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ABSTRACT

When is a wealth tax preferable to a capital income tax? When is the opposite true? More 
generally, can capital taxation be structured to improve productivity, incentivize innovation, and 
ultimately increase welfare? We study these questions theoretically in an infinite-horizon model 
with entrepreneurs and workers, in which entrepreneurial firms differ in their productivity and are 
subject to collateral constraints. The stationary equilibrium features heterogeneous returns and 
misallocation of capital. We show that increasing the wealth tax increases aggregate productivity. 
The gains result from the “use-it-or-lose-it” effect of wealth taxes when returns are 
heterogeneous, which causes a reallocation of capital from entrepreneurs with low productivity to 
those with high productivity. Furthermore, if the capital income tax is adjusted to balance the 
government's budget, aggregate capital, output, and wages also increase. We then study the 
welfare maximizing combination of wealth and capital income taxes and show that the optimal 
mix shifts towards a higher wealth tax and a lower capital income tax as the capital intensity of 
production increases. For a range of plausible parameter values, the optimal wealth tax is 
positive, whereas the capital income tax can be positive or negative (a subsidy). We then 
endogenize the entrepreneurial productivity distribution by introducing either ex ante innovation 
or entrepreneurial effort in production and show that this strengthens our results: by allowing 
entrepreneurs to keep more of the upside relative to a capital income tax, a wealth tax incentivizes 
more innovation and entrepreneurial effort, leading to larger increases in productivity, output, and 
welfare.
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1 Introduction

When is a wealth tax preferable to a capital income tax? When is the opposite true?
More generally, can capital taxation be structured to improve productivity, incentivize
innovation, and ultimately increase welfare? While these and related questions dominate
policy debates, standard economic frameworks are largely silent on them. This is because
capital income taxation and wealth taxation are equivalent under the standard assumption
that all individuals earn the same rate of return on wealth. However, a growing body of
empirical work documents large and persistent heterogeneity in returns across individuals,
which challenges this assumption and opens the door for differences in the aggregate and
distributional outcomes of these two forms of taxation.1

In this paper, we study capital income and wealth taxation when returns are
heterogeneous across individuals. We establish conditions under which replacing capital
income taxes with wealth taxes generates productivity and welfare gains. We also study
the more general problem of the optimal mix of wealth and capital income taxes that
maximizes welfare. We then extend the framework by introducing innovation to study
how wealth and capital income taxation affect the incentives for innovation, and
characterize optimal taxes in this setting.

The framework we employ is fairly standard: an infinite-horizon (perpetual-youth)
model with entrepreneurs and workers in which entrepreneurial firms differ in their
productivity and are subject to collateral constraints. This is similar to the setup used in
many papers reviewed below. Entrepreneurs produce a final good, using a common
constant-returns-to-scale technology that combines capital and labor. This good is sold to
consumers in a perfectly competitive market. Entrepreneurs have access to a bond
market, with zero net supply, through which they can borrow from each other, subject to
a collateral constraint. In equilibrium, entrepreneurs with high productivity borrow to
invest in their own firms, while those with low productivity lend (at least part of) their
wealth. Upon death, entrepreneurs (and workers) are replaced by newborn individuals,
who each inherit the same amount of wealth (equal to the average wealth in the economy).
Workers supply labor inelastically and are hand-to-mouth, so all the wealth is held by
entrepreneurs. All agents have log preferences over consumption.

1For empirical evidence on persistent return heterogeneity, see, Campbell, Ramadorai and Ranish
(2019), Fagereng, Guiso, Malacrino and Pistaferri (2020), Bach, Calvet and Sodini (2020), and Smith,
Zidar and Zwick (2023). For surveys of the literature on capital taxation, see Chari and Kehoe (1999),
Golosov, Tsyvinski and Werning (2006), and Stantcheva (2020).
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The government taxes wealth and capital income from entrepreneurs to fund its spending
in government purchases and transfers to workers. An important feature of the model is
that the wealth tax is levied on the book value of an entrepreneur’s assets and not on the
market value of the entrepreneurial firm they own, which is a key distinction of the wealth
tax we study in this paper, as we discuss in a moment.

The main mechanism that underlies many of our results is that the wealth tax puts the
same tax burden on entrepreneurs with the same wealth level regardless of their productivity,
whereas the capital income tax puts a higher tax burden on more productive entrepreneurs
(relative to their wealth). Therefore, the capital income tax effectively punishes more
productive entrepreneurs, whereas a wealth tax does not. We call this the “use-it-or-lose-it”
effect of the wealth tax. It works by shifting the tax burden from high-productivity to low-
productivity entrepreneurs, thereby enabling faster wealth growth for high-productivity
entrepreneurs while pruning the wealth of low-productivity entrepreneurs. This effect is
absent under capital income taxation.

This mechanism also explains why a wealth tax levied on the book value is more effective
than one levied on the market value: two entrepreneurs with the same assets but different
productivities have the same book value of wealth but (potentially very) different market
values of wealth, as the latter incorporates the productivity (and future returns) of the
entrepreneur who operates the firm. Therefore, a market-value wealth tax puts a higher
tax burden on more productive entrepreneurs (looking more like a capital income tax),
weakening the positive reallocation from the use-it-or-lose-it effect. This is why we propose
a book-value wealth tax as a more interesting and potentially more effective policy tool than
the standard wealth tax based on market values.2

We show five main results. First, we establish that there exists a unique stationary
equilibrium that exhibits capital misallocation and return heterogeneity when the collateral
constraint is “not too loose.” We derive the upper bound on the collateral constraint that
sustains this equilibrium in terms of model primitives and show that, for a range of plausible
parameter values, it allows for borrowing that (far) exceeds the current level of aggregate
debt in the US (e.g., measured by the debt-to-GDP ratio). Therefore, this equilibrium does
not require unrealistically restrictive collateral constraints. In this heterogeneous-return
equilibrium, collateral constraints bind for more productive entrepreneurs, who then earn
higher rates of return on wealth than less productive ones.

2We also studied the book-value wealth tax quantitatively in Guvenen, Kambourov, Kuruscu, Ocampo
and Chen (2023) as we discuss below.
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We also show an even stronger result: this is the only equilibrium possible—regardless of
parameter values—when entrepreneurial productivity is endogenized by introducing costly
innovation effort by newborn entrepreneurs (Section 6). Intuitively, this is because the
upside potential provided by return heterogeneity is necessary to incentivize entrepreneurs
to pay the cost of innovation. To the extent that one believes that high-productivity projects
require costly innovation, this result suggests that return heterogeneity is a natural outcome
to expect in real life. Another appealing feature of this model is that the stationary wealth
distribution has a Pareto right tail, as in the US data, and the thickness of the tail is
determined by the rate of return of high-productivity entrepreneurs. These results on the
wealth distribution echo those in Jones and Kim (2018).

Second, we show a neutrality result that draws a sharp distinction between the two
taxes: the steady-state after-tax returns are independent of the capital income tax but do
depend on the wealth tax.3 In particular, through the use-it-or-lose-it effect, the wealth
tax increases the dispersion of after-tax returns, raising the returns of high-productivity
entrepreneurs (and lowering the returns of low-productivity entrepreneurs), who in turn
own a larger share of aggregate wealth. This reallocation of wealth in response to a wealth
tax then increases aggregate productivity.4 By contrast, capital income taxes do not affect
aggregate productivity. These results do not depend on whether the government budget is
balanced or not.

When the government balances its budget, there are further gains from wealth
taxation. Raising the wealth tax rate allows the government to reduce the capital income
tax, which then increases the equilibrium levels of capital, output, and wages. This is
because the wealth tax is less distorting than the capital income tax in the presence of
return heterogeneity due to its effectiveness in mitigating misallocation as discussed
above. The magnitudes of the increase in capital, output, and wages with respect to an
increase in the wealth tax depend critically on how much an increase in aggregate
productivity translates into higher output, which is determined by the capital intensity of
production. This result will be key in characterizing the optimal tax results below.

3This stark result about the independence of equilibrium returns from the capital income tax emerges
in our framework due to the combination of log utility and constant returns to scale in production.

4Note that all the allocative effects of the wealth tax come from the change in after-tax returns as
there is no behavioral response in the present model—saving rates are (endogenously) constant, due to the
log utility assumption. In Guvenen et al. (2023), we show that, with a more general CRRA utility, the
behavioral savings response increases the productivity gains from a wealth tax, which suggests that relaxing
the log utility assumption would strengthen the results we establish here.
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Third, we study the welfare implications of a marginal increase in the wealth tax (and
a reduction in the capital income tax to balance the budget) and provide necessary and
sufficient conditions for welfare gains of each type of agent. Workers always benefit from a
higher wealth tax—thanks to higher wages—and high-productivity entrepreneurs always
benefit because they start life with a higher wealth level and experience faster wealth
growth over their lifetime—thanks to higher after-tax returns. Although low-productivity
entrepreneurs also start out with higher wealth, they experience slower wealth growth (or
faster decline) with a higher wealth tax. The latter effect dominates, leading to welfare
losses for this group, unless the capital intensity of production—measured as the output
elasticity with respect to capital, α—is unrealistically high. Overall, the average return of
entrepreneurs also decreases, leading to welfare losses for entrepreneurs as a whole, again,
unless α is very high.

Putting these three pieces together, the aggregate welfare change for the entire
population (of workers plus entrepreneurs) from an increase in the wealth tax depends on
the magnitudes of the increase in wages and the wealth level (both of which increase with
α) versus the loss from the lower wealth growth—from a lower average
return—experienced by entrepreneurs. As a result, the condition for average welfare gain
amounts to a lower bound on α, which turns out to be around one-third for a wide range
of parameter values.

Fourth, we study the optimal combination of capital income and wealth taxes and show
that it can be characterized as a function of a lower bound and an upper bound on α.
If the capital intensity is above the upper bound, α > α, the benefits of a reduction in
misallocation from the wealth tax (i.e., the rise in wages and wealth) are large enough that
the optimal wealth tax is positive and the capital income tax is negative (a subsidy); the
signs flip when the capital intensity is below the lower bound, α < α < α, and both taxes
are positive in the range between the two thresholds. This interval turns out to be typically
quite narrow—between 0.3 and 0.4 for reasonable parameter values.

Fifth, we introduce innovation into our framework and study how it affects optimal
capital taxation. We consider innovation along both the extensive and intensive margins,
which can be thought of as corresponding to product innovation and process innovation,
respectively (Atkeson and Burstein, 2010). We show that the incentives for innovation
along both margins depend on the degree of return dispersion in equilibrium, with higher
dispersion increasing the benefit of exerting innovation effort. This introduces an additional
channel through which wealth and capital income taxation can affect the economy.
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To study the extensive margin of innovation, we assume that entrepreneurs choose how
much effort to exert at the outset, which increases the probability of drawing a
high-productivity technology (Section 6). In this setting, the wealth tax increases return
dispersion, thereby raising the equilibrium level of innovation, and consequently boosting
the number of high-productivity entrepreneurs. This additional (extensive margin) benefit
of wealth taxation increases the optimal wealth tax level relative to the model with
exogenous productivities. By contrast, because the capital income tax has no effect on the
return dispersion, it has no effect on innovation and entrepreneurship in our model.

An alternative way to think about entrepreneurial effort is as an ongoing activity, which
we model by introducing entrepreneurial effort into the production function and allowing
entrepreneurs to make a continuous (intensive margin) choice of effort every period (Section
7). In this setup, the capital income tax dampens the incentives for higher effort by taxing
the resulting profits (similar to Jones, 2022). By contrast, the wealth tax does not distort the
returns to effort, because the entrepreneur’s tax liability is independent of profits, leaving
them as residual claimants of the profits generated by their additional effort. As a result,
increasing the wealth tax rate and reducing the capital income tax rate further increases
output and wages through the incentives for higher entrepreneurial effort.

In Appendix E, we allow for entrepreneurial productivity to fluctuate (stochastically)
over the life cycle by considering a slightly modified version of the baseline model with
infinitely lived entrepreneurs (no perpetual youth) who are subject to idiosyncratic
productivity shocks that follow a first-order Markov process. The persistence of these
shocks affects how exposed entrepreneurs are to idiosyncratic variation in their returns, an
important mechanism for wealth dynamics highlighted by Atkeson and Irie (2022). We
show that all of our theoretical results go through in this setup (with modified formulas
that account for the persistence of productivity) as long as entrepreneurial productivity is
positively autocorrelated, an empirically well-supported assumption (recall footnote 1).

Related Literature

An important common element in the earlier literature on capital taxation is the
assumption of homogenous returns across the population. Because capital income and
wealth taxes are equivalent under this assumption, an analysis of the differences between
the two taxes is naturally absent from this earlier literature, which focuses on capital
income taxation (a short list includes Judd 1985; Chamley 1986; Aiyagari, 1995;
Imrohoroglu, 1998; Erosa and Gervais, 2002; Conesa, Kitao and Krueger, 2009; Kitao,
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2010; Saez and Stantcheva, 2018; Garriga, 2019; Straub and Werning, 2020).

However, there has been renewed research interest in research on wealth taxation in
recent years, partly in response to rising wealth concentration at the top, which led to various
policy proposals to tax wealth. Some of these recent papers estimate the behavioral savings
response to changes in wealth taxes (Seim, 2017; Jakobsen, Jakobsen, Kleven and Zucman,
2019; Londoño-Vélez and Ávila-Mahecha, 2021; Ring, 2021; Brülhart, Gruber, Krapf and
Schmidheiny, 2022), whereas others estimate the migration response of the very rich to a
wealth tax (Jakobsen, Kleven, Kolsrud, Landais and Muñoz, 2023; Agrawal, Foremny and
Martínez-Toledano, 2024). By contrast, there have been few theoretical studies of wealth
taxation, especially when returns are heterogeneous, and to our knowledge, no analysis of
the use-it-or-lose it effect of wealth taxes until very recently.5,6

In a recent paper, Guvenen, Kambourov, Kuruscu, Ocampo and Chen (2023) build a
rich overlapping-generations model with return heterogeneity that matches a wide range
of empirical features of the distribution of cross-sectional and lifetime rates of return, the
extreme concentration and the Pareto tail of the wealth distribution, and the thicker tail of
the capital income distribution, among others. They show quantitatively that there are large
efficiency and distributional welfare gains from using wealth taxes instead of capital income
taxes. The present paper differs in three important ways. First, we abstract from many of
the bells and whistles that were required in that paper for a sound quantitative analysis,
and use a simpler and more standard framework. This has two benefits. One, we are able to
establish the precise theoretical conditions under which a wealth tax yields efficiency gains,
a rise in output, wages, and consumption, as well as how the welfare effects are distributed
across the population. Two, these results show that the quantitative conclusions reached
in Guvenen et al. (2023) hold more generally—in a standard framework and for a wide
range of parameter values—strengthening the conclusions about the advantages of a wealth
tax relative to a capital income tax. Second, we characterize the optimal combination of
capital income and wealth taxes, which was not studied in that paper. Third, and finally,
we introduce innovation and entrepreneurial effort, which is absent from that paper, and
show that they strengthen the effects of a wealth tax.

The framework we study builds upon a workhorse model (especially, in the firm
dynamics, development, and capital misallocation literatures), with heterogeneous firms

5Although Allais (1977) and Piketty (2014) verbally described the use-it-or-lose-it mechanism, they did
not study it.

6Scheuer and Slemrod (2021) is an excellent survey on wealth taxation that also discusses practical
issues in implementation.
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subject to idiosyncratic productivity shocks and collateral constraints (e.g., Quadrini,
2000; Cagetti and De Nardi, 2006; Buera, Kaboski and Shin, 2011; and Boar and
Midrigan, 2022). To this, we add the assumption of constant-returns-to-scale in
production, following Moll (2014), which affords significant tractability and allows us to
establish all of our results analytically. In this sense, our framework is most closely related
to Buera and Moll (2015) and Itskhoki and Moll (2019). However, these papers do not
study capital income or wealth taxation, which is the main contribution of our paper.

A partial exception is Itskhoki and Moll (2019), who study optimal Ramsey policies and
find the optimal policy to impose an upper bound on wages early on in the development
process, which boosts profits, particularly for productive entrepreneurs, allowing them to
accumulate capital more quickly, in turn mitigating the effect of collateral constraints. This
is similar to the effects of a wealth tax in our model, which also boosts the after-tax profits
of high-productivity entrepreneurs, relaxing their constraints, in turn raising efficiency and
incentivizing innovation.

Our framework is also closely related to the literature on power law models that can
generate a Pareto tail for the wealth (and income) distribution (see, among others,
Champernowne, 1953; Jones, 2015; Gabaix, Lasry, Lions and Moll, 2016; and the review
in Benhabib and Bisin, 2018). Especially closely related is Benhabib, Bisin and Zhu
(2011) who consider an overlapping-generations model with return heterogeneity and
study how the properties of the Pareto tail depend on the model’s parameters, including
on the estate tax rate. However, they do not study capital income or wealth taxation and
return heterogeneity is modeled as an exogenous process, so they do not analyze the
macroeconomic implications of the model, as we do here.

Our results for the distribution of wealth and the role of entrepreneurial effort and
innovation are also related to those of Jones and Kim (2018) and Jones (2022), derived in
the context of the distribution and taxation of top incomes. Our model shows how wealth
taxes affect the tail of the wealth distribution through their effects on entrepreneurial returns
and how taxing the book-value of wealth instead of capital income incentivizes effort by
reducing the effective tax rate on the income of the most productive entrepreneurs, leading
to higher aggregate productivity levels as well as higher wealth concentration.

Two contemporaneous papers also explore the effects of wealth taxation. Boar and
Midrigan (2023) study the tradeoff between capital income, wealth taxes, and lump-sum
transfers to workers. Their framework differs from ours in two key respects: entrepreneurs
are infinitely lived (no perpetual-youth), and production exhibits decreasing-returns-to-
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scale, so there is an optimal scale. The combination of these two features imply that, in
the long-run they analyze, most firms accumulate enough capital for the constraints not to
bind, leaving little room for financial frictions to matter (small misallocation). In contrast,
in our model, the combination of perpetual-youth and constant-returns-to-scale ensures
that misallocation still matters, and the wealth tax is an effective tool for mitigating it.7

Also related is the work of Gaillard and Wangner (2022) who focus on the role of increasing
returns to scale in shaping wealth accumulation, adopting a reduced-form return function
that allows returns to be increasing in the level of wealth so as to capture scale effects. We
instead use constant returns to scale to endogenously generate heterogeneous returns and
analytically characterize the equilibrium effects of changes in wealth and capital income
taxes. In this sense, these papers are complementary to ours.

2 Model

We begin with a model in which entrepreneurs’ productivity distribution is exogenously
given. In Sections 3 to 5, we study the effects of wealth and capital income taxation
in this setting. Then, in Sections 6 and 7, we endogenize the productivity distribution
by introducing innovation and entrepreneurial effort and study how the two taxes affect
incentives for innovation and characterize the optimal wealth and capital income taxes.

2.1 Model Description

Time is discrete. The economy is populated by overlapping generations of homogenous
workers (size L) and heterogeneous entrepreneurs (size 1), with perpetual-youth life cycles:
both types of agents face a constant probability of death 1 − δ each period, and upon
death, they are replaced by a cohort of newborns of appropriate size to keep the population
constant over time.

Workers and entrepreneurs share the same preferences, defined over consumption:

E0

(
∞∑
t=1

(βδ)t−1 log (ct)

)
, (1)

where β is the time discount factor. Workers supply labor inelastically, receive transfers T
from the government, and live hand-to-mouth (and therefore hold no wealth). Entrepreneurs

7In Guvenen et al. (2023), we study a lifecycle model with decreasing returns to scale, in which case
there is still a large enough fraction of firms that are constrained, and the wealth tax delivers substantial
efficiency and welfare gains. So, constant-returns-to-scale is not necessary for misallocation to matter.
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are the sole capital/wealth owners in the economy. The wealth of entrepreneurs who die in
a period is distributed equally to (i.e., inherited by) all newborn entrepreneurs. Because the
population is constant and mortality risk is independent of age, wealth, and productivity,
this starting wealth equals the average wealth in the economy, which we denote with ā.8

Each entrepreneur is born with a fixed (exogenous) idiosyncratic productivity, z, and
produces a homogeneous good combining capital, k, and labor, n, using a constant-returns-
to-scale technology:9

y = (zk)α n1−α. (2)

Entrepreneurs hire labor at wage rate w and can borrow in a bond market at interest rate
r to invest in their firm, over and above their own wealth a. Both markets are perfectly
competitive. The same bonds, which are in zero net supply, can be used as a savings
device, which will be optimal for entrepreneurs whose return in equilibrium is lower than
the interest rate r. Thus, k can be greater or smaller than a. Entrepreneurs’ borrowing is
subject to a collateral constraint that depends on their beginning-of-period wealth (a),

k ≤ λa, (3)

where λ ≥ 1. When λ = 1, an entrepreneur can use only his wealth in production.10

The Government. The government taxes capital income at rate τk and (beginning-of-
period) book-value of wealth, a, at rate τa to finance exogenous expenditures, G, and
transfers to workers, T .

2.2 Entrepreneur’s Problem

Entrepreneurial Productivity. Entrepreneurial productivity can take on two values:
high, zh, or low, zℓ.11 Each entrepreneur is born with productivity zh or zℓ, with probability

8An alternative assumption would be to assign each newborn to an entrepreneur who dies that period
(“parent”) and assume that the newborn inherits the wealth of that parent. This case delivers essentially
the same results, as we show in Appendix E.

9For convenience, we assume no depreciation, but this is easy to relax.
10This specification of the collateral constraint is analytically tractable and is widely used in the literature

(see, for example, Banerjee and Newman, 2003; Buera and Shin, 2013; and Moll, 2014). It can also be
motivated as resulting from an underlying limited commitment problem (see Guvenen et al., 2023 for
further discussion). The importance of financial constraints has broad empirical support; see, e.g., Gomes,
Yaron and Zhang (2006); Hvide and Møen (2010); Duygan-Bump, Levkov and Montoriol-Garriga (2015);
Benmelech, Frydman and Papanikolaou (2019); Ring (2023).

11Allowing more values of z (or even a continuous distribution) is fairly straightforward but comes at
the cost of notational complexity without adding new insights, so we do not pursue that approach.
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µ and 1 − µ, respectively, which then equals the population shares of high-productivity
entrepreneurs (which we refer to as “H-type”) and low-productivity entrepreneurs (“L-type”),
respectively. We endogenize the distribution of z in Sections 4 and 5.

Entrepreneurial Production. Entrepreneurs choose k and n every period to maximize
profit, Π(z, a), taking prices as given:

Π(a, z) = max
k≤λa, n≥0

{
(zk)α n1−α − rk − wn

}
, (4)

which yields their labor demand function:

n (a, z) =

(
1− α
w

)1/α

zk(a, z), (5)

where k(a, z) is the optimal capital choice, which is obtained by substituting (5) into (4):

k (a, z) = argmax
k≤λa

[
α

(
1− α
w

)(1−α)/α

z − r

]
k. (6)

The constant-return-to-scale technology implies that entrepreneurs whose marginal
return to capital (first term in equation 6) is greater than r borrow up to their collateral
constraint, and set k(a, z) = λa, whereas those whose marginal return is below r do not
produce and instead lend all their wealth in the bond market to earn return r. Therefore,
optimal entrepreneurial income can be written as Π(z, a) = π (z)× a, where

π (z) ≡


(
α
(
1−α
w

) 1−α
α z − r

)
λ if α

(
1−α
w

) 1−α
α z > r

0 if α
(
1−α
w

) 1−α
α z ≤ r,

(7)

is the excess return an entrepreneur earns above r.

Entrepreneurial Savings. Entrepreneurs’ consumption-savings problem is separable
from their production problem. In anticipation of our focus below on the stationary
equilibrium of the model, we write the recursive problem as a stationary Bellman equation:

V (a, z) = max
a′,c

log (c) + βδV (a′, z) (8)

s.t. c+ a′ = R (z) a,
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where
R (z) ≡ (1− τa) + (1− τk) (r + π (z)) (9)

is the after-tax gross return on savings, and the time-invariant taxes τa and τk, and prices r
and w, are taken as given.12 Importantly, the wealth tax is levied on the beginning-of-period
wealth, so only the capital income tax is levied on the income flow generated during the
period (r + π (z)). The optimal savings rule for this problem is

a′ (a, z) = βδR (z) a, (10)

which is linear in wealth, with a net savings rate of βδ that is independent of productivity
(thanks to log utility), although the gross savings rate (or the growth rate of their wealth)
does depend on z through the rate of return they earn, R(z). Therefore, all the reallocation
effects of changes in taxation operate through their effect on returns. The details of these
derivations can be found in Appendix A.1.13

2.3 Recursive Stationary Competitive Equilibrium

We begin with an informal discussion of the types of stationary equilibria that are
possible in this model and the particular equilibrium we will focus on in the rest of the
paper. Depending on the values of model parameters, three types of stationary equilibria are
possible: (i) an equilibrium that features capital misallocation, return heterogeneity (Rh >

Rℓ), and a non-degenerate wealth distribution; (ii) an equilibrium without misallocation
because all capital is used by the H-type, with no misallocation or return heterogeneity, and
(iii) a third equilibrium that cycles between these two. In the next section, we show that as
long as the collateral constraint satisfies an upper bound, λ < λ̄, the “heterogeneous-return”
equilibrium described in (i) emerges as the unique stationary equilibrium of the model. We
derive the upper bound λ̄ in terms of model parameters (Assumption 1) and argue that,
for a wide range of plausible parameter values, this bound is easily satisfied, which suggests
that this is the most relevant equilibrium to focus on. In addition, with misallocation and
return heterogeneity, this is the only equilibrium that provides an interesting setting for
analyzing wealth and capital income taxation. Therefore, we focus on this heterogeneous-

12Unless when needed for clarity, we suppress the dependence of individual functions on taxes to avoid
excessive notation.

13As noted in footnote 4, the effects of the wealth tax would likely be stronger with a utility function
with a savings response.
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return equilibrium in the rest of the paper.14

From this point on, we proceed in two steps. We first define some key variables and
derive some equations that hold in the heterogeneous-return equilibrium. In particular, we
give an aggregation result in Lemma 1 that will be useful in subsequent results. We then
give an intuitive discussion of how the bond and labor markets work, before we present the
existence and uniqueness of equilibrium in the next section.

Defining some key variables. An important feature of our model is that aggregate
variables can be expressed in closed form as functions of aggregate capital

K ≡ µAh + (1− µ)Aℓ, (11)

(where Ah and Aℓ are the aggregate wealth of the H-type and L-type, respectively) and
aggregate productivity Z (as in Moll, 2014). The latter is endogenous and equal to the
wealth-weighted average of two individual-level productivity terms:

Z ≡ shzλ + (1− sh) zℓ, (12)

where
sh ≡

µAh
µAh + (1− µ)Aℓ

(13)

is the wealth share of the H-type, and

zλ ≡ zh + (λ− 1) (zh − zℓ) (14)

is the effective productivity of wealth of the H-type, that is, the return they earn from their
own wealth, captured by zh, plus the excess return from borrowed capital, (λ− 1) (zh − zℓ).
Notice that zλ > zh.

Armed with these definitions, we can now state Lemma 1, which shows that aggregate
output can be written as a function of aggregate variables only (aggregation) and gives
expressions for all equilibrium prices. The expressions given for r, Rℓ,and Rh are intimately
related to the structure of the equilibrium in the bond market.

14Later, in Section 6, we show that when innovation effort is endogenized, the heterogeneous-return
equilibrium is the only stationary equilibrium possible regardless of parameter values. This would also be
the unique equilibrium if the distribution of productivity were continuous. Then, the equilibrium would be
characterized by a threshold value of productivity above which entrepreneurs borrow, as in Moll (2014).
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Lemma 1. (Aggregate Variables in Equilibrium) In the stationary heterogeneous-
return equilibrium defined in Proposition 7, aggregate output, the wage rate, the interest
rate, and gross returns are given as follows:

Y = (ZK)α L1−α (15)

w = (1− α) (ZK/L)α (16)

r = α (ZK/L)α−1 zℓ (17)

Rℓ = (1− τa) + (1− τk)α (ZK/L)α−1 zℓ (18)

Rh = (1− τa) + (1− τk)α (ZK/L)α−1 zλ. (19)

The proofs of all lemmas and propositions can be found in Appendix B.

Bond market equilibrium. With two levels of productivity, it is easy to see that the
H-type will (weakly) demand funds for production and the L-type will (weakly) supply
them for saving. The market-clearing interest rate must be between the marginal return to
capital of the two types, that is,

α

(
ZK

L

)α−1

zℓ ≤ r ≤ α

(
ZK

L

)α−1

zh, (20)

which is obtained by substituting the equilibrium wage (16) into (7).

The maximum amount the L-type can lend is given by their total wealth, (1− µ)Aℓ,
while the collateral constraint ensures that the H-type can borrow at most (λ− 1)µAh.
The heterogeneous-return equilibrium corresponds to the case when the L-type have more
wealth to lend than what the H-type are able to borrow—that is, there is an excess supply
of funds in the economy:

(λ− 1)µAh < (1− µ)Aℓ. (21)

Clearly, this happens when the H-type are not “too rich” relative to the L-type or when
the collateral constraint is “not too loose,” or both. Indeed, the inequality in (21) can be
shown to simplify to sh < 1/λ, which combines the two conditions mentioned. In this
case, the H-type borrow up to the collateral constraint—hence Kh = λAh—while the L-
type compete with each other to lend, bidding down the equilibrium interest rate to their

13



marginal product (giving r = α (ZK/L)α−1 zℓ in Lemma 1).15 So, their average capital is

Kℓ =
(1− µ)Aℓ − (λ− 1)µAh

1− µ
> 0. (22)

Two properties of this equilibrium we mentioned earlier follow from this discussion. First,
the fact that Kℓ is positive immediately implies that there is capital misallocation. Second,
from equations (18) and (19) in Lemma 1, Rℓ and Rh depend on zℓ and zλ, respectively, so
the equilibrium features return heterogeneity.

Labor market equilibrium. The labor demand function in (5) is linear in capital, so it
can be aggregated to express the labor market clearing condition as

µn (Ah, zh) + (1− µ)n (Aℓ, zℓ) = L. (23)

Substituting in n (a, z) from (5) gives the expression for the equilibrium wage in Lemma 1.

The definition of a stationary recursive competitive equilibrium is standard and is stated
in Appendix A.2.

3 Characterization of Stationary Equilibrium

In this section, we derive two equations that determine the steady-state levels of K
and Z in the heterogeneous-return equilibrium and show how they depend on the wealth
and capital income taxes. These results will be important for understanding the main
assumption that underlies the equilibrium existence and uniqueness results, which we will
prove next. We then show that the stationary wealth distribution has a Pareto right tail.

3.1 Steady State Levels of K and Z

The assets of the L-type and H-type evolve according to:

A
′

i = δ2βRiAi + (1− δ) a, (24)

15An alternative to the market structure we consider here would be to introduce a corporate sector (e.g.,
with technology Yc = (zcKc)

α
L1−α
c ) that faces no collateral constraints, which would provide entrepreneurs

an alternative investment option for their wealth. The marginal return of capital in the corporate sector
imposes a lower bound on equilibrium r: r ≥ αzc (ZK/L)

α−1
. As long as zc satisfies zℓ < zc < zh, both

the corporate sector and the H-type produce in equilibrium, while the L-type lend all their wealth and do
not produce. This structure delivers the same result as our benchmark model, with zc replacing zℓ.
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where a ≡ (1− µ)Aℓ + µAh = K is the wealth of a newborn entrepreneur, which in turn is
equal to the average wealth in the economy. Adding up these equations for i = {h, ℓ} and
substituting ā = K, we obtain the law of motion for aggregate capital:

K
′

K
= δ2β (shRh + (1− sh)Rℓ)︸ ︷︷ ︸

wealth-weighted avg. return

+(1− δ) , (25)

which shows that the growth rate of K depends on the wealth-weighted average return.
Substituting in the expressions for Rℓ and Rh from Lemma 1 and setting K ′ = K yields
the following equation—that is analogous to the steady-state condition in the neoclassical
growth model—where the (after-tax) marginal product of capital is equal to the inverse of
the effective discount factor:

(1− τa) + (1− τk)αZα

(
K

L

)α−1

=
1

βδ
. (26)

This equation has far-reaching implications and plays a critical role in our subsequent
results. In particular, it reveals a neutrality result that draws a sharp distinction between
the two taxes: the after-tax marginal product of capital is independent of the capital income
tax but does depend on the wealth tax. Rearranging (26) makes this easier to see:

(1− τk)αZα

(
K

L

)α−1

=
1

βδ
− 1 + τa. (27)

If we change the wealth tax rate τa, this has the same effect as changing the effective
discount factor and hence changes the after-tax marginal product on the left hand side,
whereas if we change τk, this causes K or Z or both to adjust so as to keep the after-tax
marginal product constant and equal to ( 1

βδ
− 1 + τa). Because entrepreneurs’ rates of

return, Rh and Rℓ depend on the after-tax marginal product (eqs. 19 and 18), τa increases
the levels and dispersion of returns, whereas the τk has no effect. The following proposition
formalizes these results.

Proposition 1. (Capital Income Tax is Neutral for Returns. Wealth Tax is Not)
In the stationary heterogeneous-return equilibrium, the after-tax returns of the H-type and
L-type are independent of the capital income tax rate but do depend on the wealth tax rate:

Rℓ = 1− τa +
(

1

βδ
− (1− τa)

)
zℓ
Z

and Rh = 1− τa +
(

1

βδ
− (1− τa)

)
zλ
Z
. (28)

15



In particular, the wealth tax has a “use-it-or-lose-it” effect that changes the dispersion of
returns and therefore the level of wealth inequality, whereas the capital income tax has no
distributional effects.

Intuitively, these results reflect the fact that τk affects the marginal return of capital for
both types proportionally and is therefore neutral from a distributional standpoint, while
τa affects gross returns additively and therefore has a disproportionate (negative) effect on
the returns of the L-type. Notice, however, that the proposition does not specify whether
the wealth tax increases or decreases inequality. While it is clear from (28) that the direct
use-it-or-lose-it (partial equilibrium) reallocation effect of τa is to increase the dispersion of
returns and therefore inequality, there is also a indirect (general equilibrium) effect through
the change in Z when τa changes, which needs to be considered. We turn to this next.

Stationary level of Z Equation (26) provided the first condition for the steady state
levels of K and Z. We now impose the second condition that ensures a stationary
equilibrium—that the wealth share of each type are constant—by evaluating the law of
motion for each type in (24) at A′

i = Ai for i ∈ {h, ℓ}. This implies

Ai =
1− δ

1− δ2βRi

a. (29)

Substituting in the definition of a = (1− µ)Aℓ + µAh, we obtain

1 = (1− δ) 1− δ
2β ((1− µ)Rh + µRℓ)

(1− δ2βRℓ) (1− δ2βRh)
. (30)

We then use the stationary value of returns from (28), which yields a quadratic equation
that determines the steady state level of Z:(

1− δ2β (1− τa)
)
Z2 − [(1− δ) (µzλ + (1− µ) zℓ) + δ (1− δβ (1− τa)) (zλ + zℓ)]Z (31)

+δ (1− δβ (1− τa)) zℓzλ = 0.

This equation reveals a few key properties of the stationary equilibrium. First, we
can show that only the larger root of this quadratic equation satisfies zℓ < Z < zλ (see
the appendix). Therefore, if the stationary heterogenous-return equilibrium exists (as we
assumed so far), it is also unique. Plugging this value of Z into (26) then determines the
steady state level of K. Second, and more important, while τa appears in (31), τk does not,
which means that the capital income tax rate has no effect on equilibrium productivity
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level—only τa does. This result further sharpens the neutrality results in Proposition 1 by
adding Z to the list of variables that τk has no effect on.16

Elasticity of Capital with Respect to Taxes. Before moving forward, we highlight
the implications of equation (26) for the response of aggregate capital to taxes as this
will be important for our results later. Crucially, the wealth tax affects the level of capital
through two channels—directly, by changing the right hand side of (26) as well as indirectly,
through its effect on productivity (which in turn changes the capital level)—whereas the
capital income tax only has the former effect. This asymmetry implies different elasticities
of capital with respect to each tax:

ξKτa ≡
d logK

dτa
=

α

1− α
d logZ

dτa
− 1

(1− α)
(

1
βδ
− (1− τa)

) ; (32)

ξKτk ≡
d logK

dτk
= − 1

(1− α) (1− τk)
. (33)

For standard parameter values these elasticities are well within the range reported in
Scheuer and Slemrod (2021) in their review of the literature and are consistent with the
values reported by Jakobsen, Jakobsen, Kleven and Zucman (2019) (see Figure F.2 in the
Appendix). We will have more to say about these formulas in the tax analysis.

3.2 Existence and Uniqueness of Stationary Equilibrium

As mentioned above, the types of equilibria that emerge depend on the tightness of the
collateral constraint. We now formally define an upper bound on the collateral constraint in
terms of model parameters that ensures the existence and uniqueness of the heterogenous-
return equilibrium.

Assumption 1. The collateral constraint is “not too loose,” that is, λ satisfies

λ < λ ≡ 1 +
(1− δ) (1− µ)

(1− δ)µ+ δ (1− δβ (1− τa))
(
1− zℓ

zh

) . (34)

Two comments are in order. First, in addition to model parameters, λ also depends
16We should note that this stark conclusion of complete neutrality follows from the combination of the

constant-returns-to-scale and log utility assumptions. That said, this result still suggests that even in a
more general model that relaxes these assumptions, the wealth tax is likely to have a stronger impact on
distributional outcomes as well as on productivity than does the capital income tax. Our quantitative
results in Guvenen et al. (2023) confirms this conjecture.
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on—and, in particular, is decreasing in—the wealth tax rate. The reason is that a higher τa
increases wealth inequality (Proposition 1), thereby shifting wealth from the L-type to the H-
type (sh ↑), which makes it harder for the excess supply condition, (λ− 1)µAh < (1− µ)Aℓ,
to hold, unless λ is reduced. Therefore, λ̄ must get tighter to disallow high values of λ.17

Second, τk does not appear in (34), which is a direct consequence of the neutrality result.

Assumption 1 can be equivalently stated as an upper bound on τa for a given λ, by
inverting (34). This alternative form provides another useful way to think about the
constraint imposed on the economy—as an upper bound on the policy instrument τa that
sustains this equilibrium for a given value of the primitive λ. Assumption 2 gives this
alternative formulation.

Assumption 2. Assumption 1 can be stated equivalently as an upper bound on the wealth
tax, given λ:

λ < λ ←→ τa < τa ≡ 1− 1

βδ

1− 1− δ
δ

1− λµ

(λ− 1)
(
1− zℓ

zh

)
 . (35)

We are now ready to state the next proposition.

Proposition 2. (Existence and Uniqueness of Stationary
“Heterogeneous-Return” Equilibrium) A stationary competitive equilibrium exists and
is unique if and only if λ satisfies Assumption 1. This equilibrium is characterized by an
endogenous productivity level Z that satisfies zℓ < Z < zh, and features return
heterogeneity (Rh > Rℓ). In addition, the wealth share of the H-type satisfies sh < 1/λ.

So, how much borrowing does Assumption 1 allow for empirically reasonable parameter
values? To get a sense about this, in Figure 1, we plot the values of λ̄ (left panel) and
the debt-to-GDP ratio (right panel) for different values of β and zℓ/zh and setting τa = 0.
This threshold, which we denote with λ̄0 ≡ λ̄|τa=0, provides an upper bound for λ̄ that
characterizes the maximum collateral constraint that sustains the equilibrium in the model

17It is also easy to see from (34) that λ̄ is decreasing in µ and zh/zℓ because, again, higher values of
both make it easier sh < 1/λ to be violated. λ is decreasing in δ because longer life-spans benefit the
accumulation of assets by H-type entrepreneurs, who have higher returns than the L-types. By contrast, λ̄
is increasing in β (for a fixed δ) because as both types become more patient the aggregate savings in the
economy increase, in turn lowering wealth inequality due to the redistribution of wealth among newborns.
This results in a higher wealth share of the L-types, increasing the supply of funds available and reducing
the demand (reducing λAh), sustaining the heterogeneous return equilibrium.
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Figure 1: Conditions for Stationary Equilibrium with Heterogeneous Returns

(a) Threshold λ0 (b) Debt-to-Output Ratio
(
λ = λ0

)

Note: The left panel plots the value of λ0 found in Proposition 2 for combinations of β and zℓ/zh. The right panel shows the
debt-to-output ratio when λ = λ0 computed as

(
λ0 − 1

)
Ah/Y . In both panels, the remaining parameters are set as follows:

δ = 49/50, µ = 0.10, zh = 1, τk = 25%, and α = 0.4.

without a wealth tax.18 As seen in the left panel of Figure 1, for a plausible value of
β = 0.97 and zℓ/zh = 0.5, the implied λ̄0 is above 1.5, which corresponds to a debt-to-
GDP ratio (

(
λ0 − 1

)
µAh/Y ) slightly above 3. This is about twice the debt-to-GDP ratio

in the US in recent years (1.52) reported in Guvenen et al. (2023), confirming that the
heterogeneous-return equilibrium allows substantial amounts of borrowing in the model.

Although λ < λ0 holds τa at zero, we can use Assumption 2 to find the maximum wealth
tax (τ̄a) that sustains the equilibrium for a given λ. So, as an alternative experiment, we
choose λ to generate a debt-to-GDP ratio of 1.5 to match the US economy and plot the
corresponding τ̄a as we vary β and zℓ/zh in Figure F.3 (left panel) in Appendix F. For β = 0.8

and zℓ/zh = 0.3, a wealth tax up to 4% can be sustained, and for β = 0.97 and zℓ/zh = 0.5,
a wealth tax above 6% can be sustained. The right panel shows the corresponding return
heterogeneity (Rh −Rℓ) in each case, which ranges from 3% to 6%.

To sum up, these comparisons show that the model we analyze has a unique
heterogeneous-return equilibrium that allows substantial borrowing and can sustain high
wealth tax rates under a wide range of plausible parameter values.

18Other parameter values are set as follows: Average life expectancy is 50 years (δ = 49/50); the share
of H-type entrepreneurs is µ = 0.1; the capital intensity is α = 0.4; and the capital income tax is τk = 25%.
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3.3 Stationary Wealth Distribution

The following lemma characterizes the gross saving rates of entrepreneurs.

Lemma 2. (Saving and Dissaving in the Stationary Equilibrium) In the stationary
heterogeneous-return equilibrium, the rates of return of the L-type and the H-type satisfy the
following inequalities: βδRℓ < 1 < βδRh < 1/δ. As a result, the wealth of the L-type (H-type)
shrinks (grows) with age. Therefore, the H-type is wealthier than the L-type: sh > µ.

Using this Lemma, we now derive the stationary wealth distribution and show a key
property. Since both types start life with ā, and L-type’s wealth shrinks while H-type’s
wealth grows, each group’s wealth distribution lies in two non-overlapping (except at ā)
intervals: (0, a] and [a,∞), with (endogenously-determined) discrete mass points:{
. . . , (βδRℓ)

2 a, βδRℓa, a
}

and
{
a, βδRha, (βδRh)

2 a, . . .
}
. The population share at wealth

level (βδRi)
t a is equal to the fraction of each type who has lived exactly t years. So, the

wealth distribution has a geometric distribution with parameter δ:19

Γi
(
(βδRi)

t a
)
= Pr (z = zi) Pr (age = t) = Pr (z = zi) δ

t (1− δ) . (36)

This structure allows us to define a measure of wealth concentration at the top, by
dividing the total wealth of H-type entrepreneurs older than age t :

Ah,t ≡ (1− δ)
∞∑
s=t

(
βδ2Rh

)s
µa =

(
βδ2Rh

)t
µAh, (37)

by aggregate wealth. Hence, the wealth share of the top x percent is:

s (x) ≡ (βδ2Rh)
t(x)

µAh
K

=
(
βδ2Rh

)t(x)
sh, (38)

where t (x) corresponds to the age above which agents are in the top x percent of the wealth
distribution.20 It is easy to see from (38) that the wealth distribution has a Pareto right
tail, which is one of the most salient features of the wealth distribution in modern economies
(Vermeulen, 2018). To see this, let S (x) ≡ s (x) /s (10x) be the share of the wealth held by

19This characterization follows Jones (2015), adapted to the discrete time setting. We discuss the
distribution and its response to changes in the environment in Appendix G.

20Formally, the wealth share of the top x percent corresponds to the wealth share of H-type entrepreneurs
of age t = log x/ log δ.
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the top 10x percent that is held by the top x percent. From (38), this is:

S (x) =
(
βδ2Rh

)− log 10
log δ , (39)

which is independent of x and increasing in the returns of high-productivity entrepreneurs.
Hence, the distribution is Pareto, with the inverse of the tail index given by
η = −log(βδ2Rh)/log(δ). Using Lemma 2, η satisfies 0 < η < 1 and increases (inequality is
higher) with Rh as expected.21

4 Effects of Wealth Taxation

In this section, we consider the effects of increasing the wealth tax on equilibrium
outcomes. The results here are global in nature—they hold for any starting level of
τa < τa. We abstract from other taxes to focus on the trade-offs between these two forms
of capital taxation. In Section 4.1, we do not impose a government budget constraint; in
Section 4.2, we do. In Section 5, we turn our attention to the optimal combination of
capital income and wealth taxes that maximizes average newborn welfare.

4.1 Effects on Aggregate Productivity and Returns

Because τk does not affect Z, we can study the effect of τa on Z without needing to
specify the government budget. We now show the main result of this section: An increase
in the wealth tax increases aggregate productivity, Z.

Proposition 3. (Efficiency Gains from Wealth Taxation) For all τa < τa, a higher
wealth tax increases the steady-state aggregate productivity level, dZ

dτa
> 0.

The proof involves showing that the quadratic equation (31) discussed above that pins
down Z shifts down and to the right when τa is raised, as shown in Figure 2.22

Recall that Z ≡ shzλ + (1− sh) zℓ, so a higher Z must follow from an increase in sh—
that is, from the reallocation of wealth towards the H-type, which means higher wealth
inequality. We state this as a corollary given its substantive importance for later results.

21Although, technically speaking, the Pareto distribution is continuous, Γ can be thought of a discrete
counterpart, with the same fractal property as the Pareto.

22The sketch of the proof is easy to see diagrammatically: the y-intercept of the polynomial h in Figure
2 is given by δzℓzλ(1 − βδ(1 − τa)), so it increases with τa, and the values of the parabola are fixed at zℓ
and zλ (at values shown on the figure), forcing the x-intercepts (the roots of h) to shift to the right.
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Figure 2: Efficiency Gains from Wealth Taxation

x
zℓ

zλ

h(x)

δzℓzλ (1 − βδ (1 − τa))

dh (x)
dτa

= βδ2 (1 − τa) (x − zℓ) (zλ − x) < 0  iff  zℓ < x < zλ

Z
Z′￼

(1 − δ) (1 − μ) zλ − zℓ

zλ

−(1 − δ) μ
zλ − zℓ

zℓ

Note: The figure plots the quadratic polynomial on the left hand side of equation (31) for τa (black line) and τ ′a > τa (red
line). The equilibrium productivity levels are given by the larger root, marked with the two circles on the horizontal axis.

Corollary 1. (Wealth Taxation Increases Wealth Inequality) For all τa < τa, a
higher τa reallocates wealth towards the H-type, dsh/dτa > 0, which increases wealth
inequality (because sh > µ from Lemma 2).

This result has important implications for returns. The rise in wealth inequality can
only happen if τa increases the return gap logRh − logRℓ, since the savings decision is
linear and only depends on after-tax returns. However, the effect of wealth taxes on the
return gap is, in principle, ambiguous. The gap increases due to the use-it-or-lose-it effect
of wealth taxes (Proposition 1) but it decreases due to the effect of taxes on productivity
(Proposition 3).23 We can nevertheless determine the effect of wealth taxes on returns in
steady state by exploiting the relationship between returns and wealth inequality implied
by Equation (29):

Rh =
1

βδ2

(
1− (1− δ)µ

sh

)
and Rℓ =

1

βδ2

(
1− (1− δ) (1− µ)

(1− sh)

)
. (40)

These two equations imply that a change in productivity (and hence on wealth inequality) is
necessarily accompanied by an increase in the return gap, so that the use-it-or-lose-it effect
always dominates. In fact, they show a stronger version of this result, which will become

23This is easier to see by noting that Rh −Rℓ =
(

1
βδ − (1− τa)

)
(zλ−zℓ)

Z .
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useful later: increasing τa increases Rh and reduces Rℓ. It also reduces the population-
weighted returns both in levels and in logs. The next proposition formalizes these results.

Proposition 4. (Wealth Tax Increases Equilibrium Dispersion of Returns) For
all τa < τa, an increase in the wealth tax increases the rate of return of the H-type and
reduces that of the L-type. That is,

d logRh

dτa
≡ ξRh

τa = ξRh
Z ×

d logZ

dτa
> 0 and

d logRℓ

dτa
≡ ξRℓ

τa = ξRℓ
Z ×

d logZ

dτa
< 0, (41)

where ξRi
Z = d logRi

d logZ
. Furthermore, the population-weighted average of returns and log returns

decline with τa:

d (µRℓ + (1− µ)Rh)

dτa
< 0; (42)

d (µ logRh + (1− µ) logRℓ)

dτa
=
(
µξRh

Z + (1− µ) ξRℓ
Z

) d logZ
dτa

< 0. (43)

Equation (43) means that an increase in the wealth tax reduces the lifetime growth of
wealth expected by a newborn entrepreneur because the average elasticity of returns (which
determines the growth rate of savings, eq. 10) with respect to productivity is negative. This
result will be important in shaping the welfare consequences of the wealth tax in Section 5.

This proposition also highlights an important property of the effects of wealth taxes:
They can be characterized indirectly through the effect of wealth taxes on productivity. We
use this insight below as we proceed to determine the effects of τa on aggregate variables
and welfare.

4.2 Effects on Aggregate Variables
We now turn to the response of aggregate variables—like capital, output, and wages—to

changes in the wealth tax. To do this, we need to specify the government budget and how it
is balanced with the capital income tax as K adjusts in the stationary equilibrium according
to equation (26) in response to changes in τk.

Government budget. The government uses the revenues collected from the capital
income and wealth taxes to finance (unproductive) government expenditures G and
lump-sum transfers to workers T :

G+ T = τkαY + τaK =

(
τk + τa

βδ (1− τk)
1− βδ (1− τa)

)
αY. (44)
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What should we assume about total government spending, G + T? We consider two
assumptions. The first one has empirical appeal and greatly simplifies the analysis: we
assume that both G and T are fixed fractions of output. The second one is to assume that
G + T is constant—independent of the size of the economy. The first assumption implies
that spending will rise/fall linearly with output if different taxes affect the output level,
whereas the second assumption implies that the tax experiments we consider are revenue
neutral. We start with the first assumption.

Assumption 3. (Constant Government Spending Share) Assume that G = θGαY

and T = θTαY, so total tax revenue is G+ T = θαY , where θ ≡ θG + θT .

Under Assumption 3, equation (44) implies a tight link between τk and τa:24

1− θ
1− βδ

=
1− τk

1− βδ (1− τa)
. (45)

A special case worth highlighting is when θ = 0: there are no revenue requirements, so
taxation only serves to redistribute among entrepreneurs or to increase productivity. In
this case, it must be that either τk ≥ 0 and τa ≤ 0 or τk ≤ 0 and τa ≥ 0 , with no taxation
also being feasible, τk = τa = 0.

We first show that under Assumption 3, all aggregate quantities—capital, output, and
wages—increase when the wealth tax is raised and the capital income tax is reduced
accordingly to keep the government budget balanced. Since Proposition 3 established that
Z rises with τa, all we need to show is that aggregates increase with Z. Notice that this
increase in productivity and aggregates happens even as the total tax revenue collected
increases as per Assumption 3, and regardless of how the revenue is spent on G versus T .
(As we will see in a moment, aggregates would increase even more if we instead assume
revenue neutrality.)25 These results are summarized in the following lemma.

Lemma 3. For all τa < τa, under Assumption 3, the steady-state level of capital is

K =

(
α
βδ (1− θ)
1− βδ

) 1
1−α

Z
α

1−αL, (46)

24τk = θ without a wealth tax (τa = 0) and τa = θ(1−βδ)
βδ(1−θ) without a capital income tax (τk = 0).

25Note that if τa were raised without any change in τk, aggregate capital would have decreased, because
of the negative (and empirically probably large) elasticity of capital with respect to τa, discussed above and
shown in Figure F.2a.
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and the long run elasticities of aggregate variables with respect to productivity are

ξKZ = ξYZ = ξwZ =
α

1− α
, (47)

where ξxZ ≡
d log x
d logZ

. Moreover, the wealth level of each entrepreneurial type is

Ah =
1

µ

Z − zℓ
zλ − zℓ

K
dAh
dZ
∝ Z

2α−1
1−α (Z − αzℓ) > 0; (48)

Aℓ =
1

1− µ
zλ − Z
zλ − zℓ

K
dAℓ
dZ
∝ Z

2α−1
1−α (αzλ − Z) ≶ 0. (49)

Two remarks are in order. First, equation (46) implies that the steady-state levels of
capital, output, and wages respond to the wealth tax only through its effect on aggregate
productivity. Thus, the (semi-)elasticities of aggregates with respect to τa are

ξKτa = ξYτa = ξwτa =
α

1− α
× d logZ

dτa
. (50)

Second, whereas Ah increases unambiguously with the wealth tax, Aℓ decreases unless
αzλ ≥ Z (as low-productivity entrepreneurs are born with higher wealth but also dissave
at a higher rate). This condition provides a threshold for α because the equilibrium Z is
independent of α (see eq. 31).

Let us now consider what happens if, instead of Assumption 3, we assume that the total
tax revenue is constant: G + T = θ. In this case, because tax revenue does not rise with
output, the same rise in τa is matched with a larger decline in τk than under Assumption 3,
implying a stronger positive response of aggregates to τa. The following lemma states this
result.

Lemma 4. Assume that total government is fixed, G+T = θ. Then, the (semi-)elasticities
of capital, output, and wages to a change in the wealth tax satisfy

ξKτa = ξYτa = ξwτa >
α

1− α
d logZ

dτa
. (51)
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4.3 Effects on Individual Welfare

To understand the welfare effects, we start with the value of workers,

Vw =
1

1− βδ
log (w + T ) , (52)

and the value of an entrepreneur of type i ∈ {h, ℓ} with assets a:

Vi (a) =
1

1− βδ
log (a) +

1

(1− βδ)2
[
log (βδ)βδ (1− βδ)1−βδ + logRi

]
, (53)

which is obtained by substituting the solution of the entrepreneurs’ problem into (10). (Note
that we use Vi(a) to denote V (a, zi) to simplify notation.) This gives rise to the following
result characterizing the conditions for welfare changes after an increase in the wealth tax.

Proposition 5. For all τa < τa, under Assumption 3, an increase in the wealth tax increases
the welfare of workers and newborn H-type entrepreneurs,

dVw
dτa

> 0 and
dVh (a)

dτa
> 0. (54)

Moreover, an increase in the wealth tax increases the welfare of newborn L-type
entrepreneurs and the ex ante welfare of newborn entrepreneurs under the following
conditions:

dVℓ (a)

dτa
> 0 if ξKZ >

−1
1− βδ

ξRℓ
Z ; (55)

d (µVh (a) + (1− µ)Vℓ (a))
dτa

> 0 if ξKZ >
−1

1− βδ

(
µξRh

Z + (1− µ) ξRℓ
Z

)
. (56)

An increase in the wealth tax increases the welfare of workers and high-productivity
entrepreneurs, because it increases wages, transfers, average wealth, and the returns of
high-productivity entrepreneurs.26 The welfare change of low-productivity entrepreneurs
and entrepreneurs as a group is ambiguous because of two countervailing forces that are
apparent in (53): a higher τa increases the initial wealth of entrepreneurs, Lemma 3, but
decreases the lifetime (discounted) growth on their initial wealth because the returns of the
L-type as well as the average return of entrepreneurs decrease, Proposition 4.

26It is worth noting that, under Assumption 3, a worker’s the total income is w+T = ((1− α) + θTα)Y/L
with (semi-)elasticity with respect to the wealth tax given by ξw+T

τa ≡ d log (w + T ) /dτa = α
1−α×d logZ/dτa.
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If the pass-through of productivity to capital is sufficiently high, that is, if α is sufficiently
high, entrepreneurs overall benefit from the increase in the wealth tax, despite the decrease
in returns. In this way, the conditions established in the Proposition 5 imply threshold
values for α above which the welfare of entrepreneurs increases. However, for a range of
plausible parameter values, these thresholds turn out to be too high, with α having to be
above 0.7. See Figure F.4 in Appendix F.

5 Optimal Taxation

The government’s objective is to maximize the equilibrium utilitarian welfare of the
newborns, W , by choosing the optimal combination of capital income and wealth taxes,
subject to its budget constraint. Let nw ≡ L/(1+L) represent the fraction of workers in the
population. The government’s objective is

W ≡ nwVw (w) + (1− nw) (µVh (a) + (1− µ)Vℓ (a)) , (57)

so its optimization problem is
max
τk,τa

W s.t. (44), (58)

We can make the trade-off faced by the government clearer by substituting in the value
functions of workers and entrepreneurs from (52) and (53):

W =
1

1− βδ
(nw log (w + T ) + (1− nw) log a) +

1− nw
(1− βδ)2

(µ logRh + (1− µ) logRℓ) + v.

(59)
where v ≡ 1−nw

(1−βδ)2 log (βδ)
βδ (1− βδ)1−βδ is a constant. Increasing the wealth tax (while

simultaneously reducing the capital income tax as in 45) affects aggregates through its
effect on aggregate productivity and leads to higher wages and wealth (Lemma 3). We call
this the level effect of wealth taxation. However, increasing the wealth tax also results in
lower lifetime wealth growth because of the decrease in average log returns (Proposition
4). This is the (negative) growth effect of wealth taxation. An important insight is that
both effects can coexist because the growth effect is different for the H-type and the L-type,
allowing for higher aggregate wealth even as entrepreneurs expect lower wealth growth over
their lifetimes. An interior solution balances these effects and satisfies dW/dτa = 0, where
dW/dτa depends on the elasticities of aggregates with respect to Z.

Figure 3 illustrates the forces at play. The elasticities of workers’ income and initial
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Figure 3: Determination of the Optimal Wealth Tax

Note: The figure shows the conditions satisfied by the optimal wealth tax solving (58). The horizontal line is the (population)
average of the elasticity of workers’ income and capital with respect to productivity, ξw+T

Z and ξKZ respectively. The increasing
line is proportional to the negative of the average elasticity of returns with respect to productivity

(
ξgZ

)
. The optimal wealth

tax is denoted by τ⋆a , and τTR
a =

θ(1−βδ)
βδ(1−θ)

denotes the tax reform tax, the level at which τk = 0. The remaining parameters
are as follows: δ = 49/50, βδ = 0.96, µ = 0.10, zh = 1, θ = 25%, and α = 0.4.

wealth with respect to productivity
(
nwξ

w+T
Z + (1− nw) ξKZ

)
give the (percentage) gain in

workers’ and entrepreneurs’ welfare as the wealth tax increases (in turn, raising
productivity). These elasticities are constant in our economy as shown in Lemma 3
(equation 47) and are both equal to α/ (1− α), which is positive.

While ξKZ captures the response of the initial wealth of entrepreneurs, the wealth tax
changes returns as well, which in turn affects the growth rate of their wealth over their
life time. This additional effect is captured by the elasticity of the average growth rate of
entrepreneurs’ wealth over their life time, which is given by

ξgZ ≡
1

1− βδ

(
µξRh

Z + (1− µ) ξRℓ
Z

)
, (60)

where the superscript g stands for “growth,” and the scaling term comes from the discounted
sum over life time. This elasticity is negative (ξgZ < 0, Proposition 4) and decreasing in
τa—becomes more negative—through its effect on Z, reflecting the widening gap between
low and high returns as the wealth tax increases.

The choice of optimal tax balances these gains and losses, so the optimal combination
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(τ ⋆a , τ
⋆
k ) is determined by the intersection of the two lines in Figure 3. We formalize this in

the following proposition.

Proposition 6. (Optimal Taxes) Under Assumption 3, there is a unique combination of
tax instruments (τ ⋆a , τ ⋆k ) that maximizes the utilitarian welfare. An interior solution τ ⋆a < τa

is the solution to:

0 =
(

nwξ
w+T
Z + (1− nw) ξKZ︸ ︷︷ ︸
Level Effect = α

1−α
(+)

+ (1− nw) ξgZ︸︷︷︸
Growth Effect (−)

) d logZ

dτa︸ ︷︷ ︸
(+)

, (61)

which can be restated as
α

1− α
= − (1− nw) ξgZ .

This condition implies two cutoff values for α, α and α, such that (τ ⋆a , τ ⋆k ) has the following
properties:

τ ⋆a ∈
[
1− 1

βδ
, 0

)
and τ ⋆k > θ if α < α

τ ⋆a ∈
[
0,
θ (1− βδ)
βδ (1− θ)

]
and τ ⋆k ∈ [0, θ] if α ≤ α ≤ ᾱ

τ ⋆a ∈
(
θ (1− βδ)
βδ (1− θ)

, τmax
a

)
and τ ⋆k < 0, if α > ᾱ

where τmax
a ≥ 1, α and α are the solutions to equation (61) with τa = 0 and τa = θ(1−βδ)

βδ(1−θ) ,
respectively. When θ = 0, and there are no revenue needs, so α = α.

Figure 3 also clarifies the roles of the thresholds α and α.27 The lower threshold α

marks the level of nwξw+TZ + (1− nw) ξKZ for which τa = 0 is optimal. Any α > α implies a
higher scope for workers’ income and capital to rise with the wealth tax and thus a positive
optimal wealth tax. Relative to a benchmark with τa = 0, capital income taxes are lower
and welfare gains come from the level effect on wages, transfers, and capital. At the same
time, the dispersion in returns is higher and, as a result, entrepreneurs’ welfare is lower
than without the wealth tax. The upper threshold α is similarly defined by the level of

27The value of the thresholds depend on Z, which is endogenous but independent of α (equation 31).
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Figure 4: α Thresholds for the Optimal Wealth and Capital Income Taxes

Note: The figure reports the threshold values of α for the optimal wealth tax to be positive (lower threshold) and capital
income taxes to be positive (upper threshold) for different levels of productivity dispersion (zℓ/zh). We set the remaining
parameters as follows: δ = 49/50, βδ = 0.96 µ = 0.10, zh = 1, θ = 25%, and α = 0.4.

nwξ
w+T
Z + (1− nw) ξKZ for which

τa = τTRa ≡ θ (1− βδ)
βδ (1− θ)

(62)

is optimal. At that level, the wealth tax finances all government spending, so τk = 0.
Consequently, any α > α implies that the optimal tax combination is one of a positive
wealth tax and a capital income subsidy. Finally, the upper bound on the wealth tax (τmax

a )
ensures that Rℓ remains positive.

Figure 4 shows how the thresholds for α vary with the dispersion in entrepreneurial
productivity when we set θ = 0.25, implying a capital income tax rate of 25% in the
absence of wealth taxes. Both thresholds decline as the dispersion of productivity decreases
and maintain a gap of about 0.1 that includes the typical values of α used in the literature,
between 0.3 and 0.4. For example, a value of α of 1/3 is always in the intermediate range,
implying positive values for the optimal levels of capital income and wealth taxes, while a
value of α of 0.4 implies a positive wealth tax and a capital income subsidy if the ratio of
productivities satisfies zℓ/zh ≥ 0.2.

Figure 5 shows the levels of the optimal wealth and capital income taxes for different
combination of parameters, holding α fixed at 0.4. The optimal wealth tax is positive
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Figure 5: Optimal Taxes

(a) Optimal Wealth Tax τ⋆a (b) Optimal Capital Income Tax τ⋆a

Note: The figures report the value of the optimal wealth and capital income taxes for combinations of the discount factor (β)
and productivity dispersion (zℓ/zh). We set the remaining parameters as follows: δ = 49/50, µ = 0.10, zh = 1, θ = 25%, and
α = 0.4.

except for corner cases where the condition in Assumption 2 for the heterogeneous return
equilibrium implies a negative upper bound for wealth taxes (τa < 0). This happens when
there is no capital misallocation because L-type entrepreneurs are either too unproductive
or too impatient, leading wealth to be concentrated in the hands of H-type entrepreneurs.
As the dispersion of productivity decreases, or entrepreneurs are more patient, there is more
misallocation and a higher optimal level of wealth tax in the range of 0 to 2 percent for
most parameter combinations. The flip side of this pattern is the decrease in the optimal
capital income tax eventually becomes a subsidy as the optimal wealth tax increases.

6 Wealth Taxation with Innovation

We now extend the baseline model to endogenize the distribution of entrepreneurial
productivity as the outcome of a costly and risky innovation process and to determine
how innovation depends on the combination of capital income and wealth taxes. The
distribution is fully characterized by the fraction of H-type entrepreneurs, which we relabel
µ̃ in this section to emphasize that it is endogenous. Specifically, we assume that newborn
innovators come up with new ideas for production. The quality of these ideas is captured
by the productivity, z, of the technology they describe. Once an idea is generated, the

31



innovator uses it to produce and has access to it for the rest of their lifetime (akin to having
a perpetual patent), just as in Section 2.

Innovation requires costly effort. Crucially, an innovator’s effort is not guaranteed to
grant them success, as innovation is a risky endeavor. Instead, effort, e, determines the
probability that the innovator’s idea turns into a high-productivity technology,
Pr (z = zh) = p (e). The innovators’ problem is to maximize ex ante value:

V0(a) ≡ max
e

p (e)Vh (a) + (1− p (e))Vℓ (a)−
1

(1− βδ)2
Λ (e) , (63)

where V0(a) denotes the maximized value, Λ is a strictly increasing, strictly convex, and
twice continuously differentiable cost function for effort with Λ (0) = 0 and Λ′ (0) = 0. The
resulting value of an idea corresponds to the value of an entrepreneur with productivity zh
or zℓ, depending on the outcome of the innovation process. These values are the same as in
equation (53). Without loss of generality, we set p (e) = e to simplify the problem.

The optimal effort choice is characterized by the solution to the following equation:28

Λ
′
(e) = (1− βδ)2 (Vh (a)− Vℓ (a)) = logRh − logRℓ. (64)

So, the effort choice depends on the return gap, logRh − logRℓ. A higher return gap
generates higher incentives for effort as it captures the difference in lifetime payoffs between
high- and low-productivity entrepreneurs. Moreover, because the equilibrium returns are
a function of aggregate productivity (equation 40), the optimal effort decision rule is a
function of Z and depends on τa only through productivity: e (Z).

6.1 Stationary Equilibrium with Innovation

A stationary recursive competitive equilibrium for the economy with endogenous
innovation can be defined analogously to the equilibrium without innovation described in
Section 2.3 with two additional conditions: (i) innovators’ effort choice solves problem (63)
and (ii) the aggregate share of H-type is consistent with the optimal effort choice. Because
all innovators are identical (at birth), they make the same choices, so this second
condition becomes: µ̃ ≡ p (e) = e (Z). The rest of the economy is characterized as in

28We assume that the cost function Λ is such that a corner solution is never optimal. This is done by
evaluating the equation at Z ∈ {zℓ, zh} and ensuring that the solution is interior in both cases.
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Section 2. The stationary equilibrium can therefore be stated as a fixed point in µ̃:

µ̃ = e (Z (µ̃)) , (65)

Given µ̃, the equilibrium productivity Z (µ̃) is determined by equation (31). Then,
individual innovators take µ̃, Z, and the implied returns Rh and Rℓ as given when making
their innovation effort choice, e (Z (µ̃)). This choice, in turn, implies µ̃. We provide a
complete definition of the equilibrium in Appendix A.2.

A couple of remarks are in order. First, there are no stationary equilibria with innovation
in which returns are homogeneous (sh > 1/λ). This is because without return dispersion
the optimal innovation effort is e = 0, as implied by equation (64), making it so that there
are no H-type entrepreneurs. But then there would be no demand for funds coming from
high-productivity entrepreneurs (sh < 1/λ), leading to a contradiction. Thus, all stationary
equilibria must feature return heterogeneity.

Second, the conditions in Assumptions 1 and 2 for the stationary equilibrium to feature
return heterogeneity (ensuring that sh < 1/λ holds) must be restated because they depend
on µ̃, which is now endogenous. For instance, as τa increases, the return gap grows and
entrepreneurs exert more effort, increasing µ̃ and overall productivity, as we show formally
below in Propositions 8 and 9. But, as µ̃ increases, so does sh, making it harder to guarantee
that the demand for funds from H-type entrepreneurs is met by the wealth held by the L-
types, which is required for the heterogeneous-return equilibrium to arise. This results in a
new upper bound for wealth taxes, τ µ̃a < τa.

We establish the existence of a unique solution to (65), that is a unique fixed point for
µ̃ that characterizes the stationary equilibrium of the economy. Existence of the fixed point
follows from standard fixed point arguments relying on Cellina’s and Brouwer’s fixed point
theorems (Border, 1985, Thms. 15.1, 16.1). Uniqueness follows from standard comparative
statics results for fixed points after showing that the mapping of µ̃ into itself is monotone.29

We can now state the main result of this section.

Proposition 7. (Existence of a Unique Stationary Equilibrium with Innovation)
There exists an upper bound for the wealth tax τ µ̃a such that for τa < τ µ̃a , there is a unique
stationary equilibrium that features heterogeneous returns. That is, there is a unique level

29Specifically, we show that the equilibrium Z is increasing in µ̃ using equation (31) and that the optimal
effort is decreasing in Z because of its effect on return dispersion. We then show that these two results
imply that the equilibrium mapping for µ̃ defined in (65) is monotonically decreasing.
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of the share of H-type entrepreneurs, µ̃, such that the optimal level of effort exerted by
innovators satisfies µ̃ = e (Z (µ̃)), and Z (µ̃) ∈ (zℓ, zh) satisfies equation (31). The upper
bound for the wealth tax satisfies

τ µ̃a = 1− 1

βδ

1− 1− δ
δ

1− λµ̃
(
τ µ̃a
)

(λ− 1)
(
1− zℓ

zh

)
 , (66)

where we make the dependence of µ̃ on τa explicit.

6.2 Effect of Wealth Taxes in the Stationary Equilibrium

Innovation. We now show that innovation increases with the wealth tax. The wealth
tax increases the equilibrium dispersion of returns for any given µ̃ (Proposition 4). This
increase in return dispersion provides incentives for higher innovation effort, as the returns
to a high-productivity idea are higher and the returns to a low-productivity one are lower.
The result is an increase in the equilibrium level of innovation effort and hence in the share
of H-type entrepreneurs. By contrast, capital income taxes have no effect on equilibrium
returns, and hence are neutral for innovation. The proof of this result builds on standard
comparative static results for fixed points found in Villas-Boas (1997).

Proposition 8. (Innovation Gains from Wealth Taxation) For all τa < τ µ̃a , an
increase in the wealth tax (τa) increases the equilibrium share of high-productivity
entrepreneurs, µ̃. Capital income taxes do not affect innovation.

Productivity. Having established that innovation effort is increasing in the wealth tax, we
can also prove that equilibrium productivity increases after taking into account the changes
in µ̃. The proof follows from the fact that the solution to equation (31) is increasing in both
µ̃ and τa. This ensures that productivity rises with the wealth tax.

Proposition 9. (Productivity Gains from Wealth Taxation with Innovation) For
all τa < τ µ̃a , an increase in the wealth tax (τa) increases productivity, Z⋆.

Similar to what we found in Section 2, this result implies that the wealth share of H-
type entrepreneurs increases with the wealth tax. The fact that the equilibrium level of µ̃
increases implies that the returns gap, logRh− logRℓ, increased as well. We can also show
that dRℓ/dτa < 0; however, the direction of the change in Rh cannot be signed without
further restrictions on the effort cost function Λ.
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Figure 6: Optimal Wealth Tax with Endogenous Innovation

Note: The figure shows the conditions satisfied by the optimal wealth tax solving (58) and (69). The horizontal line is the
(population) average of the elasticity of workers’ income and capital with respect to productivity, ξw+T

Z and ξKZ , respectively.
The increasing lines are proportional to the negative of the average elasticity of returns with respect to productivity

(
ξgZ

)
when

µ is fixed and to the elasticity of returns taking into account changes in innovation, the lighter gray line. The optimal wealth
tax is denoted by τ⋆a,µ, the tax reform tax level is τTR

a =
θ(1−βδ)
βδ(1−θ)

, the level at which τk = 0. The remaining parameters are
as follows: δ = 49/50, βδ = 0.96, µ = 0.10, zh = 1, τk = 25%, and α = 0.4.

Aggregates. Under a balanced budget (Assumption 3), the increase in productivity
implies that capital, output, and wages increase in response to an increase in τa (and a
corresponding reduction in τk). This follows directly from Lemma 3, as the steady-state
values of these variables do not depend on µ̃ directly.

6.3 Optimal Taxes with Innovation

We now turn to the choice of optimal tax rates. As in Section 5, we choose taxes to
maximize the welfare of newborns in the stationary equilibrium,

W = nwVw + (1− nw)
(
µ̃Vh (a) + (1− µ̃)Vℓ (a)−

Λ (µ̃)

(1− βδ)2

)
, (67)

which now includes the cost of innovation effort and the fact that µ̃ = e in equilibrium.

The optimal tax combination is obtained as before, by balancing the increase in welfare
coming from the level effect on higher wages and initial wealth, with the decrease in lifetime
wealth growth (due to lower average returns) that accompany the increase in productivity.
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However, there is now a new margin coming from the change in returns in response to an
increase in innovation. This effect is captured by the elasticity of the average wealth growth
of entrepreneurs’ wealth over their lifetimes with respect to the share of high-productivity
entrepreneurs, µ̃, given by:

ξgµ̃ ≡
1

1− βδ

(
µ̃ξRh

µ̃ + (1− µ̃) ξRℓ
µ̃

)
. (68)

We illustrate the effect of incorporating the changes in innovation into the optimal tax
choice in Figure 6. The level effect on workers’ income and wealth remains the same, but
the decrease in returns is not as pronounced as it was with a fixed level of µ̃. This is because
innovation increases average returns and hence the lifetime growth of wealth (ξgµ̃ > 0), which
in turn implies a higher optimal wealth tax (relative to that in Proposition 10): τ ⋆a,µ̃ > τ ⋆a .30

Crucially, this is a change in the level of returns, separate from the change in the population
weights, which has no welfare effect, as µ̃ is being chosen optimally by the entrepreneurs.
The following proposition formalizes these results.

Proposition 10. Under Assumption 3, an interior solution (τ ⋆a,µ̃ < τ µ̃a) to the optimal
tax combination

(
τ ⋆a,µ̃, τ

⋆
k,µ̃

)
that maximizes the newborn welfare, W, is the solution to the

following equation:

0 =
(
nwξ

w+T
Z + (1− nw) ξKZ︸ ︷︷ ︸
Level Effect = α

1−α
(+)

+ (1− nw) ξgZ︸︷︷︸
Growth Effect (−)

) d logZ

dτa
+ (1− nw) ξgµ̃︸︷︷︸

Innovation Effect (+)

dµ̃

dτa
, (69)

where ξxZ ≡
∂ log x
∂ logZ

is the elasticity of variable x with respect to Z and ξxµ̃ ≡
∂ log x
∂µ̃

is the
(semi-)elasticity with respect to µ̃. Recall from Lemma 3 that ξw+TZ = ξKZ = α

1−α .

The sign of the optimal tax rates depends on the strength of the level effect of
productivity on wealth and income. Just as in Proposition 10, this implies threshold
values for the capital intensity α, αµ̃ and αµ̃, such that the optimal wealth tax rate τ ⋆a,µ̃ is
positive if α > αµ̃ and the capital income tax rate τ ⋆a,µ̃ is positive if α < αµ̃. As Figure 6
shows, both these thresholds are lower when innovation is endogenous (αµ̃ < α and

30In particular, the sum of the effects of productivity on K, w+T , and growth in equation (69) evaluated
at τ⋆a (the optimum without innovation) is zero, because these terms are the same as the ones in equation
(61). This leaves the effect of innovation on wealth growth, which is positive, implying that τ⋆a,µ > τ⋆a .
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Figure 7: Optimal Taxes with Innovation

(a) α Thresholds for Optimal Wealth Taxes (b) Optimal Wealth Tax

Note: The left panel plots the lower threshold values of α for the optimal wealth tax to be positive and the upper threshold
for the capital income tax to be positive for different levels of productivity dispersion (zℓ/zh). The dashed lines correspond to
the thresholds α and α in the benchmark model presented in Figure 4. The right panel plots the values of the optimal wealth
tax for combinations of β and zℓ/zh holding α at 0.4. We set the remaining parameters as follows: δ = 49/50, µ = 0.10, zh = 1,
and θ = 25%.

αµ̃ < α). This can be seen by rewriting equation (69) as

α

1− α
= − (1− nw)

[
ξgZ + ξgµ̃ ×

dµ̃

dτa

/
dlogZ
dτa

]
. (70)

In Section 2, we obtained α and α by evaluating the right-hand-side of this equation at
τa = 0 or τk = 0, respectively. Because the growth effect of innovation, ξgµ̃, is always
positive, the corresponding α thresholds with innovation are lower. Figure 7a shows the
change in the thresholds for different combinations of parameters.

Figure 7b shows the resulting optimal wealth tax when α = 0.4 for different combination
of parameters. The additional force in favor of a higher wealth tax brought up by the
response of innovation effort actually implies corner solutions for the wealth tax

(
τ ⋆a = τ µ̃a

)
when entrepreneurs are impatient or productivity dispersion is high. This explains the kink
in the optimal wealth tax curves in the figure. While the magnitudes shown in the figures
are meant to be illustrative, they do show that, while the optimal level of the wealth tax
rises when innovation is endogenized, it does not imply implausible tax levels, with most
parameter combinations implying optimal levels below 2 percent.

37



7 Entrepreneurial Effort

Whereas in the previous section we focused on endogenizing the distribution of
productivity through innovation choice at the beginning of life, we now consider
endogenizing the level of productivity through effort choice every period. Effort affects
entrepreneurial productivity by augmenting z each period but does not affect µ. Unlike
endogenous innovation, endogenizing entrepreneurial effort keeps the same concept of
equilibrium as in Section 3.2. With this structure, we show that capital income and
wealth taxes have different effects on the effort choice of entrepreneurs. While both taxes
affect capital accumulation, a capital income tax distorts the effort choice by reducing the
marginal benefit from exerting effort. This introduces a novel channel, by which replacing
the capital income tax with a wealth tax increases output and welfare.

We introduce effort in a tractable manner that allows us to identify its core implications
for wealth and capital income taxation and solve the model analytically (see Appendix D).
We reuse the same notation, e, but now for entrepreneurial effort that affects production
according to

y = (zk)α eγn1−α−γ, (71)

where 0 ≤ γ < 1 − α. Exerting effort has a utility cost that we capture by modifying the
utility function to

u (c, e) = log (c− h (e)) , (72)

where h (e) = ψe and ψ > 0.31 Tractability depends on preserving the constant-returns-to-
scale in production and abstracting from income effects in the effort choice as in Greenwood,
Hercowitz and Huffman (1988).

The solution of the problem with entrepreneurial effort inherits the properties of our
benchmark model in Section 2 after suitable change of variables. We define consumption
net of effort costs as ĉ = c− h (e) and write the problem as

V (a, z) = max
a′,ĉ,e

log (ĉ) + βδV (a′, z) (73)

s.t. ĉ+ a′ =

(
(1− τa) + (1− τk)

(
r +

π̂ (z, k, e)

a

))
︸ ︷︷ ︸

R̂(z)

a,

31More generally, we can let effort affect production according to an increasing function g(e), and we
only require that the ratio h′(e)/g′(e) is constant. See Appendix D.
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where π̂ stands for profits net of effort costs:

π̂ (z, k, e) = max
n

{
y − wn− rk − 1

1− τk
h (e)

}
. (74)

Notice how 1/(1 − τk) scales the disutility of effort (which appears because effort cost
is not tax deductible), implying that a higher τk “effectively” raises the cost of effort.
Consequently, it also appears in the effective marginal cost of effort, h′

(e) /(1− τk), which
is behind one of our key results below.

This changes the relationship between capital income taxes and aggregate output,
capital, and wages, but does not change the equilibrium behavior of aggregate
productivity (equation 31). This is because the capital level adjusts in steady state so that
the after-tax return net of effort costs satisfies

R̂ (z) = (1− τa) +
(

1

βδ
− (1− τa)

)
z

Z
(75)

just as in Lemma 1, preserving the neutrality of τk for returns and productivity.
Consequently, the results of our benchmark model regarding the existence of a stationary
competitive equilibrium and the efficiency gains from wealth taxation (Propositions 2 and
3) remain unchanged, as do the effects of wealth taxes on after tax returns.

Proposition 11. A stationary competitive equilibrium exists and is unique if and only
if λ satisfies Assumption 1. Moreover, an increase in the wealth tax increases aggregate
productivity Z.

Focusing now on the effect of taxes on aggregate variables, we obtain closed-form
expressions for equilibrium quantities as a function of aggregate capital, K, and
productivity, Z, paralleling the results of Lemma 1. The main difference is, of course, the
presence of effort. Our first main result can be seen by inspecting the expression for
aggregate entrepreneurial effort:

E =

(
(1− τk) γ

ψ

) 1
1−γ

(ZK)
α

1−γ L
1−α−γ
1−γ , (76)

in which the appearance of (1 − τk) in numerator shows that capital income taxation
disincentivizes effort. We alluded to this above by the scaling of disutility by the
reciprocal of (1 − τk). This is because it reduces the after-tax marginal product of effort.
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Consequently, the capital income tax also reduces aggregate output and wages,

Y =

(
(1− τk) γ

ψ

) γ
1−γ

(ZK)
α

1−γ L
1−α−γ
1−γ , (77)

w = (1− α− γ)
(
(1− τk) γ

ψ

) γ
1−γ
(
ZK

L

) α
1−γ

. (78)

By contrast, wealth taxes do not directly affect the effort choice because they do not affect
the fraction of profits retained by the entrepreneur and affect production and wages only
through their effect on aggregate productivity.

The effect of capital income taxes on entrepreneurial effort introduces a new channel
affecting the optimal tax combination: When the government balances its budget, a higher
wealth tax implies a lower capital income tax, which incentivizes entrepreneurial effort
and, through it, increases aggregate output, capital, and wages, as equations (76) to (78)
make clear. This mechanism, that we term the effort-productivity effect, works on top
of the increase in capital, output, and wages already coming from increased productivity,
described in Lemma 3, which is now modified as well by the role of effort in production,
γ. Put in terms of the trade-off described in Section 5, entrepreneurial effort strengthens
the (positive) level effect of a wealth tax without changing the growth effect (because of
the neutrality of the capital income tax for after-tax returns). The result is an optimal tax
combination that now involves a higher wealth tax and a lower capital income tax.

Proposition 12. Under Assumption 3, there exists a unique tax combination
(
τ ⋆a,e, τ

⋆
k,e

)
that maximizes the utilitarian newborn welfare. An interior solution τ ⋆a,e < τa satisfies

0 =
γ

1− α− γ
βδ
logZ
dτa︸ ︷︷ ︸

Effort-Productivity Effect (+)

+
α

1− α− γ︸ ︷︷ ︸
Modified Level Effect (+)

+ (1− nw) ξgZ︸ ︷︷ ︸
Growth Effect (−)

, (79)

where ξxZ ≡
d log x
d logZ

is the elasticity of variable x with respect to Z. Moreover, τ ⋆a,e > τ ⋆a , with
τ ⋆a being the optimal tax described in Proposition 6.
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8 Conclusions

In this paper, we have studied book-value wealth taxation and capital income taxation
in an infinite-horizon economy with heterogeneous entrepreneurial productivity. We showed
an important neutrality result that distinguishes the two forms of taxation: capital income
taxation has no effect on the steady state after-tax marginal product of capital and returns,
whereas the wealth tax does. In particular, the wealth tax increases the dispersion of after-
tax returns, thereby shifting aggregate wealth toward high-productivity entrepreneurs and
therefore raising aggregate productivity. In addition, when the government balances its
budget, aggregate capital, output, and wages all rise.

We showed that the effects on welfare from a higher wealth tax differ across groups:
workers and high-productivity entrepreneurs unambiguously benefit through higher wages
and higher wealth growth, respectively, whereas low-productivity entrepreneurs typically
lose. We then characterized the optimal combination of capital income and wealth taxes
that balances these gains and losses and showed that it features a positive wealth tax if the
increase in productivity that the wealth tax generates has a strong-enough pass-through
into higher wages and capital, something that happens when the capital intensity in the
economy, captured by the capital share α, is above a threshold (around 0.3 for a wide range
of parameters).

We also studied how the form of capital taxation affects the distribution of
entrepreneurial productivity through its effects on innovation and entrepreneurial effort.
Raising the wealth tax increases innovation and entrepreneurial effort and, consequently,
the equilibrium number of high-productivity entrepreneurs as well as their marginal
product of capital. This, in turn, increases productivity, output, wages, and welfare. As a
result, the optimal wealth tax is higher in the presence of endogenous innovation and
entrepreneurial effort. At the core of these results are the powerful incentives provided by
increasing return dispersion.

One feature we left out from our analysis is fluctuations in productivity during the life
time of entrepreneurs. This could be of interest because such fluctuations would increase
misallocation as some of the capital stock will be owned by previously productive
entrepreneurs who have lost their productivity. To understand these and other
ramifications, we study an infinite-horizon version of our model (without death) with
productivity that evolves as a first-order Markov process. In Appendix E, we present this
model and show that our main results (e.g., efficiency gains from wealth taxation; the
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increases in capital, output, and wages with the wealth tax; and the trade-offs that
determine optimal taxation) continue to hold as long as entrepreneurial productivity is
positively autocorrelated.

Before concluding, we want to discuss an alternative way to understand the importance
of book-value wealth taxation and how it differs from levying the wealth tax on the market
value. First, taxes on the book value of wealth operate very differently from taxes on the
market value because they do not tax current or future returns. We can see this in the
context of our baseline model where the market value of wealth of an entrepreneur with
productivity z and a units of assets is given by the book value of their assets and the
discounted value of their future returns (which depend on their productivity), with the
market interest rate used for discounting:32

a +
∞∑
t=0

(
1

1 + r

)t
δtΠ(z, at) = a︸ ︷︷ ︸

Book Value

+

Current Capital Income︷ ︸︸ ︷
π (z) a +

βδ2R(z)
1+r

1− βδ2R(z)
1+r

π (z) a︸ ︷︷ ︸
Future (unrealized) Capital Income

. (80)

Therefore, a tax on market value wealth is a tax on the book value of assets, plus a tax
on current returns (profits), and a tax on future (unrealized) returns. So, conceptually, a
tax on the market value of wealth mixes the properties of book-value wealth taxes we have
studied with those of a tax on (excess) returns, like the capital income tax.33

Second, the taxation of book value wealth helps to address many of the practical
implementation issues raised by wealth taxes. While valuing the market value of
infrequently-traded and closely-held assets is intrinsically hard, most tax agencies already
have access to measures of the book value of private firms and other forms of wealth from
standard accounting practices. This makes book-value wealth taxation a viable and
theoretically grounded alternative to proposals of wealth taxation based on market values
and to the more commonly used capital income tax based on realized returns.

32This corresponds to the value of a “growing” Lucas tree whose fruit grows depending on the initial
“investment” in the tree, here given by a. The tree gives fruit as long as the entrepreneur is alive, hence
the discounting by δ, and its fruit reflects the entrepreneur’s savings, hence its future fruit depending on at
capturing the savings rate. The market value of the entrepreneur’s wealth is the value of their assets plus
the value of their “tree,” given by the present discounted value of its fruit.

33The returns of the L-type are given by r. Profits capture excess returns above this rate (see eq. 7)
and are zero for these agents. Therefore, a book value wealth tax is the same as a market value wealth tax
for individuals that have market returns.
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A Further Equations for the Benchmark Model

A.1 Entrepreneur’s Problem
Entrepreneurial Production. We start with an entrepreneur’s labor demand choice given a
level of capital:

π (z, k) = max
n

{
(zk)α n1−α − wn

}
,

which yields the labor demand function in equation (5). Substituting (5) into (4) allows us to solve
for the entrepreneur’s capital choice in equation (6) that implies an optimal capital choice:

k (z, a) =


λa if α

(
1−α
w

)(1−α)/α
z > r

[0, λa] if α
(
1−α
w

)(1−α)/α
z = r

0 if α
(
1−α
w

)(1−α)/α
z < r.

Replacing the capital choice and (5) into (4) yields the optimal entrepreneurial income in (7).

Entrepreneurial Savings. Given constant taxes and prices, the savings problem is

Vi (a) = max
a′

{
log
(
Ria− a′

)
+ βδV

(
a′
) }

,

where Ri = R (zi) is defined as in (9) for i ∈ {ℓ, h}.

We solve the entrepreneur’s saving problem via guess and verify. To this end, we guess that
the value function of an entrepreneur with productivity zi, i ∈ {ℓ, h}, has the form

Vi (a) = mi + n log (a) ,

where mℓ,mh, n ∈ R are coefficients. Under this guess, the optimal savings choice is

a
′
i =

βδn

1 + βδn
Ria.

Replacing the savings rule into the value function gives

Vi (a) = log
(
Ria− a

′
i

)
+ βδVi

(
a
′
i

)
mi + n log (a) = log

(
Ria− a

′
i

)
+ βδmi + βδn log

(
a
′
i

)
mi + n log (a) = βδn log (βδn) + (1 + βδn) log

(
Ri

1 + βδn

)
+ βδmi + (1 + βδn) log (a)

Matching coefficients we obtain

n = 1 + βδn;

mi = βδn log (βδn) + (1 + βδn) log

(
Ri

1 + βδn

)
+ βδmi.
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The solution to the first equation is n = 1
1−βδ . This in turn delivers the optimal saving decision of

the entrepreneur in equation (10) with constant saving rate βδ.

Finally, we solve for the remaining coefficients from the system of linear equations:

mi =
1

(1− βδ)2
[
log (βδ)βδ (1− βδ)1−βδ + logRi

]
The value of an entrepreneur with productivity zi, i ∈ {ℓ, h}, is then

Vi (a) =
log (βδ)βδ (1− βδ)1−βδ

(1− βδ)2
+

1

(1− βδ)2
logRi +

1

1− βδ
log (a) .

A.2 Stationary Recursive Competitive Equilibrium

A.2.1 Stationary Equilibrium without Endogenous Innovation

Definition. Given a government tax-and-transfer policy specified by T ≡ (τa, τk) and T, a
stationary recursive competitive equilibrium without innovation consists of a value function for
workers Vw, an entrepreneurial value function V (a, z) (which we alternatively also called Vi(a)
above), entrepreneurial policy functions a′(a, z) and c(a, z), entrepreneurial operating value and
policy functions Π(a, z), k(a, z), and n(a, z), equilibrium prices r and w, and a distribution of
entrepreneurs Γ(a, z) such that34

i. V satisfies the Bellman equation (8) for the entrepreneurs’ consumption-saving problem, and
a′ and c are the corresponding policy functions, given r and w; and Vw = 1

1−βδ log (w + T ) ;

ii. Π is the solution to the entrepreneurs’ production problem in (4), and k and n are the
corresponding policy functions, given r and w;

iii. the labor markets clears: L =
∫
n (a, z) dΓ;

iv. the capital (and bond) market clears: K ≡
∫
k (a, z) dΓ =

∫
adΓ;

v. r and w satisfy the marginal conditions of the entrepreneurs’ profit optimization problem
(equations 17 and 16)

vi. the goods market clears:

G+ wL+

∫
c (a, z) dΓ +

∫
(a

′
(a, z) dΓ = K +

∫
(zk (a, z))α (n (a, z))1−α dΓ;

vii. the government budget constraint is satisfied: G+ T = τkαY + τaK;

viii. the distribution of wealth is constant over time and consistent with the saving choices of
entrepreneurs, a′ , and the birth-death process.

34It is understood that all the individual functions specified here also depend on T .
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A.2.2 Stationary Recursive Competitive Equilibrium with Innovation

Adding innovation to the model of Sections 2 and 3 adds two more conditions to the stationary
equilibrium definition above, which are included in the definition below.

Definition. A stationary recursive competitive equilibrium with innovation, given a government
tax policy T ≡ (τa, τk) and transfer T, consists of a value function for workers Vw, entrepreneurial
value functions V0, Vh, and Vℓ, entrepreneurial innovation effort choice at age zero, e(Z),
entrepreneurial policy functions a′(a, z) and c(a, z), entrepreneurial operating value and policy
functions, Π(a, z), k(a, z), and n(a, z), prices r and w, an endogenous share of H-type
entrepreneurs µ̃, and a distribution of entrepreneurs Γ(a, z) such that

i. Effort choice, e(Z), solves the optimal innovation problem (63) as in (64), and V0 is the
associated ex ante value function;

ii. Vi satisfies the Bellman equation (8) for type-i entrepreneurs’ consumption-saving problem,
and a′ and c are the corresponding policy functions, given r and w; and
Vw = 1

1−βδ log (w + T ) ;

iii. Conditions (ii) to (viii) of the stationary equilibrium without innovation above are satisfied.

iv. The aggregate share of high-productivity entrepreneurs, µ̃ is consistent with the optimal
effort choice e(Z)

µ̃ = e (Z (µ̃)) , (81)

whereZ (µ) gives the stationary level of productivity given µ; that is, Z (µ) is the solution
to equation (31), for a given µ ∈ (0, 1), and e (Z) is the optimal effort choice defined in
condition (i).
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B Proofs: Benchmark Model
This appendix presents the proofs for the results listed in the paper, covering Sections 2 to 5.

We reproduce the statement of all results for the reader’s convenience.

Lemma 1. (Aggregate Variables in Equilibrium) In the stationary heterogeneous-return
equilibrium defined in Proposition 7, aggregate output, the wage rate, the interest rate, and gross
returns are given as follows:

Y = (ZK)α L1−α

w = (1− α) (ZK/L)α

r = α (ZK/L)α−1 zℓ

Rℓ = (1− τa) + (1− τk)α (ZK/L)α−1 zℓ

Rh = (1− τa) + (1− τk)α (ZK/L)α−1 zλ.

Proof. We start by considering the labor market clearing condition

µn (zh,Kh) + (1− µ)n⋆ (zℓ,Kℓ) = L.

Replacing for the optimal labor demand (5) we get(
1− α
w

)1/α

(zhµKh + zℓ (1− µ)Kℓ) = L;(
1− α
w

)1/α

ZK = L.

Manipulating this expression we get wages as:

w = (1− α) (ZK/L)α .

In the stationary heterogeneous-return equilibrium the interest rate is given by the returns of
the low-productivity entrepreneurs and so

r = α

(
1− α
w

) 1−α
α

zℓ = α (ZK/L)α−1 zℓ

Then, the profit rate of the high-productivity entrepreneurs is (from 7)

π (zh) =

(
α

(
1− α
w

)(1−α)/α
zh − r

)
λ = α (ZK/L)α−1 (zh − zℓ)λ
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and the gross returns of entrepreneurs are:

Rℓ = (1− τa) + (1− τk) r = (1− τa) + (1− τk)α (ZK/L)α−1 zℓ

and
Rh = (1− τa) + (1− τk) (r + π⋆ (zh)) = (1− τa) + (1− τk)α (ZK/L)α−1 zλ.

Finally, we consider aggregate output. We aggregate in terms of the aggregate capital of H-
and L-type entrepreneurs because the ratio of labor to capital is constant across entrepreneurs,
equation (5). The output of an individual entrepreneur with productivity z and capital k is:

y (z, k) =

(
1− α
w

)(1−α)/α
zk = (ZK/L)α−1 zk,

where the second equality comes after replacing the equilibrium wage level. Aggregate output is
the sum of the output produced by all the entrepreneurs:

Y = (ZK/L)α−1 (zhµKh + zℓ (1− µ)Kℓ) = (ZK)α L1−α.

This completes the derivation of the results.

Proposition 1. (Capital Income Tax is Neutral for Returns. Wealth Tax is Not) In
the stationary heterogeneous-return equilibrium, the after-tax returns of the H-type and L-type are
independent of the capital income tax rate but do depend on the wealth tax rate:

Rℓ = 1− τa +
(

1

βδ
− (1− τa)

)
zℓ
Z

and Rh = 1− τa +
(

1

βδ
− (1− τa)

)
zλ
Z
.

In particular, the wealth tax has a “use-it-or-lose-it” effect that changes the dispersion of returns
and therefore the level of wealth inequality, whereas the capital income tax has no distributional
effects.

Proof. The proof is immediate by replacing (26) into the expression for returns of low- and high-
productivity entrepreneurs in terms of aggregate variables obtained in Lemma 1. Moreover, the
wealth-weighted return depends only on the entrepreneurial saving rate,

shRh + (1− sh)Rℓ = (1− τa) +
(

1

βδ
− (1− τa)

)
shzλ + (1− sh) zℓ

Z
=

1

βδ
.

Proposition 2. (Existence and Uniqueness of Stationary “Heterogeneous-Return”
Equilibrium) A stationary competitive equilibrium exists and is unique if and only if λ satisfies
Assumption 1. This equilibrium is characterized by an endogenous productivity level Z that
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Figure B.1: Stationary Competitive Equilibrium Productivity (Z)

x
zℓ

zλ

h(x)

δzℓzλ (1 − βδ (1 − τa))

Z

(1 − δ) (1 − μ) zλ − zℓ

zλ

−(1 − δ) μ
zλ − zℓ

zℓ

Note: The figure plots the polynomial h (x) =
(
1− δ2β (1− τa)

)
x2 −

[(1− δ) (µzλ + (1− µ) zℓ) + δ (1− δβ (1− τa)) (zλ + zℓ)]x + δ (1− δβ (1− τa)) zℓzλ = 0 that corresponds to equation
(31). The stationary competitive equilibrium level of productivity corresponds to the larger root of h, marked with a circle on
the horizontal axis.

satisfies zℓ < Z < zh, and features return heterogeneity (Rh > Rℓ). In addition, the wealth share
of the H-type satisfies sh < 1/λ.

Proof. We characterize the equilibrium level of productivity, Z, by studying the behavior of the
quadratic equation in (31), depicted in Figure B.1. Specifically, we show that there is a single
admissible root in the interval

Z ∈
(
max

{
zℓ,

δ (1− η)
1− δη

zλ

}
, zλ

)
.

This interval is relevant for the proof of Lemma 2.

We start by defining the function

H (x) = (1− δη)− (1− δ) (µzλ + (1− µ) zℓ) + δ (1− η) (zλ + zℓ)

x
+ δ (1− η) zℓzλ

x2
, (82)

from the quadratic equation in (31), where η ≡ βδ (1− τa). We verify directly that H has a root
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in the interval
(
max

{
zℓ,

δ(1−η)
1−δη zλ

}
, zλ

)
:

H (zℓ) = −
(1− δ)µ

zℓ
(zλ − zℓ) < 0

H

(
δ (1− η)
1− δη

zλ

)
= −(1− δη) (1− δ)µ

δ (1− η)
1

zλ
(zλ − zℓ) < 0

H (zλ) =
(1− δ) (1− µ)

zλ
(zλ − zℓ) > 0

The existence of the unique root is guaranteed by the intermediate value theorem and the fact that
the function is quadratic.

Now we derive necessary and sufficient conditions for the equilibrium productivity level to
satisfy Z ∈ (zℓ, zh), so that the equilibrium features heterogenous returns (Rh > Rℓ). Specifically
we need sh < 1/λ to hold in equilibrium. This happens if and only if Z < zh (because Z > zℓ from
its definition). So, we find a condition that guarantees that H (zh) > 0 which implies that Z < zh
because H (Z) = 0 and H (z) is increasing in z ≥ Z. The condition is

H (zh) = (1− δη)− (1− δ) (µzλ + (1− µ) zℓ) + δ (1− η) (zλ + zℓ)

zh
+ δ (1− η) zℓzλ

z2h
> 0,

after some manipulation this gives:

λ < λ ≡ 1 +
(1− δ) (1− µ)

(1− δ)µ+ δ (1− δβ (1− τa))
(
1− zℓ

zh

) .
Note that λ < 1/µ always and so it is the relevant bound for λ.

Finally, we verify that zh ≥ max
{
zℓ,

η−δ
η zλ

}
. The first case is verified immediately, the second

case applies if δ(1−η)
1−δη > zℓ

zλ
. A sufficient condition for zh ≥ δ(1−η)

1−δη zλ is:

zh ≥
δ (1− η)
1− δη

zλ

(1− δ) ≥ δ (1− η) (λ− 1)

(
1− zℓ

zh

)
(1− δ) ≥ δ (1− η) (λ− 1)

(
1− δ (1− η)

1− δη

)
1− δη
δ (1− η)

≥ λ− 1
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For this bound not to bind we need that it is above λ:

1− δη
δ (1− η)

≥ λ− 1

(1− δη)
(
(1− δ)µ+ δ (1− η)

(
1− zℓ

zh

))
≥ (1− δ) δ (1− η) (1− µ)

(1− δη) δ (1− η)
(
1− zℓ

zh

)
≥ (1− δ) [δ (1− η)− (δ + 1− 2δη)µ]

The condition is most stringent when µ = 0 (counterfactually). This leads to a sufficient condition

(1− δη)
(
1− zℓ

zh

)
≥ (1− δ)

δ
1− η
1− δη

≥ zℓ
zh

which is verified by assumption. So the upper bound λ is sufficient for zh ≥ max
{
zℓ,

δ(1−η)
1−δη zλ

}
.

Lemma 2. (Saving and Dissaving in the Stationary Equilibrium) In the stationary
heterogeneous-return equilibrium, the rates of return of the L-type and the H-type satisfy the
following inequalities: βδRℓ < 1 < βδRh < 1/δ. As a result, the wealth of the L-type (H-type)
shrinks (grows) with age. Therefore, the H-type is wealthier than the L-type: sh > µ.

Proof. We start by showing that Rℓ < 1/βδ < Rh. We verify this directly using the expression
for the returns of high- and low-productivity entrepreneurs, the fact that zℓ < Z < zλ, and the
equilibrium condition for the return on capital:

Rℓ = (1− τa) + (1− τk)αZα
(
K

L

)α−1 zℓ
Z
< (1− τa) + (1− τk)αZα

(
K

L

)α−1

=
1

βδ
,

and

1

βδ
= (1− τa) + (1− τk)αZα

(
K

L

)α−1

< (1− τa) + (1− τk)αZα
(
K

L

)α−1 zλ
Z

= Rh,

Letting η ≡ δβ (1− τa), we can also show that βδRh < 1/δ if δ(1−η)
1−δη zλ < Z. Thus,

βδRℓ < 1 < βδRh < 1/δ ←→ Z ∈
(
max

{
zℓ,

δ (1− η)
1− δη

zλ

}
, zλ

)
.

The interval for Z is non-empty. This is immediate because:

zℓ < zλ and
δ (1− η)
1− δη

< 1.
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Moreover, the lower bound depends on the ratio of productivities: max
{
zℓ,

δ(1−η)
1−δη zλ

}
= zℓ if and

only if δ(1−η)
1−δη ≤

zℓ
zλ

. In the proof of Proposition 2 we establish that Z lies in the desired interval.

Finally, we prove that sh > µ. We know that sh = Z−zℓ
zλ−zℓ , so sh > µ is equivalent to Z >

µzλ + (1− µ) zℓ. We can verify if this is the case by evaluating at µzλ + (1− µ) zℓ the residual of
the quadratic equation H defined in (31):

H (µzλ + (1− µ) zℓ) = −δ (1− η) (1− µ)µ
(

zλ − zℓ
µzλ + (1− µ) zℓ

)2

< 0

The residual is always negative. So it must be that Z > µzλ + (1− µ) zℓ and thus sh > µ.

Proposition 3. (Efficiency Gains from Wealth Taxation) For all τa < τa, a higher wealth
tax increases the steady-state aggregate productivity level, dZ

dτa
> 0.

Proof. We use the auxiliary function H defined in the proof of Proposition 2, equation (82). Simple
manipulation of the function gives:

H (x; τa) = F (x)−
(
1− zℓ

x

)(
1− zλ

x

)
δ2β (1− τa) ,

where F (x) is a function of only x that does not depend on taxes. We now establish that H is
decreasing in τa for x ∈ (zℓ, zλ), which is the interval of the equilibrium value of Z:

dH̃ (x, τa)

dτa
=
(
1− zℓ

x

)
︸ ︷︷ ︸

(+)

(
1− zλ

x

)
︸ ︷︷ ︸

(−)

δ2β < 0.

This implies that dZ
dτa

> 0 because, as we proved in proposition 2,H is increasing in x for x ∈ (zℓ, zλ).
See Figure 2 for a graphical version of this proof.

Proposition 4. (Wealth Tax Increases Equilibrium Dispersion of Returns) For all τa <
τa, an increase in the wealth tax increases the rate of return of the H-type and reduces that of the
L-type. That is,

d logRh
dτa

≡ ξRh
τa = ξRh

Z ×
d logZ

dτa
> 0 and

d logRℓ
dτa

≡ ξRℓ
τa = ξRℓ

Z ×
d logZ

dτa
< 0,

where ξRi
Z = d logRi

d logZ . Furthermore, the population-weighted average of returns and log returns decline
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with τa:

d (µRℓ + (1− µ)Rh)
dτa

< 0;

d (µ logRh + (1− µ) logRℓ)
dτa

=
(
µξRh

Z + (1− µ) ξRℓ
Z

) d logZ
dτa

< 0.

Proof. From the stationary level of wealth of high-productivity entrepreneurs we know that:

Rh =
1

βδ2

(
1− (1− δ)µ

sh

)
−→ dRh

dZ
=

(1− δ)µ
βδ2

1

s2h

dsh
dZ

> 0

A similar calculation delivers:

Rℓ =
1

βδ2

(
1− (1− δ) (1− µ)

(1− sh)

)
−→ dRℓ

dZ
= −(1− δ) (1− µ)

βδ2
1

(1− sh)2
dsh
dZ

< 0.

With this we get:

d (µRh + (1− µ)Rℓ)
dτa

=
1− δ
βδ2

(
(µ (1− sh) + (1− µ) sh) (µ− sh)

s2h (1− sh)
2

)
dsh
dτa

< 0.

The sign follows because sh > µ as proven above.

Finally, we consider the weighted product of returns, that is also decreasing in wealth taxes.

dRµhR
1−µ
ℓ

dτa
= (1− µ)RµhR

−µ
ℓ

dRℓ
dτa

+ µRµ−1
h R1−µ

ℓ

dRh
dτa

< RµhR
1−µ
ℓ

(1− δ)
βδ2

Rℓ

[
(µ (1− sh) + (1− µ) sh) (µ− sh)

s2h (1− sh)
2

]
dsh
dτa

The inequality follows because sh < µ. This result implies that the average elasticity is negative.

Lemma 3. For all τa < τa, under Assumption 3, the steady-state level of capital is

K =

(
α
βδ (1− θ)
1− βδ

) 1
1−α

Z
α

1−αL,

and the long run elasticities of aggregate variables with respect to productivity are

ξKZ = ξYZ = ξwZ =
α

1− α
,
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where ξxZ ≡
d log x
d logZ . Moreover, the wealth level of each entrepreneurial type is

Ah =
1

µ

Z − zℓ
zλ − zℓ

K
dAh
dZ
∝ Z

2α−1
1−α (Z − αzℓ) > 0

Aℓ =
1

1− µ
zλ − Z
zλ − zℓ

K
dAℓ
dZ
∝ Z

2α−1
1−α (αzλ − Z) ≶ 0,

if and only if αzλ ≶ Z.

Proof. Using Assumption 3 and equation (26) the equilibrium level of capital is

K =

(
α
βδ (1− θ)
1− βδ

) 1
1−α

Z
α

1−αL,

which is increasing in Z. From this, it is immediate that Y = (ZK)α L1−α is also increasing in Z.
Replacing these results in equilibrium wages (Lemma 1) we get

w = (1− α) (ZK/L)α = (1− α) Y
L

= (1− α)
(
α
βδ (1− θ)
1− βδ

) α
1−α

Z
α

1−α .

The elasticities follow immediately.

Because K and sh increase with productivity, it must be the case that Ah = shK
µ increases

as well. We are left with the response of Aℓ. To get it we first write Aℓ in terms of Z using the
definition of the wealth share of the high-productivity entrepreneurs:

Aℓ =
(1− sh)K

1− µ
=

1

1− µ

(
1− Z − zℓ

zλ − zℓ

)
K =

1

1− µ

(
α
βδ (1− θ)
1− βδ

) 1
1−α

L
zλ − Z
zλ − zℓ

Z
α

1−α

Taking derivatives shows that Aℓ decreases with Z (and hence with τa):

dAℓ
dZ
∝ Z

α
1−α

−1

zλ − zℓ
[αzλ − Z]

which is negative if αzλ < Z.

Lemma 4. Assume that total government is fixed, G + T = θ. Then, the (semi-)elasticities of
capital, output, and wages to a change in the wealth tax satisfy

ξKτa = ξYτa = ξwτa >
α

1− α
d logZ

dτa
.
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Proof. The proof is immediate and follows from the fact that the increase in Y under Lemma 3
also increases the revenue raised. Holding revenue constant allows for a larger decrease in capital
income taxes in response to wealth taxes.

Proposition 5. For all τa < τa, under Assumption 3, an increase in the wealth tax increases the
welfare of workers and newborn H-type entrepreneurs,

dVw
dτa

> 0 and
dVh (a)

dτa
> 0.

Moreover, an increase in the wealth tax increases the welfare of newborn L-type entrepreneurs and
the ex ante welfare of newborn entrepreneurs under the following conditions:

dVℓ (a)

dτa
> 0 if ξKZ >

−1
1− βδ

ξRℓ
Z ;

d (µVh (a) + (1− µ)Vℓ (a))
dτa

> 0 if ξKZ >
−1

1− βδ

(
µξRh

Z + (1− µ) ξRℓ
Z

)
.

Proof. We begin with worker welfare. Recall that Vw = 1
1−βδ log (w + T ) and so

dVw/dτa = 1
1−βδ ξw+T

d logZ/dτa, where ξw+T = α/1−α > 0 is the elasticity of worker income with
respect to productivity. Recall that w + T = ((1− α) + θTα)Y/L under Assumption (3), and so
the elasticity with respect to productivity is ξZw+T ≡ d log (w + T ) /dZ = α

1−α . Finally,
d logZ/dτa > 0 from proposition 3. This gives the result.

The value of a newborn entrepreneur with productivity zi, for i ∈ {ℓ, h}, is Vi (a) = mi +
1

1−βδ log (a) , where mi =
1

(1−βδ)2 [βδ log βδ + (1− βδ) log (1− βδ) + logRi]. Recall that a = K.
Hence, the change in the welfare of that entrepreneur when the wealth tax increases is

dVi (a)

dτa
=

1

1− βδ

(
ξZK +

1

1− βδ
ξZRi

)
d logZ

dτa
.

It is immediate that dVh(a)/dτa > 0 because ξZK , ξ
Z
Rh

> 0 from Proposition 4 and Lemma 3.

For L-type entrepreneurs to benefit from an increase in the wealth tax it must be that

ξZK >
−1

1− βδ
ξZRℓ

.

Finally, a newborn entrepreneur benefits from an increase in the wealth tax it must be that

ξZK >
−1

1− βδ
(
µξZRh

+ (1− µ) ξZRℓ

)
.

Recall that ξZK = α/1−α and so there are cutoffs on the wealth tax above which L-type and
newborn entrepreneurs benefit.
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Proposition 6. (Optimal Taxes) Under Assumption 3, there exists a unique tax combination
(τ⋆a , τ

⋆
k ) that maximizes the utilitarian welfare. An interior solution τ⋆a < τa is the solution to:

0 =

[
nwξ

w+T
Z + (1− nw) ξKZ +

1− nw
1− βδ

(
µξRh

Z (τa) + (1− µ) ξRℓ
Z (τa)

)] d logZ
dτa

Furthermore, there are two cutoff values for α, α and α, such that (τ⋆a , τ
⋆
k ) has the following

properties:

τ⋆a ∈
[
1− 1

βδ
, 0

)
and τ⋆k > θ if α < α

τ⋆a ∈
[
0,
θ (1− βδ)
βδ (1− θ)

]
and τ⋆k ∈ [0, θ] if α ≤ α ≤ ᾱ

τ⋆a ∈
(
θ (1− βδ)
βδ (1− θ)

, τmax
a

)
and τ⋆k < 0 if α > ᾱ

where τmax
a ≥ 1, α and α are the solutions to equation (61) with τa = 0 and τa = θ(1−βδ)

βδ(1−θ) ,
respectively. When θ = 0 and there are no revenue needs, so α = α.

Proof. The first order condition of the government’s problem in (58) is

0 = nw
d logw + T

dτa
+ (1− nw)

d log a

dτa
+

1− nw
1− βδ

(
µ
d logRh
dτa

+ (1− µ) d logRℓ
dτa

)
,

0 =

[
nw

d logw + T

d logZ
+ (1− nw)

d logK

d logZ
+

1− nw
1− βδ

(
µ
d logRh
d logZ

+ (1− µ) d logRℓ
d logZ

)]
d logZ

dτa
,

0 =

[
nwξ

Z
w+T + (1− nw) ξZK +

1− nw
1− βδ

(
µξZRh

+ (1− µ) ξZRℓ

)] d logZ
dτa

.

From proposition 3 we know that d logZ/dτa > 0, so that an interior solution must equate the first
term to zero.

We know that ξZw+T = ξZK = α/1−α from Lemma 3 and that µξZRh
+ (1− µ) ξZRℓ

< 0 from
Proposition 4. Further, the elasticities of returns are independent of α. Because of this we can
define cutoffs for α by evaluating the right hand side of the equation at τa = 0 and τa = θ(1−βδ)

βδ(1−θ) .

If α is exactly equal to the cutoff then the optimal τa is either 0 or θ(1−β)
β(1−θ) . The monotonicity of

the right hand side lets us define the intervals shown in the proposition and the uniqueness of the
solution. To see the monotonicity consider the formulas for ξZRh

and ξZRℓ
Proposition 4.
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C Innovation Effort
To show that an equilibrium exists, we establish the existence of a unique fixed point on

innovation effort (equivalently on the share of high-productivity entrepreneurs), where effort implies
productivity that implies in turn the original level of effort. This is captured by a mapping
φ : M → M that takes as an input a share of high-productivity entrepreneurs, µ ∈ M, and
provides the implied level of effort; hence, φ (µ) ≡ e⋆ (Z (µ)) ∈ M. The existence of the fixed
point for φ follows from standard fixed point arguments relying on Cellina’s and Brouwer’s fixed
point theorems (Border, 1985, Thms. 15.1, 16.1).

Uniqueness of the equilibrium follows from the monotonicity of the equilibrium mapping φ and
standard comparative statics results for fixed points. To see this, we first describe the mapping
Z (µ) from µ to equilibrium Z and then how Z affects innovation effort in e⋆ (Z).

We state a series of intermediate lemmas and then join them to prove our main result.

We start by inspecting equation (31) and show that equilibrium productivity is increasing in
the share of high-productivity entrepreneurs.

Lemma 5. The equilibrium level of productivity, Z (µ), is increasing in the share of
high-productivity entrepreneurs, µ.

Proof. Define the correspondence γ (µ) ≡ min
{
zh,Roots+ (H,µ)

}
as the largest admissible root

of the quadratic function H, as defined in (31), that determines equilibrium productivity. We want
to show that the function γ (µ) is increasing in µ. An increase in µ increases the magnitude of the
linear term in . Because the linear term is always negative, the increase in magnitude increases
the value of the highest root of H. This proves the result.

Then, from Proposition 1 we can see that steady-state returns are decreasing in Z, in such
a way that return dispersion declines with productivity given a wealth tax rate τa. As a result,
innovation effort declines in Z.

Lemma 6. Innovation effort, e⋆ (Z), is decreasing in the level of productivity Z.

Proof. Define the function f (µ,Z) ≡ max

{
min

{(
Λ

′
)−1

(logRh − logRℓ) , 1

}
, 0

}
as the solution

to (64), where
(
Λ

′
)−1

is the inverse of the derivative of Λ. We want to show that the function
f (µ,Z) is decreasing in Z (we already know it is independent of µ). To get the result, we show
that an increase in Z decreases the dispersion in (log) returns, d

dZ (logRh − logRℓ) < 0. We show
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this directly using the expression of equilibrium returns as a function of Z in equation (28),

d

dZ
logRℓ =

d
dZ

(
1 +

(
1

βδ(1−τa) − 1
)
zℓ
Z

)
1 +

(
1

βδ(1−τa) − 1
)
zℓ
Z

= −

(
1

βδ(1−τa) − 1
)
zℓ
Z2

1 +
(

1
βδ(1−τa) − 1

)
zℓ
Z

;

d

dZ
logRh =

d
dZ

(
1 +

(
1

βδ(1−τa) − 1
)
zλ
Z

)
1 +

(
1

βδ(1−τa) − 1
)
zλ
Z

= −

(
1

βδ(1−τa) − 1
)
zλ
Z

1 +
(

1
βδ(1−τa) − 1

)
zλ
Z

.

Joining

d (logRh − logRℓ)

dZ
=

(
1

βδ(1−τa) − 1
)
zℓ
Z2

1 +
(

1
βδ(1−τa) − 1

)
zℓ
Z

−

(
1

βδ(1−τa) − 1
)
zλ
Z

1 +
(

1
βδ(1−τa) − 1

)
zλ
Z

<

(
1

βδ(1−τa) − 1
)

(zℓ−zλ)
Z2

1 +
(

1
βδ(1−τa) − 1

)
zλ
Z

< 0.

The decrease in the dispersion of (log) returns implies lower effort from the solution to (64).

Remark. These results describe the mapping from an arbitrary level of Z to returns and innovation.
This is the relevant mapping for constructing the fixed point that constitutes an equilibrium,
when τa and all the model’s parameters are held fixed. It is this mapping from productivity to
return dispersion that is decreasing in productivity. This is different from the result established in
Proposition 4 that takes into account the equilibrium conditions of the economy (that is, taking
into account that Z and sh adjust to satisfy equation 31 when τa changes).

Proposition 7. (Existence of a Unique Stationary Equilibrium with Innovation) There
exists an upper bound for the wealth tax τµa such that for τa < τµa there is a unique stationary
equilibrium that features heterogeneous returns. That is, there is a unique level of the share of
H-type entrepreneurs, µ⋆, such that the optimal level of effort exerted by innovators satisfies µ⋆ =
e⋆ (Z (µ⋆)), and Z (µ⋆) ∈ (zℓ, zh) satisfies equation (31). The upper bound for the wealth tax
satisfies

τµa = 1− 1

βδ

1− 1− δ
δ

1− λµ⋆ (τµa)

(λ− 1)
(
1− zℓ

zh

)
 ,

where we make the dependence of µ⋆ on τa explicit.

Proof. We first tackle the existence and then the uniqueness of the equilibrium.

Existence We provide two proofs of this result. The first one is longer but proves to be
instructive of the workings of the model. It relies on Cellina’s fixed point theorem, as found in
Border (1985). The second one is more direct and relies on Brouwer’s fixed point theorem. The
objective in both cases is to show that the mapping of the share of high-productivity
entrepreneurs into itself, defined by (64) (and the other equilibrium conditions), has a fixed point
in the spaceM≡ [0, 1].
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We start by stating Cellina’s fixed point theorem. The theorem breaks the construction of a
mapping φ :M→M in two steps that capture how the share of high-productivity entrepreneurs
µ implies a level of productivity Z that in turn implies a share µ through the level of returns. The
theorem is as follows:

Theorem. [Cellina 1969; Border 1985, Thm. 15.1] Let M ⊆ Rmbe nonempty, compact,
and convex. Let φ :M ⇒M be a correspondence defined on K. Suppose there is a nonempty-,
compact-, and convex-valued correspondence γ : M ⇒ K defined on M with values in K ⊆ Rn,
a compact and convex set, and also a continuous function f :M×K → M such that, for every
µ ∈M, φ (µ) = {f (µ,Z) |Z ∈ γ (µ)}. Then, φ has a fixed point.

To apply Cellina’s theorem we set M ≡ [0, 1] as the space of shares, with typical element µ,
and K = [zℓ, zh] as the space of productivities with typical element Z. Both sets are nonempty,
compact and convex, satisfying the theorem’s requirements.

We then define the correspondence γ (µ) ≡ min
{
zh,Roots+ (H,µ)

}
as the largest admissible

root of the quadratic function H, defined in (31). This correspondence determines the equilibrium
productivity. From Proposition 2 we know that γ is a function (a single-valued correspondence),
and hence γ is nonempty-, compact-, and convex-valued.

Next, we define the function f (µ,Z) ≡ max

{
min

{(
Λ

′
)−1

(logRh − logRℓ) , 1

}
, 0

}
as the

solution to (64), where
(
Λ

′
)−1

is the inverse of the derivative of Λ. This inverse exists and is
continuous because Λ is convex and twice-continuously-differentiable. f takes as given µ and Z
and provides a value of optimal effort, that gives a new value of µ. Notice that µ does not enter
directly into f because returns are entirely determined given Z and τa, as seen in equation (28).
So, the function is immediately (and vacuously) continuous in µ. The returns are themselves
continuous in Z, see (28), so that f is continuous in Z.

Finally, we define the correspondence as φ (µ) ≡ {f (µ,Z) |Z = γ (µ)}. All the conditions are
satisfied and therefore a fixed point of φ exists. Any such fixed point is an equilibrium level for
effort and the share of high-productivity entrepreneurs of the economy, µ⋆. This level of µ in turn
implies the equilibrium level of productivity and other aggregate variables.

We now provide an alternative, and more direct proof based on Brouwer’s fixed point theorem.

Theorem. [Brouwer 1912; Border 1985, Thm. 6.1] Let M ⊆ Rmbe nonempty, compact,
and convex. Let φ :M→M be a continuous function defined on K. Then, φ has a fixed point.

To apply Brouwer’s theorem we need to show that the function

φ (µ) ≡ f (µ, γ (µ)) = f
(
µ,min

{
zh,Roots+ (H,µ)

})
is continuous, with f and γ defined as above. This in fact the case because the roots of the
quadratic equation H, the minimum, the maximum, and f are all continuous.
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Uniqueness This follows from showing that innovation effort, φ (µ) = e⋆ (Z (µ)), is decreasing
in the share of H-type entrepreneurs, µ. The result is immediate from combining Lemmas 5 and 6
because Z is increasing in µ, and e is decreasing in Z. Therefore, φ (µ) is monotonically decreasing,
implying that there can be at most one fixed point in [0, 1].

Condition on wealth taxes For the equilibrium to exhibit heterogeneous returns it must be
that τa < τa (Assumption 2). However, τa depends on µ, which now responds endogenously to τa.
This means that equation (35) defines the upper bound on τa, given by τµa , implicitly, something
we emphasize by writing µ⋆ (τµa) as the equilibrium level of µ when the wealth tax is τµa .

Proposition 8. (Innovation Gains from Wealth Taxation) For all τa < τµa , an increase in
the wealth tax (τa) increases the equilibrium share of high-productivity entrepreneurs, µ⋆. Capital
income taxes do not affect innovation.

Proof. The proof uses Theorem 3 in Villas-Boas (1997):

Theorem. [Villas-Boas 1997, Thm. 3] Consider the mapping φ1 : M → M, the mapping
φ2 :M→M, and a transitive, and reflexive order order ≥ on the set M, such that both φ1 and
φ2 have at least one fixed point in M. If

i. φ1 is a weakly decreasing mapping, i.e., ∀µ′ ,µ∈M µ
′ ≥ µ −→ φ1

(
µ

′
)
≤ φ1 (µ);

ii. φ1 is higher than φ2, that is φ1 (µ) > φ2 (µ) for all µ ∈M,

then, there is no fixed point µ⋆2 of φ2 which is > than a fixed point µ⋆1 of φ1.

Remark. The theorem can be strengthened as it implies that the two mappings cannot have the
same interior fixed point, so that we can conclude that for any (interior) fixed point µ⋆2 of φ2 and
any (interior) fixed point µ⋆1 of φ1, it holds that µ⋆1 > µ⋆2. To see this, consider a fixed point µ⋆2 of
φ2 a fixed point µ⋆1 of φ1. We already know that µ⋆1 ≥ µ⋆2 from the Theorem. Now, suppose that
µ⋆2 = µ⋆1 = µ⋆ and that µ⋆ is interior. Because φ1 is higher than φ2 and µ⋆ is a common fixed point
we have µ⋆ = φ1 (µ

⋆) > φ2 (µ
⋆) = µ⋆, which is a contradiction.

We now turn to verify the conditions of the Theorem. Our space of interest is M ≡ [0, 1],
and so we take the order ≥ to be the natural order on R, which is transitive and reflexive. We
define the mappings as φ1 (µ) ≡ φ

(
µ, τ1a

)
and φ2 (µ) ≡ φ

(
µ, τ2a

)
with τµa > τ1a > τ2a and φ as in

Proposition 7. These mappings have each a unique fixed point in K ≡ [0, 1].

We know that that φ is decreasing from Lemmas 5 and 6 and so φ1 satisfies the first condition.

To verify the second condition of the theorem, we establish that an increase in the wealth tax
increases effort for any given level of the share of high-productivity entrepreneurs. Crucially, this
condition speaks to the behavior of φ for any fixed level of µ as τa changes. Thus, the setup of
Section 4 applies. In particular, Propositions 3 and 4, which shows that dZ

dτa
> 0, dRh

dZ > 0 and
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dRℓ
dZ < 0, imply that the dispersion of returns increases with τa when holding µ fixed, that is,
d(logRh−logRℓ)/dτa > 0. This leads to a higher level of effort from equation (64).

All the conditions for the theorem are verified and so it must be that all the (interior)
equilibrium shares of high-productivity entrepreneurs under the higher wealth tax, τ1a , are higher
as the equilibrium shares under the low wealth tax, τ2a .
Remark. In establishing the second condition for the theorem we make use of Proposition 4 instead
of Lemma 6. The difference lies in the nature of the mapping being constructed. The mapping
required for the construction of φ in this proof takes into account the equilibrium response of Z to
µ and to τa, while the one constructed in Lemma 6 captures how arbitrary levels of productivity
affect returns, and, through them, the innovation effort, holding τa fixed.

Proposition 9. (Productivity Gains from Wealth Taxation with Innovation) For all τa <
τµa , an increase in the wealth tax (τa) increases productivity, Z⋆.

Proof. This result follows from Propositions 3 and 8. Proposition 3 establishes that Z is increasing
in τa holding µ fixed, and Lemma 5 establishes that Z is increasing in µ. Proposition 8 establishes
that µ is increasing in τa for τa < τµa . Together they imply the result.

Proposition 10. Under Assumption 3, an interior solution (τ⋆a,µ < τµa) to the optimal tax

combination
(
τ⋆a,µ, τ

⋆
k,µ

)
that maximizes the newborn welfare, W, is the solution to the following

equation:

0 =

(
nwξ

w+T
Z + (1− nw) ξKZ +

1− nw
1− βδ

(
µξRh

Z + (1− µ) ξRℓ
Z

)) d logZ

dτa

+
1− nw
1− βδ

(
µξRh

µ + (1− µ) ξRℓ
µ

) dµ
dτa

where ξxZ ≡
∂ log x
∂ logZ is the elasticity of variable x with respect to Z and ξxµ ≡

∂ log x
∂µ is the (semi-

)elasticity with respect to µ. Recall from Lemma 3 that ξw+TZ = ξKZ = α
1−α .

Proof. The government’s problem is still given by 58 but newborn welfare now includes the cost
of innovation effort. An interior solution satisfies the first order condition

0 =
dW
dτa

= nw
dVw
dτa

+ (1− nw)
d

dτa

(
µVh (a) + (1− µ)Vℓ (a)−

Λ (µ)

(1− βδ)2

)
.

Replacing for the values of workers and entrepreneurs as in Section 5,
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0 = nw
d logw + T

dτa
+ (1− nw)

d log (a)

dτa
+

1− nw
1− βδ

(
d (µ logRh + (1− µ) logRℓ)

dτa
− dΛ (µ)

dτa

)
0 = nw

d logw + T

dτa
+ (1− nw)

d log (a)

dτa

+
1− nw
1− βδ

(µd logRh
dτa

+ (1− µ) d logRℓ
dτa

)
+

(logRh − logRℓ)− Λ
′
(µ)︸ ︷︷ ︸

=0

 dµ

dτa


The last term is equal to zero because individuals already optimize over their innovation effort,

so that, by the Pareto principle, taxes cannot improve on their choice. This leaves the local effects
of the wealth tax taking µ as given (at its equilibrium level). We can further simplify these effects
by noticing that, given µ, the effect of the wealth tax is only felt through the change in equilibrium
productivity. This gives,

0 =

(
nw

d logw + T

d logZ
+ (1− nw)

d log (a)

d logZ

)
d logZ

dτa
+

1− nw
1− βδ

(
µ
d logRh
dτa

+ (1− µ) d logRℓ
dτa

)
.

We have left to obtain the change of returns taking into account the effect of taxes in innovation.
We start from the representation of equilibrium returns in terms of µ and Z:

Rℓ =
1

βδ2

(
1− (1− δ) (1− µ) (zλ − zℓ)

zλ − Z

)
and Rh =

1

βδ2

(
1− (1− δ)µ (zλ − zℓ)

Z − zℓ

)
,

so that we can express the change in returns as

d logRi
dτa

=
d logRi
d logZ

d logZ

dτa
+
d logRi
dµ

dµ

dτa
.

Replacing in the first order condition we get the formula in the proposition.

We now turn to show that the sign of the average elasticity of returns with respect to
productivity and innovation effort. We first obtaining a useful expression for the equilibrium level
of µ. We know that (31) must be satisfied in equilibrium so we can write µ as follows,

µ =
Z − zℓ
zλ − zℓ

(
1− δ (1− η)

1− δ
(zλ − Z)

Z

)
1− µ =

zλ − Z
zλ − zℓ

(
1 +

δ (1− η)
1− δ

(Z − zℓ)
Z

)
With this expression for µ we establish the effect of Z and µ on returns.

Average elasticity of returns with respect to productivity: From the expression for
equilibrium returns we know that

∂Rh
∂Z

=
(1− δ)µ
βδ2

zλ − zℓ
(Z − zℓ)2

and
∂Rℓ
∂Z

= −(1− δ) (1− µ)
βδ2

zλ − zℓ
(zλ − Z)2

.
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We use this directly for the effect of productivity.

µ
Z

Rh

∂Rh
∂Z

+ (1− µ) Z
Rℓ

∂Rℓ
∂Z

=
(1− δ) (zλ − zℓ)

βδ2
Z

(
1

Rh

(
µ

Z − zℓ

)2

− 1

Rℓ

(
1− µ
zλ − Z

)2
)

= (1− δ) (zλ − zℓ)Z


(

µ
Z−zℓ

)2(
1− (1− δ) (zλ − zℓ) µ

Z−zℓ

)
−

(
1−µ
zλ−Z

)2(
1− (1− δ) (zλ − zℓ)

(
1−µ
zλ−Z

))


=
1

(1− δ) δ (zλ − zℓ)

(
((1− δη)Z − δ (1− η) zλ)2

ηZ + (1− η) zλ

−((1− δη)Z − δ (1− η) zℓ)2

ηZ + (1− η) zℓ

)
< 0.

Average elasticity of returns with respect to innovation effort: We first get the
derivative of returns with respect to µ:

∂Rh
∂µ

= − 1

βδ2
(1− δ) (zλ − zℓ)

Z − zℓ
and

∂Rℓ
∂µ

=
1

βδ2
(1− δ) (zλ − zℓ)

zλ − Z
.

Now we use this to establish the effect of innovation on returns:

µ
1

Rh

∂Rh
∂µ

+ (1− µ) 1

Rℓ

∂Rℓ
∂µ

=
(1− δ)
βδ2

[
− 1

Rh
µ
zλ − zℓ
Z − zℓ

+
1

Rℓ
(1− µ) (zλ − zℓ)

zλ − Z

]
= (1− δ)

[
(1− µ) (zλ−zℓ)

zλ−Z

1− (1− δ) (1−µ)(zλ−zℓ)
zλ−Z

−
µ zλ−zℓZ−zℓ

1− (1− δ) µ(zλ−zℓ)Z−zℓ

]

=
1

δ

(
(1− δη)Z − δ (1− η) zℓ

ηZ + (1− η) zℓ
− (1− δη)Z − δ (1− η) zλ

ηZ + (1− η) zλ

)
> 0.
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D Entrepreneurial Effort
Consider a model like that in Section 2 where entrepreneurs can exert effort every period to

increase the level of productivity. We capture the effect of effort as modifying the production
function of entrepreneurs to:

y = (zk)α g (e)γ n1−α−γ .

where γ ∈ [0, 1). Exerting effort has a utility cost of h (e), where h′
(e) > 0 and h

′′
(e) ≥ 0. The

utility function is now
u (c, e) = log (c− h (e)) .

D.1 Entrepreneurial Problem with Effort in Production
Entrepreneurial Production. We solve for an entrepreneur’s static effort and labor demand
choices. The solution is characterized by the following first order conditions:

ueh
′
(e) = (1− τk)uc · γ (zk)α g (e)γ−1 n1−α−γg

′
(e) ; w = (1− α− γ) (zk)α g (e)γ n−α−γ ;

The second condition implies that

n =

[
(1− α− γ) (zk)α g (e)γ

w

] 1
α+γ

.

Replacing back in the first order condition we obtain

ue
uc

h
′
(e)

g′ (e)
= (1− τk) γ (zk)

α
α+γ g (e)

−α
α+γ

(
1− α− γ

w

) 1−α−γ
α+γ

.

For tractability we impose that h
′
(e)

g′ (e)
= ψ is constant, say with h (e) = ψe and g (e) = e. Then

the last condition gives the optimal effort and labor choices given prices, taxes, and the level of
capital of the entrepreneur:

e =

(
(1− τk) γ

ψ

)α+γ
α
(
1− α− γ

w

) 1−α−γ
α

zk; n =

(
(1− τk) γ

ψ

) γ
α
(
1− α− γ

w

) 1−γ
α

zk.

Profits are then:

π (z, k) = (zk)α g (e)γ n1−α−γ − wn− rk =

(α+ γ)

(
(1− τk) γ

ψ

) γ
α
(
1− α− γ

w

) 1−α−γ
α

z − r︸ ︷︷ ︸
π⋆(z)

 k.

Crucially, profits, labor, and effort are proportional to the level of capital the entrepreneur
uses. The entrepreneur will only demand capital and operate their firm if the (after-tax) profits
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net of the effort cost are positive, that is:

k ≥ 0←→ (1− τk)π⋆ (z)−
ueh

′
(e)

uc︸ ︷︷ ︸
Shadow Price=ψ

ε (z) ≥ 0,

where the shadow price of the effort cost is equal to ψ given our assumptions and

ε (z) ≡ e (z, k)

k
=

(
(1− τk) γ

ψ

)α+γ
α
(
1− α− γ

w

) 1−α−γ
α

z.

In order to demand capital the entrepreneur must make profits to cover the cost of effort after
taxes.

The optimal demand for capital is then:

k (z, a) =


λa if α

(
(1−τk)γ

ψ

) γ
α
(
1−α−γ
w

) 1−α−γ
α

z > r

[0, λa] if α
(
(1−τk)γ

ψ

) γ
α
(
1−α−γ
w

) 1−α−γ
α

z = r

0 if α
(
(1−τk)γ

ψ

) γ
α
(
1−α−γ
w

) 1−α−γ
α

z < r

.

We then replace k (z, a) back and get the optimal profits, effort and labor demand.

Before proceeding to the optimal savings problem, we need to determine the level of the
capital demand for entrepreneurs with different productivity levels. The relevant case has
high-productivity entrepreneurs demanding k (zh, a) = λa for a total demand of Kh = λµAh. The
remaining assets are used by the low-productivity entrepreneurs who will be indifferent between
any production level. The total demand for capital required to clear the market is
KL = (1− µ)AL − (λ− 1)µAh.

Let λℓ,ι ≡ kι
aι

be the ratio of capital to assets of low-productivity entrepreneur ι, for ι ∈ [µ, 1].
We show below that the savings choice of the entrepreneur is independent of the value of λℓ,ι.

Entrepreneurial Savings.

Vι (a, z) = max
{c,a′}

ln (c− ψeι (z, a)) + βδE
[
Vι

(
a
′
, z

′
)
|z
]

s.t. c+ a
′
= Rι (z) a

where R (z) ≡ (1− τa) + (1− τk) (r + π⋆ (z)λι (z)), eι (z, a) = ε (z)λι (z) a, and

λι (z) =

{
λ if z = zh

λι,ℓ if z = zℓ.

We solve the dynamic programming problem via guess and verify. To this end, we guess that
the value function of an entrepreneur with productivity zi, i ∈ {ℓ, h}, has the form

Vi,ι (a) = mi,ι + n log (a) ,
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where {mℓ,ι,mh,ι}ι∈{0,1} , n ∈ R are coefficients. Under this guess, the optimal savings choice of
the entrepreneur is characterized by

1

(Ri,ι − ψεiλi,ι) a− a
′
i

=
βδn

a
′
i

−→ a
′
i =

βδn

1 + βδn
(Ri,ι − ψεiλi,ι) a.

Replacing the savings rule into the value function gives:

mi,ι + n log (a) = log
(
(Ri,ι − ψεiλi,ι) a− a

′
i

)
+ βδmi,ι + βδn log

(
a
′
i

)
Matching coefficients:

n = 1 + βδn

mi,ι = βδn log (βδn) + (1 + βδn) log

(
Ri,ι − ψεiλi,ι

1 + βδn

)
+ βδmi,ι.

This delivers the optimal saving decision of the entrepreneur:

a′ = βδ (Rι (z)− ψε (z)λι (z)) a.

Finally, we solve for the remaining coefficients. When high-productivity entrepreneurs are
constrained and low-productivity entrepreneurs are indifferent between any level of production it
holds that returns are independent of the identity of the entrepreneur, so that

Rι (z)− ψε (z)λι (z) = R (z)− ψε (z)λ ≡ R̂ (z) .

This allows us to solve for mℓ and mh as:

mi =
1

(1− βδ)2
(
log
(
(βδ)βδ (1− βδ)1−βδ

))
+

1

(1− βδ)2
log R̂ (z) .

D.2 Equilibrium and Aggregation
In equilibrium the interest rate is such that the low-productivity entrepreneurs are indifferent

between lending their assets or using them in their own firm. Lending the assets gives them a
(before-tax) return of r, using them gives them π⋆ (zℓ) but it also entails a utility cost because
of effort, which we know from the previous results is proportional to assets, same as returns and
profits. The agents will be indifferent if the (after-tax) profits net of effort costs are zero:

0 = (1− τk)π⋆ (zℓ)−
ueh

′
(e)

uc︸ ︷︷ ︸
Shadow Price=ψ

ε (zℓ) .
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Replacing for the optimal solution of the entrepreneur’s problem:

r = α

(
(1− τk) γ

ψ

) γ
α
(
1− α− γ

w

) 1−α−γ
α

zℓ

We can then exploit the linearity of the savings function to aggregate.

Lemma 7. If sh < 1/λ, output, wages, interest rate, and gross returns on savings are:

Y =

(
(1− τk) γ

ψ

) γ
1−γ

(ZK)
α

1−γ L
1−α−γ
1−γ

E =

(
(1− τk) γ

ψ

) 1
1−γ

(ZK)
α

1−γ L
1−α−γ
1−γ

w = (1− α− γ)
(
(1− τk) γ

ψ

) γ
1−γ
(
ZK

L

) α
1−γ

r = α

(
(1− τk) γ

ψ

) γ
1−γ
(

L

ZK

) 1−α−γ
1−γ

zℓ

Rℓ = (1− τa) + (1− τk)
(
(1− τk) γ

ψ

) γ
1−γ
(

L

ZK

) 1−α−γ
1−γ

(α+ γλι) zℓ

Rh = (1− τa) + (1− τk)
(
(1− τk) γ

ψ

) γ
1−γ
(

L

ZK

) 1−α−γ
1−γ

(αzλ + γλzh)

and

R̂ (z) ≡ R (z)− ψε (z)λ =

(1− τa) + (1− τk)α
(
(1−τk)γ

ψ

) γ
1−γ ( L

ZK

) 1−α−γ
1−γ zℓ if z = zℓ

(1− τa) + (1− τk)α
(
(1−τk)γ

ψ

) γ
1−γ ( L

ZK

) 1−α−γ
1−γ zλ if z = zh

Proof. We start by considering the labor market clearing condition, we get

n⋆ (zh,Kh) + n⋆ (zℓ,Kℓ) = L;(
(1− τk) γ

ψ

) γ
α
(
1− α− γ

w

) 1−γ
α

(zhKh + zℓKℓ) = L;

(1− α− γ)
(
(1− τk) γ

ψ

) γ
1−γ
(
ZK

L

) α
1−γ

= w.

Using this condition for wages we obtain an expression for the interest rate,

r = α

(
(1− τk) γ

ψ

) γ
1−γ
(

L

ZK

) 1−α−γ
1−γ

zℓ,
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and for total effort, (
E

ZK

)α
=

(
(1− τk) γ

ψ

)α+γ (1− α− γ
w

)1−α−γ
;

E =

(
(1− τk) γ

ψ

) 1
1−γ

(ZK)
α

1−γ L
1−α−γ
1−γ .

We can use this expression to get the usual Cobb-Douglas expressions for w and r:

w = (1− α− γ) (ZK)αEγL1−γ−α

L
; r = α

(ZK)αEγL1−γ−α

ZK
zℓ.

These two expressions also let us rewrite the profit rate (of capital) of entrepreneurs:

π⋆ (z) =

(
(1− τk) γ

ψ

) γ
1−γ
(

L

ZK

) 1−α−γ
1−γ

(α (z − zℓ) + γz) > 0.

Profits are positive for both types of entrepreneurs, reflecting the effort costs.

We use the equilibrium profit rates of entrepreneurs to rewrite the gross returns,

R (z) = (1− τa) + (1− τk) (r + π⋆ (z)λ) ;

= (1− τa) + (1− τk)
(
(1− τk) γ

ψ

) γ
1−γ
(

L

ZK

) 1−α−γ
1−γ

(α (zℓ + λ (z − zℓ)) + γλz) ;

=

(1− τa) + (1− τk)
(
(1−τk)γ

ψ

) γ
1−γ ( L

ZK

) 1−α−γ
1−γ (α+ γλ) zℓ if z = zℓ

(1− τa) + (1− τk)
(
(1−τk)γ

ψ

) γ
1−γ ( L

ZK

) 1−α−γ
1−γ (αzλ + γλzh) if z = zh

.

The return net of effort cost is

R̂ (z) = R (z)− ψε (z)λ;

=

(1− τa) + (1− τk)α
(
(1−τk)γ

ψ

) γ
1−γ ( L

ZK

) 1−α−γ
1−γ zℓ if z = zℓ

(1− τa) + (1− τk)α
(
(1−τk)γ

ψ

) γ
1−γ ( L

ZK

) 1−α−γ
1−γ zλ if z = zh

.

We aggregate output in terms of total capital using the constant ratio of labor to capital across
entrepreneurs. The output of an individual entrepreneur with productivity z and capital k is

y (z, k) =

(
(1− τk) γ

ψ

) γ
α
(
1− α− γ

w

) 1−α−γ
α

zk.
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Aggregate output is the sum of the total output produced by all entrepreneurs,

Y =

(
(1− τk) γ

ψ

) γ
α
(
1− α− γ

w

) 1−α−γ
α

(zhKh + zℓKℓ) =

(
(1− τk) γ

ψ

) γ
1−γ

(ZK)
α

1−γ L
1−α−γ
1−γ

For completeness we also consider the aggregate effort of high- and low-productivity entrepreneurs:

Ei ≡
∫
e (z, kι,i) dι = ε (zi)

∫
kι,idι =

[
(1− τk) γ

ψ
ZK−(1−α−γ)L1−α−γ

] 1
1−γ

ziKi

This completes the derivation of the results.

Evolution of aggregates: Using the savings decision rules, we obtain the law of motion for
the wealth held by low- and high-productivity entrepreneurs:

A
′
i = δ2βR̂iAi + (1− δ) a,

where a ≡ K = (1− µ)Aℓ + µAh is the endowment of a newborn entrepreneur, equal to the total
(average) wealth in the economy. Combining these we obtain the low of motion of capital:

K
′

K
= δ2β

(
shR̂h + (1− sh) R̂ℓ

)
+ (1− δ) .

Stationary competitive equilibrium and efficiency gains from wealth taxes: It
must be that the wealth weighted returns net of effort costs are constant,

shR̂h + (1− sh) R̂ℓ =
1

βδ

(1− τa) + (1− τk)α
(
(1− τk) γ

ψ

) γ
1−γ
(

L

ZK

) 1−α−γ
1−γ

Z =
1

βδ

This is similar to the result in (26) but it includes the distortionary effect of capital income taxes
on effort. As in Proposition 1, this result implies that returns (now net of effort cost) are:

R̂ (z) =

(1− τa) +
(

1
βδ − (1− τa)

)
zℓ
Z if z = zℓ

(1− τa) +
(

1
βδ − (1− τa)

)
zλ
Z if z = zh

.

The equations for the evolution of assets
(
A

′
i

)
and the steady state of returns (above) imply

that equation (31) applies unchanged and determines the stationary level of productivity as in
Section 2.3.

Consequently, Propositions 2 and 3 apply to this economy without modifications:

Proposition 11. A stationary competitive equilibrium exists and is unique if and only if λ satisfies
Assumption 1, and an increase in the wealth tax in such an equilibrium increases productivity Z.
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The difference between the benchmark model (Section 2) and the model with effort is in the
response of aggregate variables other than Z to changes in taxes. All directions are maintained,
but there is now an additional source of changes on aggregates: a direct effect of taxes on the effort
of entrepreneurs. When an increase in wealth taxes reduces capital income taxes, also reduces the
distortions on the effort choice of entrepreneurs.

Before establishing the effects of a change in taxes on aggregate variables we revisit the role of
government spending. The Government’s budget is still given by 23 and Assumption 3 still implies
the link between capital income and wealth taxes in equation (45).Then, equilibrium capital is

K =

(
αβδ

1− θ
1− βδ

) 1−γ
1−α−γ

(
(1− τk) γ

ψ

) γ
1−α−γ

Z
α

1−α−γL.

Crucially, capital depends directly on capital income taxes through their effect on effort.
Alternatively, we can write the value of capital in terms of the level of the wealth tax:

K = (αβ)
1−γ

1−α−γ

(
1− θ
1− βδ

) 1
1−α−γ

(
(1− βδ (1− τa)) γ

ψ

) γ
1−α−γ

Z
α

1−α−γL.

This makes it clear that aggregate capital increases with the wealth tax both through the efficiency
gains (higher Z) and the decrease in distortions, lower τk.

Lemma 8. If τ < τa and under Assumption 3, an increase in the wealth tax (τa) increases
aggregate entrepreneurial effort, capital, output, and wages, dE

dτa
, dKdτa ,

dY
dτa
, dwdτa > 0. It also increases

the wealth share of high-productivity entrepreneurs, dsh
dτa

> 0, and the after-tax return net of effort

costs of high-productivity entrepreneurs, dR̂h
dτa

> 0, while the after-tax returns net of effort costs of

low-productivity entrepreneurs decreases, dR̂ℓ
dτa

< 0.

Proof. The wealth share of high-productivity entrepreneurs increases with productivity
productivity, see 12. The results for after-tax returns net of effort costs follow from a
straightforward modification of Proposition 4 which gives:

dR̂h
dτa

> 0 and
dR̂ℓ
dτa

< 0.

Total capital increases with the wealth tax:

d logK

d log τa
=

γ

1− α− γ
βδτa

1− βδ (1− τa)
+

α

1− α− γ
d logZ

d log τa
> 0.

It follows immediately that output, wages, and total effort increase since they depend positively
on ZK and negatively on capital income taxes τk.
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D.3 Optimal Taxes
Entrepreneurial effort changes the choice of optimal taxes in two ways. First, equilibrium

aggregates now depend on taxes directly through effort (while before they only changed through
changes in productivity). Second, entrepreneurial welfare depends now on after-tax returns net
of effort cost. However, only aggregates affect optimal taxes. This is because, in equilibrium, the
after-tax returns net of effort cost behave exactly like after-tax returns did in Section 2.

Proposition 12. Under Assumption 3, there exists a unique tax combination
(
τ⋆a,e, τ

⋆
k,e

)
that

maximizes the utilitarian newborn welfare. An interior solution τ⋆a,e < τa satisfies

γ

1− α− γ
βδ
logZ
dτa

+
α

1− α− γ
= −1− nw

1− βδ

(
µξR̂h

Z + (1− µ) ξR̂ℓ
Z

)
,

where ξxZ ≡
d log x
d logZ is the elasticity of variable x with respect to Z. Moreover, τ⋆a,e > τ⋆a , with τ⋆a

being the optimal tax described in Proposition 6.

Proof. Newborn welfare is

W =
1

1− βδ
(nw log (w + T ) + (1− nw) log a) +

1− nw
(1− βδ)2

(
µ log R̂h + (1− µ) log R̂ℓ

)
+ v

The first order condition of the government’s problem is

0 = nw
d log (w + T )

dτa
+ (1− nw)

d log a

dτa
+

1− nw
1− βδ

(
µ
d log R̂h
dτa

+ (1− µ) d log R̂ℓ
dτa

)
,

where we have, under Assumption 3,

log a

dτa
=

logw + T

dτa
=

γ

1− α− γ
βδ +

α

1− α− γ
logZ

dτa
;

µ
d log R̂h
dτa

+ (1− µ) d log R̂ℓ
dτa

=
(
µξZ

R̂h
+ (1− µ) ξZ

R̂ℓ

) logZ

dτa
.

Joining gives

0 =

[
γ

1− α− γ
βδ
logZ
dτa

+
α

1− α− γ
− α

1− α

]
+

[
α

1− α
+

1− nw
1− βδ

(
µξZ

R̂h
+ (1− µ) ξZ

R̂ℓ

)]
The second term is the same as in Proposition 10, were the elasticity of capital and workers’
income and capital were equal to α/1−α. The average elasticity of returns net of effort cost is equal
to the elasticity of returns in Proposition 10. The first term is positive because logZ

dτa
> 0 and

α
1−α−γ ≥

α
1−α . This implies that the optimal wealth tax is weakly higher than in Proposition 10.

and it is equal if and only if γ = 0.
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E Alternative Modeling: Fluctuating Entrepreneurial
Productivity

E.1 Model
Finally, we consider the role of fluctuations of entrepreneurial productivity in shaping our

results on productivity and welfare gains from wealth taxation. The models studied so far assume
that entrepreneurs have the same productivity throughout their lives. In them, an increase in the
wealth tax benefits H-type entrepreneurs whose returns and wealth increase permanently,
reducing misallocation. However, fluctuations in individual entrepreneurial productivity increase
misallocation as wealthy (formerly productive) entrepreneurs lose their productivity.
Nevertheless, we show that entrepreneurial productivity needs only to be persistent (i.e.,
positively autocorrelated) in order to preserve our main results.

To study the role of productivity persistence, we put forth a model where entrepreneurial
productivity follows a Markov process and entrepreneurs are infinitely lived. This model remains
tractable while allowing for fluctuations in individual productivity, and provides a clear cut answer
to the conditions under which wealth taxes increase productivity and welfare. As in Section 2,
there are two types of agents, homogeneous workers of size L and heterogenous entrepreneurs of
size 1, but they are now infinitely-lived. This amounts to setting δ = 1.35 Preferences are as in
Section 2, as is the behavior of workers. The entrepreneurs’ production problem is given by (4).
Thus, we can aggregate as in Lemma 1. We provide a summary of the model and the results here
and a detailed derivation of results in Appendix E.

The main change comes from having entrepreneurial productivity, z ∈ {zℓ, zh}, follow a Markov
process with transition matrix

P =

[
p 1− p

1− p p

]
, (83)

where p ∈ (0, 1) is the probability that an entrepreneur retains their productivity across periods.
The autocorrelation coefficient of productivity is ρ ≡ 2p − 1, so that productivity is persistent if
p > 1/2 (ρ > 0). The symmetry in transition probabilities ensures that half of the entrepreneurs
have high-productivity at any point in time, µ = 1/2.

The dynamic problem of the entrepreneurs is now

V (a, z) = max
a′

log
(
R (z) a− a′

)
+ β

∑
z′

P
(
z′ | z

)
V
(
a′, z′

)
, (84)

where R (z) is as in equation (9). The solution to this problem gives the same savings rule as
before,

a′ = βR (z) a. (85)

35Alternatively, one can think of dynasties where offspring inherit the totality of the previous generation’s
wealth. This is similar to the formulation in Benhabib, Bisin and Zhu (2011). This model does not admit a
stationary wealth distribution but remains tractable by focusing on the behavior of aggregates and wealth
shares across entrepreneurial types.
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This structure leads to equilibrium conditions paralleling those in Section 3. In particular, the
neutrality result in Proposition 1 is preserved and productivity in the stationary equilibrium is
endogenous and determined by a quadratic equation that is now36

0 = (1− ρβ (1− τa))Z2 − (1 + ρ (1− 2β (1− τa)))
zh + zℓ

2
Z + ρ (1− β (1− τa)) zhzℓ. (86)

Aggregate productivity in the stationary equilibrium depends now on ρ, the persistence of the
entrepreneurial productivity process.

The main result out of this model is that the effects of wealth taxes on Z also depend on
the persistence of productivity. We show that Z is increasing in the wealth tax if and only if
entrepreneurial productivity is persistent, ρ > 0. As in Section 4, an increase in the wealth tax
increases the returns of high-productivity entrepreneurs and reduces those of low-productivity
entrepreneurs (see Lemma 10, Appendix E). This translates into a higher wealth share of high-
productivity entrepreneurs (sh) if and only if current high-productivity entrepreneurs are expected
to remain so in the future.37

Proposition 13. (Efficiency Gains from Wealth Taxation) For all τa < τa,ρ, an increase
in the wealth tax (τa) increases aggregate productivity, dZ

dτa
> 0, if and only if entrepreneurial

productivity is persistent, ρ > 0.

The remainder of our results also have parallels in this model—which we omit for space
considerations. Wealth taxes reduce average entrepreneurial returns and so entrepreneurs as a
group see their welfare decrease when wealth taxes increase. Workers benefit through the increase
in their income following the increase in productivity, as they did before. The choice of optimal
taxes takes a familiar form, balancing the positive level effect on aggregate variables, with the
decrease in returns.

E.2 Details: Entrepreneurial Problem
Given constant taxes τa and τk and prices, an entrepreneur’s optimal savings problem is

V (a, z) = max
a′

log (c) + β
∑
z′

P
(
z′ | z

)
V
(
a′, z′

)
s.t. c+ a′ = R (z) a,

with R (z) as in (9). We solve this problem via guess and verify. To this end, we guess that the
value function of an entrepreneur with productivity zi, i ∈ {ℓ, h}, has the form

Vi (a) = mi + n log (a) ,

36By studying this equation we prove that there exists a unique stationary equilibrium with heterogeneous
returns, provided that the collateral constraint is not too lose, or, equivalently, that the wealth tax is
sufficiently low. The analysis and derivations are essentially the same as the ones presented above and so
we leave them to the Appendix.

37Our results on the interplay of the persistence of entrepreneurial productivity and wealth taxes in
determining aggregate productivity extend those of Moll (2014). We show that wealth taxes reduce
misallocation through their heterogeneous effect on returns (for a given degree of persistence) resulting
in asset accumulation by high-productivity entrepreneurs in a similar way that higher persistence does.
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where mℓ,mh, n ∈ R are coefficients. Under this guess, the optimal savings choice is the solution
to the following first order condition:

1

Ria− a
′
i

=
βn

a
′
i

−→ a
′
i =

βn

1 + βn
Ria.

Replacing the savings rule into the value function gives:

Vi (a) = log
(
Ria− a

′
i

)
+ β

(
pVi

(
a
′
i

)
+ (1− p)Vj

(
a
′
i

))
mi + n log (a) = log

(
Ria− a

′
i

)
+ β (pmi + (1− p)mj) + βn log

(
a
′
i

)
mi + n log (a) = βn log (βn) + (1 + βn) log

(
Ri

1 + βn

)
+ β (pmi + (1− p)mj) + (1 + βn) log (a)

Matching coefficients we obtain

n = 1 + βn and mi = βn log (βn) + (1 + βn) log

(
Ri

1 + βn

)
+ β (pmi + (1− p)mj) ,

where j ̸= i. The solution to the first equation implies n = 1
1−β . This in turn delivers the optimal

saving decision of the entrepreneur:

a′ = βR (z) a.

Finally, we solve for the remaining coefficients from the system of linear equations:

mi =
β

1− β
log

(
β

1− β

)
+

1

1− β
log ((1− β)Ri) + β (pmi + (1− p)mj) ,

for i, j ∈ {ℓ, h} and i ̸= j. The solution is

mi =
log (1− β)

1− β
+

β

(1− β)2
log (β) +

(1− βp) logRi + β (1− p) logRj
(1− β)2 (1− β (2p− 1))

.

E.3 Stationary Recursive Competitive Equilibrium
We are interested in the equilibrium where the interest rate is determined by the return of

low-productivity entrepreneurs. Recall that the transition matrix for entrepreneurial productivity
ensures that µ = 1/2. Using the saving rules in equation (85), we derive the law of motion for the
aggregate wealth of each group

µA
′
h = pβRhµAh + (1− p)βRℓ (1− µ)Aℓ,

(1− µ)A′
ℓ = (1− p)βRhµAh + pβRℓ (1− µ)Aℓ,
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and for the aggregate capital (K ≡ (1− µ)Aℓ + µAh), where sh = µAh/K

K
′

K
= β (shRh + (1− sh)Rℓ) .

As in Section 2.3 this condition and Lemma 1 imply that

K
′

K
= β

(
(1− τa) + (1− τk)αZαKα−1L1−α)

In the stationary equilibrium a version of Proposition (1) applies:

shRh + (1− sh)Rℓ = (1− τa) + (1− τk)αZαKα−1L1−α =
1

β
,

Rℓ = (1− τa) +
(
1

β
− (1− τa)

)
zℓ
Z

and Rh = (1− τa) +
(
1

β
− (1− τa)

)
zλ
Z
. (87)

Then, we use the law of motion of assets to obtain

(1− p)βRℓ
1− pβRh

=
sh

1− sh
=

1− pβRℓ
(1− p)βRh

. (88)

Replacing Rℓ and Rh using (87) we get a quadratic equation not unlike that in (31):

0 = (1− ρβ (1− τa))− (1 + ρ (1− 2β (1− τa)))

(
zh+zℓ

2

Z

)
+ ρ (1− β (1− τa))

zhzℓ
Z2

= 0.

Studying this quadratic equation, we show that there is a unique stationary equilibrium and
obtain necessary and sufficient conditions for it to feature heterogeneous returns. Before providing
the formal statement of our result, we discuss the logic behind the proof. For ρ ≤ 0, there is a
unique solution. For ρ > 0, there are two positive roots. However, only the larger root satisfies
zℓ < Z < zλ. Then, there is always a unique equilibrium. For the equilibrium to feature return
heterogeneity with Rh > Rℓ it must be that Z < zh. We obtain an upper bound on the collateral
constraint parameter, λρ, that guarantees this.

Proposition 14. There exists a unique stationary competitive equilibrium that features
heterogenous returns (Rh > Rℓ), characterized by a productivity level Z ∈ (zℓ, zh), if and only if
the collateral constraint is not “too loose,” that is, λ satisfies

λ < λρ ≡ 1 +
1− ρ

1 + ρ
(
1− 2

(
β (1− τa) + (1− β (1− τa)) zℓzh

)) .
Moreover, this condition, stated in terms of an upper bound on λ can be restated as an upper bound
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on the wealth tax, given λ:

λ < λρ ←→ τa ≤ τa,ρ ≡ 1− 1

β
(
1− zℓ

zh

) [(λ− 1) (ρ+ 1)− (1− ρ)
2 (λ− 1) ρ

− zℓ
zh

]
.

Proof. For the heterogeneous return equilibrium to arise it must be that (λ− 1)µAh < (1− µ)Aℓ.
First, we show that such an equilibrium is unique and then that it exists under conditions on λ.
The equilibrium Z corresponds to the largest root of equation (86). Define the function h (z) as

h (z) = (1− β (1− τa) (2p− 1)) z2 − (zℓ + zλ) (p− β (1− τa) (2p− 1)) z

+(2p− 1) zℓzλ (1− β (1− τa)) = 0.

It is easy to show that h (zℓ) = (1− p) zℓ (zℓ − zλ) < 0 and h (zλ) = (1− p) zλ (zλ − zℓ) > 0.
Hence, there is a single root satisfying zℓ < Z < zλ because h (z) is a quadratic function.

Next, we prove that (λ− 1)µAh < (1− µ)Aℓ (excess supply of funds) iff λ < λρ. First, we
show that (λ− 1)µAh < (1− µ)Aℓ iff Z < zh. To see this substitute the definition of Z =
(zh+(λ−1)(zh−zℓ))µAh+zℓ(1−µ)Aℓ

µAh+(1−µ)Aℓ
into Z < zh, some algebra gives (λ− 1)µAh < (1− µ)Aℓ. Second,

we derive the condition on λ so that h (zh) > 0 and thus Z < zh:

h (zh) /z
2
h = 1−(2p− 1)β (1− τa)−

(zℓ + zλ)

zh
(p− (2p− 1)β (1− τa))+(2p− 1)

zℓzλ
z2h

(1− β (1− τa)) .

Inserting zλ = zh + (λ− 1) (zh − zℓ) and combining the terms that include λ− 1 gives

h (zh) /z
2
h =

(1− p) (zh − zℓ)
zh

−(λ− 1) (zh − zℓ)
zh

(
p− (2p− 1)

(
β (1− τa) + (1− β (1− τa))

zℓ
zh

))
.

Since p − (2p− 1)
(
β (1− τa) + (1− β (1− τa)) zℓzh

)
> 0 for all p, then, h (zh) > 0 iff λ − 1 <

1−p
p−(2p−1)

(
β(1−τa)+(1−β(1−τa))

zℓ
zh

) . Finally, recall that this equilibrium can only exist if λ ≤ 2 (this

gives Kℓ ≥ 0). Inspecting the previous result it is immediate that λ ≤ 2 iff p ≥ 1/2.

Proposition 13. (Efficiency Gains from Wealth Taxation) For all τa < τa,ρ, an increase
in the wealth tax (τa) increases aggregate productivity, dZ

dτa
> 0, if and only if entrepreneurial

productivity is persistent, ρ > 0.

Proof. The equilibrium level of Z is given by the solution of h (Z) = 0 where h (z) is defined in
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equation (86). Differentiating h (z) with respect to τa gives

d

dτa
h (z) = (2p− 1)βz2 − (2p− 1)β (zℓ + zλ) z + (2p− 1)βzℓzλ

= (2p− 1)βzℓzλ (z − zℓ) (z − zλ) .

The equilibrium Z satisfies zℓ < Z < zλ, so (z − zℓ) (z − zλ) < 0. Thus, d
dτa
h (z) < 0 if and only if

p > 1/2. Moreover, d
dτa
h (z) < 0 for all τa if zℓ < Z < zλ. Thus, dZ

dτa
> 0 as long as τa ≤ τa,ρ.

We now provide additional results that aid in the explanation of Proposition 13.

Lemma 9. (Savings Rates and Wealth Shares) For all τa < τa,ρ, the stationary saving rate
of high-productivity entrepreneurs is positive and the saving rate of low-productivity entrepreneurs
is negative: βRh > 1 > βRℓ. Furthermore, sh > 1/2 if and only if ρ > 0.

Proof. We first show that an entrepreneur’s gross saving rate satisfies βRi > 1 if and only if zi > Z.
This follows immediately by substituting Ri’s from equation (87):

βRi > 1 ←→ β (1− τa) + (1− β (1− τa)) zi/Z > 1 ←→ zi > Z.

The result then follows because zℓ < Z < zλ.

Now, consider sh ≥ 1/2. We know that sh = Z−zℓ
zλ−zℓ , so sh > 1/2 is equivalent to Z > zλ+zℓ

2 . We
can verify if this is the case by evaluating the residual of (86) at zλ+zℓ

2 :

h

(
zλ + zℓ

2

)
= − (2p− 1) (1− β (1− τa))

(
zλ + zℓ

2

)2

+ (2p− 1) (1− β (1− τa)) zℓzλ

= − (2p− 1) (1− β (1− τa))

[(
zλ + zℓ

2

)2

− zℓzλ

]

= − (2p− 1) (1− β (1− τa))
(
zλ − zℓ

2

)2

< 0

The residual is negative if and only if p ≥ 1/2, ρ > 0. So, Z > zλ+zℓ
2 and thus sh > 1/2 for p ≥ 1/2.

Lemma 10. (Wealth Shares and Returns) For all τa < τa,ρ, the following equations and
inequalities hold in equilibrium:

sh =
1− βRℓ

β (Rh −Rℓ)
=
Z − zℓ
zλ − zℓ

dsh
dZ

=
1

zλ − zℓ
> 0

Rh =
1

β (2p− 1)

(
1− 1− p

sh

)
dRh
dZ

> 0

Rℓ =
1

β (2p− 1)

(
1− 1− p

1− sh

)
dRh
dZ

< 0.

82



Moreover, the average returns are always decreasing with productivity, d(Rℓ+Rh)
dZ < 0, and the

geometric average of returns decreases, d(RhRℓ)
dZ < 0, if and only if ρ > 0.

Proof. The wealth share is sh = Z−zℓ
zλ−zℓ from the definition of Z in (12), so it is increasing in Z,

dsh
dZ = 1

zλ−zℓ > 0. For returns consider the evolution equation for Ah in steady state

(1− pβRh)µAh = (1− p)βRℓ (1− µ)Aℓ.

Manipulating this expression gives

Rh =
1

pβ
−
(
1− p
p

)(
1− sh
sh

)
Rℓ.

Similarly, from the law of motion for Aℓ in equilibrium we obtain

Rℓ =
1

pβ
−
(
1− p
p

)(
sh

1− sh

)
Rh.

Replacing we can solve for Rh and Rℓ as a function of sh,

Rh =
1

β (2p− 1)

(
1− 1− p

sh

)
; Rℓ =

1

β (2p− 1)

(
1− 1− p

1− sh

)
. (89)

Their derivates with respect to Z are,

dRh
dZ

=
1− p

β (2p− 1)

1

s2h

dsh
dZ

> 0;
dRℓ
dZ

= − (1− p)
β (2p− 1)

1

(1− sh)2
dsh
dZ

< 0. (90)

The signs follows from Proposition 13.

Using the results in (89) and (90) we obtain expressions for the derivative of the sum and
product of returns with respect to the wealth tax:

d (Rh +Rℓ)

dZ
=

− (2sh − 1) (1− p)

β (2p− 1)
(
(1− sh)2 s2h

) dsh
dZ

;
d (RhRℓ)

dZ
=
− (2sh − 1) p (1− p)

[(1− sh) shβ (2p− 1)]2
dsh
dZ

d(Rh+Rℓ)
dZ is always negative because sh ≥ 1/2 if and only if p ≥ 1/2, as we proved in the previous

Lemma. d(RhRℓ)
dZ is negative if and only if sh ≥ 1/2, again, this happens if and only if p ≥ 1/2.

E.4 Optimal Taxes
We first discuss the welfare measure we use as the government’s objective. Because there

is no stationary wealth distribution in the stationary competitive equilibrium of the model, it
is not possible to compute aggregate welfare directly. However, it is possible to define policy
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so as to maximize the welfare change with respect to a benchmark economy. Let B denote the
initial benchmark economy with a given level of capital income and wealth taxes and C denote
a counterfactual economy with a higher wealth tax and a lower capital income tax, satisfying
Assumption 3. Define

{
cjt (a, i)

}
as the consumption path and V j (a, i) as the value function of an

individual of type i ∈ {w, h, ℓ} under economy j ∈ {B,C}. We ask each individual how much they
value being dropped from B to C in terms of a consumption-equivalent welfare measure CE1 (a, i),
which is defined by

E
∑
t

βt−1 log
(
(1 + CE1 (a, i)) c

B
t (a, i)

)
= E

∑
t

βt−1 log
(
cCt (a, i)

)
.

Solving for CE1 (a, i) all terms containing wealth cancel, so we drop wealth from the arguments,

log (1 + CE1,i) =


log
(
wC+TC

wB+TB

)
if i = w

(1−β) log
(

RC
i

RB
i

)
+β(1−p)

(
log

(
RC
ℓ

RB
ℓ

)
+log

(
RC
h

RB
h

))
(1−β)(1−β(2p−1)) if i ∈ {ℓ, h} .

(91)

The aggregate welfare gain is the population-weighted average of welfare gains,

log (1 + CE1) =
∑

i∈{w,h,ℓ}

ni log (1 + CE1,i) , (92)

where nw ≡ L/(L + 1) is the population share of workers and nh = nℓ ≡ 1/(L + 1) the share of
entrepreneurs. We also define the average entrepreneurial welfare gain (CEe

1) as

log (1 + CEe
1) = µ log (1 + CE1,h) + (1− µ) log (1 + CE1,ℓ) (93)

=
1

1− β

(
µ log

(
RC
h

RB
h

)
+ (1− µ) log

(
RC
ℓ

RB
ℓ

))
.

Workers gain from an increase in the wealth tax because their income increase. For
entrepreneurs, the welfare effects of the increase in the wealth tax come from changes in after-tax
returns. There are two effects. First, a higher wealth tax reduces the current returns of
low-productivity entrepreneurs and increase those of high-productivity entrepreneurs. Second,
(log-)average of returns decrease with the wealth tax, decreasing entrepreneurs’ expectations over
future returns and reducing their welfare. The net result of these effects is a lower welfare for the
low-productivity entrepreneurs and for entrepreneurs as a group.

The welfare gain for the high-productivity entrepreneurs depends on the magnitude of the
decrease in average returns, that in turn depends on the initial return dispersion. There is an
upper bound on the dispersion of returns (κR) that ensures that the loss from lower expected
returns is low relative to the increase in Rh. The upper bound is a function of only β and ρ and
does not change with the wealth tax.38

38The CE1,h welfare measure we consider here ignores the effects of the increase in the assets of high-
productivity entrepreneurs brought about by the increase in the wealth tax. Taking the change in assets
into account makes the welfare change unambiguously positive for them.
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Proposition 15. (Welfare Gain by Agent Type) For all τa < τa,ρ, if Assumption 3 holds
and ρ > 0, a marginal increase in the wealth tax (τa) increases the welfare of workers (CE1,w > 0)
and decreases the welfare of low-productivity entrepreneurs (CE1,ℓ < 0) and the average welfare of
entrepreneurs (CEe

1 < 0). Furthermore, there exists an upper bound on the dispersion of returns
(κR) such that an increase in the wealth tax increases the welfare of high-productivity entrepreneurs
(CE1,h > 0) if and only if Rh −Rℓ < κR.

Proof. For workers’ welfare,

d log (1 + CE1,w)

dτa
=

α

1− α
d logZ

dτa
> 0←→ ρ > 0

The welfare gain is positive if and only if productivity is persistent because of Proposition 13. The
welfare of low-productivity entrepreneurs decreases,

d log (1 + CE1,ℓ)

dτa
∝ (1− β) d logRℓ

dτa
+ β (1− p) d logRℓRh

dτa
< 0,

following from Lemma (10)
(
dRℓ
dτa

, dRℓRh
dτa

< 0
)
. The average welfare of entrepreneurs also decreases,

d log (1 + CEe
1)

dτa
=
β (1− p)
1− β

1

RℓRh

dRℓRh
dτa

< 0.

Finally, for the high-productivity entrepreneurs:

d log (1 + CE1,h)

dτa
∝ 1− β

Rh

dRh
dτa

+
β (1− p)
RℓRh

dRℓRh
dτa

=

[
(1− β)− 1

Rℓ

(2sh − 1) p (1− p)
(1− sh)2 (2p− 1)

]
(1− p)

β (2p− 1) s2hRh

dsh
dτa

=

[
(1− β)− β (2sh − 1) p (1− p)

(p− sh) (1− sh)

]
(1− p)

β (2p− 1) s2hRh

dsh
dτa

.

We maintain the assumption that ρ > 0, and from Lemma (10) we know that dsh
dτa

> 0. So, the
sign of derivative of interest depends on the sign of the term in square brackets.

d log (1 + CE1,h)

dτa
≥ 0 ←→ 1− β ≥ β (2sh − 1) p (1− p)

(p− sh) (1− sh)
.

We verify thatsh < p in equilibrium, which together with Lemma (9) implies that the right hand
side of the inequality is always positive. To verify that sh < p, note that this condition is equivalent
to Z < pzλ + (1− p) zℓ, then evaluate function h defined in (86) at pzλ + (1− p) zℓ. The value of
h is always positive, so it must be that Z < pzλ + (1− p) zℓ and thus sh < p.

Then, the high-type entrepreneurs’ welfare gain is positive if and only if

g (sh) ≡ (1− β) (p− sh) (1− sh)− β (2sh − 1) p (1− p) ≥ 0. (94)

85



Evaluating at sh = 1/2

g (sh) = (1− β)
(
p− 1

2

)
1

2
> 0.

Evaluating at sh = p
g (sh) ≡ −β (2p− 1) p (1− p) < 0.

Moreover, g is continuous for sh ∈ [1/2, p] and monotonically decreasing. So, there exists an upper
bound sh such that

d log (1 + CE1,h)

dτa
≥ 0 ←→ sh ∈

[
1

2
, sh

]
,

characterized by the solution to

(p− sh) (1− sh)− β (2sh − 1) p (1− p) = 0.

Alternatively, we can make us of the link between sh and the dispersion of returns:

Rh −Rℓ =
(1− p) (2sh − 1)

β (2p− 1) (1− sh) sh
.

So the high-productivity entrepreneurs benefit from an increase in the wealth tax if and only if the
dispersion of returns is low enough:

d log (1 + CE1,h)

dτa
≥ 0 ←→ sh ∈

[
1

2
, sh

]
←→ Rh −Rℓ ∈ [0, κR] ,

where κR ≡ (1−p)(2sh−1)
β(2p−1)(1−sh)sh . Note that sh, and therefore κR, depend only on p and β.

We now characterize the optimal tax combination
(
τ⋆a,ρ, τ

⋆
k,ρ

)
that maximizes the utilitarian

welfare measure CE1. Proposition 15 makes clear the key tradeoff when considering the welfare
effects of wealth taxation: A higher wealth tax increases the welfare of workers by increasing
wages through productivity gains, but they reduce the welfare of entrepreneurs by increasing the
dispersion of returns and decreasing their expected value. As we show in Proposition 16 below, the
tradeoff is captured by the elasticities of wages and returns to changes in productivity. The welfare
gain of workers is proportional to the wage elasticity with respect to productivity, ξZw+T = α

1−α ,
while the welfare loss of entrepreneurs is proportional to the average elasticity of returns with
respect to productivity, µξZRh

+ (1− µ) ξZRℓ
.

Proposition 16. (Optimal CE1 Taxes) Under Assumption 3, there exist a unique tax
combination

(
τ⋆a,ρ, τ

⋆
k,ρ

)
that maximizes the utilitarian welfare measure CE1. An interior solution,

τ⋆a,ρ < τa,ρ, is the solution to:

0 = nwξ
Z
w+T +

1− nw
1− β

(
µξZRh

+ (1− µ) ξZRℓ

)
, (95)

where ξZx ≡
d log x
d logZ is the elasticity of variable x with respect to Z. Furthermore, there exist two
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cutoff values for α, αρ and αρ, such that
(
τ⋆a,ρ, τ

⋆
k,ρ

)
satisfies the following properties:

τ⋆a,ρ ∈
[
1− 1

β
, 0

)
and τ⋆k,ρ > θ if α < αρ

τ⋆a,ρ ∈
[
0,
θ (1− β)
β (1− θ)

]
and τ⋆k,ρ ∈ [0, θ] if αρ ≤ α ≤ ᾱρ

τ⋆a,ρ ∈
(
θ (1− β)
β (1− θ)

, τmax
a,ρ

)
and τ⋆k,ρ < 0 if α > ᾱρ,

where αρ and αρ are the solutions to equation (95) with τa = 0 and τa = τTR ≡ θ(1−β)
β(1−θ) , respectively.

Recall that ξZw+T = α/1−α.

As an alternative to CE1, we consider the welfare gain of a stand-in representative low- and
high-productivity entrepreneur. We compare the values of the entrepreneurs between being in
the Benchmark or Counterfactual economy while holding the average wealth of a low- or high-
productivity entrepreneur. We denote this welfare measure as CE2,i:

log (1 + CE2,i) = (1− β)
(
V C (AC

i , i
)
− V B (AB

i , i
))

= log (1 + CE1,i) + log
(
AC

i /AB
i

)
. (96)

We can also ask each entrepreneur how much they value being in the counterfactual economy
with its average wealth

(
KC) relative to being in the benchmark economy with its average wealth(

KC). The welfare gain for a type-i entrepreneur is

log
(
1 + C̃E2,i

)
= (1− β)

(
V C (KC, i

)
− V B (KC, i

))
= log (1 + CE1,i) + log

(
KC/KB

)
, (97)

and the aggregate (or expected) welfare is

log
(
1 + C̃E2

)
=
∑
i

ni log
(
1 + C̃E2,i

)
= log (1 + CE1,i) + log

(
KC/KB

)
. (98)

This gives a similar welfare measure to the one used in Section 5. The optimal taxes are
similarly given as:

Proposition 17. (Optimal C̃E2 Taxes) Under Assumption 3, there exist a unique tax
combination

(
τ⋆a,2, τ

⋆
k,2

)
that maximizes the utilitarian welfare measure C̃E2, an interior solution

τ⋆a,2 < τa,ρ is the solution to:

0 = nwξ
Z
w+T + (1− nw) ξZK +

1− nw
1− β

(
µξZRh

+ (1− µ) ξZRℓ

)
(99)

where ξZx ≡
d log x
d logZ is the elasticity of variable x with respect to Z. Furthermore, there exist two
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cutoff values for α, α2 and α2, such that
(
τ⋆a,2, τ

⋆
k,2

)
satisfies the following properties:

τ⋆a,2 ∈
[
1− 1

β
, 0

)
and τ⋆k,2 > θ if α < α2

τ⋆a,2 ∈
[
0,
θ (1− β)
β (1− θ)

]
and τ⋆k,2 ∈ [0, θ] if α2 ≤ α ≤ ᾱ2

τ⋆a,2 ∈
(
θ (1− β)
β (1− θ)

, τmax
a,2

)
and τ⋆k,2 < 0 if α > ᾱ2

where α2 and α2 are the solutions to equation (99) with τa = 0 and τa =
θ(1−β)
β(1−θ) , respectively. Recall

that ξ = α/1−α.

Proof. From (98) we obtain the first order condition to maximize C̃E2:[
d log (1 + CE1)

d logZ
+ (1− nw)

d logK

d logZ

]
d logZ

dτa
= 0[

nwξ
Z
w+T +

1− nw
1− β

(
µξZRh

+ (1− µ) ξZRℓ

)
+ (1− nw) ξZK

]
d logZ

dτa
= 0

As in the proof of Proposition 16 this leads to the optimality condition. Further, we know that
ξZw+T = ξZK = α/1−α. The uniqueness of the solution and the definition of the thresholds for α and
its implications for the optimal taxes follow from the same arguments as in Proposition 16.

Taking into account the role of capital accumulation results in a higher optimal tax level, and
lower thresholds α and α:

Corollary 2. (Comparison of CE1 and CE2 Taxes) The optimal wealth tax is higher when
taking the wealth accumulation into account

(
τ⋆a,2 > τ⋆a,ρ

)
. Moreover, the α-thresholds are lower

α2 < αρ and α2 < αρ.
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F Additional Figures

Figure F.2: Capital Elasticity to Taxes

(a) Elasticity w.r.t. Wealth Tax ξτaK (b) Elasticity w.r.t. Capital Income Tax ξτkK

Note: The Figures report the elasticity of aggregate capital, K, to the wealth tax (left) and capital income tax (right).
Elasticities are computed as in (32) and (33). To make the magnitudes comparable the elasticity of K with respect to τk is
re-scaled to reflect the change in capital income taxes that matches a one percentage point change in the wealth tax under
Assumption 3. This amount to multiplying (33) by (1−θ)βδ/(1−βδ). Other parameters are as follows: δ = 49/50, βδ = 0.96,
µ = 0.10, zh = 1, τk = 25%, and α = 0.4, θ = 025. λ is such that the debt-to-output ratio is 1.5.
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Figure F.3: Stationary Equilibrium with Heterogeneous Returns

(a) Upper Bound on Wealth Tax τa (b) Dispersion of Returns in Equilibrium, Rh −Rℓ

Note: Figure F.3a reports the upper bound on the wealth tax from Corollary 2 for combinations of the discount factor (β)
and productivity dispersion (zℓ/zh). Figure F.3b reports the value return dispersion in equilibrium for combinations of the
discount factor (β) and productivity dispersion (zℓ/zh). In both figures we set the remaining parameters as follows: δ = 49/50,
µ = 0.10, zh = 1, τk = 25%, and α = 0.4. λ is such that the debt-to-output ratio in our baseline calibration is 1.5.

Figure F.4: α Thresholds for Entrepreneurial Welfare Gains

(a) Low-Productivity Entrepreneurs: dVℓ/dτa > 0 (b) Average Entrepreneur: dVE/dτa > 0

Note: The figures report the threshold value of α above which entrepreneurial welfare increases after an increase in the wealth
tax for combinations of the discount factor (β) and productivity dispersion (zℓ/zh). We set the remaining parameters as
follows: δ = 49/50, µ = 0.10, zh = 1, τk = 25%, and α = 0.4. λ is such that the debt-to-output ratio in our baseline calibration
is 1.5.
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Figure F.5: α Thresholds for the Optimal Wealth Tax

(a) Lower Threshold α for τ⋆a > 0 (b) Upper Threshold α for τ⋆k < 0

Note: The figures report the threshold value of α for the optimal wealth tax to be positive (left) and capital income taxes
to be positive (right) for combinations of the discount factor (β) and productivity dispersion (zℓ/zh). We set the remaining
parameters as follows: δ = 49/50, µ = 0.10, zh = 1, τk = 25%, and α = 0.4. λ is such that the debt-to-output ratio in our
baseline calibration is 1.5.

Figure F.6: Upper Bound on the Wealth Tax (τ̄a) with Innovation

Note: The figure reports the upper bound on the wealth tax from Proposition 7 when innovation is endogenous for combinations
of the discount factor (β) and productivity dispersion (zℓ/zh). We set the remaining parameters as follows: δ = 49/50, zh = 1,
τk = 25%, and α = 0.4. λ is such that the debt-to-output ratio in our baseline calibration is 1.5.
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Figure F.7: α Thresholds for the Optimal Wealth Tax with Innovation

(a) Lower Threshold α for τ⋆a > 0 (b) Upper Threshold α for τ⋆k < 0

Note: The figures report the threshold value of α for the optimal wealth tax to be positive (left) and capital income tax to be
positive (right) when innovation is endogenous for combinations of the discount factor (β) and productivity dispersion (zℓ/zh).
We set the remaining parameters as follows: δ = 49/50, zh = 1, τk = 25%, and α = 0.4. λ is such that the debt-to-output ratio
in our baseline calibration is 1.5.

G Distribution of Wealth
Figure G.8 shows the resulting stationary wealth distribution and how it changes as µ increases.

All entrepreneurs start out with wealth a. The two tails of the distribution depend on the returns
of low- and high-productivity entrepreneurs. As µ increases, the average wealth in the economy
increases, which raises a and shifts the distribution to the right. This shifts all of the mass points
and the initial mass of high-productivity entrepreneurs; the mass at all other points is proportional
to it. The increase in µ also reduces returns, as shown in the expression for returns in Proposition
4. This means that low-productivity entrepreneurs dissave faster (increasing the distance between
mass points) and high-productivity entrepreneurs accumulate assets more slowly (decreasing the
distance between mass points) with a higher µ.

What happens to the wealth distribution when τa increases? The whole wealth distribution
shifts after an increase in the wealth tax, an outcome that reflects the increase in aggregate wealth
and the change in returns. The increase in aggregate capital shifts all mass points to the right, as
they are proportional to a = K. They are further affected by the compounding effect of returns—
see Proposition 4. The resulting shift is shown in Figure G.9. When we take into account the
changes in innovation effort, there is additional change in the distribution following an increase in
the wealth tax. This is because the share of high-productivity entrepreneurs increases, shifting the
mass of the distribution towards them, as in Figure G.8.
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Figure G.8: Stationary Wealth Distribution

Note: The line marked with circles shows the shape of the stationary wealth distribution for a given µ, with the vertical line
indicating the average wealth, a. The wealth distribution of low-productivity entrepreneurs is to the left of a as they dissave
and the distribution of high-productivity entrepreneurs is to the right. The line marked with diamonds shows the wealth
distribution for a higher level of high-productivity entrepreneurs, µ′ > µ,with a higher average wealth, a

µ
′ .

Figure G.9: Stationary Wealth Distribution and Wealth Taxes

Note: The blue line marked with circles is the stationary wealth distribution for an economy with a zero wealth tax, and the
orange line with diamonds is the corresponding distribution with a positive wealth tax (τa > 0). The vertical lines mark the
levels of a in the respective economy. The wealth distribution of low-productivity entrepreneurs is to the left of a since they
dissave and the distribution of high-productivity entrepreneurs is to the right. The wealth tax economy has a higher level of
a and different mass-points for the distribution as a result. The share of high-productivity entrepreneurs, µ is held constant.
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