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1.  Introduction 

Emotion and mood have been shown to play a role in financial beliefs, preferences, and decisions.1   

Beliefs about extreme events are of particular interest  to economic theory and empirical research.2 

Elevated disaster beliefs are a plausible explanation for the equity premium puzzle3 and the 

dynamics of crash expectations have implications for time-varying risk premium models.4  Crash 

risk is also associated with cross-sectional differences in asset returns.5  Brunnermeier et. al. (2021) 

highlight the dynamics of investor  beliefs as a promising channel for asset pricing research. 

Beliefs about extreme or infrequent events are of great interest to behavioral research as 

well. Fear and dread are shown to influence subjective risk assessment of rare disasters with 

important implications for public policy.6 Zajonc (1980) suggests that an affect channel for 

decision-making can operate separately and even supersede a cognitive channel.  Johnson & 

Tversky (1983) found that emotional responses directly affect risk assessments for extreme events.  

Loewenstein et. al. (2001) term this phenomenon a risk-as-feelings reaction that can cause a 

“divergence of emotional responses from cognitive evaluation of risks.”  They argue that this 

potentially evolutionary mechanism is common in instances of decision-making under uncertainty. 

In this paper we investigate the emotional component in investor beliefs about extreme 

crash probabilities. Using more than two decades of Robert Shiller’s Stock Market Confidence 

Survey we first decompose crash beliefs into subjective and fundamental components based upon 

option prices.  The subjective crash probability measure has several interesting properties.  It is 

highly volatile, typically right-skew, and nearly always positive. While the fundamental 

component is correlated with market-based indicators such as market returns, volatility and 

volatility-implied crash risk, the subjective component is not.  

In order to better understand the subjective component in crash risk forecasts, we turn to 

the survey response narratives.  We apply a large language model (LLM) to written narratives 

 
1 cf. Sanders (1993), Da et, al. (2015), Garcia (2013), Hirshleifer & Shumway (2003), Hirshleifer et al. (2020), 
Goetzmann et. al, (2014), Goetzmann et. al. (2017), Kamstra et. al. (2003), Yuan et. al. (2006), Gerrett et. al. (2005 & 
2017), Loughran & Schultz (2004), Edmans et. al. (2007), Edmans et al. (2022), Taffler et. al. (2021), Griffith et. al. 
(2020)  & Hasan et. al. (2023). 
2 cf. Barberis (2013) for a comprehensive review of research on the psychology of tail events, and their relationship 
to subjective probability. 
3 cf. Rietz (1988) and Barro (2006). 
4 cf. Gabaix (2012), Santa-Clara & Yan (2010), Berkman et. al., (2011), Bollerslev & Todorov (2011 & 2015), Bates 
(2000), Wachter (2013) and Tsai & Wachter (2015). 
55 cf. Kelly & Jiang (2014) and Gao & Song (2015). 
6  cf. Lichtenstein et al. (1978) and Slovic (2012). 
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solicited by the investor survey to construct high-frequency measures of sentiment and other 

dimensions of emotion that directly correspond to psychological models of affect.  The model is 

fine-tuned using rich data on human-derived emotion annotations to narratives.  This approach 

allows us to extract various dimensions of emotion from the narratives that would be otherwise 

difficult to identify.  We find that investor sentiment is correlated with the subjective crash 

probability component and find strong evidence that it is related to non-fundamental variation.  We 

then consider specific forms of affect to directly test the circumplex model of Russell (1980) that 

is widely used in the psychology literature.  As predicted by this literature, the relationship is non-

linear.  

Finally, we test whether the seminal results of Johnson & Tversky (1983) hold in a real-

life setting.  To do this we use respondents’ geo-location to conduct three natural experiments that 

conform to the laboratory conditions in Johnson & Tversky (1983) of priming conditions.  We find 

that exposure and attention to news of rare, extreme events: i.e. nearby earthquakes, large lottery-

winnings and excess COVID deaths is significantly associated with a higher or lower rare crash 

probability, depending on emotional valence. Taken together our results suggest that the risk-as-

feelings channel has potentially relevant implications for asset pricing and investor market 

participation.  

The balance of the paper is organized as follows.  Section 2 reviews the relevant literature 

and highlights the contribution of the current paper. Section 3 describes the data used in the 

analysis.  Section 4 presents evidence on subjective crash beliefs.  Section 5 presents the results 

on investor sentiment tests.  Section 6 presents the results on natural experiments.  Section 7 

concludes. 

 

2. Literature review 

2.1 Survey Research 

Survey evidence on investor beliefs has played an increasingly important role in behavioral 

economics and asset pricing. Ben-David, Graham & Harvey (2007, 2013) use a survey of CFOs 

to estimate executive overconfidence and miscalibration of stock market distributions. Greenwood 

& Shleifer (2014) assemble and analyze aggregate measures of expected returns from a number of 

investor surveys. They find a common factor in subjective beliefs that is negatively correlated to 
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standard valuation metrics. Nagel & Xu (2022) assemble expectations data from a variety of survey 

sources to explore the relationship between experience and market forecasts.   

A promising line of survey research examines cross-sectional differences in survey 

responses. For example, Vissing-Jorgensen & Attanasio (2003) find considerable heterogeneity in 

implied risk aversion. Casella & Gulen (2019) document differences in beliefs between retail vs. 

individual investors. Biachi et. al. (2022) demonstrate that even professional macroeconomic 

forecasters manifest belief distortions.  Cocco et. al. (2022) show that expectations among British 

households were influenced by specific financial circumstances. 

Recent cross-sectional survey research also highlights the potential importance that rare 

disaster probabilities play in investor concerns. Our prior research showed that media sentiment 

explained cross-sectional variation in subjective crash probabilities.7  Choi and Robertson (2020) 

survey financial decision-makers in US households and find strong evidence that rare disaster risk 

influences their decisions.  Giglio et. al. (2021) survey a large panel of wealth investors and 

document a strong negative relationship between return expectations and subjective probability 

assessment of a rare disaster.  The current paper contributes to this literature by exploiting the 

relationship between quantitative and narrative responses to explicitly test the role of emotion in 

belief formation.  

 

2.2 Sentiment 

There is a substantial literature in behavioral finance documenting the impact of sentiment 

in news and social media on investor beliefs and decisions, which in turn likely impacts asset 

prices.8  In a seminal paper, Tetlock (2007) found that negative news sentiment predicted transitory 

price declines in the Dow.  Da et. al. (2011) show that internet search for negative affective 

financial terms can explain mutual fund flows.  As noted above, there is considerable evidence 

that weather and seasonally-induced mood variation may affect market prices and operation.  More 

recently, Griffith et. al. (2020) document a relation between emotion-coded news and volatility, 

and Cuculiza et. al. (2021) show that analyst opinions are negatively affected by nearby terrorist 

attacks. Sias et. al. (2023) use the swine flu epidemic as an experimental setting for testing whether 

negative affect influences market participation, Kräussl & Mirgorodskaya, (2014) find a relation 

 
7 Goetzmann, Kim & Shiller (2016). 
8 Duxbury et. al. (2020) is a useful overview of the literature. 
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between media sentiment and future market volatility, and Hasan et al. (2023) show that emotion 

betas derived from sentiment analysis of the news explain cross-sectional variation in stocks.  Yang 

et. al. (2024) construct a sentiment index from COVID-19 tweets and find a relation to equity 

index returns.   Our innovation is to use respondents’ own emotional state instead of relying on 

news or social media as an instrument for common sentiment. Our evidence suggests that the level 

and time-variation in investor risk beliefs have a significant individual emotional component that 

correlates to media sentiment but is not subsumed by it. 

 

2.2 Risk as Feelings 

Our theoretical foundation for the analysis of emotional content in crash forecasts is the 

risk-as-feelings framework. 9  An early paper in this literature, Johnson & Tversky (1983) [J&T] 

provide a particularly useful basis for identifying the influence of emotion on subjective rare 

disaster probabilities.  Subjects primed with narratives about an unrelated rare event – for example, 

news of a fatal car crash – assigned a higher probability to a different category of rare event such 

as being struck by lightning.  J&T argue that this referred subjective inference was due to an 

emotional response rather than a logical semantic association. One contribution to this literature is 

that test the seminal results of J&T in a real-life setting. 

 Much subsequent research in the risk-as-feelings literature has uncovered features of this 

phenomenon that are potentially relevant to the rare disaster literature.  For example, Rottenstreich 

& Hsee (1999) find that the relationship between preference and affect-rich outcomes is highly 

non-linear. In addition, within the risk-as-feelings framework, appraisal-tendency theory makes 

specific predictions about the kinds of emotion that are likely to influence such things as crash 

probability assessment and investor choice. Lerner & Keltner (2000) for example show that anger 

and fear are similar in valence but can imply differing expectations about the future.10 One 

implication of the appraisal-tendency hypothesis is the potentially adaptive role of emotion in 

directing judgement and action.  Among other things, emotions may stimulate useful and 

protective reactions to threatening stimuli.  Our use of a LLM to classify a range of emotions in 

subject narratives allows us to test whether emotions influence probabilistic beliefs. Our evidence 

 
9 cf.  Johnson & Tversky (1983), Slovic & Peters (2006), Keller et. al. (2006), Slovic et al. (2007), Loewenstein et. al. 
(2001), Lerner & Keltner (2000). 
10 Tiedens & Linton (2001) link different emotional channels to heuristic vs, systematic processing. 
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lends support to recent research in the role of emotion in asset pricing tests (Hasan et al., 2023), 

and also suggests that emotion-driven excessive fear of a crash may be a barrier to widespread 

market participation. 

 

2.3 Neuroscience 

 There is considerable evidence of a neurological relationship between emotion and risk-

taking.  Most of this literature seeks to directly link choice under uncertainty with neurological 

channels and the sequence of activities that lead up to it.  According to Bossaerts (2021), Bechara 

& Damasio (2005) are the first to demonstrate a biological link between emotions and risky choice, 

and Bechara et. al. (1997) find that emotional engagement plays a crucial role in decision-making 

under uncertainty.  

Experience likely creates the emotional context for risk-taking: Kuhnen & Knudsen (2005 

& 2011) use brain imaging to show that anticipatory neurological activation -- conditioned on prior 

experience -- influences investor choice, and that affect mediates neurological channels relating to 

risk aversion.  Bossaerts et al. (2023) use heart-rate and skin conductance to delve into the role of 

anticipatory vs. reactive affect in an experimental market setting and find that affect measures 

Granger-cause profitable trading. This is consistent with field experiments in Lo & Repin (2002) 

indicating that experienced traders exhibited greater emotional control and lower physical 

indications of anxiety and stress.  Our potential contribution to this literature is to link emotion to 

the cognitive formation of explicit probabilities, as opposed to subject decisions. 

  

2.4 Rare Disasters 

 Rietz’s (1987) proposed solution to Mehra & Prescott (1985) is a seminal article in the rare 

disaster literature – ironically drafted just months before the biggest crash in US stock market 

history.  The literature since has focused on empirically estimating probabilities of rare disasters, 

and on theoretical frameworks to study rare disaster expectations and their effect on asset prices 

and investor choice. In the empirical literature, Barro (2006) constructs a comprehensive global 

database of crashes and finds support for the Rietz hypothesis. Berkman et al (2011) examine 

geopolitical factors influencing market crashes. Bialkowski and Ronn (2016) highlight the risk to 

property rights during crashes. Goetzmann & Kim (2018) study global equity market crashes over 

the long durée.  
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A barrier to estimating extreme negative event probabilities is that the data are not 

unconditionally observed.11 Recently Orlik & Veldkamp (2023) argue that this rarity can cause 

large fluctuations in beliefs about disaster risk.   Jiang and Kelly (2015) address this limitation by 

estimating market crash risk from individual stock measures. An increasingly rich option-market 

has made it possible to estimate crash risk – Marin (2017) uses index options to measure crash 

probability variation, and in a series of papers cited above Bollerslev & Todorov and co-authors 

have been able to estimate refined, high-frequency crash risk indices. Our contribution to this 

empirical research is to demonstrate the role of emotion in the formation of probabilistic forecasts 

of rare disasters. 

On the theory side, Tsai and Wachter’s (2015) overview of the rare disaster literature is a 

comprehensive analysis of the theoretical literature on disaster risk and asset pricing – breaking 

out its static and time-varying effects.  The literature on time-varying crash risk premia is 

particularly rich. These models are able to match several empirical regularities – not only the equity 

risk premium and the riskless rate puzzle, but also predictability in asset returns (Wachter, 2013).  

Dynamic models permit consideration of non-instantaneous crashes, clustered crashes, uncertainty 

and learning about crashes and more.  The time-series’ we develop in this paper is potentially 

useful in testing these model predictions.  Indeed, as they are not derived from option market they 

add another interesting dimension to consider. 

A natural question is how the subjective crash beliefs relate to representative agent models.  

Respondents to the Investor Confidence Survey are not necessarily indicative of the marginal 

investor in the option market or the equity market.  Indeed, the spread between their beliefs and 

those implied by option prices is the topic of this paper.  Favilukis’ (2013) for example, shows that 

market participation can be procyclical.  In a risk-as-feelings framework variation in beliefs are 

correlated to emotion and thus subjective crash probabilities may empirically proxy for risk 

aversion. When risk aversion truncates participation, the average risk aversion of a representative 

investor varies with participation, implying a time-varying equity premium.12 

 

 
11 cf. Brown et. al. (1995) 
12 See Merton (1980) 
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3. Data13 

3.1 Investor Survey 

Robert Shiller’s Stock Market Confidence Indices are based on survey data collected 

continuously since 1989; semi-annually for a decade and then monthly by the International Center 

for Finance at the Yale School of Management since July, 2001. Shiller (2000a) describes the 

indices constructed from these surveys and compares them to other sentiment indicators and 

studies their dynamics in the aggregate.  In this paper, we use the disaggregated survey responses 

used to construct those indices.  About 300 questionnaires each month are mailed to individuals 

identified by a market survey firm as high-net-worth investors and institutional investors. They 

may fill it in when they wish, but they are asked to mark the date on which they complete the 

survey.   It is not a longitudinal survey. Each month comprises a different sample of respondents 

with the sampling goal of 20 to 50 responses by each of the two types – individual and institutional. 

Information about the ZIP codes of the respondents is readily available from 2007. The combined 

sample used in this paper contains 16,214 responses. The survey participants provide the date on 

which the questionnaire was completed.  

There is existing research that uses data from the Shiller surveys.  Greenwood and Shleifer 

(2015) find that the monthly investor confidence index constructed by aggregating information 

from the respondent-level Shiller survey is well-correlated to several other investor surveys and to 

mutual fund flows. Egan et. al. (2022) extract expectations from funds that track the S&P index 

and find that these corelate to investor flows.  Barone-Adesi et. al. (2015) estimate behavioral 

pricing kernels from market data and find them to correlate well to investor sentiment surveys, 

including indices constructed from the Shiller survey data used in this paper.  Goetzmann et. al. 

(2016) use the institutional investor responses from a telephone version of the survey about beliefs 

in market mispricing in order to study variation in investor mood.  Their results are consistent with 

evidence derived from a different dataset of investor trading behavior. 

 

3.2. Crash Probability Survey Question 

In the current study, we use responses to the survey question: 

 
13 Parts of the data description in this section is taken or adapted with changes from the 2017 version of our NBER 
working paper Goetzmann et. al. (2016). 
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“What do you think is the probability of a catastrophic stock market crash in the U. S., like 

that of October 28, 1929 or October 19, 1987, in the next six months, including the case 

that a crash occurred in the other countries and spreads to the U.S.?  (An answer of 0% 

means that it cannot happen, an answer of 100% means it is sure to happen.) 

Probability in U. S.: _______________%” 

The phrasing of this question has not been significantly altered during the sample period we 

examine.14  Thus it has the advantage of consistency throughout a period of 26 years, during which 

time the stock market, the macro-economy and the financial system has experienced considerable 

variation.   

 

3.3.  Options Data 

For options market data, we use daily data on SPY options from OptionMetrics from 1996 

to 2020. The S&P 500 option-implied expected returns and crash probabilities are calculated based 

on Martin (2017) using options data. For the expected returns, the variables in the analysis assume 

a six-month tenor, consistent with the survey data. For the crash probabilities, we assume a six-

month tenor and define a crash as of 20%. We also use a high-frequency crash metric derived from 

option surfaces: the daily estimate of the (risk-neutral) expected volatility of future returns over a 

weekly horizon that materialize below a lower threshold developed in Bollerslev et. al. (2015).15 

 

3.4.  Earthquake Data 

Earthquake data from 1900 to 2020 is collected from the United States Geological Services 

(USGS). The data includes dates, magnitudes, and coordinate locations of each event.  We match 

the earthquake data to the investor survey data using the centroid of the ZIP code location available 

for some of the survey respondents.  Approximately 6.36% of the survey respondents experienced 

an earthquake with seismic magnitudes between 2.5 and 5.5 whose epicenter is within a 30-mile 

radius within 30 days prior to the survey response, while 0.05% experienced those with magnitudes 

above 5.5. 

 
14 This wording has remained the same since 1994. Prior to 1994, the question is phrased as: “What do you think is 
the probability of a catastrophic stock market crash, like that of October 28, 1929 or October 19, 1987, in the next six 
months?” Only approximately 10% of the observations used in the analysis are associated with the earlier wording. 
The results are not sensitive to the exclusion of these observations. 
15 We thank Viktor Todorov for providing this series. 
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3.5.  Lottery Data 

Data on winning stores (i.e., the store where the winning ticket is purchased) for Powerball 

and MegaMillions contests are hand collected from press releases from 2007 to 2020 that include 

information on the contest winners, jackpot size, and location. We treat multiple winners for a 

single lottery contest as separate events in the tests.  

There are several challenges with using the location of the winning contestant. In some 

instances, the winner is allowed to remain anonymous in some states, so that her location is 

unavailable. Of those where state laws require the winner’s identity to be disclosed, some winners 

choose to have the jackpot collected by an anonymous trust, which may be associated with an 

address that does not necessarily correspond with the residence of the winner. Winning tickets that 

are split across multiple individuals may have different locations, though generally cluster 

geographically. 

To address issues related to ambiguity in winner locations, we rely on the location of the 

store selling the winning ticket, which is always reported. We match the lottery winner data to the 

investor survey data based upon whether the winning store is located within a 30-mile radius of 

the 5-digit ZIP code centroid of the investor.  Only investors in states participating in either one of 

the contests at each point in time are included in the sample. Approximately 2.48% of the survey 

respondents are located within a 30-mile radius of the winning store within 30 days of the survey 

response. 

 

3.6.  COVID-19 Data 

For the COVID-19 tests, we obtain county-level data from two primary sources. We obtain 

data on infections and deaths from the Johns Hopkins CSSE COVID-19 Tracking Project. To 

obtain data on county-level policy interventions, we use the updated version of the data collected 

by Killeen et al. (2020).16 

 

3.7.  Market Data 

 
16 Data is available for download from: https://github.com/JieYingWu/COVID-19_US_County-
level_Summaries/tree/master/data. 
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For stock market data, we use daily data on the value-weighted index of the NYSE-AMEX-

Nasdaq-Arca universe from the Center for Research in Security Prices (CRSP). The daily returns 

of each index are used to empirically measure market volatility and the occurrence of extreme 

events. We also use the returns to the indices on and before the day that the questionnaires are 

completed as a control for market trends that jointly influence media articles and investor 

heuristics. Market volatility implied by the VIX is obtained from Federal Reserve Economic Data 

(FRED). All data is collected daily from 1996-2020. 

 

3.8.  Media Data 

We use ProQuest to search the Eastern Edition of the Wall Street Journal [WSJ] from 

January 1, 1987 through December 31, 2020.  This is the only edition available on ProQuest for 

that period. We presume that it corresponds reasonably well to the national edition.  We searched 

articles containing words and phrases associated with the stock market, yielding a total of 189,921 

articles with a word count of at least 200 words.17  We use a sub-set of these corresponding to the 

time-interval of the current study.  

Garcia (2014) documents a significant asymmetry in media reportage of past market 

returns – negative outcomes are reported more frequently in periodic columns of the Wall Street 

Journal.18  This is consistent with evidence that both animals and humans are conditioned to give 

stronger weight to negative things, experiences and events (cf. Baumeister et. al., 2001 and Rozin 

and Royzman, 2001).  Negative experiences engage greater cognitive effort (Ito et. al., 1998), have 

greater influence in evaluations (Ito et. al., 1998), are more likely to be taken as valid (Hilbig, 

2009) increase arousal, and enhance the memory and comprehension of the event (Grabe and 

Kamhawi, 2006).  These prior results lead us to expect that the availability bias – if it exists – 

should be asymmetric.  Negative events should have a greater effect on probability assessments 

than positive events. 

 
17 The ProQuest search term used to identify the articles is: “(stock NEAR/5 market) OR SU(stock) OR 
SU(securities)”.  We did not use broader search terms, such “SU(markets)”, because they yielded articles on other 
asset markets, such as for bonds and commodities.  
18 Garcia (2014) focuses on financial market columns from the New York Times and the Wall Street Journal from 
1905 to 2007. These columns may not necessarily appear on the front page, where articles are more likely to be viewed 
by readers. For example, the “Abreast of the Market” column in the Wall Street Journal, which is used in Garcia 
(2014), appears on the front page of a section 40.8% of the time over our sample period. 
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For each article, sentiment is defined as a weighted function of the number of positive and 

negative words.19,20  Media sentiment is measured by aggregating the sentiment of articles for each 

date.  We classify words using the General Inquirer (GI) – a lexicon of positive and negative words 

that is widely used in text sentiment analysis. A number of prior studies use the GI to construct 

media sentiment measures for newspaper articles.21  Other approaches include constructing lexica 

tailored to specific types of source documents.  For example, Loughran and McDonald (2011) 

manually code common terms found in SEC regulatory filings into valence classes, as some terms 

may have different connotations in financial documents compared to other documents. 

We construct daily scores that aggregates information across articles for each date. We 

define News Sentiment as the difference between the weighted positive and negative word counts 

across all articles for each date, scaled by the sum of the weighted positive and negative word 

counts across all articles for each date.22  

 

4. Subjective Crash Beliefs 

We start by examining the empirical properties of the survey-based crash probabilities. 

Figure 1 graphs the average annual probabilities for the survey respondents and the market 

crash risk indicators: the option-implied probability of a six-month drop of at least 15% in the S&P 

 
19 We follow Loughran and McDonald (2011) in weighting word frequencies using the “tf–idf (term frequency-inverse 
document frequency)” method which accounts for a word’s relative prevalence within and across documents.  Using 
un-weighted word counts does not control for the fact that some words are simply more common than others (cf. 
Manning, Raghavan, and Schutze (2008)).  Our use of the tf-idf weighting scheme is motivated by Loughran and 
McDonald’s (2011) finding “…that this approach [tf-idf] produces regressions with better fit than the approaches 
using simple proportions.” Specifically, the weighted word frequency for word w appearing in article a is calculated 

as the product of the log-scaled word frequency and the log-inverse document frequency: 
ଵା୪୬ ሺ௡ೢ,ೌሻ

ଵା୪୬ ሺ௡ೌതതതതሻ
ln ሺ

஺

ௗ௙ೢ
ሻ, where 

𝑛௪,௔ is the frequency for word w in article a, 𝑛௔തതത is the average frequency for all words appearing in article a, A is the 
total number of articles used in the analysis, and 𝑑𝑓௪ is the number of articles containing word w.  Words that do not 
appear in the article (𝑛௪,௔ ൌ 0) are assigned a value of zero. See Loughran and McDonald (2016) for a complete 
discussion and survey of methods using word frequency in textual analysis to measure sentiment. 
20 The General Inquirer assigns approximately 10,000 words to 26 major and 182 minor categories, or tags.  It 
aggregates categories from the Harvard IV-4 dictionary, Lasswell value dictionary, a social cognition dictionary from 
Semin and Fiedler (1988).  The two largest categories are the positive and negative valence classes: the positive list 
includes 1,915 words, while the negative list includes 2,291 words.  
21 These studies include Tetlock (2007), Engelberg (2010), and Garcia (2013).  There are a large number of studies 
that apply sentiment analysis to firm regulatory disclosures.  Loughran and McDonald (2016) provides an overview 
of this literature. 
22 We also consider a number of other specifications: the weighted negative word count divided by the total weighted 
word count; the difference between the positive and negative word count divided by the total weighted word count; 
and the difference between the natural log of one plus the weight positive word count and the natural log of one plus 
the weighted negative word count. The results are not sensitive to these alternative specifications. 
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500 index, the annualized volatility of the daily DJIA, the largest negative return in each year 

(represented as a positive number on the figure), and the VIX implied volatility. The annual survey 

mean probability exhibits a high correlation with the market-based crash risk proxies.  These 

periods also correspond to higher option-implied crash probabilities,23 realized volatility, implied 

volatility and most extreme one-day DJIA percentage declines. The Pearson correlation between 

the average annual probabilities and the market-based proxies range between 43.3% to 57.3%. 

Appendix Table A1 displays correlations on the daily crash probabilities and the variables used in 

the analysis. 

While the survey-based crash probabilities exhibit considerable time-series covariation 

with other proxies for market crash risk, it is unclear whether the levels at any given point in time 

are consistent with rational models. To assess this, we start by examining the summary statistics 

of the key variables used in the analysis displayed in Table 1. Over the sample period, the survey-

based crash probabilities (πSurvey) have a sample mean of 19.3% with a standard deviation of 19.8%. 

There are challenges with comparing the probabilities from those inferred from historical market 

returns.  It is well known that stock returns are fat-tailed and this log-normal model is not 

appropriate to estimate the probability of an extreme decline. The average daily standard deviation 

of the DJIA is about 1% and the two crashes of interest are 12 times and 20 times the daily standard 

deviation. This has motivated the use of fat-tailed distributions and mixed jump processes to 

describe stock market moves.24 

A simple approach to estimating a baseline probability is to use the historical frequency of 

such events. Under the assumption of an i.i.d. distribution of daily returns, and using the number 

of trading days since October 23, 1929 through December 31, 1988 [taking the most conservative 

bounds] gives an average probability of an extreme crash over a six-month horizon of 1.7%.  This 

decline to approximately 1% when the entire history of the DJIA is used.  The average reported 

crash probability from the Shiller surveys is thus more than 10 times the conservative estimate.  

A more refined approach is to directly compare the survey-based crash probabilities with 

the option-implied ones. Crash probabilities can be derived from index options that conform to 

some extent to the specifications indicated in the survey question. We use as a baseline probability 

 
23 The option-implied crash probability estimates are derived from the approach described in Martin (2017). 
Specifically, the probabilities are derived from data on S&P 500 index options expiring in six months or less. 
24 Cf. Gabaix (2012), Santa-Clara and Han (2010), Wachter (2013), Bollerslev and Todorov (2011). 
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estimate the option-implied probabilities from Martin (2017) based on a six-month horizon 

associated with an at least 15% drop in a market index. Table I reports summary statistics for the 

option-implied probabilities the mean value of 6.2% corresponds the historical frequency of 

overlapping six-month returns of large-cap stocks over the period June 1926 through December 

2021.25 

Santa-Clara & Han (2010) and Bollerslev et al. (2011) find that option-based metrics can 

be used to estimate high-frequency crash risk premia.  The daily estimate of the (risk-neutral) 

expected volatility of future returns over a weekly horizon that materialize below a lower threshold 

from Bollerslev et al. (2015) is another fundamental metric for crash risk and is highly correlated 

with other option-based crash risk measures.26 Over the period of our analysis, the correlation of 

this jump risk measure with the VIX is 67.8% and is 58.9% with the Martin crash probability 

measure – indicating they are not perfect substitutes but are all likely to be reflecting fundamental 

risks of large market moves. 

One potential issue is that the Martin and the survey-based probability measures may differ 

due to wording.  The wording of the survey question implies a one-day drop of 15%, rather than a 

15% decline over the next six months. It would suggest that the option-implied measure may be 

systematically higher than the survey-based measure. This is not the case. The crash probability 

spread (CPS), which is the difference between the survey-based and option-implied crash 

probability measures, are positive throughout the sample period. In fact, we find that the survey-

based crash probabilities are consistently higher than the option-implied crash probabilities across 

various sample splits.  

Table 2 displays the results. Over the full sample period of 2000 to 2020, CPS is positive 

and statistically significant (coefficient = 13.2%, t-value = 40.08). In the subperiod splits, CPS 

remains positive and significant across the different periods. CPS stays positive during low 

volatility periods, and also remains positive when daily market returns or past month returns are 

high or low. Finally, the relationship in CPS across the various sample splits are also interesting. 

For example, while the option-implied crash probabilities decrease over the sample period (see 

Appendix Table A2), the survey-based crash probabilities increase (see Appendix Table A3). This 

provides an explanation for the growing spread over the sample period.  

 
25 We thank Ian Martin for providing code and data, as well as helpful discussions. 
26 We thank Viktor Todorov for providing this series. 
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Figure 2 displays the survey-based crash probability distribution against the option-implied 

crash probabilities over time. It indicates that the positive spread is not only due to extreme survey 

responses. The median crash probabilities are generally above the option-implied crash 

probabilities. The figure also shows that both the median and the right tail of the distribution are 

elevated during the second half of the sample period. Figure 3 graphs monthly average CPS from 

1996 to 2020. The figure confirms an increasing pattern in the spread through the second half of 

the sample period. Because the survey-based and option-implied crash probabilities are correlated 

with each other, the spread does not exhibit the same correspondence with market-based crash 

indicators. For example, the correlations with VIX are 30.9% for survey-based crash probabilities 

and 87.4% for the option-implied crash probabilities (see Table A1). In contrast, the correlation 

between VIX and CPS is only -3.4%.  

For the purposes of the analysis in the remainder of the paper, we focus on the spread of 

the survey-based over the option-implied probabilities. Our logic is that option prices are based on 

investment decisions in the index option markets, and thus reflect the time-varying beliefs and 

preferences of the marginal investor in these markets.  Option investors are likely to take into 

account current fundamental factors affecting time-variation in the probability of extreme events. 

Thus, the option-implied probabilities provide a useful “market-based” benchmark for analysis of 

the survey responses. The fact that the mean implied crash probability of a negative 15% six-month 

return lies close to the historical frequency of such events suggests that we cannot reject the 

hypothesis that, on average, option market participants rationally assess crash probabilities. 

Table 3 displays the results of regression models of the daily survey-based crash 

probabilities and CPS. We start by examining the relationship with option-based crash risk 

measures. Column (1) displays the results for the Martin measure. Column (2) presents the results 

for the LJV measure described in Bollerslev et al. (2015). Each of the specifications also include 

the first five daily lags of the explanatory variables, including for the dependent variable. The 

results confirm that the cumulative effects of each of both variables on the survey-based crash 

probabilities are positive and statistically significant. We next consider other fundamental 

measures. Columns (3) and (4) show the results for daily market returns and the VIX, respectively. 

These specifications also indicate a significant relationship. Columns (5) through (7) repeat the 

tests when using CPS as the dependent variable, which adjusts the crash probabilities for 

fundamentals. The results in these specifications are statistically insignificant. These findings 
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suggest that focusing on the spread controls for variation in fundamental factors that rationally 

influence crash expectations. 

One issue to consider is that the phrasing of the survey question may make a crash salient 

and lead to a heightened probability assessment.  The term “catastrophic” and the highlighting of 

the two crash dates may themselves prime a response biased towards higher probability.  The high-

sentiment term “catastrophic” could itself elicit an emotional response.  By the same token, 

highlighting two crashes out of a century or more of data could trigger an availability heuristic.   

There are several other questions in the surveys – some with positive and some with negative 

sentiment; all about the stock market. These may also prime an investor response.  These stimuli 

make it potentially difficult to identify the marginal influence of sentiment and other non-

fundamental shocks on probability assessments.   

Another feature of the question is that it relies partially on a narrative about an event 

occurring in other countries and spreading to the U.S.  This may also have confounding effects.  

Construal theory (cf. Trope & Wakslak, 2007) suggests that psychological distance in time and 

space can prime higher-level, abstract reasoning which can “guide prediction.” Finally, 

Experimental evidence suggests that people rely on numerical and narrative evidence in assessing 

probabilities, and the relative degree of reliance may depend on numeracy (Dieckmann et. al. 

2009). All of these suggest that the key question of interest may be biased, or inconsistent with the 

respondent’s beliefs, and that there could be heterogeneity in the responses. 

One way to assess this potential issue is to examine the internal validity of the crash 

probabilities with the subject’s other survey responses.  Given the affective and narrative features 

of the question, prior research suggests that we should find cross-sectional differences among 

respondents based on their numerical sophistication and perhaps other factors.  If the high base-

line probability assessments are due solely to framing factors within the questionnaire, this would 

suggest that direct priming may be a source of extreme bias about the probabilities – an interesting 

fact in itself.  That is, the crash probabilities may reflect severity due to the wording of the question 

rather than their actual beliefs.  This would imply inconsistency between the response to the crash 

probability question and the responses to other questions where the wording is unlikely to be 

confused with severity.  Moreover, confusion due to question wording as well as noise, possibly 

related to respondent error, may limit the explanatory power of the statistical models used in 

subsequent sections. We assess the former in two ways. 
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First, we estimate a model that examines whether the crash probabilities can be explained 

by responses to the questions related to stock market valuation. The wording of these questions 

may be less likely to elicit extreme responses.27  The key explanatory variables include the 

expected percentage change in the DJIA over the next six months (Expected Returns); a dummy 

based upon whether stock prices when compared to true fundamental value is too high (Too High 

Valuation); a dummy based upon whether stock prices when compared to true fundamental value 

is too low (Too Low Valuation); a dummy based upon whether the investor is inclined to sell stocks 

overall (Sell); and a dummy based upon whether the investor is inclined to buy stocks overall 

(Buy).  Appendix Table A4 displays the results.  The explanatory variables are mostly significant, 

and their coefficients are signed in a manner consistent with the crash probability responses.28   

Of particular interest in Table A4 is the relatively high explanatory power and coefficient 

estimate on the variable “Sell Recommendation.”  It indicates that the high estimate of a crash 

probability is associated with the recommendation to exit the market. Overall, these results suggest 

that the crash probability responses overall are internally consistent with responses to the other 

survey questions.  

Second, we directly test whether specific words in the survey question influences the crash 

probability responses.  Different versions of the survey question that alter keywords that may 

potentially prime severity in the question phrasing are randomly presented to 500 subjects using 

Amazon’s Mechanical Turk.29  We estimate a regression model where the dependent variable is 

the crash probability response and the explanatory variables are dummies associated with 

keywords, along with date fixed effects.30  We do not find any statistically significant differences 

in the crash probabilities across the different versions. The crash probabilities for the versions that 

exclude the words “catastrophic” and replaces the word “crash” with “decline” (estimate = 0.007, 

 
27 We use three questions from the survey for these tests: (i) “How much of a change in percentage terms do you 
expect in 6 months [for the Dow Jones Industrial Average]?”, (ii) “Stock prices in the United States, when compared 
with measures of true fundamental value or sensible investment value, are [too high, too low, or about right].”, and 
(iii) “Are you inclined to buy stocks overall, or sell stocks overall, or hold steady?” 
28 In untabulated results, we also find similar effects when examining the spread between the survey responses over 
option-implied crash probability estimates based upon S&P 500 options data. This suggests that idiosyncratic variation 
in the survey responses relative to fundamental market conditions are also internally consistent. 
29 Specifically, we consider four versions of the survey question: the original question; one that excludes the words 
“catastrophic” and replaces the word “crash” with “decline”; one that replaces “like that of October 28, 1929 or 
October 19, 1987” with “of 20%”; and one that excludes the words “including the case that a crash occurred in the 
other countries and spreads to the U.S.”. 
30 The survey was conducted over three dates: July 14, July 15, and July 16, 2016. 
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t-value = 1.22); replace “like that of October 28, 1929 or October 19, 1987” with “of 20%” 

(estimate = 0.013, t-value = 0.57); and exclude the words “including the case that a crash occurred 

in the other countries and spreads to the U.S.” (estimate = 0.010, t-value = 0.63) are not 

significantly different from those of the original question, and the estimated magnitudes are 

negligible.  Together, these results provide evidence that the crash probability responses are not 

significantly driven by confusion over the wording of the survey question. 

 

5. Investor Sentiment Tests 

In this section, we examine to what extent is time variation in the survey-based crash probabilities 

driven by non-fundamental factors. Towards this end, we utilize other data from the survey as well 

as generative modelling techniques to identify various dimensions of affect and to construct a high-

frequency measure of investor sentiment. 

 

5.1. Measurement 

 Our identification strategy relies on access to high-frequency measures of non-fundamental 

factors. This is challenging. For example, most proxies of investor sentiment are only available at 

the monthly-level or lower frequencies. Coarser frequencies increase the difficulty for teasing out 

the influence of fundamental factors. We attempt to overcome these challenges in part by 

developing high-frequency measures of investor sentiment using narrative data from the survey. 

Specifically, the survey asks respondents to provide an open-ended commentary to describe the 

stock market conditions or provide an explanation for their survey predictions. 

We feed the responses into a large language model (LLM) in order to quantify various 

dimensions of emotion, including sentiment. Our approach employs a model that is tailored to 

capture emotional qualities in textual data. Specifically, we utilize an open-source Mistral model 

(Mistral-7B-Instruct-v0.1),31 which is a generative language model trained for conversational 

output. This model contains 7.3 billion parameters, which is relatively large compared to BERT 

(340 million parameters) but smaller than GPT-4 (speculated to be over 1 trillion parameters). 

Despite its compactness relative to some LLMs, there are studies that document at least 

comparable performance of the Mistral model compared to larger models (Jiang et al., 2023). 

 
31 For a complete description of the model, refer to Jiang et al. (2023). 
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Moreover, the advantage of using the Mistral model is that it is designed for the purpose of being 

fine-tuned on other data. GPT-4, in contrast, is not open-source and so is less adaptable to our 

purpose. We apply fine-tuning using Low-Rank Adaptation (LoRA) on the “Affective Text” 

dataset from Strapparava & Mihalcea (2007).32 The advantage of using this data for the fine-tuning 

is that it features much more fine-grained emotion annotator scores compared to others that only 

feature coarse binary scores. 

To demonstrate the effectiveness of the LLM adopted for the analysis, we consider several 

examples. Each example is assigned a specific emotion score on a [0, +100] scale. The sentiment 

is also evaluated on a [-100, +100] scale. None of the examples were used to fit the model.  

 

Example 1: “Who are you calling fat?” 

 

This example is associated with very negative sentiment (Sentiment Score = -54). It also scored 

highly on the anger dimension (Anger Score = 47). Outside of anger, the text does not seem to 

reflect other negative emotions, such as fear or sadness. Consistently, the model assigns the lowest 

scores possible for those emotions (Fear Score and Sadness Score = 0). The model also assigns the 

lowest score possible for optimism (Optimism Score = 0). 

 

Example 2: “Squirrel jumps boy in park; rabies suspected.” 

 

This example is also associated with very negative sentiment (Sentiment Score = -61). However, 

it received the lowest score possible for the anger dimension (Anger Score = 0). It received a 

moderately low sadness score (Sadness Score = 17), but a very high fear score (Fear Score = 61). 

As with Example 1, the optimism score is low (Optimism Score = 0). 

 

Example 3: “Global Sludge Ends in Tragedy for Ivory Coast.” 

 

 
32 Specifically, the data provides manually coded annotations of news headlines to scores for six emotions: anger, 
disgust, fear, joy, sadness, surprise. Human subjects are asked to annotate headlines extracted from news web sites 
with each emotion label from a [0,+100] scale. Each headline is independently labelled by six subjects.  
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Similar to the Examples 1 and 2, this example also received a very negative sentiment score 

(Sentiment Score = -74). It received the lowest possible score for anger (Anger Score = 0), and a 

moderately low score for fear (Fear Score = 12). However, it scored highly on sadness (Sadness 

Score = 74). 

  

 Example 4: “Scientists discover miracle in the depths.” 

 

For completeness, we consider an example with a very positive sentiment score (Sentiment Score 

= 67). The example received the lowest possible score for anger, fear, and sadness (Anger Score, 

Fear Score, and Sadness Score = 0). In contrast, the optimism score is high (Optimism Score = 

50). 

 At the least, the examples demonstrate the emotional dimensionality beyond sentiment 

captured by the LLM approach. To evaluate the external validity of the model, we compare the 

emotion scores to those produced by GPT-4. The average correlation between the two sets of 

scores is 63.3%. Moreover, the main results from the analysis are not sensitive to using the GPT-

4 scores. Using GPT-4 to score the examples above yields qualitatively similar results.33 

To start, we construct two different investor sentiment measures based upon the model 

responses. First, we construct a daily index. It is based upon a seven-day, backward-looking 

moving average, which is used in order to account for the sparsity in survey responses during some 

periods with sufficient text to generate scores. For periods when no survey data is available within 

a seven-day period, we use the most recent daily value available. Second, we use the individual 

scores for the respondent-level tests. We evaluate the comparability of the model results to those 

based upon traditional dictionary-based approaches, and find qualitatively similar results.  

The primary advantage of the LLM approach is that it allows us to measure other 

dimensions of affect that have not be as readily studied. A large literature studies sentiment 

analysis with many different approaches that offer at least comparable levels of performance. 

There is evidence even within this domain on the relatively strong performance of large language 

models over dictionary-based approaches (Kant et al., 2018; Chang et al., 2023). However, much 

 
33 Using GPT-4, for examples 1 / 2 / 3 / 4, the Sentiment Scores are -60 / -70 / -90 / 80, the Anger Scores are 80 / 20 / 
50 / 10, the Fear Scores are 20 / 80 / 70 / 20, the Sadness Scores are 30 / 10 / 90 / 10, and the Optimism Scores are 30 
/ 10 / 5 / 90. 
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less work has been conducted in quantifying other dimensions of affect. This is not the first study 

to use LLM to quantify affect. For example, in early work Lindquist (2015) considers the 

relationship between language and affect, and the extent to which natural language processing can 

be effective in emotion detection. More recently, various studies have tested a broad range of large 

language models and document their effectiveness in detecting emotional stimuli (Amin et al., 

2023; Li et al., 2023). 

 

5.2. Empirical Specification 

Our initial specification focuses on time-series variation in subjective crash probabilities 

and its relationship with the investor sentiment measures. A key challenge is that the two are likely 

to be jointly related to fundamental factors.  For example, there may be similarity in language used 

by investors and media outlets to describe stock market conditions. 

We address this issue in three ways. First, rather than focusing on survey-based crash 

probabilities directly, we instead use the crash probability spread measure examined in the 

previous section. While the survey-based crash probability levels are correlated with fundamental 

factors, we have already shown that the spread is not. Second, we directly account for language 

used to describe fundamental factors by controlling for an analogous measure of sentiment but 

based upon news articles about the stock market. Similar to the option-implied crash probabilities 

used in the spread measure, the news sentiment measure may also be capturing non-fundamental 

factors in addition to fundamental factors. In this regard, our approach is conservative as it will 

restrict the tests to variation orthogonal to what is captured by the news sentiment measure. Finally, 

we include a host of other control variables that correspond with observable fundamental factors.  

The following is the baseline regression model: 

 

 𝐶𝑃𝑆௧ ൌ 𝛼ଵ ൈ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑣𝑒𝑠𝑡𝑜𝑟 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡௧ ൅ ∑ 𝛼ଶ,௝ ൈ 𝑁𝑒𝑤𝑠 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡௧ି௝
ହ
௝ୀ଴ ൅ 

 ∑ 𝜶𝟑,𝒋 ൈ 𝑿𝒕ି𝒋
𝟓
𝒋ୀ𝟎 ൅ ∑ 𝛼ଷ,௝ ൈ 𝐶𝑃𝑆௧ି௝

ହ
௝ୀଵ ൅ 𝜀௧ (1) 

 

The dependent variable is the daily spread between the average survey crash probability across 

responses over the past seven days and the option-implied crash probability.34 

 
34 We also consider alternative specifications. We compute the survey crash probability only using information for 
date t, and using the most recent value available if there are no survey responses available. In another specification, 
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𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑣𝑒𝑠𝑡𝑜𝑟 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡௧ is the daily investor sentiment measure described above. 

𝑁𝑒𝑤𝑠 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡 as well as its first five lags are included in the model. The other control variables 

(𝑿) that correspond with other fundamental factors are the daily market returns and VIX, as well 

as the first five lags of each variable. The first five lags of the dependent variable are also included 

in order to limit the influence of any other factors correlated with its lagged values. Given the 

construction of the dependent variable and in order to mitigate the influence of serial correlation, 

we use Hansen and Hodrick (1980) standard errors to assess statistical significance.  

 

5.3. Baseline Results 

 Table 4 displays the results from the baseline specification. We iteratively include the 

different components of the baseline model in order to better understand the contribution of each 

to the overall results. Column (1) displays the results for the survey-based crash probabilities with 

only the lagged dependent variable terms. The Average Investor Sentiment coefficient is negative 

and statistically significant (estimate = -0.561, t-value = 7.79). That is, more positive investor 

sentiment is associated with lower crash probabilities. Column (2) displays the results when only 

including News Sentiment in the model. As expected, the coefficient is also negative and 

statistically significant (estimate = -0.125, t-value = 2.50). Column (3) includes both measures 

simultaneously in the same model. The Average Investor Sentiment coefficient remains virtually 

unchanged while the News Sentiment coefficient attenuates by more one quarter. However, both 

terms remain significant.  

We next examine the specifications where the dependent variable is the crash probability 

spread measure. Column (4) shows that the Average Investor Sentiment coefficient remains 

significant while the News Sentiment coefficient becomes statistically insignificant at the 10% 

level. This confirms our intuition that the spread measure is effective in accounting for 

fundamental factors. Column (5) includes all the other control variables. The coefficient on 

Average Investor Sentiment actually grows larger in absolute magnitude and remains significant. 

In the last model, we examine an even stronger specification. It regresses the crash probability 

spread measure on an analogous spread measure for sentiment – the difference between the 

investor and news sentiment. Column (6) displays the results. The sentiment spread measure is 

 
we orthogonalize the survey crash probability to the option-implied crash probability by using the residuals from a 
regression. The main results are insensitive to both specifications.  
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negative and statistically significant. We find similar results when using similar specifications but 

for the respondent-level data. Appendix Table A5 displays the results. The pattern in the results is 

strikingly similar. The statistical significance of the News Sentiment term also disappears for the 

crash probability spread specifications. Likewise, the coefficients for the Investor Sentiment terms 

are quite stable across all the specifications.  

 An important observation from the previous section is that a large amount of time variation 

in the spread is explained by the right tail of the survey-based crash probability distribution. We 

next assess to what extent the effects are related to spikes in the spreads. Quantile regressions are 

estimated to assess the degree of non-linear dependence in the effects. We include specifications 

for the 10th, 25th, 50th, 75th, and 90th percentiles. For these tests, we use the disaggregated, 

respondent level data. Table 5 shows the results. While the effects remain negative and significant 

for the 50th percentile specification, the magnitude exponentially increases as the percentile 

increases. For the 90th percentile specification, the Investor Sentiment coefficient is almost four 

times larger compared to that of the 50th percentile specification. This suggests that the effects of 

sentiment are much stronger during periods when the spread spikes.  

The option-implied crash probabilities also exhibit spikes throughout the sample, though 

to a lesser extent. We repeat the exercise to identify whether there is non-linear dependence for 

sentiment in our fundamental factor related to crash risks. Namely, we rerun the quantile 

regressions using the daily option-implied crash probability series. Appendix Table A6 displays 

the results. The coefficient is negative for all of the specifications, but not all are statistically 

significant. The coefficients are statistically significant for the 10th, 50th, and 90th percentiles, but 

are not for the other specifications. Moreover, the sentiment measure coefficients are not 

monotonically increasing or decreasing in the quantile. This suggests that the pattern found in 

Table 5 differs from that for fundamental factors. 

 

5.4. Affect Models 

 The previous section shows a strong relationship between investor sentiment and the crash 

probabilities. In this section, we dig deeper to better understand the role of affect and to what extent 

it is driving the results. Due to how the measures are constructed, we use the respondent level data. 

 We start by extending the baseline specification to directly evaluate predictions from the 

seminal study Russell (1980). The study presents a circumplex model that represents affect in 
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terms of two dimensions: valence and arousal. The valence dimension, or sentiment, captures the 

polarity of the emotional affect, ranging from attractive to averse. The arousal dimension captures 

the intensity of the emotional affect. For example, sadness is considered to be a low-arousal 

emotion while disgust is considered to be a high-arousal emotion. The implication of the model is 

that arousal serves as a moderating factor for valence, or sentiment. The effects of positive 

sentiment are expected to be stronger when arousal is higher. 

 A key challenge is measuring dimensions of affect unrelated to sentiment. We use the LLM 

approach described earlier in this section to quantify arousal. A prompt that simply asks for a 

numerical arousal score is used to obtain the measure used in the analysis. We further investigate 

the sensitivity of using more detailed prompts and alternative LLMs. For example, we consider 

prompts that use a much more detailed definition of arousal: “Arousal: Captures the intensity or 

activation associated with an emotion (e.g., calm vs. excited). It interacts with valence to create 

different emotional states and plays a role in motivation and attention.” We find similar results 

when using the detailed prompt. This suggests that the LLM is able to associate the term arousal 

with the definition commonly used in the psychology literature. We also find qualitatively similar 

results using arousal measures derived from GPT-4. 

 Table 6 presents the results. Column (1) shows the results where the arousal score is 

included as an explanatory variable. The coefficient is positive and statistically significant 

(estimate = 1.713, t-value = 8.12). That is, comments that include language that rate higher on the 

arousal scale are generally associated with higher crash probabilities. When adding the sentiment 

score in Column (2), the arousal score coefficient attenuates somewhat but remains statistically 

significant. Column (3) introduces the interaction term between sentiment and arousal. The 

coefficient is negative and statistically significant (value = -0.469, t-value = -4.69). In other words, 

the effect of sentiment is amplified by the arousal factor. Finally, the results are robust to using the 

crash probability spread as the dependent variable, as shown in Column (4). 

The results are also economically significant. Consider the difference in marginal effects 

for a one standard deviation decline in the sentiment score for the arousal score at the mean and 

one standard deviation above the mean. The effects when the arousal score is at the mean is an 

increase in the crash probability spread of 2.74%, which represents 14.1% of the total sample 

variation. The effects when the arousal score is one standard deviation above the mean is 5.39%, 
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which represents 27.7% of the total sample variation. In other words, the effects almost double 

when accounting for arousal. 

 Our results are consistent with the predictions of the circumplex model. We next examine 

the effects of specific emotions on the crash probabilities. As before, we use a LLM approach in 

quantifying each emotion. The emotions considered are anxiety, fear, sadness, disgust, optimism, 

and excitement. We also consider the first principal component of these emotion scores. Appendix 

Table A7 displays the factor weights. The principal component weights correspond with negative 

valence and take on the expected signs. In particular, the first principal component tends to load 

more on emotions with higher arousal for the emotions that generally associated with negative 

sentiment. However, for the emotions generally associated with positive sentiment, the factor 

weights are somewhat comparable, though “optimism” has a relatively larger weight in absolute 

terms compared to “excitement.” The eigenvalues are 3.20, 1.12, and 0.96 for the first, second, 

and third principal components, respectively. 

 Table 7 shows the results. The coefficient signs generally correspond with the expected 

directions based upon the sentiment tests. Some of the variation in the coefficients may be related 

to the difficulty in capturing certain emotions using the LLM approach. For example, “disgust” 

corresponds with negative valence but high arousal, yet the coefficient is relatively smaller in 

absolute magnitude. In contrast, “sadness” has negative valence with low arousal, yet the 

coefficient is relatively larger or is comparatively large in absolute magnitude to the other emotion 

scores. Using the principal component score rather than the specific emotions may alleviate 

measurement issues to some extent. Consistently, that specification has the largest factor loading 

as well as the highest R2 across the specifications. 

 

5.5. Robustness Checks 

In this section, we consider robustness checks on the baseline specification. We first 

consider whether the moving average specification used to construct CPS and the Investor 

Sentiment measures may complicate interpretation of the results. To address this issue, we use the 

disaggregated survey data, rather than the time-series data, and examine the relationship for the 

investor’s own sentiment versus the sentiment of other investors. Appendix Table A8 displays the 

results. It shows that each have a significant effect on the crash probabilities. Even when 
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considering the relationship with the sentiment of other investors on the previous day, the effect is 

still negative and statistically significant. 

We also examine the sensitivity of the results to our choice to measure sentiment using the 

LLM approach. We consider two alternative sentiment measures: (i) a measure based upon the 

methodology of Loughran and McDonald (2011) and (ii) a measure based upon positive and 

negative valence terms similar to what is used in Tetlock (2007). Appendix Table A9 displays the 

results. It shows that the results are similar when using these alternative measures, suggesting that 

they are not sensitive to the choice of sentiment measure.  

 Finally, we examine to what extent other qualities associated with the survey respondent 

or writing can be attributable to the results. Appendix Table A10 shows the results. First, we 

examine the effects of the extent to which the survey responses reflect investor sophistication 

through the language used. The survey respondents may be more articulate when expressing more 

strongly valanced views. We use the LLM approach to score the survey text data based upon 

sophistication. Column (1) displays the results. It shows that the results are statistically 

insignificant. Second, we examine how the effects vary based upon the coherency of the responses. 

Column (2) shows the results. The coefficient is negative and statistically significant (estimate = -

0.104, t-value = 2.88), similar to the results on investor sentiment. It suggests that lower language 

coherency in the survey responses is associated with higher spread levels. In Column (3), we 

include all three measures in the same model. The only coefficient that remains significant is 

associated with the Investor Sentiment term. The results suggest that the results are unlikely to be 

driven by other qualities associated with the investor and the text. 

 

6. Natural Experiments 

In the previous section, we provided evidence that non-fundamental shocks explain at least some 

of the time variation in the survey-based crash probabilities. This section considers cross-sectional 

tests using three natural experiments to identify a specific source of non-fundamental variation: 

availability bias. As these tests will rely on the geolocation of each investor, the tests are performed 

using the respondent level survey data. 

Experimental evidence from the social and cognitive psychology literature demonstrates 

the influence of availability and affect heuristics in decision-making. Lichtenstein et al. (1978) 

find that individuals overestimate the probability of highly publicized causes of death, while 
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underestimating those that are less publicized, and attribute their findings to availability. Johnson 

and Tversky (1983) document global effects associated with availability mediated by affect. They 

show that individuals who read sad newspaper articles about a specific cause of death or disaster 

gave higher risk assessments on mortality rates on those that are unrelated compared to the control 

group. Similarly, they show that individuals who read happy articles recounting fortunate events 

unrelated to death reported lower risk assessments on mortality rates for different causes of death 

compared to the control group.  

They interpret their findings as evidence that individuals may more rely on readily 

available affective impressions in decision-making, particularly when the domain of judgment is 

complex or when mental resources are limited. In other words, “availability may work not only 

through ease of recall or imaginability, but because remembered and imagined images come 

tagged with affect” (Slovic et al., 2004). 

In this section, we examine the relationship of investor crash probability assessments to 

plausibly exogenous negative and positive rare events unrelated to aggregate market activity. We 

use specific predictions from the social and cognitive psychology literature to distinguish whether 

investor crash beliefs may be conditioned by availability and affect biases. Stock market crashes, 

though rare, have been highly publicized events carrying unambiguously negative connotations.  

Likewise, earthquake and large lottery jackpot events are also rare and highly publicized, 

though the former (latter) is generally associated with negative (positive) affect. These events are 

also unlikely to have economic relevance for a future stock market crash. We assess whether 

investor proximity to these events influences crash probabilities in a manner that is consistent with 

the experiments of Johnson and Tversky (1983). We also use cross-sectional variation across 

regions and investor types to detect whether there were differential effects on crash probability 

estimates of information associated with COVID-19 during the early days of the pandemic. The 

advantage of these tests is that they focus on variation across counties related to public health as 

well as related policy interventions while properly controlling for national trends, which could be 

related to aggregate market risks. 

There are other judgement heuristics that may be applicable. Simulation biases may arise 

when individuals are asked to make predictions or generate counterfactuals on uncommon events. 

Kahneman and Tversky (1982) show that individuals may overweight scenarios associated with 
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adverse affect.35 The salience of these scenarios corresponds with the low redundancy and high 

causal significance. Bordalo et al. (2022) show that older individuals underestimated risks related 

to the COVID-19 pandemic while younger individuals overestimated risks, positing the use of 

simulation heuristics as an explanation. Namely, they argue that individuals selectively recall and 

use past experiences in evaluating novel risks. In our context, investors may either have personal 

experiences with major stock market crashes, or narrative accounts of them from other sources, 

that inform subjective probability estimates of a stock market crash. Simulation describes a 

mechanism that governs availability. However, our tests cannot be used directly to detect 

simulation biases in crash probability estimates given that the set of instruments we consider are 

completely exogenous to the occurrence of stock market crashes. 

We exploit the ZIP code location of a subset of the survey respondents to identify regional 

events that plausibly make rare events more cognitively available.  We use the occurrence of the 

event in the past month for investors located within 30 miles of the epicenter for earthquakes and 

the location of the winning store for lottery jackpots.  While the timing of the earthquakes and 

lottery winners are exogenous to current market conditions, the events should be salient to 

individuals located nearby. Moderate earthquakes can sometimes be felt over long distances 

depending on a number of factors, though they are generally more readily detectable closer to the 

epicenter. Figure 4 displays the geographic distribution of the earthquake events considered in our 

analysis that occur during the sample period. It is comparable to the geographic distribution of 

earthquakes historically.  

Recent studies suggest that proximity to lottery winners can affect both beliefs and actions, 

as neighbors of lottery winners tend to exhibit higher levels of consumption and bankruptcy risk 

(Kuhn et al., 2011; Agarwal, Mikhed, & Scholnick, 2018). Figure 5 displays the geographic 

distribution of lottery winners. Interestingly, the geographic distributions of earthquakes and lotter 

winners are quite distinct from each other, providing greater credibility to the analysis. Finally, we 

consider information associated with the investor’s county of residence using county-level data on 

COVID-19. All of these events are also likely to be reported in the local news.  

We expect investor sophistication to be higher on average in the institutional investor 

subsample, or that assessing crash probabilities are more challenging for individual investors. 

Experimental evidence from the social psychology literature would suggest that the influence of 

 
35 Cf. Aktar et al. (2012). 
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availability and affect biases should be pronounced in individuals lacking expertise in the domain 

of judgment, or individual investors. As such, we perform the tests separately for the individual 

and institutional investor subsamples. Figure 6 displays the annual average crash probabilities 

across institutional and individual investors. For a majority of the sample period, the crash 

probabilities of individual investors are higher than those of institutional investors. Our tests assess 

whether susceptibility to biases may be an explanation for the differences. 

 

5.1. Experimental Validation 

 Before turning to the tests, we start by assessing whether the events we are focusing on 

indeed prime the attention of local investors. Karlsson et. al. (2008) show that attention heightens 

the effect of information in decision-making and Barber and Odean (2008) highlight the salient 

role of attention in investor behavior and Sicherman et. al. (2015) connect this to portfolio 

allocation decisions. We measure attention using weekly, disaggregated internet search volume 

data from Google Trends. The data provide high-frequency data on search volume indices (SVI) 

associated with various search terms. The disaggregated form that we use breaks out SVI 

geographically. Specifically, the data is obtained at the designated market area (DMA)-level. We 

measure the distance of each survey respondent from each event based upon its distance from the 

DMA centroid. For the tests, we use SVIs based upon the search terms “earthquake” and “lottery”.  

 In our first set of tests, we assess the relationship between the proximity to the event and 

SVI. Table 8 presents the results. Panel A and B display the findings associated with earthquakes 

and lottery winners, respectively. Column (1) displays the specification where the  key 

explanatory variable is the natural log of one plus the number of miles between the nearest 

earthquake or lottery winner that occurred within the past month. Columns (2) through (4) display 

the specifications where indicator variables associated with distance are used instead. In all the 

specifications, date and DMA fixed effects are included where indicated. The control variables 

include the one-week lagged dependent variable as well as the natural log of one plus the historical 

frequency of earthquakes (Panel A) or lottery winners (Panel B). The standard errors are double 

clustered on the date and DMA levels. 

 We start with the tests using the earthquake events.  The coefficient on the distance measure 

is negative and statistically significant (estimate = -0.047, t-value = 3.92). That is, greater 

proximity is associated with higher attention, or SVI, levels. The indicator variable specifications 
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yield consistent results. The coefficients for the indicator variable associated with a within-30 mile 

range is positive and statistically significant across all the specifications. The results remain 

significant when adding the control variables. Finally, the results grow slightly stronger when 

including the DMA and date fixed effects in the final specification.  

 The test results for the lottery events are quite similar. Both the continuous and indicator 

variable distance measures are significant and are signed consistently with the earthquake results. 

One difference is that the results for the lottery events appear to be stronger based upon the 

indicator variable specifications. The results are also more sensitive to the inclusion of the control 

variables and fixed effect terms. Regardless, the results indicate that both earthquake and lottery 

events generate a strong, localized effect on internet search volumes.  

 The second set of tests examine time-variation in attention around the timing of the events. 

Table 9 displays the results. The key explanatory variables in these tests are indicator variables 

associated with whether there was an earthquake (Panel A) or lottery winner (Panel B) within a 

30-mile radius of the centroid of the DMA during week t. The control variables and fixed effects 

terms are identical to the tests from Table 8. 

 For the earthquake events, there is a sharp positive effect the week following the 

earthquake. The effects become insignificant for the second week following the event. There is no 

significant effect during the weeks prior, which squares with the fact that earthquakes are difficult 

to predict. The lack of significance for the week of the earthquake could be associated with the 

timing of the earthquake and the estimation window for the SVI measure. Regardless, the results 

suggest a slightly delayed response in internet search volumes.  

 For the lottery events, the results are mostly significant in the weeks prior as well as after 

the announcement of the lottery winner. However, the effects are most acute in the week of and 

week following the announcement of the lottery winner. The significant effects in the weeks prior 

could be due to greater discussion of the increasing jackpot in the weeks prior to the winning one. 

The delayed response in the internet search volumes could be due to additional information that is 

released in the days following the announcement of a winning jackpot. 

 

6.2. Empirical Specifications and Results 

6.2.1. Earthquakes 
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We begin with tests that update our prior findings on the relationship between nearby 

earthquakes and survey crash probabilities. Our tests focus on moderate earthquakes that are likely 

to be felt by of individuals located close to the epicenter but unlikely to be associated with 

structural damage. Earthquakes of stronger magnitudes may have direct effects on economic 

conditions, which in turn can conceivably affect stock market conditions. However, the empirical 

evidence on this link is mixed.  Ferreira and Karali (2015) show that stock markets do not exhibit 

a significant reaction within five days of strong earthquakes.  In contrast, Shiller (2000b) points to 

the Tokyo stock market reaction to the earthquake in Kobe, Japan on January 17, 1995, which 

measured at 7.2 on the Richter scale.  The Nikkei index fell by 8 percent overall within ten days 

of the earthquake, though significant price movements did not transpire until after one week.  This 

market reaction far exceeded an official estimate of the economic damage, which was eventually 

set at approximately $100 billion.  While circumstantial, the delay in and magnitude of the market 

reaction to the Kobe earthquake suggest a mix of fundamental and sentiment factors. 

To address potential confounding effects of the economic impact of stronger earthquakes, 

we distinguish between moderate magnitude, or earthquakes with a magnitude between 2.5 up to 

5.5, and strong magnitude, or earthquakes with a magnitude above 5.5.  The cutoffs are based upon 

information from the USGS, which classifies earthquakes with magnitudes above 2.5 as physically 

detectable, and earthquakes with magnitudes above 5.5 as inflicting at least minor damage to 

buildings and other structures. 

Using the investor survey and earthquake data, we estimate the following regression model, 

which is estimated on the investor level: 

 

𝐶𝑃𝑆௜,௧ ൌ 𝛽ଵ ൈ 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒௜,௧ିଷ଴,௧ିଵ ൅ 𝛽ଶ ൈ 𝑆𝑒𝑣𝑒𝑟𝑒 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒௜,௧ିଷ଴,௧ିଵ ൅

            𝛽ଷ ൈ 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦௜,௧ିଷ଴ ൅ 𝜷 ൈ 𝑿𝒕ି𝟏 ൅ 𝝉𝒕 ൅ 𝜹𝒕 ൅ 𝜖௜,௧  (2) 

 

The dependent variable is CPS. 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 is a dummy variable associated with whether 

a moderate earthquake occurred within 30-miles of the investor sometime within the past 30 days. 

Similarly, 𝑆𝑒𝑣𝑒𝑟𝑒 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 is a dummy variable associated with whether a severe earthquake 

occurred within 30 miles of the investor within the past 30 days. 𝐸𝑎𝑟𝑡ℎ𝑞𝑢𝑎𝑘𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is the 

natural log of one plus the number of earthquakes per year that occurred within a 30 miles radius 

of the investor from 1900 to 2006. While the earthquake events are unlikely to be related to market 
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conditions, we nonetheless include a number of control variables (𝑿): previous day market return, 

past month market returns, past month average investor survey crash probability, past month 

market return volatility, and VIX. We also include month (𝝉) and day-of-week (𝜹) fixed effects to 

account for potential seasonality in the crash probability responses. Robust standard errors 

clustered on the ZIP code and date levels are used to assess statistical significance. 

Table 10 presents the results.  Columns (1) and (2) display the results for the individual 

investor subsample, while Columns (3) and (4) present the results for the institutional investor 

subsample.  Column (5) present the results for the pooled sample.  Columns (1) and (3) only 

include the earthquake related terms in the model for comparison. We find that moderate 

magnitude earthquakes have a positive and statistically significant association with investor crash 

probabilities, but only for individual investors.  The coefficients on the severe magnitude 

earthquake terms are all statistically insignificant.  The results remain mostly unchanged after 

controlling for the market-related control variables, which is consistent with our assumption that 

market conditions are uncorrelated with the earthquake events. Untabulated robustness checks 

show the results remain significant when eliminating either the top 1st sample percentile in terms 

of earthquake frequency or removing investors located in California from the sample. 

The economic magnitudes of the earthquake effect are sizable for the individual investor 

subsample. Based upon Column (2), respondents located in close proximity to an earthquake report 

crash probabilities 2.1 percentage points higher than those that do not. The marginal effect is 16.9% 

of the sample mean and 13.0% of the total sample variation for CPS. While the findings suggest 

that the high average response by individual investors may be attributable to some extent to 

behavior factors related to availability and affect biases, it does not explain why the average 

response for institutional investors are also high. 

 

6.2.2. Lottery Winners 

We next present tests on the neighbors of lottery jackpot winners. We adapt Equation (1) 

by replacing the earthquake terms for the lottery measure: 

 

 𝐶𝑃𝑆௜,௧ ൌ 𝛾ଵ ൈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝐿𝑜𝑡𝑡𝑒𝑟𝑦 𝑊𝑖𝑛𝑛𝑒𝑟௜,௧ିଷ଴,௧ିଵ 

 ൅𝛾ଶ ൈ 𝐿𝑜𝑡𝑡𝑒𝑟𝑦 𝑊𝑖𝑛𝑛𝑒𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦௜,௧ିଷ଴ ൅ 𝜸 ൈ 𝑿𝒕ି𝟏 ൅ 𝝉𝒕 ൅ 𝜹𝒕 ൅ 𝜁௜,௧  (3) 
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𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝐿𝑜𝑡𝑡𝑒𝑟𝑦 𝑊𝑖𝑛𝑛𝑒𝑟 is a dummy variable associated with whether a winning lottery ticket 

for MegaMillions or Powerball was purchased at a store located within a 30-mile radius of the 

investor sometime in the 30 days prior to the survey response. 𝐿𝑜𝑡𝑡𝑒𝑟𝑦 𝑊𝑖𝑛𝑛𝑒𝑟 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is the 

number of times a winning lottery ticket was purchased within a 30-mile radius of the investor 

previously. The control variables (𝑿) and the fixed effects terms are identical to those in Equation 

(1). We exclude investors residing in states that do not offer either contest at the time that the 

survey is filled. Robust standard errors clustered on the ZIP code and date levels are used to assess 

statistical significance. 

Table 11 presents the results.  The table is formatted similarly to Table 10. We find that 

neighbors of lottery winners have a negative and significant association with investor crash 

probabilities, but only for individual investors. The significance and magnitude of the estimates 

remain unchanged when removing the control variables. Based upon Column (2), respondents 

located in close proximity to a lottery winner report crash probabilities 2.5 percentage points lower 

than those that do not. The marginal effect is 15.4% of the total sample variation for the crash 

probability spread. Untabulated robustness checks show that the results are not sensitive to 

expanding the sample to states not participating in the lottery. 

 

6.2.3. COVID-19 Pandemic 

Finally, we present tests on the COVID-19 pandemic. As with the previous section, we 

adapt Equation (1) to include the COVID-19 public health and policy intervention terms. These 

tests focus on the 2019 through 2020 sample period. 

 

𝐶𝑃𝑆௜,௧ ൌ 𝜃ଵ ൈ 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑜𝑢𝑛𝑡𝑦 𝐶𝑎𝑠𝑒𝑠 ሺ𝑝. 𝑐. ሻ௜,௧ି଻,௧ିଵ

൅ 𝜃ଶ ൈ 𝐶𝑜𝑢𝑛𝑡𝑦 𝐶𝑎𝑠𝑒𝑠 ሺ𝑝. 𝑐. ሻ௜,௧ିଵ

൅ 𝜃ଷ ൈ 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑒𝑎𝑡ℎ𝑠 ሺ𝑝. 𝑐. ሻ௜,௧ି଻,௧ିଵ

൅ 𝜃ସ ൈ 𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑒𝑎𝑡ℎ𝑠 ሺ𝑝. 𝑐. ሻ௜,௧ିଵ 

 ൅𝜽𝟓 ൈ 𝑪𝒐𝒖𝒏𝒕𝒚 𝑪𝑶𝑽𝑰𝑫 𝑹𝒆𝒔𝒕𝒓𝒊𝒄𝒕𝒊𝒐𝒏𝒔𝒊,𝒕ି𝟏 

 ൅𝜽 ൈ 𝑿𝒕ି𝟏 ൅ 𝝁𝒕 ൅ 𝜹𝒕 ൅ 𝜸𝒊 ൅ 𝜓௜,௧  (4) 

 

The main explanatory variables are: 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑜𝑢𝑛𝑡𝑦 𝐶𝑎𝑠𝑒𝑠 ሺ𝑝. 𝑐. ሻ௜,௧ି଻,௧ିଵ is the one-week change in 

county-level COVID cases per capita, 𝐶𝑜𝑢𝑛𝑡𝑦 𝐶𝑎𝑠𝑒𝑠 ሺ𝑝. 𝑐. ሻ௜,௧ିଵ is the total county-level COVID 
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cases per capita, 𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑒𝑎𝑡ℎ𝑠 ሺ𝑝. 𝑐. ሻ௜,௧ି଻,௧ିଵ is the one-week change in COVID deaths per 

capital, 𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑒𝑎𝑡ℎ𝑠 ሺ𝑝. 𝑐. ሻ௜,௧ିଵ is the total county-level COVID deaths per capita, and various 

county-level COVID restrictions. 𝑪𝒐𝒖𝒏𝒕𝒚 𝑪𝑶𝑽𝑰𝑫 𝑹𝒆𝒔𝒕𝒓𝒊𝒄𝒕𝒊𝒐𝒏𝒔𝒊,𝒕ି𝟏 is a vector that includes stay-at-

home orders, retail establishment closures, gathering restrictions, and school closures. The control 

variables (𝑿) are identical to those in Equation (1). In addition to day-of-week fixed effects, we 

also include year-month and state levels fixed effects. The year-month fixed effects account for 

nationwide factors that affect aggregate economic and stock market conditions. We include state 

fixed effects in order to account for statewide public health policies. We use robust standard errors 

clustered on the ZIP code and date levels to calculate them.36 

Table 12 presents the results for individual investors.  Columns (1) through (5) enters each 

set of explanatory variables individually. Columns (6) and (7) display the results with all the 

explanatory variables in the same model. Columns (1) through (6) displays the results without the 

control variables and using 𝜋௜,௧ as the dependent variable. The results show that the change in 

county-level COVID cases and total county-level COVID deaths are positive and statistically 

significant at the 1% level. Additionally, the county-level COVID restrictions on school closures 

is negative and statistically significant at the 1% level. Column (7) includes the control variables 

and uses CPS as the dependent variable. In this specification, both changes in COVID cases and 

total COVID deaths remain statistically significant while the school restriction term becomes 

statistically insignificant. The results are economically significant as well. An one-standard 

deviation increase in changes in COVID cases (total COVID deaths) increases CPS by 1.2 (1.7) 

percentage points, which represent 7.2 (10.3) percent of the total sample variation in CPS.  

Table 13 presents the results for institutional investors. Unlike the tests on the individual 

investor subsample, only changes in COVID deaths and COVID restrictions on school closures 

are statistically significant. Interestingly, the coefficient on changes in COVID deaths is negative, 

indicating that an increase in the number of COVID deaths decreases CPS. However, the results 

lose statistical significance after inclusion of the control variables to the 10% level. An one-

standard deviation increase in changes in COVID deaths decreases CPS by 1.3 percentage points, 

which represent 8.2 percent of the total sample variation in CPS.  

 
36 We do not bootstrap p-values for these tests given that the likelihood of repeated winners for a ZIP code is low 
within our sample. 
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Overall, all three of the natural experiments considered in our analysis provide evidence 

consistent with availability and affect biases and are consistent with the hypothesis that availability 

is mediated by emotion not semantic association. While we do not anticipate that they represent 

systematic variation in crash probabilities, they provide evidence on the plausibility of broader 

factors influencing investor crash beliefs and why the survey-based crash probabilities are large. 

 

7. Conclusion 

The high, sustained subjective crash probabilities in the Shiller Investor Confidence Survey are 

consistent with the rare disasterp explanation for the equity risk premium.  We turn to the risk-as-

feelings literature for models to explore emotional factors potentially influencing probabilities.  

Advances in machine-learning allow us to use the narrative content of the Investor Confidence 

Survey to test the laboratory findings about emotions and beliefs with real-world data that have 

potentially interesting economic implications.  We find strong evidence that the non-fundamental 

probability component of predictions about a catastrophic stock market crash are associated with 

negative emotional valence that has a specific polarity contrasting optimism with anxiety and 

related emotions.  

Our comparison of individual sentiment with media sentiment provide a strong 

methodological justification for the now-widespread use of the latter as an instrument for the 

former.  While this relationship has been presumed, analysis of the survey narratives supports the 

presumption.  At the same time the survey evidence also suggests an important heterogeneity 

related to emotion which in turn can have implications for variation in equity market participation 

and trade.   

The temporal variation in the subjective component of crash beliefs is also relevant to the 

asset pricing literature.  It is substantially more volatile than the fundamental, option-derived crash 

beliefs.  This suggests that irrational factors – or at least some factors not manifest in option 

markets – cause large variation in average and median beliefs.  

Finally, our results also raise questions about whether preferences and beliefs can be 

empirically separated – and indeed whether they operate independently in the mind of investors.  

Respondents report a high probability of a crash when they are imagining the extreme disutility 
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they would experience from that event if it came to pass.  This convolution presents further 

modeling possibilities for behavioral research. 
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Figure 1 
Average Annual Crash Probabilities from 1996-2020 
 
This figure displays the average annual probabilities from 1996-2020 for the survey respondents of a crash in the next six months on the 
scale of 10/19/1987 or 10/28/1929.  Also displayed are the option-implied probability of a drop of at least 15% in the S&P 500 index 
over the next six months, annualized volatility of the daily DJIA, the largest negative return in each year (right axis) and the VIX (divided 
by 100). 
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Figure 2 
Crash Probability Distribution 
 
This figure displays the 50th and 90th percentiles of the monthly probabilities from 1996-2020 for 
the survey respondents of a crash in the next six months on the scale of 10/19/1987 or 10/28/1929 
are displayed in black, solid and dashed, respectively.  The option-implied probability of a drop of 
at least 15% in the S&P 500 index over the next six months are displayed in red. 
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Figure 3 
Crash Probability Spread 
 
This figure displays the average monthly crash probability spread, calculated as the difference in 
(a) the probabilities for the survey respondents of a crash in the next six months on the scale of 
10/19/1987 or 10/28/1929 and (b) the option-implied probability of a drop of at least 15% in the 
S&P 500 index over the next six months. 
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Figure 4 
Moderate Earthquake Geographical Distribution 
 
This figure displays the choropleth map of the average frequency of earthquakes from 2007 
through 2020 of counties within a 30 mile radius of the epicenter of an earthquake, where darker 
shades correspond with greater frequency. 

 
  



48 

Figure 5 
Lottery Winner Geographic Distribution 
 
This figure displays the choropleth map of the average frequency of lottery winners from 2007 
through 2020 of counties within a 30 mile radius of a lottery winner, where darker shades 
correspond with greater frequency. 
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Figure 6 
Individual versus Institutional Investor Crash Probabilities 
 
This figure displays the annual average probabilities from 2000-2020 for individual (red) and 
institutional (blue) investor survey respondents of a crash in the next six months on the scale of 
10/19/1987 or 10/28/1929. 
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Table 1 
Summary Statistics 
 
The table displays variable descriptions (Panel A) and summary statistics (Panel B) of the key 
variables used in the analysis. The variables are collected from Robert Shiller’s Investor 
Confidence Surveys (ICS); data obtained from Martin (2017) (M17); the Center for Research on 
Security Prices (CRSP); the Chicago Board of Options Exchange (CBOE); the United States 
Geological Services (USGS); press releases from Powerball and MegaMillions (PBMM); COVID-
19 policy intervention data (COV); and Proquest (PRO).  
 

Panel A: Summary Statistics 

   
Variable Name Description Source 

   
πSurvey

t The 7-day moving average of the crash probability 
reported by the survey respondents on date t. 

ICS 

πOption
t The option-implied crash probability at the close of date 

t. 
M17 

CPSt The spread between the average 7-day moving average of 
the crash probability reported by the survey respondents 
on date t and the option-implied crash probability at the 
close of date t. 

ICS, M17 

RM
t Total return on date t based upon the CRSP-VW 

(NYSE/AMEX/Nasdaq/Arca) index. 
CRSP 

VIXt The closing value as of date t of the Volatility Index, 
which is based upon S&P 500 index options. 

CBOE 

Nearby Moderate 
Earthquakei,t 

Dummy variable that takes value one if the survey 
respondent is located within a 30-mile radius of an 
earthquake with a seismic magnitude from 2.5 to 5.5 
within the past 30 days, zero otherwise. 

USGS 

Nearby Severe Earthquakei,t Dummy variable that takes value one if the survey 
respondent is located within a 30-mile radius of an 
earthquake with a seismic magnitude above 5.5 within 
the past 30 days, zero otherwise. 

USGS 

Historical Earthquake 
Frequencyi,t 

Annualized frequency of earthquakes with seismic 
magnitude between 2.5 and above whose epicenter is 
located within a 30-mile radius of the survey respondent 
from 1900-2006. 

USGS 

Nearby Lottery Winneri,t Dummy variable that takes value one if the survey 
respondent is located within a 30-mile radius of a store 
that sold a winning Powerball of MegaMillions ticket 
within the past 30 days, zero otherwise. 

PBMM 
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Table 1 (cont.)   
   
Historical Lottery 
Frequencyi,t 

Total frequency of Powerball and MegaMilions winners 
that is located within a 30-mile radius of the survey 
respondent as of date t. 

USGS 

Change in County Cases 
(p.c.)i,t 

Percentage change in the number of county-level 
COVID-19 cases-per-capital over the past week. 

JHU 

County Cases (p.c.)i,t-7 The number of county-level COVID-19 cases-per-capital 
in the past week. 

JHU 

Change in County Deaths 
(p.c.)i,t 

Percentage change in the number of county-level 
COVID-19 deaths-per-capital over the past week. 

JHU 

County Deaths (p.c.)i,t-7 The number of county-level COVID-19 deaths-per-
capital in the past week. 

JHU 

County Stay-at-Home 
Orderi,t 

Dummy variable that takes value one if the survey 
respondent resides in a county that has an active stay-at-
home order as of date t. 

COV 

County Retail Establishment 
Orderi,t 

Dummy variable that takes value one if the survey 
respondent resides in a county that has an active retail 
establishment restriction order as of date t. 

COV 

County Gatherings Orderi,t Dummy variable that takes value one if the survey 
respondent resides in a county that has an active 
gathering restriction order as of date t. 

COV 

County School Orderi,t Dummy variable that takes value one if the survey 
respondent resides in a county that has an active school 
restriction order as of date t. 

COV 

Investor Sentimentt Sentiment of the textual responses by the survey 
respondent i on date t. 

ICS 

News Sentimentt The sentiment of news articles related to the stock market 
on date t. 

PRO 

 

Panel B: Summary Statistics 

       

 N Mean 
Standard 
Deviation 

25th 
Percentile 

50th 
Percentile 

75th 
Percentile 

       
πSurvey

t 16,177 19.26% 19.75% 5.00% 10.00% 25.00% 

πOption
t 16,177 6.16% 2.88% 3.95% 5.62% 7.92% 

CPSt 16,177 13.11% 19.54% -0.72% 6.32% 20.26% 

RM
t 16,177 0.04% 1.24% -0.46% 0.09% 0.60% 

VIXt 16,177 20.454 9.795 13.850 18.160 23.790 

Nearby Moderate 
Earthquakei,t 

11,698 8.19% 27.42% 0.00% 0.00% 0.00% 
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Table 1 (cont.)       

       

Nearby Severe 
Earthquakei,t 

11,698 0.11% 3.33% 0.00% 0.00% 0.00% 

Historical Earthquake 
Frequencyi,t 

11,698 126.902 516.571 0.000 1.000 8.000 

Nearby Lottery 
Winneri,t 

11,698 2.87% 16.70% 0.00% 0.00% 0.00% 

Historical Lottery 
Frequencyi,t 

11,698 3.463 7.727 0.000 1.000 3.000 

Change in County 
Cases (p.c.)i,t 

1,162 0.00% 0.02% 0.00% 0.00% 0.00% 

County Cases (p.c.)i,t-7 1,162 2.29% 9.72% 0.00% 0.00% 1.46% 

Change in County 
Deaths (p.c.)i,t 

1,162 0.001 0.006 0.000 0.000 0.000 

County Deaths (p.c.)i,t-7 1,162 0.252 0.482 0.000 0.000 0.181 

County Stay-at-Home 
Orderi,t 

1,162 11.10% 31.43% 0.00% 0.00% 0.00% 

County Retail 
Establishment Orderi,t 

1,162 12.56% 33.16% 0.00% 0.00% 0.00% 

County Gatherings 
Orderi,t 

1,162 34.42% 47.53% 0.00% 0.00% 100.00% 

County School Orderi,t 1,162 34.68% 47.62% 0.00% 0.00% 100.00% 

Investor Sentimentt 12,808 0.000 1.000 -0.984 -0.186 1.011 

News Sentimentt 12,808 0.000 1.000 -0.633 0.009 0.620 
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Table 2 
Crash Probability Spread 
 
The table displays average CPS values across various sample splits: sample period splits, splits across VIX quintiles, daily returns 
quintiles and past month return quintiles. Robust standard errors are displayed in the parentheses. Statistical significance at the 10%, 
5%, and 1% levels are denoted by *, **, and ***, respectively. 
 
Sample Period Splits: 2000 - 2020  2000 - 2004  2005 - 2009  2010 - 2014  2015 - 2020 

          

 13.187***  9.650***  11.592***  15.025***  15.933*** 

 (0.329)  (0.516)  (0.491)  (0.545)  (0.644) 

          

Volatility Ranking Splits: Low VIXt  2  Middle VIXt  4  High VIXt 

          
14.748*** 14.164*** 11.943*** 11.951*** 13.132*** 

(0.186) (0.176) (0.177) (0.178) (0.213) 

          

Daily Returns Ranking Splits: Low RM
t  2  Middle RM

t  4  High RM
t 

          

 12.672***  13.181***  13.605***  13.197***  13.281*** 

 (0.188)  (0.187)  (0.182)  (0.185)  (0.202) 

          

Past Month Returns Ranking Splits: Low RM
t-30,t-1  2  

Middle RM
t-30,t-

1  4  High RM
t-30,t-1 

          

 13.488***  13.356***  13.747***  13.160***  12.186*** 

 (0.181)  (0.184)  (0.196)  (0.185)  (0.196) 
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Table 3 
Fundamental Factors 
 
The table presents the results of regression models where the dependent variables are πSurvey and CPSt. The explanatory variables include 
πOption at date t as well as its first five lags, the LJV measure from Bollerslev et al. (2015) at date t as well as its first five lags, the market 
return at date t as well as its first five lags, VIX at date t as well as its first five lags. The first five lags of the dependent variable are also 
included. Only the sum of the regression coefficients associated with each variable is displayed. Hansen-Hodrick standard error 
corrections are used to construct χ2 statistics, displayed in brackets. Statistical significance at the 10%, 5%, and 1% levels are denoted 
by *, **, and ***, respectively. 
 

 (1) (2) (3) (4) (5) (6) (7) 

Dependent Variable: πSurvey
t πSurvey

t πSurvey
t πSurvey

t CPSt CPSt CPSt 

        

Σj=0
5 πOption

t-j 0.081***       
[32.090] 

Σj=0
5 LJVt-j  0.079***      

  [37.740]      

        

Σj=0
5 RM

t-j   -24.320***  -7.421  -0.303 

   [9.040]  [0.900]  [0.000] 

        

Σj=0
5 VIXt-j    0.027***  -0.003 -0.004 

    [33.500]  [0.510] [0.810] 
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Table 3 (Cont.)        

        

Σj=1
5 πSurvey

t-j 0.894*** 0.981*** 0.906*** 0.895***    

 [13559.770] [14502.690] [15964.200] [14009.950]    

        

Σj=1
5 CPSt-j     2.333*** 2.403*** 2.421*** 

     [13277.850] [13250.880] [13298.070] 

        
N 6,570 6,570 6,570 6,570 6,570 6,570 6,570 

R2 82.23% 82.28% 82.17% 82.25% 79.10% 79.08% 79.12% 
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Table 4 
Investor Sentiment 
 
The table presents the results of regression models where the dependent variables are πSurvey and CPSt. Average Investor Sentimentt is the 
seven-day moving average of the daily average investor sentiment measure constructed from the survey response text. News Sentimentt 
is the daily average sentiment measure constructed from newspaper articles. Sentiment Spreadt is the difference between the investor 
and news sentiment measures. Two-way fixed effects on the month and day-of-week levels are included where indicated, but not 
reported. Control variables included but displayed include the first five lags of News Sentiment, market return at date t as well as its 
first five lags, VIX at date t as well as its first five lags, and πOption at date t as well as its first five lags. The first five lags of the dependent 
variable are also included but not displayed. Hansen-Hodrick standard error are displayed in parentheses. Statistical significance at the 
10%, 5%, and 1% levels are denoted by *, **, and ***, respectively. 
 

 (1) (2) (3) (4) (5) (6) 

Dependent Variable: πSurvey
t πSurvey

t πSurvey
t CPSt CPSt CPSt 

       

Average Investor Sentimentt -0.561*** -0.554*** -0.422*** -0.473*** 
(0.072) (0.072) (0.067) (0.074) 

News Sentimentt  -0.125** -0.089* -0.026 -0.040  
  (0.050) (0.050) (0.051) (0.053)  

Sentiment Spreadt      -0.209*** 

      (0.042) 

       

Lagged πSurvey Terms YES YES YES NO NO NO 
Lagged CPS Terms NO NO NO YES YES YES 
Month FEs YES YES YES YES YES YES 
Day-of-week FEs YES YES YES YES YES YES 
Control Variables NO NO NO NO YES YES 

       
N 4,345 4,345 4,345 4,345 4,345 4,345 

R2 75.15% 74.48% 75.17% 69.59% 69.81% 69.45% 
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Table 5 
Nonlinear Dependence 
 
The table presents the results of quantile regression models where the dependent variable is the 
crash probability spread, or CPSi,t. The quantile specification is indicated in the first row. Investor 
Sentimenti,t is the investor sentiment measure for investor i constructed from the survey response 
text. Two-way fixed effects on the month and day-of-week levels are included where indicated, 
but not reported. Control variables included but displayed are the news sentiment measure as well 
as its first five lags, the market return at date t as well as its first five lags, VIX at date t as well as 
its first five lags, and πOption at date t as well as its first five lags. Robust standard errors clustered 
on the date level are displayed in parentheses. Statistical significance at the 10%, 5%, and 1% 
levels are denoted by *, **, and ***, respectively. 
 

 (1) (2) (3) (4) (5) 
Specification: Q(10%) Q(25%) Q(50%) Q(75%) Q(90%) 

Dependent Variable: CPSt CPSt CPSt CPSt CPSt 

      

Investor Sentimentt -0.326*** -0.758*** -2.888*** -5.749*** -10.151*** 

 (0.057) (0.108) (0.231) (0.381) (0.643) 

      
Day-of-week FEs YES YES YES YES YES 
Month FEs YES YES YES YES YES 
Control Variables YES YES YES YES YES 

      
N 12,276 12,276 12,276 12,276 12,276 

R2 0.47% 1.36% 4.32% 4.23% 3.88% 
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Table 6 
Valence-Arousal Model 
 
The table presents the results of regression models where the dependent variable are πSurvey

i,t and 
CPSi,t. Arousal Scoret is the arousal score. Two-way fixed effects on the month and day-of-week 
levels are included where indicated, but not reported. Control variables included but displayed are 
the news sentiment measure as well as its first five lags, the market return at date t as well as its 
first five lags, VIX at date t as well as its first five lags, and πOption at date t as well as its first five 
lags. Robust standard errors clustered on the date level are displayed in parentheses. Statistical 
significance at the 10%, 5%, and 1% levels are denoted by *, **, and ***, respectively. 
 

 (1) (2) (3) (4) 

Dependent Variable: πSurvey
i,t πSurvey

i,t πSurvey
i,t CPSi,t 

     

Investor Sentimenti,t  -3.869*** -3.848*** -3.830*** 

  (0.185) (0.185) (0.184) 

Arousal Scorei,t 1.713*** 1.203*** 1.077*** 1.071*** 

 (0.211) (0.208) (0.204) (0.203) 

Investor Sentimenti,t × Arousal Scorei,t   -0.469** -0.464** 

   (0.197) (0.195) 

Day-of-week FEs YES YES YES YES 
Month FEs YES YES YES YES 
Control Variables YES YES YES YES 

     
N 12,337 12,337 12,337 12,337 

R2 2.50% 6.32% 6.39% 5.40% 
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Table 7 
Specific Emotion Measures 
 
The table presents the results of regression models where the dependent variable is CPSi,t. The emotion measured in Emotion Scoret is 
indicated in the first row. PC is the first principal component of the emotion indicators. Two-way fixed effects on the month and day-
of-week levels are included where indicated, but not reported. Control variables included but displayed are the news sentiment measure 
as well as its first five lags, the market return at date t as well as its first five lags, VIX at date t as well as its first five lags, and πOption at 
date t as well as its first five lags. Robust standard errors clustered on the date level are displayed in parentheses. Robust standard errors 
clustered on the date level are displayed in parentheses. Statistical significance at the 10%, 5%, and 1% levels are denoted by *, **, and 
***, respectively. 
 

 (1) (2) (3) (4) (5) (6) (7) 
Emotion Specification: Anxiety Fear Sadness Disgust Optimism Excitement PC 

Dependent Variable: CPSi,t CPSi,t CPSi,t CPSi,t CPSi,t CPSi,t CPSi,t 

        

Emotion Scorei,t 3.558*** 3.551*** 3.186*** 1.420*** -3.283*** -2.190*** 4.061*** 
(0.200) (0.201) (0.211) (0.263) (0.163) (0.166) (0.195) 

        

        

        
Day-of-week FEs YES YES YES YES YES YES YES 
Month FEs YES YES YES YES YES YES YES 
Control Variables YES YES YES YES YES YES YES 

        
N 12,943 12,943 12,943 12,943 12,943 12,943 12,943 

R2 3.90% 3.89% 3.27% 1.17% 3.48% 1.90% 4.91% 
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Table 8 
Proximity and Attention 
 
The dependent variable in these specifications is SVI, or the natural log of one plus the internet 
search volume for the earthquake (Panel A) and lottery (Panel B) terms. The key explanatory 
variables are the natural log of one plus the closest distance to the event, a dummy variable 
associated with whether the closest distance to the event is under 30 miles, and a dummy variable 
associated with whether the closest distance to the event is between 30 and 100 miles. The control 
variables included where indicated are the one-week lagged dependent variable, the natural log of 
one plus the historical frequency of earthquakes (Panel A) or lottery winners (Panel B), and the 
natural log of one plus the population of the designated media area. Date and designated media 
area fixed effects are included where indicated. Robust standard errors double clustered on the 
date and designated media area levels are displayed in parentheses. Statistical significance at the 
10%, 5%, and 1% levels are denoted by *, **, and ***, respectively. 
 

Panel A: Earthquakes 
 

 (1) (2) (3) (4) 

Dependent Variable: SVIj,t
Earthquake SVIj,t

Earthquake SVIj,t
Earthquake SVIj,t

Earthquake 

     

ln(1+Distance)j,t -0.047***    
(0.012) 

Distancej,t,[0mi,30mi) 0.165*** 0.203*** 0.205*** 

  (0.069) (0.055) (0.024) 

Distancej,t,[30mi,100mi)  -0.039 0.022 0.103*** 

  (0.085) (0.057) (0.030) 

     
Date FEs NO NO NO YES 
Region FEs NO NO NO YES 
Control Variables NO NO YES YES 

     
N 116,522 116,522 115,746 115,746 

R2 0.47% 0.10% 11.45% 35.21% 
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Table 8 (cont.) 
 

Panel B: Lottery Winners 
 

 (1) (2) (3) (4) 

Dependent Variable: SVIj,t
Lottery SVIj,t

Lottery SVIj,t
Lottery SVIj,t

Lottery 

     

ln(1+Distance)j,t -0.025***    

 (0.006)    

Distancej,t,[0mi,30mi)  0.856*** 0.428*** 0.347*** 

  (0.093) (0.106) (0.080) 

Distancej,t,[30mi,100mi)  0.203*** 0.126*** 0.075*** 

  (0.075) (0.059) (0.037) 

     
Date FEs NO NO NO YES 
Region FEs NO NO NO YES 
Control Variables NO NO YES YES 

     
N 116,522 116,522 115,746 115,746 

R2 0.40% 0.29% 12.12% 22.02% 
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Table 9 
Time Variation in Attention 
 
The dependent variable in these specifications is SVI, or the natural log of one plus the internet 
search volume for the earthquake (Panel A) and lottery (Panel B) terms. The key explanatory 
variables are the weekly lead and lags for dummy variables associated with whether there was an 
earthquake (Panel A) or lottery winner (Panel B) within a 30 mile radius. The leads and lags range 
from two weeks prior to two weeks after the event. The control variables included where indicated 
are the one-week lagged dependent variable, the natural log of one plus the historical frequency of 
earthquakes (Panel A) or lottery winners (Panel B), and the natural log of one plus the population 
of the designated media area. Date and designated media area fixed effects are included where 
indicated. Robust standard errors double clustered on the date and designated media area levels 
are displayed in parentheses. Statistical significance at the 10%, 5%, and 1% levels are denoted by 
*, **, and ***, respectively. 
 

Panel A: Earthquakes 
 

 (1) (2) (3) 

Dependent Variable: SVIj,t
Earthquake SVIj,t

Earthquake SVIj,t
Earthquake 

    

Nearby Moderate Earthquakej,t-2 -0.036 -0.011 0.000 
(0.025) (0.024) (0.012) 

Nearby Moderate Earthquakej,t-1 -0.013 0.001 0.004 

 (0.025) (0.025) (0.014) 

Nearby Moderate Earthquakej,t 0.019 -0.018 0.020 

 (0.026) (0.025) (0.014) 

Nearby Moderate Earthquakej,t+1 0.183*** 0.204*** 0.190*** 

 (0.030) (0.030) (0.022) 

Nearby Moderate Earthquakej,t+2 -0.008 0.022 0.007 

 (0.031) (0.028) (0.013) 

    
Date FEs NO NO YES 
Region FEs NO NO YES 
Control Variables NO YES YES 

    
N 116,522 115,746 115,746 

R2 0.10% 11.45% 35.19% 
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Table 9 (cont.) 
 

Panel B: Lottery Winners 
 

 (1) (2) (3) 

Dependent Variable: SVIj,t
Lottery SVIj,t

Lottery SVIj,t
Lottery 

    

Nearby Lottery Winnerj,t-2 0.481*** 0.026 0.117*** 

 (0.080) (0.068) (0.055) 

Nearby Lottery Winnerj,t-1 0.581*** 0.082 0.172*** 

 (0.076) (0.063) (0.054) 

Nearby Lottery Winnerj,t 0.979*** 0.505*** 0.488*** 

 (0.087) (0.097) (0.076) 

Nearby Lottery Winnerj,t+1 0.820*** 0.422*** 0.347*** 

 (0.089) (0.106) (0.080) 

Nearby Lottery Winnerj,t+2 0.468*** 0.076 0.125*** 

 (0.076) (0.055) (0.050) 

    
Date FEs NO NO YES 
Region FEs NO NO YES 
Control Variables NO YES YES 

    
N 116,522 115,746 115,746 

R2 0.93% 12.21% 22.12% 
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Table 10 
Earthquakes 
 
The table presents the results from regression models where the dependent variables are πSurvey

i,t and CPSi,t. πSurvey
i,t is the average 

subjective 6-month crash probabilities based on survey data as of day t. The crash probability spread, or CPSi,t, is the difference between 
πSurvey

i,t and the 6-month crash probabilities based on option prices. The key explanatory variable is a dummy based on whether the 
survey respondent is within 30 miles of the epicenter of an earthquake above 2.5 magnitude but below 5.5 magnitude within the past 
month. Institutional is a dummy based on whether the survey respondent is an institutional investor. The model also includes: a dummy 
based on whether the survey respondent is within 30 miles of the epicenter of an earthquake at least 5.5 magnitude within the past month; 
and the natural log of one plus the number of earthquakes per year from 1900 to 2000. Two-way fixed effects on the month and day-of-
week levels are included where indicated, but not reported. Control variables included but displayed are the market return at date t as 
well as its first five lags, VIX at date t as well as its first five lags, and πOption at date t as well as its first five lags. Robust standard errors 
clustered on the ZIP code and date levels are displayed in parentheses. Statistical significance is denoted as *, **, and *** for 10%, 5%, 
and 1% levels, respectively. 
 

(1) (2) (3) (4) (5) 
Investor Type: Indiv. Indiv. Inst. Inst. All 

Dependent Variable: πSurvey
i,t CPSi,t πSurvey

i,t CPSi,t CPSi,t 

      
Nearby Moderate Earthquakei,t 0.026** 0.021** -0.006 -0.003 0.019** 

 (0.012) (0.009) (0.012) (0.009) (0.008) 
Nearby Severe Earthquakei,t 0.098 0.080 -0.016 -0.004 0.031 

 (0.113) (0.075) (0.056) (0.041) (0.042) 
Historical Earthquake Frequencyi,t-30 -0.003* -0.002* 0.000 -0.001 -0.001* 

 (0.002) (0.001) (0.002) (0.001) (0.001) 
Institutionali,t     -0.019*** 

     (0.003) 
Nearby Moderate Earthquakei,t × Institutionali,t     -0.019* 

     (0.011) 
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Table 10 (cont.)      

      
Control Variables NO YES NO YES YES 
Month FEs YES YES YES YES YES 
Day-of-week FEs YES YES YES YES YES 

      
N 6,212 6,212 5,486 5,486 11,698 

R2 0.48% 1.32% 0.42% 1.61% 1.55% 
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Table 11 
Lottery Winners 
 
The table presents the results from regression models where the dependent variables are πSurvey

i,t and CPSi,t. πSurvey
i,t is the average 

subjective 6-month crash probabilities based on survey data as of day t. The crash probability spread, or CPSi,t, is the difference between 
πSurvey

i,t and the 6-month crash probabilities based on option prices. The key explanatory variable is a dummy based on whether the 
survey respondent is within 30 miles of the store that sold a winning MegaMillions or Powerball ticket within the past month. 
Institutional is a dummy based on whether the survey respondent is an institutional investor. Two-way fixed effects on the month and 
day-of-week levels are included where indicated, but not reported. Control variables included but displayed are the market return at date 
t as well as its first five lags, VIX at date t as well as its first five lags, and πOption at date t as well as its first five lags. Robust standard 
errors clustered on the ZIP code and date levels are displayed in parentheses. Statistical significance is denoted as *, **, and *** for 
10%, 5%, and 1% levels, respectively. 
 
 (1) (2) (3) (4) (5) 
Investor Type: Indiv. Indiv. Inst. Inst. All 

Dependent Variable: πSurvey
i,t CPSi,t πSurvey

i,t CPSi,t CPSi,t 

Nearby Lottery Winneri,t -0.030** -0.025*** 0.015 0.007 -0.025** 
 (0.012) (0.010) (0.019) (0.015) (0.010) 

Lottery Winner Frequencyi,t-30 -0.010*** -0.007*** -0.009*** -0.007*** -0.007*** 
 (0.003) (0.002) (0.003) (0.002) (0.002) 

Institutionali,t     -0.022*** 
     (0.003) 

Nearby Lottery Winneri,t × Institutionali,t     0.031* 
     (0.017) 
      

Control Variables NO YES NO YES YES 
Month FEs YES YES YES YES YES 
Day-of-week FEs YES YES YES YES YES 

      
N 6,212 6,212 5,486 5,486 11,698 

R2 0.69% 1.47% 0.59% 1.76% 1.70% 
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Table 12 
COVID-19 Pandemic Responses: Individual Investors 
 
The table presents the results from regression models where the dependent variables are πSurvey

i,t and CPSi,t for the individual investor 
subsample from January 2019 through December 2020. πSurvey

i,t is the average subjective 6-month crash probabilities based on survey 
data as of day t. The crash probability spread, or CPSi,t, is the difference between πSurvey

i,t and the 6-month crash probabilities based on 
option prices. The key explanatory variables are: the one-week percentage change in county-level COVID cases-per-capita for survey 
respondent i as of day t; the natural log of cumulative county-level COVID cases-per-capita for survey respondent i as of day t; the one-
week percentage change in county-level COVID deaths-per-capita for survey respondent i as of day t; the natural log of cumulative 
county-level COVID deaths-per-capita for survey respondent i as of day t; dummy variables associated with whether the residence 
county of survey respondent i as of day t has an active count-level order associated with stay-at-home, retail establishment restrictions, 
gatherings, and school closures. Two-way fixed effects on the month and day-of-week levels are included where indicated, but not 
reported. Control variables included but displayed are the market return at date t as well as its first five lags, VIX at date t as well as its 
first five lags, and πOption at date t as well as its first five lags. Robust standard errors clustered on the ZIP code and date levels are 
displayed in parentheses. Statistical significance is denoted as *, **, and *** for 10%, 5%, and 1% levels, respectively. 
 

(1) (2) (3) (4) (5) (6) (7) 
Investor Type: Indiv. Indiv. Indiv. Indiv. Indiv. Indiv. Indiv. 

Dependent Variable: πSurvey
i,t πSurvey

i,t πSurvey
i,t πSurvey

i,t πSurvey
i,t πSurvey

i,t CPSi,t 

        
Change in County Cases (p.c.)i,t 0.300***     0.288*** 0.157** 

 (0.072)     (0.075) (0.062) 
County Cases (p.c.)i,t-7  -0.052    -0.047 -0.027 

  (0.053)    (0.052) (0.037) 
Change in County Deaths (p.c.)i,t   -13.168   -47.071 -23.625 

   (47.735)   (45.094) (32.972) 
County Deaths (p.c.)i,t-7    3.366***  4.273*** 2.657** 

    (1.269)  (1.499) (1.107) 
County Stay-at-Home Orderi,t     0.068 0.065 0.035 

     (0.045) (0.043) (0.032) 
County Retail Establishment Orderi,t     0.010 -0.010 -0.014 

     (0.050) (0.049) (0.037) 
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Table 12 (cont.)        
        

County Gatherings Orderi,t     -0.125 -0.140 -0.727** 
     (0.146) (0.145) (0.305) 

County School Orderi,t     -0.234*** -0.229*** 0.512 
     (0.041) (0.041) (0.332) 
        

Control Variables NO NO NO NO NO NO YES 
Year-Month FEs YES YES YES YES YES YES YES 
State FEs YES YES YES YES YES YES YES 
Day-of-week FEs YES YES YES YES YES YES YES 

        
N 653 653 653 653 653 653 653 

R2 15.19% 14.62% 14.46% 15.12% 14.96% 16.71% 16.18% 
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Table 13 
COVID-19 Pandemic Responses: Institutional Investors 
 
The table presents the results from regression models where the dependent variables are πSurvey

i,t and CPSi,t for the institutional investor 
subsample from January 2019 through December 2020. πSurvey

i,t is the average subjective 6-month crash probabilities based on survey 
data as of day t. The crash probability spread, or CPSi,t, is the difference between πSurvey

i,t and the 6-month crash probabilities based on 
option prices. The key explanatory variables are: the one-week percentage change in county-level COVID cases-per-capita for survey 
respondent i as of day t; the natural log of cumulative county-level COVID cases-per-capita for survey respondent i as of day t; the one-
week percentage change in county-level COVID deaths-per-capita for survey respondent i as of day t; the natural log of cumulative 
county-level COVID deaths-per-capita for survey respondent i as of day t; dummy variables associated with whether the residence 
county of survey respondent i as of day t has an active count-level order associated with stay-at-home, retail establishment restrictions, 
gatherings, and school closures. Two-way fixed effects on the month and day-of-week levels are included where indicated, but not 
reported. Control variables included but displayed are the market return at date t as well as its first five lags, VIX at date t as well as its 
first five lags, and πOption at date t as well as its first five lags. Robust standard errors clustered on the ZIP code and date levels are 
displayed in parentheses. Statistical significance is denoted as *, **, and *** for 10%, 5%, and 1% levels, respectively. 
 

(1) (2) (3) (4) (5) (6) (7) 
Investor Type: Inst. Inst. Inst. Inst. Inst. Inst. Inst. 

Dependent Variable: πSurvey
i,t πSurvey

i,t πSurvey
i,t πSurvey

i,t πSurvey
i,t πSurvey

i,t CPSi,t 

        
Change in County Cases (p.c.)i,t 0.151     0.155 0.133 

 (0.100)     (0.105) (0.083) 
County Cases (p.c.)i,t-7  -0.045    -0.039 -0.029 

  (0.057)    (0.059) (0.045) 
Change in County Deaths (p.c.)i,t   -85.577***   -89.701** -80.355** 

   (29.836)   (39.197) (35.442) 
County Deaths (p.c.)i,t-7    -2.452  -1.649 -0.852 

    (1.653)  (2.392) (1.881) 
County Stay-at-Home Orderi,t     0.058 0.078 0.054 

     (0.088) (0.088) (0.057) 
County Retail Establishment 
Orderi,t     0.040 0.044 0.007 

     (0.080) (0.080) (0.066) 
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Table 13 (cont.)        

        
County Gatherings Orderi,t     0.110 0.091 -0.055 

     (0.127) (0.127) (0.094) 
County School Orderi,t     -0.408*** -0.431*** -0.466* 

     (0.113) (0.114) (0.251) 
        

Control Variables NO NO NO NO NO NO YES 
Year-Month FEs YES YES YES YES YES YES YES 
State FEs YES YES YES YES YES YES YES 
Day-of-week FEs YES YES YES YES YES YES YES 

        
N 497 497 497 497 497 497 497 

R2 20.19% 19.86% 20.10% 19.92% 20.22% 21.47% 20.73% 
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Appendix Table A1 
Correlation Matrix 
 
The table displays correlation matrix of the variables used in the analysis. πSurvey is the crash 
probability responses from the survey. πOption is the natural probability of a stock market crash 
based on Martin (2017). CPS is the difference between πSurvey and πOption. RM

t is the market return. 
VIX is the CBOE VIX index. Investor Sentiment is the seven-day moving average of the daily 
average investor sentiment measure constructed from the survey response text. 
  

  (1) (2) (3) (4) (5) 

(1) πSurvey
t      

(2) πOption
t 31.55%     

(3) CPSt 92.00% -7.61%    

(4) RM
t -0.83% -5.91% 1.49%   

(5) VIXt 30.86% 87.37% -3.39% 2.25%  

(6) Average Investor Sentimentt -19.54% -2.44% -19.41% -1.80% 3.54% 
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Appendix Table A2 
Sample Splits of Option-Implied Crash Probabilities 
 
The table displays average πOption

t values across various sample splits: sample period splits, splits across VIX quintiles, daily returns 
quintiles and past month return quintiles. Robust standard errors are displayed in the parentheses. Statistical significance at the 10%, 
5%, and 1% levels are denoted by *, **, and ***, respectively. 
 
Sample Period Splits: 2000 - 2020   2000 - 2004   2005 - 2009   2010 - 2014   2015 - 2020 

          

 5.845***  6.265***  6.006***  6.043***  5.195*** 

 (0.130)  (0.192)  (0.397)  (0.205)  (0.197) 

          

Volatility Splits: Low VIXt   2   Middle VIXt   4   High VIXt 

          
2.998*** 4.082*** 5.477*** 6.960*** 9.707*** 
(0.025) (0.027) (0.038) (0.046) (0.070) 

Daily Returns Splits: Low RM
t   2   Middle RM

t   4   High RM
t 

          

 7.157***  5.292***  4.795***  5.241***  6.739*** 

 (0.084)  (0.067)  (0.062)  (0.071)  (0.085) 

          

Past Month Returns Splits: Low RM
t-30,t-1   2   

Middle RM
t-30,t-

1   4   High RM
t-30,t-1 

          

 7.930***  5.601***  4.778***  4.698***  6.219*** 

 (0.082)  (0.068)  (0.064)  (0.063)  (0.077) 
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Appendix Table A3 
Sample Splits on the Survey-based Crash Probabilities 
 
The table displays average πSurvey

t values across various sample splits: sample period splits, splits across VIX quintiles, daily returns 
quintiles and past month return quintiles. Robust standard errors are displayed in the parentheses. Statistical significance at the 10%, 
5%, and 1% levels are denoted by *, **, and ***, respectively. 
 
Sample Period Splits: 2000 - 2020   2000 - 2004   2005 - 2009   2010 - 2014   2015 - 2020 

          

 19.052***  15.872***  17.652***  21.122***  21.142*** 

 (0.292)  (0.431)  (0.557)  (0.534)  (0.596) 

          

Volatility Splits: Low VIXt   2   Middle VIXt   4   High VIXt 

          
17.779*** 18.264*** 17.497*** 18.863*** 22.863*** 

(0.195) (0.182) (0.180) (0.178) (0.225) 

Daily Returns Splits: Low RM
t   2   Middle RM

t   4   High RM
t 

          

 19.828***  18.484***  18.420***  18.483***  20.042*** 

 (0.210)  (0.194)  (0.185)  (0.193)  (0.213) 

          

Past Month Returns Splits: Low RM
t-30,t-1   2   

Middle RM
t-30,t-

1   4   High RM
t-30,t-1 

          

 21.440***  18.982***  18.579***  17.879***  18.382*** 

 (0.208)  (0.193)  (0.199)  (0.186)  (0.200) 
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Appendix Table A4 
Internal Consistency 
 
The table presents the results of regression models where the dependent variable is πSurvey

i,t. Two-way fixed effects on the month and 
day-of-week levels are included where indicated, but not reported. Control variables included but displayed are the market return at 
date t as well as its first five lags, VIX at date t as well as its first five lags, and πOption at date t as well as its first five lags. Robust 
standard errors clustered on the date level are displayed in parentheses. Statistical significance at the 10%, 5%, and 1% levels are 
denoted by *, **, and ***, respectively. 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent Variable: πSurvey
i,t πSurvey

i,t πSurvey
i,t πSurvey

i,t πSurvey
i,t πSurvey

i,t πSurvey
i,t πSurvey

i,t 

         
Valuations Too High 0.080***       0.051*** 

 (0.003)       (0.003) 

Valuations Too Low  -0.057***      -0.018*** 

(0.004) (0.004) 

Buy Recommendation -0.055*** -0.027*** 

   (0.003)     (0.002) 

Sell Recommendation    0.110***    0.072*** 

    (0.006)    (0.006) 

Speculative Environment     0.028***   0.013*** 

     (0.003)   (0.002) 

Investors Too Optimistic      0.040***  0.021*** 

      (0.003)  (0.003) 

Investors Too Pessimistic       -0.010*** -0.006** 

       (0.003) (0.003) 
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Appendix Table A4 (cont.)         

         

Day-of-week FEs YES YES YES YES YES YES YES YES 
Month FEs YES YES YES YES YES YES YES YES 
Control Variables YES YES YES YES YES YES YES YES 

         
N 15,695 15,695 15,695 15,695 15,695 15,695 15,695 15,695 

R2 8.2% 3.4% 4.9% 6.4% 2.7% 3.5% 1.9% 12.3% 
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Appendix Table A5 
Baseline Specification Using Survey Data 
 
The table presents the results of regression models where the dependent variable are πSurvey

i,t and CPSi,t. Investor Sentimenti,t is the 
investor sentiment measure for respondent i and date t. News Sentimentt is the daily average sentiment measure constructed from 
newspaper articles. Sentiment Spreadi,t is the difference between the investor and news sentiment measures. Two-way fixed effects on 
the month and day-of-week levels are included where indicated, but not reported. Control variables included but displayed are the 
news sentiment measure as well as its first five lags, the market return at date t as well as its first five lags, VIX at date t as well as its 
first five lags, and πOption at date t as well as its first five lags. Robust standard errors clustered on the date level are displayed in 
parentheses. Statistical significance at the 10%, 5%, and 1% levels are denoted by *, **, and ***, respectively.  
 

 (1) (2) (3) (4) (5) (6) 

Dependent Variable: πSurvey
i,t πSurvey

i,t πSurvey
i,t CPSi,t CPSi,t CPSi,t 

       

Investor Sentimenti,t -4.170***  -4.162*** -3.857*** -3.963***  
(0.184) (0.184) (0.183) (0.182) 

News Sentimentt -0.509*** -0.426** -0.053 -0.132 

  (0.189) (0.182) (0.183) (0.181)  
Sentiment Spreadi,t      -1.970*** 

      (0.140) 

       
Day-of-week FEs YES YES YES YES YES YES 
Month FEs YES YES YES YES YES YES 
Control Variables NO NO NO NO YES YES 

       
N 12,808 12,808 12,808 12,808 12,808 12,808 

R2 4.82% 0.36% 4.86% 4.19% 4.79% 2.64% 
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Appendix Table A6 
Quantile Regressions on Option-implied Crash Probabilities 
 
The table presents the results of quantile regression models where the dependent variable is πOption

t. 
The quantile specification is indicated in the first row. Average Investor Sentimenti,t is the investor 
sentiment measure for investor i constructed from the survey response text. Two-way fixed effects 
on the month and day-of-week levels are included where indicated, but not reported. Control 
variables included but displayed are the news sentiment measure as well as its first five lags, the 
market return at date t as well as its first five lags, VIX at date t as well as its first five lags, and 
πOption at date t as well as its first five lags. Robust standard errors clustered on the date level are 
displayed in parentheses. Statistical significance at the 10%, 5%, and 1% levels are denoted by *, 
**, and ***, respectively. 
  
 

 (1) (2) (3) (4) (5) 
Specification: Q(10%) Q(25%) Q(50%) Q(75%) Q(90%) 

Dependent Variable: πOption
t πOption

t πOption
t πOption

t πOption
t 

      
Average  
Investor Sentimentt -0.034** -0.008 -0.010** -0.010 -0.028* 

 (0.013) (0.008) (0.005) (0.009) (0.016) 

Lagged CPS Terms YES YES YES YES YES 
Day-of-week FEs YES YES YES YES YES 
Month FEs YES YES YES YES YES 
Control Variables YES YES YES YES YES 

      
N 6,570 6,570 6,570 6,570 6,570 

R2 92.25% 92.14% 92.00% 92.27% 92.29% 
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Appendix Table A7 
Self versus Other Investor Sentiment 
 
The table presents weights on each variable in the principal component analysis for the first three 
components. The bottom displays the eigenvalues associated with each component.  
 
Principal Component: 1 2 3 

    
Factor Loadings:    

Anxiety 0.497 0.309 -0.162 
Fear 0.496 0.300 -0.165 
Sadness 0.410 0.302 -0.069 
Disgust 0.113 0.248 0.960 
Optimism -0.435 0.498 -0.093 
Excitement -0.370 0.644 -0.111 

    
Eigenvalue: 3.203 1.124 0.964 
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Appendix Table A8 
Own versus Other Investor Sentiment 
 
The table presents the results of regression models where the dependent variable is the crash 
probability spread, or CPSi,t. Investor Sentimenti,t is the investor sentiment measure for investor i 
constructed from the survey response text. Other Investor Sentiment-i,t is the investor sentiment 
measure of investors that are not investor i on date t constructed from the survey response text. 
Two-way fixed effects on the month and day-of-week levels are included where indicated, but not 
reported. Control variables included but displayed are the news sentiment measure as well as its 
first five lags, the market return at date t as well as its first five lags, VIX at date t as well as its 
first five lags, and πOption at date t as well as its first five lags. Robust standard errors clustered on 
the date level are displayed in parentheses. Robust standard errors clustered on the date level are 
displayed in parentheses. Statistical significance at the 10%, 5%, and 1% levels are denoted by *, 
**, and ***, respectively. 
 

 (1) (2) (3) (4) 

Dependent Variable: CPSi,t CPSi,t CPSi,t CPSi,t 

     

Investor Sentimenti,t  -3.966***  -3.950*** 

  (0.182)  (0.182) 

     

Other Investor Sentiment-i,t -0.456** -0.475*** 
(0.178) (0.174) 

     

Other Investor Sentiment-i,t-1   -0.469*** -0.401*** 

   (0.134) (0.129) 

     
Day-of-week FEs YES YES YES YES 
Month FEs YES YES YES YES 
Control Variables YES YES YES YES 

     
N 12,808 12,808 12,808 12,808 

R2 0.73% 4.84% 0.78% 4.86% 
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Appendix Table A9 
Alternative Sentiment Measures 
 
The table presents the results of regression models where the dependent variable are πSurvey

i,t and 
CPSi,t. Investor SentimentLM

i,t is the investor sentiment measure based on Loughran and 
McDonald (2011) for investor i constructed from the survey response text. Investor SentimentGI

i,t 
is the investor sentiment measure based on the General Inquirer for investor i constructed from 
the survey response text. Two-way fixed effects on the month and day-of-week levels are 
included where indicated, but not reported. Control variables included but displayed are the news 
sentiment measure as well as its first five lags, the market return at date t as well as its first five 
lags, VIX at date t as well as its first five lags, and πOption at date t as well as its first five lags. 
Robust standard errors clustered on the date level are displayed in parentheses. Statistical 
significance at the 10%, 5%, and 1% levels are denoted by *, **, and ***, respectively.  
 

 (1) (2) (3) (4) 

Dependent Variable: πSurvey
i,t πSurvey

i,t CPSi,t CPSi,t 

     

Investor SentimentLM
i,t -1.968***  -1.958***  
 (0.154)  (0.153)  

Investor SentimentGI
i,t  -2.141***  -2.129*** 

(0.153) (0.152) 

Day-of-week FEs YES YES YES YES 
Month FEs YES YES YES YES 
Control Variables YES YES YES YES 

     
N 12,877 12,877 12,877 12,877 

R2 2.76% 1.66% 2.94% 1.85% 
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Appendix Table A10 
Investor Sophistication and Coherency 
 
The table presents the results of regression models where the dependent variable is the crash 
probability spread, or CPSi,t. Investor Sentimenti,t is the investor sentiment measure for investor i 
constructed from the survey response text. Investor Sophisticationi,t is the score for investor 
sophistication based on the survey response text. Writing Coherencyi,t is the score for the 
coherency in writing style of the survey response text. Two-way fixed effects on the month and 
day-of-week levels are included where indicated, but not reported. Control variables included but 
displayed are the news sentiment measure as well as its first five lags, the market return at date t 
as well as its first five lags, VIX at date t as well as its first five lags, and πOption at date t as well as 
its first five lags. Robust standard errors clustered on the date level are displayed in parentheses. 
Robust standard errors clustered on the date level are displayed in parentheses. Statistical 
significance at the 10%, 5%, and 1% levels are denoted by *, **, and ***, respectively. 
 

 (1) (2) (3) (4) 

Dependent Variable: πSurvey
i,t πSurvey

i,t πSurvey
i,t CPSt 

     

Investor Sentimenti,t   -3.506*** -3.489*** 

   (0.197) (0.196) 

Investor Sophisticationi,t -1.033***  -0.680*** -0.672*** 
(0.185) (0.177) (0.176) 

Writing Coherencyi,t -2.572*** -1.192*** -1.184*** 

  (0.210) (0.218) (0.217) 

     
Day-of-week FEs YES YES YES YES 
Month FEs YES YES YES YES 
Control Variables YES YES YES YES 

     
N 12,600 12,600 12,600 12,600 

R2 1.98% 3.42% 6.22% 5.23% 

          

 
 

 

 


