θP and Q = 1 is a deterministic steady state for θ if and only if θ ≥ θO.

Moreover, these thresholds are given by:

θP = exp

{
P−1
P (0; 0)− a0

a1 + a2

}
and θO = exp

{
P−1
O (1; 1)− a0 −∆

a1 + a2

}
(24)

where P−1
P (x;Q) = sup{Y : PP (Y,Q, 0) = x} and P−1

O (x;Q) = inf{Y : PO(Y,Q, 0) = x}.
3. Extreme pessimism is stable if θ < θP and PO(P−1

P (0; 0), 0, 0) < 1 and extreme optimism is

stable if θ > θO and PP (P−1
O (1; 1), 1, 0) > 0.

Proof. See Appendix A.3.
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If extreme optimism or extreme pessimism is a stable steady state, then the optimistic (or

pessimistic) narrative has a tendency to “go viral” and fully infect the entire population. The

conditions under which this occurs can be checked with only a few parameters, which we will later

be able to discipline empirically: the responsiveness of output to productivity (a1, a2), the impact

of all agents being optimistic on output ∆, the highest level of output such that all pessimists

remain pessimistic when everyone is a pessimist P−1
P (0; 0), and the lowest level of output such that

all optimists remain optimistic when all other agents are optimists P−1
O (1; 1).

Of particular interest is the case in which, for fixed values of other parameters and fundamentals,

either extreme optimism or extreme pessimism could go viral depending on initial conditions. This

can induce fully history-dependent, long-run changes in output, a property which we refer to as

narrative hysteresis. The following corollary characterizes exactly when this can happen:

Corollary 4 (Narrative Hysteresis). Extreme optimism and pessimism are simultaneously deter-

ministic steady states for θ if and only if θ ∈ [θO, θP ], which is non-empty if and only if

P−1
O (1; 1)− P−1

P (0; 0) ≤ ∆ (25)

Intuitively, this condition is more likely to hold if the optimistic narrative has a large effect

on output (high ∆), if a relatively low output can be consistent with self-fulfilling optimism (low

P−1
O (1; 1)), or if a relatively high output can be consistent with self-fulfilling pessimism (high

P−1
P (0; 0)).

3.4 Hysteresis, Endogenous Persistence, and Boom-Bust Cycles

So far, we have analyzed dynamics at an abstract level. We now introduce a parametric family of

narrative updating rules that embody the key forces of narrative transmission. This will allow us

to understand the key features of narrative business cycles. Later, we will take this model to the

data and quantify its implications.

The linear-associative-contagious (LAC) model for updating rules is:

PO(log Y,Q, ε) =
[u

2
+ r log Y + sQ+ ε

]1

0

PP (log Y,Q, ε) =
[
−u

2
+ r log Y + sQ+ ε

]1

0

(26)

where [z]10 = max{min{z, 1}, 0} and ε is i.i.d. N(0, σ2
ε). The parameter u ≥ 0 captures stubbornness,

or all agents’ proclivity not to change narratives. The parameter r ≥ 0 captures associativeness,

or the extent to which agents associate high output with the optimistic narrative. The parameter

s ≥ 0 captures contagiousness, or the direct effect of peers’ narrative weights on one’s own. Finally,

the aggregate shock allows narratives to fluctuate autonomously. This last feature has no impact

on the theoretical properties described below, but it will help us later match data on observed

narrative dynamics.

We now illustrate three qualitative properties of narrative business cycles:

17



Figure 1: Fluctuations vs. Hysteresis in the Linear-Associative-Contagious Model
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(a): “Fluctuations”
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(b): “Hysteresis”

Notes: In each subfigure, the solid line is an example transition map Tθ, the dashed line is the 45-degree
line, the dotted vertical line indicates the interior steady state Q̂θ, and the red arrows indicate the dynamics.
Both correspond to the linear-associative-contagious model with different calibrations for the underlying
parameters. In panel (a) (“fluctuations”), the condition for extremal multiplicity (Equation 27) does not
hold. In panel (b) (“hysteresis”), the condition does hold, and Q = 0 and Q = 1 are stable steady states.

1. Hysteresis and the criticality threshold : despite equilibrium uniqueness, there can be multiple

steady states and a critical level of narrative adoption away from which the economy diverges.

2. Endogenous persistence of output : stubbornness, associativeness, and contagiousness generate

state-dependent and size-dependent persistence of one-time shocks.

3. Boom-bust cycles: even when hit by i.i.d. stochastic shocks, the economy features a tendency

toward boom-bust cycles.

In Appendix B.1, we formalize these properties of shock responses in a larger class of non-parametric

updating rules. Below, we describe them using examples from the LAC class.

Hysteresis and the Criticality Threshold. Figure 1 visualizes the transition map for two

example calibrations of the updating rule, fixing the state θ and the calibration of other parameters.

In panel (a), stubbornness, contagiousness, and associativeness are relatively low. The transition

map Tθ crosses the 45-degree line once, from above. Therefore, the interior steady state denoted by

Q̂θ is stable, and optimism tends to converge to this level if perturbed away from it. For this reason,

we refer to this as a case that admits “fluctuations” if hit by shocks. In panel (b), stubbornness,

contagiousness, and associativeness are relatively high. The transition map Tθ intersects the 45-

degree line three times: twice at the extremes of Q = 0 and Q = 1 and once from below at an

interior level Q̂θ. Paths for Q that start slightly to the left or right of Q̂θ converge, respectively,

to the stable points of Q = 0 or Q = 1. In this sense, dynamics of optimism display hysteresis:

holding fixed fundamentals, the long-run behavior of the economy depends on initial conditions.

Lemma 3 in the Appendix formalizes these ideas by showing exactly when Q̂θ is on the boundary

of two basins of attraction for, respectively, extreme pessimism and extreme optimism.

In the LAC case, we can analytically compute the condition in Corollary 4 which determines
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when extreme optimism and pessimism are both stable steady states. In particular, P−1
O (1; 1)

solves 1 = u
2 + rP−1

O (1; 1) + s, so P−1
O (1; 1) = 1

r − u
2r − s

r ; P−1
P (0; 0) solves 0 = −u

2 + rP−1
P (0; 0), so

P−1
P (0; 0) = u

2r . Thus, extreme optimism and pessimism can coexist as steady states if and only if:

M = u+ s+ r∆− 1 ≥ 0 (27)

which is to say that stubbornness, associativeness, contagiousness, and the equilibrium impact of

optimism on output are sufficiently large. This expression clarifies that strong static complemen-

tarities, which would manifest in high ∆, are sufficient but not necessary for extremal multiplicity.

In particular, stubbornness and contagiousness contribute dynamic complementarity that can also

induce extremal multiplicity. Thus the parameter M , which incorporates both static and dynamic

complementarity, is the correct gauge for the “strength” of narratives.

Moreover, as suggested by panel (b) of Figure 1, the model with stable extremal steady states

has an unstable, intermediate steady state Q̂θ ∈ (0, 1) that solves Q̂θ = Tθ(Q̂θ), or

Q̂θ =
u

2
(2Q̂θ − 1) + sQ̂θ + r(a0 + (a1 + a2) log θ + f(Q̂θ)) (28)

We refer to this value of optimism as the criticality threshold because it separates regions of the state

space that are attracted to extreme optimism versus extreme pessimism. Under the approximation

that f(Q) ≈ ∆Q, which we later find to be quantitatively accurate, we have that:

Q̂θ ≈
u
2 − r(a0 + (a1 + a2) log θ)

M
(29)

Hence, greater contagiousness (s), associativeness (r), and static economic impact of narratives (∆)

reduce Q̂θ, or equivalently decrease the lower bound of initial optimism that is consistent with the

optimistic narrative eventually going viral.

Endogenous Persistence. We now study how the economy with narratives responds to shocks.

Figure 2 illustrates how the economy responds to shocks under a “fluctuations” versus “hysteresis”

calibration of the model. In both calibrations, productivity shocks are perfectly transitory (ρ =

0). The blue and orange lines of each plot respectively illustrate smaller and larger one-time

productivity shocks at t = 0. In both cases, because of positive associativeness, these correspond to

one-time upward shifts in the transition maps T (Q) (panel (a)). The dots and dashed lines in panel

(a) trace out the dynamic response of optimism to each shock using the transition map. Panels (b)

and (c) illustrate the impulse response functions of optimism and log output.

In the fluctuations case (row 1), narratives create endogenous persistence in the economic boom.

Because of positive associativeness (r > 0), stubbornness (u > 0), and contagiousness (s > 0),

optimism remains elevated for several periods before smoothly converging back to the steady state.

At t = 0, output is elevated above its steady-state value only because of the productivity shock; for

t ≥ 1, output is elevated because of the persistent increase in optimism, even though productivity

has returned to its steady-state value. The large shock (orange) leads to a larger and more persistent
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Figure 2: Endogenous Persistence in Shock Responses
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Notes: This figure illustrates the response of the economy to transitory productivity shocks under two
different model calibrations. The top row corresponds to a “fluctuations” calibration and the bottom row
corresponds to a “hysteresis” calibration, as defined in the main text. The orange lines correspond to a larger
productivity shock and the blue lines correspond to a smaller productivity shock. Column (a) shows the
transition map for aggregate optimism (black), its perturbations under each shock (colors), and the paths
of optimism (dots and dashed lines). The inset graphs zoom in near the interior steady state. Column (b)
shows the impulse response of optimism relative to the interior steady-state value (top row) and relative
to extreme pessimism (bottom row). Column (c) shows the impulse response of log output relative to the
respective steady-state values.

boom than the small shock (blue).

In the hysteresis case (row 2), the small shock leads to a highly persistent boom, whereas the

large shock leads to a regime shift. This discontinuity of shock responses as a function of shock

size emerges because large shocks can push the economy above the unstable interior steady state

(panel (a)). Intuitively, the large shock seeds enough optimism for the optimistic narrative to “go

viral.” This also induces a non-monotone response of output (panel (c)): while the direct effect of

productivity disappears after one period, the effect of viral optimism grows over time.

In sum, both regimes feature endogenous persistence of output even in response to one-time

shocks. In the hysteresis regime, there is the possibility also of permanent economic effects of

temporary shocks. Propositions 1 and 2 in the Appendix formalize these properties, and more-

over characterize when endogenous persistence is large enough to generate “hump-shaped” impulse

response functions of output in response to perfectly transitory shocks.

Boom-Bust Cycles. We finally study how these different cases map to time-series properties of

the macroeconomy. To visualize this, we simulate from “fluctuations” and “hysteresis” calibrations
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Figure 3: Simulated Paths of the Economy under “Fluctuations” vs. “Hysteresis”
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Notes: Each panel corresponds to a simulated time series of the model, with identical time paths of i.i.d.
productivity shocks but differing calibrations of narrative evolution across the two examples.

of the model for 100 periods in Figure 3. Productivity shocks are common across the two simulations

and there are no direct shocks to narrative evolution (σε = 0). In both simulations, output is

persistent despite the lack of persistent driving shocks. This arises because of persistent variation

in optimism. In the fluctuations case, the narrative state variable tends to revert to a steady state

of Q = 0.5. In the hysteresis case, the narrative state variable is attracted toward extreme optimism

or extreme pessimism. For example, in the middle of the sample path, a sequence of large negative

shocks pushes the economy toward the pessimistic steady state. Thus, in both cases, narrative

evolution leads to persistent “business-cycle” variations. In the hysteresis case, narrative dynamics

can lead to more dramatic, medium-frequency “boom and bust” patterns. Proposition 3 in the

Appendix formalizes this observation and provides analytical bounds on the period of boom-bust

cycles in the model.

3.5 Additional Theoretical Results and Extensions

Here, we briefly summarize additional results and extensions contained within the Appendix.

Welfare Implications. In Appendix B.2, we study the normative implications of optimism and

provide conditions under which its presence is welfare improving, despite its being misspecified.

Intuitively, optimism acts as if it were an ad valorem price subsidy for firms, which induces firms

to hire more and can undo distortions caused by market power.

Multi-dimensional Narratives. In Appendix B.4, we generalize the model to feature a con-

tinuum of models regarding the mean of productivity. In Appendix B.6, we generalize the model

to allow for arbitrarily many narratives regarding the mean, persistence, and volatility of funda-

mentals, which is essentially exhaustive within the Gaussian class. In both cases, we characterize

equilibrium output and narrative evolution.
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Bayesian Updating. An important model that is ruled out by our conditions on the updating

rule is one in which firms observe aggregate variables log Yt and Qt and use Bayes’ rule to update

their beliefs over models. As we formalize in Appendix B.3, this “Bayesian benchmark” contradicts

the dependence of firms’ updating on Qt and εt conditional on log Yt (respectively, contagiousness

and shocks). Moreover, this “Bayesian benchmark” predicts that agents converge to holding the

better-fitting empirical model exponentially quickly. Later, we will show that such a prediction is

at odds with our finding of cyclical dynamics for aggregate optimism (Figure A1). However, in

principle, richer Bayesian models that are consistent with our empirical results might be nested by

our reduced-form updating probabilities.

Persistent Idiosyncratic Shocks and Narrative Updating. In Appendix B.5, we show that

a model in which narratives concern the probability distribution of idiosyncratic fundamentals

yields the same predictions as our main model. Thus, as long as there are aggregate narrative

dynamics, narratives need not describe the macroeconomy per se. In Appendix B.7, we extend the

model to allow for narrative updating that depends on the realization of a persistent idiosyncratic

productivity state. When idiosyncratic shocks are fully transitory, this is of no consequence and our

equilibrium characterization is identical. However, when idiosyncratic shocks are persistent, the fact

that narrative updating depends on idiosyncratic shock realizations induces dependence between

an agent’s narrative and their idiosyncratic productivity state. This matters for equilibrium output

only insofar as it induces a time-varying covariance between optimism and productivity. We find

no empirical evidence for the cyclicality of this covariance. We therefore abstract from this channel.

Contrarianism, Endogenous Cycles, and Chaos. While this model generates narratively

driven fluctuations, it cannot generate fully endogenous cycles and chaotic dynamics. In Appendix

B.8, we extend this model to allow for contrarianism and the possibility that pessimists may be

more likely to become optimists than optimists are to remain optimists. Allowing for these features

generates the possibility of endogenous cycles of arbitrary period and topological chaos (sensitivity

to arbitrarily small changes in initial conditions). This model also admits a structural test for the

presence of cycles and chaos that we bring directly to the data and reject at the 95% confidence

level that either cycles or chaos obtain.

Narratives in Games and the Role of Higher-Order Beliefs. We have studied narratively

driven fluctuations in a business-cycle model, but our insights apply to co-ordination games much

more generally. Taking a more abstract perspective, in Appendix B.9, we study contagious narra-

tives in beauty contests (in the sense of Morris and Shin, 2002), in which agents’ best replies are

a linear function of their expectations of fundamentals and the average actions of others. Many

models of aggregative games in macroeconomics and finance can be recast as such games when

(log-)linearized (for a review, see Angeletos and Lian, 2016). We characterize equilibrium in this

context and show how optimism percolates through the hierarchy of higher-order beliefs about fun-

damentals. This allows us to show that the narrative multiplier in our model can be understood as

arising from the effect of narratives on agents’ higher-order beliefs about the state of the economy.
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3.6 Toward Measurement: Identification of Model Parameters

We have shown that the theoretical properties of narrative business cycles hinge on four critical

objects: (1) the effect of optimism on hiring, (2) agents’ updating rules, (3) the persistence and

volatility of exogenous shocks, and (4) the extent of private information. We now show how

to identify these objects conditional on calibrating four standard macroeconomic production and

preference parameters. This will form the basis for our measurement, empirical strategies, and

quantification.

Step I: Identification of The Effect of Optimism. Formally, Theorem 1 implies that f , the

effect of narrative optimism on output in the unique quasi-loglinear equilibrium, is identified given

knowledge of both δOP and the standard macroeconomic parameters (α, ε, γ, ψ). Moreover, the

model implies that δOP can be recovered via a simple regression of firms’ hiring on their optimism

with firm fixed-effects, time fixed-effects, and controls for firm-level productivity and lagged labor:

Corollary 5 (Firm Hiring Regression). In the unique quasi-loglinear equilibrium, firms’ hiring

decisions obey the following equation:

∆ logLit = γi + χt + τ1 log θit + τ2 logLi,t−1 + δOPλit + ζit (30)

where the time fixed-effect is given by χt = c1 log θt + c2 log θt−1 + c3f(Qt) for some constants

c1, c2, and c3, and ζit is an i.i.d. normal random variable with zero mean. Thus, conditional on

(α, ε, γ, ψ), δOP uniquely identifies f , the equilibrium effect of optimism on aggregate output.

Proof. See Appendix A.4.

The “time fixed-effect” of this regression absorbs two aggregate equilibrium forces: the general-

equilibrium effect of optimism on hiring, c3f(Qt), and the effects of aggregate productivity on

aggregate output, c1 log θt+c2 log θt−1. Without the time fixed effect, the regression would produce

a biased estimate for δOP because of the correlation of optimism with aggregate economic funda-

mentals. These facts highlight formally the necessity of combining cross-sectional variation and a

structural model for general-equilibrium interaction to identify the effect of narratives on economic

outcomes.6

Step II: Identification of Updating Rules. In the linear-associative-contagious (LAC) model

for updating rules, we can identify u, r, and s by estimating a linear probability model for the evolu-

tion of optimism at the firm level. The residual term in this regression corresponds to idiosyncratic

shocks to updating (since the model is probabilistic) plus the aggregate shock ε.

6We note that our argument for identifying the partial-equilibrium effect of optimism on hiring and aggregating
these effects via the model also applies if narratives concern firms’ idiosyncratic productivity (Appendix B.5). Thus,
our empirical and quantitative analysis is not sensitive to this modeling choice. As we explain formally in the
Appendix, only the exact identification of the underlying parameters κ and µO−µP would change, while the outcome-
relevant objects δOP and f remain the same.
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Step III: Identification of Private Information and the Shock Processes. To obtain the

law of motion of aggregate output, we require the four parameters that govern the persistence of

productivity ρ, the volatility of productivity innovations σ, the signal-to-noise ratio for productivity

κ, and the volatility of optimism shocks σε. The key to our identification strategy for the first three

parameters is the following observation:

Corollary 6 (Fundamental Output is an ARMA(1,1)). In the unique quasi-loglinear equilibrium,

the fundamental component of output, log Y f
t = log Yt−f(Qt)−a0, follows an ARMA(1,1) process:

log Y f
t = ρ log Y f

t + a1σνt + a2σνt−1 (31)

where (a0, a1, a2) are the coefficients chacterized in Theorem 1 and νt is i.i.d. N(0, 1).

The coefficients of this ARMA(1,1) process impose three restrictions on the three parameters

(ρ, σ, κ). We finally observe that, conditional on all other parameters, the scaling of the narrative

shock σε is identified by the observed time-series variance of aggregate optimism Var[Qt].

Roadmap: From Identification to Measurement, Estimation, and Quantification. In

the next three sections, motivated by these identification arguments, we measure the required

variables, estimate the required relationships, and use the estimated parameters to quantify the

role of narratives in driving the business cycle.

4 Data and Measurement

We now develop a panel dataset on firms’ narratives and decisions. In particular, we measure

textual proxies for narratives by applying natural-language-processing techniques to two corpora

of language: the universe of public firms’ SEC Forms 10-K and a large sample of earnings calls.

4.1 Data

Text. Our main source of firm-level textual data is SEC Form 10-K. Each publicly traded firm in

the US submits an annual 10-K to the SEC. These forms provide “a detailed picture of a company’s

business, the risks it faces, and the operating and financial results of the fiscal year.” Moreover,

“company management also discusses its perspective on the business results and what is driving

them” (SEC, 2011). This description is consistent with our premise that narratives constitute a

view of the world and its rationalization via some model.

We download all SEC Forms 10-K from the SEC Edgar database from 1995 to 2019. This yields

a corpus of 182,259 html files comprising the underlying text of the 10-K. We describe our exact

method for processing the text data in Appendix C.1. The three key steps are pre-processing the

raw text data to isolate English-language words, associating words with their common roots via

lemmatization, and fitting a bigram model that groups together co-occurring two-word phrases.

We then count the occurrences of all words, including bigrams, in all documents to obtain the
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bag-of-words representation (i.e., a vector of word counts) for each document. Our final sample

consists of 100,936 firm-by-year observations from 1995 to 2018.

As an alternative source of text data, we use public firms’ sales and earnings conference calls.

Our initial sample consists of 158,810 documents from 2002 to 2014. We apply the same natural-

language-processing techniques that we employ for the 10-Ks to this corpus. We average variables

over the periods between successive 10-Ks to obtain a firm-by-fiscal-year dataset. Our final sample

consists of 25,589 firm-by-year observations. We describe more details in Appendix C.2.

Firm Fundamentals and Choices. We compile our dataset of firm fundamentals and choices

using Compustat Annual Fundamentals from 1995 to 2018. This dataset includes information

from firms’ financial statements on employment, sales, input expenses, capital, and other financial

variables. We apply standard selection criteria to screen out firms that are very small, report

incomplete information, or were likely involved in an acquisition. As is standard, we also drop

firms in the financial and utilities sectors due to their markedly different production and/or market

structure. More details about our sample selection are in Appendix D.1. We organize firms into

44 industries, which are defined at the NAICS 2-digit level, but for Manufacturing (31-33) and

Information (51), which we split into the 3-digit level.

Manager and Analyst Beliefs. We collect data from the International Brokers’ Estimate Sys-

tem (IBES) on quantitative sales forecasts by companies. Specifically, we use the IBES Guidance

dataset which records, for specific variables, a numerical management expectation recorded from

press releases or transcripts of corporate events. We restrict to the first recorded forecast per fiscal

year of that year’s sales.

4.2 Recovering Narrative Optimism from Language

As our primary measure of the narratives adopted by firms, we categorize firms as “optimistic”

or “pessimistic” in a given fiscal year based on their use of language. Toward this goal, we first

categorize individual words as either positive or negative using the dictionaries constructed by

Loughran and McDonald (2011). These dictionaries adjust standard tools for sentiment analysis to

more precisely score financial communications, in which certain words (e.g., the leading example

“liability”) have specific definitions.7 We first define WP as the set of positive words and WN as

the set of negative words. For reference, we print the 20 most common words in each set in Table

A1. We calculate positive and negative sentiment as:

posit =
∑
w∈WP

tf(w)it negit =
∑

w∈WN

tf(w)it (32)

where tf(w)it is the term frequency of all bigrams including word w in the time-t 10-K of firm

i. We then construct a one-dimensional measure of net sentiment, sentimentit, by computing the

7Loughran and McDonald (2011) generate the dictionaries based on human inspection of the most common words
in the 10-Ks and their usage in context. We describe more details of our methodology in Appendix C.3.
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across-sample z-scores of both positive and negative sentiment and taking their difference. Finally,

we define a firm i as being optimistic at time t if its sentiment is above the entire-sample median:

optit = I [sentimentit ≥ med (sentimentit)] (33)

Aggregating this optimism measure across firms, we find that aggregate optimism is persistent,

with an autocorrelation of 0.75, and cyclical, with a correlation of -0.37 with the contemporaneous

level of unemployment (see Figure A1). Both features are to be expected in our model. The former

is a result of stubbornness, contagiousness, associativeness, and autocorrelation of fundamentals.

The latter could reflect either direction of causality: narratives might reflect current conditions,

or narratives might have an economically significant effect on real outcomes. Because the time

series evidence cannot distinguish among these different explanations, it is insufficient to calibrate

the model and identify its key mechanisms. Thus, in the next section, we will use cross-sectional

variation in narratives to isolate their effects and characteristics.

Measuring Other Narratives. Measuring narrative optimism is sufficient for describing firms’

prior beliefs in our model, as there is only one dimension of fundamental uncertainty. But this

strategy abstracts from the details of what firms discuss. This could mask richer dynamics that

underlie the evolution of sentiment. In Section 7, we describe and implement methods for measuring

more specific firm narratives.

5 Empirical Results

We now use our firm-level dataset to estimate how narrative optimism affects decisions and spreads.

In the process, we test our narrative interpretation of the data against a key alternative interpre-

tation that optimism is driven by news. We find strong evidence against the news interpretation

and in favor of our narrative interpretation.

5.1 Narrative Optimism Drives Hiring

We first estimate the relationship between narrative optimism and hiring. The estimating equation

is derived in Corollary 5. Specifically, we estimate the following firm-by-fiscal-year model:

∆ logLit = δOP optit + γi + χj(i),t + τ ′Xit + εit (34)

The outcome variable is the log difference of the firm’s employment across fiscal years (“hiring”)

and the main regressor, optit, is the binary indicator for optimism whose construction is described

in Section 4. We control for firm and industry-by-time fixed effects to sweep out fixed differences

across firms and non-parametric trends and cycles within industries. We include a suite of firm-level

time-varying controls Xit including current and past TFP, lagged labor, and financial variables.8

8To measure total factor productivity, we estimate a constant-returns-to-scale, Cobb-Douglas, two-factor produc-
tion function in materials and capital, for each industry. More details are provided in Appendix D.2.
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Viewed through the lens of the model, the estimated effect δOP combines two margins: the effect

of optimism on beliefs and the effect of beliefs on input choices. We could obtain a null result of

δOP = 0 if optimism in language has no influence on firms’ choices over and above other measured

fundamentals.

We find that optimistic firms hire more than pessimistic firms holding fixed other observed

fundamentals (Table 1). We first estimate the model with no additional controls other than fixed

effects and estimate δ̂OP = 0.0355 with a standard error of 0.0030 (column 1). In column 2, we add

controls for current and lagged TFP, and lagged labor (log θ̂it, log θ̂i,t−1, logLi,t−1). These controls

proxy both for time-varying firm fundamentals and, to first order, adjustment costs in labor.9

Our point estimate δ̂OP = 0.0305 (SE: 0.0030) is quantitatively comparable to our uncontrolled

estimate. To formalize this, in Appendix E.1 we report the robustness of our estimate to selection

on unobservables using the method of Oster (2019). We find that our finding of a positive effect of

optimism on hiring is robust by the benchmark suggested by Oster (2019) (see Table A2).

In column 3, we add measures of firms’ financial characteristics, the (log) book-to-market ratio,

last fiscal year’s log stock return (inclusive of dividends), and leverage (total debt over total assets).

These controls proxy for Tobin’s q and firm-level financial frictions, features absent from our model

but potentially relevant in practice. These controls are conservative in that they may absorb

variation in both omitted firm fundamentals and optimism itself. The point estimate remains

positive and quantitatively similar. In column 4, we estimate a specification with the controls

from column 2 but no firm fixed effects to guard against small-sample bias from strict exogeneity

violations (Nickell, 1981). We find similar results.10

To test if optimism predicts (and does not merely describe) hiring, we finally estimate a speci-

fication in which the outcome and control variables are time-shifted one year in advance:

∆ logLi,t+1 = δOP−1 optit + τ ′Xi,t+1 + γi + χj(i),t+1 + εi,t+1 (35)

where δOP−1 is the effect of lagged optimism on hiring and the (time-shifted) control variables Xi,t+1

are those studied in column 2. In this specification, hiring takes place in fiscal year t + 1 after

the filing of the 10-K at the end of fiscal year t. Our point estimate in column 5 is similar in

magnitude to our comparable baseline estimate (column 2). In Table A5, we report results from

our baseline regression Equation 34, using opti,t−1 as an instrument for optit. This is robust to

any identification concern arising from the simultaneous determination of optit and ∆ logLit, but

estimates the original parameter δOP rather than δOP−1 . Our estimates are positive, statistically

significant, and larger than our baseline estimates.

Robustness and Alternative Strategies. To further isolate plausibly exogenous variation in

the narratives considered by firms, we study the effects on hiring of changes in narratives induced

by plausibly exogenous CEO turnover. We provide the details in Appendix E.2. Specifically, we

9To evaluate robustness to richer adjustment dynamics, in Table A3, we control for up to three lags of productivity
and labor and our financial controls and continue to find a significant impact of optimism on hiring.

10In Table A4, we report standard errors for the estimates of Table 1 under alternative clustering approaches.
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Table 1: Narrative Optimism Predicts Hiring

(1) (2) (3) (4) (5)
Outcome is

∆ logLit ∆ logLi,t+1

optit 0.0355 0.0305 0.0250 0.0322 0.0216
(0.0030) (0.0030) (0.0032) (0.0028) (0.0037)

Firm FE X X X X
Industry-by-time FE X X X X X
Lag labor X X X X
Current and lag TFP X X X X
Log Book to Market X
Stock Return X
Leverage X
N 71,161 39,298 33,589 40,580 38,402
R2 0.259 0.401 0.419 0.142 0.398

Notes: For columns 1-4, the regression model is Equation 34 and the outcome is the log change in firms’
employment from year t−1 to t. The main regressor is a binary indicator for the optimistic narrative, defined
in Section 4.2. In column 5, the regression model is Equation 35, the outcome is the log change in firms’
employment from year t to t+ 1, and control variables are dated t+ 1. In all specifications, we trim the 1%
and 99% tails of the outcome variable. Standard errors are two-way clustered by firm ID and industry-year.

estimate a variant of Equation 34 over firm-year observations corresponding to the death, illness,

or voluntary retirement of a CEO, as measured by Gentry, Harrison, Quigley, and Boivie (2021).

We find quantitatively similar effects of narrative optimism on hiring as those reported in Table 1.

In the Appendix, we also report several additional results that probe the robustness of our

main specification. We summarize them briefly here. First, Table A6 repeats the analysis of

Table 1 with our conference-call-based optimism measure, and finds similar results. Second, Table

A7 repeats our main analysis for different measured inputs—employment (the baseline), total

variable input expenditure, and investment—and demonstrates a positive and comparably sized

effect of optimism on all three. Third, in Figure A2 we re-create the regression models of the

first three columns of Table 1 with indicators for each decile of our continuous sentiment measure.

We find monotonically increasing associations of hiring with sentiment, implying that our binary

construction is not masking non-monotone effects of the continuous measure.

5.2 Testing the Narrative Interpretation vs. the News Interpretation

Viewed through the lens of the model, our estimate of the effect of optimism on hiring is sufficient

to quantify the static, partial equilibrium effect of narrative optimism on aggregates (Corollary

5). When combined with an external calibration of general-equilibrium forces, which allows us to

measure also the un-estimated effects in the “intercept” of Equation 34, this estimate is sufficient to

measure the static, general-equilibrium effect of optimism on aggregate output. But this calibration

strategy, in isolation, does not directly validate our hypothesis for what textual optimism represents.
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Indeed, an alternative interpretation of our findings above is that narrative optimism measures

news about future firm-level fundamentals. This would be inconsistent with our model, in which

optimism conveys no news about those fundamentals. Moreover, it would create an identification

threat that is not handled by controlling for measured past fundamentals of the firm. To test

the “narratives” interpretation against the “news” interpretation, we observe the following: the

defining property of “news” is that it is predictive of future fundamentals.

Thus, we can perform two tests that distinguish between the news and narrative interpretations.

First, under the news interpretation, a firm’s optimism should positively predict its subsequent

performance. By contrast, under the narrative interpretation, optimism should be unpredictive of

future firm fundamentals and negatively predictive of future firm performance. Second, under the

news interpretation, if a firm processes the news in a Bayesian fashion, then their forecasts should be

more optimistic but they should not be predictably more likely to exceed realized performance. By

contrast, under the narrative interpretation, firms’ forecasts should be predictably over-optimistic.

Test I: Narrative Optimism Predicts Poor Future Performance. Thus motivated, to test

the “news” hypothesis, we estimate projection regressions of firm fundamentals and performance

Zit, either TFP growth ∆ log θ̂it, log stock returns Rit, or changes in profitability ∆πit, on optimism

at leads and lags k:11

Zit = βk opti,t−k + γi + χj(i),t + εit (36)

Under the “news” hypothesis, we would expect βk > 0 for k > 0: that is, optimistic firms are both

more productive and more successful than their pessimistic counterparts in the future. Under the

“narrative” hypothesis, we should expect to see that βk = 0 for k > 0 for firm productivity (as a

measure of fundamentals) and that βk < 0 for k > 0 for firm performance.

Our findings, reported in Figure 4, strongly contradict this “news” hypothesis and are, instead,

consistent with our “narrative” hypothesis. For k < 0 and all three outcome variables, we find

evidence of βk > 0. That is, a firm doing well today in terms of TFP growth, stock-market returns,

and/or profitability is likely to become optimistic in the future. However, for k > 0, and all

three outcome variables, we find no positive association. That is, a firm that is optimistic this

year does not on average do better next year.12 We find, in sharp contrast, that optimistic firms

have negative stock returns and decreasing profitability in the future. This is consistent with our

finding that optimistic firms persistently increase input expenditure (column 5 of Table 1), but

see no increase in productivity (panel (a) of Figure 4). Figure A3 replicates this analysis with

conference-call-based optimism and finds similar results.13 Finally, in Figure A4 we replicate this

11We measure profitability as earnings before interest and taxes (EBIT) divided by the previous fiscal year’s
total variable costs (cost of goods sold (COGS) plus selling, general, and administrative expense (SGA), minus
depreciation).

12To further investigate the effects on stock prices, we also estimate the correlation of optimism with stock returns
near the 10-K filing date (Table A8). We find essentially no evidence of stock response on or before the filing day, and
weak evidence of positive returns (about 15-25 basis points) in the four days after. The latter finding is consistent
with those in Loughran and McDonald (2011).

13Jiang, Lee, Martin, and Zhou (2019) relatedly find that positive textual sentiment in firm disclosures, by their
own measure, predicts negative excess returns over the subsequent year.
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Figure 4: Dynamic Relationship between Optimism and Firm Performance
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Notes: The regression model is Equation 36, and each coefficient estimate is from a different regression. The
outcomes are (a) the log change in TFP, calculated as described in Appendix D.2, (b) the log stock return
inclusive of dividends over the fiscal year, and (c) changes in profitability, defined as earnings before interest
and taxes (EBIT) as a fraction of the previous fiscal year’s variable costs. In all specifications, we trim the
1% and 99% tails of the outcome variables. Error bars are 95% confidence intervals, based on standard errors
clustered at the firm and industry-year level.

analysis with other financial fundamentals (leverage, capital structure, payout policy, and stock

return volatility): consistent with the findings above, optimistic firms face relatively tighter future

financial conditions, not looser ones.

Test II: Narrative Optimism Predicts Over-Optimistic Beliefs. We next directly test

whether optimistic firms hold over-optimistic beliefs. We do this by linking a subset of our data

on narrative optimism with data on managerial guidance forecasts. We construct the variable

GuidanceOverOptit as an indicator of managers’ guidance minus the realization exceeding the

sample median.14 We estimate the following regression model:

GuidanceOverOpti,t+1 = β optit + τ ′Xit + χj(i),t + εit (37)

The control variables Xit are current and lagged TFP and lagged labor, all in log units. As we have

guidance data for only a small subset of firms, we do not include firm fixed effects. Our findings are

reported in Table 2. We find a positive correlation that increases when we add the aforementioned

control variables (columns 1 and 2). That is, textual optimism corresponds to forecasts that are

predictably more likely to exceed subsequent performance. This is exactly what we would predict

under the narrative hypothesis.15

14When managers’ guidance is reported as a range, we code a point-estimate forecast as the range’s midpoint. The
method of comparing to the median corrects for the fact that, in more than half of our observations, guidance is
lower than the realized value, presumably due to asymmetric incentives.

15In an analogous regression in which the outcome measures managerial optimism relative to contemporaneous
analyst forecasts, we find an imprecise positive effect in an uncontrolled model and a zero effect in the controlled
model (Table A10). These findings are consistent with a story in which narratives are shared between management
and investors, potentially due to persuasion in communications. Loughran and McDonald (2011) relatedly find
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Table 2: Narrative Optimism Predicts Over-Optimistic Forecasts

(1) (2)
Outcome is GuidanceOverOpti,t+1

optit 0.0354 0.0561
(0.0184) (0.0257)

Ind.-by-time FE X X
Lag labor X
Current and lag TFP X

N 3,817 2,159
R2 0.173 0.193

Notes: The regression model is Equation 37. The outcome is a binary indicator for whether sales guidance
was high relative to realized sales. Standard errors are two-way clustered by firm ID and industry-year.

Given that we have found that guidance correlates with narrative optimism, it is also natural

to ask if narrative optimism affects firm decisions conditional on guidance and vice versa. In Table

A9, we show that textual optimism predicts hiring over and above measured beliefs.16 This finding

is consistent with the idea that managers’ non-quantitative soft information (Liberti and Petersen,

2019) is important for decisions. Our language analysis may be able to pick up nuances in managers’

perspectives that are not reflected in the guidance data or other standard measures.

Summary. Based on these tests, we argue that there is strong evidence in favor of the narrative

interpretation. To be concrete, to argue against the narrative interpretation of the data, one would

have to argue that firms that use positive language, subsequently expand hiring and investment,

have predictably over-optimistic forecasts, and perform worse in the future were somehow correct

in their optimism.

5.3 Narrative Optimism is Contagious and Associative

We next estimate how optimism spreads across firms. Specifically, we estimate a version of the

linear-associative-contagious updating rule (Equation 26) in our panel data:

optit = u opti,t−1 + s optt−1 + r ∆ log Yt−1 + γi + εit (38)

where optt−1 is average optimism in the previous period, ∆ log Yt−1 is US real GDP growth, and

γi is an individual fixed effect. In our model interpretation, u measures stubbornness, s measures

contagiousness, and r measures associativeness.

We find strong evidence of all three forces (Table 3). That is, firms are significantly more likely

to be optimistic in year t if, in the previous year, they were optimistic, if other firms were optimistic,

that, in Fama-MacBeth predictive regressions of standardized unexpected earnings, 10-K negativity predicts higher
earnings surprises in the subsequent quarter.

16Our main model controls for expected capital expenditures. In robustness checks, we study analogous models
that control for predicted sales and earnings per share growth (Tables A11 and A12).
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Table 3: Narrative Optimism is Contagious and Associative

(1) (2)
Outcome is optit

Own lag, opti,t−1 0.209 0.214

(0.0071) (0.0080)
Aggregate lag, optt−1 0.290

(0.0578)
Real GDP growth, ∆ log Yt−1 0.804

(0.2204)
Industry lag, optj(i),t−1 0.276

(0.0396)
Industry output growth, ∆ log Yj(i),t−1 0.0560

(0.0309)

Firm FE X X
Time FE X
N 64,948 52,258
R2 0.481 0.501

Notes: The regression model is Equation 38 for column 1 and Equation 39 for column 2. Aggregate and
industry optimism are averages of the narrative optimism variable over the respective sets of firms. Industry
output growth is the log difference in sectoral value-added calculated from BEA data, linked to two-digit
NAICS industries. Standard errors are two-way clustered by firm ID and industry-year.

and if the economy grew. Our finding of s > 0, in particular, is consistent with Shiller’s (2020)

hypothesis that decision-relevant narratives are contagious.

Our estimation of Equation 38 levers only time-series variation. While this is the level of

variation that is relevant for calibrating the model, one may worry that the small sample size

leaves open the door to spurious correlation. We therefore also study a model that allows for

contagiousness and associativeness at finer levels. Specifically, we estimate the following variation

of the original regression at the industry level:

optit = uind opti,t−1 + sind optj(i),t−1 + rind ∆ log Yj(i),t−1 + γi + χt + εit (39)

where optj(i),t−1 is the leave-one-out mean of optimism within industry j(i) and ∆ log Yj(i),t−1 is

the growth of sectoral value-added, measured by linking BEA sector-level data to our NAICS-based

classification.17 The time fixed effect χt absorbs aggregate contagiousness and associativeness. We

find strong evidence for contagiousness and weaker evidence for associativeness within industries

(column 2 of Table 3).18

As a robustness check, we also measure contagiousness at a finer level by defining narrow sets of

peers that share equity analysts for firms listed on the New York Stock Exchange, following Kaustia

and Rantala (2021). We find both a quantitatively similar industry-level effect and an independent

17These data are available only from 1997.
18In Table A13, we report standard errors for Table 3 under alternative clustering.
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Table 4: Narrative Optimism is Contagious, Controlling for Past and Future Outcomes

(1) (2) (3) (4) (5)
Outcome is optit

Aggregate lag, optt−1 0.290 0.339 0.235
(0.0578) (0.0763) (0.1278)

Ind. lag, optj(i),t−1 0.276 0.241

(0.0396) (0.0434)

Firm FE X X X X X
Time FE X X
Own lag, opti,t−1 X X X X X
(∆ log Yt+k)

2
k=−2 X X

(∆ log Yj(i),t+k)
2
k=−2 X X

N 64,948 49,631 38,132 52,258 38,132
R2 0.481 0.484 0.497 0.501 0.498

Notes: The regression model is Equation 40 for columns 1-3, and an analogous industry-level specification
for columns 4 and 5 (i.e., Equation 39 with past and future controls). Columns 1 and 4 correspond,
respectively, with columns 1 and 3 of Table 3. The added control variables are two leads, two lags, and the
contemporaneous value of: real GDP growth (columns 2-3) and industry-level output growth (columns 3
and 6). Standard errors are two-way clustered by firm ID and industry-year.

peer-set effect (Table A14). Finally, we find consistent evidence of stubbornness, contagiousness,

and associativeness for the continuous measure of sentiment (Table A15).

Inspecting the Mechanism: Spillovers are Not Driven by Common Shocks. The coef-

ficients of interest (u, r, and s) identify stubbornness, associativeness, and contagiousness, when

idiosyncratic optimism, aggregate optimism, and GDP are unrelated to other factors that affect

changes in optimistic sentiment at the firm level. Since the key regressor is lagged aggregate opti-

mism, our estimates are not threatened by the reflection problem of Manski (1993). Nevertheless,

our estimates may be contaminated by omitted variables bias because aggregate optimism is cor-

related with common shocks to the economy that are in the error term.

To test for this possibility, we augment our previous regressions to include controls for past and

future fundamentals in the form of two leads and lags of real GDP or value-added growth at the

aggregate and industry levels. Specifically, we estimate

optit = u opti,t−1 + s optt−1 + γi +
2∑

k=−2

(
ηagg
k ∆ log Yt+k + ηind

k ∆ log Yj(i),t+k

)
+ εit (40)

We estimate an analogous specification at the industry level, but with the aggregate leads and lags

absorbed. If common positive shocks to the economy and sectors were driving some or all of the

estimated spillovers, we would expect to find a severely attenuated estimate of the contagiousness

coefficient s. Even under our interpretation, future output growth could be a “bad control” that is

caused by optimism and absorbs some of its effect.

We report our estimates of the contagiousness coefficients in Table 4, adding the “bad controls”
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one at a time (columns 2 and 3) and find similar results to our baseline (column 1). Similarly, for

our industry-level estimates, we find no statistically significant evidence of coefficient attenuation as

additional controls are added (columns 4 and 5). In Table A16, we report analogous estimates with

the continuous sentiment variable and find similar results. Taken together, these estimates build

confidence that our baseline contagiousness results are not driven by omitted aggregate shocks.

Alternative Identification Strategies. To further test whether our measure of contagiousness

captures spillovers, we pursue two additional instrumental variables strategies. First, in Appendix

E.3, we use size-weighted idiosyncratic shocks to firm-level optimism as an instrument for aggregate

size-weighted optimism (a granular IV à la Gabaix and Koijen, 2020). While not comparable to

our main estimates as the measure of spillovers is different, we recover a statistically significant

contagiousness effect. Second, in Appendix E.2, we use spillovers from the same plausibly exogenous

CEO changes to construct instruments for industry and peer-set optimism. We find similar (albeit

noisier) point estimates.

6 Quantifying the Impact of Narratives

We now combine our model and empirical results to gauge the quantitative effects of narratives on

business cycles.

6.1 Estimating the Model

In Section 3, we showed that we could estimate the model in three steps. We now combine our

empirical estimates from Section 5 with this three-step approach to estimate the model. We provide

the point estimates of model parameters in Table 5 and provide additional details in Appendix F.

Step I: Estimation of the Effect of Optimism. To estimate the static relationship between

output and optimism, we need to estimate f . In turn, f requires knowledge of: δOP , the partial-

equilibrium effect of optimism on hiring; α, the returns-to-scale parameter; ε, the elasticity of

substitution between varieties; and ω, the extent of complementarity (which itself depends on γ,

indexing income effects in labor supply, and ψ, the inverse Frisch elasticity of labor supply). In our

main analysis, we combine our baseline regression estimate of δ̂OP = 0.0355 (see Table 1) with an

external calibration of α, ε, γ, and ψ, which together also pin down ω.

For the external calibration, we impose that intermediate goods firms have constant returns-

to-scale or α = 1, which has been argued by Basu and Fernald (1997) and Foster, Haltiwanger,

and Syverson (2008) to be a reasonable assumption for large US firms. Second, as noted by

Angeletos and La’O (2010), γ indexes wealth effects in labor supply, which are empirically very

small (Cesarini, Lindqvist, Notowidigdo, and Östling, 2017). Hence, we set γ = 0. Third, we

calibrate the inverse Frisch elasticity of labor supply at ψ = 0.4 based on standard macroeconomic

estimates (Peterman, 2016). Finally, we calibrate the elasticity of substitution to match estimated

markups from De Loecker, Eeckhout, and Unger (2020) of 60%, which implies that ε = 2.6. Hence,

34



Table 5: Model Calibration

Fixed

ε Elasticity of substitution 2.6
γ Income effects in labor supply 0
ψ Inverse Frisch elasticity 0.4
α Returns-to-scale 1

Calibrated

µO − µP Belief effect of optimism 0.028
κ Signal-to-noise ratio 0.344
ρ Persistence of productivity 0.086
σ Std. dev. of the productivity innovation 0.011
u Stubbornness 0.208
r Associativeness 0.804
s Contagiousness 0.290
σε Std. dev. of the optimism shock 0.044

Notes: “Fixed” parameters are externally set. “Calibrated” parameters are chosen to hit various moments.
Our specific calibration methods are described in Section 6.1.

altogether, this calibration implies an aggregate degree of strategic complementarity of ω = 0.49.

In Section 6.2, we study the sensitivity of our results to this external calibration, and we introduce

two other estimation strategies for complementarity: using estimates of demand multipliers from

the literature and inferring a demand multiplier for optimism using our own firm-level regressions.

Step II: Estimation of Updating Rules. To estimate the parameters of the LAC updating

rules, we use the linear probability model estimated in Table 3.19 This yields values of u = 0.208

for stubbornness, r = 0.804 for associativeness, and s = 0.290 for contagiousness.

Step III: Estimation of Private Information and the Shock Processes. To estimate the

extent of private information and the persistence and volatility of productivity shocks, we showed

that we need to estimate the model-implied ARMA(1,1) process for fundamental output. Now that

we have estimated f , we can compute fundamental output as:

log Y f
t = log Yt − f(Qt) (41)

To calculate log Y f
t in the data, we take log Yt as band-pass filtered US real GDP (Baxter and

King, 1999), Qt as our measured time series of aggregate optimism (see Figure A1), and f as our

calibrated function.20 We estimate by maximum-likelihood the ARMA(1,1) process for Y f
t and

then set (ρ, σ, κ) to exactly match the three estimated ARMA parameters. Upon obtaining κ, the

restriction on κ and µO−µP imposed by δOP yields the value of µO−µP . Finally, we estimate the

variance of optimism shocks, σ2
ε , to match the time-series variance of optimism.

19While the linear probability model does not necessarily yield probabilities between zero and one, our estimates
of u, r and s imply updating probabilities that are always between zero and one so long as output does not deviate
by more than 30% (holding fixed εt), i.e., there is a five-standard-deviation optimism shock.

20We apply the Baxter and King (1999) band-pass filter to post-war quarterly US real GDP data (Q1 1947 to Q1
2022). We use a lead-lag length of 12 quarters, a low period of 6 quarters, and a high period of 32 quarters. We then
average these data to the annual level.
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Figure 5: The Effect of Optimism on Historical US GDP
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Notes: The “Real GDP Cycle” is calculated from a Baxter and King (1999) band-pass filter capturing
periods between 6 and 32 quarters. The “Contribution of Optimism” is the model-implied effect of optimism
on log output. The 95% confidence interval incorporates uncertainty from the estimation of δOP using the
delta method.

The Estimated Model Features Almost i.i.d. Shocks. Before proceeding to the quantita-

tive results, we observe an important property of the estimated model: our point estimate for the

persistence of exogenous productivity shocks is ρ = 0.086. As we have only allowed for i.i.d. opti-

mism shocks, this means that our model only requires almost i.i.d. exogenous shocks to match the

time-series properties of output. Thus, our estimates imply that narratives generate strong internal

propagation. This represents an important difference between our theory of narrative dynamics

and theories based on learning and dispersed information (see e.g., Woodford, 2003a; Lorenzoni,

2009; Angeletos and La’O, 2010), all of which require exogenously persistent fundamentals about

which agents slowly learn.

6.2 How Does Optimism Shape the Business Cycle?

Using the calibrated model, we now study the effects of optimism on the business cycle via two

complementary approaches: (i) gauging the historical effect of swings in business optimism on US

GDP and (ii) exploring the full dynamic implications of contagious and associative optimism.

The Effects of Optimism on US GDP. In our empirical exercise, which leveraged cross-

sectional data on US firms’ optimism, the general-equilibrium effect of optimism on total production

was the unidentified “missing intercept.” Now, equipped with the model calibration of general-

equilibrium forces, we can return to the question of how changes in optimism have historically

affected the US business cycle. Concretely, we calculate the time series of f(Qt), where f is

the calibrated function mapping aggregate optimism to aggregate output, which depends on the

partial-equilibrium effect of optimism on hiring, returns-to-scale, and the demand multiplier, and

Qt observed annual time series for business optimism. We take the observed time path of aggregate

optimism as given, and therefore use the estimated dynamics of optimism only to determine the
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shocks that rationalize this observed path.

Figure 5 illustrates our findings by plotting the cyclical component of real GDP (dashed line)

and the contribution of measured optimism toward output according to our model (solid line with

grey 95% confidence interval). Cyclical optimism explains a meaningful portion of fluctuations,

particularly the booms of the mid-1990s and the mid-2000s and the busts of 2000-2002 and 2007-

2009. The decline in the optimism component of GDP explains 31.65% (SE: 2.68%) of the output

loss between 2000 and 2002 and 18.06% (SE: 1.53%) of the output loss between 2007 and 2009.

To unpack the model-implied causes of the historical business cycle, we plot the sequence of

fundamental output and optimism shocks that our model requires to match the realized optimism

and output time series in Figure A5. Our model accounts for the early 2000s recession with a

large negative optimism shock (ε2001 = −0.08, or -1.8 standard deviations in our calibration) and

a moderate-sized shock to fundamental output. For the Great Recession, our model implies a

larger shock to fundamentals along with a smaller optimism shock (ε2008 = −0.06 or -1.4 standard

deviations). The larger contribution of, and shock to, optimism at the outset of the early 2000s

recession is consistent with a story that a break in confidence, associated with the “dot com”

crash in the stock market, spurred a recession despite sound economic fundamentals. This is

further consistent with independent textual evidence that “crash narratives” in financial news were

especially rampant in this period (Goetzmann, Kim, and Shiller, 2022).

Contagious Narratives and Economic Fluctuations. We now fully describe the role of nar-

rative dynamics in shaping the business cycle via the estimated process for how optimism spreads.

To produce a summary statistic for the contribution of optimism toward the covariance structure of

output, we observe that the covariance of output at lag ` ≥ 0 can be decomposed into four terms:

Cov[log Yt, log Yt−`] = Cov[log Y f
t , log Y f

t−`] + Cov[f(Qt), f(Qt−`)]

+ Cov[f(Qt), Yt−`] + Cov[f(Qt−`), Yt]
(42)

The first term captures the volatility and persistence of exogenous fundamentals (i.e., the driv-

ing productivity shocks). The second term captures the volatility and persistence of the non-

fundamental component of output. The last two terms capture the relationship of optimism with

past and future fundamentals, which arises from the co-evolution of narratives with economic out-

comes. We therefore define non-fundamental variance as the total autocovariance arising from

endogenous optimism as the sum of the last three terms, as well as its fraction of total variance, at

each lag `:

Non-Fundamental Autocovariance` = Cov[log Yt, log Yt−`]− Cov[log Y f
t , log Y f

t−`]

Share of Variance Explained` =
Non-Fundamental Autocovariance`

Cov[log Yt, log Yt−`]

(43)

We calculate these statistics at horizons ` ∈ {0, 1, 2} and under three model variants: the baseline

model with optimism shocks, a variant model which turns off the shocks (or sets σ2
ε = 0), and a
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Figure 6: The Contribution of Optimism to Output Variance
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Notes: The left panel plots the fraction of variance, one-year autocovariance, and two-year autocovariance
explained by endogenous optimism in model simulations. The right panel plots the total non-fundamental
autocovariance. Both quantities are defined in Equation 43. In each figure, we plot results under three model
scenarios: the baseline model with optimism shocks and optimism dynamics (blue), a variant model with no
optimism shocks, or σ2

ε = 0 (orange), and a variant model with shocks but no dynamics for narrative spread,
or u = r = s = 0 (green).

variant model that keeps optimism shocks but shuts down the endogenous evolution of narratives

(by setting u = r = s = 0).21

Optimism explains 19% of contemporary variance (` = 0), and this fraction increases with

the lag (Figure 6). At one-year and two-year lags, optimism explains 33% and 79% of output

autocovariance, respectively. Thus, most medium-frequency (two-year) dynamics are produced

by contagious optimism instead of fundamentals. The model without endogenous dynamics of

optimism explains only 4% of output variance and, as optimism shocks are i.i.d., 0% of output

auto-covariance. Moreover, while the model without optimism shocks matches only 5% of output

variance, it accounts for 17% and 69% of one-year and two-year output autocovariance. Interest-

ingly, the separate contributions to output variance of shocks and endogenous dynamics sum to

less than one-half of their joint explanatory power. This result establishes that the contagiousness

and associativeness of narratives are amplifying propagation mechanisms for exogenous sentiment

shocks.

Sensitivity Analysis. In Table A19, we report a sensitivity analysis of the conclusions above

to different calibrations for the macroeconomic parameters. We first focus on the calibration of

macroeconomic complementarity and, by extension, the demand multiplier. Recall that f(Q) ≈
αδOP

1−ω Q, where 1
1−ω is the general equilibrium demand multiplier in our economy, α indexes the

returns-to-scale, and δOP is the partial equilibrium effect of optimism on hiring. Our baseline

21As discussed in Appendix F, we always add a constant to LAC updating so 0.5 is the interior steady-state when
output is at its steady state. Thus, the “no dynamics” variant sets Qt+1 = 0.5 + εt.
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calibration implies a multiplier of 1
1−ω = 1.96. In rows 1, 2, 3, and 4 we vary the multiplier by: (i)

adjusting the inverse-Frisch elasticity to 2.5 to match microeconomic estimates (Peterman, 2016),

(ii) allowing for greater income effects in labor supply γ = 1, (iii) matching the empirical estimates

of the demand multiplier of 1.33 from Becko, Flynn, and Patterson (2024), and (iv) estimating

the general equilibrium multiplier semi-structurally by using the extent of omitted variables bias

from omitting a time fixed effect in the regression of hiring on optimism (see Appendix F.3 for

the details). Our numerical results from adjusting the multiplier, holding fixed (δOP , α, ε), convey

that the contribution of optimism is increasing in this number. We finally consider sensitivity to

the calibrations of the elasticity of substitution ε (row 5 of Table A19) and the returns-to-scale α

(row 6 of Table A19) holding fixed the multiplier (via adjustment in ψ). Changing ε has close to

no effect on our results, due to the aforementioned near-linearity of f . Reducing α, or assuming

decreasing returns to scale, dampens the effect of optimism on output because it implies a smaller

production effect of our estimated effect of optimism on hiring.

6.3 Can Contagious Optimism Generate Hysteresis?

We have shown that the dynamics of optimism generate quantitatively significant business cy-

cles. However, we have not yet explored the implications of narratives for hysteresis and long-run

movements in output. Our theoretical analysis delimited two qualitatively different regimes for

macroeconomic dynamics with contagious optimism: one with stochastic fluctuations around a sta-

ble steady state, and one with hysteresis and (almost) global convergence to extreme steady states.

Are economic narratives strong enough to generate hysteresis?

For the LAC case which we have taken to the data, the necessary and sufficient condition for

extremal multiplicity is given by Equation 27. We compute the empirical analog of this condition:

M̂ = û+ ŝ+ r̂
α

1− ω δ̂
OP − 1 (44)

If M̂ > 0, the calibrated model features hysteresis in the dynamics of optimism and output; if

M̂ < 0, the model features oscillations around a stable steady state. We find M̂ = −0.44 < 0

with a standard error of 0.052, implying stable oscillations and ruling out hysteresis dynamics.

This reflects the fact that decision-relevance, stubbornness, contagiousness, and associativeness are

sufficiently small for narrative optimism.

We explore the sensitivity of this conclusion to our calibration of the two parameters to which

it is most sensitive: stubbornness and contagiousness. In Figure 7, we plot our point estimate of

contagiousness and stubbornness as a plus and its 95% confidence interval as a dotted ellipse. We

also plot, as a dashed line, the condition for M = 0; to the left of this line, M < 0, and to the right

of this line, M > 0. In the Figure, we shade the fraction of variance explained by non-fundamental

optimism. Given the statistical precision in the estimates of stubbornness and contagiousness, we

are confident that narratives contribute stable fluctuations to the economy and explain about 20%

of the variance in output.
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Figure 7: Variance Decomposition for Different Values of Stubbornness and Contagiousness

Notes: Calculations vary u and s, holding fixed all other parameters at their calibrated values. The shading
corresponds to the fraction of variance explained by optimism, or Share of Variance Explained0 defined in
Equation 43. The plus is our calibrated value from Table 5, and the dotted line is the boundary of a 95%
confidence set. The dashed line is the condition of extremal multiplicity from Corollary 4 and Equation 27.

How does extremal multiplicity interact with our model’s predictions for non-fundamental

volatility? To isolate the role of endogenous propagation, our theoretical discussion of extremal

multiplicity considered paths of the economy without shocks. In the quantitative model, the econ-

omy is constantly buffeted with shocks that move optimism away from its steady state(s). Near

the condition for extremal multiplicity, non-fundamental variance reaches essentially 100% of total

variance. This is because even small shocks have the potential to “go viral,” and the force pulling

the economy toward an interior steady state (i.e., balanced optimism and pessimism) is weak.22

Finally, far to the right of the extremal multiplicity condition, contagious optimism explains

little output variance. This is because the economy quickly settles into an extreme steady state, fully

optimistic or fully pessimistic, and moves quickly back to this steady state in response to shocks.

Figure A7 shows this quantitatively by plotting, against the same (s, u) grid, the fraction of time

that the optimistic fraction Qt lies outside of [0.25, 0.75]—this is 0% at the baseline calibration, and

essentially 100% in the calibrations featuring extremal multiplicity. In this region, while sentiment

does not greatly affect output dynamics, it does affect the static level of output. Moreover, path

dependence in the early history of our simulation determines whether output is permanently high

(optimism goes viral) or permanently low (pessimism goes viral). Thus, the “M test” provides an

accurate diagnostic for whether economic narratives can “go viral” even in the presence of shocks.

22Due to the presence of shocks to optimism, this prediction is symmetric around the extremal multiplicity thresh-
old; in the variant model which turns off optimism shocks, the extremal multiplicity condition sharply delineates
the regime in which optimism fluctuations contribute to output variance from the regime in which there is complete
hysteresis (Figure A6).
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7 Unpacking Optimism Via Narrative Constellations

In our main analysis, we developed, empirically tested, and quantified a model in which a narra-

tive shaped business cycle dynamics. But this aggregate approach might mask richer interactions

between more specific, granular narratives. In particular, Shiller (2020) argues that constellations

of many smaller and semantically related narratives may reinforce one another to create strong

economic and social effects, and that the confluence of seemingly unrelated narratives may explain

business-cycle fluctuations. In this final section, we extend our theoretical model and measurement

technique to study how the confluence of granular narratives can generate emergent fluctuations

in overall sentiment and economic activity. We find that we can explain the data with a model in

which granular narratives are individually prone to violent fluctuations and hysteresis, but emergent

optimism nevertheless admits stable fluctuations.

7.1 A Model of Narrative Confluence and Constellations

To understand how a constellation structure for optimism may affect our macroeconomic predic-

tions, we first describe an enriched model in which multiple narratives interact to determine emer-

gent optimism. There is a latent space of K granular narratives. Agents either do or do not believe

in each narrative, and we denote individuals’ narrative weights by λit = (λ1,it, . . . , λK,it) ∈ {0, 1}K .

We let Qkt =
∫ 1

0 λk,it di ∈ [0, 1] denote the share of population that adopts each narrative.

Optimism emerges from the confluence of many narratives. To model this tractably, we assume

that the aggregate fraction of optimists, Qt, depends linearly on the fraction of agents adopting

each narrative:

Qt =

[
K∑
k=1

ζkQkt

]1

0

(45)

where (ζk)Kk=1 are constellation weights controlling the marginal effect of each narrative on emergent

optimism and the [·]10 restricts the fraction to [0, 1]. A particular narrative may be more or less

influential depending on its value of |ζk|.
Each granular narrative k evolves via a linear-associative-contagious process. That is, we let

(P k1 , P
k
0 ) respectively denote functions returning the probability that an agent who currently does

or does not hold narrative k at time t holds the narrative at time t+ 1, and we define:

P k1 (log Y,Q, ε) =

[
uk

2
+ rk log Y + skQkt + εk

]1

0

P k0 (log Y,Q, ε) =

[
−u

k

2
+ rk log Y + skQkt + εk

]1

0

(46)

We allow for k-specific stubbornness, associativeness, and contagiousness, as well as independent

shocks εk ∼ N(0, σ2
ε,k). The dynamics of different granular narratives interact in this model through

associativeness. For example, narratives may contribute to optimism, boosting the economy, and

thereby indirectly promoting other narratives associated with a good economy.
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The rest of the model is the same as the baseline. Thus, while dynamics are the same conditional

on the process for optimism, the process for emergent optimism through the latent evolution of

narratives may differ.

7.2 Measurement and Calibration

We introduce two strategies to measure granular narratives. The first is a partially supervised

method that detects firms’ discussion of the nine Perennial Economic Narratives described by

Shiller (2020). The second is an unsupervised Latent Dirichlet Allocation model (Blei, Ng, and

Jordan, 2003), which flexibly identifies clusters of topics discussed by firms. We then describe

how we combine this measurement with LASSO regressions to discipline the key parameters of the

constellation model.

Narrative Identification of Narratives. In his book Narrative Economics, Robert Shiller iden-

tifies a set of nine Perennial Economic Narratives that recur throughout American history. These

are: Panic versus Confidence; Frugality versus Conspicuous Consumption; The Gold Standard

versus Bimetallism; Labor-Saving Machines Replace Many Jobs; Automation and Artificial Intel-

ligence Replace Almost All Jobs; Real Estate Booms and Busts; Stock Market Bubbles; Boycotts,

Profiteers, and Evil Businesses; and The Wage-Price Spiral and Evil Labor Unions. We quantify

US firms’ adoption of these narratives by measuring the similarity of the firms’ language with the

language Shiller uses to describe each narrative. This method “narratively identifies narratives”

because it uses prior knowledge from Shiller’s historical study to inform our approach.

Formally, we use a method related to prior work by Hassan, Hollander, Van Lent, and Tahoun

(2019) and Flynn and Sastry (2024). For each narrative k, we first compute the term-frequency-

inverse-document-frequency (tf-idf) score to obtain a set of words most indicative of that narrative:

tf-idf(w)k = tf(w)k × log

(
1

df(w)

)
(47)

where tf(w)k is the number of times that word w appears in the chapter corresponding to narrative

k in Narrative Economics and df(w) is the fraction of 10-K documents containing the word. Intu-

itively, if a word has a higher tf-idf score, it is common in Shiller’s description of a narrative but

relatively uncommon in 10-K filings. We define the set of 100 words with the highest tf-idf score

for narrative k as Wk. We print the twenty most common words in each Wk in Table A17.

We initially score document (i, t) for narrative k by the total frequency of narrative words:

Ŝhiller
k

it =
∑
w∈Wk

tf(w)it (48)

We then compute a binary measure of narrative adoption by comparing to the in-sample median:

Shillerkit = I[Ŝhiller
k

it > med(Ŝhiller
k

it)]. In Figure A8, we plot the raw time series for the aggregate

variable corresponding to each chapter’s narrative.
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Unsupervised Recovery of Narratives via LDA. While “narrative identification” may help

us focus on an ex ante reasonable set of narratives, this method will invariably miss other topics—

for example, those that pertain more heavily to our sample period than to the broader sweep of US

economic history studied by Shiller. To identify narratives without relying on external references,

we apply Latent Dirichlet Allocation (LDA), a hierarchical Bayesian model in which documents

are constructed by combining a latent set of topic narratives (Blei, Ng, and Jordan, 2003).

More specifically, given our corpus of 10-Ks with M documents, we postulate that there are

K = 100 topics. First, the number of words in each document is drawn from a Poisson distribution

with parameter ξ. Second, the distribution of topics in each document is given by ϑ = (ϑ1, . . . , ϑM ),

over which we impose a Dirichlet prior with parameter α = {αk}k∈K, where αk represents the prior

weight that topic k is in any document. Third, the distribution of words across topics is given by

φ = (φ1, . . . , φK), over which we impose a Dirichlet prior with parameter β = {βjk}k∈K, where

βjk is the prior weight that word j is in topic k. Finally, we assume that individual words in

each document d are generated by first drawing a topic z from a multinomial distribution with

parameter ϑ, and then selecting a word from that topic by drawing a word from a multinomial

distribution with parameter φz. Intuitively, in an LDA, the set of documents is formed of a low-

dimensional space of narratives of co-occurring words. To estimate the LDA, we use the Gensim

implementation of the variational Bayes algorithm of Hoffman, Bach, and Blei (2010), which makes

estimation of LDA on our large dataset feasible when standard Markov Chain Monte Carlo methods

would be slow.23 In Table A18, we print the top ten terms associated with each of our estimated

topics. Given the estimated LDA, we construct the document-level narrative score as the posterior

probability of that topic in the estimated document-specific topic distribution p̂:

t̂opic
k

it = p̂(k|dit) (49)

We then compute a binary measure of topic discussion by comparing to the in-sample median:

topickit = I[t̂opic
k

it > med(t̂opic
k

it)].

Calibration. To calibrate the new parameters of the model, we proceed in four steps. We

summarize the steps below and provide more details in Appendix F.2.

First, we estimate the constellation weights in the following firm-level regression:

optit =
9∑

k=1

ζkShiller · Shillerkit +
100∑
k=1

ζktopic · topickit + γi + χj(i),t + εit (50)

This model estimates the marginal effects of each granular narrative on the propensity toward

optimism. As throughout our analysis, we control for firm fixed effects and non-parametric sector-

by-time trends.

An obvious challenge in estimating Equation 50 is the high dimensionality of the regressors. In

23For computational reasons, we estimate the model using all available documents from a randomly sampled 10,000
of our 37,684 unique possible firms. We score all documents with this estimated model.
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more practical terms: while our narrative identification methods are designed to pick up recurring

language, we may suspect that only a strict subset of them affect firms’ economic beliefs and

decisions. To address this challenge, we estimate Equation 50 with the Rigorous Square-Root post-

LASSO method of Belloni, Chen, Chernozhukov, and Hansen (2012) and Belloni, Chernozhukov,

Hansen, and Kozbur (2016). Specifically, this method uses a LASSO variable selection technique

to identify the subset of regressors that are relevant for predicting optimism, and then obtains a

consistent estimate of the ζk coefficients via OLS. Applying this method yields a relevant subset of

30 topic narratives and 8 Shiller narratives. Table A25 in the Appendix prints each of the selected

narratives and their respective ζk.

Second, we estimate stubbornness, associativeness, and contagiousness for each narrative just

as in the main analysis, by estimating variants of Equation 38. This step fixes the parameters

(uk, rk, sk) for each selected narrative. These estimates are also reported in Table A25.

Third, we calibrate the variance of narrative shocks, σ2
ε,k, to match the time-series variance of

each granular narrative. Specifically, we minimize the sum of square deviations of model-generated

variances from measured time-series variances.

Finally, to calibrate the rest of the model, we proceed exactly as described in Section 6.1. Since

all of these strategies are conditioned on the realizations of (emergent) optimism, they also remain

valid in this enriched model.

7.3 Results: Macro Dynamics When Narratives “Go Viral”

Comparing the model with constellations to the baseline quantification, we find that emergent

optimism explains a comparable amount of the variance and autocorrelation of output. For example,

optimism explains 16% of output variance and 31% of the first-lag autocovariance, compared to 19%

and 33% in our baseline calibration. We report these results in Figure A9. This result implies that

the constellation model implies very similar time-series properties for emergent optimism compared

to the baseline model, even though the time-series variance of emergent optimism is an untargeted

moment.

However, this similarity belies significant heterogeneity in how the granular narratives spread,

which is in turn related to each narrative’s tendency to “go viral.” The unconditional variance of

emergent optimism in the model can be decomposed as

Var[Qt] =

K∑
k=1

(ζk)2Var[Qkt ] +R (51)

where R is a remainder that accounts for (i) the flooring and capping of Qt and (ii) the covariance

between the narrative evolutions. In our simulations, we find that R is only 3% of the total variance

in Qt. This implies that the variance of emergent optimism can be approximately described as a

weighted sum of the variances of the granular narratives, with weights given by the square of their
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Figure 8: The Viral Components of Emergent Optimism
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Notes: Panel (a) plots our estimates of the virality statistic M̂k, defined in Equation 52, against our estimates

of the constellation weights ζ̂k, from Equation 50. The solid lines are 95% confidence intervals. Panel (b)
plots our estimated virality statistics against their simulated variances (blue circles) and their empirical
time-series variances (orange crosses).

importance in driving optimism. Next, we observe that the narrative-specific M statistics,

M̂k = ûk + ŝk + r̂k
αζ̂kδ̂OP

1− ω − 1 (52)

correspond to the correct hysteresis test statistic if narrative k were the only component of emergent

optimism. Intuitively, M̂k captures each granular narrative’s “tendency toward virality.”

We find that many narratives have M statistics that exceed (or nearly exceed) the criticality

threshold of zero (see Panel (a) of Figure 8). These narratives, unlike aggregate optimism, can

therefore go viral. Moreover, emergent optimism places large weights on many of these viral

narratives (see Panel (a) of Figure 8). Thus, aggregate optimism is significantly driven by viral

granular narratives. Finally, the narratives that our model predicts as being close to the virality

threshold are precisely the highest variance narratives in the data (see Panel (b) of Figure 8). This

provides empirical validation of M as a diagnostic for virality.

Taken together, we find that emergent optimism is largely driven by viral and volatile narratives.

Moreover, despite the virality of its underlying components, emergent optimism is stable and its

effect on the business cycle is almost unchanged relative to our baseline model with a single non-viral

narrative. Thus, while modeling underlying narrative constellations is descriptively interesting for

understanding narrative dynamics, it appears inessential for studying the contribution of narratives

to the aggregate business cycle.

8 Conclusion

This paper studies the macroeconomic implications of contagious narratives. We develop a concep-

tual framework in which narratives form building blocks of agents’ beliefs, affect agents’ decisions,
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and spread contagiously and associatively between agents. We develop a narrative business-cycle

model and find that narratives can generate non-fundamentally driven boom-bust cycles and hys-

teresis. To take this model to the data, we measure narratives among US firms. We find that

contagious and associative narrative optimism affects firms’ decisions and beliefs without repre-

senting news about fundamentals. When we calibrate the model to match the data, we find that

the business-cycle implications of narratives are quantitatively significant: measured declines in

optimism account for approximately 32% of the peak-to-trough decline in output over the early

2000s recession and 18% over the Great Recession. Finally, we show that the interaction of many

simultaneously evolving and highly contagious narratives, some of which are individually prone to

hysteresis, can nevertheless underlie stable fluctuations in emergent optimism and output. Taken

together, our analysis shows that narratives may be a significant cause of the business cycle.

Our analysis leaves open at least two important areas for future study. First, we have analyzed

how firms’ narratives matter and abstracted away from studying households’ narratives. It seems

reasonable that similar mechanisms could operate on the household side of the economy, where

contagious narratives might influence spending and investing decisions. Moreover, co-evolving

narratives on both the “supply side” and the “demand side” of the economy might have mutually

reinforcing effects. From this perspective, narratives have the potential to explain even more of the

business cycle than our analysis suggests. Second, there remains much more to study about what

“makes a narrative a narrative”—that is, in the language of our model, what microfounds the set

of narratives and their contagiousness? A richer study of these issues would cast further light on

policy issues, including both the interaction of standard macroeconomic policies with narratives

and the potential effects of directly “managing narratives” via communication. Moreover, probing

these deeper origins of narratives could further enrich the study of narrative constellations beyond

our analysis, to account for the full economic, semantic, and psychological interactions between

narratives in a complex world.
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A Omitted Derivations and Proofs

A.1 Proof of Theorem 1

Proof. We guess and verify that there exists a unique quasi-loglinear equilibrium. That is, there

exists a unique equilibrium of the following form:

log Y (θt, θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt) (53)

for some parameters a0, a1, a2 ∈ R and function f : [0, 1]→ R. To verify this conjecture, we need to

compute best replies under this conjecture and show that when we aggregate these best replies that

the conjecture is consistent and, moreover, that it is consistent for a unique tuple (a0, a1, a2, f).

From the arguments in the main text, we have Equation 16 holds. Thus, we need to compute two

objects: logEit
[
θ
− 1+ψ

α
it

]
and logEit

[
Y

1
ε
−γ

t

]
. We can compute the first object directly. Conditional

on a signal sit and a narrative weight λit, we have that the distribution of the aggregate component

of productivity is:

log θt|sit, λit ∼ N
(
κsit + (1− κ)µ(λit, θt−1), σ2

θ|s

)
(54)

by the standard formula for the conditional distribution of jointly normal random variables, where:

µ(λit, θt−1) = (1− ρ)(µOλit + µP (1− λit)) + ρ log θt−1 , κ =
1

1 + σ2
e

σ2
θ

, σ2
θ|s =

1
1
σ2
θ

+ 1
σ2
e

(55)

with κ being the signal-to-noise ratio and σ2
θ|s the variance of fundamentals conditional on the

signal. Thus, the conditional distribution of idiosyncratic productivity is given by:

log θit|sit, λit ∼ N
(

log γi + κsit + (1− κ)µ(λit, θt−1), σ2
θ|s + σ2

θ̃

)
(56)

where we will denote the above mean by µit and variance by η2. Hence, rewriting and using the

moment generating function of a normal random variable, we have that:

logEit
[
θ
− 1+ψ

α
it

]
= logEit

[
exp

{
−1 + ψ

α
log θit

}]
= −1 + ψ

α
µit +

1

2

(
1 + ψ

α

)2

η2

(57)

Under our conjecture (Equation 53), we can moreover compute:

logEit
[
Y

1
ε
−γ

t

]
= logEit

[
exp

{(
1

ε
− γ
)

(a0 + a1 log θt + a2 log θt−1 + f(Qt)

}]
=

(
1

ε
− γ
)

[a0 + a1(µit − log γi) + a2 log θt−1 + f(Qt)]

+
1

2
a2

1

(
1

ε
− γ
)2 [

η2 − σ2
θ̃

] (58)
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Thus, we have that best replies under our conjecture are given by:

log xit =
1

1+ψ−α
α + 1

ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
µit −

1

2

(
1 + ψ

α

)2

η2

+

(
1

ε
− γ
)

[a0 + a1(µit − log γi) + a2 log θt−1 + f(Qt)] +
1

2
a2

1

(
1

ε
− γ
)2 [

η2 − σ2
θ̃

] ] (59)

To confirm the conjecture, we must now aggregate these levels of production and show that they

are consistent with the conjecture. Performing this aggregation we have that:

log Yt = log

(∫
[0,1]

x
ε−1
ε

it

) ε
ε−1


=

ε

ε− 1
logEt

[
exp

{
ε− 1

ε
log xit

}]
=

ε

ε− 1
logEt

[
Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]]

(60)

Moreover, expanding the terms in Equation 59, we have that:

log xit =
1

1+ψ−α
α + 1

ε

[
log

(
1− 1

ε
1+ψ
α

)

+
1 + ψ

α
[log γi + κsit + (1− κ)µ(λit, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
(61)

which is, conditional on λit, normally distributed as both log γi and sit are both normal. Hence,

we write log xit|λit ∼ N(δt(λit), σ̂
2), where:

δt(λit) =
1

1+ψ−α
α + 1

ε

[
log

(
1− 1

ε
1+ψ
α

)

+
1 + ψ

α
[µγ + κ log θt + (1− κ)µ(λit, θt−1)]− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κ log θt + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
(62)
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and:

σ̂2 =

(
1

1+ψ−α
α + 1

ε

)2 [(
1 + ψ

α

)2

σ2
γ + κ2

[
1 + ψ

α
+ a1

(
1

ε
− γ
)]2

σ2
e

]
(63)

Thus, we have that:

Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]

= exp

{
ε− 1

ε
δt(λit) +

1

2

(
ε− 1

ε

)2

σ̂2

}
(64)

and so:

Et
[
Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]]

= Qt exp

{
ε− 1

ε
δt(1) +

1

2

(
ε− 1

ε

)2

σ̂2

}

+ (1−Qt) exp

{
ε− 1

ε
δt(0) +

1

2

(
ε− 1

ε

)2

σ̂2

}

=

[
Qt exp

{
ε− 1

ε
(δt(1)− δt(0))

}
+ (1−Qt)

]
exp

{
ε− 1

ε
δt(0) +

1

2

(
ε− 1

ε

)2

σ̂2

} (65)

Yielding:

log Yt = δt(0) +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(
Qt exp

{
ε− 1

ε
(δt(1)− δt(0))

}
+ (1−Qt)

)
(66)

where we define αδOP = δt(1)− δt(0) and compute:

δt(1)− δt(0) =
1

1+ψ−α
α + 1

ε

(
1 + ψ

α
+ a1

(
1

ε
− γ
))

(1− κ)(1− ρ)(µO − µP ) = αδOP (67)

and note that this is a constant. Finally, we see that δt(0) is given by:

δt(0) =
1

1+ψ−α
α + 1

ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
(µγ + (1− κ)((1− ρ)µP + ρ log θt−1)− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

(a0 + a1(1− κ)((1− ρ)µP + ρ log θt−1)) +
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

+

[
1 + ψ

α
+ a1

(
1

ε
− γ
)]

κ log θt +

(
1

ε
− γ
)

(a2 log θt−1 + f(Qt))

]
(68)

By matching coefficients between Equations 66 and Equation 53, we obtain a0, a1, a2, and f .

We first match coefficients on log θt to obtain an equation for a1:

a1 =

[
1+ψ
α + a1

(
1
ε − γ

)]
κ

1+ψ−α
α + 1

ε

(69)
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Under our maintained assumption that
1
ε
−γ

1+ψ−α
α

+ 1
ε

∈ [0, 1), as κ ∈ [0, 1], we have that this has a

unique solution:

a1 =

1+ψ
α
κ

1+ψ−α
α

+ 1
ε

1− ( 1
ε
−γ)κ

1+ψ−α
α

+ 1
ε

=
1

1− κω
1+ψ
α κ

1+ψ−α
α + 1

ε

(70)

which is in terms of primitive parameters and is moreover positive.

Second, we match coefficients on log θt−1 to obtain an equation for a2:

a2 =
1

1+ψ−α
α + 1

ε

[(
1 + ψ

α
+

(
1

ε
− γ
)
a1

)
(1− κ)ρ+

(
1

ε
− γ
)
a2

]
(71)

This implies that:

a2 =
1

1− ω
1

1+ψ−α
α + 1

ε

[
1 + ψ

α
+

(
1

ε
− γ
)
a1

]
(1− κ)ρ

=
1

1− ω
1

1+ψ−α
α + 1

ε

[
1 + ψ

α
+

(
1

ε
− γ
)

1

1− κω
1+ψ
α κ

1+ψ−α
α + 1

ε

]
(1− κ)ρ

(72)

which is in terms of primitive parameters.

Third, by collecting terms with Qt we obtain an equation for f :

f(Q) =
1
ε − γ

1+ψ−α
α + 1

ε

f(Q) +
ε

ε− 1
log

(
1 +Q

[
exp

{
ε− 1

ε
αδOP

}
− 1

])
(73)

which has a unique solution as
1
ε
−γ

1+ψ−α
α

+ 1
ε

∈ [0, 1) and can be solved to yield:

f(Q) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(
1 +Q

[
exp

{
ε− 1

ε
αδOP

}
− 1

])
(74)

where we observe that δOP depends only on primitive parameters and a1, for which we have already

solved.

Finally, by collecting constants, we obtain an equation for a0:

a0 =
1

1+ψ−α
α + 1

ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
(µγ + (1− κ)(1− ρ)µP )− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+

(
1

ε
− γ
)

(a0 + a1(1− κ)(1− ρ)µP ) +
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
+

1

2

ε− 1

ε
σ̂2

(75)
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Solving this equation yields:

a0 =
1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

[
1

1+ψ−α
α + 1

ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
(µγ + (1− κ)(1− ρ)µP )− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)

+

(
1

ε
− γ
)
a1(1− κ)(1− ρ)µP +

1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

]
+

1

2

ε− 1

ε
σ̂2

]
(76)

which we observe depends only on parameters, a1, and σ̂2. Moreover, σ̂2 depends only on parameters

and a1. Thus, given that we have solved for a1, we have now recovered a0, a1, a2 and f uniquely

and verified that there exists a unique quasi-loglinear equilibrium. Finally, to obtain the formula

for the best reply of agents, simply substitute a0, a1, a2 and f into Equation 61 and label the

coefficients as in the claim.

A.2 Proof of the Claims in Remark 1

We now prove the claims made in Remark 1. We have already shown that there exists a unique

quasi-loglinear equilibrium. More generally, we seek to rule out an equilibrium of any other form.

To do so, we show that there is a unique equilibrium when fundamentals are bounded by some

M ∈ R, log θt ∈ [−M,M ], log γi ∈ [−M,M ], log θ̃it ∈ [−M,M ], and eit ∈ [−M,M ].

Lemma 1. When fundamentals are bounded, there exists a unique equilibrium

Proof. To this end, we can recast any equilibrium function log Y (θ, θ−1, Q) as one that solves the

fixed point in Equation 16. In the case where fundamentals are bounded, this can be accomplished

by demonstrating that the implied fixed-point operator is a contraction by verifying Blackwell’s

sufficient conditions. More formally, consider the space of bounded, real-valued functions C under

the L∞-norm and consider the operator VM : C → C given by:

VM (g)(θ, θ−1, Q) =
ε

ε− 1
logE(θ,θ−1,Q)

[
exp

{
ε−1
ε

1+ψ−α
α + 1

ε

(
log

(
1− 1

ε
1+ψ
α

)

− logE(s,Q)

[
exp

{
−1 + ψ

α
log θit

}]
+ logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}])}] (77)

The following two conditions are sufficient for this operator to be a contraction: (i) monotonicity:

for all g, h ∈ C such that g ≥ h, we have that VM (g) ≥ VM (h) (ii) discounting: there exists a

parameter c ∈ [0, 1) such that for all g ∈ C and a ∈ R+ and VM (g + a) ≤ VM (g) + ca. Thus,

as the space of bounded functions under the L∞-norm is a complete metric space, if Blackwell’s

conditions hold, then by the Banach fixed-point theorem, there exists a unique fixed point of the

operator VM .

To complete this argument, we now verify (i) and (ii). To show monotonicity, observe that
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1
ε − γ ≥ 0 as ω ≥ 0 and recall that ε > 1. Thus, we have that:

logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}]
≥ logE(s,Q)

[
exp

{(
1

ε
− γ
)
h

}]
(78)

for all (s,Q). And so VM (g)(θ,Q) ≥ VM (h)(θ,Q) for all (θ,Q). To show discounting, observe that:

logE(s,Q)

[
exp

{(
1

ε
− γ
)

(g + a)

}]
= logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}]
+

(
1

ε
− γ
)
a (79)

And so:

VM (g + a)(θ, θ−1, Q) =
ε

ε− 1
logE(θ,θ−1,Q)

[
exp

{
ε−1
ε

1+ψ−α
α + 1

ε

(
log

(
1− 1

ε
1+ψ
α

)

− logE(s,Q)

[
exp

{
−1 + ψ

α
log θit

}]
+ logE(s,Q)

[
exp

{(
1

ε
− γ
)
g

}]
+

(
1

ε
− γ
)
a

)}]
= VM (g)(θ, θ−1, Q) + ωa

(80)

where ω ∈ [0, 1) by assumption. Note that the modulus of contraction ω is precisely the claimed

strategic complementarity parameter in Equation 11. This verifies equilibrium uniqueness.

Away from the case with bounded fundamentals, the above strategy cannot be used to demon-

strate uniqueness. Even though the fixed-point operator still satisfies Blackwell’s conditions, the

relevant function space now becomes any Lp-space for p ∈ (1,∞) and the sup-norm over such

spaces can be infinite, making Blackwell’s conditions insufficient for V to be a contraction. In this

case, we show that the unique quasi-loglinear equilibrium in the unbounded fundamentals case is

an appropriately-defined ε-equilibrium for any ε > 0. Let the unique quasi-loglinear equilibrium

we have guessed and verified be log Y ∗. We say that g is a ε-equilibrium if

||g − VM (g)||p < ε (81)

where || · ||p is the Lp-norm. In words, g is a ε-equilibrium if its distance from being a fixed point is

at most ε. The following Lemma establishes that Y ∗ is a ε-equilibrium for bounded fundamentals

for any ε > 0 for some bound M :

Lemma 2. For every ε > 0, there exists an M ∈ N such that log Y ∗ is a ε-equilibrium.

Proof. Now extend from C, VM : Lp(R)→ Lp(R) as in Equation 77. We observe that VM is continu-

ous in the limit in M in the sense that VM (g)→ V (g) as M →∞ for all g ∈ Lp(R). This observation

follows from noting that both logE(s,Q)

[
exp

{
−1+ψ

α log θit

}]
and logE(s,Q)

[
exp

{(
1
ε − γ

)
g
}]

are

convergent pointwise for M → ∞ for all (s,Q). In Proposition 1, we showed that V (log Y ∗) =

log Y ∗. Thus, we have that: VM (log Y ∗)→ V (log Y ∗) = log Y ∗, which implies that:

lim
M→∞

|| log Y ∗ − VM (log Y ∗)||p = 0 (82)
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which implies that for every ε > 0, there exists a M̄ ∈ N such that:

|| log Y ∗ − VM (log Y ∗)||p < ε ∀M ∈ N : M > M̄ (83)

Completing the proof.

A.3 Proof of Theorem 2

Proof. We prove the three claims in sequence.

(1) The map Tθ : [0, 1] → [0, 1] is continuous for all θ ∈ Θ as f , PO and PP are continuous

functions. Moreover, it maps a convex and compact set to itself. Thus, by Brouwer’s fixed point

theorem, there exists a Q∗θ such that Q∗θ = Tθ(Q
∗
θ) for all θ ∈ Θ.

(2) To characterize the existence of extremal steady states, observe that Q = 1 is a steady

state for θ if and only if Tθ(1) = PO(ao + (a1 + a2) log θ + f(1), 1, 0) = 1 and Q = 0 is a steady

state for θ if and only if Tθ(0) = PP (a0 + (a1 + a2) log θ, 0, 0) = 0. Thus, Q = 1 is a steady state

if and only if P−1
O (1; 1) ≤ a0 + (a1 + a2) log θ + f(1) and Q = 0 is a steady state if and only if

P−1
P (0; 0) ≥ a0 + (a1 + a2) log θ. To obtain the result as stated, we re-arrange these inequalities in

terms of log θ and exponentiate.

(3) To analyze the stability of the extremal steady states, observe that if T ′θ(Q
∗) < 1 at a steady

state Q∗, then Q∗ is stable. When it exists (which it does almost everywhere), we have that:

T ′θ(Q) = PO(a0 + (a1 + a2) log θ + f(Q), Q, 0)− PP (a0 + (a1 + a2) log θ + f(Q), Q, 0)

+Q
d

dQ
PO(a0 + (a1 + a2) log θ + f(Q), Q, 0)

+ (1−Q)
d

dQ
PP (a0 + (a1 + a2) log θ + f(Q), Q, 0)

(84)

Thus, for θ < θP and Q = 0:

T ′θ(0) = PO(a0 + (a1 + a2) log θ, 0, 0)− PP (a0 + (a1 + a2) log θ, 0, 0)

+
d

dQ
PP (a0 + (a1 + a2) log θ + f(Q), Q, 0) |Q=0

= PO(a0 + (a1 + a2) log θ, 0, 0)

(85)

where the second equality follows by observing that all of PP , ∂PP
∂ log Y , and ∂PP

∂Q are zero for θ < θP .

Thus, we have that T ′θ(0) < 1 when PO(a0 +(a1 +a2) log θ, 0, 0) < 1. Moreover, for θ < θP , we have

that: PO(a0 + (a1 + a2) log θ, 0, 0) ≤ PO(a0 + (a1 + a2) log θP , 0, 0) = PO(P−1
P (0; 0), 0, 0). Thus, a

sufficient condition for T ′θ(0) < 1 for θ < θP is that PO(P−1
P (0; 0), 0, 0) < 1.
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For θ > θO and Q = 1, we have that:

T ′θ(1) = PO(a0 + (a1 + a2) log θ + f(1), 1, 0)− PP (a0 + (a1 + a2) log θ + f(1), 1, 0)

+
d

dQ
PO(a0 + (a1 + a2) log θ + f(1), 1, 0) |Q=1

= 1− PP (a0 + (a1 + a2) log θ + f(1), 1, 0)

(86)

where the second equality follows by observing that PO = 1 and both ∂PO
∂ log Y and ∂PO

∂Q are zero for

θ > θO. Hence, we have that T ′θ(1) < 1 when PP (a0 +(a1 +a2) log θ+f(1), 1, 0) > 0. For θ > θO we

have that PP (a0+(a1+a2) log θ+f(1), 1, 0) ≥ PP (a0+(a1+a2) log θO+f(1), 1) = PP (P−1
O (1, 1), 1, 0).

Thus, a sufficient condition for T ′θ(1) < 1 for θ > θO is that PP (P−1
O (1, 1), 1, 0) > 0.

A.4 Proof of Corollary 5

Proof. From Equation 61 in the proof of Proposition 1, we have that the log production of firm i

at time t is described in the unique quasi-log-linear equilibrium by:

log xit =
1

1+ψ−α
α + 1

ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[log γi + κsit + (1− κ)µ(λit, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s + σ2

θ̃

)
+ +

1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s

+

(
1

ε
− γ
)

[a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt)]

] (87)

We substitute this expression into the production function to obtain an equation for hiring logLit =
1
α(log xit − log θit). Subtracting lagged labor from both sides yields Equation 30.
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B Additional Theoretical Results and Extensions

This appendix covers several additional results and model extensions. First, we provide formal

results on the model’s impulse response functions and its propensity to undergo boom-bust cycles

(B.1). Second, we theoretically characterize and quantify the normative implications of narrative

fluctuations (B.2). Third, we study equilibrium dynamics under a benchmark model of Bayesian

model updating and contrast these predictions with those obtained in our main analysis (B.3).

Fourth, fifth, sixth, and seventh we extend the baseline model to respectively incorporate a contin-

uum of different levels of optimism (B.4), narratives about idiosyncratic fundamentals (B.5), multi-

dimensional narratives (B.6), and narrative updating that depends on idiosyncratic fundamentals

(B.7). In each case, we characterize equilibrium dynamics and show how our main theoretical

insights extend. Eighth, we show how endogenous cycles and chaotic dynamics can obtain when

agents are contrarian and implement an empirical test for their presence (B.8). Ninth and finally,

we highlight the role of higher-order beliefs and show how our analysis could generalize to other

settings by deriving a similar law of motion for optimism in abstract, linear beauty contest games

à la Morris and Shin (2002) (B.9).

B.1 Impulse Responses and Stochastic Fluctuations

This Appendix generalizes and formalizes the observations about narrative business cycle dynamics

from Section 3.3.

First, we define two important types of updating rules that satisfy a natural single-crossing

condition. We say that T is strictly single-crossing from above (SSC-A) if for all θ ∈ Θ there exists

Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (0, Q̂θ) and Tθ(Q) < Q for all Q ∈ (Q̂θ, 1). We say

that T is strictly single-crossing from below (SSC-B) if for all θ ∈ Θ there exists Q̂θ ∈ [0, 1] such

that Tθ(Q) > Q for all Q ∈ (Q̂θ, 1) and Tθ(Q) < Q for all Q ∈ (0, Q̂θ). If T is either SSC-A or

SSC-B, we say that it is SSC. The left and right panels of Figure 1 respectively illustrate examples

of SSC-A and SSC-B transition maps.

Lemma 3 (Steady States under the SSC Property). If Tθ is SSC, then there exist at most three

deterministic steady states. These correspond to extreme pessimism Q = 0, extreme optimism

Q = 1, and intermediate optimism Q = Q̂θ. Moreover, when Tθ is SSC-A: intermediate optimism

is stable with a basin of attraction that includes (0, 1); and whenever extreme optimism or extreme

pessimism are steady states that do not coincide with Q̂θ, they are unstable with respective basins

of attraction {0} and {1}. When Tθ is SSC-B: whenever extreme optimism is a steady state, it is

stable with basin of attraction (Q̂θ, 1]; whenever extreme pessimism is a steady state it is stable with

basin of attraction [0, Q̂θ); and intermediate optimism is always unstable with basin of attraction

{Q̂θ}.

Proof. Fix θ ∈ Θ. We first study the SSC-A case. By SSC-A of T we have that there exists

Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (0, Q̂θ) and Tθ(Q) < Q for all Q ∈ (Q̂θ, 1). As Tθ is
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continuous we have that Tθ(Q̂θ) = Q̂θ. Consider now some Q0 ∈ (0, 1) such that Q0 6= Q̂θ. We

have that Tθ(Q0) > Q̂θ if Q0 < Q̂θ and Tθ(Q0) < Q̂θ if Q0 > Q̂θ. Hence, there exists at most one

Q∗ ∈ (0, 1) such that Tθ(Q
∗) = Q∗. Thus, there exist at most three steady states Q∗ = 0, Q∗ = Q̂θ,

and Q∗ = 1.

To find the basins of attraction of these steady states, fix Q0 ∈ (0, 1) and consider the sequence

{Tnθ (Q0)}n∈N. For a steady state Q∗, its basin of attraction is:

Bθ(Q∗) =
{
Q0 ∈ [0, 1] : lim

n→∞
Tnθ (Q0) = Q∗

}
(88)

First, consider Q0 ∈ (0, Q̂θ). We now show by induction that Tnθ (Q0) ≥ Tn−1
θ (Q0) for all n ∈ N.

Consider n = 1. We have that Tθ(Q0) > Q0 as T is SSC-A and Q0 < Q̂θ. Suppose now that

Tnθ (Q0) ≥ Tn−1
θ (Q0). We have that:

Tn+1
θ (Q0) = Tθ ◦ Tnθ (Q0) ≥ Tθ ◦ Tn−1

θ (Q0) = Tnθ (Q0) (89)

by monotonicity of Tθ, which proves the inductive hypothesis. Observe moreover that the sequence

{Tnθ (Q0)}n∈N is bounded as Tnθ (Q0) ∈ [0, 1] for all n ∈ N. Hence, by the monotone convergence

theorem, limn→∞ T
n
θ (Q0) exists. Toward a contradiction, suppose that Q∞0 = limn→∞ T

n
θ (Q0) >

Q̂θ. By SSC-A of T we have that Tθ(Q
∞
0 ) > Q∞0 , but this contradicts that Q∞0 = limn→∞ T

n
θ (Q0).

Thus, we have that Q∞0 = Q̂θ. Hence, (0, Q̂θ) ⊆ Bθ(Q̂θ). Second, consider Q0 = Q̂θ. We have that

Tθ(Q̂θ) = Q̂θ. Thus, Q∞0 = Q̂θ. Hence, Q̂θ ∈ Bθ(Q̂θ). Third, consider Q0 ∈ (Q̂θ, 1). Following the

arguments of the first part, we have that (Q̂θ, 1) ⊆ Bθ(Q̂θ). Thus, (0, 1) ⊆ Bθ(Q̂θ). Moreover, if

Q = 0 or Q = 1 are steady states, they can only have basins of attraction in [0, 1] \ Bθ(Q̂θ), which

implies that they are unstable and can only have basins of attraction {0} and {1}.
The analysis of the SSC-B case follows similarly. By SSC-B of T we have that there exists

Q̂θ ∈ [0, 1] such that Tθ(Q) > Q for all Q ∈ (Q̂θ, 1) and Tθ(Q) < Q for all Q ∈ (0, Q̂θ). As Tθ

is continuous, we have that Tθ(Q̂θ) = Q̂θ. Consider now some Q0 ∈ (0, 1) such that Q0 6= Q̂θ.

Observe that Tθ(Q0) < Q̂θ if Q0 < Q̂θ and Tθ(Q0) > Q̂θ if Q0 > Q̂θ. Hence, there exists at most

one Q∗ ∈ (0, 1) such that Tθ(Q
∗) = Q∗. Thus, there exist at most three steady states Q∗ = 0,

Q∗ = Q̂θ, and Q∗ = 1.

To find the basins of attraction of these steady states, first consider Q0 ∈ (0, Q̂θ). We now show

by induction that Tnθ (Q0) ≤ Tn−1
θ (Q0) for all n ∈ N. Consider n = 1. We have that Tθ(Q0) < Q0

as T is SSC-B and Q0 < Q̂θ. Suppose now that Tnθ (Q0) ≤ Tn−1
θ (Q0). We have that:

Tn+1
θ (Q0) = Tθ ◦ Tnθ (Q0) ≤ Tθ ◦ Tn−1

θ (Q0) = Tnθ (Q0) (90)

by monotonicity of Tθ, which proves the inductive hypothesis. Observe moreover that the sequence

{Tnθ (Q0)}n∈N is bounded as Tnθ (Q0) ∈ [0, 1] for all n ∈ N. Hence, by the monotone convergence theo-

rem, limn→∞ T
n
θ (Q0) exists. Finally, toward a contradiction, suppose that Q∞0 = limn→∞ T

n
θ (Q0) >

0. By SSC-B of T we have that Tθ(Q
∞
0 ) < Q∞0 , but this contradicts that Q∞0 = limn→∞ T

n
θ (Q0).
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Thus, we have that Q∞0 = 0. Hence, [0, Q̂θ) ⊆ Bθ(0). Second, consider Q0 = Q̂θ. We have that

Tθ(Q̂θ) = Q̂θ. Thus, Q∞0 = Q̂θ. Hence Q̂θ ∈ Bθ(Q̂θ). Third, consider Q0 ∈ (Q̂θ, 1]. By the exact

arguments of the first part, we have that (Q̂θ, 1] ⊆ Bθ(1). Observing Bθ(0), Bθ(Q̂θ), and Bθ(1) are

disjoint completes the proof.

In the SSC-A case there is a unique, (almost) globally stable steady state (left panel of Figure

1). In the SSC-B class, there exists a state-dependent criticality threshold Q̂θ ∈ [0, 1], below

which the economy converges to extreme, self-fulfilling pessimism and above which the economy

converges to extreme, self-fulfilling optimism (right panel of Figure 1). These two classes delineate

two qualitatively different regimes for narrative dynamics: one with stable narrative convergence

around a long-run steady state (SSC-A) and one with a strong role for initial conditions and

hysteresis (SSC-B).

We now study how the economy responds to deterministic and stochastic fundamental and

narrative shocks. For this analysis, we restrict attention to the SSC class, noting that this is an

assumption solely on primitives.24

Hump-Shaped and Discontinuous Impulse Responses. We consider the responses of ag-

gregate output and optimism in the economy to a one-time positive shock to fundamentals from a

steady state corresponding to θ = 1:

θt =


1, t = 0,

θ̂, t = 1,

1, t ≥ 2.

(91)

where θ̂ > 1. We would like to understand when the impulse response to a one-time shock is

hump-shaped, meaning that there exists a t̂ ≥ 2 such that Yt is increasing for t ≤ t̂ and decreasing

thereafter. Moreover, we would like to understand how big a shock needs to be to send the economy

from one steady state to another, as manifested as a discontinuity in the IRFs in the shock size θ̂.

For simplicity, we focus on the case with i.i.d. productivity shocks in which ρ = 0.

In the SSC-A case, IRFs are continuous in the shock but can nevertheless display hump-shaped

dynamics as a result of the endogenous evolution of optimism.

Proposition 1 (SSC-A Impulse Response Functions). In the SSC-A case, suppose that Q0 = Q̂1 ∈
24This is without a substantive loss of generality as we can always represent any non-SSC Tθ as the concatenation

of a set of restricted functions that are SSC on their respective domains. Concretely, whenever Tθ is not SSC, we can
represent its domain [0, 1] as a collection of intervals {Ij}j∈J such that ∪j∈J Ij = [0, 1] and the restricted functions
Tθ,j : Ij → [0, 1] defined by the property that Tθ,j(Q) = Tθ(Q) for all Q ∈ Ij are either SSC-A or SSC-B for all j ∈ J .
Thus, applying our results to these restricted functions, we have a complete description of the global dynamics.
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(0, 1). The impulse response of the economy is given by:

log Yt =


a0 + f(Q̂1), t = 0,

a0 + a1 log θ̂ + f(Q̂1), t = 1,

a0 + f(Qt), t ≥ 2

Qt =


Q̂1, t ≤ 1,

Q2, t = 2,

T1(Qt−1), t ≥ 3.

(92)

Moreover, Q2 = Q̂1PO(a0 +a1 log θ̂+f(Q̂1), Q̂1, 0) + (1− Q̂1)PP (a0 +a1 log θ̂+f(Q̂1), Q̂1, 0) > Q̂1,

Qt is monotonically declining for all t ≥ 2, and Qt → Q̂1. The IRF is hump-shaped if and only if

θ̂ < exp{(f(Q2)− f(Q̂1))/a1}.

Proof. By Proposition 1 and substituting the form of the shock process from Equation 91, we obtain

the formula for the output IRF. For the fraction of optimists, we see that:

Q2 = Q̂1PO(a0 + a1 log θ̂ + f(Q̂1), Q̂1, 0) + (1− Q̂1)PP (a0 + a1 log θ̂ + f(Q̂1), Q̂1, 0)

> Q̂1PO(a0 + f(Q̂1), Q̂1, 0) + (1− Q̂1)PP (a0 + f(Q̂1), Q̂1, 0) = Q̂1

(93)

and Qt = T1(log Yt−1, Qt−1) for t ≥ 3 by iterating forward. That Qt monotonically declines to Q̂1

follows from Lemma 3 as we are in the SSC-A case. The hump shape is obtained if log Y1 ≤ log Y2.

This corresponds to

log Y1 = a0 + a1 log θ̂ + f(Q̂1) ≤ a0 + f(Q2) = log Y2 (94)

which rearranges to the desired expression.

All persistence in the IRF of output derives from persistence in the IRF of optimism. There

is a hump in the IRF for output if the boom induced by optimism exceeds the direct effect of the

shock. This contrasts with the SSC-B case, wherein impulse responses can be discontinuous in

the shock size. The following proposition characterizes the IRFs from the pessimistic steady state;

those from the optimistic steady state are analogous.

Proposition 2 (SSC-B Impulse Response Functions). In the SSC-B case, suppose that θO < 1 < θP

and that Q0 = 0. The impulse response of the economy is given by:

log Yt =


a0, t = 0,

a0 + a1 log θ̂, t = 1,

a0 + f(Qt), t ≥ 2

Qt =


0, t ≤ 1,

PP (a0 + a1 log θ̂, 0, 0), t = 2,

T1(Qt−1), t ≥ 3.

(95)

These impulse responses fall into the following four exhaustive cases:

1. θ̂ ≤ θP , No Lift-Off: Qt = 0 for all t ∈ N.

2. θ̂ ∈ (θP , θ
∗), Transitory Impact: Qt is monotonically declining for all t ≥ 2 and Qt → 0.

3. θ̂ = θ∗, Permanent (Knife-edge) Impact: Qt = Q̂1 for all t ≥ 1
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4. θ̂ > θ∗, Permanent Impact: Qt is monotonically increasing for all t ≥ 2 and Qt → 1

where the critical shock threshold is θ∗ = exp{(P−1
P (Q̂1; 0)− a0)/a1} > θP . In the transitory case,

the output IRF is hump-shaped if and only if θ̂ < exp{f(PP (a0 + a1 log θ̂, 0, 0))/a1}.

Proof. We first derive the IRF functions. The formula for the output IRF follows Proposition

1. For the IRF for the fraction of optimists, we simply observe that Q0 = Q1 = 0 and Q2 =

PP (a0 + a1 log θ̂, 0, 0), and that Qt = T1(Qt−1) for t ≥ 3 by iterating forward.

We now describe the properties of the IRFs as a function of the size of the initial shock θ̂. First,

observe that Q2 = PP (a0 + a1 log θ̂, 0, 0). Thus, we have that Q2 = 0 if and only if P−1
P (0; 0) ≥

a0 + a1 log θ̂ which holds if and only if θ̂ ≤ θP . For any θ̂ > θP it follows that Q2 > 0. As we lie in

the SSC class, by Lemma 3, we have that the steady states Q = 0, Q = 1, and Q = Q̂1 have basins

of attraction given by [0, Q̂1), (Q̂1, 1], {Q̂1}. Thus, if Q2 < Q̂1, we have monotone convergence of

Qt to 0. If Q2 = Q̂1, then Qt = Q̂t for all t ∈ N. If Q2 > Q̂1, we have monotone convergence of Qt

to 1. Moreover, the threshold for θ̂ such that Q2 = Q̂∗ is exp

{
P−1
P (Q̂1;0)−a0

a1

}
.

Finally, to find the condition such that the IRF is hump-shaped, we observe that this occurs

if and only if f(Q2) > a1 log θ̂ as Qt is monotonically decreasing for t ≥ 2, which is precisely the

claimed condition.

To understand this result, we first inspect the IRFs. At time t = 0, the economy lies at a

steady state of extreme pessimism with log θ0 = 0 and so log Y0 = a0. At time t = 1, the one-

time productivity shock takes place and output jumps up to log Y1 = a0 + a1 log θ̂ as everyone

remains pessimistic. At time t = 2, agents observe that output rose in the previous period. As

a result, a fraction PP (log Y1, 0) of the population becomes optimistic. For output, the one-time

productivity shock has dissipated, so output is now given by its unshocked baseline a0 plus the

equilibrium output effect of optimism f(Q2). From this point, the IRF evolves deterministically

and its long-run behavior depends solely on whether the fraction that became initially optimistic

exceeds the criticality threshold Q̂1 that delineates the basins of attraction of the steady states of

extreme optimism and extreme pessimism.

As a result, productivity shocks have the potential for the following four qualitatively distinct

effects, described in Proposition 2 and illustrated numerically in Figure 9. First, if a shock is small

and no agent is moved toward optimism, the shock has a one-period impact on aggregate output.

Second, if some agents are moved to optimism by the transitory boost to output but this fraction

lies below the criticality threshold, then output steadily declines back to its pessimistic steady-

state level as optimism was not sufficiently great to be self-fulfilling. Third, in the knife-edge case,

optimism moves to a new (unstable) steady state and permanently increases output. Fourth, when

enough agents are moved to optimism by the initial boost to output, then the economy converges

to the fully optimistic steady state and optimism is completely self-fulfilling.

The impulse responses to narrative shocks are identical to those described above. One can take

the formulas in Propositions 1 and 2 from t ≥ 2 and set Q2 equal to the value of Q that obtains
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Figure 9: Illustration of IRFs in an SSC-B Case
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Notes: The plots show the deterministic impulse responses of Qt and log Yt in a model calibration with LAC
updating. The four initial conditions correspond to the four cases of Proposition 2.

following the narrative shock ε. It follows that the qualitative nature of the impulse response to a

narrative shock is identical to that of a fundamental shock.

Stochastic Boom-Bust Cycles. Having characterized the deterministic impulse propagation

mechanisms at work in the economy, we now turn to understand the stochastic properties of the

path of the economy as it is hit by fundamental and narrative shocks. For simplicity, we once again

restrict to the case of i.i.d. fundamentals, in which ρ = 0.

To this end, we analytically study the period of boom and bust cycles: the expected time that

it takes for the economy to move from a state of extreme pessimism to a state of extreme optimism,

and vice versa. Formally, define these expected stopping times as:

TPO = E [min{τ ∈ N : Qτ = 1}|Q0 = 0] , TOP = E [min{τ ∈ N : Qτ = 0}|Q0 = 1] (96)

where the expectation is taken under the true data generating process for the aggregate component

of productivity H, which may or may not coincide with one of the narratives under consideration,

and that of the narrative shocks G.

The following result provides sharp upper bounds, in the sense that they are attained for some

(H,G), on these stopping times as a function of deep structural parameters:

Proposition 3 (Period of Boom-Bust Cycles). The expected regime-switching times satisfy the
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following inequalities:

TPO ≤
1

1− EG
[
H

(
exp

{
P †P (1;0,ε)−a0

a1

})]
TOP ≤

1

EG
[
H

(
exp

{
P †O(0;1,ε)−a0−f(1)

a1

})] (97)

where P †P (x;Q, ε) = inf{Y : PP (Y,Q, ε) = x} and P †O(x;Q, ε) = sup{Y : PO(Y,Q, ε) = x}.
Moreover, when P †O(0; 1, 0) − P †P (1; 0, 0) ≤ f(1), these bounds are tight in the sense that they are

attained for some processes for fundamentals and narrative shocks (H,G).

Proof. We prove this result by first constructing fictitious processes for optimism that bound above

and below the true optimism process for all realizations of {θt}t∈N before the stopping time. We

can then use this to bound the stopping times’ distributions in the sense of first-order stochastic

dominance and use this fact to bound the expectations.

First, consider the case where we seek to bound τPO = min{t ∈ N : Qt = 1, Q0 = 0}. In

the model, we have that Qt+1 = T (Qt, νt). Fix a path of fundamentals and narrative shocks

{νt}t∈N = {θt, εt}t∈N and define the fictitious Q process as:

Qt+1 = I[T (Qt, νt) = 1] (98)

with Q0 = 0. We prove by induction that Qt ≤ Qt for all t ∈ N. Consider first the base case that

t = 1:

Q1 = I[T (0, ν0) = 1] ≤ T (0, ν0) = Q1 (99)

Toward the inductive hypothesis, suppose that Qt−1 ≤ Qt−1. Then we have that:

Qt = I[T (Qt−1, νt−1) = 1] ≤ I[T (Qt−1, νt−1) = 1] ≤ T (Qt−1, νt−1) = Qt (100)

where the first inequality follows by the property that T (·, ν) is a monotone increasing function.

As Qt ≤ Qt for all t ∈ N, we have that:

τPO = min{t ∈ N : Qt = 1, Q0 = 0} ≥ min{t ∈ N : Qt = 1, Q0 = 0} = τPO (101)

Else, we would have at τPO that QτPO < QτPO , which is a contradiction.

We now have a pathwise upper bound on τPO. We now characterize the distribution of the

bound. Observe that the possible sample paths for {Qt}t∈N until stopping are given by the set:

GPO = {(0(n−1), 1)} : n ≥ 1} (102)

Moreover, conditional on Qt−1 = 0, the distribution of Qt is independent of {νs}s≤t−1. Thus, the

fictitious stopping time τPO has a geometric distribution with parameter given by P[Qt+1 = 1|Qt =
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0]. This parameter is given by:

P[Qt+1 = 1|Qt = 0] = P [PP (a0 + a1 log θt, 0, εt) = 1]

= P

[
θt ≥ exp

{
P †P (1; 0, εt)− a0

a1

}]

= 1− EG

[
H

(
exp

{
P †P (1; 0, ε)− a0

a1

})] (103)

Thus, we have established a stronger result and provided a distributional bound on the stopping

time:

τPO ≺FOSD τPO ∼ Geo

(
1− EG

[
H

(
exp

{
P †P (1; 0, ε)− a0

a1

})])
(104)

An immediate corollary is that:

TPO = E[τPO] ≤ E[τPO] =
1

1− EG
[
H

(
exp

{
P †P (1;0,ε)−a0

a1

})] (105)

We can apply appropriately adapted arguments for the other case, where we now define:

Q
t+1

= I[T (Q
t
, νt) 6= 0] (106)

with Q
0

= 1. In this case, by an analogous induction have that Q
t
≥ Qt for all t ∈ N for all

sequences {νt}t∈N. And so, we have that if Q
t

has reached 0 then so too has Qt. The possible

sample paths in this case are:

GOP = {(1(n−1), 0)} : n ≥ 1} (107)

So again the stopping time has a geometric distribution, this time with parameter:

P[Qt+1 = 0|Qt = 1] = P

[
θt ≤ exp

{
P †O(0; 1, εt)− a0 − f(1)

a1

}]

= EG

[
H

(
exp

{
P †O(0; 1, ε)− a0 − f(1)

a1

})] (108)

And so we have:

TOP ≤
1

EG
[
H

(
exp

{
P †O(0;1,ε)−a0−f(1)

a1

})] (109)

It remains to show that these bounds are tight. To do so, we derive a law H such that Qt = Qt = Q
t

for all t ∈ N. Concretely, define the set:

Θ∗ =

(
−∞, exp

{
P †O(0; 1, 0)− a0 − f(1)

a1

}]
∪
[

exp

{
P †P (1; 0, 0)− a0

a1

}
,∞
)

(110)
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and suppose that θ takes values only in this set, where the two sub-intervals are disjoint as

P †O(0; 1, 0) − P †P (1; 0, 0) ≤ f(1). Moreover, suppose that narrative shocks equal zero with prob-

ability one. In this case, starting from Qt = 1, the only possible values for Qt+1 are zero and one.

Moreover, starting from Qt = 0, the only possible values for Qt+1 are zero and one. Thus, in either

case, Qt = Qt = Q
t

pathwise and TOP = T ∗OP and TPO = T ∗PO. It is worth noting that such a

distribution can be obtained by considering a limit of normal-mixture distributions. Concretely,

suppose that H is derived as a mixture of two normal distributions N(µA, σ
2) and N(µB, σ

2) for

µA < exp

{
P †O(0;1,0)−a0−f(1)

a1

}
and µB > exp

{
P †P (1;0,0)−a0

a1

}
. Taking the limit as σ → 0, the support

of H converges to being contained within Θ∗.

This result establishes that the economy regularly oscillates between times of booms and busts.

We establish this result by postulating fictitious processes for optimism and showing that they

bound, path-by-path, the true optimism process. This enables us to construct stopping times

that dominate the true stopping times in the sense of first-order stochastic dominance and have

expectations that can be computed analytically, thus providing the claimed bounds. We establish

that these bounds are tight by constructing a family of distributions (H,G) such that the fictitious

processes coincide always with the true processes.25

We can provide insights into the determinants of the period of boom-bust cycles from these

analytical bounds. Concretely, consider the bound on the expected time to reach a bust from

a boom. This bound is small when the quantity EG
[
H

(
exp

{
P †P (1;0,ε)−a0

a1

})]
is large, which

happens when there is a fat left tail of fundamentals, when it is relatively easier for optimists

to switch to pessimism as measured by P †O(0; 1, εP ), and when co-ordination motives are weak as

measured by f(1).

B.2 Welfare Implications

In this appendix, we derive the normative implications of narratives for the economy.

Theory. The following result characterizes welfare along any path for the fraction of optimists in

the population and the conditions under which a steady state of extreme optimism is preferred to

one of extreme pessimism:

Proposition 4 (Narratives and Welfare). For any path of aggregate optimism Q = {Qt}∞t=0,

25We moreover show that elements of this family can be attained by taking the limit of normal mixtures with
sufficiently dispersed means. Thus, for sufficiently dispersed µO and µP , we can therefore construct (H,G) for which
the bound is attained by taking weighted averages of the optimistic and pessimistic narratives, making the uncertainty
under each sufficiently small, and eliminating narrative shocks.
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aggregate welfare is given by

U(Q) = U∗C

∞∑
t=0

βt exp {(1− γ)f(Qt)}

− U∗L
∞∑
t=0

βt (Qt exp{(1 + ψ)d2}+ (1−Qt)) exp {(1 + ψ)d3f(Qt)}
(111)

for some positive constants U∗C , U∗L, d2 and d3 that are provided in the proof of the result. Thus,

there is higher welfare in an optimistic steady state than in a pessimistic steady state if and only if

U∗C
U∗L
× exp {(1− γ)f(1)} − 1

exp {(1 + ψ)(d2 + d3f(1))} − 1
> 1 (112)

Moreover, when the pessimistic narrative is correctly specified, extreme optimism is welfare-equivalent

to an ad valorem price subsidy for intermediate goods producers of:

τ∗ = exp

{
(1− ω)

(
1 + ψ − α

α
+

1

ε

)
f(1)

}
− 1 (113)

Proof. We have that welfare for any path of optimism Q = {Qt}t∈N is given by:

U(Q) =
∞∑
t=0

βt

(
EH
[
Ct(Qt, θt)

1−γ

1− γ

]
− EH

[∫
[0,1]

Lit(γi, sit, Qt)
1+ψ

1 + ψ
di

])
(114)

By market clearing, we have that Ct = Yt for all t. Thus, using the formula for equilibrium aggregate

output from Proposition 1 and our assumption that log θt is Gaussian under H, we have that the

consumption component of welfare is given by:

EH

[
C1−γ
t (Qt, θt)

1− γ

]
= EH

[
1

1− γ exp {(1− γ) log Y (Qt, θ)}
]

= EH
[

1

1− γ exp {(1− γ) (a0 + a1 log θ + f(Qt))}
]

=
1

1− γ exp

{
(1− γ) (a0 + a1µH + f(Qt)) +

1

2
a2

1σ
2
H

}
=

1

1− γ exp

{
(1− γ) (a0 + a1µH) +

1

2
a2

1σ
2
H

}
exp {(1− γ)f(Qt)}

= U∗C exp {(1− γ)f(Qt)}

(115)

From Proposition 1, we moreover have that labor employed by each firm can be written as:

Lit = d1 log θt + d2λit + d3f(Qt) + vit (116)
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where vit is Gaussian and i.i.d. over i. Hence given θ and Qt:∫
[0,1]

Lit(γi, sit, Qt)
1+ψ

1 + ψ
di

=
1

1 + ψ
(Qt exp{(1 + ψ)d2}+ (1−Qt))

× exp

{
(1 + ψ)(d1 log θ + µv + d3f(Qt)) +

1

2
(1 + ψ)2σ2

v

} (117)

Hence, the expectation over θ is given by:

EH

[∫
[0,1]

Lit(γi, sit, Qt)
1+ψ

1 + ψ
di

]
=

1

1 + ψ
(Qt exp{(1 + ψ)d2}+ (1−Qt))

× exp {(1 + ψ)d3f(Qt)} exp

{
(1 + ψ)(d1µH + µv) +

1

2
(1 + ψ)2(σ2

v + d2
1σ

2
H)

}
= U∗L (Qt exp{(1 + ψ)d2}+ (1−Qt)) exp {(1 + ψ)d3f(Qt)}

(118)

And so total welfare under narrative path Q is given by:

U(Q) = U∗C

∞∑
t=0

βt exp {(1− γ)f(Qt)}

− U∗L
∞∑
t=0

βt (Qt exp{(1 + ψ)d2}+ (1−Qt)) exp {(1 + ψ)d3f(Qt)}
(119)

The final inequality follows by noting that f(0) = 0 and rearranging this expression.

Now consider the benchmark model but where, without loss of generality, all agents are pes-

simistic Qt = 0 and a planner levies an ad valorem subsidy. That is, when the consumer price

is pCit = Y
1
ε
t x
− 1
ε

it , the price received by the producer is pPit = (1 + τ)pCit . Under this subsidy, each

producer’s first-order condition is:

log xit =
1

1+ψ−α
α + 1

ε

(
log

(
1− 1

ε
1+ψ
α

)
− logEit

[
exp

{
−1 + ψ

α
log θit

}]

+ logEit
[
exp

{(
1

ε
− γ
)

log Yt

}])
+ Ξ(τ)

(120)

where Ξ(τ) = 1
1+ψ−α

α
+ 1
ε

log(1 + τ). By identical arguments to Proposition 1, we have that there is

a unique quasi-loglinear equilibrium, where:

log Y (θ, τ) = a0 + a1 log θ +
1

1− ωΞ(τ) (121)

70



and a0 and a1 are as in Proposition 1. Hence, in this equilibrium we have that:

log xit(τ) = log xit(0) +
1

1− ωΞ(τ) (122)

Which implies that:

logLit(τ) = logLit(0) +
1

α

1

1− ωΞ(τ) (123)

And so, welfare under the subsidy τ is given by:

U(τ) = U∗C

∞∑
t=0

βt exp

{
(1− γ)

1

1− ωΞ(τ)

}

− U∗L
∞∑
t=0

βt exp

{
(1 + ψ)d3

1

1− ωΞ(τ)

} (124)

as d3 = 1
α . Hence:

U(1) = U(τ∗) (125)

where τ∗ is such that 1
1−ωΞ(τ∗) = f(1). Hence:

τ∗ = exp

{
(1− ω)

(
1 + ψ − α

α
+

1

ε

)
f(1)

}
− 1 (126)

Completing the proof.

This result sheds light on the potential for non-fundamental optimism to increase aggregate

welfare. In the presence of the product market monopoly and labor market monopsony distortions,

intermediate goods firms under-hire labor and under-produce goods. As a result, if irrational

optimism causes them to produce more output, but not so much that the household over-supplies

labor, then it has the potential to be welfare improving. The final part of the proposition then

reduces this question to assessing if the implied optimism-equivalent subsidy is less than the welfare-

optimal subsidy. Thus, optimism in the economy can serve the role of undoing monopoly frictions

and thereby has the potential to be welfare-improving, even when misspecified.

Quantification. Proposition 4 can be directly applied in our numerical calibration from Section

6 to calculate the welfare effects of narrative optimism without approximation. We calculate the

average payoff of the representative household under three scenarios. The first corresponds to the

calibrated narrative dynamics in simulation, under the assumption that the pessimistic model is

correctly specified.26 The second is a counterfactual scenario with permanent extreme optimism,

or Qt ≡ 1 for all t. The third is a counterfactual scenario with permanent extreme pessimism, or

Qt ≡ 0 for all t, and an ad valorem subsidy of τ to all producers. We use the third scenario to

translate the first and second into payoff-equivalent subsidies. We find that both contagious and

26Relative to the positive analysis, the normative analysis requires two additional model parameters. We set the
idiosyncratic component of productivity to have unit mean and zero variance.
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extreme optimism are welfare-increasing relative to extreme pessimism in autarky (i.e, τ = 0). In

payoff units, they correspond respectively to equivalent subsidies of 1.33% and 2.59%. Our finding

of an overall positive welfare effect for contagious optimism suggests that, in our macroeconomic

calibration, losses from inducing misallocation are more than compensated by level increases in

output.

B.3 Comparison to the Bayesian Benchmark

Consider an alternative model in which each agent i initially believes the optimistic model is correct

with probability λi0 ∈ (0, 1), and subsequently updates this probability by observing aggregate out-

put and aggregate optimism and applying Bayes’ rule under rational expectations. For simplicity,

we focus on the case of i.i.d. shocks (ρ = 0). Formally, this corresponds to the following law of

motion for Qt:

Qt+1 =

∫
[0,1]

Pi[µ = µO|{log Yj , Qj}tj=0] di (127)

where Pi[µ = µ0|∅] = λi0 for some λi0 ∈ (0, 1) for all i ∈ [0, 1], and conditional probabilities are

computed under rational expectations with knowledge of {λi0}i∈[0,1]. We define the log-odds ratio

of an agent’s belief as Ωit = log λit
1−λit . The following Proposition characterizes the dynamics of

agents’ subjective models under the Bayesian benchmark:

Proposition 5 (Dynamics under the Bayesian Benchmark). Each agent’s log-odds ratio follows

a random walk with drift, or Ωi,t+1 = Ωit + a + ξt, where a = EH
[

(log θt−µP )2−(log θt−µO)2

σ2

]
and ξt

is an i.i.d., mean-zero random variable. The economy converges almost surely to either extreme

optimism (a > 0) or extreme pessimism (a < 0). The dynamics of the economy are asymptotically

described by:

log Yt =

a0 + a1 log θt if a < 0,

a0 + a1 log θt + f(1) if a > 0.
(128)

Thus, the economy does not feature steady state multiplicity, hump-shaped or discontinuous IRFs,

or the possibility for boom-bust cycles.

Proof. The equilibrium Characterization of Proposition 1 still holds. Moreover, Q0 is known to all

agents. Thus, they can identify θ0 as:

θ0 =
log Y0 − a0 − f(Q0)

a1
(129)

Thus, we have that λi1 = P[µ = µO|θ0, λi0]. Moreover, all agents know that Q1 =
∫

[0,1] λi1 di. Thus,

agents can sequentially identify θt by observing only {Yj}j≤t (and not {Qj}j≤t) by computing:

θt =
log Yt − a0 − f(Qt)

a1
(130)
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Thus, we can describe the evolution of agents’ beliefs by computing:

λi,t+1 = Pi[µ = µO|{θj}tj=1] = λi,t+1 = Pi[µ = µO|{Yj}tj=1] (131)

By application of Bayes rule, we obtain:

λi,t+1 = P[µ = µO|θt, λi,t] =
fO(θt)λi,t

fO(θt)λi,t + fP (θt)(1− λi,t)
(132)

which implies that:

λi,t+1

1− λi,t+1
=
f(log θt|µ = µO)

f(log θt|µ = µP )

λi,t
1− λi,t

= exp

{
(log θt − µP )2 − (log θt − µO)2

σ2

}
λi,t

1− λi,t

(133)

Defining Ωit = log
λi,t

1−λi,t and a = EH
[

(log θt−µP )2−(log θt−µO)2

σ2

]
and ξt = (log θt−µP )2−(log θt−µO)2

σ2 − a,

we then have that:

Ωi,t+1 = Ωi,t +
(log θt − µP )2 − (log θt − µO)2

σ2

= Ωit + a+ ξt

(134)

which is a random walk with drift, with the drift and stochastic increment claimed in the statement.

Iterating, dividing by t, and applying the law of large numbers, we obtain:

Ωi,t

t
=

1

t
Ωi,0 +

t− 1

t
a+

1

t

t∑
i=1

ξi →a.s. a (135)

Hence, almost surely, we have that Qt → 1 if a > 0 and Qt → 0 if a < 0.

Hence, the dynamics are asymptotically described by Proposition 1 with Qt = 1 if a > 0

and Qt = 0 if a < 0. The resulting properties for output follow immediately from combining

this characterization for Qt with the characterization in our main analysis of equilibrium output

conditional on optimism and fundamentals (Proposition 1), which continues to hold in the model

of this appendix.

The optimist fraction Q converges to either 0 or 1 in the long run because one model is unam-

biguously better-fitting, and this will be revealed with infinite data. Moreover, the log-odds ratio

converges linearly and so the odds ratio in favor of the better fitting model converges exponentially

quickly. Thus the Bayesian benchmark model makes a prediction that is at odds with our finding of

cyclical dynamics for aggregate optimism (Figure A1), and moreover, in the long run, rules out the

features of macroeconomic dynamics that we derive in Section 3 as consequences of the endogenous

evolution of narrative optimism.
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B.4 Continuous Narratives

Our main analysis featured two levels of optimism. However, much of our analysis generalizes to

a setting with a continuum of levels of optimism. For expositional simplicity, in this section, we

abstract from optimism shocks and assume that productivity is i.i.d (ρ = 0). The model is as in

Section 2, but now µ ∈ [µP , µO] and the distribution of narratives is given by Qt ∈ ∆([µP , µO]).

The probabilistic transition between models is now given by a Markov kernel P : [µP , µO] × Y ×
∆2([µP , µO])→ ∆([µP , µO]) where Pµ′(µ, log Y,Q) is the density of agents who have model µ who

switch to µ′ when aggregate output is Y and the distribution of narratives is Q.

Characterizing Equilibrium Output. By modifying the guess-and-verify arguments that un-

derlie Proposition 1, we can obtain an almost identical representation of equilibrium aggregate

output:

Proposition 6 (Equilibrium Characterization with Continuous Narratives). There exists a quasi-

loglinear equilibrium:

log Y (log θt, Qt) = a0 + a1 log θt + f(Qt) (136)

Moreover, the density of narratives evolves according to the following difference equation:

dQt+1(µ′) =

∫ µO

µP

Pµ′(µ, a0 + a1 log θt + f(Qt), Qt)dQt(µ) (137)

Proof. By appropriately modifying the steps of the proof of Proposition 1, the result follows.

Throughout, simply replace λitµO + (1 − λit)µP with µ̃it ∼ Qt and λit with µ̃it as appropriate.

The proof follows as written until the aggregation step. At this point, we instead obtain:

log Yt = δt(µP ) +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(∫ µO

µP

exp

{
ε− 1

ε
(δt(µ̃)− δt(µP ))

}
dQt(µ̃)

)
(138)

where δt(µP ) = δt(0) and δt(µ̃) − δt(µP ) = αδOP µ̃−µP
µO−µP . Hence, we have that a0 and a1 are as in

Proposition 1 and f is instead given by:

f(Q) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(∫ µO

µP

exp

{
ε− 1

ε
αδOP

µ̃− µP
µO − µP

}
dQ(µ̃)

)
(139)

Completing the proof.

Importantly, observe that we still obtain a marginal representation in terms of the partial

equilibrium effect of going from full pessimism to full optimism on hiring δOP , as we have empirically

estimated.

Equilibrium Dynamics. We have seen that a continuum of models poses no difficulty for the

static analysis. The challenge for the dynamic analysis is that the state variable, the evolution of

which is fully characterized by Proposition 6, is now infinite-dimensional. This notwithstanding,
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by use of approximation arguments, we can reduce the dynamics to an essentially identical form to

that which we have studied in the main text.

To this end, define the cumulant generating function (CGF) of the cross-sectional distribution

of narratives as:

KQ(τ) = log (EQ[exp{τ µ̃}]) (140)

We therefore have that log (EQ[exp{τ(µ̃− z)}]) = KQ(τ)− τz. It follows by Equation 139 that:

f(Q) =
ε
ε−1

1− ω

[
KQ

(
ε− 1

ε
αδOP

1

µO − µP

)
− ε− 1

ε
αδOP

µP
µO − µP

]
(141)

By Maclaurin series expansion, we can express the CGF to first-order as:

KQ(τ) = µQτ +O(τ2) (142)

We therefore have that:

f(Q) =
1

1− ωαδ
OP µQ − µP

µO − µP
+O

((
ε− 1

ε
αδOP

1

µO − µP

)2
)

(143)

We now can express the static, general equilibrium effects in terms of mean of the narrative dis-

tribution. With some abuse of notation, we now write f(µQ) = f(Q). Of course, this CGF-based

approach would allow one to consider higher-order effects through the variance, skewness, kurtosis,

and higher cumulants as desired.

In the next steps, we provide conditions on updating that allow us to express the dynamics solely

in terms of the mean of the narrative distribution. To do this, we assume that Pµ′(µ, log Y,Q) =

Pµ′(µ
′′, log Y, µQ) for all Q ∈ ∆2([µP , µO]) and all µ, µ′, µ′′ ∈ [µP , µO]. This is tantamount

to assuming no stubbornness (all agents update the same regardless of the model they start

with) and that contagiousness only matters via the mean. Under this assumption, we can write

Pµ′(log Y (log θ, µQ), µQ) and express the difference equation as:

dQt+1(µ′) =

∫ µO

µP

Pµ′(a0 + a1 log θt + f(µQ,t), µQ,t)dQt(µ)

= Pµ′(a0 + a1 log θt + f(µQ,t), µQ,t)

(144)

It then suffices to take the mean of Qt+1 to express the system in terms of the one-dimensional

state variable µQ,t:

µQ,t+1 = T (µQ,t, θt) =

∫ µO

µP

µ′Pµ′(a0 + a1 log θt + f(µQ,t), µQ,t)dµ
′ (145)

Which is simply a continuous state analog of the difference equation expressed in Corollary 3

expressed in terms of average beliefs.
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Steady State Multiplicity. We now obtain the analogous characterization of extremal steady

state multiplicity in this setting, i.e., when it is possible that all agents being maximally pessimistic

and all agents being maximally optimistic are simultaneously deterministic steady states. To this

end, define the following two inverses:

P̂−1(x;µQ) = sup{Y : P (Y,Q) = δx}
P̌−1(x;µQ) = inf{Y : P (Y,Q) = δx}

(146)

where δx denotes the Dirac delta function on x. We define analogous objects to the previous θO

and θP :

θO = exp

{
P̌−1(µO;µO)− a0 − f(1)

a1

}
, θP = exp

{
P̂−1(µP ;µP )− a0 − f(1)

a1

}
(147)

The following result establishes that these thresholds characterize extremal multiplicity:

Proposition 7 (Steady State Multiplicity with Continuous States). Extreme optimism and pes-

simism are simultaneously deterministic steady states for θ if and only if θ ∈ [θO, θP ], which is

non-empty if and only if

P̌−1(µO;µO)− P̂−1(µP ;µP ) ≤ f(1) (148)

Proof. This follows exactly the same steps as the proofs of Proposition 2 and Corollary 4, replacing

the appropriate inverses defined above.

Thus, the same conditions that give rise to multiplicity with binary narratives obtain with a

continuum of levels of optimism. Indeed, observe that restricting to first-order approximations

above was unnecessary. We could have considered an arbitrary order, say k, of approximation of

the CGF and obtained a system of difference equations for the first k cumulants. Proposition 7

would still hold as written, as under the extremal steady states, all higher cumulants are identically

zero and remain so under the provided condition. Naturally, however, the general dynamics only

reduce to those resembling the simple model under the first-order approximation. Nevertheless, we

observe that this is a first-order approximation to the exact equilibrium dynamics and not simply

an approximation of the dynamics of an approximate equilibrium.

B.5 Narratives About Idiosyncratic Fundamentals

In the main analysis, we assumed that narratives described properties of aggregate fundamentals.

In this section, we characterize equilibrium dynamics when narratives describe properties of id-

iosyncratic fundamentals. For expositional simplicity, we suppose that productivity shocks are

i.i.d. (or ρ = 0). Concretely, we now instead suppose that all agents believe that log θt ∼ N(0, σ2),

or agree about the distribution of aggregate productivity. Moreover, as in the baseline, all agents

believe that others’ idiosyncratic productivity follows log θ̃jt ∼ N(0, σ2
θ̃
) for all j 6= i. However,

agents disagree about the mean of their own idiosyncratic productivity: optimistic agents believe
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that log θ̃it ∼ N(µO, σ
2
θ̃
) while pessimistic agents believe that log θ̃it ∼ N(µP , σ

2
θ̃
). The rest of the

model is identical.

In this context, dynamics are identical conditional on the static relationship between output

and narratives. Moreover, the static relationship between output and narratives is now identical

(up to a constant) conditional on estimating the partial equilibrium effect of optimism on hiring.

This is formalized by the following result:

Proposition 8 (Equilibrium Characterization with Narratives About Idiosyncratic Fundamentals).

There exists a unique equilibrium such that:

log Y (log θt, Qt) = ã0 + a1 log θt + f̃(Qt) (149)

for coefficients ã0 and a1 > 0, and a strictly increasing function f , where a1 is identical to that

from Proposition 1 and

f̃(Q) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(
1 +Q

[
exp

{
ε− 1

ε
αδ̃OP

}
− 1

])
(150)

where δ̃OP is defined in Equation 151.

Proof. The proof follows exactly the steps of the proof of Proposition 1 where the aggregate narra-

tive is replaced with an idiosyncratic one. To be concrete, the computation of logEit
[
θ
− 1+ψ

α
it

]
and

the method of aggregation are identical to those in the proof of Proposition 1. The only difference is

in the computation of logEit
[
Y

1
ε
−γ

t

]
. Now, Equation 58 differs in that µit = log γi+κsit. Tracking

this through to Equation 62, lines 1, 2, 3, and 5 are identical and line 4 differs only in that the term

(1− κ)[λitµO + (1− λit)µP ] is now set equal to zero. The analysis then follows up to Equation 67,

at which point we have that the exact formula for δOP changes and is now given by:

αδ̃OP =
1+ψ
α

1+ψ−α
α + 1

ε

(1− κ)(µO − µP ) (151)

The formula for δt(0) is identical except for in the second line where the term a1(1 − κ)µP is

now equal to zero. The formula for a1 remains the same. Conditional on δ̃OP , the formula for

f remains the same. The formula for a0 is identical except for the second line where the term

(1/ε− γ)a1(1− κ)µP is now equal to zero.

This Proposition makes clear that output differs in this case only up to an intercept and in

changing the mapping from structural parameters to the partial-equilibrium effect of optimism

on hiring. Nonetheless, interpreted via the model above, our empirical exercise directly identifies

the now-relevant parameter δ̃OP . As a result, neither our theoretical nor quantitative analysis is

sensitive to making narratives be about idiosyncratic conditions. The only difference is that the
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point calibrations for κ and (µO − µP ) would change, while the aggregate dynamics would remain

identical.

B.6 Multi-Dimensional Narratives

Our baseline model featured two narratives regarding the mean of fundamentals, but we live in a

world of many competing narratives regarding many aspects of reality. In this extension, we broaden

our analysis to study a class of three-dimensional narratives, which is essentially exhaustive within

the Gaussian class. For simplicity, we abstract from narrative shocks in this analysis. Concretely,

suppose that agents believe that the aggregate component of fundamentals follows:

log θt = (1− ρ)µ+ ρ log θt−1 + σνt (152)

with νt ∼ N(0, 1) and i.i.d.. Narratives now correspond to a vector of (µ, ρ, σ), indexing the mean,

persistence and variance of the process for fundamentals. The set of narratives can therefore be

represented by {(µk, ρk, σk)}k∈K. We restrict that agents place Dirac weights on this set, so that

they only ever believe one narrative at a time, and let Qt,k be the fraction of agents who believe

narrative (µk, ρk, σk) at time t. Finally, we assume that agents face the same signal-to-noise ratio

κ, regardless of the narrative that they hold.27 Together, these assumptions ensure that agents’

posteriors are normal and place a common weight on narratives when agents form their expectations

of fundamentals.

By modifying the functional guess-and-verify arguments from Proposition 1, we characterize

equilibrium output in this setting in the following result:

Proposition 9 (Equilibrium Characterization with Multi-Dimensional Narratives and Persis-

tence). There exists a quasi-loglinear equilibrium:

log Y (log θt, log θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt, θt−1) (153)

for some a1 > 0, a2 ≥ 0, and f . In this equilibrium, the distribution of narratives in the population

evolves according to:

Qt+1,k =
∑
k′∈K

Qt,k′Pk′(k, a0 + a1 log θt + a2 log θt−1 + f(Qt, θt−1), Qt) (154)

Proof. We follow the same steps as in the proof of Proposition 1, appropriately adapted to this

richer setting. First, we guess an equilibrium of the form:

log Y (log θt, log θt−1, Qt) = a0 + a1 log θt + a2 log θt−1 + f(Qt, θt−1) (155)

To verify that this is an equilibrium, we need to compute agents’ best replies under this conjecture,

aggregate them, and show that they are consistent with this guess once aggregated.

27Formally, this means that the variance of the noise in agents’ signals satisfies σ2
ε,k ∝ σ2

k across narratives.
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We first find agents’ posterior beliefs given narrative weights. Let E denote the standard basis

for RK with k-th basis vector denoted by

ek = {0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
K−k

} (156)

We have that λit = ek for some k ≤ K. Under this narrative loading, we have that agent’s posteriors

are given by:

log θit|λit, sit ∼ N
(

log γi + κsit + (1− κ)µ(λit, θt−1), σ2
θ|s(λit) + σ2

θ̃

)
(157)

with:

µ(ek, θt−1) = (1− ρk)µk + ρk log θt−1

σ2
θ|s(ek) =

1
1
σ2
k

+ 1
σ2
ε,k

κ =
1

1 +
σ2
ε,k

σ2
k

(158)

for all k ≤ K,where κ does not depend on k as σ2
ε,k ∝ σ2

k. Hence, we can compute agents’ best

replies by evaluating:

logEit
[
θ
− 1+ψ

α
it

]
= −1 + ψ

α
(log γi + κsit + (1− κ)µ(λit, θt−1)) +

1

2

(
1 + ψ

α

)2 (
σ2
θ|s(λit) + σ2

θ̃

)
(159)

logEit
[
Y

1
ε
−γ

t

]
=

(
1

ε
− γ
)

(a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt, θt−1))

+
1

2

(
1

ε
− γ
)2

a2
1σ

2
θ|s(λit)

(160)

By substituting this into agents’ best replies, we obtain:

log xit =
1

1+ψ−α
α + 1

ε

[
log

(
1− 1

ε
1+ψ
α

)
+

1 + ψ

α
[log γi + κsit + (1− κ)µ(λit, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s(λit) + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κsit + (1− κ)µ(λit, θt−1)) + a2 log θt−1 + f(Qt, θt−1)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s(λit)

]
(161)

which we observe is conditional normally distributed as log xit|λit ∼ N(δt(λit), σ̂
2) with σ̂2 as in
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Equation 63 and:

δt(ek) =
1

1+ψ−α
α + 1

ε

[
log

(
1− 1

ε
1+ψ
α

)

+
1 + ψ

α
[log γi + κ log θt + (1− κ)µ(ek, θt−1)]

− 1

2

(
1 + ψ

α

)2 (
σ2
θ|s(ek) + σ2

θ̃

)
+

(
1

ε
− γ
)

[a0 + a1 (κ log θt + (1− κ)µ(ek, θt−1)) + a2 log θt−1 + f(Qt, θt−1)]

+
1

2
a2

1

(
1

ε
− γ
)2

σ2
θ|s(ek)

]
(162)

for all k ≤ K. Aggregating these best replies, using Equation 64, we obtain that:

log Yt =
ε

ε− 1
logEt

[
Et
[
exp

{
ε− 1

ε
log xit

}
|λit
]]

=
ε

ε− 1
log

(∑
k

Qt,k exp

{
ε− 1

ε
δt(ek) +

1

2

(
ε− 1

ε

)2

σ̂2

})

= δt(e1) +
1

2

ε− 1

ε
σ̂2 +

ε

ε− 1
log

(∑
k

Qt,k exp

{
ε− 1

ε
(δt(ek)− δt(e1))

}) (163)

where σ̂2 is a constant, δt(e1) depends linearly on log θt and log θt−1 and δt(ek) − δt(e1) does not

depend on log θt for all k ≤ K and can therefore be written as δk1(θt−1). Moreover, by matching

coefficients, we obtain that a1 is the same as in the proof of Proposition 1. And we find that f

must satisfy:

f(Q, θt−1) =
1
ε − γ

1+ψ−α
α + 1

ε

f(Q, θt−1) +
ε

ε− 1
log

(∑
k

Qt,k exp

{
ε− 1

ε
δk1(θt−1)

})
(164)

and so:

f(Q, θt−1) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(∑
k

Qt,k exp

{
ε− 1

ε
δk1(θt−1)

})
(165)

Completing the proof.

In the multidimensional narrative case with persistence, the past value of fundamentals interacts

non-linearly with the cross-sectional narrative distribution in affecting aggregate output. However,

without more structure, the properties of the dynamics generated by this multi-dimensional system

are essentially unrestricted.
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B.7 Persistent Idiosyncratic Shocks and Belief Updating

We now extend the analysis from Section B.6 to the case where agents’ idiosyncratic states drive

narrative updating and are persistent. Concretely, in that setting, we let Pk′ depend on (Yt, Qt, θ̃it)

and idiosyncratic productivity shocks evolve according to an AR(1) process:

log θ̃it = ρθ̃ log θ̃i,t−1 + ζit (166)

where 0 < ρθ̃ < 1 and ζit ∼ N(0, σ2
ζ ). We let Fθ̃ denote the stationary distribution of θ̃it, which

coincides with the cross-sectional marginal distribution of θ̃it for all t ∈ N.

The additional theoretical complication these two changes induce is that the marginal distribu-

tion of narratives Qt is now insufficient for describing aggregate output. This is because narratives

λit and idiosyncratic fundamentals θ̃it are no longer independent as λit and θ̃it both depend on

θ̃it−1. The relevant state variable is now the joint distribution of narratives and idiosyncratic pro-

ductivity Q̌t ∈ ∆(Λ×R). We denote the marginals as Qt and Fθ̃, and the conditional distribution

of narratives given θ̃ as Q̌t,k|θ̃ =
Q̌t,k(θ̃)

fθ̃(θ̃)
.

Proposition 10 (Equilibrium Characterization with Multi-Dimensional Narratives, Aggregate and

Idiosyncratic Persistence, and Idiosyncratic Narrative Updating). There exists a quasi-loglinear

equilibrium:

log Y (log θt, log θt−1, Q̌t) = a0 + a1 log θt + a2 log θt−1 + f(Q̌t, θt−1) (167)

for some a1 > 0, a2 ≥ 0, and f .

Proof. This proof follows closely that of Proposition 9. Under narrative loading λit, we have that

the agent’s posterior regarding log θit is given by:

log θit|θ̃it−1, λit, sit ∼ N
(

log γi + ρθ̃ log θ̃it−1 + κsit + (1− κ)µ(λit, θt−1), σ2
θ|s(λit) + σ2

ξ

)
(168)

where µ(λit, θt−1), κ, and σ2
θ|s(λit) are as in Proposition 9. Then substitute log γi+ρθ̃θ̃it−1 for log γi

and follow the Proof of Proposition 9 until the aggregation step (Equation 163). We now instead
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have that:

log Yt =
ε

ε− 1
logEt

[
Et
[
exp

{
ε− 1

ε
log xit

}
|θ̃it−1, λit

]]
=

ε

ε− 1
logEt

[
exp

{
ε− 1

ε
δt(ek, θ̃it−1) +

1

2

(
ε− 1

ε

)2

σ̂2

}]

=
ε

ε− 1
log

(∫ ∑
k

Q̌t,k|θ̃ exp

{
ε− 1

ε
δt(ek, θ̃) +

1

2

(
ε− 1

ε

)2

σ̂2

}
dFθ̃(θ̃)

)

= δt(e1, 1) +
1

2

ε− 1

ε
σ̂2

+
ε

ε− 1
log

(∫ ∑
k

Q̌t,k|θ̃ exp

{
ε− 1

ε

(
δt(ek, θ̃)− δt(e1, 1)

)}
dFθ̃(θ̃)

)
(169)

Again, σ̂2 is a constant and δt(e1, 0) depends linearly on log θt and log θt−1 and δt(ek, θ̃)− δt(e1, 1)

does not depend on log θt for all k ≤ K. Thus, we may write it as δk1(θt−1, θ̃). Again, a1 is the

same as in Proposition 1. By the same steps as in Proposition 9, we then have that:

f(Q̌, θt−1) =
ε
ε−1

1−
1
ε
−γ

1+ψ−α
α

+ 1
ε

log

(∫ ∑
k

Q̌t,k|θ̃ exp

{
ε− 1

ε
δk1(θt−1, θ̃)

}
dFθ̃(θ̃)

)
(170)

Completing the proof.

We can use this result to study the additional effects induced by persistent idiosyncratic fun-

damentals. To do this, we restrict to the case of our main analysis with optimism and pessimism.

In this context, we have that:

f(Q̌) =
ε
ε−1

1− ω log

(
Eθ̃

[
Q̌t|θ̃ exp

{
ε− 1

ε
δOP (θ̃)

}
+ (1− Q̌t|θ̃) exp

{
ε− 1

ε
δPP (θ̃)

}])
(171)

where:

δOP (θ̃) = αδOP +
1+ψ
α

1+ψ−α
α + 1

ε

ρθ̃ log θ̃

δPP (θ̃) =
1+ψ
α

1+ψ−α
α + 1

ε

ρθ̃ log θ̃

(172)
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We define ξ =
1+ψ
α

1+ψ−α
α

+ 1
ε

ρθ̃ and observe that we can write:

Q̌t|θ̃ exp

{
ε− 1

ε
δOP (θ̃)

}
+ (1− Q̌t|θ̃) exp

{
ε− 1

ε
δPP (θ̃)

}
= Qt|θ̃ exp

{
ε− 1

ε

(
αδOP + ξ log θ̃

)}
+ (1−Qt|θ̃) exp

{
ε− 1

ε
ξ log θ̃

}
= Qt|θ̃ exp

{
ε− 1

ε
ξ log θ̃

}[
exp

{
ε− 1

ε
αδOP

}
− 1

]
+ exp

{
ε− 1

ε
ξ log θ̃

} (173)

Taking the expectation of the relevant terms, we obtain:

Eθ̃

[
Q̌t|θ̃ exp

{
ε− 1

ε
δOP (θ̃)

}
+ (1− Q̌t|θ̃) exp

{
ε− 1

ε
δPP (θ̃)

}]
=

[
exp

{
ε− 1

ε
αδOP

}
− 1

]
exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

}
Qt

+ Covt

(
Qt|θ̃, θ̃

ε−1
ε
ξ
)

+ exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

} (174)

Thus, we have that the contribution of optimism to output is given by:

f(Q̌t) =
ε
ε−1

1− ω log

([
exp

{
ε− 1

ε
αδOP

}
− 1

]
exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

}
Qt

+ Covt

(
Qt|θ̃, θ̃

ε−1
ε
ξ
)

+ exp

{
1

2

(
ε− 1

ε
ξ

)2 σ2
ζ

1− ρ2
θ̃

}) (175)

We observe that the first term is almost identical to that in our main analysis. This term is now

intermediated by the effect of heterogeneity in previous productivity (to see this, observe that this

vanishes when ρθ̃ = 0). Second, there is a new effect stemming from the covariance of optimism

and productivity. Intuitively, when more optimistic firms are also more productive, they increase

their production by more and this increases output. Finally, there is a level effect of heterogeneous

productivity.

Thus, the sole new qualitative force is the covariance effect. To the extent that this does not

vary with time, it can have no effect on dynamics. We investigate this in the data by estimating

the regression model

log θ̂it =

2019∑
τ=1995

βτ · (optiτ · I[τ = t]) + χj(i),t + γi + εit (176)

where (χj(i),t, γi) are industry-by-time and firm fixed effects, and βs measures the (within-industry,

within-firm) difference in mean log TFP for optimistic and pessimistic firms in each year. If the βs

vary systematically with the business cycle, then the shifting productivity composition of optimists

over the business cycle is an important component of business-cycle dynamics.
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We plot our coefficient estimates βτ in Figure A10. The estimates are generally positive, but

economically small relative to the large observed variation in TFP, log θit, which has an in-sample

standard deviation of 0.84. Outside of the first two years and last year of the sample, we find

limited evidence of time variation. Moreover, the variation that exists is not obviously correlated

with the business cycle. This suggests that the compositional effect for optimists driven by nar-

rative updating in response to idiosyncratic conditions is not, at least in our data, quantitatively

significant.

B.8 Contrarianism, Endogenous Cycles, and Chaos

The baseline model can generate neither endogenous cycles nor chaotic dynamics without extrinsic

shocks to fundamentals (as made formal by Lemma 3). This is because the probability that agents

become optimistic is always increasing in the fraction of optimists in equilibrium.

In this appendix, we relax this assumption and delineate precise, testable conditions under

which cyclical and chaotic dynamics occur in the absence of fundamental and aggregate shocks.

We do so in a model with “contrarian” agents whose updating contradicts recent data and/or

consensus. Our analysis of endogenous narratives with contrarianism therefore complements the

literature on endogenous cycles in macroeconomic models (see, e.g., Boldrin and Woodford, 1990;

Beaudry, Galizia, and Portier, 2020) by providing a further potential micro-foundation for the

existence of endogenous cycles.

We begin by defining cycles and chaos. There exists a cycle of period k ∈ N if Q = T k(Q) and

all elements of {Q,T (Q), . . . , T k−1(Q)} are non-equal. We will say that there are chaotic dynamics

if there exists an uncountable set of points S ⊂ [0, 1] such that (i) for every Q,Q′ ∈ S such that

Q 6= Q′, we have that lim supt→∞ |T t(Q) − T t(Q′)| > 0 and lim inft→∞ |T t(Q) − T t(Q′)| = 0 and

(ii) for every Q ∈ S and periodic point Q′ ∈ [0, 1], lim supt→∞ |T t(Q)−T t(Q′)| > 0. This definition

of chaos is due to Li and Yorke (1975) and can be understood as saying that there is a large set of

points such that the iterated dynamics starting from any two points in this set get both far apart

and vanishingly close.

A Variant Model with the Potential for Cycles and Chaos. We will study the issue of

cycles and chaos under the simplifying assumption that,28 in equilibrium, the induced probabilities

that optimists and pessimists respectively become optimists are quadratic and given by:29

P̃O(Q) = aO + bOQ− cQ2 , P̃P (Q) = aP + bPQ− cQ2 (177)

28This simplifying assumption is without any qualitative loss as this model can demonstrate the full range of
potential cyclical and chaotic dynamics.

29This can be microfounded in a generalization our earlier LAC model by taking Pi(log Y,Q) = ui + ri log Y +

siQ− cQ2 for i ∈ {O,P} and approximating f(Q) ≈ αδOP

1−ω Q. In this case:

P̃i(Q) = (ui + ria0 + ria1 log θ) +

(
ri
αδOP

1− ω + si

)
Q− cQ2
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with parameters (aO, aP , bO, bP , c) ∈ R5 such that PO([0, 1]), PP ([0, 1]) ⊆ [0, 1]. The parameters aO

and aP index stubbornness, bO and bP capture both contagiousness and associativeness (through

the subsumed equilibrium map), and c captures any non-linearity.

The following result describes the potential dynamics:

Proposition 11. The following statements are true:

1. When P̃O ≥ P̃P and both are monotone, there are neither cycles of any period nor chaotic

dynamics.

2. When P̃O and P̃P are linear, cycles of period 2 are possible, cycles of any period k > 2 are

not possible, and chaotic dynamics are not possible.

3. Without further restrictions on P̃O and P̃P , cycles of any period k ∈ N and chaotic dynamics

are possible.

Proof. The dynamics of optimism are characterized by the transition map

T (Q) = Q(aO + bOQ− cQ2) + (1−Q)(aP + bPQ− cQ2)

= aP + (aO − aP + bP )Q− (c+ bP − bO)Q2
(178)

where we define ω0 = aP , ω1 = (aO − aP + bP ), ω2 = (c + bP − bO) for simplicity. We first

show that the dynamics described by T are topologically conjugate to those of the logistic map

Ť (x) = ηx(1− x) with

η = 1 +
√

(aO − aP + bP − 1)2 + 4aP (c+ bP − bO) (179)

Two maps T : [0, 1] → [0, 1] and T ′ : [0, 1] → [0, 1] are topologically conjugate if there exists a

continuous, invertible function h : [0, 1] → [0, 1] such that T ′ ◦ h = h ◦ T . If T is topologically

conjugate to T ′ and we know the orbit of T ′, we can compute the orbit of T via the formula:

T k(Q) =
(
h−1 ◦ T ′k ◦ h

)
(Q) (180)

Hence, we can prove the properties of interest using known properties of the map Ť as well as the

mapping from the deeper parameters of T to the parameters of Ť .

To show the topological conjugacy of T and Ť , we proceed in three steps:

1. T is topically topologically conjugate to the quadratic map T̂ (Q) = Q2 + k for appropriate

choice of k. We guess the following homeomorphism ĥ(Q) = α̂ + β̂Q. Plugging ĥ in T̂ , we

have that:

T̂ (ĥ(Q)) = (k + α̂2) + 2α̂β̂Q+ β̂2Q2 (181)

Inverting ĥ and applying it to this expression yields:

ĥ−1(T̂ (ĥ(Q))) =
k + α̂(α̂− 1)

β̂
+ 2α̂Q+ β̂Q2 (182)
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To verify topological conjugacy, we need to show that T (Q) = ĥ−1(T̂ (ĥ(Q))). Matching

coefficients, this is the case if and only if:

ω0 =
k + α̂(α̂− 1)

β̂
, ω1 = 2α̂, ω2 = −β̂ (183)

We therefore have that:

k = β̂ω0 + α̂(1− α̂) = −ω2ω0 +
ω1

2

(
1− ω1

2

)
(184)

with ĥ(Q) = ω1
2 − ω2Q.

2. T̂ is topologically conjugate to Ť for appropriate choice of η. We guess the following homeo-

morphism ȟ(Q) = α̌+ β̌Q. Plugging ȟ in Ť , we obtain:

Ť (ȟ(Q)) = η
(
α̌(1− α̌) + β̌(1− 2α̌)Q− β̌2Q2

)
(185)

Inverting ȟ and applying it, we obtain:

ȟ−1(Ť (ȟ(Q))) =
ηα̌(1− α̌)− α̌

β̌
+ η(1− 2α̌)Q− ηβ̌Q2 (186)

Matching coefficients, we find:

k =
ηα̌(1− α̌)− α̌

β̌
, 0 = η(1− 2α̌), 1 = −ηβ̌ (187)

We therefore obtain that:

k = η(α̌− η(1− α̌)) =
η

2

(
1− η

2

)
(188)

which implies that η = 1 +
√

1− 4k with ȟ(Q) = 1
2 − 1

1+
√

1−4k
Q.

3. T is topologically conjugate to Ť for appropriate choice of η. We now compose the mappings

proved in steps 1 and 2 to show

T = ĥ−1 ◦ ȟ−1 ◦ Ť ◦ ȟ ◦ ĥ (189)

with

η = 1 +

√
1− 4

(
−ω2ω0 +

ω1

2

(
1− ω1

2

))
= 1 +

√
(ω1 − 1)2 + 4ω2ω0

= 1 +
√

(aO − aP + bP − 1)2 + 4aP (c+ bP − bO)

(190)

and therefore that T is topologically conjugate to Ť .

Having shown the conjugacy of T to Ť , we now find bounds on η implied by each case and use
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this conjugacy to derive the implications for possible dynamics. The following points prove each

claim 1-3 in the original Proposition.

1. P̃O ≥ P̃P and both are monotone. Thus, T is increasing and there cannot be cycles or chaos.

This implies that η < 3 (see Weisstein, 2001, for reference).

2. P̃O and P̃P are linear. It suffices to show that we can attain η > 3 but that η must be less

than 1 +
√

6 (see Weisstein, 2001, for reference). In this case, c = 0. This is in addition to

the requirements that maxQ∈[0,1] P̃i(Q) ≤ 1 and minQ∈[0,1] P̃i(Q) ≥ 0 for i ∈ {O,P}, which

can be expressed as:

max
Q∈[0,1]

P̃i(Q) = max

{
ai, ai + bi − c,

(
ai +

b2i
4c

)
I[0 ≤ bi ≤ 2c]

}
≤ 1

min
Q∈[0,1]

P̃i(Q) = min{ai, ai + bi − c} ≥ 0
(191)

The maximal value of η consistent with these restrictions can therefore be obtained by solving

the following program:

max
(aO,aP ,bO,bP )∈R4

(aO − aP + bP − 1)2 + 4aP (bP − bO)

s.t. max {aO, aO + bO} ≤ 1,max {aP , aP + bP } ≤ 1

min{aO, aO + bO} ≥ 0,min{aP , aP + bP } ≥ 0

(192)

Exact solution of this program via Mathematica yields that the maximum value is 5. This

implies that the maximum value of η is 1 +
√

5 ≈ 3.23, which is greater than 3 but less than

1 +
√

6. Moreover, this maximum is attained at aO = 0, aP = 1, bO = 0, bP = −1.

3. No further restrictions on P̃O and P̃P . We can attain η = 4 by setting a0 = aP = 0,

bO = bP = 4, c = 4. Thus, cycles of any period k ∈ N and chaotic dynamics can occur (see

Weisstein, 2001, for reference).

The proof of this result follows a classic approach of recasting a quadratic difference equation

as a logistic difference equation via topological conjugacy (see, e.g., Battaglini, 2021; Deng, Khan,

and Mitra, 2022). The restrictions on structural parameters implied by the hypotheses of the

proposition then yield upper bounds on the possible logistic maps and allow us to characterize the

possible dynamics using known results.

To understand this result, observe in our baseline case in which T is monotone that cycles and

chaos are not possible. This is because there is no potential for optimism to sufficiently overshoot

its steady state. By contrast, when P̃O and P̃P are either non-monotone or non-ranked, two-period

cycles can take place where the economy undergoes endogenous boom-bust cycles with periods of

high optimism and high output ushering in periods of low optimism and low output (and vice versa)

as contrarians switch positions and consistently overshoot the (unstable) steady state. Finally, when
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P̃O and P̃P are non-linear and non-monotone, essentially any richness of dynamics can be achieved

via erratic movements in optimism that are extremely sensitive to initial conditions.

An Empirical Test for Cycles and Chaos. Proposition 11 shows how to translate an updating

rule of the form of Equation 177 into predictions about the potential for cycles and chaos. We now

estimate this updating rule in the data to test these predictions empirically. Concretely, in our

panel dataset of firms, we estimate the regression model

optit = α1 opti,t−1 + β1opti,t−1 · opti,t−1+

β2(1− opti,t−1) · opti,t−1 + τ (opti,t−1)2 + γi + εit
(193)

where γi is a firm fixed effect. This model allows the effects of contagiousness to depend on agents’

previous state. In the mapping to Equation 177, α = aP , α1 = aO − aP , β1 = bO, β2 = bP , and

τ = c. With estimates of each regression parameter, denoted by a hat, we also obtain an estimate

of the logistic map parameter η defined in Equation 179:

η̂ = 1 +

√
(α̂1 + β̂2 − 1)2 + 4α̂1(τ̂ + β̂2 − β̂1) (194)

Since η̂ is a nonlinear function of estimated parameters in the regression, we can conduct inference

on η̂ using the delta method. Moreover, this constitutes a test for the possibility of cycles and

chaos in the model by the logic of Proposition 11. Specifically, as described in the proof of that

result, there are two main cases. First, if η < 3, then case 1 of the result obtains: there are neither

cycles of any period nor chaotic dynamics. Second, if η ≥ 3, there can be cycles of period 2 or more

and/or chaos. Moreover, if η > 3.57, chaotic dynamic obtain.

Our estimates are presented in Table A20. Our point estimate of η is 1.443 and the 95%

confidence interval is (0.076, 2.810). This rules out, at the 5% level, the presence of cycles and/or

chaos. The 99% confidence interval is (−0.354, 3.240), which does not rule out cycles. The p-value

for the chaotic dynamics threshold is 0.001. Thus, our results provide strong evidence against

the possibility of chaos due to contagious optimism, and marginally weaker evidence against the

possibility of cycles. This test complements the literature on endogenous cycles in macroeconomic

models (see, e.g., Boldrin and Woodford, 1990; Beaudry, Galizia, and Portier, 2020) by providing a

micro-founded test within a structural economic model, which may ameliorate challenges associated

with interpreting pure time-series evidence (see, e.g., Werning, 2017).

B.9 Narratives in Games and the Role of Higher-Order Beliefs

We have studied a micro-founded business-cycle model, but the basic insights extend much more

generally to abstract, linear beauty contest games. Importantly, these settings provide us with an

ability to disentangle the dual roles of narratives in affecting both agents’ first-order and higher-

order beliefs about fundamentals.

Concretely, suppose that agents’ best replies are given by the following beauty contest form
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(see, e.g., Morris and Shin, 2002):

xit = αEit[θt] + βEit[Yt] (195)

where α > 0 and β ∈ [0, 1). This linear form for best replies is commonly justified by (log-

)linearization of some underlying best response function (see, e.g., Angeletos and Pavan, 2007).

For example, log-linearization of the agents’ best replies in the baseline model of this section

yields such an equation with β = ω and all variables above standing in for their log-counterparts.

Moreover, suppose that aggregation is linear so that Yt =
∫

[0,1] xitdi. This can similarly be justified

via an appropriate first-order expansion of non-linear aggregators. Finally, we let the structure of

narratives be as before.

Toward characterizing equilibrium, we define the average expectations operator:

Et[θt] =

∫
[0,1]

Eit [θt] di (196)

and the higher-order average expectations operator for k ∈ N as:

Ekt [θt] =

∫
[0,1]

Eit
[
Ek−1
t [θt]

]
di (197)

Moreover, we observe by recursive substitution that equilibrium aggregate output is given by:

Yt = α
∞∑
k=1

βk−1Et
k
[θt] (198)

We can therefore solve for the unique equilibrium by computing the hierarchy of higher-order

expectations. We can do this in closed-form by observing that agents’ idiosyncratic first-order

beliefs are given by:

Et[θt|sit, λit] = κsit + (1− κ) (λitµO + (1− λit)µP ) (199)

which allows us to compute average first-order expectations of fundamentals as:

Et[θt] = κθt + (1− κ)(QtµO + (1−Qt)µP ) (200)

which is a weighted average between true fundamentals and the average impact of narratives on

agents’ priors. By taking agents’ expectations over this object and averaging, we compute higher-

order average expectations as:

Ekt [θt] = κkθt + (1− κk)(QtµO + (1−Qt)µP ) (201)

which is again a weighted average between the state and agents’ priors, but now with a geometrically

increasing weight on narratives as we consider higher-order average beliefs.
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The following result characterizes aggregate output and agents’ best replies in the unique equi-

librium:

Proposition 12 (Narratives and Higher-Order Beliefs). There exists a unique equilibrium. In this

unique equilibrium, aggregate output is given by:

Yt =
α

1− β

(
(1− β)κ

1− βκ θt +
1− κ

1− βκ (QtµO + (1−Qt)µP )

)
(202)

Moreover, agents’ actions follow:

xit = α
1

1− βκ [κθt + κeit + (1− κ) (λitµO + (1− λit)µP )]

+ β
α

1− β
1− κ

1− βκ (QtµO + (1−Qt)µP )

(203)

Proof. To substantiate the arguments in the main text, by aggregating Equation 195, we obtain

that:

Yt = αEt[θt] + βEt[Yt] (204)

Thus, by recursive substitution k times we obtain that:

Yt = α

k∑
j=1

βj−1E
j
t [θt] + βkE

k
t [Yt] (205)

Moreover, we have that:

Ejt [θt] = κjθt + (1− κj)(QtµO + (1−Qt)µP ) (206)

and thus that:

α

k∑
j=1

βj−1E
j
t [θt] = α

k∑
j=1

βj−1
(
κjθt + (1− κj)(QtµO + (1−Qt)µP )

)
= α

k∑
j=1

βj−1(QtµO + (1−Qt)µP ) + αβ−1
k∑
j=1

(βκ)j [θt − (QtµO + (1−Qt)µP )]

(207)

Hence:

lim
k→∞

α

k∑
j=1

βj−1E
j
t [θt] =

α

1− β (QtµO + (1−Qt)µP )+

ακ

1− βκ [θt − (QtµO + (1−Qt)µP )]

(208)

We therefore have that there is a unique equilibrium if limk→∞ β
kE

k
t [Yt] = 0. Hellwig and Veldkamp

(2009) show in Proposition 1 of their supplementary material that all equilibria differ on a most a
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measure zero set of fundamentals. In this setting, this implies that limk→∞ β
kE

k
t [Yt] = c for some

c ∈ R for almost all θ ∈ Θ. Hence, the equilibrium is given by:

Yt =
α

1− β (QtµO + (1−Qt)µP ) +
ακ

1− βκ [θt − (QtµO + (1−Qt)µP )] + c

=
α

1− β

(
(1− β)κ

1− βκ θt +
1− κ

1− βκ (QtµO + (1−Qt)µP )

)
+ c

(209)

But then we have that c = 0 by computing limk→∞ β
kE

k
t [Yt] = 0 under this equilibrium.

Finally, to solve for individual actions under this equilibrium, we compute:

xit = αEit[θt] + βEit[Yt]

= αEit[θt] + βEit
[

α

1− β

(
(1− β)κ

1− βκ θt +
1− κ

1− βκ (QtµO + (1−Qt)µP )

)]
=

(
α+ β

α

1− β
(1− β)κ

1− βκ

)
Eit[θt] + β

α

1− β
1− κ

1− βκ (QtµO + (1−Qt)µP )

= α
1

1− βκ (κsit + (1− κ) (λitµO + (1− λit)µP ))

+ β
α

1− β
1− κ

1− βκ (QtµO + (1−Qt)µP )

(210)

Completing the proof.

This result allows us to see how narratives affect output by propagating up through the hier-

archy of higher-order beliefs. Concretely, we have that the static impulse response of output to a

contemporaneous shock to the fraction of optimists in the population is given by:

∂Yt
∂Qt

=
α

1− β
1− κ

1− βκ(µO − µP ) = α
∞∑
j=1

βj−1(1− κj)(µO − µP ) (211)

The first expression is composed of the relative importance of fundamentals α
1−β , the impact of prior

beliefs on the entire hierarchy of higher-order beliefs about exogenous and endogenous outcomes
1−κ

1−βκ and the difference between the two narratives µO − µP . The second expression re-expands

the heirarchy of beliefs, to highlight how fraction

βj−1(1− κj)
1

1−β
1−κ

1−βκ
(212)

of the total effect is driven by beliefs of order j. These weights decline more slowly if complemen-

tarity β or prior weights 1− κ are high.

Finally, our result shows how the regression equation relating individual actions with narrative

weights, estimated in our main analysis, holds in equilibrium in the linearized beauty contest.

Thus, our empirical strategy is compatible with the interpretation that the macroeconomy is best

described by a linear beauty contest, and moreover can be ported to other settings where this
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modeling assumption may be appropriate, such as that of financial speculation (see e.g., Allen,

Morris, and Shin, 2006).
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C Additional Details on Textual Data

C.1 Obtaining and Processing 10-Ks

Here, we describe our methodology for obtaining and processing raw data on 10-K filings. We

start with raw html files downloaded directly from the SEC’s EDGAR (Electronic Data Gathering,

Analysis, and Retrieval) system. Each of these files corresponds to a single 10-K filing. Each file

is identified by its unique accession number. In its heading, each file also contains the end-date for

the period the report concerns (e.g., 12/31/2018 for a FY 2018 ending in December), and a CIK

(Central Index Key) firm identifier from the SEC. We use standard linking software provided by

Wharton Research Data Services (WRDS) to link CIK numbers and fiscal years to the alternative

firm identifiers used in data on firm fundamentals and stock prices. We have, in our original dataset,

182,259 files.

We follow the following steps to turn each document, now identified by firm and year, into a

bag-of-words representation:

1. Cleaning raw text. We first translate the document into unformatted text. Specifically, we

follow the following steps in order:

(a) Removing hyperlinks and other web addresses

(b) Removing html formatting tags encased in the brackets <>

(c) Making all text lowercase

(d) Removing extra spaces, tabs, and new lines.

(e) Removing punctuation

(f) Removing non-alphabetical characters

2. Removing stop words. Following standard practice, we remove “stop words” which are com-

mon in English but do not convey specific meaning in our analysis. We use the default English

stop word list in the nltk Python package. Example stopwords include articles (“a”,“the”),

pronouns (“I”,“my”), prepositions (“in”,“on”), and conjunctions (“and”,“while”).

3. Lemmatizing documents. Again following standard practice, we use lemmatization software

to reduce words to their common roots. We use the default English-language lemmatizer of

the spacy Python package. The lemmatizer uses both the word’s identity and its content to

transform sentences. For instance, when each is used as a verb, “meet,” “met,” and “meeting”

are commonly lemmatized to “meet.” But if the software predicts that “meeting” is used as

a noun, it will be lemmatized as the noun “meeting.”

4. Estimating a bigram model. We estimate a bigram model to group together commonly co-

occurring words as single two-word phrases. We use the phrases function of the gensim

package. The bigram modeler groups together words that are almost always used together.

For instance, if our original text data set were the 10-Ks of public firms Nestlé and General

Mills, the model may determine that “ice” and “cream,” which almost always appear together,

are part of a bigram “ice cream.”
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5. Computing the bag of words representation. Having now expressed each document as a vector

of clean words (i.e., single words and bigrams), we simply collapse these data to frequencies.

Finally, note that our procedure uses all of the non-formatting text in the 10K. This includes all

sections of the documents, and does not limit to the Management Discussion and Analysis (MD&A)

section. This is motivated by the fact that management’s discussion is not limited to one section

SEC (2011). Moreover, prior literature has found that textual analysis of the entire 10-K versus

the MD&A section tends to closely agree, and that limiting scope to the MD&A section has limited

practical benefits due to the trade-off of limiting the amount of text per document (Loughran and

McDonald, 2011).

C.2 Obtaining and Processing Conference Call Text

We obtain the full text of sales and earnings conference calls from 2002 to 2014 from the Fair

Disclosure (FD) Wire service. The original sample includes 261,034 documents, formatted as raw

text. We next subset to documents that have reported firm names and stock tickers, which are

automatically associated with documents by Lexis Nexis. When matches are probabilistic, we use

the first (highest probability) match.30 We finally restrict to firms that are listed on one of three US

stock exchanges: the NYSE, the NASDAQ, or the NYSE-MKT (Small Cap). We finally connect

tickers to the firm identifiers in our fundamentals data using the master cross-walk available on

Wharton Research Data Services (WRDS). These operations together reduce the sample size to

158,810 calls. We clean these data by conducting steps 1-3 described above in Appendix C.1. We

then calculate positive word counts, negative word counts, and optimism exactly as described in

the main text for the 10-K data.

C.3 Measuring Positive and Negative Words

To calculate sets of positive and negative 10K words, we use the updated dictionary available

online at McDonald (2021) as of June 2020. This dictionary includes substantial updates relative

to the dictionaries associated with the original Loughran and McDonald (2011) publication. These

changes are reviewed in the Documentation available at McDonald (2021).

The Loughran-McDonald dictionary includes 2345 negative words and 347 positive words. The

dictionary is constructed to include multiple forms of each relevant word. For instance, the first

negative root “abandon” is listed as: “abandon,” “abandoned,” “abandoning,” “abandonment,”

“abandonments,” and “abandons.” To ensure consistency with our own lemmatization procedure,

we first map each unique word to all of its possible lemmas using the getAllLemmas function of the

lemminflect Python package, which is an extension to the spacy package we use for lemmatization.

We then construct a new list of negative words by combining the original list of negative words with

all new, unique lemmas to which a negative word mapped (and similarly for positive words). This

procedure results in new lists of 2411 negative words and 366 positive words, which map exactly

30In the essentially zero-measure cases in which there is a tie, we take the alphabetically first ticker.
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to the words that appear in our cleaned bag of words representation. We list the top ten most

common positive and negative words from this cleaned set in Table A1. In particular, to make the

table most legible, we first associate words with their lemmas, then count the sum of document

frequencies for each associated word (which may exceed one), and then print the most common

word associated with the lemma.
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D Additional Details on Firm Fundamentals Data

D.1 Compustat: Data Selection

Our dataset is Compustat Annual Fundamentals. Our main variables of interest are defined in Table

A21. We restrict the sample to firms based in the United States, reporting statistics in US Dollars,

and present in the “Industrial” dataset. We exclude firms whose 2-digit NAICS is 52 (Finance and

Insurance) or 22 (Utilities). This filter eliminates firms in two industries that, respectively, may

have highly non-standard production technology and non-standard market structure.

We summarize our definitions of major “input and output” variables in Table A21. For labor

choice, we measure the number of employees. For materials expenditure, we measure the sum of

reported variable costs (cogs) and sales and administrative expense (xsga) net of depreciation

(dp).31 As in Ottonello and Winberry (2020) and Flynn and Sastry (2024), we use a perpetual

inventory method to calculate the value of the capital stock. We start with the first reported

observation of gross value of plant, property, and equipment and add net investment or the differ-

ences in net value of plant, property, and equipment. Note that, because all subsequent analysis is

conditional on industry-by-time fixed effects, it is redundant at this stage to deflate materials and

capital expenditures by industry-specific deflators.

We categorize the data into 44 sectors. These are defined at the 2-digit NAICS level, but for the

Manufacturing (31-33) and Information (51) sectors, which we classify at the 3-digit level to achieve

a better balance of sector size. More summary information about these industries is provided in

Appendix F of Flynn and Sastry (2024).

D.2 Compustat: Calculation of TFP

When calculating firms’ Total Factor Productivity, we restrict attention to a subset of our sample

that fulfils the following inclusion criteria:

1. Sales, material expenditures, and capital stock are strictly positive;

2. Employees exceed 10;

3. Acquisitions as a proportion of assets (aqc over at) does not exceed 0.05.

The first ensures that all companies meaningfully report all variables of interest for our production

function estimation; the second applies a stricter cut-off to eliminate firms that are very small,

and lead to outlier estimates of productivity and choices. The third is a simple screening device

for large acquisitions which may spuriously show up as large innovations in firm choices and/or

productivity.

Our method for recovering total factor productivity is based on cost shares. In brief, we use

cost shares for materials to back out production elasticities, and treat the elasticity of capital as

the implied “residual” given an assumed mark-up µ > 1 (in our baseline, µ = 4/3) and constant

physical returns-to-scale. The exact procedure is the following:

31A small difference from Flynn and Sastry (2024) is that, in assessing the firms’ costs and later calculating TFP, we
do not “unbundle” materials expenditures on labor and non-labor inputs using supplemental data on annual wages.
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1. For all firms in industry j, calculate the estimated materials share:

ShareM,j′ =

∑
i:j(i)=j′

∑
t MaterialExpenditureit∑

i:j(i)=j′
∑

t Salesit
(213)

2. If ShareM,j′ ≤ µ−1, then set

αM,j′ = µ · ShareM,j′

αK,j′ = 1− αM,j′
(214)

3. Otherwise, adjust shares to match the assumed returns-to-scale, or set

αM,j′ = 1

αK,j′ = 0
(215)

To translate our production function estimates into productivity, we calculate a “Sales Solow

Residual” θ̃it of the following form:

log θ̃it = log Salesit −
1

µ

(
αM,j(i) · log MatExpit + αK,j(i) · log CapStockit

)
(216)

We finally define our estimate log θ̂ as the previous net of industry-by-time fixed effects

log θ̂it = log θ̃it − χj(i),t (217)

Theoretical Interpretation. The aforementioned method recovers physical productivity (“TFPQ”)

under the assumptions, consistent with our quantitative model, that firms operate constant returns-

to-scale technology and face an isoleastic, downward-sloping demand curve of known elasticity

(equivalently, they charge a known markup). The idea is that, given the known markup, we can

impute firms’ (model-consistent) costs as a fixed fraction of sales and then calculate the theoretically

desired cost shares. Here, we describe the simple mathematics.

There is a single firm i operating in industry j with technology

Yi = θiM
αj
i K

1−αj
i (218)

They act as a monopolist facing the demand curve

pi = Y
− 1
ε

i (219)

for some inverse elasticity ε > 1. Observe that this is, up to scale, the demand function faced

by monopolistically competitive intermediate goods producers in our model. The firm’s revenue is

therefore piYi = Y
1− 1

ε
i . Finally, the firm can buy materials at industry-specific price qj and rent
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capital at rate rj . The firm’s program for profit maximization is therefore

max
Mi,Ki

{
(θiM

αj
i K

1−αj
i )1− 1

ε − qjMi − rjKi

}
(220)

We first justify our formulas for the input shares (Equation 214). To do this, we solve for

the firm’s optimal input choices. This is a concave problem, in which first-order conditions are

necessary and sufficient. These conditions are

qj = M−1
i αj

(
1− 1

ε

)
(θiM

αj
i K

1−αj
i )1− 1

ε

rj = K−1
i (1− αj)

(
1− 1

ε

)
(θiM

αj
i K

1−αj
i )1− 1

ε

(221)

Re-arranging, and substituting in pi = Y
− 1
ε

i , we derive

αj =
ε

ε− 1

qjMi

piYi

1− αj =
ε

ε− 1

rjKi

piYi

(222)

Or, in words, that the materials elasticity is ε
ε−1 times the ratio of materials input expenditures to

sales. Observe also that, by re-arranging the two first-order conditions, we can write expressions

for production and the price

Y =

((
ε− 1

ε

)
θi

(
αj
qj

)α(1− αj
rj

)1−αj
)ε
⇒ p =

(
ε

ε− 1

)
θ−1
i

(
qj
αj

)αj ( rj
1− αj

)1−αj
(223)

and observe that θ−1
i

(
qj
αj

)αj ( rj
1−αj

)1−αj
is the firm’s marginal cost. Hence, we can define µ =

ε
ε−1 > 1 as the firm’s markup and write the shares as required:

α = µ
qjMi

piYi
(224)

Finally, we now apply Equations 216 and 217 to calculate productivity. Assume that we observe

materials expenditure qjMi and capital value pK,jKi, where pK,j is an (unobserved) price of capital.

We find

log θ̃i =

(
1− 1

ε

)
(log θi − α log qj − (1− α) log pK,j) (225)

We finally observe that the industry-level means are

χj =

(
1− 1

ε

)(
log θ̄j − α log qj − (1− α) log pK,j

)
(226)
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where log θ̄j is the mean of log θi over the industry. Hence,

log θ̂i =

(
1− 1

ε

)
(log θi) (227)

or our measurement captures physical TFP, up to scale.
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E Additional Empirical Results

E.1 A Test for Coefficient Stability

Here, we study the bias that may arise from omitted variables in our estimation of the effect of

narrative optimism on hiring, or δOP in Section 5.1, Equation 34, and Table 1. In particular, we

apply the method of Oster (2019) to bound bias in the estimate of δOP under external assumptions

about selection on unobservable variables and to calculate an extent of unobservable selection that

could be consistent with a point estimate δOP = 0 that corresponds to our null hypothesis (i.e.,

“narrative optimism is irrelevant for hiring”). We find that our results are highly robust by this

criterion.

Set-up and Review of Methods. To review, our estimating equation is

∆ logLit = δOP optit + γi + χj(i),t + τ ′Xit + εit (228)

Hiring and optimism are constructed as described in Section 4, at the level of firms and fiscal

years. We treat firm and industry-by-time fixed effects as baseline controls that are necessary for

interpreting the regression.32 As our main “discretionary” controls, we consider current and past

TFP and lagged labor—that is, Xit = {log θ̂it, log θ̂i,t−1, logLi,t−1}. Under our baseline model,

these controls help increase precision, as they are in principle observable variables that explain

hiring (Corollary 5). Thus, in this Appendix, we will study the regression model in which the fixed

effects are partialed out of both the outcome, main regression, and controls, as indicated below

with the ⊥ superscript:

∆ logL⊥it = δOP opt⊥it + τ ′X⊥it + ε⊥it (229)

The essence of the method proposed by Oster (2019), who builds on the approach of Altonji,

Elder, and Taber (2005), is to extrapolate the change in the coefficient in interest upon the addition

of control variables, taking into account the better fit (i.e., additional R2) from adding the new

regressors. To exemplify the logic, consider a case in which we first estimated Equation 229 without

controls, obtaining a coefficient estimate of δ̂OPNC and an R2 of R̂2
NC , and then estimated the same

equation with controls, obtaining a coefficient estimate of δ̂OPC and an R2 of R̂2
C . Both estimates

are restricted to a common sample, for comparability. If R̂2
C = 1, then (up to estimation error) we

might presume that δ̂OPC − δ̂OPNC estimates the entirety of the theoretically possible omitted variables

bias, as there is no remaining unmodeled variation in hiring. If R̂2
C < 1 and R̂2

C−R̂2
NC is small (i.e.,

the controls did not greatly improve fit), then we might presume that the residual still contains

unobserved variables that could contribute toward more bias—in other words, the observed omitted

variables bias δ̂OPC − δ̂OPNC is only a small fraction of what is possible.

To formalize this idea, Oster (2019) introduces two auxiliary parameters: λ (the proportional

degree of selection, called δ in the original paper), which controls the relative effect of observed and

32The latter, in particular, controls for the effect of fundamentals on hiring in our macroeconomic model. We
leverage this interpretation of the biased estimate of δOP from a regression lacking this fixed effect in Appendix F.3.
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unobserved controls on the outcome, and R̄2, which is the maximum achievable fit of the regression

with all (possibly bias-inducing) controls, presumed in the example above to be 1. Conditional

on R̄2, Oster (2019) proposes an intuitively reasonable (and, in special cases and under specific

asymptotic arguments, consistent) estimator for the degree of selection required to induce a zero

coefficient, λ̂∗. Conditional on both R̄2 and λ, Oster (2019) also proposes a bias-corrected coefficient

estimator, which is δ̂∗OP in our language.

The key parameter that the researcher has to specify for the first calculation is R̄2: the propor-

tion of variance in the outcome variable (hiring, net of firm and sector-by-time fixed effects) that

can be explained by factors that correlate with the variable of interest (optimism) and explain the

outcome variable. As the main source of omitted variation that could influence optimism and hiring

is news about fundamentals, we benchmark ˆ̄R2 by estimating a regression in which we include our

base control set Xit = {log θ̂it, log θ̂i,t−1, logLi,t−1} and control for two years of future fundamentals

and labor choice, or

Zit = {log θ̂i,t+1, log θ̂i,t+2, logLi,t+1, logLi,t+2}

This yields ˆ̄R2 = 0.459. Oster (2019) also suggests as a benchmark that R̄2 could be taken as

three times the R2 in the controlled regression. We also report robustness to R̄2
Π = 0.387, three

times the value of R2 = 0.129 that we find in the controlled regression. Thus, our baseline value

of ˆ̄R2 = 0.459 is more demanding than that suggested by Oster (2019). We finally construct the

bias-corrected coefficients assuming λ = 1, or equal selection on unobservables and observables, for

both values of R̄2.

Results. We report the results of this exercise in Table A2. Under our baseline value of ˆ̄R2 =

0.459, we find that the degree of selection required to induced a zero coefficient is λ̂∗ = 1.69. This

is well above the value of λ̂∗ = 1 that Oster (2019) suggests is likely to be conservative. Under the

“three times R2” benchmark, we obtain that λ̂∗ = 2.15. In both cases, we are robust to there being

more selection on unobservables than on observables. According to Oster (2019), approximately

50% of the published top-journal articles in their sample are not robust to this extent of selection.

E.2 Alternative Empirical Strategy: CEO Change Event Studies

To further isolate variation in the narratives held by firms that is unrelated to fundamentals, we

study the effects on hiring of changes in narratives induced by plausibly exogenous managerial

turnover.

Data. To obtain plausibly exogenous variation in narratives held at the firm level, we will examine

the year-to-year change in firm-level narratives stemming from plausibly exogenous CEO changes.

To do this, we use the dataset of categorized CEO exits compiled by Gentry, Harrison, Quigley,

and Boivie (2021). These data comprise 9,390 CEO turnover events categorized by the reason

for the CEO exit. The categorization was performed using primary sources (e.g., press releases,

newspaper articles, and regulatory filings) by undergraduate students in a computer lab, supervised

by graduate students, with the final dataset checked by both a data outsourcing company and
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an additional student. We restrict attention to CEO exists caused by death, illness, personal

issues, and voluntary retirements. Importantly, we exclude all CEO exits caused by inadequate job

performance, quits, and forced retirement.

The Effect of Optimism on Hiring. We first revisit our empirical strategy for measuring the

effect of optimism on firms’ hiring, using the CEO change event studies. For all firms i and years

t such that i’s CEO leaves because of death, illness, personal issues or voluntary retirements, we

estimate the regression equation

∆ logLit = δCEOoptit + ψ opti,t−1 + τ ′Xit + χj(i),t + εit (230)

This differs from our baseline Equation 34 by including parametric controls for lagged values of the

narrative loadings, but removing a persistent firm fixed effect.33 If the studied CEO changes are

truly exogenous, as we have suggested, then the narrative loadings of the new CEO are, conditional

on the narrative loadings of the previous CEO, solely due to the differences in worldview across

these two senior executives. Of course, CEO exits may be disruptive and reduce firm activity. Any

time- and industry-varying effects of CEO exits via disruption are controlled for by the intercept

of the regression χj(i),t, since the equation is estimated only on the exit events. Moreover, any

within-industry, time-varying, and idiosyncratic disruption is captured through our maintained

productivity control. Under this interpretation, the coefficient of interest δCEO isolates the effect

of optimism on hiring purely via the channel of changing managements’ narratives.

We present our results in Table A22. We obtain estimates of δCEO that are quantitatively

similar to our estimates of δOP in Table 1 (columns 1, 2, and 3). In column 4, we estimate a

regression equation on the full sample that measures the direct effect of CEO changes and its

interaction with the new management’s optimism. Specifically, we estimate

∆ logLit = δNoChangeoptit + δChange(optit × ChangeCEOit) + αChangeChangeCEOit

+ ψ opti,t−1 + τ ′Xit + χj(i),t + εit
(231)

where ChangeCEOit is an indicator for our plausibly exogenous CEO change events. We find

that CEO changes in isolation reduce hiring (αChange < 0) but also that the effect of optimism is

magnified when it accompanies a CEO change (δChange > 0). This is further inconsistent with a

story under which omitted fundamentals lead us to overestimate the effect of optimism on hiring.

Contagiousness from CEO Change Spillovers. We next leverage changes in within-sector

and peer-set optimism induced by plausibly exogenous CEO changes as instruments for the level

of optimism within these groups. Concretely, we construct an instrument equal to the contribution

33With a firm fixed effect, the regression coefficients of interest would be identified only from firms with multiple
plausibly exogenous CEO exits.
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toward optimism from firms whose CEOs changed for a plausibly exogenous reason, or

opt
ceo
j(i),t−1 =

1

|Mj(i),t|
∑

k∈Mc
j(i),t

optk,t−1 (232)

where Mj(i),t is the set of firms in industry j(i) at time t, and M c
j(i),t is the subset that had plausibly

exogenous CEO changes. We construct the peer-set instrument opt
ceo
p(i),t−1 analogously. We use

(opt
ceo
j(i),t−1, opt

ceo
p(i),t−1) as instruments for (optj(i),t−1, optp(i),t−1) in the estimation of Equation 39.

We present the corresponding estimates in Table A23. We find similar point estimates under IV

and OLS, although the IV estimates are significantly noisier.

E.3 Measuring Contagiousness via Granular Instrumental Variables

As an alternative strategy to estimate contagiousness, we apply the methods of Gabaix and Koijen

(2020) to construct “granular variables” that aggregate idiosyncratic variation in large firms’ nar-

rative loadings. We find evidence that the idiosyncratic optimistic updating of large firms induces

optimistic updating, a form of contagiousness.

Constructing the Granular Measures. We construct our granular instruments via the follow-

ing algorithm. We first estimate a firm-level updating regression that controls non-parametrically

for aggregate trends and parametrically for firm-level conditions. Specifically, we estimate

optit = τ ′Xit + χj(i),t + γi + uit (233)

where χj(i),t is an industry-by-time fixed effect (sweeping out industry-specific aggregate shocks),

γi is a firm fixed effect (sweeping out compositional effects), and Xit is the largest vector of controls

used in the analysis of Section 5.1, consisting of: lagged log employment, current and lagged log

TFP, log stock returns, the log book to market ratio, and leverage. We construct the empirical

residuals ûit. To construct the aggregate granular variable, opt
g,sw
t , we take a sales-weighted average

of these residuals:

opt
g,sw
t =

∑
i

salesit∑
i salesit

ûit (234)

To construct an industry-level granular variable, opt
g,sw
j(i),t, we take the leave-one-out sales-weighted

average of the ûit:

opt
g,sw
t =

∑
i′:j(i)=j(i′),i′ 6=i

salesi′t∑
i salesi′t

ûi′t (235)

We also construct agggregate and industry (leave-one-out) averages of optit for comparison. We

denote these variables as opt
sw
t and opt

sw
j(i),t, respectively.
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Empirical Strategy. At the aggregate level, we first consider a variant of our main model

Equation 38, but with one of the sales-weighted variables Zt ∈ {opt
sw
t , opt

g,sw
t }:

optit = u opti,t−1 + s Zt−1 + r ∆ log Yt−1 + γi + εit (236)

The coefficient s measures contagiousness with respect to the sales-weighted measures of optimism.

We estimate Equation 236 by OLS, and also estimate a version in which the granular variable

opt
g,sw
t is an instrumental variable for the raw sales-weighted average opt

sw
t .

Similarly, at the industry level, we estimate the model

optit = uind opti,t−1 + sind Zj(i),t−1 + rind ∆ log Yj(i),t−1 + γi + χt + εit (237)

for Zj(i),t ∈ {opt
sw
j(i),t, opt

g,sw
j(i),t}. As above, we estimate this first via OLS for each outcome variable,

and then via IV where the granular variable opt
g,sw
j(i),t is an instrument for the raw sales-weighted

average opt
sw
j(i),t.

Results. We present our results in Table A24. First, studying aggregate contagiousness, we find

strong evidence that s > 0 when measured with the raw sales-weighted average or its granular

component (columns 1 and 2). We moreover find significant evidence of s > 0 in the IV estimation

(column 3). Our IV point estimate of ŝ = 0.308 greatly exceeds the OLS estimate of ŝ = 0.0847.

At the industry level, we find strong evidence of contagiousness via the sales-weighted measure

(column 4). We find imprecise estimates, centered around 0, for contagiousness measured with the

granular variable (column 5) or via the granular IV (column 6). However, the granular IV estimate

is noisily estimated and is not significantly different from the point estimate of column 4.
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F Additional Details on Model Estimation

In this appendix, we provide complete details on the estimation of the model.

F.1 Normalizations

We begin by making two economically irrelevant normalizations to ease the interpretation of the

results. First, we set a0 = 0. As we are not concerned with the level of output in the model, this

is a harmless normalization. Second, we normalize the updating rules so that an economy with

no productivity shocks and no narrative shocks has an equal fraction of optimists and pessimists.

As we have estimated optimism in the data as being above or below the time-series average level

of optimism, this is also harmless normalization. More specifically, we update the LAC transition

probabilities by introducing a parameter CP :

PHO (log Y,Q, ε) = [u+ r log Y + sQ+ CP + ε]10

PHP (log Y,Q, ε) = [−u+ r log Y + sQ+ CP + ε]10
(238)

And we set CP such that an economy with neutral fundamentals (log θt = log θt−1 = 0), equal

optimists and pessimists (Q = 1/2), and no narrative shocks (ε = 0) continues to have equal

optimists and pessimists. Specifically, this implies CP = 1−s
2 .

F.2 Estimation Methodology

To calibrate the model, we proceed in four steps.

1. Setting macro parameters. We first set (ε, γ, ψ, α). In Section 6.1 and Table 5, we describe

our baseline method based on matching estimates of the deep parameters from the literature.

We also consider two other strategies as robustness checks. First, to target estimated fiscal

multipliers in the literature, we use the same external calibration of α (returns to scale) and

ε (elasticity of substitution), and set (γ, ψ) to match the desired multiplier. Since the exact

choice of these parameters is arbitrary subject to obtain the correct multiplier, we normalize

γ = 0 and vary only ψ. Second, we match an estimate of the multiplier implied by our own

data and an exact formula for the omitted variable bias incurred in estimating the effect of

optimism on hiring without controlling for general-equilibrium effects via a time fixed effect.

We outline that strategy for estimating the multiplier in Section F.3 below, and we map this

to deep parameters exactly as described in our method for matching the literature’s estimated

multiplier.

2. Calibrating the effect of optimism on output. We observe that, conditional on (ε, γ, ψ, α) and

an estimate of δOP , we have identified f(Qt). We take our estimate of δOP from column 1 in

Table 1. This regression identifies δOP for the reasons described in Corollary 5.

3. Calibrating the statistical properties of fundamentals (κ, ρ, σ).
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(a) Computing fundamental output. We construct a cyclical component of output, log Ŷt,

as band-pass filtered US real GDP (Baxter and King, 1999).34 We apply our estimated

function f to our measured time series of optimism to get an estimated optimism com-

ponent of output. we then calculate

log Ŷ f
t = log Ŷt − f̂(Q̂t) (239)

(b) Estimating the ARMA representation. Using our 24 annual observations of log Ŷ f
t , we

estimate a Gaussian-errors ARMA(1,1) model via maximum likelihood. Our point esti-

mates are

log Ŷ f
t − 0.086 log Ŷ f

t = .0078(ζt + .32 νt−1) (240)

This implies ρ = 0.086, a1σ = .0078, and a2σ = .32. ρ is therefore identified immediately.

(c) Calibrating (κ, σ). We search non-linearly for values of (κ, σ) that satisfy a1σ = 0.0078

and a2σ = 0.32. There is a unique such pair, reported in Table 5, which also is therefore

the maximum likelihood estimate of (κ, σ).

4. Calibrating the updating rule (u, r, s, σ2
ε). The coefficients of the LAC updating model are

estimated in column 1 of Table 3. Conditional on the previous calibration, we set σ2
ε so that

within model Qt has the same standard deviation as the aggregate optimism time series,

which is 0.0533.

F.3 Estimating a Demand Multiplier in Our Empirical Setting

Here, we describe a method for estimating a demand multiplier in our data on optimism and firm

hiring. This circumvents the step of external calibration for the multiplier, but relies on correct

specification of the time-series correlates of aggregate optimism. Reassuringly, this method yields

a general-equilibrium demand multiplier that is comparable to our baseline calibration and our

literature-derived calibration.

Mapping the Model to Data. By Corollary 5, we first recall that firms’ hiring can be written

in equilibrium as

∆ logLit = c̃0,i + c̃10 log θt + c̃11 log θt−1 + c̃2f(Qt) + c̃3 log θit + c̃4 logLi,t−1 + δOPλit + ζit (241)

where ζit is an i.i.d. normal random variable with zero mean and λit is the indicator for having

adopted the optimistic narrative.

In the data, our estimating equation without control variables had the following form

∆ logLit = γi + χj(i),t + δOP optit + zit (242)

34Specifically, we filter to post-war quarterly US real GDP data (Q1 1947 to Q1 2022). We use a lead-lag length of
12 quarters, a low period of 6 quarters, and a high period of 32 quarters. We then average these data to the annual
level.
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This maps to the structural model with γi = c̃0,i, χj(i),t = c̃10 log θt + c̃11 log θt−1 + c̃2f(Qt), and

zit = ζit + c̃3 log θit + c̃4 logLi,t−1. Under the model-implied hypothesis that E[zitoptit] = 0, then

the OLS regression of ∆ logLit on optit, conditional on the indicated fixed effects, identifies δOP .

We consider now an alternative regression equation which is a variant of the above specification

without the time fixed effect and with parametric controls for aggregate TFP:

∆ logLit = γi + δOP optit + c̃10 log θt + c̃11 log θt−1 + z̃it (243)

Observe that the new residual, relative to the old residual, is contaminated by the equilibrium effect

of optimism. That is, z̃it = zit + c̃2f(Qt). To refine this further, we apply the linear approximation

f(Qt) ≈ αδOP

1−ω Qt and the observation that c̃2 = ω, so we can write z̃it = zit + αω
1−ω δ

OPQt.

We now derive a formula for omitted variables bias in the estimate of δOP from an OLS estima-

tion of Equation 243. Let X denote a finite-dimensional matrix of data on optit, firm-level indicators

(i.e., the regressors corresponding to the firm fixed effects), and current and lagged aggregate TFP.

Similarly, let Y be a finite-dimensional matrix of data on ∆ logLit. The OLS regression coefficient

in this finite sample is δ̂ = ((X ′X)−1X ′Y )1. Using the standard formula for omitted variables bias:

E[δ̂|X] = δOP +

(
(X ′X)−1E[X ′Q|X]

αω

1− ωδ
OP

)
1

= δOP
(

1 +
αω

1− ω
(
(X ′X)−1E[X ′Q|X]

)
1

) (244)

where Q is the vector of observations of Qt. We can then observe that:

(X ′X)−1E[X ′Q|X] = E
[
(X ′X)−1X ′Q|X

]
(245)

Which is the (expected) OLS estimate of β in the following regression:

Qt = γi + βQOoptit + βQθ log θt + βQθ−1
log θt−1 + εt (246)

But we observe that, averaging both sides, that γi = βQθ = βQθ−1
= 0 and βQO = 1. Thus,

((X ′X)−1E[X ′Q|X])1 = 1. We therefore obtain that:

E[δ̂ | X] = δOP
(

1 +
αω

1− ω

)
(247)

Hence, given a population estimate of the biased OLS estimate and an external calibration of α,

we can pin down the complementarity ω and the multiplier 1
1−ω . Naturally this strategy relies on

correctly measuring aggregate TFP as measurement error in that variable would contaminate this

estimation. Moreover, it requires us to assume that all variation in aggregate output that is not

due to TFP is due to optimism or forces entirely orthogonal to optimism; in view of our running

assumption that the spread of optimism is associative, these other forces therefore also have to be

completely transitory, lest they be incorporated into current optimism via associative updating in
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a previous period. These assumptions are strong and are why we do not adopt this strategy for

our main quantitative analysis. Nevertheless, we will find similar results, as we now describe.

Empirical Application and Results. To operationalize this in practice, we compare estimates

of Equation 242 and 243. For the latter, we proxy TFP using the cyclical component of both

capacity adjusted and capacity un-adjusted TFP using the data of Fernald (2014).35 We moreover

maintain the assumption of α = 1, or constant returns to scale, to map our estimates back to

implied multipliers.

Our results are reported in Table A26, along with the associated values of complementarity

ω and the multiplier 1
1−ω . Using capacity-adjusted and unadjusted TFP, we respectively obtain

estimates of 1.46 and 1.37 for the multiplier. These are lower than our baseline estimate, but

comparable to our estimates based on structural modeling in the literature. Both estimates are

below our baseline calibration of 1.96 but above our multiplier-literature calibration of 1.33. In

Table A19, we report our quantitative results under the assumed multiplier of 1.46. We find that,

as expected, these estimates imply an role for optimism that is an intermediate between the baseline

and multiplier-literature calibrations.

35Mirroring our filtering of US real GDP, we apply the Baxter and King (1999) band-pass filter to post-war quarterly
data using a lead-lag length of 12 quarters, a low period of 6 quarters, and a high period of 32 quarters. We then
average these data to the annual level.
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G Additional Figures and Tables

Figure A1: The Time Series of Narrative Optimism
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Notes: The plotted variable is the fraction of optimistic firms in each fiscal year. By construction, half of
the firm-year observations in our sample are coded as optimistic. Section 4.2 describes our measurement
strategy in full detail.

Figure A2: Net Sentiment and Hiring
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Notes: In each panel, we show estimates from the regression ∆ logLit =
∑10
q=1 βq ·(sentimentiqt)+τ ′Xit+γi+

χj(i),t + εit, where sentimentiqt indicates decile q of the continuous sentiment variable. Panel (a) estimates
this equation without controls (like column 1 of Table 1); panel (b) adds controls for lagged labor and current
and lagged log TFP (like column 2 of Table 1); and panel (c) adds controls for the log book to market ratio,
log stock return, and leverage (like column 3 of Table 1). The excluded category in each regression is the
first decile of sentimentit. In all specifications, we trim the 1% and 99% tails of the outcome variable. Error
bars are 95% confidence intervals. Standard errors are double-clustered by firm ID and industry-year.

109



Figure A3: Dynamic Relationship between Optimism and Firm Fundamentals, Conference-Call
Measurement
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(a): ∆ log TFP
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Notes: The regression model is Equation 36 (as in Figure 4), but measuring optimism from sales and earnings
conference calls. Each coefficient is estimated from a separate projection regression. The outcomes are (a) the
log change in TFP, calculated as described in Appendix D.2, (b) the log stock return inclusive of dividends
over the fiscal year, and (c) changes in profitability, defined as earnings before interest and taxes (EBIT)
as a fraction of the previous fiscal year’s variable costs. In all specifications, we trim the 1% and 99% tails
of the outcome variable. Each coefficient is estimated from a separate projection regression. Error bars are
95% confidence intervals.
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Figure A4: Dynamic Relationship Between Optimism and Financial Variables
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(d): ∆ Payout Ratio
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Notes: The regression model is Equation 36 (as in Figure 4), but with financial fundamentals as outcomes.
Each coefficient is estimated from a separate projection regression. The outcome variables are: (a) the fiscal-
year-to-fiscal-year difference in leverage, which is total debt (short-term debt plus long-term debt); (b) sale
of common and preferred stock minus buybacks, normalized by the total equity outstanding in the previous
fiscal year; (c) short-term debt plus long-term debt issuance, normalized by the total debt in the previous
fiscal year; (d) total dividends divided by earnings before interest and taxes (EBIT); and (e) squared stock
returns (volatility). In all specifications, we trim the 1% and 99% tails of the outcome variable. Error bars
are 95% confidence intervals. Standard errors are two-way clustered by firm ID and industry-year.
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Figure A5: Fundamental and Optimism Shocks That Explain US GDP

1995 2000 2005 2010 2015

Year

−0.02

−0.01

0.00

0.01

E
ff

ec
t

o
n

O
u

tp
u

t

Fundamental shocks: Y ft
Optimism shocks: εt

Notes: This figure shows the shocks that rationalize movements in optimism and detrended real GDP in
recent US history, as analyzed in Section 6.2. The solid line is the exogenous process for fundamental
output and the dashed line is the sequence of shocks in narrative evolution. The dashed line is rescaled by
δOP (1− ω)−1 to be, up to linear approximation of f , in units of output.

Figure A6: Variance Decomposition for Different Values of Stubbornness and Contagiousness, No
Optimism Shocks

Notes: This Figure replicates Figure A6, with a different color bar scale, in the variant model with
no exogenous shocks to optimism. Calculations vary u and s, holding fixed all other parameters at
their calibrated values. The shading corresponds to the fraction of variance explained by optimism, or
Share of Variance Explained0 defined in Equation 43. The plus is our calibrated value of (u, s), correspond-
ing to a variance share 4.7%, and the dotted line is the boundary of a 95% confidence set. The dashed line
is the condition of extremal multiplicity from Corollary 4 and Equation 27.
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Figure A7: Tendency Toward Extremal Optimism

Notes: This Figure plots, in color, the fraction of time that optimism Qt lies outside of the range [0.25, 0.75]
and therefore concentrates at extreme values. Calculations vary u and s, holding fixed all other parameters
at their calibrated values. The plus is our calibrated value of (u, s), corresponding to an extremal share of
0%, and the dotted line is the boundary of a 95% confidence set. The dashed line is the condition of extremal
multiplicity from Corollary 4 and Equation 27.
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Figure A8: Time Series for Shiller’s Perennial Economic Narratives
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Notes: Each panel plots the time-series average of the narrative variable defined for the corresponding
chapter of Shiller (2020)’s Narrative Economics. The units are cross-sectional averages of z-score transformed
variables.
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Figure A9: Optimism and Output Variance in the Constellations Model
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Notes: This figure recreates Figure 6 in the model with constellations. The left panel plots the fraction of
variance, one-year autocovariance, and two-year autocovariance explained by endogenous optimism in model
simulations. The right panel plots the total non-fundamental autocovariance. In each figure, we plot results
under three model scenarios: the baseline model with optimism shocks and optimism dynamics (blue), a
variant model with no shocks, or σ2

ε,k = 0 for all k (orange), and a variant model with shocks but no dynamics

for narrative spread, or uk = rk = sk = 0 for all k (green).

Figure A10: Time-Varying Relationship Between Optimism and TFP
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Notes: Each dot is a coefficient βτ estimated from Equation 176, corresponding to a year-specific effect of
binary optimism (optit) on log TFP (log θ̂it). The outcome variable is firm-level log TFP, log θit, and the
regressors are indicators for binary optimism interacted with year dummies. In the regression, we trim the
1% and 99% tails of the outcome variable. Error bars are 95% confidence intervals, based on standard errors
clustered by firm and industry-time.
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Table A1: The Twenty Most Common Positive and Negative Words

Positive Negative

well loss
good decline

benefit disclose
high subject
gain terminate

advance omit
achieve defer
improve claim

improvement concern
opportunity default

satisfy limitation
lead delay

enhance deficiency
enable fail
able losses
best damage
gains weakness

improvements adversely
opportunities against

resolve impairment

Notes: The twenty most common lemmatized words among the 230 positive words and 1354 negative words.
They are listed in the order of their document frequency. The words are taken from the Loughran and
McDonald (2011) dictionary, as described in Section 4.2.
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Table A2: Robustness to Assumptions About Unobserved Selection When Estimating the Effect
of Narrative Optimism on Hiring

Panel A: Regression Estimates

(1) (2)
Outcome is ∆L⊥it

opt⊥it 0.0373 0.0305

Controls X
N 39,298 39,298
R2 0.005 0.129

Panel B: Oster (2019) Statistics

(1) (2)
R̄2 is

ˆ̄R2 = 0.459 R̄2
Π = 0.387

λ∗ (δOP = 0) 1.691 2.151
δ∗OP (λ = 1) 0.0126 0.0165

Notes: This table summarizes the coefficient stability test described in Appendix E.1. Panel A shows
estimates of Equation 229, with and without controls for current and lagged log TFP and lagged log labor.
The estimate in column 1 differs from that in column 1 of Table 1 due to restricting to a common sample in
columns 1 and 2. The R2 values are for the model after partialing out fixed effects, and hence correspond with
unreported “within-R2” values in Table 1. Panel B prints the two statistics of Oster (2019). In column 1, we
set R̄2 equal to our estimated value of 0.459, calculated as described in the text from an “over-controlled”
regression of current hiring on lagged controls and future hiring and productivity. In column 2, we use R̄2

given by three times the R2 in the controlled hiring regression. The first row (λ∗ (δOP = 0) reports the
degree of proportional selection that would generate a null coefficient. The second row (δ∗OP (λ = 1)) is the
bias corrected effect assuming that unobservable controls have the same proportional effect as observable
controls.
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Table A3: Narrative Optimism Predicts Hiring, With More Adjustment-Cost Controls

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0305 0.0257 0.0235 0.0184
(0.0030) (0.0034) (0.0037) (0.0039)

Firm FE X X X X
Industry-by-time FE X X X X
logLi,t−1 X X X X
(log θ̂it, log θ̂i,t−1) X X X X
(logLi,t−2, log θ̂i,t−2) X X X
(logLi,t−3, log θ̂i,t−3) X X
Log Book to Market X
Stock Return X
Leverage X
N 39,298 31,236 25,156 21,913
R2 0.401 0.395 0.396 0.415

Notes: The regression model is Equation 34. Column 1 replicates column 2 of Table 1. Columns 2 and 3
add more lags of firm-level log employment and firm-level log TFP, and column 4 introduces the baseline
financial controls (i.e., those in column 3 of Table 1). In all specifications, we trim the 1% and 99% tails of
the outcome variable. Standard errors are two-way clustered by firm ID and industry-year.
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Table A4: Narrative Optimism Predicts Hiring, Alternative Standard Errors

(1) (2) (3) (4) (5)
Outcome is

∆ logLit ∆ logLi,t+1

optit 0.0355 0.0305 0.0250 0.0322 0.0216
(0.0030) (0.0030) (0.0032) (0.0028) (0.0037)
[0.0031] [0.0026] [0.0031] [0.0040] [0.0034]
{0.0035} {0.0026} {0.0025} {0.0043} {0.0036}

Firm FE X X X X
Industry-by-time FE X X X X X
Lag labor X X X X
Current and lag TFP X X X X
Log Book to Market X
Stock Return X
Leverage X
N 71,161 39,298 33,589 40,580 38,402
R2 0.259 0.401 0.419 0.142 0.398

Notes: This Table replicates the analysis of Table 1 with alternative standard error constructions. Standard
errors in parentheses are two-way clustered by firm ID and industry-year; those in square brackets are two-
way clustered by firm ID and year; and those in braces are two-way clustered by industry and year. For
columns 1-4, the regression model is Equation 34 and the outcome is the log change in firms’ employment
from year t− 1 to t. The main regressor is a binary indicator for the optimistic narrative, defined in Section
4.2. In all specifications, we trim the 1% and 99% tails of the outcome variable. In column 5, the regression
model is Equation 35, the outcome is the log change in firms’ employment from year t to t+ 1, and control
variables are dated t+ 1.
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Table A5: Narrative Optimism Predicts Hiring, Instrumenting With Lag

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0925 0.106 0.102 0.0470
(0.0130) (0.0160) (0.0168) (0.0053)

Firm FE X X X
Industry-by-time FE X X X X
Lag labor X X X
Current and lag TFP X X X
Log Book to Market X
Stock Return X
Leverage X
N 63,302 35,768 31,071 36,953
First-stage F 773 478 366 3,597

Notes: All columns come from a two-stage-least-squares (2SLS) estimate of Equation 34, using opti,t−1 as
an instrument for optit. Specifically, the structural equation is

∆ logLit = δOP · optit + γi + χj(i),t + τ ′Xit + εit

the endogenous variable is optit and the excluded instrument is opti,t−1. In the last row, we report the
first-stage F statistic associated with this equation. In all specifications, we trim the 1% and 99% tails of
the outcome variable. Standard errors are two-way clustered by firm ID and industry-year.

Table A6: Narrative Optimism Predicts Hiring, Conference-Call Measurement

(1) (2) (3) (4) (5)
Outcome is

∆ logLit ∆ logLi,t+1

optCCit 0.0277 0.0173 0.0121 0.0237 0.0123
(0.0038) (0.0040) (0.0038) (0.0038) (0.0044)

Industry-by-time FE X X X X X
Firm FE X X X X
Lag labor X X X X
Current and lag TFP X X X X
Log Book to Market X
Stock Return X
Leverage X
N 19,625 11,565 10,851 11,919 11,416
R2 0.300 0.461 0.467 0.172 0.429

Notes: The regression models are identical to those reported in Table 1, but using the measurement of
optimism from sales and earnings conference calls. In all specifications, we trim the 1% and 99% tails of the
outcome variable. Standard errors are two-way clustered by firm ID and industry-year. In column 5, control
variables are dated t+ 1.
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Table A7: The Effect of Narrative Optimism on All Inputs

(1) (2) (3) (4) (5) (6)
Outcome is

∆ logLit ∆ logMit ∆ logKit

optit 0.0355 0.0305 0.0397 0.0193 0.0370 0.0273
(0.0030) (0.0030) (0.0034) (0.0033) (0.0034) (0.0036)

Industry-by-time FE X X X X X X
Firm FE X X X X X X
Lag input X X X
Current and lag TFP X X X
N 71,161 39,298 66,574 39,366 68,864 36,005
R2 0.259 0.401 0.298 0.418 0.276 0.383

Notes: ∆ logMt is the log difference of all variable cost expenditures (“materials”), the sum of cost of goods
sold (COGS) and sales, general, and administrative expenses (SGA). ∆ logKt is the value of the capital
stock is the log difference level of net plant, property, and equipment (PPE) between balance-sheet years
t− 1 and t. In all specifications, we trim the 1% and 99% tails of the outcome variable. Standard errors are
two-way clustered by firm ID and industry-year.

Table A8: The Effect of Narrative Optimism on Stock Prices, High-Frequency Analysis

(1) (2) (3) (4) (5) (6)
Outcome is stock return on

Filing Day Prior Four Days Next Four Days

optit 0.000145 -0.000142 0.00106 0.000963 0.00173 0.00249
(0.0007) (0.0007) (0.0011) (0.0014) (0.0012) (0.0016)

Firm FE X X X X X X
Industry-by-FY FE X X X X X X
Industry-FF3 inter. X X X
N 39,457 39,457 39,396 17,710 39,346 19,708
R2 0.189 0.246 0.190 0.345 0.206 0.317

Notes: The regression equation for columns (1), (3), and (5) is Ri,w(t) = βoptit + γi + χj(i),y(i,t) + εit where
i indexes firms, t is the 10K filing day, w(t) is a window around the day (the same day, the prior four days,
or the next four days), and y(i, t) is the fiscal year associated with the specific 10-K. In columns (2), (4),
and (6), we add interactions of industry codes with the filing day’s (i) the market minus risk-free rate, (ii)
high-minus-low return, and (iii) small-minus-big return. Standard errors are two-way clustered by firm ID
and industry-year.
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Table A9: Narrative Optimism and Measured Beliefs Have Independent Effects

(1) (2) (3) (4)
Outcome is

Hiring, ∆ logLit Investment, ∆ logKit

optit 0.0355 0.0311 0.0370 0.0251
(0.0030) (0.0068) (0.0034) (0.0072)

ForecastGrowthCapxit 0.0564 0.0943
(0.0062) (0.0079)

Ind.-by-time FE X X X X
Firm FE X X X X
N 71,161 7,312 68,864 7,048
R2 0.259 0.425 0.276 0.472

Notes: We estimate the regression model

∆ logLit = δOP optit + δZ ForecastGrowthCapxit + γi + χj(i),t + εit (248)

where optit is textual optimism from the 10-K for fiscal year t and ForecastGrowthCapxit is defined in the
text as the log difference between manager guidance about CAPX, for fiscal year t, with last fiscal year’s
realized value. In all specifications, we trim the 1% and 99% tails of the outcome variable. Standard errors
are two-way clustered by firm ID and industry-year.

Table A10: Narrative Optimism and Managerial Optimism Relative to Analysts

(1) (2)
Outcome is GuidanceOptExAntei,t+1

optit 0.0267 -0.000272
(0.0231) (0.0353)

Ind.-by-time FE X X
Lag labor X
Current and lag TFP X

N 3,044 1,718
R2 0.161 0.192

Notes: The regression model is a variant of Equation 37 with a different outcome variable. The outcome,
GuidanceOptExAnte, is a binary indicators for whether is an indicator of whether managers’ sales guidance
exceeds the analyst consensus. Standard errors are two-way clustered by firm ID and industry-year.
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Table A11: Narrative Optimism Predicts Hiring, Conditional on Measured Beliefs

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0355 0.0232 0.0311 0.0203
(0.0030) (0.0129) (0.0068) (0.0164)

ForecastGrowthSalesit 0.157
(0.0329)

ForecastGrowthCapxit 0.0564
(0.0062)

ForecastGrowthEpsit 0.000961
(0.0104)

Ind.-by-time FE X X X X
Firm FE X X X X
N 71,161 2,908 7,312 1,290
R2 0.259 0.506 0.425 0.638

Notes: optit is textual optimism from the 10-K for fiscal year t. ForecastGrowthZit is defined in the text
as the log difference between manager guidance about statistic Z, for fiscal year t, with last fiscal year’s
realized value. In all specifications, we trim the 1% and 99% tails of the outcome variable. Standard errors
are two-way clustered by firm ID and industry-year.

Table A12: Narrative Optimism Predicts Investment, Conditional on Measured Beliefs

(1) (2) (3) (4)
Outcome is ∆ logKit

optit 0.0370 0.0238 0.0251 0.00503
(0.0034) (0.0177) (0.0072) (0.0193)

ForecastGrowthSalesit 0.172
(0.0423)

ForecastGrowthCapxit 0.0943
(0.0079)

ForecastGrowthEpsit -0.0147
(0.0102)

Ind.-by-time FE X X X X
Firm FE X X X X
N 68,864 2,748 7,048 1,245
R2 0.276 0.496 0.472 0.661

Notes: This table is identical to Table A11, but has net capital investment ∆Kit as the outcome. optit is
textual optimism from the 10-K for fiscal year t. ForecastGrowthZit is defined in the text as the log difference
between manager guidance about statistic Z, for fiscal year t, with last fiscal year’s realized value. In all
specifications, we trim the 1% and 99% tails of the outcome variable. Standard errors are two-way clustered
by firm ID and industry-year.
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Table A13: Narrative Optimism is Contagious and Associative, Alternative Standard Errors

(1) (2) (3)
Outcome is optit

Own lag, opti,t−1 0.209 0.214 0.135

(0.0071) (0.0080) (0.0166)
[0.0214] [0.0220] [0.0281]
{0.0218} {0.0221} {0.0273}

Aggregate lag, optt−1 0.290
(0.0578)
[0.180]
{0.179}

Real GDP growth, ∆ log Yt−1 0.804
(0.2204)
[0.635]
{0.627}

Industry lag, optj(i),t−1 0.276 0.207

(0.0396) (0.0733)
[0.0434] [0.0563]
{0.0496} {0.0656}

Industry output growth, ∆ log Yj(i),t−1 0.0560 0.0549

(0.0309) (0.0632)
[0.0328] [0.0668]
{0.0428} {0.0772}

Peer lag, optp(i),t−1 0.0356

(0.0225)
[0.0259]
{0.0329}

Firm FE X X X
Time FE X X
N 64,948 52,258 8,514
R2 0.481 0.501 0.501

Notes: This Table replicates the analysis of Table 3 with alternative standard error constructions. Standard
errors in parentheses are two-way clustered by firm ID and industry-year; those in square brackets are
two-way clustered by firm ID and year; and those in braces are two-way clustered by industry and year.
Aggregate, industry, and peer average optimism are averages of the narrative optimism variable over the
respective sets of firms. Industry output growth is the log difference in sectoral value-added calculated from
BEA data, linked to two-digit NAICS industries.
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Table A14: Narrative Optimism is Contagious and Associative, NYSE Peer Set Model

(1) (2)
Outcome is optit

Own lag, opti,t−1 0.214 0.135

(0.0080) (0.0166)
Industry lag, optj(i),t−1 0.276 0.207

(0.0396) (0.0733)
Industry output growth, ∆ log Yj(i),t−1 0.0560 0.0549

(0.0309) (0.0632)
Peer lag, optp(i),t−1 0.0356

(0.0225)

Firm FE X X
Time FE X X
N 52,258 8,514
R2 0.501 0.501

Notes: The regression model is Equation 39. Industry and peer average optimism are leave-one-out averages
of the narrative optimism variable over the respective sets of firms. We define peer sets for the subset of
firms traded on the New York Stock Exchange using the method of Kaustia and Rantala (2021). These
authors exploit common equity analyst coverage to define peers for each firm. Firm j is a peer of firm i
at time t if they have more than C common analysts, where C is chosen so that the probability of having
C or more common analysts by chance is less than 1% when analysts following firm i randomly choose the
firms they follow among all firms with analysts in period t. Industry output growth is the log difference in
sectoral value-added calculated from BEA data, linked to two-digit NAICS industries. Standard errors are
two-way clustered by firm ID and industry-year. The sum of coefficients sind + speer, the marginal effect of
optimism in both the industry and peer set, is positive and statistically significant (estimate 0.243, standard
error 0.075).
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Table A15: Narrative Sentiment is Contagious and Associative

(1) (2) (3)
Outcome is sentimentit

Own lag, sentimenti,t−1 0.259 0.279 0.226
(0.0091) (0.0106) (0.0166)

Aggregate lag, sentimentt−1 0.253
(0.0519)

Real GDP growth, ∆ log Yt−1 2.632
(0.5305)

Industry lag, sentimentj(i),t−1 0.175 0.108

(0.0360) (0.0763)
Industry output growth, ∆ log Yj(i),t−1 0.108 0.142

(0.0522) (0.1312)
Peer lag, sentimentp(i),t−1 0.0234

(0.0188)

Firm FE X X X
Time FE X X
N 63,881 51,555 8,338
R2 0.568 0.599 0.602

Notes: The regression model is a variant of Equation 38 for column 1, and a variant of Equation 39 for
columns 2 and 3, with the continuous variable sentimentit (and averages thereof) substituted for binary
optimism. Aggregate, industry, and peer average sentiment are averages of the narrative sentiment variable
over the respective sets of firms. Industry output growth is the log difference in sectoral value-added calcu-
lated from BEA data, linked to two-digit NAICS industries. In all specifications, we trim the 1% and 99%
tails of sentimentit. Standard errors are two-way clustered by firm ID and industry-year.

Table A16: Narrative Sentiment is Contagious and Associative, Controlling for Past and Future
Outcomes

(1) (2) (3) (4) (5)
Outcome is sentimentit

Aggregate lag, sentimentt−1 0.253 0.385 0.410
(0.0519) (0.0651) (0.1103)

Ind. lag, sentimentj(i),t−1 0.175 0.151
(0.0360) (0.0409)

Time FE X X
Firm FE X X X X X
Own lag, opti,t−1 X X X X X
(∆ log Yt+k)2

k=−2 X X
(∆ log Yj(i),t+k)2

k=−2 X X
N 63,881 48,889 37,643 51,555 37,643
R2 0.568 0.578 0.599 0.599 0.601

Notes: The regression model is a variant of Equation 40 for column 1-3, and an analogous variant of industry-
level specification for columns 4 and 5 (i.e., Equation 39 with past and future controls), with the continuous
variable sentimentit (and averages thereof) substituted for binary optimism. Columns 1 and 4 correspond,
respectively, with columns 1 and 3 of Table A15. The added control variables are two leads, two lags, and
the contemporaneous value of: real GDP growth (columns 2-3), and industry-level output growth (columns
3 and 5). In all specifications, we trim the 1% and 99% tails of sentimentit. Standard errors are two-way
clustered by firm ID and industry-year.
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Table A17: The Twenty Most Common Words for Each Shiller Chapter

Panic Frugality Gold Standard Labor-Saving Machines Automation and AI Real Estate Stock Market Boycotts Wage-Price Spiral
bank help standard replac replac price chapter price countri

consum hous book produc appear appear peopl profit labor
appear buy money technolog show real specul good union
show home run appear question find drop consum ask

forecast famili paper book suggest hous play start wage
economi lost peopl power labor estat depress fall inflat
suggest display metal save ask buy warn buy strong

run job depress problem run home peak wage world
concept peopl eastern labor worker citi great inflat mile
peopl explain almost innov vacat land today world peopl
grew phrase depositor run autom movement get cut happen

around depress young wage human world decad shop depress
weather postpon today worker univers tend reaction peopl war

figur car want electr world peopl newspap explain tri
confid justifi went mechan machin never news campaign wrote
wall cultur decad human job search storm play peak

happen fashion idea world peopl specul saw depress great
depress unemploy man machin answer explain memori behavior recess

tri great newspap job around popul interview postpon went
unemploy fault popular invent figur phrase watch war get

Notes: The twenty most common lemmatized words among the 100 words that typify each Shiller (2020) narrative. Our selection procedure is
described in Section 4.2.
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Table A18: The Ten Most Common Words for Each Selected Topic

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
lease 0.047 solid 0.791 foreign 0.097 borrower 0.034 plan 0.066 advertising 0.029 insurance 0.082 derivative 0.078
tenant 0.042 scheme 0.02 currency 0.067 agent 0.029 participant 0.031 retail 0.028 loss 0.031 value 0.05
landlord 0.03 line 0.009 income 0.045 lender 0.022 employee 0.02 brand 0.018 income 0.018 fair 0.048
lessee 0.017 asset 0.008 tax 0.038 agreement 0.02 committee 0.015 credit 0.018 investment 0.017 rate 0.039
rent 0.016 income 0.008 exchange 0.035 loan 0.02 employer 0.014 consumer 0.017 fix 0.016 interest 0.038
lessor 0.014 debt 0.007 comprehensive 0.023 credit 0.018 make 0.013 distribution 0.016 policy 0.015 asset 0.038
property 0.012 tax 0.007 translation 0.023 bank 0.013 account 0.013 card 0.015 business 0.015 hedge 0.025
term 0.011 cash 0.006 loss 0.021 administrative 0.012 provide 0.011 marketing 0.015 life 0.014 gain 0.022
day 0.009 credit 0.006 gain 0.018 interest 0.012 payment 0.01 food 0.013 premium 0.013 credit 0.019
provide 0.008 loss 0.005 financial 0.017 make 0.011 amount 0.01 store 0.013 write 0.012 financial 0.019

Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16
benefit 0.089 stock 0.036 international 0.068 fund 0.059 financial 0.041 corporation 0.119 million 0.036 trustee 0.02
plan 0.08 common 0.033 united 0.065 investment 0.046 income 0.039 board 0.032 debt 0.031 seller 0.016
asset 0.06 financial 0.033 group 0.052 asset 0.032 cash 0.024 meeting 0.02 due 0.023 respect 0.014
pension 0.04 cash 0.022 global 0.031 trading 0.03 consolidated 0.02 stock 0.02 earning 0.022 indenture 0.013
define 0.033 asset 0.019 canada 0.022 value 0.026 approximately 0.018 director 0.016 percent 0.022 holder 0.011
cost 0.031 accounting 0.014 limited 0.022 management 0.022 asset 0.015 president 0.015 segment 0.018 notice 0.011
value 0.023 business 0.013 reference 0.021 market 0.02 statement 0.012 financial 0.013 interest 0.018 provide 0.011
tax 0.022 item 0.012 incorporate 0.017 capital 0.019 share 0.012 officer 0.012 include 0.017 interest 0.011
obligation 0.018 equity 0.011 us 0.013 income 0.017 accounting 0.012 business 0.011 relate 0.015 person 0.01
income 0.018 loss 0.011 sa 0.013 fee 0.015 tax 0.012 vote 0.01 information 0.015 purchaser 0.01

Topic 17 Topic 18 Topic 19 Topic 20 Topic 21 Topic 22 Topic 23 Topic 24
agreement 0.071 type 0.058 stock 0.152 stock 0.049 gaming 0.035 double 0.405 exhibit 0.042 member 0.499
party 0.018 accounting 0.042 common 0.086 compensation 0.039 service 0.029 solid 0.214 incorporate 0.03 scheme 0.125
provide 0.014 lease 0.039 price 0.037 tax 0.039 network 0.022 income 0.022 reference 0.03 line 0.036
termination 0.011 topic 0.038 exercise 0.036 share 0.028 wireless 0.021 scheme 0.018 item 0.026 amount 0.027
write 0.01 asset 0.037 option 0.036 income 0.023 local 0.019 cash 0.016 registrant 0.023 abstract 0.026
employee 0.009 codification 0.034 purchase 0.034 average 0.019 cable 0.015 loss 0.014 exchange 0.023 asset 0.017
set 0.009 publisher 0.034 agreement 0.03 expense 0.018 provide 0.014 tax 0.014 pursuant 0.019 balance 0.015
notice 0.008 equipment 0.031 share 0.027 asset 0.016 equipment 0.013 balance 0.009 annual 0.018 datum 0.014
information 0.008 balance 0.026 value 0.019 outstanding 0.016 access 0.013 asset 0.007 bank 0.017 type 0.014
day 0.008 definition 0.022 warrant 0.017 weight 0.015 video 0.012 receivable 0.007 financial 0.017 value 0.013

Topic 25 Topic 26 Topic 27 Topic 28 Topic 29 Topic 30
medical 0.176 june 0.136 executive 0.072 reorganization 0.048 court 0.038 technology 0.018
health 0.142 march 0.123 compensation 0.03 bankruptcy 0.047 settlement 0.027 revenue 0.017
care 0.123 note 0.089 employment 0.025 plan 0.044 district 0.021 development 0.015
provide 0.028 agreement 0.057 officer 0.024 predecessor 0.036 certain 0.019 business 0.013
management 0.027 august 0.05 board 0.024 successor 0.027 litigation 0.016 customer 0.012
system 0.027 financial 0.026 committee 0.02 chapter 0.021 action 0.016 stock 0.012
federal 0.024 interest 0.024 director 0.019 asset 0.019 complaint 0.012 product 0.012
program 0.023 item 0.016 chief 0.017 court 0.018 damage 0.011 support 0.009
insurance 0.022 payable 0.015 president 0.017 cash 0.016 approximately 0.011 market 0.009
service 0.02 due 0.014 annual 0.015 certain 0.014 case 0.01 service 0.008

Notes: The ten most common words (lemmatized bigrams) in example topics estimated by LDA and selected by our LASSO procedure as relevant
for hiring (see Section 5.1). Weights correspond to relative importance for scoring the document. The LDA model and our estimation procedure are
described in Section 4.2.
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Table A19: Sensitivity Analysis for the Quantitative Analysis

Parameters Results
α γ ψ ε ω 1

1−ω ĉQ(0) ĉQ(1) 2000-02 2007-09

Baseline 1.0 0.0 0.4 2.6 0.490 1.962 0.192 0.335 0.316 0.181
High ψ 1.0 0.0 2.5 2.6 0.133 1.154 0.175 0.359 0.186 0.106
High γ 1.0 1.0 0.4 2.6 -0.784 0.560 0.041 0.184 0.090 0.052
Empirical Multiplier 1.0 0.0 1.15 2.6 0.250 1.333 0.167 0.329 0.215 0.123
Calibrated Multiplier 1.0 0.0 0.845 2.6 0.313 1.455 0.168 0.324 0.235 0.134
High ε 1.0 0.0 0.21 5.0 0.490 1.962 0.109 0.240 0.317 0.181
Decreasing RtS 0.75 0.0 0.05 2.6 0.490 1.962 0.125 0.238 0.237 0.135

Notes: This table summarizes the quantitative results under alternative calibrations of the macroeconomic
parameters, which we report along side their implied complementarity ω and demand multiplier 1

1−ω . We
report four statistics as the “results” in the last four columns. The first two are the fraction of output
variance explained statically, ĉQ(0), and at a one-year horizon, ĉQ(1), by optimism. The second two are
the fraction of output losses in the 2000-02 downturn and 2007-09 downturn explained by fluctuations in
narrative optimism. Baseline corresponds to our main calibration. High ψ increases the inverse Frisch
elasticity to 2.5, or decreases the Frisch elasticity to 0.4. High γ increases the curvature of consumption
utility (indexing income effects in labor supply) from 0.0 to 1.0. Empirical Multiplier adjusts ψ to match
an output multiplier in line with estimates from Becko, Flynn, and Patterson (2024). Calibrated multiplier
adjusts ψ to match our own calculation of the multiplier in our setting in Appendix F.3. High ε increases
the elasticity of substitution from 2.6 to 5.0, with ψ adjusting to hold fixed the multiplier. Decreasing RtS
reduces the returns-to-scale parameter α from 1.0 to 0.75, with ψ adjusting to hold fixed the multiplier.

Table A20: An Empirical Test for Cycles and Chaos

(1)
Outcome is optit

α: Constant -0.051
(0.244)

α1: opti,t−1 0.655

(0.062)
β1: opti,t−1 · opti,t−1 0.052

(1.021)
β2: (1− opti,t−1) · opti,t−1 0.952

(1.006)
τ : (opti,t−1)2 -0.062

(1.034)

η: Logistic parameter 1.443
(0.698)

Firm FE X
N 67,648
R2 0.480

Notes: The regression model is Equation 193. η is a function of the regression coefficients defined in
Equation 194, and interpretable in the model of cycles and chaos in Appendix B.8. Standard errors are
two-way clustered by firm ID and industry-year. The standard error for η is calculated using the delta
method.
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Table A21: Data Definitions in Compustat

Quantity Expenditure

Production, xit — sale

Employment, Lit emp emp × industry wage
Materials, Mit — cogs + xsga− dp

Capital, Kit ppegt plus net investment —
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Table A22: The Effect of Optimism on Hiring, CEO Change Strategy

(1) (2) (3) (4)
Outcome is ∆ logLit

optit 0.0253 0.0404 0.0362 0.0253
(0.0131) (0.0131) (0.0132) (0.0029)

optit × ChangeCEOit 0.0220
(0.0099)

ChangeCEOit -0.0232
(0.0088)

Industry-by-time FE X X X X
Lag optimism X X X X
Lag labor X X X
Current and lag TFP X X X
Log Book to Market X
Stock Return X
Leverage X
N 1,725 982 905 36,953
R2 0.243 0.375 0.375 0.134

Notes: The regression model is Equation 230 for columns 1-3, and Equation 231 for column 4. The outcome
is the log change in firms’ employment. optit is a binary indicator for the optimistic narrative, defined in
Section 4.2. ChangeCEOit is a binary indicator for whether firm i changed CEO in fiscal year t due to death,
illness, personal issues or voluntary retirement. In all specifications, we trim the 1% and 99% tails of the
outcome variable. Standard errors are two-way clustered by firm ID and industry-year.

Table A23: The Contagiousness of Optimism, CEO Change Strategy

(1) (2) (3) (4)
Outcome is optit

OLS IV OLS IV

Industry lag, optj(i),t−1 0.275 0.260 0.195 0.272

(0.0407) (0.2035) (0.0760) (0.5270)
Peer lag, optp(i),t−1 0.0437 0.129

(0.0236) (0.1677)

Firm FE X X X X
Time FE X X X X
Industry output growth, ∆ log Yj(i),t−1 X X X X

N 50,604 50,604 7,873 7,873
R2 0.503 0.051 0.508 0.020
First-stage F — 29.7 — 36.8

Notes: The IV strategies instrument the industry and/or peer lag with the CEO-change variation in those
averages. Standard errors are two-way clustered by firm ID and industry-year.
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Table A24: Optimism is Contagious and Associative, Granular IV Strategy

(1) (2) (3) (4) (5) (6)
Outcome is optit

OLS OLS IV OLS OLS IV

Own lag, opti,t−1 0.212 0.213 0.210 0.219 0.220 0.219
(0.0071) (0.0071) (0.0073) (0.0080) (0.0081) (0.0081)

Agg. sales-wt. lag, opt
sw
t−1 0.0847 0.308

(0.0421) (0.1044)
Real GDP growth, ∆ log Yt−1 1.058 1.104 0.768

(0.2205) (0.2110) (0.2607)
Agg. sales-wt. granular lag, opt

g,sw
t−1 0.150

(0.0506)
Ind. sales-wt. lag, opt

sw
j(i),t−1 0.0728 0.0195

(0.0209) (0.0459)
Ind. output growth, ∆ log Yj(i),t−1 0.0851 0.0903 0.0886

(0.0325) (0.0336) (0.0333)
Ind. sales-wt. granular lag, opt

g,sw
j(i),t−1 0.00913

(0.0216)

Firm FE X X X X X X
Time FE X X X
N 64,948 64,948 64,948 52,258 50,842 50,842
R2 0.481 0.481 0.049 0.500 0.503 0.051
First-stage F — — 99.1 — — 262.3

Notes: This table estimates Equations 38 and 39, respectively modeling the spread of optimism at the ag-
gregate and industry level, using granular identification of spillovers (contagiousness). opt

sw
t−1 and opt

sw
j(i),t−1

are sales-weighted averages of aggregate and industry optimism, respectively. opt
g,sw
t−1 and opt

g,sw
j(i),t−1 are

(lagged) sales-weighted averages of the non-fundamentally-predictable components of firm-level optimism in
the aggregate and in the industry, respectively, as explained in Appendix E.3. In columns 3 and 6, we use the
granular variables as instruments for the raw sales-weighted averages. Standard errors are two-way clustered
by firm ID and industry-year.
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Table A25: Calibration Parameters for Narrative Constellation Model

Name ζ u r s M Variance

Lease, Tenant, Landlord... -0.135 0.063 -0.342 0.820 -0.113 0.003
Solid, Scheme, Line... 0.055 0.434 -2.304 0.678 0.103 0.049
Foreign, Currency, Income... 0.021 0.373 -0.180 0.514 -0.114 0.005
Borrower, Agent, Lender... -0.066 0.064 0.019 0.747 -0.189 0.010
Plan, Participant, Employee... -0.023 0.020 0.450 0.871 -0.109 0.012
Advertising, Retail, Brand... 0.056 0.324 0.078 0.594 -0.082 0.005
Insurance, Loss, Income... -0.039 0.250 -0.132 0.651 -0.099 0.002
Derivative, Value, Fair... 0.042 0.410 0.099 0.407 -0.183 0.011
Benefit, Plan, Asset... 0.097 0.335 -0.500 0.568 -0.100 0.001
Stock, Common, Financial... -0.041 0.230 -0.212 0.285 -0.484 0.002
International, United, Group... 0.032 0.321 1.369 0.729 0.053 0.020
Fund, Investment, Asset... 0.054 0.219 0.365 0.837 0.057 0.001
Financial, Income, Cash... 0.085 0.084 1.018 0.921 0.011 0.121
Corporation, Board, Meeting... 0.050 0.201 0.812 0.783 -0.012 0.117
Million, Debt, Due... 0.026 0.307 0.138 0.405 -0.288 0.002
Trustee, Seller, Respect... -0.079 -0.006 -0.165 1.002 -0.003 0.015
Agreement, Party, Provide... -0.117 0.039 -0.067 0.864 -0.097 0.021
Type, Accounting, Lease... -0.049 0.371 0.592 0.600 -0.031 0.150
Stock, Common, Price... 0.043 0.198 1.020 0.945 0.146 0.031
Stock, Compensation, Tax... 0.023 0.274 -0.671 0.686 -0.041 0.071
Gaming, Service, Network... 0.042 0.375 0.137 0.444 -0.181 0.004
Double, Solid, Income... 0.032 0.450 -2.022 0.684 0.129 0.046
Exhibit, Incorporate, Reference... 0.033 0.187 0.139 0.802 -0.011 0.094
Member, Scheme, Line... 0.035 0.470 -0.655 0.537 0.006 0.011
Medical, Health, Care... 0.056 0.361 0.026 0.522 -0.116 0.001
June, March, Note... 0.040 0.242 0.312 0.663 -0.094 0.040
Executive, Compensation, Employee... 0.024 0.163 0.880 0.894 0.058 0.041
Reorganization, Bankruptcy, Plan... -0.085 0.357 -0.119 0.206 -0.436 0.000
Court, Settlement, District... -0.104 0.363 0.363 0.560 -0.079 0.010
Technology, Revenue, Development... 0.091 0.299 0.674 0.559 -0.138 0.013
Panic versus Confidence 0.017 0.223 -0.143 0.428 -0.349 0.003
The Gold Standard 0.017 0.204 0.724 0.955 0.159 0.005
Labor-Saving Machines 0.024 0.212 0.239 0.278 -0.511 0.001
Automation and AI 0.029 0.214 0.196 0.148 -0.638 0.001
Real Estate 0.022 0.206 -0.130 0.552 -0.243 0.002
Stock-Market Bubbles 0.012 0.221 0.126 0.472 -0.306 0.000
Boycotts and Evil Businesses 0.042 0.168 0.043 0.640 -0.192 0.003
Wage-Price Sprials 0.021 0.221 -0.113 0.669 -0.110 0.002

Notes: This table reports the selected narratives used in the calibration of Section 7. The first set of rows
are LDA topic narratives, identified by their three highest-scoring terms, and the second set of rows are
chapters of Shiller (2020), identified by shortened forms of their titles. The narratives are selected via post-
LASSO estimation of Equation 50, and the first column reports the coefficients. The remaining columns
report estimates of stubbornness, associativeness, and contagiousness; the composite statistic M ; and the
unconditional time-series variance of each narrative. In the estimation, we re-normalize each narrative to
have a positive ζ.
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Table A26: Multiplier Calibrations via Under-Controlled Regressions of Hiring on Optimism

(1) (2) (3)
Outcome is ∆Lit

optit 0.0355 0.0516 0.0486
(0.0030) (0.0034) (0.0033)

Complementarity ω — 0.313 0.270
Multiplier 1

1−ω — 1.455 1.370

Industry-by-time FE X
Firm FE X X X
Current and lagged adjusted TFP X
Current and lagged unadjusted TFP X
N 71,161 65,508 65,508
R2 0.259 0.207 0.216

Notes: The regression models are introduced in Appendix F.3. The first column replicates Column 1 of
Table 1. The second two columns remove the industry-by-time FE and control for the contemporaneous and
lagged value of seasonally adjusted log TFP, respectively with and without capacity utilization adjustment,
as reported by the updated data series of Fernald (2014). The sample size is lower in columns 2 and 3 due to
the band-pass filtering being impossible for the last part of the sample. The remaining rows give the implied
complementarity ω and demand multiplier 1

1−ω , by comparing the coefficients with that of column 1 and
applying the formula in Equation 247. Standard errors are double-clustered by industry-year and firm ID.
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