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ABSTRACT

Economic policies often involve dynamic interventions, where individuals receive repeated 
interventions over multiple periods. This dynamics makes past responses informative to predict 
future responses and ultimate outcomes depend on the history of interventions. Despite these 
phenomena, existing economic studies typically focus on static targeting, possibly overlooking 
key information from dynamic interventions. We develop a framework for designing optimal 
dynamic targeting that maximizes social welfare gains from dynamic policy intervention. Our 
framework can be applied to experimental or quasi-experimental data with sequential 
randomization. We demonstrate that dynamic targeting can outperform static targeting through 
several key mechanisms: learning, habit formation, and screening effects. We then propose 
methods to empirically identify these effects. By applying this method to a randomized controlled 
trial on a residential energy rebate program, we show that dynamic targeting significantly 
outperforms conventional static targeting, leading to improved social welfare gains. We observe 
significant heterogeneity in the learning, habit formation, and screening effects, and illustrate how 
our approach leverages this heterogeneity to design optimal dynamic targeting.
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1 Introduction

Targeting has become a central question in economics and policy design because policymakers who face

budget constraints need to identify who should be treated to optimize policy impacts. The advent of machine

learning and econometric methods has spurred research on targeting across various policy domains, includ-

ing job training programs (Kitagawa and Tetenov, 2018), social safety net programs (Finkelstein and No-

towidigdo, 2019; Deshpande and Li, 2019), energy efficiency programs (Burlig, Knittel, Rapson, Reguant,

and Wolfram, 2020), electricity conservation nudges (Knittel and Stolper, 2021), dynamic electricity pricing

(Ito, Ida, and Takana, 2023), and energy rebate programs (Ida, Ishihara, Ito, Kido, Kitagawa, Sakaguchi, and

Sasaki, 2023).

While existing economic literature primarily focuses on static targeting, many real-world economic

policies involve dynamic interventions. These policies, such as job training programs (Lechner, 2009; Ro-

dríguez et al., 2022), unemployment insurance programs (Meyer, 1995; Kolsrud et al., 2018), healthcare

programs (Luckett et al., 2019), and educational interventions (Ding and Lehrer, 2010), administer repeated

interventions over multiple periods. The responses of individuals to these interventions can vary based on

the timing and frequency of interventions. Moreover, data from earlier interventions can inform future re-

sponses. By leveraging these mechanisms and their heterogeneity, dynamic targeting could surpass static

targeting. Thus, it is crucial to explore the design of optimal dynamic targeting and understand its potential

superiority over static targeting, which may overlook key information.

This study demonstrates how researchers can utilize experimental or quasi-experimental data with se-

quential randomization to design dynamic targeting that maximizes social welfare gains from a dynamic

policy intervention. We apply our framework to a randomized controlled trial (RCT) on an energy rebate

program to empirically investigate the importance of dynamic targeting in enhancing welfare from dynamic

policy intervention. Our framework draws insights from the dynamic treatment regimes literature in bio-

statistics (Robins, 1986; Murphy, 2003; Chakraborty and Moodie, 2013; Zhang et al., 2018; Tsiatis et al.,

2019). In medical science, determining the optimal individualized timing and prescriptions of treatments

to improve health outcomes is often crucial (Pelham Jr et al., 2016). This parallels our research question

in social science: determining the optimal individualized timing and allocations of policy interventions to

enhance social welfare gains.

Our dynamic targeting is a sequence of individualized treatment allocation policies that utilize two types
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of information to optimize treatment assignment. The first type includes pre-intervention data such as house-

hold demographics, housing characteristics, and historical electricity usage. The second type encompasses

the history of interventions for each individual and their responses to these interventions.

We propose several reasons why dynamic targeting could surpass static targeting, which we validate

theoretically and empirically with experimental data. The first reason is the learning effect. Individuals

who receive an intervention for multiple periods may learn how to respond effectively to the treatment (e.g.,

learning to conserve electricity in response to a rebate incentive). For those with a pronounced learning

effect, repeated treatments could enhance social welfare gains compared to a single early-period treatment.

The second reason is the habit formation effect. Individuals may develop habits of conserving electricity

when exposed to the rebate program. Consequently, even without participating in the program in the subse-

quent periods, they might consume less electricity than those who did not participate in an earlier period. For

individuals with strong habit formation, early treatments could yield sustained welfare gains, even without

subsequent treatments.

The third reason is the screening effect. Dynamic targeting allows us to gather new information about

each individual after each intervention, which can inform treatment decisions in later periods. For instance,

in a two-period binary choice experiment, we could assign an individual to treatment or no-treatment in the

first period and observe their response. The response to treatment in the first period might be informative

for optimizing their second-period assignment for some individuals. For others, observing the response to

no-treatment in the first period could be more informative. In extreme cases, we might assign a first-stage

treatment that yields statically sub-optimal welfare gain if the response to that treatment provides valuable

information for optimizing assignments in subsequent periods.

Our theoretical framework elucidates the variation required by an RCT or quasi-experiment to estimate

the optimal policy assignment. Following Sakaguchi (2021), we employ the Empirical Welfare Maximiza-

tion (EWM) approach (Kitagawa and Tetenov (2018)) and Outcome Weighted Learning (Zhao et al. (2012))

to estimate dynamic targeting. We apply this method to data from an RCT for a residential electricity rebate

program, which was conducted in collaboration with the Japanese Ministry of Environment. The rebate pro-

gram aims to encourage energy conservation during peak demand hours when the marginal cost of electricity

is significantly higher than the time-invariant residential electricity price. In our context, the social welfare

gain from this program can vary across individuals and can be positive, negative, or zero, considering the

per-household implementation cost. This suggests that optimal targeting could enhance the social welfare
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gain from this program.

We conducted a two-period experiment, randomly assigning customers to one of four groups: (U,U),

(T, T ), (U, T ), and (T,U). Here, U denotes “untreated" and T signifies “treated." Each element within the

parentheses represents the treatment assignment for the first and second periods, respectively. The data from

these groups are instrumental in estimating dynamic targeting and examining its mechanism.

We empirically compare the welfare benefits of four non-targeting policies, two static targeting policies,

and dynamic targeting in Section 4. Our findings indicate that conventional static targeting significantly

enhances welfare benefits compared to non-targeting policies. Moreover, dynamic targeting can further

augment these benefits, nearly doubling the welfare gain from static targeting policies.

We then explore the mechanism underpinning dynamic targeting in Section 5. We find that three poten-

tial mechanisms—learning, habit formation, and screening—significantly influence the optimal allocation

of individuals to different policy interventions. Substantial heterogeneity exists among individuals for each

of these effects. Dynamic targeting leverages this heterogeneity to construct optimal dynamic targeting, a

strategy not employed by static targeting.

Related Literature and Our Contributions—Our study intersects with three areas of literature. First,

numerous recent economics studies, including Johnson, Levine, and Toffel (forthcoming); Murakami, Shi-

mada, Ushifusa, and Ida (2022); Cagala, Glogowsky, Rincke, and Strittmatter (2021); Christensen, Fran-

cisco, Myers, Shao, and Souza (2021); Assunção, McMillan, Murphy, and Souza-Rodrigues (2023); Ger-

arden and Yang (2023), have examined targeting in various policy domains. However, to our knowledge,

existing economics studies primarily focus on static targeting. Our paper is among the first in economics

to develop a framework for dynamic targeting in economic policy interventions. Sakaguchi (2021) stud-

ies estimation of dynamic treatment assignment rules under policy constraints, and as an application of the

methods developed therein, he estimates the optimal allocation of students to classes with or without ad-

ditional teacher aide across multiple grades. In the marketing literature, Ko et al. (2022) and Liu (2022)

investigate dynamic coupon distributions in an online retail site using the Q-learning method.

Second, the medical statistics literature has explored the dynamic treatment assignment of medical in-

terventions, known as the dynamic treatment regime. Our estimation of dynamic targeting policy builds on

Sakaguchi (2021) with policy tree of Zhou et al. (2023).1 Our paper is the first to offer theoretical and empir-
1Q-learning (Watkins and Dayan (1992); Murphy (2005)) is also a popular approach to estimate optimal dynamic treatment

regimes. This approach can yield dynamic treatment regimes with low welfare when models relevant to outcomes are misspecified,
even when experimental data is used.
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ical comparisons between static and dynamic targeting and to investigate the mechanisms that could explain

why dynamic targeting could outperform static targeting. Specifically, we derive a novel decomposition of

the welfare gain into several key channels, clarifying the advantages of dynamic targeting, including the

learning, habit formation, and screening effects. Additionally, we develop a novel approach to separately

identify and estimate these effects using our experimental variation.

Third, this study contributes to the econometrics and statistics literature on dynamic treatment and me-

diation analysis. Heckman and Navarro (2007) and Heckman et al. (2016) explore the identification of

dynamic treatment effects by modeling the selection process of treatments over multiple periods. Their

focus on dynamic causal effects differs from ours as they do not consider the estimation of a dynamic tar-

geting policy. Han (2023) examines the partial identification of the welfare impact of dynamic targeting in

the presence of observational data subject to selection. As Huber (2019) highlights, the identification of

instantaneous and dynamic treatment effects in our setting bears resemblance to the identification of direct

and indirect causal effects in mediation analysis. In particular, the screening effect in our context is akin

to an indirect effect through multiple mediators. Nonparametric identification is known to be unattainable

with only a sequential unconfoundedness assumption (Avin et al. (2005)). We propose a novel identification

approach for the screening effect that utilizes an additional rank-invariance assumption (Chernozhukov and

Hansen, 2005). This result may be of independent interest for the identification of the indirect effect in

mediation analysis.

Finally, the research question and policy environment examined in our study differ from those in the

multi-armed bandit method. See Lattimore and Szepesvári (2020) for a recent monograph on the topic. See

also Dimakopoulou et al. (2017), Ariu et al. (2021), Kasy and Sautmann (2021), and Kock et al. (2022) for

recent developments of bandit algorithms with relevance to economics. The multi-armed bandit problem

involves different individuals arriving at each period, each receiving treatment only once. In contrast, our

study focuses on a policy environment where the same set of individuals arrive at each period, and each

could receive multiple treatments across periods. Furthermore, in the multi-armed bandit problems, the

treatment effect is explored and exploited across sequential periods, while in our framework, the effects

of sequential treatments are estimated before the allocation task. Thus, our framework is distinct from the

multi-armed bandit method.
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2 Conceptual Framework

In this section, we introduce a theoretical framework for dynamic policy targeting. We formulate the

problem in Section 2.1 and discuss the advantages of dynamic over static targeting in Section 2.3.

2.1 Dynamic Targeting

Consider a planner introducing a policy intervention to a heterogeneous population. The planner assigns

a binary treatment to individuals, exploiting their diverse responses. Unlike the standard statistical treatment

choice as in Manski (2004), Hirano and Porter (2009), and Kitagawa and Tetenov (2018), the planner can

assign different treatments to the same individual over multiple periods. For clarity, we limit our analysis to

two-period assignments, where the planner assigns treatments in two time periods, t = 1 and t = 2.2

2.1.1 Potential Outcomes

In each period, an individual is either treated (“T ”) or untreated (“U”). We denote a sequence of treat-

ment assignments across the two periods as (d1, d2) ∈ {U, T}2. There are four possible combinations of

sequential interventions: (d1, d2) = (U,U), (T,U), (U, T ), and (T, T ). For instance, (d1, d2) = (T, T )

indicates treatment in both periods, while (d1, d2) = (U, T ) signifies treatment only in the second period.

The planner aims to optimize a social welfare criterion by assigning each individual to one of the four

intervention arms. Let Y1(T ) and Y1(U) denote the potential outcomes in period 1 when an individual

is treated (d1 = T ) and untreated (d1 = U ), respectively. The outcomes represent individual welfare

contributions, as defined in Section 4.1, rather than electricity consumption. As indicated by the arguments

of these potential outcomes, we assume that the potential outcomes in period 1 are independent of the

treatment d2 in period 2. This assumption aligns with the no-anticipation condition, a common assumption in

the literature of program evaluation with panel data. This condition stipulates that an individual’s knowledge

or expectation of the treatment to be given in period 2 does not influence their treatment response in period 1.

This no-anticipation assumption also implies that an individual’s knowledge or expectation of the treatment

assignment rule in period 2 does not affect their treatment response in period 1. This guarantees the external

validity of experimental data with sequentially randomized treatments for the population targeted by the

optimal dynamic policy.
2Our analysis can be straightforwardly extended to more than two periods.
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Let Y2(d1, d2) represent the potential outcomes in period 2 when an individual is assigned to intervention

arm (d1, d2) ∈ {U, T}2. By including period 1’s treatment d1 in the arguments of period 2’s potential

outcomes, we account for the dynamic causal effect of period 1’s treatment on period 2’s outcome. Empirical

evidence, as shown below, supports the existence of this dynamic treatment effect in the context of an

electricity rebate program, and its heterogeneity significantly influences the welfare performance of dynamic

policy targeting.

2.1.2 Information available to the planner

We introduce the sequential structure of the planner’s information set and treatment assignments in

dynamic policy targeting for an individual in the population.

At the beginning of period 1, the planner observes the individual’s covariate information S1 and assigns

treatment d1 ∈ U, T . In an electricity rebate program, S1 includes past electricity usage, household demo-

graphics, and property characteristics. At the end of period 1, the planner observes the treatment response

Y1(d1), which is the post-treatment electricity usage.

At the beginning of period 2, the planner has updated covariate information S2. Using (S1, d1) and S2,

the planner assigns the period 2 treatment . S2 includes observable covariate information available after

the first-period intervention and before the second-period intervention, including the first-period treatment

response Y1(d1). Since S2 is influenced by period 1 treatment d1, we use the potential outcome notation

S2(d1). In the electricity rebate program, S2(d1) includes post-treatment electricity usage in period 1 and

pre-treatment usage in period 2. Upon observing S2(d1), the planner assigns period 2 treatment based on

(S1, d1, S2(d1)).

In Figure 1, Ht denotes the information available to the planner before time t. At t = 1, H1 is S1, and

at t = 2, H2(d1) = (S1, d1, S2(d1)). To consider counterfactual histories of period 1 treatment, we use the

potential outcome notation for H2.
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Figure 1: Information Available to the Planner

Treatment
 t = 1 (𝜋1)

Information available 
before time = t 

(Ht)
H1 = S1 H2 = (S1, d1, S2(d1))

Treatment
 t = 2 (𝜋2)

Time

Notes: This figure presents a set of information available to the planner before time t (Ht). At t = 1, H1 agrees with S1, and,
at t = 2, H2(d1) = (S1, d1, S2(d1)), where St is the observable data at time t, and d1 is the treatment assignment at t = 1.

Our framework accommodates full heterogeneity in treatment responses for periods 1 and 2. This hetero-

geneity makes a non-individualized uniform assignment suboptimal. We consider individualized sequential

treatment assignments as follows: In period 1, the planner assigns d1 = T or U based on H1. In period 2,

upon observing H2(d1), the planner assigns d2 = T or U . The targeting policy in period t is denoted as

πt : Ht → T,U , where Ht is the space of history in period t. A sequence of policies π := (π1, π2) defines

the sequential treatment assignment strategy. We call π a dynamic targeting policy (DTP).

2.1.3 Optimal Dynamic Targeting

Given a fixed DT π, we specify the planner’s social welfare criterion W (π) of π as the population mean

of the sum of individuals’ outcomes over the two periods that are realized when treatment assignments

follow π across the two stages:

W (π) ≡ E

 ∑
(d1,d2)∈{T,U}2

(Y1(d1) + Y2(d1, d2)) · 1{π1(H1) = d1, π2(H2(d1)) = d2}

 . (1)

Note that our social welfare sums up the flow outcomes over multiple periods. This differs from a setting in

the dynamic treatment regime literature of medical intervention in which the health outcome of the terminal

period matters for the welfare criterion (Robins, 1986; Murphy, 2003; Chakraborty and Moodie, 2013;

Zhang et al., 2018; Tsiatis et al., 2019).

The optimal DT π∗ = (π∗1, π
∗
2) is obtained by:

π∗ = arg max
π∈Π̃

W (π),
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where Π̃ = Π̃1 × Π̃2 with Π̃t being a set of measurable functions πt.

A DTP has two dynamic features in its sequential treatment assignment. First, it can switch intervention

arms, U and T , between periods rather than assigning a unique intervention arm across all periods. For

instance, DTPs can assign (d1, d2) = (T,U) or (U, T ) instead of being limited to (T, T ) or (U,U). This

flexibility can improve welfare compared to static policies that lock in a treatment over time.

Second, DTPs use updated information H2(d1) to decide on interventions in the second period. The

optimal DTP leverages the sequential arrival of new information to improve welfare, contrasting with static

policies that use only the initial period’s pre-intervention covariate information H1. For example, if Y1(d1)

helps predict period 2 potential outcomes, an optimal DTP can incorporate it into the period 2 treatment

assignment, unlike static targeting policies.

2.2 Static Targeting

As noted, we have two types of static targeting policies. The first type, static targeting policy I (STP-I),

uses pre-intervention information H1 to decide between the two fixed interventions (T, T ) or (U,U). It is

formulated as a map πS(I) : H1 → (T, T ), (U,U). The second type, static targeting policy II (STP-II), also

uses H1 but can choose among four interventions (U,U), (T,U), (U, T ), or (T, T ). It is formulated as a

map πS(II) : H1 → (U,U), (T,U), (U, T ), (T, T ).

For any STP, when the sequential intervention follows a fixed policy πS , the average total outcomes are

WS(πS) ≡ E

 ∑
(d1,d2)∈{T,U}2

(Y1(d1) + Y2(d1, d2)) · 1{πS(H1) = (d1d2)}

 . (2)

This represents the social welfare of the static targeting policy πS and is comparable to the social wel-

fare of the DTP defined in (1). The optimal STP-I π∗S(I) and optimal STP-II π∗S(II) are the policies that

maximize the social welfare function WS(·) over all measurable STP-I and STP-II, respectively: π∗S(j) =

arg max
all measurable πS(j)

WS(πS(j)) for j ∈ I, II . The welfare attained by an optimal STP-II is no worse than that

of an optimal STP-I (i.e., W (π∗S(II)) ≥ W (π∗S(I))) because STP-I is limited to the set of policies satisfying

πS(I) ∈ {(T, T ), (U,U)}.

The welfare attained by an optimal DTP π∗ is no worse than that of an optimal STP-II (i.e., W (π∗) ≥

WS(π
∗
S(II))) and that of the optimal STP-I because the optimal DTP utilizes the updated individual’s covari-

ate information S2(d1), while STP-II does not. Hence, the welfare gainW (π∗)−WS(π
∗
S(II)) of the optimal
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DTP relative to the optimal STP-II captures the welfare gain of having access to and using (d1, S2(d1))

additionally in period 2 treatment choice.

2.3 Welfare Gains from Dynamic Targeting

This section analyzes the welfare gains of dynamic targeting relative to static targeting policies and

interprets this in the context of the electricity conservation rebate program. We define channels of welfare

gains from being dynamic: heterogeneity in dynamic causal effects of learning, habit formation, and the

use of information to predict future treatment response. Section 5 empirically investigates the magnitude of

each channel.

2.3.1 Learning

If individuals participate in a rebate program to save electricity, they acquire skills to reduce their elec-

tricity consumption. Consider individuals who participate in the rebate programs in the first and second

periods. In the first period, they acquire the ability to save electricity. In the second period, they utilize this

ability to further reduce their consumption. Consequently, those who participated in the first period saved

more electricity in the second period than those who did not.

This effect is termed the learning effect, defined as Y2(T, T ) − Y2(U, T ). We say an individual has a

learning effect if Y2(T, T ) > Y2(U, T ). Conversely, an individual exhibits a habituation effect if Y2(T, T ) <

Y2(U, T ). Individuals with a habituation effect become accustomed to the rebate program in the first period

and thus do not perform as well in the second period.

For those with a learning effect, the sequential intervention (T, T ) outperforms (U, T ) in enhancing

welfare contributions in the second period. The optimal DTP uses an individual’s information H1 and H2

to identify those with a learning or habituation effect, whereas the optimal STI-II uses only first-period

information H1 for this purpose. The optimal STI-I cannot exploit the learning effect as it cannot assign

(T,U).

2.3.2 Habit Formation and Other Effects

Some individuals may develop habits for saving electricity when exposed to the rebate program in the

first period. For these individuals, the dynamic causal effect of period 1 treatment on the period 2 outcome
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is positive, even if they are not exposed to the rebate program in the second period. This effect is termed

the habit formation effect, defined as Y2(T,U)− Y2(U,U). An individual is said to have a habit-formation

effect if Y2(T,U) > Y2(U,U).

Additionally, we introduce two alternative effects: the second-period-treatment effect (Y2(U, T ) −

Y2(U,U)) and the full-intervention effect (Y2(T, T ) − Y2(U,U)). Combining these four effects (learn-

ing, habit formation, second-period-treatment, and full-intervention) enables us to characterize the (oracle)

optimal sequential intervention for the second-period outcome as follows:

Remark 2.1. An assignment (d1, d2) ∈ {U, T}2 is optimal for the second period if and only if Y2(d1, d2) ≥

Y2(d
′
1, d

′
2) for any (d′1, d

′
2) ∈ {U, T}2. The optimal assignments for the second period are exclusively

characterized as follows:

• (d1, d2) = (T, T ) is optimal for the second period if and only if the learning effect ≥ 0, full-

intervention effect ≥ 0, and full-intervention effect ≥ the habit-formation effect;

• (d1, d2) = (T,U) is optimal for the second period if and only if the habit-formation effect ≥ 0,

habit-formation effect ≥ the second-period-treatment effect, and habit-formation effect ≥ the full-

intervention effect;

• (d1, d2) = (U, T ) is optimal for the second period if and only if the second-period-treatment effect

≥ 0, second-period-treatment effect ≥ the habit-formation effect, and learning effect ≤ 0 (i.e., there

is habituation effect);

• (d1, d2) = (U,U) is optimal for the second period if and only if the habit-formation effect ≤ 0,

second-period-treatment effect ≤ 0, and full-intervention effect ≤ 0.

2.3.3 Screening

One advantage of utilizing S2(d1) in dynamic targeting is the ability to use the period 1 treatment

response for treatment allocation in the second period. If the planner assigns d1 = T in the first period,

they can observe H2(T ); if d1 = U , they observe H2(U). Note that H2(U) and H2(T ) contain different

variables, as S2(d1) includes potential variables indexed by d1. Thus, they provide different information

for predicting individuals’ unobserved types and treatment response behaviors in the second period. For
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instance, if H2(T ) is more informative for predicting the heterogeneity of treatment effects in the second-

period outcome thanH2(U), it is more beneficial to observeH2(T ) by allocating d1 = T , despite a potential

loss in first-period welfare, than to observe H2(U) by allocating d1 = U . This channel of welfare gain is

termed the screening effect of period 1 treatment. Given an optimal DTP π∗, the screening effect is defined

as

τscr ≡ Y2(T, π
∗
2(H2(T )))− Y2(T, π

∗
2(H2(U))). (3)

If the first-period intervention is T and the second-period treatment follows the optimal policy π∗2 , the

screening effect τscr represents the welfare gain from acquiring the information H2(T ) instead of H2(U).

A positive τscr indicates that H2(T ) is more beneficial than H2(U) for selecting the optimal intervention in

the second period.

Dynamic targeting can incorporate screening effects into sequential treatment choices. Note that screen-

ing effects cannot be identified even with RCT data of sequentially randomized treatment assignments, as we

cannot observe the counterfactual history H2(U) in equation (3) for those treated in the first period. In Sec-

tion 2.3.3, we impose a conditional rank-invariance assumption (Heckman et al., 1997; Chernozhukov and

Hansen, 2005; Vuong and Xu, 2017) between S2(U) and S2(T ) and present identification and estimation of

the average screening effects.

2.3.4 Decomposition of Welfare Gains

This section presents a decomposition formula of the welfare gain of a DTP relative to a status-quo if

uniform no-treatment, W (π)−W(U,U), where W(U,U) ≡ E[Y1(U) + Y2(U,U)].

The next proposition shows how the welfare gain of the optimal DTP π∗ is decomposed into the sources

of welfare gain listed in the previous sections. The Appendix presents the proof.

Proposition 2.1. The welfare gain of an optimal DTP relative to no-intervention status-quo admits the
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following decomposition:

W (π∗)−W(U,U)

= E[Y1(T )− Y1(U)|π∗1(H1) = T ]︸ ︷︷ ︸
Treatment effect on the treated in t = 1

·Pr(π∗1(H1) = T )

+ E[Y2(U, T )− Y2(U,U)|π∗2(H2(U)) = T ]︸ ︷︷ ︸
Treatment effect on the treated in t = 2

·Pr(π∗2(H2(U)) = T )

+ E[Y2(T,U)− Y2(U,U)|π∗1(H1) = T, π∗2(H2(T )) = U ]︸ ︷︷ ︸
Habit formation effect for those assigned to (T, U)

·Pr(π∗1(H1) = T, π∗2(H2(T )) = U)

+ E[Y2(T, T )− Y2(U, T )|π∗1(H1) = T, π∗2(H2(T )) = T ]︸ ︷︷ ︸
Learning effect for those assigned to (T, T )

·Pr(π∗1(H1) = T, π∗2(H2(T )) = T )

+ E[Y2(T, π
∗
2(H2(T )))− Y2(T, π

∗
2(H2(U)))|π∗1(H1) = T ]︸ ︷︷ ︸

Screening effect on the treated in t = 1

·Pr(π∗1(H1) = T ). (4)

The results indicate that the welfare gain from the optimal DTP π∗ can be broken down into five distinct

effects. These include the average treatment effect for those treated in period 1, the average treatment

effect for those treated in period 2, the average habit-formation effect for individuals assigned to (T,U), the

average learning effect for individuals assigned to (T, T ), and the average screening effect for those treated

in the first period across several groups. These groups are characterized by the optimal policy π∗ and are

weighted according to the proportions of the corresponding conditioning groups. This decomposition is,

to the best of our knowledge, a novel contribution to the literature and encapsulates all sources of welfare

gains from DTP. As highlighted in the proof of Proposition 2.1, this decomposition does not necessitate

the welfare of DTP to be optimal. The same decomposition can be achieved for any arbitrary DTP π.

In Sections 4 and 5, we examine the identification of each welfare gain factor, utilizing RCT data with

sequentially randomized treatments.

3 Field Experiment and Data

This section describes the design and implementation of our two-period RCT in the context of a resi-

dential energy rebate program in Japan. Section 3.1 overviews the field experiments. Section 3.2 presents

the summary statistics and balance test results.
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3.1 Field Experiment

In 2020, we conducted a two-period field experiment in the Kansai and Chubu regions of Japan, in

collaboration with the country’s Ministry of the Environment.3 We recruited a diverse group of households

via letter and e-mail, offering a participation fee of 2000 JPY (≈20 USD; 1¢≈1 JPY in summer 2020). Of

the 3470 customers who pre-registered, we excluded nonresidential customers, those who terminated their

electricity contracts during the experiment, and those with incomplete high-frequency electricity usage data.

This resulted in a final sample of 2400 residential customers. Our experiments were RCTs for consenting

households, a common approach in residential electricity demand literature (Wolak, 2006, 2011; Ito, Ida,

and Tanaka, 2018).

During the summer and winter of 2020, we randomly assigned these 2400 households to either the

untreated group (U ) or the treated group (T ).4

Untreated group (U ): Customers did not participate in the rebate program.

Treated group (T ): Customers participated in the rebate program.

After two rounds of randomization, customers fell into one of four groups: (U,U), assigned to be

untreated in the first (summer in 2020) and second (winter in 2020) periods; (U, T ), assigned to be treated

in the first period and treated in the second period; (T,U), assigned to be treated in the first period and

untreated in the second period; and (T, T ), assigned to be treated in the first and second periods. The

number of households is 625 for (U,U), 606 for (U, T ), 581 for (T,U), and 588 for (T, T ).

Our experiment utilized a “peak-time rebate" (PTR) program (Wolak, 2011; Ida, Ishihara, Ito, Kido,

Kitagawa, Sakaguchi, and Sasaki, 2023). The fundamental inefficiency in many electricity markets is the

failure of residential electricity prices to reflect time-varying marginal costs. During peak hours, the invariant

residential price is often too low compared to the variant marginal cost, leading to a short-run deadweight

loss. PTR programs aim to reduce this loss by aligning the rebate incentive with the marginal cost.

Even so, PTR is generally considered less effective than dynamic pricing, where hourly prices equal c

for two reasons. First, while PTR incentivizes customers to reduce electricity usage, it does not “penalize"

customers for increasing their usage. Second, if policymakers do not carefully set the “baseline usage," PTR

may inadvertently incentivize customers to manipulate their baseline usage to earn a larger rebate. Hence,
3The experiment received approval from the ethics committee of the Inter-Graduate School Program for Sustainable Develop-

ment and Survivable Societies at Kyoto University and was registered in the AEA RCT Registry (Ida, Ishihara, Kido, and Sasaki,
2020).

4The random assignment process was designed such that U : T = 1 : 1 for each of the two periods.
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economists often favor dynamic pricing over PTR (Wolak, 2011; Ito, Ida, and Takana, 2023).

However, political feasibility often hinders the implementation of dynamic pricing across the general

population. The PTR is politically favored as it does not financially burden customers. This preference led

the Japanese government, our experimental partner, to focus on PTR rather than dynamic pricing in this

research project. They implemented a similar policy in the real world in the summer of 2022.5

The goal of our PTR was to decrease residential electricity consumption during system peak hours (1

pm to 5 pm in the summer; 5 pm to 9 pm in the winter) during the weeks of August 24–30, 2020 (period

1) and December 14–20, 2020 (period 2). During these treatment weeks, customers in the rebate program

received a rebate equivalent to their energy conservation during peak hours relative to their baseline usage

(in kWh), multiplied by 100 JPY per kWh. The baseline usage was determined by each customer’s average

electricity usage during peak hours in July or November. Customers were informed of the treatment week,

peak hours, and reward calculation procedure at the start of August or December, preventing them from

manipulating their baseline usage.

3.2 Data and Summary Statistics

Data were collected in 30-minute intervals during the pre-experimental period (July 1–31 and Novem-

ber 11–30, 2020) and the experimental period (August 24–30 and December 14–20, 2020). Before the

experiment, a survey was conducted to gather various household characteristics.

Table 1 provides summary statistics and a balance check.6 Columns 1–4 display the sample averages for

each random assignment group in each period, with standard deviations in brackets. Column 5 presents the

p-values of the F-test for differences in sample averages across the four groups.

[Table 1 about here]

The initial six variables represent pre-experimental electricity usage (in watt-hours per 30-minute in-

terval) during peak hours (summer: 1 PM to 5 PM; winter: 5 PM to 9 PM), pre-peak hours (summer: 10

AM to 1 PM; winter: 2 PM to 5 PM), and post-peak hours (summer: 5 PM to 8 PM; winter: 9 PM to
5In June 2022, the Japanese government launched an electricity rebate program called the “Setsuden Point Program" to address

an anticipated electricity supply shortage. This program, like the one in our field experiment, offered rebates to customers who
reduced their electricity usage. California employed similar electricity rebate programs during the electricity crisis of 2000–2002
and in subsequent years (Reiss and White, 2008; Ito, 2015).

6Appendix A.2 presents empirical evidence of the average treatment effects and the dynamic heterogeneity in the treatment
effects on peak-hour electricity usage, suggesting that dynamic policy targeting, as discussed in Section 4, could significantly
enhance the policy outcome.
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midnight). The remaining variables, derived from the surveys, include the number of household members

typically at home on weekdays and self-efficacy in energy conservation, measured on a 5-point Likert scale

(with higher scores indicating greater self-efficacy). Household income was reported in units of 1000 JPY.

Table 1 verifies the balance of all variables across the randomly-assigned groups.

4 Optimal Assignment Policy and Welfare Gains

This section estimates the optimal DTP using our experimental data from the energy-saving rebate pro-

gram. Section 4.1 details the construction of a social welfare criterion in our empirical context. Section 4.2

explains the empirical estimation of the optimal static and dynamic targeting policies using our experimental

data. The estimation results are reported in Section 4.3.

4.1 Construction of the Social Welfare Criterion

We here define the explanatory variables for our estimation. We denote the price and marginal cost of

electricity as p and c, respectively. In peak hours, the time-invariant residential price p is often lower than

the marginal cost c. The aim of PTR programs is to mitigate the welfare loss resulting from this economic

inefficiency by aligning the rebate incentive with c.

Consider a household that joins the rebate program. For each sequential intervention (d1, d2) ∈ {T,U}2,

we denote the potential consumption of electricity in periods 1 and 2 asQ1(d1) andQ2(d1, d2), respectively.

We assume a locally-linear demand curve for electricity usage. Then, the short-run welfare contributions

of the intervention (d1, d2) in periods 1 and 2 can be, respectively, written by 1
2(p − c)(Q1(d1) − Q1(U))

and 1
2(p − c)(Q2(d1, d2) − Q2(U,U)). Further, we consider that the reduction in consumption creates an

additional long-run welfare contribution as it saves the cost of power plant investments. We denote this

long-run gains of the intervention (d1, d2) in periods 1 and 2 by δ(Q1(d1) − Q1(U)) and δ(Q2(d1, d2) −

Q2(U,U)), respectively, where δ is the price per kW in the capacity market. Finally, participation in the

rebate program in each period incurs an implementation cost per customer by a.

Thus, the welfare contribution of the intervention (d1, d2) from the rebate program for periods 1 and 2
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can be, respectively, written by

∆Y1(d1) ≡ b · (Q1(d1)−Q1(U))− a · 1{d1 = T}, (5)

∆Y2(d1, d2) ≡ b · (Q2(d1, d2)−Q2(U,U))− a · 1{d2 = T}, (6)

with b = 1
2(p− c) + δ. ∆Y1(d1) and ∆Y2(d1, d2) indicate how much an individual contributes to the social

welfare when the individual receives the intervention (d1, d2) from the program. No-treatment d1 = U in

period 1 incurs zero welfare contribution in period 1 (i.e., ∆Y1(U) = 0), and no-treatment (d1, d2) = (U,U)

across the two periods incurs zero welfare contribution in period 2 (i.e., ∆Y2(U,U) = 0).

We define welfare gains of a DTP π and STP πS as equations (1) and (2) with Y1(d1) and Y2(d1, d2)

replaced by ∆Y1(d1) and ∆Y2(d1, d2), respectively:

∆W (π) ≡ E

 ∑
(d1,d2)∈{T,U}2

(∆Y1(d1) + ∆Y2(d1, d2)) · 1{π1(H1) = d1, π2(H2(d1)) = d2}

 ; (7)

∆WS(πS) ≡ E

 ∑
(d1,d2)∈{T,U}2

(∆Y1(d1) + ∆Y2(d1, d2)) · 1{πS(H1) = (d1, d2)}

 . (8)

The welfare gains represent how much the targeting policies improve social welfare. Note that Q1(U)

and Q2(U,U) in equations (5) and (6) do not depend on policy assignment. Therefore, the DTP and STP

that maximize the welfare gains—∆W (·), ∆WS(·)—are obtained as the DTP and STP that maximize the

welfare functions (1) and (2) with Y1(d1) ≡ b ·Q1(d1)− a · 1{d1 = T} and Y2(d1, d2) ≡ b ·Q2(d1, d2)−

a · 1{d2 = T}.

Our social welfare criterion comprises four exogenous parameters: p, c, a, and δ. We use data from

the Japanese electricity market during our experimental period to set the values for these parameters. p

is the unit price of electricity. We set the regulated price of electricity in Japan, which is independent of

the time of day, to p = 25 JPY/kWh.7 c is the marginal cost of production for electricity. We specify

c = 125 JPY/kWh such that the difference between p and c is equal to the rebate per kWh, which is 100

JPY. The wholesale price of electricity sometimes soars during peak hours, such as summer afternoons or
7In Japan, until April 1, 2016, household electricity was supplied by local power companies, and retail prices were regulated.

Since then, entry into the retail electricity industry has been fully liberalized, allowing all households to freely choose their price
menu. However, as a transitional measure, the regulated price for households is being maintained for now and set at approximately
25 JPY/kWh regardless of the time of day.
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winter evenings, reflecting supply constraints. In the past, the wholesale price has occasionally exceeded

100 JPY/kWh in summer afternoons.8

Parameter a represents the administrative cost of implementing our energy-saving program. This cost

comprises several items, including the installation cost of the Home Energy Management System (HEMS)

required to participate. In 2016, the Japanese government estimated the cost of implementing a demand

reduction program, including the installation cost of HEMS, to be 291.1 JPY per household per season (Ida

and Ushifusa, 2017).9 Because we consider the problem of two periods, we use half of this (291.1/2 JPY)

as the value of the administrative cost per period.

Parameter δ represents the long-term benefits of a unit reduction in energy consumption. Here, we

consider the effect of a unit reduction on the capacity market, where future supply capacity is traded between

the power generation and retail sectors. In Japan, the capacity market was established in 2020, with the first

auction held at that time. In that auction, the Japanese government provided a reference price of 9425

JPY/kW to bidders, which we use as the value for δ.

4.2 Estimation: Dynamic and Static Empirical Welfare Maximization

We estimate the optimal DTP and SPTs using our experimental data {(Di1, Di2, Yi1, Yi2, Si1, Si2)}ni=1,

with the sample size n = 2400. The outcome Yit represents the observed welfare contribution and is con-

structed as Yit = b ·Qit − a · 1{Dit = T}, where Qit denotes the peak-time electricity consumption in the

event period in period t for household i. Regarding the pre-intervention information Si1 (= Hi1), we use

five variables in Si1: Peak-time baseline electricity consumption in summer, household income, the number

of household members usually at home from 13:00 to 17:00 on weekdays, the number of household mem-

bers usually at home from 17:00 to 21:00 on weekdays, and a measure of the households’ self-efficacy in

energy conservation. Regarding the updated information Si2 in period 2, we use the peak-time electricity

consumption in the event period in summer (Qi1) and peak-time baseline electricity consumption in the win-

ter. These variables are selected based on their ability to predict electricity consumption and the conditional
8The wholesale electricity market, where the power generation and retail sectors trade electricity, is operated by the Japan

Electric Power Exchange (JEPX). Most trading occurs in the “day-ahead market” where both sectors trade electricity on the day
before the actual demand period. Trading results are disclosed, and we confirm that the price exceeded 100 JPY/kWh on July 25,
2018. Moreover, the price has even exceeded 125 JPY/kWh. For example, the price reached 250 JPY/kWh on January 15, 2021.

9We do not include the installation cost for a smart meter in the administrative cost. Since the Great East Japan Earthquake
of March 11, 2011, and the accident at the Fukushima Daiichi Nuclear Power Plant, the Japanese government has stipulated that
smart meters should be installed in all homes by the end of the decade. Thus, this cost is “sunk” in that it will be paid regardless of
whether a demand reduction program is implemented.
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average treatment effects.

To estimate optimal DTP and SPTs-I and II, we employ Static and Dynamic Empirical Welfare Maxi-

mization (Dynamic and Static EWM) methods in Kitagawa and Tetenov (2018) and Sakaguchi (2021). First,

consider estimating an optimal STP-I π∗S(I). Let ΠS(I) be a pre-specified class of STPs-I πS(I) (e.g., class

of decision trees). Using the RCT data, the EWM method estimates the optimal STP-I π∗S(I) by maximizing

the empirical analog of the social welfare function (2) over ΠS(I):

π̂∗S(I) ∈ arg max
πS∈ΠS(I)

ŴS(πS), (9)

ŴS(πS) ≡
1

n

n∑
i=1

(
(Yi1 + Yi2) · 1{πS(I)(Hi1) = (Di1, Di2)}
P ((D1, D2) = (Di1, Di2)|H1 = Hi1)

)
,

where Ŵ (πS) is an empirical welfare function of πS that produces an unbiased estimate of the population

social welfare WS(πS). Observations are weighted by the inverse of the propensity scores, P ((D1, D2) =

(Di1, Di2)|H1 = Hi1), known from the RCT design. Regarding STPs-II, letting ΠS(II) be a pre-specified

class of STPs-II πS(I) (e.g., class of decision trees), we can apply the EWM to estimate the optimal STP-II

π∗S(II) by replacing ΠS(I) with ΠS(II) in the EWM problem (9).

The EWM approach is model-free: It does not require any assumptions or a functional form specification

for the potential outcome distributions. However, the policy class ΠS(I) (ΠS(II)) must be specified. If the

class ΠS(I) (ΠS(II)) is too rich, the EWM solution π̂∗S(I) (π̂∗S(II)) overfits the RCT data, and the social

welfare attained by the estimated policy falls. We use decision tree classes (Breiman et al., 2017) for ΠS(I)

and ΠS(II) because of the ease of interpretation of the decision tree-based assignment policies and the

availability of partition search algorithms from the classification tree literature.

We proceed to elucidate the estimation of the optimal DTP π∗. We apply dynamic EWM, an extension

of the EWM in Kitagawa and Tetenov (2018) to dynamic settings, as developed in Sakaguchi (2021). This

method, implemented with backward induction, offers computational efficiency.10 Let Π ≡ Π1×Π2 denote

a pre-specified class of DTPs where Π1 and Π2 denote classes of policies in periods 1 and 2, respectively.

The dynamic EWM with backward induction is a stepwise procedure for estimating the optimal DTP. It first

estimates the optimal policy in the second period π∗2 given each fixed d1 ∈ {U, T} by solving the EWM

10Two approaches exist for estimating an optimal DTP. The first, based on backward induction, estimates the optimal policy in the
second period before proceeding to the first. The second approach, based on simultaneous maximization, estimates the entire DTP
by maximizing the empirical analog of the welfare function of π. The backward induction approach we use offers computational
advantages over the simultaneous maximization approach.
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problem in the second period:

π̂∗2 ∈ arg max
π2∈Π2

Ŵ2(π2),

Ŵ2(π2) ≡
1

n

n∑
i=1

Yi2 · 1{Di2 = π2(Hi2)}
P (D2 = Di2|H2 = Hi2)

,

where Ŵ2(π2) is an second-period empirical welfare function of π2. Note that the weighting propensity

score P (D2 = Di2|H2 = Hi2) is known from the RCT design. The solution π̂∗2 is the estimate of the

optimal policy in the second period π∗2 .

Subsequently, the method estimates the optimal policy in the first period π∗1 by solving the following

EWM problem:

π̂∗1 ∈ arg max
π1∈Π1

Ŵ (π1),

Ŵ (π1) ≡
1

n

n∑
i=1

1{D1 = π1(Hi1)}
P (D1 = Di1|H1 = Hi1)

(
Yi1 +

Yi2 · 1{Di2 = π̂∗2(Hi2)}
P (D2 = Di2|H2 = Hi2)

)
.

Ŵ (π1) is an estimator of the welfare function of π1 when the optimal policy π∗2 is followed in the second

period. Hence, the solution π̂1 estimates the optimal policy in the first period. As in the static EWM, we

must specify the classes of period-specific policies Π1 and Π2 for estimation. We use a class of decision

trees for each of Π1 and Π2. Through the two stepwise procedures, we obtain the DTP π̂∗ = (π̂∗1, π̂
∗
2), the

estimator of the optimal DTP π∗. Sakaguchi (2021) shows that the resulting DTP π̂∗ is a consistent and

rate-optimal estimator of the optimal DTP π∗ when the class of DTPs Π contains the optimal DTP π∗.

For the dynamic targeting, we specify each of the period-specific policy classes, Π1 and Π2, to be the

class of decision trees of depth 4. We also use the class of decision trees of depth 4 to each of the static-

policy classes, ΠS(I) and ΠS(II), where ΠS(I) is a class of policies with the two arms, (U,U) and (T, T ),

but ΠS(II) is a class of policies with the four arms: (U,U), (T,U), (U, T ), and (T, T ). In the static EWM

and each step of the dynamic EWM, we maximize the empirical welfare criterion exactly using a class of

decision trees of depth 4, applying the exhaustive search algorithm of Zhou, Athey, and Wager (2023).11

11Given computational constraints, obtaining a globally optimal tree of depth 4 that exactly maximizes the empirical welfare
is challenging. To mitigate this, we use a heuristic two-step procedure to approximate the globally optimal depth-4 tree. We
first optimize a parent tree of depth 2 that maximizes the empirical welfare in the entire sample, dividing the sample into four
subsamples. For each subsample, we search for a child depth-2 tree that maximizes the empirical welfare within the subsample.
We then graft the child depth-2 trees onto the parent tree to construct the depth-4 tree. This grafted-tree approach is common in
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Once the optimal DTP and STPs are estimated, we subsequently estimate the optimal welfare gains,

∆W (π∗), ∆WS(π
∗
S(I)), and ∆WS(π

∗
S(II)). One caveat of the EWM estimation is that the optimized em-

pirical welfare value from the estimation will be an upwardly biased estimate of the true welfare attained

by the estimated policy. This is known as the winner’s bias (see, e.g., Andrews, Kitagawa, and McCloskey,

2019) and is caused by using the same data twice: once to learn the policy and once to infer the policy’s

welfare.12 To control for the winner’s bias in the welfare gain estimation, we create artificial test data by

fitting a causal forest (Wager and Athey, 2018) to run regressions of the outcome onto all the covariates

and generate data with permuted regression residuals. Appendix A.3 presents detailed explanations of our

estimation procedure.

We denote the constructed test data by S test ≡ {Stest
i1 , S

test
i2 , Y

test
i1 , Y test

i2 , Dtest
i1 , D

test
i2 : i = 1, . . . , n}, where

(Dtest
i1 , D

test
i2 , S

test
i1 , S

test
i2 ) is identical to (Di1, Di2, Si1, Si2) in the original data. Note that the welfare gain

of π can be decomposed as ∆W (π) = W (π) −WU , where WU ≡ E[Y1(U) + Y2(U,U)]. With the test

data, we obtain a point estimator for the welfare gain of the optimal DTP π∗ and STPs, π∗S(I) and π∗S(II), as

follows: For π̂ = π̂∗, π̂∗S(I), and π̂∗S(II),

∆̂W (π̂) ≡ 1

n

n∑
i=1

1{Dtest
i1 = π̂1(H

test
i1 )}

P (D1 = Dtest
i1 |H1 = H test

i1 )

(
Y test
i1 +

1{Dtest
i2 = π̂2(H

test
i2 )}

P (D2 = Dtest
i2 |H2 = H test

i2 )
· Y test

i2

)

− 1

n

n∑
i=1

1{Dtest
i1 = U}

P (D1 = U |H1 = H test
i1 )

(
Y test
i1 +

1{Dtest
i2 = U}

P (D2 = U |H2 = H test
i2 )

· Y test
i2

)
.

4.3 Results of the Optimal Policy Assignment

We estimate the welfare gains of the optimal DTP and STPs and non-targeting policies. We compare

five alternative policies: 1) assigning everyone to (U,U), 2) assigning everyone to (T,U), 3) assigning

everyone to (U, T ), 4) assigning everyone to (T, T ), 5) optimal STP-I π∗S(I), assigning each consumer

to either (U,U) or (T, T ) depending on the pre-intervention information H1, 6) optimal STP-II π∗S(II),

assigning each consumer to each of the four arms (d1, d2) ∈ {U, T}2 depending on the pre-intervention

information H1, and 7) the optimal dynamic targeting π∗, adaptively assigning each consumer to each of

the four arms depending on the updating information H1 and H2.

machine learning literature when constructing tree classifiers for computational feasibility. See, e.g., Chapter 2 of Breiman et al.
(2017) and Section 9.2 in Hastie et al. (2009).

12The estimation and inference procedures proposed by Andrews, Kitagawa, and McCloskey (2019) cannot be directly applied
to decision-tree-based policies because the number of candidate policies is infinite.
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[Table 2 about here]

Table 2 presents the welfare performances of four benchmark policies without targeting (100% (U,U),

100% (T,U), 100% (U, T ), and 100% (T, T )), followed by the optimal static targeting (π∗S(I) and π∗S(II))

and dynamic targeting (π∗). For each policy, we estimate the welfare gain in JPY per household over the two

periods. Among the four non-targeting policies, 100% (U, T ) induces the highest welfare gain at 470.8 JPY

per consumer, exceeding that of 100% (T, T ). This would be because our policy intervention incurs costs

(from implementation) and benefits (from energy conservation), making it suboptimal to always assign the

rebate intervention.

The fact that the net welfare gain from a consumer can be positive, negative, or zero implies that policy

performance could be increased through targeting. Table 2 shows that each of the three targeting policies

achieves a higher welfare gain than the non-targeting policies. Comparing the two optimal STPs, STP II

yields a higher welfare gain than STP I, implying that allowing for switching intervention between the

two periods (i.e., allowing (T,U) and (U, T )) improves the social welfare (845.3 JPY versus 770.6 JPY).

Further, Table 2 shows that dynamic targeting π∗ achieves the highest social welfare (1684.3 JPY).

[Table 3 about here]

The DTP demonstrates a significantly higher welfare gain then each of the non-targeting policies and

static targeting policies. Notably, the DTP yields a 839.1 JPY higher welfare gain than the optimal static

targeting policy, π∗S(II). This difference is statistically significant. This result suggests that the adaptive

treatment assignment depending on the updated information mostly improves the social welfare.

[Table 4 about here]

Noting that the welfare gain of dynamic targeting arises from two periods, Table 4 presents the decom-

position of the results from Table 3 into periods 1 and 2. For the optimal DTP, the results reveal that 298.4

JPY (17.6%) of its welfare gain originates from period 1, whereas 1395.0 JPY (82.4%) of the welfare gain

comes from period 2. Period 2 accounts for most of the welfare gain from dynamic targeting. Table 4 also

indicates that the differences in welfare between dynamic targeting and static targeting primarily result from

the second period.

We next investigate whether the estimated DTP π̂∗ successfully assigns consumers to their optimal inter-

vention groups. One way to do this is to estimate the counterfactual welfare difference of each group (d1, d2)
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assigned by the estimated DTP π̂∗ relative to each non-targeting policy. Specifically, for a group (d1, d2)

assigned by the DTP π̂∗ and a counterfactual intervention (d′1, d
′
2), its counterfactual welfare difference is

defined as

WDπ̂∗

(d1,d2),(d′1,d
′
2)

≡ E[(Y1(d1) + Y2(d1, d2))−
(
Y1(d

′
1) + Y2(d

′
1, d

′
2)
)
|π̂∗1(H1) = d1, π̂

∗
1(H2(d1)) = d2].

This is the welfare difference for those assigned to (d1, d2) by the DTP π̂∗ if they deviate from the assigned

group to the other group (d′1, d
′
2). If the DTP π̂∗ is (close to) optimal, for each assigned (d1, d2), the welfare

difference WDπ̂∗

(d1,d2),(d′1,d
′
2)

must be non-negative for any counterfactual intervention (d′1, d
′
2).

[Table 5 about here]

Table 5 shows estimation results for the counterfactual welfare differences WDπ̂∗

(d1,d2),(d′1,d
′
2)

for each

assigned group (d1, d2) and each counterfactual intervention (d′1, d
′
2). Each counterfactual welfare differ-

ence is estimated to be positive except for that of (d1, d2) = (U,U) and (d′1, d
′
2) = (T,U). Some welfare

differences are statistically and significantly positive. For example, the individuals belonging to the optimal

assignment group (T, T ) have a statistically significant welfare gain of 1819.7 JPY relative to a hypothetical

assignment to (U,U). These results imply that the estimated DTP π̂∗ successfully assigns consumers to

the optimal intervention groups on average for the most part. The only anomaly is when the individuals

assigned to (U,U) by the estimated DTP are hypothetically assigned to (T,U), but this welfare difference

WDπ̂∗

(U,U),(T,U) (−271.7 JPY) is not statistically significant.

5 Mechanism Behind the Dynamic Targeting

This section investigates the mechanism of welfare improvement by the optimal DTP π∗ using the

decomposition outlined in equation (4). By examining each term of this decomposition, we can ascertain the

contribution of each of the five effects to the welfare gain of the optimal DTP π∗. These effects are the first-

period treatment effect, the second-period treatment effect, the habit-formation effect, the learning effect,

and the screening effect. However, the conditional averages of the habit-formation effect, learning effect,

and screening effect in equation (4) are counterfactual. They cannot be identified without an additional

assumption. Section 5.1 proposes a novel approach to identifying and estimating these components of the
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decomposition in equation (4). Finally, Section 5.2 presents the estimation results for the decomposition in

equation (4) and investigates the mechanism behind the optimal DTP π∗.

5.1 Identification

We aim to identify and estimate each term comprising equation (4). However, the following components

in equation (4) are counterfactual and cannot be identified without relying on an additional assumption:

E[Y2(T,U) − Y2(U,U)|π∗1(H1) = T, π∗2(H2(T )) = U ] (average habit-formation effect for those assigned

to (T,U)), E[Y2(T, T ) − Y2(U, T )|π∗1(H1) = T, π∗2(H2(T )) = T ] (average learning effect for those as-

signed to (T, T )), andE[Y2(T, π
∗
2(H2(T )))−Y2(T, π∗2(H2(U)))|π∗1(H1) = T ] (average screening effect for

treated in the first period). For example, regarding E[Y2(T,U)− Y2(U,U)|π∗1(H1) = T, π∗2(H2(T )) = U ],

we cannot observe Y2(U,U) and H2(T ) simultaneously; hence, the pair of Y2(U,U) and H2(T ) is counter-

factual.

Here, we propose a comprehensive approach to identifying these components. The proposed approach

depends on the so-called rank preservation/invariance assumption (Chernozhukov and Hansen (2005)) on

the state variables S2(d1), where S2(d1) comprises the two variables: The peak-time electricity consumption

in the event period in the summer and the peak-time baseline electricity consumption in the winter.

Assumption 5.1. (Rank invariance) LetK be the dimension of S2, and we denote by Sk
2 (d1) the k-th element

of S2(d1). For each k, there exists a function ψk and random variable εk such that Sk
2 (d1) = ψk(d1, S1, εk)

a.s. for each d1 ∈ {U, T}, where ψk is continuous and strictly increasing in εk, and the conditional

cumulative distribution function Fεk|S1
(·|s1) is continuous on R.

The rank-invariance assumption is used by scholars such as Heckman et al. (1997), Chernozhukov and

Hansen (2005), and Vuong and Xu (2017) to identify various causal parameters.13 Note that K = 2 in our

empirical context. Specifically, this assumption requires that the relative rank/quantile of the distribution

of Sk
2,T,s1

≡ ψk(T, s1, εk) is the same as that of the distribution of Sk
2,U,s1

≡ ψk(U, s1, εk). If the error

term is additive, as is often assumed (i.e., Sk
2 (d1) = ψ∗

k(d1, S1) + εk for some real valued function ψ∗
k),

then Assumption 5.1 is satisfied. Moreover, conditioning a sufficient set of pre-intervention information S1

makes the rank-invariance plausible. In our empirical context, S1 has a range of pre-treatment information,
13Chernozhukov and Hansen (2005) use the rank-invariance assumption to identify quantile treatment effects; Vuong and Xu

(2017) use this assumption to identify individual treatment effects.
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including baseline electricity consumption and household characteristics. Therefore, we do not consider this

assumption to be restrictive in our empirical context.

For any random variables A and B, we denote by QA|B(·|b) the conditional quantile function of A

given B = b; that is, QA|B(τ |b) = inf {a ∈ R : P (A ≤ a|b) ≥ τ} for any τ ∈ [0, 1]. Let FA|B(·|b) be the

conditional distribution function of A given B = b. Under the rank-invariance condition (Assumption 5.1),

the counterfactual state variable Sk
2 (d1) is expressed as

Sk
2 (d1) = QSk

2 (d1)|S1
(FSk

2 (d
′
1)|S1

(Sk
2 (d

′
1)|s1)|S1). (10)

for any d1, d′1 ∈ {U, T}. Therefore Sk
2 (T ) and Sk

2 (U) have one-to-one mapping, which is called a counter-

factual mapping in Vuong and Xu (2017). Under random assignment of (D1, D2), FSk
2 (d

′
1)|S1

andQSk
2 (d

′
1)|S1

in equation (10) can be identified as

FSk
2 (d

′
1)|S1

(·|s1) = FSk
2 |(D1,S1)

(·|d1, s1), (11)

QSk
2 (d

′
1)|S1

(·|s1) = QSk
2 |(D1,S1)

(·|d1, s1). (12)

Therefore, through equations (10)– (12), we can identify (the distribution of) Sk
2 (d1) even for those who do

not take the intervention d1 in the first period.

Building on these results, the following proposition shows the identifiability of the last three terms in

equation (4) under the rank-invariance assumption and random assignment of the sequential intervention

(D1, D2).

Proposition 5.1. Suppose that Assumption 5.1 and the following conditions hold: For each (d1, d2) ∈

{U, T}2, (i) (Y2(d1, d2), S2(d1)) ⊥⊥ D1|H1 a.s. and (ii) Y2(d1, d2) ⊥⊥ D2|H2 a.s. Let H̃2(d1) =

(S1, d1, S̃2(d1)) with S̃2(d1) = (S̃1
2(d1), . . . , S̃

K
2 (d1)) and

S̃k
2 (d1) := 1{D1 = d1} · Sk

2 (d1) + 1{D1 ̸= d1} ·QSk
2 |(D1,S1)

(
FSk

2 |(D1,S1)
(Sk

2 |D1, s1)|d1, s1
)
,
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for k = 1, 2, . . . ,K. Then, given the optimal DTR π∗, the following hold:

E[Y2(T,U)− Y2(U,U)|π∗1(H1) = T, π∗2(H2(T )) = U ]

= E

[
1{D1 = T}

P (D1 = T |H1)
· 1{D2 = U}
P (D2 = U |H2)

· Y2
∣∣∣∣π∗1(H1) = T, π∗2(H2) = U

]
− E

[
1{D1 = U}

P (D1 = U |H1)
· 1{D2 = U}
P (D2 = U |H2)

· Y2
∣∣∣∣π∗1(H1) = T, π∗2

(
H̃2(T )

)
= U

]
, (13)

E[Y2(T, T )− Y2(U, T )|π∗1(H1) = T, π∗2(H2(T )) = T ]

= E

[
1{D1 = T}

P (D1 = T |H1)
· 1{D2 = T}
P (D2 = T |H2)

· Y2
∣∣∣∣π∗1(H1) = T, π∗2(H2) = T

]
− E

[
1{D1 = U}

P (D1 = U |H1)
· 1{D2 = T}
P (D2 = T |H2)

· Y2
∣∣∣∣π∗1(H1) = T, π∗2

(
H̃2(T )

)
= T

]
, (14)

and

E[Y2 (T, π
∗
2 (H2(T )))− Y2 (T, π

∗
2 (H2(U))) |π∗1(H1) = T ]

= E

[
1{D1 = T}

P (D1 = T |H1)
· 1{D2 = π∗2(H2)}
P (D2 = π∗2(H2)|H2)

· Y2
∣∣∣∣π∗1(H1) = T

]

− E

 1{D1 = T}
P (D1 = T |H1)

·
1
{
D2 = π∗2

(
H̃2(U)

)}
P
(
D2 = π∗2

(
H̃2(U)

)∣∣∣H2

) · Y2

∣∣∣∣∣∣π∗1(H1) = T

 . (15)

Proof. See Appendix A.4.

Conditions (i) and (ii) in Proposition 5.1 require (conditional) random assignment of D1 and D2, which

are certainly satisfied in our experiment. Proposition 5.1 shows the identification of three components in the

decomposition (4): the conditional averages of habit-formation effect, learning effect, and screening effect.

The other components in equation (4) are straightforwardly identifiable and estimable under the random

assignment assumption only.

The identification results in Proposition 5.1 constructively suggest a way to estimate each of the con-

ditional averages of the habit-formation effect, learning effect, and screening effect. Let F̂Sk
2 |(D1,S1)

(·|d1, s1)

and Q̂Sk
2 |(D1,S1)

(·|d1, s1) denote estimators of the conditional counterfactual distribution functionFSk
2 |(D1,S1)

(·|d1, s1)

and conditional counterfactual quantile functionQSk
2 |(D1,S1)

(·|d1, s1), respectively. To estimateFSk
2 (D1,S1)

(·|d1, s1),

we apply the distribution regression with the standard logistic distribution function (e.g., Chernozhukov et al.

(2013)) using the subsample with D1 = d1. To estimate QSk
2 (D1,S1)

(·|d1, s1), we apply the linear quantile
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regression using the subsample with D1 = d1. We estimate these with the test data.

Using the test data, we first estimate the counterfactual state variables Sk
i2(d1) for each individual i as

Ŝk,test
i2 (d1) = 1{Dtest

i1 = d1} · Sk,test
i2 + 1{Dtest

i1 ̸= d1} · Q̂Sk
2 |(D1,S1)

(
F̂Sk

2 |(D1,S1)
(Sk,test

i1 |Dtest
i1 , S

test
i1 )

∣∣∣d1, Stest
i1

)
.

Let Ŝtest
i2 (d1) = (Ŝ1,test

i2 , Ŝ2,test
i2 ) and Ĥ test

i2 (d1) =
(
Stest
i1 , d1, Ŝ

test
i2 (d1)

)
. Then, using the test data, we esti-

mate the average habit-formation effect for those assigned to (T,U) (E[Y2(T,U) − Y2(U,U)|π∗1(H1) =

T, π∗2(H2(T )) = U ]), the average learning effect for those assigned to (T, T ) (E[Y2(T, T )−Y2(U, T )|π∗1(H1) =

T, π∗2(H2(T )) = T ]), and the average screening effect for those treated in the first period (E[Y2 (T, π
∗
2 (H2(T )))−

Y2 (T, π
∗
2 (H2(U))) |π∗1(H1) = T ]), respectively, as follows:

n∑
i=1

 1{π̂∗1(H test
i1 ) = T, π̂∗2

(
Ĥ test

i2 (T )
)
= U}∑n

i=1 1{π̂∗1(H test
i1 ) = T, π̂∗2

(
Ĥ test

i2 (T )
)
= U}

×
(

1{Dtest
i1 = T}

P (D1 = T |H1 = H test
i1 )

− 1{Dtest
i1 = U}

P (D1 = U |H1 = H test
i1 )

)
· 1{Dtest

i2 = U}
P (D2 = U |H2 = H test

i2 )
· Y test

i2

]
,

n∑
i=1

 1{π̂∗1(H test
i1 ) = T, π̂∗2

(
Ĥ test

i2 (T )
)
= T}∑n

i=1 1{π̂∗1(H test
i1 ) = T, π̂∗2

(
Ĥ test

i2 (T )
)
= T}

×
(

1{Dtest
i1 = T}

P (D1 = T |H1 = H test
i1 )

− 1{Dtest
i1 = U}

P (D1 = U |H1 = H test
i1 )

)
· 1{Dtest

i2 = T}
P (D2 = T |H2 = H test

i2 )
· Y test

i2

]
,

n∑
i=1

[
1{π̂∗1(H test

i1 ) = T}∑n
i=1 1{π̂∗1(H test

i1 ) = T}
· 1{Dtest

i1 = T}
P (D1 = T |H1 = H test

i1 )

×

 1
{
Dtest

i2 = π̂∗2

(
Ĥ test

i2 (T )
)}

P
(
D2 = π̂∗2

(
Ĥ test

i2 (T )
)∣∣∣H2 = H test

i2

) −
1
{
Dtest

i2 = π̂∗2

(
Ĥ test

i2 (U)
)}

P
(
D2 = π̂∗2

(
Ĥ test

i2 (U)
)∣∣∣H2 = H test

i2

)
 · Y test

i2

 .
5.2 Estimation Results

Table 6 shows the estimation results of each component comprising the decomposition (4). All five

components positively contribute to the welfare gain of the optimal DTR π∗. The total contribution of all

components is estimated as 1613.1 JPY, being close to the estimate of welfare gain of π∗ presented in Table

2 (1684.3 JPY). The first-period intervention has a welfare contribution of 214.3 JPY, implying that 13% of

welfare gain comes from the contribution to the first-period outcome. The two behavioral concepts, habit

formation and learning , account for 287.4 JPY (18%) and 186.4(12%) of the welfare gain, respectively.

The results also show that the screening effect also positively contributes to the welfare gain by 361.5 JPY
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(22%), implying that drawing the information H2(T ) is useful to improve the welfare for those assigned to

d1 = T by the first-period optimal policy π∗1 .

[Table 6 about here]

Appendix A.5 further investigates the mechanism of the welfare improvement by the optimal DTP.

6 Conclusion

This study introduced a framework for designing optimal dynamic targeting strategies that maximize

social welfare gains from dynamic policy interventions, using experimental or quasi-experimental data. We

theoretically demonstrate that dynamic targeting can surpass static targeting via several key mechanisms,

namely learning, habit formation, and screening effects.

We apply this methodology to an RCT of a residential energy rebate program. Our empirical findings

reveal that dynamic targeting significantly outperforms conventional static targeting, thereby enhancing the

social welfare benefits derived from the energy rebate program. We identify considerable heterogeneity

in the learning, habit formation, and screening effects across households. This paper illustrates how our

approach leverages this heterogeneity to devise optimal dynamic targeting strategies.
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Tables

Table 1: Summary Statistics and Balance Check

Sample mean by group Difference in sample means
[standard deviation]

(U,U) (U, T ) (T,U) (T, T ) p-value

Peak hour usage 201 200 196 198 0.910
(2020 summer, Wh) [145] [136] [136] [136]

Pre-peak hour usage 189 184 183 182 0.853
(2020 summer, Wh) [143] [130] [137] [130]

Post-peak hour usage 311 311 308 305 0.893
(2020 summer, Wh) [175] [171] [164] [163]

Peak hour usage 311 309 304 306 0.913
(2020 winter, Wh) [194] [170] [179] [170]

Pre-peak hour usage 171 171 169 166 0.854
(2020 winter, Wh) [117] [102] [112] [102]

Post-peak hour usage 287 295 280 287 0.664
(2020 winter, Wh) [198] [198] [203] [192]

Number of people at home 1.31 1.32 1.31 1.34 0.956
(1 PM - 5 PM) [1.04] [0.96] [1.04] [1.01]

Number of people at home 2.57 2.48 2.47 2.51 0.483
(5 PM - 9 PM) [1.29] [1.20] [1.23] [1.20]

Self-efficacy in energy conservation 3.44 3.44 3.47 3.44 0.935
(1-5 scale) [0.84] [0.86] [0.86] [0.82]

Household income 651 639 614 606 0.120
(JPY 10,000) [400] [387] [393] [333]

Notes: Columns 1-4 show present sample means and standard deviations in brackets for the pre-experimental consumption data
and demographic variables by randomly-assigned group to the first and second period. (U,U) is assigned to the untreated in both
the first and second periods. (U, T ) is assigned to the untreated in the first period and the treated in the second period. (T,U) is
assigned to the treated in the first period and the untreated in the second period. (T, T ) is assigned to the treated in both the first
and second periods. Column 5 shows the p-values of the F-test for the difference in sample averages between the four groups. The
number of households are 625 for (U,U), 606 for (U, T ), 581 for (T,U), and 588 for (T, T ). The monetary unit is given as 1 ¢=1
JPY in the summer of 2020.
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Table 2: Welfare Gains from Each Policy

Policy Welfare gain Share of customers in each arm

(U,U) (T,U) (U, T ) (T, T )

100% (U,U) 0.0 100.0% 0.0% 0.0% 0.0%
(0.0)

100% (T,U) 311.8 0.0% 100.0% 0.0% 0.0%
(378.4)

100% (U, T ) 470.8 0.0% 0.0% 100.0% 0.0%
(457.5)

100% (T, T ) 463.9 0.0% 0.0% 0.0% 100.0%
(452.2)

Static targeting I (π∗S(I)) 770.6 45.6% 0.0% 0.0% 54.4%

(283.7)

Static targeting II (π∗S(II)) 845.3 3.1% 31.3% 41.5% 24.0%

(348.9)

Dynamic targeting (π∗) 1684.3 19.5% 22.9% 25.6% 32.0%
(303.1)

Notes: This table summarizes characteristics of four benchmark policies (100% (U,U), 100% (T,U), 100% (U, T ), and 100%
(T, T )), static targeting (I) (π∗

S(I)), static targeting (II) (π∗
S(II)), and dynamic targeting (π∗). The column titled “Welfare Gain”

shows the estimated welfare gains in JPY per household, with these standard errors in parentheses. The monetary unit is given as 1
¢ = 1 JPY, the exchange rate in the summer of 2020.

Table 3: Comparisons of Alternative Policies

Difference in welfare gains p-value

Dynamic targeting (π∗) vs. 100% (T,U) 1365.7 0.000
(309.1)

Dynamic targeting (π∗) vs. 100% (U, T ) 1546.5 0.000
(328.7)

Dynamic targeting (π∗) vs. 100% (T, T ) 1397.7 0.000
(319.8)

Dynamic targeting (π∗) vs. Static targeting I (π∗S(I)) 913.8 0.000

(269.2)

Dynamic targeting (π∗) vs. Static targeting II (π∗S(II)) 839.1 0.002

(287.8)

Notes: This table compares welfare gains from each policy. For each row, the column “Difference in Welfare Gains” shows the
estimated welfare gain of the policy on the left-hand side (WL) relative to the policy on the right-hand side (WR) in JPY per
household, with its standard error in parenthesis. The column “p-value” gives the p-value for the null hypothesis: H0 : WL ≤ WR.
The monetary unit is given as 1 ¢ = 1 JPY, the exchange rate in the summer of 2020.

33



Table 4: Welfare Differences in Stages 1 and 2

Welfare difference
Stage 1 Stage 2

Dynamic targeting (π∗) vs. 100% (U,U) 298.4 1395.0
(103.1) (255.6)

Dynamic targeting (π∗) vs. 100% (T,U) 64.1 1301.6
(89.8) (268.6)

Dynamic targeting (π∗) vs. 100% (U, T ) 289.4 1257.1
(103.1) (285.7)

Dynamic targeting (π∗) vs. 100% (T, T ) 64.1 1333.5
(89.8) (284.7)

Dynamic targeting (π∗) vs. Static targeting I (π∗S(I)) 105.7 808.0

(81.4) (237.9)

Dynamic targeting (π∗) vs. Static targeting II (π∗S(II)) 245.3 593.8

(90.6) (251.3)

Notes: This table compares welfare gains from each policy. For each row, the columns “Stage 1” and “Stage 2” show the estimated
welfare gains from the stages 1 and 2 of the policy on the left-hand side (WL) relative to the policy on the right-hand side (WR) in
JPY per household per season, with its standard error in parenthesis. The monetary unit is given as 1 ¢ = 1 JPY, the exchange rate
in the summer of 2020.

Table 5: Welfre Comparison in Eeach Group Assinged by the Dynamic Targeting

Assigned group Comparison intervention
(U,U) (T,U) (U, T ) (T, T )

(U,U) 0.0 −271.7 601.3 1097.4
(0.0) (1012.1) (936.5) (1068.9)

(T,U) 842.7 0.0 1773.1 994.5
(904.3) (0.0) (979.3) (901.2)

(U, T ) 1258.2 2051.7 0.0 1181.9
(484.0) (638.1) (0.0) (565.0)

(T, T ) 1819.7 1062.2 995.1 0.0
(528.9) (444.0) (492.9) (0.0)

Notes: This table shows the each estimate of counterfactual welfare difference WDπ̂∗

(d1,d2),(d
′
1,d

′
2)

for each group (d1, d2) ∈
{U, T}2 assigned by the estimated DTP π̂∗ (row) relative to each counterfactual intervention ((d′1, d′2) ∈ {U, T}2) (colmun), with
its standard error is in parenthesis. Specifically, for “assigned group”’ being (d1, d2) and “comparison intervention”’ being (d′1, d

′
2),

the corresponding celles show estimate of WDπ̂∗

(d1,d2),(d
′
1,d

′
2)

along with its stanard error. Each welfare difference is estimated with
the test data. The monetary unit is given as 1 ¢ = 1 JPY, the exchange rate in the summer of 2020.
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Table 6: Decomposition of Welfare Gain for the Optimal Dynamic Targeting π∗

Conditional effect Fraction Welfre contribution

1st-stage treatment effect 390.2 0.55 214.3
(187.5) (0.00) (103.0)

2nd-stage treatment effect 996.7 0.57 563.5
(350.6) (0.00) (198.3)

Habit formation effect 1282.0 0.22 287.4
(897.0) (0.01) (184.4)

Learning effect 573.6 0.32 186.4
(419.1) (0.01) (128.8)

Screening effect 658.3 0.55 361.5
(178.4) (0.01) (98.0)

Total effect 1613.1
(397.8)

Notes: This table shows estimation results for the decomposition (4). The column “Conditional effect” shows the estimates of
conditional average effects that appear in equation (4), and the column “Fraction” shows each estimate of the fraction of each
conditioning group. The column “Welfare contribution” shows each estimate of each term in the right hand side of equation
(4). For example, regarding the row “Learning effect”, the column “Conditional effect” shows the estimate of E[Y2(T, T ) −
Y2(U, T )|π∗

1 , (H1) = T, π∗
2(H2(T )) = T ], the column “Fraction” shows the estimate of Pr(π∗

1 , (H1) = T, π∗
2(H2(T )) =

T ), and the column “Welfare contribution” shows the estimate of E[Y2(T, T ) − Y2(U, T )|π∗
1 , (H1) = T, π∗

2(H2(T )) = T ] ×
Pr(π∗

1 , (H1) = T, π∗
2(H2(T )) = T ). The last row “Total effect” shows the estimate of the sum of all terms in the right hand side

of equation (4). The standard errors are in parentheses. The monetary unit is given as 1 ¢ = 1 JPY, the exchange rate in the summer
of 2020.
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A Online Appendix

A.1 Proof of Proposition 2.1

We prove a general version of the proposition by letting the benchmark policy for the welfare comparison

be a uniform assignment of (d1, d2) ∈ {U, T}2 and DTP π be arbitrary. In what follows, we let d′1 and d′2

be the other treatment status of d1 and d2, respectively (e.g., if d1 = U and d2 = U , d′1 = T and d′2 = T ).

Consider first the following decomposition that follows from the law of total probabilities regarding the

events of {π1(H1) = d1} and its complement:

W (π)−W (d1, d2)

=E[Y2(d1, π2(H2(d1)))− Y2(d1, d2)|π1(H1) = d1] Pr(π1(H1) = d1) (16)

+ E[Y1(d
′
1)− Y1(d1)|π1(H1) = d′1] Pr(π1(H1) = d′1) (17)

+ E[Y2(d
′
1, π2(H2(d

′
1)))− Y2(d1, d2)|π1(H1) = d′1] Pr(π1(H1) = d′1). (18)

Given DTR π and (d1, d2), we define the following subsets in the population:

A1 = {π1(H1) = d1},

A′
1 = {π1(H1) = d′1},

A2 = {π2(H2(d1)) = d2},

A′
2 = {π2(H2(d1)) = d′2}.

Note that Term (16) is nonzero if and only if π2(H2(d1))) = d′2. Hence, it can be written as

(16) = E[W2(d1, d
′
2)−W2(d1, d2)|A′

2 ∩A1] · Pr(A′
2 ∩A1). (19)

Term (17) can be seen as the average treatment effect for the treated in period 1 multiplied by the proportion

of the treated.
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Next, consider decomposing Term (18) as

(18) =E[Y2(d
′
1, π2(H2(d

′
1)))− Y2(d

′
1, π2(H2(d1)))|A′

1] Pr(A
′
1) (20)

+ E[Y2(d
′
1, π2(H2(d1)))− Y2(d1, π2(H2(d1)))|A′

1] Pr(A
′
1) (21)

+ E[Y2(d1, π2(H2(d1)))− Y2(d1, d2)|A′
1] Pr(A

′
1). (22)

Similar (19), term (22) is nonzero if and only if π2(H2(d1))) = d′2. Therefore, we have

(16) = E[Y2(d1, d
′
2)− Y2(d1, d2)|A′

2 ∩A′
1] · Pr(A′

2 ∩A′
1). (23)

The sum of terms (19) and (23) yields

(19) + (22) = E[Y2(d1, d
′
2)− Y2(d1, d2)|A′

2] · Pr(A′
2). (24)

We can represent term (21) as

(21) = E[Y2(d
′
1, d2)−Y2(d1, d2)|A2∩A′

1] Pr(A2∩A′
1)+E[Y2(d

′
1, d

′
2)−Y2(d1, d′2)|A′

2∩A′
1] Pr(A

′
2∩A′

1).

(25)

Note that term (20) corresponds to the conditional average screening effect of d′1 relative to d1 at period 2

assignment policy π2, fixing period 1 treatment to d′1.

Combining Terms (17), (24), (25), and (20) and setting d1 = U , d2 = T , and π = π∗, we obtain the

current proposition. □

A.2 Linear Regression Analysis of Average Treatment Effects

The rebate program aims to incentivize energy conservation during peak hours; therefore, a key variable

in our social welfare function is electricity usage during peak hours, which we present in Section 4.1. This

section provides a regression analysis of the average treatment effect of the rebate program on peak-hour

electricity usage in periods 1 and 2.

We evaluate the average treatment effect (ATE) of the randomly-assigned group Dt = T relative to
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Dt = U in each period (t = 1, 2) using ordinary least squares (OLS) with the following estimating equation:

Qih = βTTih + λi + θh + ϵih, (26)

whereQih is the natural log of electricity usage for household i in a 30-minute interval h in each period. We

include data from the pre-experimental and experimental periods.14 The dummy variable Tih equals one if

household i is in group T and h is in the treatment period. We include household fixed effects λi and time

fixed effects θh in each 30-minute interval to control for time-specific shocks such as weather. Given that

Dt = {U, T} is randomly assigned, βT provides the ATE of Dt = T relative to Dt = U . We use cluster

standard errors at the household level.

Table A.1 presents the estimation results for equation 26. The treatment reduced peak-hour electricity

usage by 0.051 log points (5.0%) in the summer of 2020 and by 0.032 log points (3.2%) in winter. We

confirm a significant average treatment effect for electricity savings in each period.

[Table A.1 about here]

Next, we examine the dynamic heterogeneity regarding the treatment effects on electricity usage in the

second period. Specifically, we estimated the average treatment effect (ATE) with a baseline of (D1, D2) =

(U,U) for the randomly-assigned treatment groups (D1, D2) = {(U, T ), (T,U), (T, T )}, using OLS with

the following estimating equation:

Qih = βUTUTih + βTUTUih + βTTTTih + λi + θh + ϵih, (27)

where Qih is the natural log of electricity usage for household i in a 30-minute interval h in the winter of

2020 (t = 2). The dummy variable UTih equals one if household i is in group U in the first period, group

T is in the second period, and h is in the treatment period. Similarly, the dummy variable TUih equals one

if household i is in group T in the first period and group U in the second period. The dummy variable TTih

equals one if household i is in Group T in the first and second periods. The coefficient βTU represents the

extent to which the effect of the treatment received in the first period is sustained in the second period. Thus,
14Because of randomization, the pre-experimental data is not necessary for obtaining the consistent estimator. The primary ben-

efit of including the pre-experimental data is that the inclusion of household fixed effects can substantially increase the precision of
the estimates because residential electricity usage tends to form a significant part of the household-specific time-invariant variation.

38



this effect can be regarded as a habit-formation effect. We also regard a negative difference between the

coefficients βTT and βUT as a learning effect and a positive difference as a habituation effect.

[Table A.2 about here]

Table A.2 presents the estimation results for equation 27. We begin by demonstrating the ATE for

the entire sample in column 1. The treatment in the second period only (U, T ) reduced the peak-hour

electricity usage by 0.046 log points (4.5%) in the second period. When the treatment is given only in the

first period (T,U), peak-hour electricity usage is reduced by 0.011 log points (1.1%), though this effect is

not statistically significant. That is, the habit-formation effect was not observed on average (p = 0.569).

The two treatments in the first and second periods (T, T ) reduced peak electricity usage by 0.029 log points

(2.8%); however, this effect is not statistically significant. There is no statistically significant difference

among (T, T ) and (U, T ) (p = 0.351). This result indicates neither the learning effect, in which the presence

or absence of treatment in the first period positively affects the treatment effect in the second period in

absolute terms, nor the habituation effect, in which the presence or absence of treatment in the first period

negatively affects the treatment effect in the second period.

Beyond these overall program effects, an important question for our analysis is whether dynamic het-

erogeneity exists in these effects. If different types of households have different learning and habituation

effects, the optimal DTP presented in Section 2 may increase welfare gains from the policy. The remaining

columns of Table A.2 explore this issue. Each pair of columns divides the sample into two groups: those

with a below-median value for a particular variable and those with an above-median value.

We find some evidence of heterogeneity in the program effects. In Columns 4 and 5, we divide customers

by the difference in electricity usage between peak-hour and post-peak-hour at the summer baseline. For

households with below-median values of this variable, we find that β̂UT = −0.027 and β̂TT = −0.044, and

the p-value for the difference is 0.496. However, households with above-median values have β̂UT = −0.070

and β̂TT = −0.013, and the p-value for the difference is 0.037. That is, among the high group, (U, T )

induces a greater reduction than (T, T ), and the habituation effect is supported, though not for the low

group. We find similar heterogeneity when we divide the sample by the number of people at home (1 PM - 5

PM) and self-efficacy for energy conservation. These heterogeneities in the effects of dynamically providing

treatments on peak-hour electricity usage imply that optimal dynamic targeting is likely to enhance social

welfare gains.
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A.3 Artificial Test Data

We describe our method for generating artificial test data in detail. First, to motivate our construction

of artificial test data, we briefly discuss why bias in point estimates of welfare gain is introduced when one

uses the same data to learn an optimal policy and estimate its welfare gain. Simply, the bias occurs given

the noise in the observed electricity consumption Q1 and Q2, which are random components in Y1 and Y2.

Specifically, the observed electricity consumption Q1 and Q2 can be decomposed as the sum of an essential

term and noise as follows:

Q1 =
∑

d1∈{T,U}

E[Q1(d1)|H1] · 1{D1 = d1}︸ ︷︷ ︸
essential term

+
∑

d1∈{T,U}

ϵ1,d1 · 1{D1 = d1}︸ ︷︷ ︸
noise term

;

Q2 =
∑

(d1,d2)∈{T,U}2
E[Q2(d1, d2)|H2] · 1{(D1, D2) = (d1, d2)}︸ ︷︷ ︸

essential term

+
∑

(d1,d2)∈{T,U}2
ϵ2,(d1,d2) · 1{(D1, D2) = (d1, d2)}︸ ︷︷ ︸

noise term

,

where ϵ1,d1 := Q1(d1)−E[Q1(d1)|H1] and ϵ2,(d1,d2) := Q2(d1, d2)−E[Q2(d1, d2)|H2] for each (d1, d2) ∈

{T,U}2. While only the essential term is necessary for learning an optimal policy, a learning algorithm

inevitably responds to the noise term and overfits the training sample at hand. Therefore, when one evaluates

the welfare performance of the estimated policy on the same training sample, the welfare estimate is biased

upward because the policy also fits the noise term. Hence, if we replace the noise term in the training sample

with another independent noise sample, we can eliminate the bias from the estimate of welfare performance.

Motivated by this observation, we generate test data S test = {Si1, Si2, Y test
i1 , Y test

i2 , Di1, Di2 : i =

1, . . . , n} by generating another noise sample. Here, Y test
it := b · Qtest

it − a · 1{Dit = T}, with Qtest
it being

electricity consumption in the test data. For Qtest
i1 and Qtest

i2 , we use the following procedure to generate

artificial data:

1. For d1 ∈ {U, T} and subsample {i = 1, . . . , n : Di1 = d1},

(a) Estimate the conditional expectation function of potential electricity usage in the first period

E[Q1(d1)|H1 = h1] and calculate residuals ϵ̂i1,d1 = Qi1 − Ê[Q1(d1)|H1 = Hi1], where

40



Ê[Q1(d1)|H1 = h1] is the regression fitted value and ϵ̂i1,d1 is an estimate of the noise term

ϵi1,d1 .

(b) Estimate conditional variance of the regression residualsE[ϵ2i1,d1 |H1 = Hi1] by regressing ϵ̂21i,d1

on Hi1 and calculate σ̂2i1,d1 = Ê[ϵ21,d1 |H1 = Hi1].

2. For (d1, d2) ∈ {U, T}2 and subsample {i : (Di1, Di2) = (d1, d2)},

(a) Estimate the conditional expectation function of potential electricity usage in the second period

E[Q2(d1, d2)|H2 = h2] and calculate residuals ϵ̂i2,(d1,d2) = Qi2 − Ê[Q2(d1, d2)|H2 = Hi2],

where Ê[Q2(d1, d2)|H2 = h2] is the regression fitted value, and ϵ̂i2,(d1,d2) is an estimate of the

noise term ϵi2,(d1,d2).

(b) Estimate conditional variance of the regression residuals E[ϵ2i2,(d1,d2)|H2 = Hi2] by regressing

ϵ̂2i2,(d1,d2) on Hi2 and calculate σ̂2i2,(d1,d2) = Ê[ϵ22,(d1,d2)|H2 = Hi2].

(c) Estimate conditional covariance of the regression residuals E[ϵi1,d1ϵi2,(d1,d2)|H1 = Hi1] by

regressing the product ϵ̂i1,d1 ·ϵ̂i2,(d1,d2) onHi1 and calculate σ̂i12,(d1,d2) = Ê[ϵ1,d1ϵ2,(d1,d2)|H1 =

Hi1].

(d) For each i ∈ {i : (Di1, Di2) = (d1, d2)}, estimate the covariance matrix as

Σ̂i =

 σ̂2i1,d1 σ̂i12,(d1,d2)

σ̂i12,(d1,d2) σ̂2i2,(d1,d2)

 .

Sample {(ϵ̃i1, ϵ̃i2) : i ∈ {i : (Di1, Di2) = (d1, d2)}} iid from the empirical distribution of

the standardized residuals {(ϵ̂i1,d1 , ϵ̂i2,(d1,d2))Σ̂
−1/2
i : i ∈ {i : (Di1, Di2) = (d1, d2)}} and

calculate ϵtest
i = (ϵtest

i1 , ϵ
test
i2 )T = Σ̂

−1/2
i (ϵ̃i1, ϵ̃i2)

T .

(e) Construct (Qtest
i1 , Q

test
i1 )T = (Ê[Q1(d1)|H1 = Hi1], Ê[Q2(d1, d2)|H2 = Hi2])

T + ϵtest
i .

In this procedure, we estimate the conditional expectation functions ofQ1(d1) andQ2(d1, d2) using random

forests (Friedberg, Tibshirani, Athey, and Wager, 2021; Wager and Athey, 2018).

A.4 Proof of Proposition 5.1

By the same argument in the proof of Lemma 1 in Vuong and Xu (2017), under Assumption 5.1, equation

(10) holds a.s. for any d1, d′1 ∈ {U, T}. Under the conditions (i) and (ii) of the random assignment of
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(D1, D2), QSk
2 |(D1,S1)

(·|d1, S1) = QSk
2 (d1)|S1

(·|S1) and FSk
2 |(D1,S1)

(·|d1, S1) = FSk
2 (d1)|S1

(·|S1) hold a.s.

Hence, we have S̃k
2 (d1) = Sk

2 (d1) a.s.

Regarding the conditional average of the habit-formation effect in equation (4), letting A := {h2 :

π∗1(h1) = T, π∗2(h2) = U},

E

[
1{D1 = T}

P (D1 = T |H1)
· 1{D2 = U}
P (D2 = U |H2)

· Y2
∣∣∣∣π∗1(H1) = T, π∗2(H2) = U

]
= E

[
1{D1 = T}

P (D1 = T |H1)
· 1{D2 = U}
P (D2 = U |H2)

· Y2(T,U)

∣∣∣∣H2 ∈ A
]

= E

[
1{D1 = T}

P (D1 = T |H1)
· E

[
1{D2 = U}

P (D2 = U |H2)

∣∣∣∣H2, H2 ∈ A
]
· E [Y2(U, T )|H2, H2 ∈ A]

∣∣∣∣H2 ∈ A
]

= E

[
1{D1 = T}

P (D1 = T |H1)
· Y2(U, T )

∣∣∣∣H2 ∈ A
]

= E [Y2(U, T )|H2 ∈ A] , (28)

where the second line follows from condition (ii), and the last line follows from condition (i). It also follows

that

E

[
1{D1 = U}

P (D1 = U |H1)
· 1{D2 = T}
P (D2 = T |H2)

· Y2
∣∣∣∣π∗1(H1) = T, π∗2

(
H̃2(T )

)
= U

]
= E

[
1{D1 = U}

P (D1 = U |H1)
· 1{D2 = T}
P (D2 = T |H2)

· Y2
∣∣∣∣π∗1(H1) = T, π∗2 (H2(T )) = U

]
= E [Y2(U, T )|π∗1(H1) = T, π∗2 (H2(T )) = U ] , (29)

where the second line follows from the result S̃k
2 (d1) = Sk

2 (d1) a.s., and the last line follows from the same

argument to derive (28). Combining these results yields (13). The results (14) and (13) can be also shown

by a similar argument. □

A.5 Learning and Habit Formation Effects

Sections 2.3.1 and 2.3.2 discuss that learning and habit formation are behavior states relevant to the

effectiveness of the sequential intervention of the rebate program. To improve social welfare, a targeting

policy should utilize learning and habit-formation effects for the sequential treatment choice. For example,

for consumers with a learning effect (i.e., Y2(T, T ) > Y2(U, T )), the intervention (U, T ) should not be

provided given its lower welfare contribution in period 2. We investigate how optimal dynamic targeting
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exploits these effects.

[Table A.3 about here]

Table A.3 presents the estimation results of the learning, habit formation, second-period-treatment, and

full-intervention effects for each group (d1, d2) ∈ {U, T}2 assigned by the optimal DTP π∗. In this table,

we estimate the welfare gain for the second-period outcome to quantify each effect in Columns 1-4. Column

1 shows the average learning effect, E[Y2(T, T )− Y2(U, T )], for each of the assigned groups. For instance,

we find an economically and statistically significant positive learning effect (995.1 JPY) for those assigned

to (T, T ). This finding implies that the positive learning effect is among the reasons we want to assign

this group to (T, T ). However, we find a negative learning effect (i.e., a fatigue or decaying effect) for

those assigned to (U, T ). This result suggests that the fatigue effect is among the reasons we want to assign

this group to (U, T ). Column 2 shows the habit formation effect, E[Y2(T,U) − Y2(U,U)], for each of the

assigned groups. We find an economically significant positive habit-formation effect for those assigned to

(T,U) and (T, T ), although these estimates are noisy and statistically insignificant from zero.
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A.6 Additional Tables

Table A.1: Average Treatment Effects

t = 1 t = 2
2020 summer 2020 winter

Treated group (Dt = T ) -0.051 -0.032
(0.013) (0.013)

Number of customers 2400 2400
Number of observations 591028 669212

Notes: This table shows the estimation results for equation 26. The dependent variable is the log of household-level electricity
consumption over 30-minute intervals for summer 2020 in the first column and for winter 2020 in the second column. We include
household fixed effects and time fixed effects for each 30-minute interval. The standard errors are clustered at the household level
to adjust for serial correlation.
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Table A.2: Dynamic Heterogeneity among Observables in the Second Period

In pre-experiment, 2020 summer In pre-experiment, 2020 winter
Peak hour usage Peak hour usage Peak hour usage Peak hour usage

- Pre-peak hour usage - Post-peak hour usage - Pre-peak hour usage - Post-peak hour usage

All Low High Low High Low High Low High

(D1, D2) = (U, T ) -0.046 -0.069 -0.029 -0.027 -0.070 -0.084 -0.020 -0.047 -0.045
(0.019) (0.027) (0.026) (0.026) (0.028) (0.029) (0.024) (0.028) (0.026)

(D1, D2) = (T, U) -0.011 -0.006 -0.017 -0.022 0.002 -0.001 -0.016 -0.022 0.000
(0.019) (0.026) (0.028) (0.026) (0.028) (0.028) (0.025) (0.028) (0.026)

(D1, D2) = (T, T ) -0.029 -0.036 -0.027 -0.044 -0.013 -0.033 -0.022 -0.015 -0.042
(0.019) (0.028) (0.026) (0.025) (0.028) (0.029) (0.024) (0.028) (0.026)

Number of customers 2400 1201 1199 1200 1200 1200 1200 1200 1200
Number of observations 669212 326214 342998 348751 320461 318280 350932 321540 347672
p-value ((T, U) = 0) 0.569 0.830 0.545 0.392 0.933 0.962 0.541 0.436 0.992
p-value ((U, T ) = (T, T )) 0.351 0.245 0.930 0.496 0.037 0.062 0.928 0.238 0.905

Number of people at home Number of people at home Self-efficacy Household income
(1 PM - 5 PM) (5 PM - 9 PM)

Low High Low High Low High Low High

(D1, D2) = (U, T ) -0.037 -0.060 -0.062 -0.027 -0.006 -0.091 -0.071 -0.021
(0.025) (0.029) (0.026) (0.027) (0.026) (0.027) (0.028) (0.026)

(D1, D2) = (T, U) -0.004 -0.022 -0.015 0.002 -0.022 0.001 -0.026 0.009
(0.025) (0.029) (0.026) (0.028) (0.027) (0.027) (0.027) (0.028)

(D1, D2) = (T, T ) -0.048 -0.005 -0.032 -0.027 -0.053 -0.004 -0.027 -0.031
(0.025) (0.029) (0.026) (0.027) (0.026) (0.027) (0.027) (0.027)

Number of customers 1425 975 1370 1030 1236 1164 1264 1136
Number of observations 387296 281916 371509 297703 347489 321723 348331 320881
p-value ((T, U) = 0) 0.878 0.463 0.555 0.935 0.412 0.966 0.327 0.736
p-value ((U, T ) = (T, T )) 0.664 0.042 0.232 0.990 0.064 0.001 0.087 0.716

Notes: This table shows the estimation results for equation 27 using the full-sample (the first column of the upper panel) or sub-samples (the remaining columns). The dependent
variable is the log of household-level electricity consumption over 30-minute intervals in winter 2020. We include household fixed effects and time fixed effects for each 30-minute
interval. The standard errors are clustered at the household level to adjust for serial correlation. To investigate the heterogeneity of the treatment effects, we focused on the variables
selected for estimating the optimal policy in Section 4.2 and divided the sample into eight sets of two sub-groups. For the eight different variables, the first subgroup includes
households who are below the median of this variable and the second includes those who are above the median. The monetary unit is given as 1 ¢=1 JPY in the summer of 2020.
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Table A.3: Learning, Habit Formation, Second-Stege-Treatment, and Full-Intervention Effects

Assigned group Learning Habit formation 2nd stage treatment Full intervention
E[Y2(T, T )− Y2(U, T )] E[Y2(T, U)− Y2(U,U)] E[Y2(U, T )− Y2(U,U)] E[Y2(T, T )− Y2(U,U)]

(U,U) −496.1 271.7 −601.3 −1097.4
(1040.7) (1012.1) (936.5) (1068.9)

(T,U) 778.7 842.7 −930.4 −151.7
(944.7) (904.3) (799.4) (866.3)

(U, T ) −1181.9 −793.5 1258.2 76.3
(565.0) (688.6) (484.0) (620.7)

(T, T ) 995.1 757.6 824.6 1819.7
(492.9) (591.7) (497.3) (528.9)

Notes: This table shows the estimates of averages of the four effects (learning, habit formation, second-stage-treatment, and full
intervention effects) for each of the four intervention groups (d1, d2) ∈ {U, T}2 assigned by the estimated DTP π̂∗ and for the
whole population with these standard errors in prarentheses. For example, the first row presents the estimates of averages of the
four effects for the subpopulation that is assigned to (U,U) by the estimated DTP π̂, where each average effect is estimated with
the test data. The last row shows the estimates of averages of the four effects for the whole population. The monetary unit is given
as 1 ¢ = 1 JPY, the exchange rate in the summer of 2020.
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