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1 Introduction

Deciding how governments should implement lockdown measures in response to a
pandemic is a complex challenge, given the unique characteristics of each disease.
Some diseases are highly contagious, while others are more lethal. Furthermore, the
impact of these diseases can vary significantly across different population groups. Cer-
tain diseases may disproportionately affect men, women, or children. Many infectious
diseases, particularly those caused by viruses, are much more deadly for the elderly
than the young—e.g., influenza, swine flu, SARS and most recently Covid-19. This
strong age gradient in the effects of these diseases raises a number of important ques-
tions: How much voluntary protective behavior do different age groups engage in?
What does that imply for policy that aims to balance the economic and health effects
of a pandemic? And how would optimal policy be different for a disease with a less
steep age gradient? This paper develops an economic framework designed to study
these questions.

Section 2 describes our economic model of the pandemic that features age hetero-
geneity and individual choice, allowing agents to choose rationally how much social
distancing to undertake, taking into account future infection risk and the chance of a
vaccine arrival. Social distancing provides protection, but comes at the cost of forgone
earnings and diminished leisure enjoyment. These can only be partially substituted
by teleworking and safe leisure activities. Initial symptoms leave individuals and the
government with incomplete information whether they are infected, rendering testing
valuable. The deadliness of the disease, the need to earn a living and the natural death
probability differ between the working age population and the elderly. The govern-
ment can curb infections by imposing restrictions on outside activities separately by
age to decrease the number of interactions.

To quantitatively assess the impact of different policies, we parameterize our model
using data from the Covid-19 pandemic in the US, as detailed in Section 3. The calibra-
tion targets pre-pandemic moments of time allocation across different age groups as
well as demographic information. Moreover, we target Covid-specific characteristics
such as age-specific hospitalization and death probabilities as well as the lockdown
imposed by the US government in the first year of the pandemic. The calibration fits
the time series of overall deaths and the rise in home hours well. On top of this, the
parameterized model also matches several non-targeted moments: the age-specific
mortality rates and changes in time at home, the time series of aggregate employment
and the positivity rate of tests.

We first use the calibrated model to assess the importance of behavioral changes
in Section 4. In the benchmark, outside activities are restricted both by voluntary pro-
tective behavior and by the government-imposed lockdown. This lower activity leads
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to a death toll 80% lower than in a purely epidemiological model where individuals
do not adjust their behavior. Voluntary behavior alone is important. In a laissez-
faire no-lockdown equilibrium, older individuals shield themselves substantially. The
young also reduce work and outside leisure, but much less so due to their lower risk
of dying and the need to earn a living. Though the young can telework, this is a lower-
productivity activity. The death toll in this laissez-faire world is 65% lower than in the
epidemiological scenario.

We solve for the optimal lockdown policy in Section 5. The social planner’s optimal
lockdown is stricter than what was implemented in the U.S., and reduces deaths across
both age groups. Increased restrictions predominantly impact the young, who curtail
interactions, while the old gain more outdoor time due to a lower threat of infection.
This asymmetry is intentional, driven by endogenous behavior. In the laissez-faire no-
lockdown equilibrium, the young tend to neglect taking strong precautions to limit
the spread of the disease due to low personal risk, leaving the old to bear an undue
burden. The planner’s stringency is contingent on the duration required to sufficiently
control the disease, a process spanning two winters. Following this period, the com-
bination of low disease prevalence and increased testing capacity allows the planner
to ease restrictions significantly. This recipe for the optimal lockdown highlights that
integrating behavior, testing, and policies in a unified framework is vital for assessing
the optimal pandemic response.

Our main calibration uses data from the Covid pandemic in the US in the early
2020s. However, our framework is general enough to study policies for different pan-
demics, which we do in Section 6. We start by recalibrating the model for the Spanish
flu pandemic of the 1910s. Optimal policy would entail milder reductions in social
interactions for the Spanish flu, even though the overall death rate of this disease was
higher. This result is based on a combination of different factors that were different one
hundred years prior: a younger population, the inability to telework, a different virus,
etc. We decompose the effects of each of these factors and also study how lockdowns
should be designed for diseases with different levels of infectiousness and deadliness.
Several lessons emerge. Stringent lockdowns are warranted when the basic reproduc-
tion number (R0) is high, but less so when only the case fatality rate (CFR) is elevated.
The age gradient is a crucial factor: if the CFR is high among the young, a sizable and
active group, fewer additional restrictions are necessary due to increased voluntary
precautions. Economic conditions have a big impact on the optimal lockdown. In sce-
narios where the older population is smaller, life expectancy is lower, or teleworking
is easy, a less restrictive policy is optimal. Importantly, the optimal policy may not
completely prevent all deaths, and the welfare benefits can be unevenly distributed
across age groups.

One of the novelties of our framework is the fact that individuals can be uncertain
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about their health status, which renders testing valuable. Section 7 explores several
aspects of testing. First, testing alone does not eliminate Covid-19, but significantly
alleviates the impact of the virus. Moreover, the optimal lockdown is influenced by
the testing regime, enabling a less restrictive lockdown, reducing GDP losses, and
facilitating a quicker easing of restrictions. While tests increase welfare, the benefit
from the optimal lockdown diminishes with increased test availability. In situations
where tests are costly and scarce, prioritizing them for the young proves beneficial.

Overall, by integrating age-specific behaviors, testing strategies, and lockdown
policies into an economic framework, this paper offers crucial insights for shaping
policies to minimize the economic and health impacts of pandemics. Before laying
down the framework in the next section, we end this introduction with a brief litera-
ture review.

1.1 Literature Review

This paper contributes to the literature that combines epidemiological models (e.g.,
Kermack and McKendrick (1927)) with equilibrium behavioral choice. In economics,
efforts to incorporate behavioral responses to disease progression through equilibrium
models have mostly been theoretical. Such works have long pointed out a negative
externality of too little prevention efforts by self-interested agents; see, e.g., Kremer
(1996) for SI models, Quercioli and Smith (2006) and Chen (2012) for SIR models,
and more recently Toxvaerd (2019). These studies consider homogeneous populations,
though Kremer (1996) also considers heterogeneous preferences for risky activities. In
our setting, differences in activity are partially a consequence of different death rates.1

There are few quantitative economic models of disease transmission that predate
Covid. Greenwood et al. (2019) develop a heterogeneous-agent choice-theoretic equi-
librium model for the HIV/AIDS epidemic to analyze different mitigation policies.
Within this framework, Greenwood et al. (2017) explore particular channels of selec-
tive mixing by relationship type, while Greenwood et al. (2013) allow for incomplete
information in infection status. In these works, the behavioral response of agents is
crucial for the results of different policies. Chan, Hamilton, and Papageorge (2016)
argue in a structural model that behavioral adjustments matter for the evaluation of
medical innovations. Keppo et al. (2021) use a calibrated homogeneous-agent model to
argue that a substantial behavioral elasticity is necessary to match different epidemics.

In the great influx of recent economics papers studying different aspects of Covid-
19, most consider homogeneous populations. Some analyze optimal containment
policies in a standard epidemiological model that trade off economic well-being of

1Other work that considers heterogeneity includes Galeotti and Rogers (2012) who study two identi-
cal populations but with non-random mixing, and work on transmission in networks where individuals
occupy different positions (Acemoglu, Malekian, and Ozdaglar 2016).
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living individuals versus lost lives (e.g., Alvarez, Argente, and Lippi (2020)), while
others first feature optimizing agents and then introduce a planner who improves
their ex-ante utility (e.g., Eichenbaum, Rebelo, and Trabandt (2021), Farboodi, Jarosch,
and Shimer (2021), Garibaldi, Moen, and Pissarides (2020), McAdams (2020), Vanden-
broucke (2021)).2 The main insight of these papers is that private incentives to protect
oneself slow the disease and save lives, and optimal policy follows two phases: pos-
sibly a short strict start and then near-constant restrictions that keep the reproductive
number close to unity. Such a policy keeps the disease at a near-constant low level and
preserves lives up to the point of relief through vaccination. In our setting, restrictions
have three phases: a first strict phase that reduces initial infections; a second near-
constant plateau that fights the seasonality through contracting infections in summers
but expanding in winters; and, after waiting out a second winter, this is followed by
a sharp decline to very low levels. We analyze the various factors that influence the
level of lockdowns, the amount of lives saved, the division of the burden across agents,
and how this would vary under different diseases, which has not been systematically
studied in the previous literature.

The papers in the preceding paragraph focus on developed countries and abstract
from testing. Extensions to Eichenbaum, Rebelo, and Trabandt (2021) comprise Almås
et al. (2023) who argue that confinement policies should be laxer when parametrized
to developing countries, unless the population is close to their subsistence constraint
where policies are less effective. Our decomposition allows us to study a stylized de-
veloping country as part of our analysis. Despite a laxer lockdown and increases in
deaths for each age group, the aggregate death toll is lower due to a different age
composition, which is hidden in usual representative-agent settings. Melosi and Rot-
tner (2023) shows that contact tracing increases initial lockdowns, though it assumes
for simplicity that non-tested individuals assume they are healthy. Other papers in-
troduce uncertainty about one’s infection status and the role for testing (Berger et al.
(2020), von Thadden (2020), Piguillem and Shi (2022)). Only Eichenbaum, Rebelo, and
Trabandt (2022) combine testing with individual choices about social distancing as in
our paper, but with homogeneous agents and only a short and stylized lockdown. We
study the consequences of different testing capacities and the implications for optimal
lockdown, and also consider the consequences of targeting tests towards particular
age groups.

Our paper differs from the papers above along a number of dimensions, includ-
ing the broader view beyond Covid and the inclusion of a large number of factors
such as teleworking and testing, but one of the biggest differences is in our focus on

2 Many extensions to the basic planning problem with an epidemiological model exist, such as ac-
counting for waning immunity (see, e.g., Giannitsarou, Kissler, and Toxvaerd (2021)), or slow vaccine
rollout (see Garriga, Manuelli, and Sanghi (2022)).
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heterogeneity by age leading to different risk groups. The medical literature is long
aware of an age gradient in the severity of infectious diseases in adulthood. Recently,
Glynn and Moss (2020) conducted a meta-analysis across 142 studies covering 32 dif-
ferent diseases (19 viral and 13 bacterial) and sum up: “For most infections clinical
severity [..] rises in adulthood and more steeply into old age”.3 Covid-19 is no ex-
ception and features a strong age gradient. Still, there are only a few other studies
in economics that incorporate age differences: Favero, Ichino, and Rustichini (2020)
and Gollier (2020a) argue that re-opening should focus on the young while shielding
the old, Gollier (2020b) argues that herd immunity has less deaths when built on the
young, Glover et al. (2023) analyze how a blanket lockdown affects young and old
agents differently and how this leads to disagreement on optimal policy, Alon et al.
(2020b) argue that shielding the old while the young work is even more important
in developing countries, Acemoglu et al. (2021) characterize the optimal frontier be-
tween GDP and lives lost in a model with three age groups and argue that the tension
between lives saved vs GDP lost can be best addressed with targeted group-specific
policies that confine the old.4 These papers assume that individual behavior can be
finely adjusted directly through policy, but is otherwise fixed (or has a coarse dimen-
sion such as which sector to work in), and usually trade off lost production vs lives
saved. This implies large benefits to confinement of the elderly who are at risk but do
not produce.

Our work focuses on voluntary behavioral change which has been empirically
found to be a large driver behind social distancing (e.g., Maloney and Taskin (2020))
and how this interacts with age-specific policies. In our model the old confine them-
selves voluntarily and further mandatory confinement lowers their welfare. This hap-
pens because the additional leisure benefit of social interactions is further restricted,
which have largely been abstracted from in the literature on age heterogeneity. While
some countries have implemented harsh confinements on the elderly in line with the
recommendations of the papers above, Altindag, Erten, and Keskin (2022) empirically
documents that this has led to worsened mental health outcomes linked to social and
physical isolation in line with the lost leisure benefits modeled in our framework.

Boppart et al. (2020) shares this concern for the leisure of the elderly and individual

3Glynn and Moss (2020) also study differences of severity during childhood, from which we abstract
in our paper.

4Glover, Heathcote, and Krueger (2022) extends Glover et al. (2023) to analyze whether the young
or the old should be vaccinated first. Brotherhood et al. (2022) extend our framework to study hetero-
geneity on income and housing arrangements in developing countries (including slums), and spatial
heterogeneity has also attracted other papers that abstract from age heterogeneity (see Bognanni et al.
(2020), Fajgelbaum et al. (2021), Fernández-Villaverde and Jones (2022)). Akbarpour et al. (2023) uses
a mechanism design perspective to study theoretically how available vaccines should ideally be allo-
cated over time to heterogeneous agents. Kaplan, Moll, and Violante (2020) consider heterogeneity in
terms of occupational exposure and take into account the ability to telework and self-insure and for the
government to redistribute. They consider scenarios rather than optimal policy.
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choice, and their model is closest in structure to ours.5 They abstract from uncertainty
about infection status, testing and seasons. This matters for outcomes. While they ar-
gue that full suppression of Covid is rather parameter-dependent, a no-Covid policy
that suppresses nearly all infections comes out robustly in our setting.6 In our sys-
tematic investigation of other disease parameters and economic conditions we do find
cases where suppression is no longer optimal.

2 Model

This section describes the model with a focus on Covid. However, we will see in the
next few sections that the framework is general enough to study different diseases.
The general setup is in discrete time. The economy is populated by a continuum of
ex-ante identical agents of two types: young y and old o, so that age a ∈ {y, o}.7

Individuals work, enjoy leisure outside the home and domestic hours. In the presence
of the coronavirus, denote the agent’s health state by j. A susceptible agent is denoted
by j = s. By spending time outside the house, the agent may catch a disease, which
may be Covid-19 or a common cold.8 Both lead to mild ”fever” symptoms.9 There is a
texting capacity Kt that gets allocated at random among agents with fever symptoms,
leading to probability ξt(a) of getting tested.10 With complementary probability, they

5 Other papers with voluntary behavioral change and multiple groups typically consider scenarios
rather than optimal policy. For example, Giagheddu and Papetti (2023) allow for an endogenous con-
tact matrix but restrict optimal lockdown policy to consumption choices while providing a scenario
analysis for lockdowns on social interactions. They abstract from teleworking, testing, or validation
of the size of their effects during Covid, and do not assess welfare of their social lockdowns because
they directly change utility parameters. Dizioli and Pinheiro (2021) consider some regular and some
time-constrained individuals, and allow unawareness of infection status. They simulate short and long
lockdowns but not optimal policy.

6Boppart et al. (2020) highlight the timing of vaccine arrival and the value of a statistical life as key
determinants of disease suppression. In our setting the planner avoids nearly all deaths across many
scenarios including much later vaccine arrival and much lower value of statistical life. One of the
differences is the modelling of testing capacity and associated quarantines. Boppart et al. (2022) builds
on Boppart et al. (2020) to study the value of vaccination and shows that it is high and increasing with
age.

7The model can easily accommodate any number of age groups, but we focus on just two. Acemoglu
et al. (2021) highlight large benefits from separately targeting the elderly and the working-age popu-
lation but little further improvements in sub-dividing those who work. Moreover, we intentionally
limit heterogeneity to age to provide a transparent picture, though computationally other dimensions
of heterogeneity could be handled.

8Our model features seasonal transmissability of both Covid and the common cold, but abstracts
from different variants of Covid-19. These could be introduced as in Brotherhood and Santos (2022).

9Ours is one of the few models in the literature that captures partial information—rather than full
knowledge or no knowledge about infection state. The specific modelling assumption is for tractability,
and evidently does not capture truly asymptomatic cases. The US Center for Disease Control estimates
85% of Covid-19 cases to be symptomatic (97.1 million symptomatic cases out of 114.6 million total
cases, and similarly for the over-18-year-old 0.74 million symptomatic out of 0.88 total cases) as of April
2021. See CDC (2021b). This suggests that our setting might capture the vast majority of cases.

10While tests are allocated at random in our benchmark, we allow ξt(a) to be age-dependent to intro-
duce the necessary notation for counterfactuals where testing is targeted towards a particular group.
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are not tested and are therefore unsure about the source of their symptoms. While
some of these are truly infected (state fi for “fever-infected”) and others are not (state
fs for “fever-susceptible”), they do not know this and can only discern state j = f

for “fever”. A tested individual knows for sure whether they are infected with Covid.
For simplicity, assume that non-tested infected individuals discover their state after
one period.11 Denote by j = i the state where an agent knows they are infected with
Covid-19. Each of these elements are now explained in more detail.

Disease progression is mechanical once an individual contracts Covid and does not
depend on the agent’s subsequent choices. The individual can develop more serious
symptoms that require hospitalization, a state denoted by j = h. This happens with
probability α(a). An agent being treated in a hospital can die with probability δ(a),
on top of the natural death probability δ(a) that exists even in the absence of the pan-
demic. An infected agent recovers from the disease with probability φ(0, a), which
changes to φ(1, a) for a hospitalized agent. All these parameters are age-dependent,
allowing us to capture the age difference in the severity of the disease. If the agent
recovers, they become immune (or resistant) to future infections, a state denoted by
j = r. Thus, the set of all health states is j ∈ {s, f, i, h, r}.

A vaccine arrives with probability χ(Vt) each period. If a vaccine is already present
at the start of a period, we denote this as Vt = 1, where we omit the time subscript if it
is obvious. In this case it will persist, i.e., χ(1) = 1. If a vaccine is not present (Vt = 0)
at the beginning of a period, its arrival suppresses infections this period and in the
future. That means that we abstract from slow rollout. A vaccine does not heal those
that are already infected.

Infections are endogenous and may happen to susceptible people when they leave
their house for either work, n, or leisure, `. Taking the risk Πt per unit of time outside
as given, the infection probability for a susceptible individual in a period is

π(n+ `,Πt,Vt) = (n+ `+m)Πt(1− Vt).

The longer the individual spends outside, the riskier it gets, though some contacts are
unavoidable, as captured by m.12 How risky the environment is (i.e, the value of Πt)
is determined by equilibrium behavior and seasonality as described below. The last
term simply states that transmissions are suppressed when a vaccine is available.

Uncertainty without testing arises because people can also catch a common cold,

11Section 7 relaxes the assumption that non-tested agents learn their health status after one period.
12This could include unavoidable visits to one’s home, such as those introduced by children for the

young or nursing needs for the old. Allowing for some exogenous transmissions is common in the
literature; e.g., Eichenbaum, Rebelo, and Trabandt (2021) and Hur (2023).
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which is transmitted in similarly to Covid and triggers uncertainty with probability

π∗(n+ `,Π∗t ) = (n+ `+m)Π∗t ,

where Π∗t follows the same seasonality as Covid; i.e., Π∗t = ψtΠ
∗ for an exogenous

parameter Π∗ and a seasonal component ψt.
The probability that the agent catches either disease is

πf (n+ `,Πt,Π
∗
t ,Vt) = π(n+ `,Πt,Vt) + π∗(n+ `,Π∗t ),

which implicitly assumes that these are mutually exclusive events.13 If this happens
and the agent is not tested (probability 1− ξt(a)), the agent enters next period t + 1 in
the fever state j = f in which they cannot distinguish between the common cold and
Covid, assigning probability Πt/(Πt + Π∗t ) to having Covid. To form this probability
they do not need to condition on their previous behavior as a state variable since that
behavior shifts both the probability of a cold and of Covid in similar ways, which
keeps the model very tractable. If they are tested (probability ξt(a)), they will know
immediately whether they are infected (j = i) or not (j = s). Otherwise they learn at
the end of the period whether the fever was due to coronavirus or not.

To recap, individuals enter a period with health state j and make their consumption
and leisure choices. Those who started in state j = f find out whether or not they truly
were infected already at the beginning of the period. A vaccine may arrive, and then
people’s health state changes as a consequence of their actions in this period, and new
fever symptoms can arise. Individuals then might get tested. They might die of natural
reasons, and hospitalized individuals might also die of Covid. The timing implies that
individuals can be confused about their health state for multiple periods, because they
can experience a fever multiple periods in a row. The actual infectious period under
Covid is short, but the one-period difference between information provision through
testing and no testing implies confusion exactly when individuals are most infectious
to others. Testing also allows the government to isolate individuals, which we assume
impossible for fever-individuals that are not tested.

For production and leisure, each agent is endowed with one unit of time per period.
This can be divided into outside work hours n, teleworking hours v, leisure outside
the house ` and hours at home d (”domestic” leisure). Agents enjoy utility from con-
sumption c, a composite leisure good when they leave home g, and domestic hours d.
The good g is produced using hours ` and buying ”intermediate” goods x according
to g = g(x, `). We normalize the utility after death to zero and capture the bliss from

13This is a good approximation when the probability of either event is sufficiently small, in which the
chance of getting both becomes negligible.
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being alive through the parameter b. The utility function is given by:

u(c, g, d, v) = ln c+ γ ln g + λ ln d+ b,

where γ and λ are positive constants. Agents discount the future at a common factor β̃,
but since the natural survival probability ∆(a) = 1− δ(a) is age-specific, their effective
discount factor is β(a) = β̃∆(a).

The time constraint is ñ+˜̀+d+v = 1, where in the absence of government lockdowns
ñ = n and ˜̀ = `, so that the sum of all time allocations in a period add to the unit
amount of time that agents have.

Government lockdowns are represented as a tax τt(j, a,V) on time spent outside the
house, and ñ and ˜̀represent the pre-tax time used for outside work and leisure.14 The
taxes can be interpreted as additional time preparing trips, filling out forms, etc. On
a more abstract level, lockdown taxes are intended to serve as ”a proxy for any con-
tainment measures aimed at reducing social interactions” (Eichenbaum, Rebelo, and
Trabandt 2021). While the taxes can condition on the time period and on the individ-
ual’s age, we impose that the government cannot distinguish susceptible individuals
from those who have a fever, i.e., it cannot distinguish non-tested individuals who
are not hospitalized: τt(s, a,V) = τt(f, a,V). The reason to introduce taxes rather than
allowing the planner to directly control agents’ choices is in this assumption.15 With-
out it, the planner could trivially control the disease through targeted heavy taxes on
those who are infected or have a fever, thus avoiding the large-scale lockdowns that
characterize the actual response to the pandemic.

The policy implies that an individual who aims to spend ñ units of time at work
gets paid only for n = ñ(1−τt(j, a,V)) units, i.e. loses τt(j, a,V)ñ units of time, perhaps
because public transportation is shut down and driving to work takes longer. The
same applies to leisure time outside the house. The difference ñ−n and ˜̀−` is not lost
to the economy, but is rebated lump-sum through transfers Tt(j, a,V). This transfer
ensures that taxes alter choices and therefore well-being but do not by themselves

14We do not model separate taxes on time spent working or socializing because our modelling as-
sumptions imply that both have equal externalities on the rest of the economy and so the planner
does not gain by differentiating between them. An alternative way to model lockdowns is via a util-
ity penalty on activities outside the house. See Brotherhood et al. (2020) for details. Effects of either
approach turn out to be very similar.

15A usual approach to a planning problem is to let the planner make choices on behalf of the agents,
and to compare this with the choices that the agents would make themselves. But, in the absence of
testing, the government cannot ”see” whether individuals are infected, so this abstract planning prob-
lem does not correspond to any actual policy that a government could enact. Imposing on the planner
to give the same actions to susceptible and fever individuals (which the planner cannot distinguish)
is not a sensible solution, as these agents do not make the same choices in the absence of the planner.
So the tax achieves a uniform government treatment of susceptible and fever people while allowing
independent actions of these two groups.
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create deadweight losses.16 The resulting time constraint is:

v + d+ (n+ `)/(1− τt(j, a,V)) = 1 + Tt(j, a,V). (1)

The monetary budget constraint is determined by the wage per unit of time worked
outside, w. The wage rate for teleworking hours depends on the amount of telework
the agent performs, according to wι(v), where ι(v) = ι0 − ι1v. The first few activities
moved to telework do not carry significant wage penalties. However, as more work
is moved to the home, it becomes more costly. This creates a clear trade-off with tele-
working: the more one works from home, the less likely it is to catch a disease but the
lower is the wage. Old agents live off retirement savings amounting to a fixed income
w̄. Total earnings can then be written as follows:

w(a, n, v) =

w[n+ ι(v)v] if a = y

w if a = o,

and aggregate output of the economy in a given period can be computed by w(y, n, v)

times the number of young agents in the economy (see Appendix A for details). The
budget constraint of each individual agent is then given by:

c+ x = w(a, n, v). (2)

The value function for susceptible (s) agents of age a in period t that starts with
vaccine availability V is given by:

Vt(s, a,V) = max
c,x,n,v,`,d

u(c, g(x, `), d, v)+ (3)

β(a)[1− πf (n+ `,Πt,Π
∗
t ,V) + π∗t (n+ `,Π∗t )ξt(a)]Wt+1(s, a,V|s)+

β(a)ξt(a)π(n+ `,Πt,V)Wt+1(i, a,V|s)+

β(a)(1− ξt(a))πf (n+ `,Πt,Π
∗
t ,V)Wt+1(f, a,V|s)+

s.t. (1) and (2).

The first line captures the utility from consumption and leisure. The following three
lines capture the continuation when no vaccine is available by the end of the period.
If the agent has no fever or has fever but tested negative for Covid, they continue as

16Imagine someone who usually spends two hours at a restaurant. A lockdown that reduces the
opening hours of restaurants by half might still allow 2 hours of occupancy. However, the hours might
no longer be convenient, inducing the person to reduce their patronage. The tax wedge captures such
interventions in reduced form, and the redistribution captures that time at home is not actually lost. In
the example above of driving to work, the person could, e.g., use the additional time in the car to listen
to a podcast or to talk on the phone.
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a susceptible person, captured in the second line. The third line captures the continu-
ation for a feverish person who gets tested and had been infected, and the fourth line
corresponds to the fever state (fever symptoms and no test). For healthy individuals
the continuation values depends on whether a vaccine is available or not by the end
of the period, as transitions to state j 6= s only happen in the absence of a vaccine:

Wt+1(j, a,V|s) = [(1− χ(V))Vt+1(j, a, 0) + χ(V)Vt+1(s, a, 1)].

The value function for an agent who knows that they are infected with coronavirus
but do not need hospitalization is given by:

Vt(i, a,V) = max
c,x,n,v,`,d

u(c, g(x, `), d, v)+ (4)

β(a)φ(0, a)Wt+1(r, a,V)+

β(a)(1− φ(0, a))α(a)Wt+1(h, a,V)+

β(a)(1− φ(0, a))(1− α(a))Wt+1(i, a,V)

s.t. (1) and (2).

The second line captures the case in which the agent recovers from the disease and
becomes resistant to the virus. The third line gives the value for the case in which
the agent does not recover and requires hospitalization. The fourth line is the case in
which the agent does not recover and does not require hospitalization and, thus, re-
mains infected. Even though future health states for these individuals are not affected
by vaccines, the arrival of a vaccine is relevant as it affects the persistence of lockdown
measures. The continuation value in state j is therefore averaged according to:

Wt+1(j, a,V) = [(1− χ(V))Vt+1(j, a, 0) + χ(V)Vt+1(j, a, 1)].

To define the value for an agent in the fever state, it is convenient to denote by
Ṽt(c, x, n, `, d; s, a,V) the terms in lines two to four on the right hand side of (3), and
by Ṽt(c, x, n, `, d; i, a,V) the corresponding lines in (4). They represent the continua-
tion values conditional on choices made this period, both for the susceptible and the
infected. Those in the fever state simply get their current utility and the weighted av-
erage of these continuation values, weighted by the probability of being infected with
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Covid:

Vt(f, a,V) = max
c,x,n,v,`,d

u(c, g(x, `), d, v) + (5)

Π∗t−1 Ṽt(c, x, n, `, d; s, a,V)

Πt−1 + Π∗t−1

+
Πt−1 Ṽt(c, x, n, `, d; i, a,V)

Πt−1 + Π∗t−1

s.t. (1) and (2).

For individuals in hospital care, we set their flow utility equal to that of death (i.e.,
zero) to account for the harsh nature of the disease at this stage. They can enjoy the
utility of normal life again if they recover. These agents provide no labor (n = v = 0)
but we assign an exogenous level of ”outside” time (` = ¯̀

h) to account for the infection
burden they impose onto their carers. The value function for a hospitalized person is:

Vt(h, a,V) = β(a) [φ(1, a)Wt+1(r, a,V) + (1− φ(1, a))(1− δ(a))Wt+1(h, a,V)] (6)

s.t. (1) and (2).

This captures the case of recovery as well as the chance of remaining in the hospital,
and the continuation value after dying is set permanently to zero.

Finally, an agent who has already recovered and is resistant to the virus enjoys
utility:

Vt(r, a,V) = max
c,x,n,v,`,h

u(c, g(x, `), d, v) + β(a)Wt+1(r, a,V) (7)

s.t. (1) and (2).

Appendix D provides a discussion on the trade-offs individuals face by using the
first order conditions of a problem akin to the ones presented above. This appendix
also explains how this can be used in our computational algorithm.

To define an equilibrium, we need to aggregate agents’ actions for given parame-
ters and tax rates. Their decisions depend also on the risk in the economy Πt, the
transfers Tt(j, a,V) and the testing probability ξt(a) for each period, which are equilib-
rium objects. Conjecture the tuple {Πt(·), Tt(·), ξt(·)} that agents take as given, and let
nt(j, a,Vt) and `t(j, a,Vt) denote the agent’s choices consistent with their value func-
tions. Given the measure of Mt(j, a) of agents of each type j of age a in period t,
these actions determine the corresponding measures Mt+1(j, a) in the subsequent pe-
riod. We derive these laws of motion in Appendix A. This constitutes an equilibrium
if actions nt(·) and `t(·) and resulting distribution Mt(·) indeed give rise to the tuple
{Πt(·), Tt(·), ξt(·)}, along the lines we outline in the three steps below.
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First, in equilibrium taxes are lump-sum rebated to agents according to

T (j, a, 0) = τt(j, a, 0)[nt(j, a, 0) + `t(j, a, 0)]/[1− τt(j, a, 0)]. (8)

Note that n/[1− τ ] and `/[1− τ ] capture the work and leisure time outside before tax-
ation, which is multiplied by the tax rate and reimbursed. That is, each agent spends
one unit of time on activities inside and outside the house in equilibrium, but the lock-
down taxes represent ”wedges” in agents’ choices that distort their behavior at the
margin. Taxes and transfers are set to zero after vaccine arrival.

Second, if no vaccine arrived in period t, the testing capacity Kt is assigned ran-
domly across all individuals that reach the testing stage of the current period with
new fever symptoms:

ξt(a) = Kt/

 ∑
ã,j∈{s,fs,r}

Mt(j, ã)πf (nt(j, ã, 0) + `t(j, ã, 0),Πt,Π
∗
t ,1j=r)

 . (9)

We include in the denominator the recovered who catch a cold, to capture the fact
that recovered individuals still had to be tested to be able to go to work or join leisure
activities if they had flu symptoms. In our model they get symptoms only because of a
common cold, which is captured in the equation through indicator 1j=r, which equals
one if recovered and zero otherwise, signifying that for the recovered infections arrive
as if a vaccine was present. If a vaccine is actually present for everyone, testing serves
no further purpose and we set its probability to zero.

Third and most relevant, the instantaneous rate of getting infected depends on the
time that every other infected individual spends outside. This is multiplied by an in-
fectivity constant Π0 (which we assume to be age-independent in light of no evidence
to the contrary) and a seasonal component ψt as follows:

Π̂t = Π0ψt
∑

a,j∈{fi,i,h}

(nt(j, a, 0) + `t(j, a, 0) +m)Mt(j, a). (10)

This can be rationalized by assuming a common space in which agents are distributed
uniformly, so that within each unit of space an individual encounters the number of
infected people represented by the sum in (10), and each transmits the virus at the
exogenous rate Π0ψt. This entails the standard random mixing assumption where
everyone meets everyone else with equal probability.17 Expression (10) gives the rate

17While some (e.g., Mossong et al. (2008)) report that contact patterns are assortative with age, others
report contact patterns with considerable pre-pandemic interactions across age groups (see, e.g., the
matrix of pre-pandemic close contacts by age in the survey data for the US in Belot et al. (2020)). In
our earlier working paper (Brotherhood et al. 2020) we discuss interventions that separate parts of the
outside activities by age group, leading to selective mixing and age-specific infection risk.
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at which infections get transmitted on a given unit of space during an instant. We can
integrate over a (weekly) unit of time to obtain the probability of at least one encounter
that leads to infection:

Πt = 1− e−Π̂t . (11)

When Π̂t is small, it holds approximately that Πt ≈ Π̂t. At the peak of an unregulated
pandemic Π̂t > 1 is possible, reflecting that individuals in expectation get infected
more than once in a period, and (11) ensures that only one of these gets counted.18

3 Calibration and Model Fit

3.1 Calibration

This section describes how we discipline the parameters of the model. Some parame-
ters are exogenously calibrated without having to solve the model. A set of parameters
is chosen by solving the steady state of the model without Covid and some are chosen
in order to fit the time series path of the pandemic.

The time period is one week. Suppose the old (who do not work in the model) are
those above 65 years old. According to the US Census Bureau for 2018, this fraction is
0.214 of the adult population. Moreover, we use data from the Social Security Actuarial
Tables in 2019 to compute the life expectancy of individuals in the different age groups.
The median individual over 65 is 74 years old and expects to live an additional 12.9
years. Thus, set the weekly survival rate for old agents to ∆(o) = 1 − 1/(12.9 × 52) =

0.9985. The median young agent (between 20 and 64) is 42 and expects to live 38.9
years more. Hence, set ∆(y) = 0.9995.

The leisure good g is produced according to g(x, `) = [θxρ + (1 − θ)`ρ]1/ρ. The
parameter ρ controls the elasticity of substitution between leisure time outside the
home and leisure goods. Following Kopecky (2011), set ρ = −1.72, which implies an
elasticity of 0.368 so that goods x and leisure time ` are complements.19 The parameters
γ (utility weight of leisure goods g), λ (utility weight of leisure time at home), ι0 and
ι1 (which control the productivity of telework), and θ are jointly chosen to match five
data targets. First, we match a 40-hour work week (n+ v = 40/112 = 0.357) in a world
without the pandemic. A fraction of 8% of these 40 hours (or 3.2 hours) are spent on
telework.20 Moreover, individuals spend 17.3 hours on non-working outside activities

18This problem could in principle be avoided in the calibration by choosing a small period length.
But a small period length also shortens the duration of uncertainty in our model.

19Appendix Table B1 computes the no-policy equilibrium for different levels of ρ, corresponding to
an elasticity twice as high and half as high. The results are similar.

20Bick, Blandin, and Mertens (2023) report that around 8% of individuals were working from home
in February 2020.
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(` = 17.3/112 = 0.154).21 Additionally, when 36% of work time is devoted to telework,
we assume that income declines by 10%.22 We also match a fraction of income spent
on outside goods, x, equal to 12.5% (x/[w(n+ ι(v)v)] = 0.125).23 Set the discount factor
to β̃ = 0.961/52.

The parameter b represents the value of being alive over and above the value of
consumption/leisure. This influences how “afraid” agents are of dying. To discipline
this parameter, we target a value of statistical life (VSL) of 9.3 million dollars. This
is the value used by the Environmental Protection Agency (see Eichenbaum, Rebelo,
and Trabandt (2021)).24

Normalize the wage to w = 1. According to Biggs and Springstead (2008), the
replacement rate for social security benefits for a median-income household ranges
between 46% and 64%. Set the replacement rate in the model to 60%, a value towards
the upper bound of the range since households may have savings outside the official
social security income. This implies w = .6w[n+ ι(v)v] = .6× .357 = .214.

The parameters described above are summarized in Table 1. Turn now to the
health-related parameters, which are summarized in Table 2.

Once the agent is infected with the coronavirus, there is a probability of recovering
from the disease (φ(0, a)), and if not recovered, a probability for hospitalization (α(a)).
Set α(a) = 1 such that an infected agent spends one week with mild symptoms and
recovers (probability φ(0, a)) or needs a hospital (probability 1 − φ(0, a)), which cor-
responds to the length of time a Covid-positive person is infectious (CDC 2023). The
parameter φ(0, a) then also controls the fraction of agents that move to an ICU. Agents
in need of hospitalization may die (probability δ(a)) or recover (φ(1, a)). Verity et al.
(2020) report that patients with severe symptoms were discharged after an average of
24.7 days, or 3.52 weeks. This yields φ(1, a) = 1/3.52 = 0.284. CDC (2021a) reports
age-specific hospitalization (including ICU) rates and infection fatality rates (IFR) for

21This comprises the average hours per week spent on purchasing goods and services; caring for and
helping nonhousehold members; organizational, civic, and religious activities; socializing and commu-
nicating; arts and entertainment (other than sports); sports, exercise and recreation; and travel related
to leisure and sports. The data comes from the American Time Use Survey (ATUS). Note that, in our
model, the old do not work. In our calibration, the old spend 23 hours in leisure outside; i.e. more than
the young. This is consistent with the data; the old spend 19.5 hours in leisure outside. If we include
the small reported time at work, this number rises to 25.2 hours per week in the data.

22According to Bick, Blandin, and Mertens (2023) in May 2020, 35.2% of workers were working from
home; similarly, Aum, Lee, and Shin (2022) report a 36% decline in in-loco work in the same period.
Further, US GDP declined by 10% in 2020Q2.

23This comprises expenditures on food away from home, public transportation, medical services and
entertainment. The data comes from the Consumer Expenditure Survey (CEX) data for 2018.

24To fit the VSL, we consider a young person in a no-Covid world, increase the quarterly probability
of death by 1/10,000 and compute b such that this person needs to be given 930 dollars per quarter to be
indifferent. To interpret monetary units in the model as dollars, we assume that the quarterly income
of young agents before the pandemic is proportional to 15,000$, which corresponds to the quarterly
US GDP per capita in 2018. The old in the model have a VSL 57% that of the young, which is close to
estimates in the literature (e.g., 70% in Krupnick et al. (2002)). We also check robustness with respect to
a lower VSL of 5 million dollars (see discussion in Footnote 28).
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Table 1: Calibration – Economic & Preference Parameters

Parameter Value Interpretation

0.214 Fraction of old in population
ρ -1.72 Elasticity of subst. bw leisure time and goods
θ 0.033 Production of leisure goods
γ 0.635 Rel. utility weight - leisure goods
λ 1.562 Rel. utility weight - leisure at home
b 15.63 Flow value of being alive
β̃ 0.961/52 Discount factor
w 1 Wage per unit of time
ι0 1.055 Parameter related to telework productivity
ι1 0.960 Parameter related to telework productivity
w 0.214 Retirement income

∆(y) 0.9995 Weekly survival (natural causes), young
∆(o) 0.9985 Weekly survival (natural causes), old

Covid-19 patients. A fraction of 1.24% of patients aged 20-64 required being moved to
an ICU, whereas this number was 12.88% for those above 65 years. CDC (2021a) also
reports the following IFRs: 0.23% for those aged 20-64 and 9% for those above 65 years
old. These targets yield the following parameters: φ(0, y) = 0.988, φ(0, o) = 0.871,
δ(y) = 0.090 and δ(o) = 0.921.

Hospitalized agents in the model cannot work and do not make any decisions. We
assume a flow utility level of 0, i.e. the same as death. These individuals still interact
with others (e.g., doctors and nurses) for a fraction ¯̀

h of their time. Butler et al. (2018)
estimate that patients in ICUs spend 7.6 hours a day interacting with other people.
Thus, set ¯̀

h + m = 7.6/24, where we add the exogenous amount of interactions all
individuals engage in, m. This will be elaborated on momentarily.

We assume that individuals face a constant probability of vaccine arrival and that
they expect this will take on average one and a half year, or 78 weeks. Hence, χt = 1/78

for all t < T ∗. For T ∗ = 156, we set χT ∗ = 1 so that the pandemic is over after 3 years.
This latest possible end for the pandemic is set for computational reasons and does
not alter the results.

According to Heikkinen and Järvinen (2003), the average American has between
two and four colds every year. Suppose an agent in the model has an average of three
colds per year. This implies a weekly infection rate of 0.058. The infectiousness of
the common cold is controlled by Π∗ and we set it to hit this infection rate in a world
without Covid. The resulting value is Π∗ = 0.094.

Individuals in the model can be tested each period according to the time-varying
probability ξt. To discipline this, we take the number of tests performed in the US
for each week (Figure B1) and use equation (9) to back out ξt for every t. The main
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Table 2: Calibration – Disease Parameters

Parameter Value Interpretation

α 1 Prob(hospitalization | no recovery from mild)
φ(0, y) 0.988 Prob of recovering from mild Covid-19, young
φ(0, o) 0.871 Prob of recovering from mild Covid-19, old
φ(1, y) 0.284 Prob of recovering from hospitalization, young
φ(1, o) 0.284 Prob of recovering from hospitalization, old
δ(y) 0.090 Weekly death rate (among hospitalized), young
δ(o) 0.921 Weekly death rate (among hospitalized), old
¯̀
h 0.158 Infections through the health care system
χt 1/78 Prob of vaccine arrival (average = 78 weeks)
Π∗ 0.094 Weekly infectiousness of common cold/flu
Π0 6.011 Infectiousness of Covid-19
ψ̄ 1.51 Peak of infectiousness during winter
η0 4.33e-6 Stringency index function
η1 2.553 Stringency index function
τ̄i 0.379 Time tax rate for isolation (positive tests)
m 0.143 Exogenous Covid infections
I0 0.0011 Initial fraction of infected people

Table 3: Fitted Moments – Model vs. Data

Moment Model Data

R0 (winter) 3.0 3.0
Deaths per 100,000, March 22 2020 (start) 1.280 1.277
Deaths per 100,000, April 12 2020 (1st peak) 6.664 6.812
Deaths per 100,000, June 21 2020 (1st trough) 1.459 1.519
Deaths per 100,000, January 3 2021 (2nd peak) 9.162 10.288
Deaths per 100,000, April 25 2021 (2nd trough) 1.677 1.654
% rise in home hours rel. to no-Covid, March 29 2020 (1st peak) 39.81 39.20
% rise in home hours rel. to no-Covid, September 6 2020 (1st trough) 19.97 16.80
% rise in home hours rel. to no-Covid, January 17 2021 (2nd peak) 24.46 22.40
% rise in home hours rel. to no-Covid, June 20 2021 (2nd trough) 10.08 11.20

assumption in this procedure is that there is no reallocation of tests over time.
Covid-19 follows a seasonal pattern of infections similar to influenza such that it is

easier to contract this type of diseases in winter months (Hoogeveen and Hoogeveen
2021). The seasonality of Covid in the model is controlled by ψt. We assume a “tri-
angular” shape for ψt: the period of high-infectiousness lasts for 16 weeks, 8 weeks
before and after a peak on December 1st, as CDC (2022) reports that the flu season
usually occurs in the fall and winter in the US. We normalize the low-infectiousness
level to ψt = 1. 8 weeks before December 1st, it starts to linearly increase until it hits
ψ̄ on December 1st. It then linearly decreases during 8 weeks back to 1. The level of ψ̄
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will be determined jointly with other parameters as described below.
The parameter Π0 controls how infectious Covid-19 is. We pick Π0 in order to match

the basic reproduction number (R0) of Covid-19. R0 represents the average number of
new infections that a random person who gets infected at the start of the pandemic
is expected to generate over the course of their disease. In our model, this is closely
related to Π0. We thus pick this parameter to generate an R0 of 3 in the peak of the
winter. Given our calibrated value for ψ̄, this implies anR0 of around 2 in the summer.
This falls within the estimates provided by CDC (2021a). Π0 will be jointly calibrated
with other parameters as well.

The time series for τt must also be set. This controls how strict lockdowns are in
the benchmark economy. To discipline this, we use the stringency index from the Ox-
ford Coronavirus Government Response Tracker, which aggregates nine metrics related to
Covid restrictions in the US. Since this stringency index does not have a cardinal inter-
pretation, we impose the following function: τt = η0(stringencyt)

η1 , where stringencyt
is the stringency index in the data and τt is a uniform time tax that applies to all indi-
viduals. Additionally, an individual is also required to stay at home longer if they test
positive for Covid. Denote the time tax rate an individual in this situation faces by τ̄i.
If the period lockdown rate τt happens to be above τ̄i, we assume an individual that
tests positive faces the higher of the two values. So τt(i, a, 0) = max{τ̄i, τt} for infected
individuals and τt(j, a, 0) = τt for everyone else. The parameters η0, η1 and τ̄i will be
determined jointly with other parameters.

The parameter m controls the exogenous Covid infections. That is, infections that
individuals cannot prevent by spending less time outside. Moreover, denote by I0

the initial fraction of infected individuals at the outset of the pandemic in the model.
These two parameters will be determined jointly with other parameters.

We are thus left with the following seven parameters to determine: ψ̄, η0, η1, τ̄i, Π0,
m and I0. We discipline these parameters by targeting ten data moments. The first
moment is R0. The remaining nine targets are moments throughout the first year and
a half of the pandemic. In particular, we target the overall death rates (for young and
old combined) provided by the CDC in the following five dates: March 22 2020 (begin-
ning of the pandemic), April 12 2020 (first peak), June 21 2020 (first trough), January
3 2021 (second peak) and April 25 2021 (second trough). Moreover, we target Google
Mobility’s data on the rise in time spent at home relative to the no-disease baseline in
the following four dates: March 29 2020 (first peak), September 6 2020 (first trough),
January 17 2021 (second peak) and June 20 2021 (second trough). The model fit is dis-
played in Table 3. Despite targeting ten moments with only seven parameters, the fit
of the model is very good.

One may wonder about the size of the quarantine tax τ̄i after a positive Covid test.
The calibrated value corresponds to reducing time outside on average roughly by half.
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Figure 1: Deaths per 100,000 people, model versus data
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Note: Data from the CDC.

Quarantines are therefore not perfect, which seems to coincide with casual observation
and evidence from other settings.25

Our model also has implications for where infections happen which can be checked
against the data. Ferguson et al. (2006) consider transmissions outside of the house-
hold and claim that 53% of those take place in schools and workplaces. Mossong et al.
(2008) consider the number of interactions associated with work and with leisure ac-
tivities, and attribute 57% of those to work. According to our calibrated model, at
normal activity level, 61% of such infections are attributed to work-related activities.
Hence, our calibrated model matches these data relatively closely.

In the next section, we assess how well the model matches several non-targeted
moments over time.

3.2 Non-targeted Moments: Mortality and Behavior over Time

The calibrated model captures the timing of the pandemic over the first year and a
half quite well. Only a few points of the time series of aggregate mortality and time
at home were included as calibration targets (see Table 3). Yet, the model matches the
entire paths of mortality (see Figure 1a) and time at home (see Figure 2) quite closely.

The model further matches the behavior by age, which was also not targeted. Fig-

25The quarantine tax captures a mixture between strictly enforced quarantine and strongly worded
governmental appeal to self-quarantine with only moderate enforcement. Epidemiologists have been
interested in the consequences of the latter in the context of other epidemics. When surveyed, the
overwhelming majority indicates willingness to comply with such appeals even without enforcement.
To our knowledge, Rizzo et al. (2013) is the only study that reports actual adherence, which averaged
roughly 50% in the context of the swine flu across Italy, Finland and Romania, which might indicate
that our calibrated magnitude are reasonable.
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Figure 2: Time at home, model versus data
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Figure 3: Time at work, model versus data
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Note: BLS data corresponds to the employment-to-population ratio. Employment from the
Opportunity Insights project aggregates data from Earnin, Intuit, Kronos, and Paychex.

ure 1b shows death rates by age over time in the model compared to the data. We also
compare the change in time devoted to outside leisure in the model with the data, see
Table 4. Though the match is not perfect, the decline in outside leisure was larger for
the old than the young, both in the model and the data. This is true both for the time
periods between May and July as well as May through December, two periods with
different Covid experiences. Naturally, the young reduced both their outside leisure
and their working hours. To verify that our model captures this decline in work time,
we compare it to BLS employment data and employment estimates from the Oppor-
tunity Insights Project, see Figure 3 (Panels a and b respectively). The model matches
the data well, both in magnitude and the timing.

Finally, the test positivity rate changes over the course of the pandemic. Figure 4
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Table 4: Change in (non-work) time outside by age, model versus data

May–July May–December

Model Data Model Data

Young -12.0 -24.9 -11.1 -16.1
Old -35.4 -31.4 -47.4 -28.9

Note: Data from the American Time Use Survey (ATUS). Time outside in the data comprises the
activities listed in Footnote 21. Declines relative to the same months in 2019.

Figure 4: Positivity rate of tests, model versus data
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shows that it was highest early on in the pandemic, then dropped substantially and
increased again dramatically during the winter of 2021. The model captures these two
peaks quite well. The data displays additional smaller ups and downs that the model
does not capture. This is perhaps not surprising since policies on testing changed over
time, a feature our model abstracts from.

In sum, our model captures the timing of the pandemic over the first year and a
half quite well. This is true both in terms of the timing of mortality, but also behavioral
change, and it is true by age as well. We thus believe our model is a good starting point
to ask what policymakers could have done better, i.e. for policy exercises.

4 The Importance of Behavioral Changes

Table 5 reports our results based on the calibrated economy described in the previous
section (Column Benchmark). Panel A provides statistics for different time horizons:
1 year and 1.5 years. The 1.5 year time horizon corresponds to the expected vaccine
arrival time in the calibrated model and also the approximate date when the vaccine
became widely available in the data. In the discussions below, we thus equate the
total death toll of the pandemic with the number of deaths by vaccine arrival, which
is 1.5 years for Covid. The pandemic’s peak infection rate is observed in week 44. As
seen in Figure 1, this date corresponds to the second wave of the disease in the winter
of 2020-21. The death count over the first year and a half (i.e., before the vaccine
became available) is substantial: 2.48 deaths per 1,000 people. This number masks
considerable age heterogeneity: the death rate is 9.74 per 1,000 old individuals and
0.50 for the young.26 By the time the vaccine arrives, about 20% of the population had
been infected and recovered.

Panel B provides the expected statistics at the onset of the pandemic when individ-
uals look ahead at a 3-year horizon. This computation takes into account the positive
probability of vaccine arrival at different time intervals, such as one week, two weeks,
and so forth. Since the vaccine is a perfect solution to the disease in the model, the
pandemic is over upon its arrival. The expected death toll is a little lower: 1.93 dead
per 1,000 people. These expected statistics will be important in the upcoming sections
when we solve for the optimal lockdown policy that a planner chooses to maximize
expected utility, not knowing when the vaccine will actually arrive.

While the death toll is substantial, it is much lower than most predictions at the
onset of the pandemic. The peak is also much later than what epidemiological models
predicted in early 2020 (Ferguson et al. 2020). Why? Because people changed their be-

26Our (realistic) assumption that the old have a higher probability of dying from natural causes plays
a role here. If the old faced the same higher probability as the young, they would be even more careful
leading to a death rate of only 8.8 per 1,000 instead.
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Table 5: Benchmark Results

Benchmark Epidemiological No lockdown Age ext. partial Age ext. general
(1) (2) (3) (4) (5)

Panel A. Statistics assuming vaccine arrives in 1.5 years

Wks to peak infections Young 44 10 9 45 1
Old 44 10 10 44 2

Hrs @ home - avg. first year, Young 17.01 0 6.87 40.86 21.91
diff. w.r.t. no-disease Old 11.55 0 14.47 11.55 4.7

Dead p/ 1,000, first year Young 0.37 1.81 0.98 0.18 0.04
Old 7.39 50.03 16.31 7.39 1.17
All 1.87 12.12 4.26 1.73 0.28

Dead p/ 1,000 (by vaccine arrival) Young 0.5 1.81 1.02 0.26 0.06
Old 9.74 50.03 17.08 9.74 1.74
All 2.48 12.12 4.46 2.29 0.42

Recovered, % (by vaccine arrival) Young 23.13 78.74 44.84 11.88 2.99
Old 10.61 51.44 17.89 10.61 1.9
All 20.45 72.9 39.07 11.61 2.76

GDP 1 year, % change w.r.t. no-disease -12.96 -1.44 -5.77 -33.68 -16.91

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 14.03 0 6.1 37.2 21.02
Old 10.27 0 11.87 10.27 4.66

Dead p/ 1,000 Young 0.4 1.61 0.81 0.21 0.06
Old 7.56 44.44 13.3 7.56 1.54
All 1.93 10.78 3.48 1.78 0.38

GDP, % change w.r.t. no-disease -11.33 -1.78 -5.67 -31.23 -16.66

Note: Vaccine arrival: 1.5 year.

havior and acted to “flatten the curve.” To understand the role of behavioral changes,
we compute an epidemiological version of the model (column 2 in Table 5), which as-
sumes behavior does not adjust at all. That is, people keep on living their lives as if
the disease did not exist. By the arrival of the vaccine, the death toll in the benchmark
is 80% lower than in this epidemiological version of the model (2.48 versus 12.12). The
lack of behavioral change implies a much swifter pandemic: the peak occurs already
in week 10, aligning with the 3-month horizon many epidemiologists predicted at the
onset of the pandemic (Ferguson et al. 2020).

The change in behavior responsible for this marked difference is due to a combi-
nation of voluntary precautions and policy. These factors jointly cause people of both
ages to spend more time at home than they did in the no-disease world (see column
1). While the old spend more time at home even without the disease (since they do
not work), they still cut leisure outside substantially and increase their time at home
by 11.5 weekly hours on average during the first year of the pandemic. The young cut
both time at work and leisure outside, adding 17 extra weekly hours at home. These
changes by both groups reduce the overall number of infected/recovered people by
about 50 percentage points by the time a vaccine becomes available. The total death
rate declines from 12.12 to 2.48 per 1,000 people, but markedly more so among the old.
The economic costs of this lower level of activity is sizeable: GDP for the first year of
the pandemic is reduced by about 12% relative to a no-disease world.
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The behavioral changes observed in the benchmark are partly due to voluntary in-
dividual precautions but also due to the government lockdown. To disentangle the
two reasons, column (3) shows results for a laissez-faire equilibrium without any lock-
down, so that the difference between columns (2) and (3) is entirely due to voluntary
precautions. Without the policy, the behavior of both groups changes markedly. The
young stay less time at home compared to the benchmark, while the old stay more
time at home (comparing columns 1 and 3). Without the lockdown, the disease is
more prevalent, prompting the old to protect themselves more. By the time the vac-
cine arrives, 39% of the population has recovered from the disease, almost twice as
much as in the benchmark. Consequently, more deaths materialize: 4.46 per 1,000
people versus 2.48 in the benchmark. The old in particular experience a death rate
of 17.08 per 1,000. At the same time, the lives saved even without a lockdown are
sizeable. By the time of vaccine arrival, the epidemiological model predicts 12 deaths
per 1,000, the no-lockdown model only 4.5, and the model with voluntary precautions
and lockdown only 2.5. Thus, voluntary precautions averted more deaths than the
government-imposed lockdown.

The young have stronger incentives to leave their house because of work. As a
result, they contribute more to the spread of the disease; and the burden will fall more
heavily on the old. This is a multi-group equivalent of the immunity externality dis-
cussed in Garibaldi, Moen, and Pissarides (2023). To quantify this dynamic external-
ity, we run two counterfactuals. Suppose the preferences of the young feature the
same death and symptoms probabilities as those of the old (keeping the actual tran-
sition rates at their calibrated values). That is, the young, who still need to work for
their income, believe they are subject to the same risks as the old. One counterfactual
runs such scenario in partial equilibrium: we observe the difference in behavior of the
young assuming they cannot affect the aggregate infection rates. The other counter-
factual performs the same experiment in general equilibrium. In partial equilibrium
(column 4), the young become more careful and substantially increase their hours at
home. This lowers the infections among this group and they consequently die in much
lower numbers. In general equilibrium, this extra cautiousness of the young affects the
old in two ways. First, by being more careful, less infections take place. On the other
hand, if the young are more reckless and face more infections, they end up contribut-
ing more to herd immunity and less of the burden falls on the old (Gollier 2020b). In
the experiment with our benchmark calibration (column 5), when the vaccine arrives
for everyone after only 1.5 years, the economy remains far from herd immunity. Thus,
more careful young individuals have a positive effect on the old and the death rate
among the latter group declines. This safer behavior by the young also lowers the ex-
ternality among their own age group. With a less prevalent disease in this experiment,
the young die less and can afford to reduce their hours at home.
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Table 6: Optimal Lockdown

Optimal lockdown Benchmark lockdown
(1) (2)

Panel A.Realized statistics

Avg. tax, first year Young 0.26 0.17
Old 0.29 0.17

Hrs @ home - avg. first year, diff. w.r.t. no-lockdown Young 15.5 10.14
Old -9.29 -2.92

Hrs @ home - avg. first year, diff. w.r.t. no-disease Young 22.37 17.01
Old 5.18 11.55

% Deaths averted, first year (rel. to no-lockdown) Young 98.66 62.5
Old 97.69 54.73
All 97.87 56.13

% Change in GDP rel. to no-lockdown, 1 year -12.19 -7.63

Panel B. Expected statistics (3 year horizon)

Hrs @ home - diff. w.r.t. no-lockdown Young 16.22 7.93
Old -6.53 -1.59

Hrs @ home - diff. w.r.t. no-disease Young 22.32 14.03
Old 5.33 10.27

% Deaths averted, rel. to no-lockdown Young 97.95 50.38
Old 96.73 43.18
All 96.96 44.5

% Change in GDP, rel. to no-lockdown -10.61 -5.55

Panel C. Welfare

CEV rel. to no-lockdown Young 0.36 0.24
Old 16.86 7.42

5 Optimal Lockdown

Throughout the pandemic, several governments around the world implemented lock-
downs. This section investigates the impact of such policies on the dynamics of the
disease and the economy. We solve the problem of a utilitarian planner that maxi-
mizes the population share-weighted discounted utility of the old and the young at
time t = 0. To do this, the planner chooses how strict the confinement must be by
setting τt(a) to alter individual choices. In particular, we allow the planner to choose
time-varying age-specific policies.27 Since the economy has no aggregate shocks and
evolves deterministically in the absence of a vaccine, the planner can perfectly forecast
its path and does not need to condition on any other state variable. One can view this
policy as a time-zero commitment, and individual agents take it into account when
they make their forward-looking choices.

27So τt(j, a, 0) = τt(a) for everyone except those who test positive, for whom τt(i, a, 0) =
max{τ̄i, τt(a)}, where τt(a) is the optimal age-dependent lock-down policy and τ̄i is the calibrated iso-
lation parameter. As always, τt(j, a, 1) = 0 since lockdowns serve no purpose after vaccine arrival.
As discussed in the model section, we do not consider the planning problem where the planner can
determine choices for each infection status, or set taxes separately for each infection status. Compared
to even our best policy, the planner could trivially do better by taxing the “fever” agents and the “in-
fected” agents only, e.g., with a flat 50% tax (with or without imposing a minimum of τ̄i on the infected).
Obviously, assuming that the planner knows the fever status of untested individuals seems unrealistic
and does not help in thinking about actual policy implementations, so we do not pursue this further.
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Figure 5: Optimal Lockdown
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Figure 6: Infections and Testing under the Optimal Lockdown
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Table 6 reports the results for the optimal policy. The optimal lockdown substan-
tially decreases the death toll and averts 97% of the deaths that would occur in a no-
policy equilibrium.28 Under the benchmark lockdown, expected deaths decrease by
only 44.5% instead. Welfare (measured as consumption equivalent variation, CEV)
increases with the optimal policy for both groups, and especially so for the old.

How does the planner achieve such an outcome? The optimal lockdown is much
stricter than the actual policy implemented in the United States during the pandemic.
Average time taxes in the first year are roughly 50% higher at the optimal policy. Ac-
cordingly, the average time spent at home is also substantially higher. To understand
the magnitude of the tax effect, one can do a simple thought experiment. Imagine indi-

28 Such a ”no-Covid” policy that avoids nearly all deaths is not sensitive to our specific choice of
value of a statistical life that underlies parameter b: When we reduced the VSL to 5 million dollars the
laissez-faire equilibrium features slightly increased economic activity and associated deaths, but the
amount of deaths averted under the optimal policy remains virtually unchanged (see Tables B11 and
B12 in the appendix).
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viduals are not yet aware of the disease, but face a time tax. This changes their time at
home, and therefore the number of new infections that a single infected person would
generate. That means it changes R0. In case of a tax of 17% as in the benchmark, this
thought experiment reduces R0 from its normal value of 2 (3) in the summer (winter)
down to 1.31 (1.98) in summer (winter), implying that an infected person still gen-
erates a substantial number of new infections and the disease grows roughly at 31%
(100%) per week.29 Applying the same thought experiment to the average optimal tax
of 26% and 29% instead, reduces the associated R0 further to 1 (1.51) in summer (win-
ter), so that the disease would be stable in the summer and only expand in the winter.
Once individuals are aware of Covid, they obviously aim to avoid it, and testing and
associated quarantines also reduce transmissions, implying that with such taxes in-
fections decline during the summer at that tax rate. This thought experiment gives
only a rough idea of the impact of the lockdown, though, since lockdown taxes are not
constant over the first year.

Panel (a) in Figure 5 shows time path of taxes (solid lines), and illustrates that the
optimal tax is substantially higher than the tax associated with the actual lockdown
(dashed line). Optimal taxes start high and quickly fall to a level where they remain
roughly stable over the first year. This strict initial response curbs infections drasti-
cally over the first weeks of the disease (see Panel a of Figure 6). This more controlled
disease allows the planner to subsequently relax the restrictions, and for the remain-
der of the first year infections slowly decline further in the summer and increase in
the winter. The planner is thus “fighting” this seasonality and it takes two winters
(until the beginning of 2022) to get the disease under virtually total control. At this
point, the lockdown can be relaxed substantially, and taxes fall sharply. How much
the planner can ease restrictions is influenced by the availability of tests over time.
With the ramp-up in the supply of testing and a low number of cases, the probability
of testing increases to almost 1 from January 2022 onward (Panel b in Figure 6). Hence,
it is possible to identify almost all Covid-infected individuals and isolate them. With
such targeted isolation, there is less need for blanket lockdowns and the time tax rates
decrease to almost zero. While testing capacity affects the levels of taxes, it does not
substantially affect the timing when restrictions can be eased. We will see in Section
7 that even in the absence of testing it takes the planner two seasons to control the
disease and to substantially reduce taxes, although the final decline is more gradual.

Now consider the two age groups separately. Start with the young. Under the
optimal policy, the young spend less time outside compared with the no-lockdown
(laissez-faire) equilibrium. Part of the extra time at home is spent in productive tele-
work while part of it is devoted to leisure. With less time outside, the young cut both

29Most transmissions happen when individuals are either in state i or f , which in our calibration lasts
one week, which closely links R0 to the weekly rise in infections.
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leisure outside and the more productive time at work outside. This reallocation of time
causes GDP to fall. In the first year, output is 12% lower compared to the laissez-faire
equilibrium (versus 7.6% lower under the benchmark lockdown). Another way to
gauge the strictness of the optimal lockdown is to ask what a single individual would
like to do differently under such a policy. This exercise tells us how constrained an
individual “feels.” The answer is: very. The blue dotted line in Panel (b) of Figure 5
depicts the optimal behavior of an individual young person, holding the behavior of
everyone else constant at the optimal policy. The figure shows that the young would
like to essentially behave as in the no-Covid world. Hence, relative to what they would
like to do, the optimal policy restrictions feel very strict. At the optimal policy, Covid
is almost eradicated. Hence, the probability of infection is very low and people are
not concerned. However, if no policy was implemented and they had to self-protect
instead (the dashed line) they would be a lot more cautious simply because the risks
would be higher. Yet, far from cautious enough.

The policy prescription for the old is markedly different. The planner allows the
old to spend more time outside compared to the benchmark (see Table 6). The lower
disease prevalence enables an environment safe enough to allow more social interac-
tions for the old. Even though the old do not work, they value leisure, which is taken
into account by the planner. This is in contrast with frameworks that only take into
account the output produced by different age groups (as in Acemoglu et al. (2021) for
example). The old can go out more than in the benchmark, but also more than they
would during the first year in laissez-faire without any lockdown (see the dashed and
solid line in Panel b in Figure 5). The risk in the laissez-faire environment induces them
to voluntarily refrain from going out despite the high costs in terms of lost utility from
such interactions. During optimal lockdown the planner needs to place restrictions on
the old, though, as otherwise they would free-ride too much on the low infection risk.
If an old individual were allowed to choose without constraints, they would spend
even more time outside (see the partial equilibrium choices, represented by dots in
Panel b of Figure 5). Still, the social optimum (solid line) and the privately optimal
choice (dotted line) are closer together for the old than the young because the old
spend less time outside anyhow and are intrinsically more responsive to the disease.

In summary, the optimal lockdown chosen by the social planner is stricter than
what was actually implemented in the US. This stricter lockdown averts more deaths
for both age groups. Even though the optimal restrictions are larger for both age
groups, effectively they only constrain the young who substantially cut back on out-
side interactions. The optimal restrictions actually allow substantially more time out-
side for the old: despite higher restrictions, the threat of infection is lower and allows
for more interactions. The planner desires this asymmetry because of endogenous be-
havior: in the laissez-faire equilibrium, the young do not sufficiently take account of
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the disease while the old bear too much of the burden through being cautious. How
strict the planner is depends on the time it takes to get the disease sufficiently under
control, which takes two seasons. After that point, the low prevalence coupled with a
high testing capacity enables the discovery of most cases and allows the planner to re-
vert to very low restrictions. Consequently, to arrive at the optimal approach to tackle
the pandemic, it is key to jointly model behavior, testing and policies.

6 Optimal Policy for Other Pandemics

We now examine how other diseases impact optimal policy. We start with an analysis
of the Spanish Flu from 1918 and find that optimal restrictions would have been milder
at the time, even though it was an overall more deadly disease. A decomposition of
the two disease scenarios shows why. We then explore implications for possible future
pandemics that may feature diseases with different characteristics.

6.1 Spanish Flu Compared to Covid

The Spanish flu was another deadly pandemic that hit the world about 100 years be-
fore Covid-19. Millions of people also died (Barro, Ursúa, and Weng 2022; Barry 2005).
While some lockdown measures were implemented at the time (Markel et al. 2007),
those were much shorter and milder compared to the severe lockdowns implemented
in many countries in response to the coronavirus pandemic in 2020. An obvious ques-
tion to ask is whether a more severe lockdown would have been better at the time.
Or whether the disease itself, or other conditions, were so different from 2020 that a
milder lockdown was indeed optimal. To answer this question, we now calibrate our
model to the Spanish flu episode and solve for the optimal policy.

Table 7 summarizes how the Spanish flu pandemic differs from the Covid world.
First, the population was much younger in the second decade of the 20th century: only
7.7% of the population was above 65 years old, versus 21.4% in 2020. The population
was poorer as well, with an average income of 16.7% of that in 2020. Nowadays tele-
work is possible due to a variety of technological advances. We thus assume that work
from home was not possible in the 1910s. Each age group also faced a lower life ex-
pectancy, a few years lower than in 2020. While we assume an expected arrival rate of
1.5 years during the Covid pandemic, this time lag was much longer for the Spanish
flu. We assume a 10 year expected arrival time for a vaccine/cure. Several modern
tests (PCR and antigen) were available for Covid but not for the Spanish flu. We also
assume the same seasonality pattern for both diseases and a slightly less infectious
disease for the Spanish flu. The age gradient for the case fatality rate (CFR) for the
Spanish flu was very different from Covid: The young were substantially more likely
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Table 7: Covid vs. the Spanish Flu

Characteristic Covid Spanish flu

Fraction of old in population 0.214 0.077
Income relative to 2020 1 0.167
Is telework possible? yes no
Remaining life expectancy, young 38.9 32.4
Remaining life expectancy, old 12.9 8.7
Expected time until vaccine arrival, years 1.5 10
Are tests available? yes no
R0, winter 3.0 2.7
Seasonality yes yes
Case fatality rate, young (%) 0.23 1.9
Case fatality rate, old (%) 9.00 4.01

Note: Appendix B provides details for the Spanish flu calibration.

to die of the Spanish flu, by a factor of almost 10. The old, on the other hand, faced a
lower CFR. This lower fatality for the old is partly due to a younger population among
the old in the 1910s. Appendix C provides more details for the calibrated parameters
for the Spanish flu world.

We start by comparing the laissez-faire no-policy equilibria for the two pandemics
in Table 8. To be clear, we compare equilibria taking the voluntary protective behaviors
into account, which is quite different from comparing the two diseases through the
lens of an epidemiological model without endogenous choices. The Spanish flu was
a more deadly disease. Without any lockdown, almost twice as many people would
have died during the Spanish flu than one hundred years later during Covid (8.71
versus 4.46 deaths per 1,000 people). During the first year of the pandemics, GDP
losses would have been more than three times as high for the Spanish flu. The higher
GDP losses are due to both the higher death rates, especially among the young, and
the inability to telework at the time. Even though the overall death rates are much
higher for the Spanish flu, this is not true when zooming in on the old specifically,
who die in much larger numbers during Covid. This difference in the mortality age
gradient drives differences in voluntary precautions in the two worlds. Without any
lockdown policies, the young increase their time at home during the Spanish flu by 11
hours on average during the first year, compared to only 7 during Covid. The opposite
is true for the old, who increase their time at home by only 4 hours during the Spanish
flu, but 14 hours during Covid.

The Spanish flu and Covid differ along many dimensions (Table 7). Columns (3)
through (9) of Table 8 each vary one dimension at a time, keeping all others at the
values of the Covid calibration. For example, column (3) features an environment and
disease exactly like in the Covid world, except that people are as poor as in the 1910s.

30



An important thing to learn from Table 8 is that it is not the different features of the
virus that causes mortality to be higher in the Spanish flu laissez-faire equilibrium. On
the contrary, column (7) shows that just based on the deadliness of the virus, mortality
would have been lower (only 2.96 per 1,000 people compared to 4.46 for Covid). Rather
a combination of other factors are responsible. First, teleworking was not possible at
the time (Column 4), lowering the incentive for the young to engage in voluntary
cautious behavior. This leads to more infections and more deaths. In fact, the disease
is so swift in such a case that, during the very early peak, the old self protect more.
But, given this swiftness, the disease is soon over and the old can return to leaving the
house. These changes actually aggregate to the old spending less time at home during
the first year of this counterfactual pandemic. Second, the inability to test people also
contributes to the higher death rates (Column 8). Finally, both income (Column 3)
and life-expectancy (Column 6) were lower one hundred years ago, leading people to
value life less, and hence being less cautious voluntarily. The later vaccine arrival, on
the other hand, plays a small role (Column 9). Together, these various factors lead to
a laissez-faire death rate for the Spanish flu that is almost twice as high compared to
Covid.

The different mortality age gradient has implications for policy. Table 9 shows that
the optimal tax rate is higher for the Spanish flu, both for the old and the young. Yet,
looking at tax rates alone is not enough. These taxes change the marginal condition
between staying at home and going outside. However, other factors also matter for
this decision; e.g., income levels or the ability to telework. More informative about
the strictness of the policy is the induced change in actual hours at home. The addi-
tional hours at home (relative to a no-policy world) are 15 hours for the young under
Covid compared to only 12 hours under the Spanish flu. So, in terms of restrictions
for the young, the optimal lockdown for Covid is stricter than that for the Spanish flu.
The same is not true for the old, who actually spend 9 more hours outside under the
optimal Covid lockdown, compared to only half an hour more outside under that of
the Spanish flu. Both policies are quite successful in averting deaths (98% for Covid
and 96% for the Spanish flu) at the cost of a reduced GDP (12% and 26% respectively).
The young disproportionately suffer from the lockdowns (since it reduces their ability
to work) and the old gain disproportionately from the reduced mortality, especially
under Covid. Hence, the welfare gains are distributed unevenly. Welfare measured
in consumption equivalence units increases by 17% for the old and only 0.36% for the
young under Covid. Since mortality rates are more similar across age groups dur-
ing the Spanish flu, welfare gains are distributed more equally: 4.3% for the young
compared to 6% for the old.
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Table 8: Decomposition: Laissez-faire Equilibrium (No lockdowns)

Spanish Lower Different Developing
Covid flu 1910s income No telework Fewer old life expect. virus No testing Later vaccine country

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. Realized statistics

Wks to peak infections Young 10 10 9 10 10 10 43 10 9 10
Old 10 11 10 11 10 10 44 11 10 10

Hrs @ home - avg. first year, Young 6.87 10.81 6.1 2.4 6.78 6.47 15.7 7.42 6.62 1.79
\hspace1cmdiff. w.r.t. no-disease Old 14.47 4.31 7.39 10.21 14.13 13.14 4.91 15.32 14.31 4.03
Dead p/ 1,000, first year Young 0.98 7.21 1.09 1.34 0.99 1 1.81 1.15 0.98 1.44

Old 16.31 7.34 17.44 20.77 17.27 17.1 2.41 19.74 16.41 23.14
All 4.26 7.22 4.59 5.5 2.24 4.44 1.94 5.13 4.29 3.11

Dead p/ 1,000 (by vaccine arrival) Young 1.02 8.69 1.12 1.34 1.03 1.04 2.33 1.23 1.03 1.44
Old 17.08 8.91 17.88 20.91 17.89 17.76 3.05 21.16 17.25 23.16
All 4.46 8.71 4.71 5.53 2.33 4.61 2.49 5.49 4.5 3.11

Recovered, % (by vaccine arrival) Young 44.84 45.78 49.19 58.71 45.04 45.58 12.37 53.88 45.21 62.91
Old 17.89 23.15 18.64 21.61 18.7 18.87 7.79 22.23 18.05 24.1
All 39.07 44.04 42.65 50.77 43.01 39.87 11.39 47.1 39.4 59.92

GDP 1 year, % change w.r.t. no-disease -5.77 -20.44 -5.32 -5.54 -5.73 -5.75 -11.92 -6.16 -5.6 -4.75

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 6.1 5.43 5.73 2.58 6.09 5.83 13.69 6.33 3.09 2
Old 11.87 2.27 6.21 9.89 11.56 10.84 4.3 12.61 6.75 4.39

Dead p/ 1,000 Young 0.81 8.17 0.92 1.17 0.82 0.83 1.77 0.96 0.99 1.27
Old 13.3 8.37 14.33 17.82 14.05 13.94 2.31 16.28 16.58 20.16
All 3.48 8.19 3.79 4.73 1.84 3.63 1.88 4.24 4.33 2.72

GDP, % change w.r.t. no-disease -5.67 -13.74 -5.48 -6.21 -5.68 -5.81 -10.88 -5.84 -5.32 -5.53

Note: Expected time for vaccine arrival is 1.5 year for all columns, except “Spanish flu” and “Later vaccine”, which is 10 years. Column (10) provides the results
for a synthetic developing country with the same income, life expectancy and age composition as the US in the 1910s; same expected vaccine arrival rate as the
US in 2020; no teleworking and no testing.
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Table 9: Decomposition: Optimal Policy

Spanish 1910s Lower Different Later Developing
Covid flu income No telework Fewer old life expect. virus No testing vaccine country

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. Realized statistics

Avg. tax, first year Young 0.26 0.57 0.48 0.6 0.24 0.25 0.24 0.3 0.26 0.29
Old 0.29 0.43 0.19 0.55 0.28 0.29 0.27 0.31 0.3 0.19

Hrs @ home - avg. first year, diff. w.r.t. no-lockdown Young 15.5 12.11 33.6 21.96 13.73 15.49 4.93 18.36 15.84 9.06
Old -9.29 -0.54 -5.92 0.4 -8.75 -8.02 -0.52 -9.54 -9.12 1.94

Hrs @ home - avg. first year, diff. w.r.t. no-disease Young 22.37 22.92 39.7 24.36 20.51 21.96 20.63 25.78 22.46 10.85
Old 5.18 3.77 1.47 10.61 5.38 5.13 4.39 5.78 5.19 5.97

% Deaths averted, first year (rel. to no-lockdown) Young 98.66 96.18 99.66 96.98 97.8 98.46 95.1 98.52 98.87 26.41
Old 97.69 96.06 99.49 95.45 96.44 97.44 94.64 97.45 98.02 25.09
All 97.87 96.17 99.53 95.74 97 97.62 94.98 97.64 98.18 25.65

% Change in GDP rel. to no-lockdown, 1 year -12.19 -25.73 -24.33 -39.93 -10.52 -12.05 -4.36 -14.97 -12.46 -16.28

Panel B. Expected statistics (3 year horizon)

Hrs @ home - diff. w.r.t. no-lockdown Young 16.22 9.91 29.56 21.38 14.26 16.05 5.99 17.82 12.51 7.2
Old -6.53 -0.18 -4.6 1.01 -6.17 -5.63 0.25 -7.07 -3.02 0.96

Hrs @ home - diff. w.r.t. no-disease Young 22.32 15.33 35.29 23.95 20.35 21.88 19.68 24.15 15.6 9.2
Old 5.33 2.1 1.61 10.89 5.38 5.21 4.55 5.54 3.74 5.35

% Deaths averted, rel. to no-lockdown Young 97.95 95.94 99.25 80.32 96.62 97.62 95.07 98.12 97.73 27.97
Old 96.73 95.86 99.05 79.92 95 96.41 94.59 96.94 96.55 26.69
All 96.96 95.93 99.09 80 95.67 96.62 94.95 97.15 96.76 27.24

% Change in GDP, rel. to no-lockdown -10.61 -17.85 -16.61 -38.29 -9.28 -10.4 -2.96 -12.64 -8.65 -11.33

Panel C. Welfare

CEV rel. to no-lockdown Young 0.36 4.29 2.34 -1.11 0.47 0.37 1.55 0.38 0.3 0.04
Old 16.86 6.05 12.37 17.6 17.41 17.7 2.18 21.08 21.43 4.29

Note: Expected time for vaccine arrival is 1.5 year for all columns, except “Spanish flu” and “Later vaccine”, which is 10 years. Column (10) provides the results
for a synthetic developing country with the same income, life expectancy and age composition as the US in the 1910s; same expected vaccine arrival rate as the
US in 2020; no teleworking and no testing.
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It may seem puzzling that even though mortality is much higher in the Spanish
flu laissez-faire equilibrium compared to Covid, the optimal policy is laxer (smaller
increase in hours at home, especially for the young). So what causes the optimal lock-
down to be laxer for the young during the Spanish flu? Consider the decomposition
in Table 9. The fact that there were fewer old people in 1910s plays a role (Column
5). The second factor is that mortality for the young was higher and hence voluntary
precautions are higher, which requires less policy intervention. This can be seen in
column (7) in Table 9 which shows the optimal policy for a Spanish flu virus in today’s
world. From Table 8 we know that equilibrium death rates are high in this world. Yet,
optimal policy, measured by additional government-mandated hours at home for the
young, is quite lax. The reason is that infection and mortality probabilities are similar
across age groups so that the cross-age externality is minimized. Put differently, the
reason for a strict policy is that individually optimal and socially optimal behavior are
quite different. This was precisely the case during Covid with young people spreading
the disease and old people dying. With a different virus that affects people across the
age distribution similarly, the discrepancy between socially and individually optimal
behavior is much smaller.

Several forces in the decomposition in Table 9 point in the opposite direction (i.e. to
a stricter lockdown): the fact that income was lower and telework did not exist (Columns
3 and 4), that testing was not available (Column 8), and that it would take much longer
to develop a vaccine (column 9). That lower income and no ability to telework lead
to a stricter lockdown may seem puzzling. The reason is that these features lead peo-
ple to engage in less voluntary protective behavior and hence a stricter government
mandated lockdown is needed.

Policy is only much stricter during Covid if measured as the gap to what people
would be doing in the no-policy world. Another perspective is to compare behavior in
the optimal policy world with what people were doing before the arrival of the disease.
By this metric, the optimal policies are actually quite similar for the two pandemics.
Relative to a no-disease world, time at home increases by 22.4 hours for the young and
5.2 for the old under Covid, compared to 22.9 and 3.8 under the Spanish flu, which
is not vastly different. This is also visible when we apply the thought experiment
from Section 5. Consider individuals not yet aware of the Spanish flu and adjust their
behavior according to the average first year taxes to recalculate R0. This reduces R0

from its normal level of 1.8 (2.7) down to 0.9 (1.36) in the summer (winter). Thus, even
though tax rates are different, their impact onR0 is quite similar in the two pandemics.

Finally, across the decompositions in columns (1)-(9) in Table 9 a strategy that sup-
presses nearly all deaths remains optimal. Several features contribute to this, includ-
ing the ability to telework and the build-up of testing capacity. The latter eventually
enables the detection of most cases if the planner keeps infection numbers low, which
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then allows the planner to keep the disease under control at relatively low costs. We
will see in the next section scenarios of different conditions or different diseases where
suppression is no longer optimal.

6.2 Covid in Developing Countries

The comparison between the Spanish flu and Covid-19 yields insights relevant for
developing countries today. Some of the differences across time in the US are also
present between the US and other countries today. For instance, in the late 1910s, the
US income was about 17% of the 2020 level. This is similar to Algeria, Ecuador or
Vietnam today. The life expectancy in the US right before the Spanish flu pandemic
was 51 years. This statistic in 2020 was below 55 years for countries like Somalia and
Nigeria. We can thus use our model to explore the effects of the Covid pandemic
for developing countries. We construct a synthetic developing country that has the
same level of income, life expectancy and age distribution as the US in the late 1910s.
Further, we assume telework and testing are not available, while expected vaccine
arrival is the same as in the US.

The laissez-faire equilibrium for our synthetic developing country is reported in
Column (10) in Table 8. Both the young and the old die in larger numbers. However,
given that there are more young people and this group has a lower case fatality rate,
the overall death rate is much lower. Despite the higher numbers of infections and
deaths, both groups spend less time at home compared to the US. This increased level
of activity translates into a milder fall in GDP.

The prescription for the optimal policy is also quite different from the US (see Col-
umn 10 in Table 9). The lockdown is much milder in the developing country: The
young spend substantially less additional time at home (6.5 fewer hours) compared to
the US (Column 1). This increased activity implies a lot more deaths. Compared to the
optimal policy in the US in which the planner essentially follows a no-Covid strategy,
only around 25% of deaths are averted in the developing country. Tax rates for the
old are much lower than for the young, which is natural because the old are much
more afraid of the disease and therefore cut behavior even without the taxes. This
effect is visible because optimal policy retains a significant risk of getting infected.30

Since there is no telework, despite the increased activity by the young, GDP still falls
by more than in the US. Finally, the welfare gains from the optimal policy are much
smaller compared to the US.

30For the US calibration, this is not visible in the taxes directly since optimal policy contains nearly
no risk as infections remain very low. The different motives are visible in our usual way of comparing
optimal policy with laissez-faire as the old already engage in a lot of protective behavior without being
taxed in the laissez-faire where risk does remain present.
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6.3 Future Pandemics

Are there any general lessons to be learned for future pandemics? Several viruses exist
that have the potential to cause a pandemic such as Ebola, Sars-Cov1, MERS, and even
Tuberculosis.31 These viruses are all quite different from each other. For example Ebola
is a much more deadly disease but it is less infectious (Althaus 2014). MERS is not as
deadly as Ebola but still has a much higher case fatality rate than Covid (Breban, Riou,
and Fontanet 2013) and arguably is also more infectious (Choi et al. 2018). Tuberculosis
also appears less infectious at least in developed country settings (Ma et al. 2018) and
with a lower case fatality rate at least for the old (Straetemans et al. 2011). The next
pandemic might be totally different yet. We now use our setup to draw conclusions
for possible future pandemics.

Infectious diseases differ essentially along three dimensions: how contagious they
are, how deadly they are, and whether (and how) they differ by age. We now use
our model to study diseases with different levels of infectiousness (R0) and case fatal-
ity rates (CFR). Table 10 displays laissez-faire mortality and the percentage of deaths
averted for various disease scenarios. Covid is in the center of the tables. Generally
speaking, the higher the R0 and the higher the CFR, the more people will die in a
laissez-faire no-lockdown equilibrium. The higher mortality is, the larger is the need
for policy intervention. However, whether mortality is high because of a high CFR or a
high R0 makes a difference. The higher the CFR, the larger are voluntary precautions,
and hence the need for additional lockdowns is lower than for a more infectious dis-
ease (see Table 11). The reason is that the size of the externality increases with R0. At
the opposite extreme, for a highly lethal disease without any spill-overs, i.e., a disease
where the risk can be minimized through own precautions alone, no policy interven-
tion would be needed at all. Additional home hours imposed by the lockdown on the
young are highest in the combination where CFR is only half that of Covid but R0 is
50% higher. Yet the laissez-faire mortality rate is roughly similar to Covid, in fact even
a bit lower (3.97 vs. 4.26). The reason is that voluntary adjustments are more sizeable,
and hence there is less need for government intervention.

Many optimal policies avert almost all deaths (96-99%), but this is not necessarily
always the case (see Part B. in Table 10). Sometimes the cost of additional restrictions
is simply too high. Or the benefit in terms of additional lives saved is too small. This
is the case when laissez-faire mortality is low due to a low R0. In these cases, the
ratio of the additional home hours through policy relative to the voluntary extra home
hours is particularly high. The marginal benefit from an even stricter policy is too low
relative to the costs it would impose.

31We do not consider viruses here that are largely sexually transmitted, such as monkeypox and HIV,
as the mechanisms and possible prevention strategies are quite different.
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Table 10: Mortality, synthetic diseases

Part A. Mortality (1st year) Part B. Deaths averted (1st year)
all ages, laissez-faire all ages, optimal lockdown

CFR = 0.5 x CFR = 1.0 x CFR = 1.5 x CFR = 0.5 x CFR = 1.0 x CFR = 1.5 x
Covid CFR Covid CFR Covid CFR Covid CFR Covid CFR Covid CFR

R0 = 0.5 x Covid R0 0.14 0.24 0.32 66.84 68.32 66.96
R0 = 1.0 x Covid R0 2.59 4.26 5.25 97.45 97.87 97.85
R0 = 1.5 x Covid R0 3.97 7.03 9.12 98.34 98.44 96.83

Note: Part A. shows the mortality for all age groups during the first year of the pandemic for the laissez-
faire equilibrium. Part B. shows the percentage of deaths averted during the first year under the optimal
lockdown relative to the laissez-faire equilibrium. The different rows represent diseases with different
levels of infectiousness (R0), while the columns vary the case fatality rate (CFR).

Moreover, disease details matter for who gains most from the optimal policy. Wel-
fare increases under Covid are very small for the young and large for the old. Thus,
perhaps not surprisingly there was much political pressure from the working age pop-
ulation to loosen restrictions early. Table 12 shows the welfare increase of the optimal
policy for the young and the old, respectively, for various combinations of parame-
ters. If CFR was only half of Covid but the infectiousness 1.5 times as high (i.e., the
case discussed earlier where the externality is particularly relevant), then in fact the
young lose from the optimal policy compared to laissez-faire. These results point to
interesting political economy implications of infectious diseases.32

Table 11: Home hours, synthetic diseases

Part A. Increase in home hours (1st year) Part B. Increase in home hours (1st year)
young, laissez-faire young, optimal lockdown

CFR = 0.5 x CFR = 1.0 x CFR = 1.5 x CFR = 0.5 x CFR = 1.0 x CFR = 1.5 x
Covid CFR Covid CFR Covid CFR Covid CFR Covid CFR Covid CFR

R0 = 0.5 x Covid R0 0.21 0.37 0.5 3.63 5.77 7.19
R0 = 1.0 x Covid R0 3.67 6.87 9.2 17.92 15.5 13.83
R0 = 1.5 x Covid R0 4.11 8.51 12.23 29.11 23.45 21.71

Note: Part A. shows the average increase in home hours for the young during the first year in a no-
lockdown laissez-faire equilibrium relative to a no-disease world. Part B. shows the average increase in
home hours for the young during the first year under the optimal lockdown relative to the laissez-faire
equilibrium. The different rows represent diseases with different levels of infectiousness (R0), while the
columns vary the case fatality rate (CFR).

The exercises above systematically vary R0 and the CFR while holding the age gra-
dient constant. In contrast, tables 13 and 14 hold both the R0 and the aggregate CFR
fixed, but change the age gradient. To interpret them, consider a researcher or policy-
maker at the onset of a potential pandemic who understands the two key aggregate
epidemiological parameters: the infectiousness of the disease (R0) and the population-

32The full results of the experiments in Tables 10-12 are available in Appendix Tables B2 and B3.
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Table 12: Welfare increase, synthetic diseases

Young Old

CFR = 0.5 x CFR = 1.0 x CFR = 1.5 x CFR = 0.5 x CFR = 1.0 x CFR = 1.5 x
Covid CFR Covid CFR Covid CFR Covid CFR Covid CFR Covid CFR

R0 = 0.5 x Covid R0 0.00 -0.01 -0.01 0.32 0.57 0.76
R0 = 1.0 x Covid R0 0.04 0.36 0.6 10.05 16.86 21.67
R0 = 1.5 x Covid R0 -0.61 0.01 0.48 16.62 31.16 42.7

Note: Welfare is measured as Consumption Equivalent Variation (CEV) between the optimal lockdown
and the laissez-faire. The different rows represent diseases with different levels of infectiousness (R0),
while the columns vary the case fatality rate (CFR).

weighted aggregate CFR.33 Is that enough, or does it matter how this aggregate CFR
is divided between the old and the young? That is, how important is the age gradient
itself?

Covid has a strong age gradient where the CFR of the old is 39 times higher than
that of the young. Consider the reverse where the CFR of the young is 39 times higher
than that of the old, holding R0 and aggregate population-weighted CFR constant.
Column 1 in Table 13 shows the laissez-faire equilibrium for this case. The disease
progresses more slowly, reaching its first peak four times later. This slower pace is
driven by the behavior of the young who stay nearly 15 more hours per week at home
compared to regular Covid. This roughly halves the number of deaths. This happens
even though the old increase their time outside by nearly 15 hours and take essentially
no precautions. Their mass is too small to offset the change in behavior of the young.
Since only the young work, this lower death toll comes at a nearly threefold cost in
lost GDP. This arises not only in the extreme case where the young die 39 times more
than the old, but also when the young die twice as often (column 2), equally as often
(column 3), or half as often (column 4).34 As deaths shift towards the old, the young
go out more and the old less, but with only minor effects relative to the other extreme
(Covid) where the young die 39 times less (last column). The reason why columns 1-4
look so similar for the young is that all these scenarios hold the average population-
weighted CFR constant. Since the young are a very large group, their own CFR does
not change much except when the burden of the disease massively shifts to the old, as
in standard Covid. In standard Covid, the CFR of the young is 0.23%, while it remains
at 2.66, 2.36, 2.11 and 1.73 over columns 1-4. So going from the case where the young

33Here we hold the population-weighted CFR constant. Alternatively, one could think of a researcher
who sees a given average CFR of infected agents at the beginning of the pandemic but might face
different age gradients. To model this would require us to hold the time-outside-weighted average CFR
constant, where time outside refers to the no-Covid time outside. Replicating columns 1-4 in Tables (13)
and (14) with the alternative notion of constant time-outside-weighted average CFR has quantitatively
small effects and does not alter the qualitative points we discuss (see Tables B6 and B7).

34Column 13 closely resembles the ”different disease” counterfactual for the Spanish flu in the previ-
ous section (Table 8, column 7). The Spanish flu had roughly twice the CFR of the old compared to the
young with essentially unchanged population-weighted CFR, and only a mildly different R0.
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die twice as much as the old to the case where they die 39 times as much as the old
does not change the young’s CFR much, while it substantially drops the CFR of the
old, but they are too small a group to substantially affect the disease dynamics.

Table 13: Different age gradient: Laissez-faire Equilibrium

CFR CFR CFR CFR CFR
old/yng old/yng old/yng old/yng old/yng

1/39 1/2 1/1 2/1 39/1
(1) (2) (3) (4) (Covid)

Panel A. Realized statistics

Wks to peak infections Young 44 44 44 43 10
Old 43 43 43 43 10

Hrs @ home - avg. first year, Young 22.35 21.5 20.73 19.47 6.87
diff. w.r.t. no-disease Old 0.12 1.93 3.47 5.77 14.47

Dead p/ 1,000, first year Young 2.29 2.24 2.19 2.1 0.98
Old 0.05 0.9 1.67 2.93 16.31
All 1.81 1.95 2.08 2.28 4.26

Dead p/ 1,000 (by vaccine arrival) Young 3.2 3.1 3.01 2.84 1.02
Old 0.07 1.19 2.19 3.82 17.08
All 2.53 2.69 2.83 3.05 4.46

Recovered, % (by vaccine arrival) Young 12.23 13.41 14.6 16.8 44.84
Old 10.41 10.6 10.83 11.29 17.89
All 11.84 12.81 13.8 15.62 39.07

GDP 1 year, % change w.r.t. no-disease -17.48 -16.75 -16.11 -15.07 -5.77

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 19.57 18.71 17.93 16.6 6.1
Old 0.1 1.66 2.99 4.95 11.87

Dead p/ 1,000 Young 2.58 2.47 2.38 2.19 0.81
Old 0.05 0.92 1.68 2.88 13.3
All 2.04 2.14 2.23 2.34 3.48

GDP, % change w.r.t. no-disease -15.59 -14.9 -14.28 -13.25 -5.67

Note: The different columns change the age gradient of the case fatality rate (CFR) while keeping the
population-weighted average CFR constant and equal to that of Covid.

The age gradient also matters substantially for the optimal policy, as reported in
Table 14. When the odds of dying between age groups are reversed relative to Covid
holding average CFR constant (column 1), the GDP costs of the optimal policy relative
to no-lockdown are smaller. The reason is that the young are already doing a lot of pre-
cautions voluntarily in the laissez-faire equilibrium without lockdowns. The planner
therefore has to restrict them relatively less. The old now have to be constrained much
more and no longer spend more hours outside relative to laissez-faire, but fewer. The
effects on the young remain similar, though slightly less strong, in columns 2-4 where
the CFR ratio between the age groups is less severe, for the same reasons described
in the laissez-faire equilibrium. For the old, time outside relative to no-lockdown in-
creases as their chances of dying increase (going from column 1 to column 4), and
they enjoy more time outside than under no-lockdown when they die twice as often
as the young (column 4). Interestingly, when roles are reversed and the young die
twice as often as the old (column 2) the young do not get extra time outside relative
to no-lockdown. This is driven by the difference in overall time outside: the old al-
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Table 14: Different age gradient: Optimal Policy

CFR CFR CFR CFR CFR
old/yng old/yng old/yng old/yng old/yng

1/39 1/2 1/1 2/1 39/1
(1) (2) (3) (4) (Covid)

Panel A. Realized statistics

Avg. tax, first year Young 0.3 0.3 0.3 0.3 0.26
Old 0.31 0.33 0.3 0.31 0.29

Hrs @ home - avg. first year, diff. w.r.t. no-lockdown Young 5.07 5.24 6.03 7.29 15.5
Old 4.79 3.42 1.5 -0.36 -9.29

Hrs @ home - avg. first year, diff. w.r.t. no-disease Young 27.42 26.74 26.76 26.76 22.37
Old 4.91 5.35 4.97 5.4 5.18

% Deaths averted, first year (rel. to no-lockdown) Young 92.14 93.3 92.99 93.18 98.66
Old 92.71 93.46 92.76 92.37 97.69
All 92.14 93.31 92.95 92.96 97.87

% Change in GDP rel. to no-lockdown, 1 year -5.13 -5.24 -5.96 -7.11 -12.19

Panel B. Expected statistics (3 year horizon)

Hrs @ home - diff. w.r.t. no-lockdown Young 6.1 6.74 6.76 7.64 16.22
Old 4.86 3.78 2.05 -0.13 -6.53

Hrs @ home - diff. w.r.t. no-disease Young 25.66 25.45 24.69 24.24 22.32
Old 4.96 5.45 5.04 4.82 5.33

% Deaths averted, rel. to no-lockdown Young 92.79 93.36 93.11 93.2 97.95
Old 93.09 93.46 92.86 92.48 96.73
All 92.79 93.37 93.07 93.01 96.96

% Change in GDP, rel. to no-lockdown -3.69 -4.21 -4.19 -4.86 -10.61

Panel C. Welfare

CEV rel. to no-lockdown Young 2.25 2.15 2.05 1.85 0.36
Old -0.13 0.64 1.44 2.71 16.86

Note: The different columns change the age gradient of the case fatality rate (CFR) while keeping the
population-weighted average CFR constant and equal to that of Covid.

ready spend less time outside and therefore their externality on others is lower. So the
overall GDP and welfare effects that the planner achieves relative to no policy is sub-
stantially affected by the age gradient. This also materializes in the welfare numbers.
While under Covid the optimal policy delivers large welfare gains for the old and neg-
ligible welfare gains for the young, this is reversed when the odds of dying are flipped
as this reverses who enacts externalities on whom. In fact, the optimal policy in col-
umn (1) comes with a welfare loss for the old because they have to stay at home so
much more without any noticeable mortality gains for themselves. Since policy in all
scenarios brings prevalence to very low levels (i.e., constitute “no-disease” policies),
deaths remain relatively low.35

35Because all policies are essentially no-disease scenarios, the time tax is not much affected by the age-
gradient, because there is no actual threat of the disease under the optimal policy and the externalities
from one agent onto the others depend on R0 and the average CFR in this case. This is very different
if substantial Covid-risk remains in the optimal policy as the planner would only need to add taxes to
correct the parts that are not internalized by the agents’ own interest for self-protection. For example,
in the case of the synthetic developing country introduced in column 11 in Table 9 a similar exercise
reveals that taxes for the old increase by roughly ten percentage points as their infection risk drops.
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6.4 Summary of Lessons Learned

Four general lessons follow from the analyses above. First, lockdowns should be strict
when R0 is high, and less so when only the CFR is high. Second, the age gradient
matters. When the CFR is high for the young (a large and active group), then less ad-
ditional restrictions are needed because more voluntary precautions are taken. Third,
the optimal lockdown depends on economic conditions. If the size of the old popu-
lation is small, life expectancy is low, or teleworking is easy, then the optimal policy
is less restrictive. Finally, the optimal policy does not always avoid all deaths and the
welfare benefits from the optimal policy can be very unevenly distributed across the
two age groups.

7 The Importance of Testing

Testing is a crucial tool in the fight against Covid-19. Several governments have em-
ployed extensive testing to identify and isolate cases swiftly. Can testing alone stop
the pandemic? How does testing capacity affect the optimal lockdown? And, given a
specific capacity, how should testing be allocated between the young and the old?

Testing has bite in our model even though uncertainty lasts only one period, since
in our calibration the infectious period lasts only one week. Therefore, uncertainty
coincides exactly with the time when individuals are infectious, though it abstracts
from uncertainty for recovered individuals. Testing therefore brings certainty exactly
at the time when it matters for infections, and a robustness exercise with two periods
of uncertainty shows little quantitative difference.36 Testing serves two roles: it allows
individuals to know if they are infected or susceptible, and it induces the quarantine
τ̄i on the infected. Testing means that individuals spend less time outside both when
infected (due to quarantines) and when not (to avoid catching the disease) compared
to non-tested ”fever” individuals.

Is testing then a silver bullet? That is, can enough testing eradicate the disease?
Suppose every fever agent is tested; that is, ξ(y) = ξ(o) = 1. In this case, every posi-
tive case can be found and the individual isolated. In our benchmark for Covid, this
is still not enough to eradicate the disease (see Table 15). The reason is that the iso-
lation is not perfect. Individuals that test positive stay more time at home but still

36Appendix E lays out the model with two-period uncertainty where those who enter the fever state
know only after two periods the state at which they entered the period. This introduces uncertainty both
about being infected and being recovered. The model loses some of its tractability because the level of
outside activity in the current period matters for the continuation values multiple periods ahead. The
state space thus becomes much larger. Qualitatively and even quantitatively, this robustness exercise
has minor effects as already in our one-period model the entire duration of infectiousness was spanned
by the uncertainty (see Tables B8 and B10 which show robustness of the main results in Tables 15 and
16 discussed below, and Table B9 which shows robustness of Table B4).
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Table 15: The Effects of Testing in the Benchmark Economy

0.5 × 0.5 ×
Covid R0 Covid R0 Covid R0 Covid R0

no testing full testing no testing full testing
(1) (2) (3) (4)

Panel A. Realized statistics

Wks to peak infections Young 10 45 48 1
Old 11 46 48 1

Hrs @ home - avg. first year, Young 7.42 3.86 1.05 0.1
diff. w.r.t. no-disease Old 15.32 11.68 4.83 0.54

Dead p/ 1,000, first year Young 1.15 0.44 0.11 0.01
Old 19.74 7.6 2.25 0.3
All 5.13 1.97 0.57 0.07

Dead p/ 1,000 (by vaccine arrival) Young 1.23 0.54 0.17 0.01
Old 21.16 8.89 3.12 0.31
All 5.49 2.33 0.8 0.08

Recovered, % (by vaccine arrival) Young 53.88 23.84 7.53 0.65
Old 22.23 9.47 3.35 0.32
All 47.1 20.77 6.63 0.58

GDP 1 year, % change w.r.t. no-disease -6.16 -3.6 -1.86 -1.31

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 6.33 2.56 0.78 0.15
Old 12.61 8.74 3.83 0.74

Dead p/ 1,000 Young 0.96 0.37 0.11 0.01
Old 16.28 6.04 2.09 0.26
All 4.24 1.58 0.54 0.07

GDP, % change w.r.t. no-disease -5.84 -3.17 -2.07 -1.7

Note: Vaccine arrival = 1.5 year.

go out somewhat. Moreover, there is a fraction of exogenous contacts that cannot be
avoided.37 Nevertheless, this policy is still quite effective in decreasing the effects of
the pandemic. A laissez-faire world without testing sees a death toll of 5.49 per 1,000
people. With full testing, this statistic goes down to 2.33. This is not as drastic a re-
duction on deaths as the optimal lockdown, but it comes at a much lighter economic
cost. The no-testing world experiences a fall in GDP of 6.16% in the first year of the
pandemic while in the full-testing scenario GDP decreases by only 3.6%.

However, depending on the characteristics of the disease, testing can indeed essen-
tially stop a pandemic on its tracks. Consider a virus that is 50% less infectious than
that of Covid; that is, its R0 is half of that of Covid. Table 15 compares the laissez-faire
equilibrium for this disease when there is no testing and with full testing where again
every fever agent is tested. The no-testing equilibrium features a death toll equal to
0.8 per 1,000 people. With full testing, the death toll drops to only 0.08. Hence, full
testing can close to eradicate lower-R0 diseases, but not one as infectious as Covid.

Next, we want to understand whether the availability of tests affects the optimal
lockdown strategy. Table 9 in Section 6 compares the optimal lockdown for a Covid

37In a previous version of our paper we had shown that testing together with stricter quarantines
works quite well, but that was in a model without exogenous contacts (Brotherhood et al. 2020).
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Table 16: Welfare from Increased Testing: Laissez-Faire

0.5 × 0.9 × 1 × 1.1 × 2 ×
BM Test BM Test BM Test BM Test BM Test
Capacity Capacity Capacity Capacity Capacity

CEV gains, testing, young 0.08 0.15 0.17 0.19 0.36
CEV gains, testing, old 1.69 3.15 3.53 3.92 7.46

Note: The table compares the welfare of each age group under laissez-faire (no lockdown) in a world
with different testing capacities versus without testing. For the welfare benefit of the optimal lockdown
given different testing scenarios refer to Table B5 in the appendix.

pandemic in a world with testing (Column 1) versus without (Column 8). Both lock-
downs avert approximately the same fraction of deaths relative to a no-lockdown
world: 98%. However, they achieve this outcome in different ways. Without testing,
the planner requires the young to spend more hours at home: 18.36 extra hours per
week on average during the first year versus 15.5 with testing. This stricter lockdown
is required since there is no isolation of those that test positive. With the young not
able to work as much, GDP falls by an extra 3 percentage points in the first year of the
pandemic. Figure 5 in Section 5 shows that the planner is able to considerably lower
the lockdown restrictions in the beginning of 2022, as after two winters the disease
is largely under control. How fast these restrictions can be lowered depends on the
availability of tests. With the increased testing capacity available in 2022, the planner
is able to steeply reduce restrictions. Without testing, restrictions follow more seasonal
patterns for the first two winters and also decline after the second winter, but the final
decline is more gradual, especially for the young (see Appendix Figure B2).

What if tests are available but in a different quantity? The level of the testing ca-
pacity influences the laissez-faire equilibrium (see Appendix Table B4). In a scenario
with half as many tests compared to the actual pandemic, the death toll would be 5.01
per 1,000 people versus 4.46 in the benchmark. Conversely, in a scenario with twice
as many tests, the mortality rate would be lower, 3.29 per 1,000. This lower fatality
rate with more testing has implications for the optimal policy. More testing allows
the planner to ease restrictions and the young can spend more time outside. This is
clearly visible in Appendix Table B5: As we move from Column (2) to Column (5), we
gradually increase test capacity. Expected hours at home for the young decline with
the number of tests, and consequently, the impact of lockdowns on GDP decreases the
higher the testing capacity is.

Testing provides significant welfare gains (see Table 16). Under a no-lockdown
laissez-faire equilibrium with the benchmark testing capacity, the old enjoy a welfare
gain of 3.53% in CEV terms relative to a world without testing. The young experience
a gain of 0.17%. Doubling the testing capacity from its benchmark level provides the

43



old a gain of 7.46% and 0.36% for the young. Testing affects the welfare gains from the
optimal lockdown. Without testing, the welfare benefit from the optimal lockdown
is particularly high (Table 9, comparing columns 1 and 8, see also Appendix Table B5
for more details). With more testing, there is more targeted isolation and, though the
welfare gains from lockdowns are still substantial, they are relatively lower than in a
world where testing is not available (e.g., because no test exists, such as during the
Spanish flu).

We also study the allocation of tests between the young and the old. In the bench-
mark, tests are allocated randomly such that the probability that an individual with
fever is tested is the same for the two groups; i.e., ξ(o) = ξ(y). We now bias these
probabilities for the young (ξ(o)/ξ(y) = 0.5 or we even set it to zero) and for the old
(ξ(o)/ξ(y) = 2). Reserving all tests for the young lowers the death count substan-
tially in the absence of a general lockdown (Appendix Table B4) because isolations are
focused on the young who are more likely to spread the disease (due to their higher
hours outside). When choosing the optimal lockdown, this in turn induces the planner
to impose somewhat milder restrictions on the young, allowing the young to spend
half an hour more outside (column 6 in Table B5). Accordingly, GDP falls by less.
However, this comes at the expense of the old, who are optimally spending an ex-
tra half an hour inside. If, on the other hand, more tests are allocated to the old, the
overall mortality rate is higher (Appendix Table B4). With fewer tests for the young,
the group that engages in more interactions, it is harder to catch the positive cases
within this group in order to isolate them. Hence, the young contribute to more in-
fections. Consequently, the planner finds it optimal to restrict the movement of the
young when fewer tests are available to them (Columns 6-8 in Table B5). This stricter
lockdown among the young causes a deeper fall in GDP. The old experience larger
increases in welfare from the optimal lockdown when fewer tests are available to the
young. This happens because, with less targeted isolation of the young, lockdowns
are more useful for the old.

Summing up, testing is not the magic bullet that eradicates the disease by itself, but
testing eases the burden of the disease substantially. Second, the optimal lockdown
changes with the testing regime: Testing allows for a less restrictive lockdown and
thus lower GDP losses. It also allows for a faster easing of restrictions. Third, tests
are welfare increasing, but the benefit from the optimal lockdown decreases in the
number of tests. Fourth, when tests are costly and scarce, it is better to reserve them
for the young.
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8 Conclusions

This paper provides a comprehensive economic framework to address the challenges
of formulating pandemic policies, recognizing the unique attributes of infectious dis-
eases and their varying impacts across different age groups. The analysis underscores
the importance of considering age-specific behaviors, the role of testing strategies, and
lockdown policies. These seem to be first order in the spread of infections and the
deadliness of infectious diseases.

We first calibrate our model using data from the Covid-19 pandemic in the US in
the 2020s. The implemented lockdown together with voluntary precautionary behav-
ior combine to decrease the death toll by 80% relative to an epidemiological world
with no behavioral changes. The optimal lockdown, however, would have been even
stricter. The optimal policy would particularly lock down the young, as this is a large
and more active group that, due to the lower risk they face, do not engage in enough
protective behavior and thus impose externalities onto others.

The framework is general enough to be applied to other diseases. We then calibrate
the model to the Spanish flu of the 1910s and find that the optimal lockdown then
would have been less strict than that of Covid. The study of different diseases implies
that lockdowns should be strict when infectiousness is high and less so when only the
deadliness is high. Moreover, the age gradient of the disease matters: when the young
are more at risk, this larger group engages in more protective behavior. Hence, there
is less need for intervention.

By modeling the uncertainty about an individual’s health status, testing becomes
a valuable component in the pandemic response toolkit. With testing, it is possible to
isolate the positive cases in a targeted fashion. Hence, testing enables a less restrictive
optimal lockdown, minimizes GDP losses, and facilitates a swifter easing of restric-
tions.

In sum, this paper provides a comprehensive understanding of the interplay be-
tween age-specific behaviors, testing strategies, and policies in the context of infec-
tious diseases. The model is richer than many existing counterparts, but remains suf-
ficiently tractable to build upon in future work. By encompassing different groups,
the framework is able to capture heterogeneity in risk across individuals. Age is a
first-order driver of risk for many infectious diseases, including Covid. We therefore
endow our risk groups with income and life expectancy that capture working age in-
dividuals and the elderly. However, our analysis could be adapted to capture other
groups with different risks by adjusting the necessary remaining features. For exam-
ple, explicitly adding children as a third age group with close to zero mortality risk
would be a promising avenue to pursue. Our setup could also be used to study other
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dimensions of heterogeneity such as education, sectors, and gender.38 Another form
of heterogeneity may be in the beliefs about the severity of a disease. If some peo-
ple have wrong beliefs about the risk of dying, they have a lower incentive to protect
themselves (see Greenwood et al. (2019) for an analysis along these lines in the context
of HIV). The existence of such a group of people will have implications for optimal
policy. These extensions are part of a broader set of topics that warrant attention in
future research.
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Barro, Robert J., José F. Ursúa, and Joanna Weng. 2022. “Macroeconomics of the Great
Influenza Pandemic, 1918-1920.” Research in Economics 76 (1): 21–29.

Barry, John M. 2005. The Great Influenza: The Story of the Deadliest Pandemic in History.
New York: Penguin Books.

Belot, Michele, Syngjoo Choi, Julian Jamison, Nicholas Papageorge, Egon Tripodi,
and Eline van den Broek-Altenburg. 2020. Six-country Survey on Covid-19.
https://osf.io/aubkc. Accessed: 2023-09-10.

Berger, David W, Kyle F Herkenhoff, Chengdai Huang, and Simon Mongey. 2020.
“Testing and Reopening in an SEIR Model.” Review of Economic Dynamics 43:1–21.

Bick, Alexander, Adam Blandin, and Karel Mertens. 2023. “Work from Home After
the COVID-19 Outbreak.” American Economic Journal: Macroeconomics 15 (4): 1–39.

Biggs, Andrew G., and Glenn R. Springstead. 2008. “Alternate Measures of Replace-
ment Rates for Social Security Benefits and Retirement Income.” Social Security
Bulletin 68, no. 2.

Bognanni, Mark, Douglas Hanley, Daniel Kolliner, and Kurt Mitman. 2020, Septem-
ber. “Economics and Epidemics: Evidence from an Estimated Spatial Econ-SIR
Model.” Finance and economics discussion series 2020-091, Board of Governors
of the Federal Reserve System.

Boppart, Timo, Karl Harmenberg, John Hassler, Per Krusell, and Jonna Olsson. 2020.
“Integrated epi-econ assessment.” NBER working paper no. 28282.

Boppart, Timo, Karl Harmenberg, Per Krusell, and Jonna Olsson. 2022. “Integrated
epi-econ assessment of vaccination.” Journal of Economic Dynamics and Control
140:104308.

Breban, Romulus, Julien Riou, and Arnaud Fontanet. 2013. “Interhuman transmissi-
bility of Middle East respiratory syndrome coronavirus: estimation of pandemic
risk.” Lancet 382:694–9.

Brotherhood, Luiz, Tiago Cavalcanti, Daniel Da Mata, and Cezar Santos. 2022.
“Slums and pandemics.” Journal of Development Economics 157:102882.

Brotherhood, Luiz, Philipp Kircher, Cezar Santos, and Michèle Tertilt. 2020, May.
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Optimal Age-based Policies for Pandemics:

An Economic Analysis of Covid-19 and Beyond

by Luiz Brotherhood, Philipp Kircher, Cezar Santos and Michèle Tertilt

A Laws of Motion and Aggregation

To define the laws of motion, denote the measure of agents of each type j of age a in
period t byMt(j, a). LetMt be the set of these for all j and a. Further, let nt(j, a,Vt) and
`t(j, a,Vt) denote their times spent outside the house in equilibrium, which depends
on infection state and age as well as implicitly on whether a vaccine is available at the
beginning of period t (denoted by Vt ∈ {0, 1}). For some transmissions it also depends
on whether a vaccine arrives between periods t and t + 1, which follows a Markov
chain with probability χ(0). Let Nt be the set of these equilibrium time allocations in
period t for all j and a. The law of motion is a mapping from the state vector and
equilibrium actions and the infection rates in period t into the number of agents of
each typeMt+1 in the next period. Call this map Ω, so that

Mt+1 = Ω(Mt(·),Nt(·),Πt(·), Tt(·), ξt(·),Vt+1,Vt). (12)

As mentioned in the main text, it simplifies the accounting to introduce two sepa-
rate sub-states of the fever state: j = fs for those with fever who are susceptible (called
fever-susceptible) and j = fi for those who are infected with Covid-19 (called fever-
infected). Agents do not know their sub-state, obviously, and therefore act identically
in both states. We continue to denote by state j = f all agents who have a fever, which
encompasses those in fi and fs.

Consider the number of susceptible agents next period if no vaccine is available by
the end of the period (Vt+1 = Vt = 0). This law of motion is given by

Mt+1(s, a) (13)

= Mt(s, a)∆(a) [1− πf (nt(s, a,Vt) + `t(s, a,Vt),Πt,Π
∗
t ,Vt) + π∗

t (nt(s, a,Vt) + `t(s, a,Vt),Π∗
t )ξt(a)]

+Mt(fs, a)∆(a) [1− πf (nt(f, a,Vt) + `t(f, a,Vt),Πt,Π
∗
t ,Vt) + π∗

t (nt(f, a,Vt) + `t(f, a,Vt),Π∗
t )ξt(a)]

where the second line captures all situations in which susceptible individuals from
last period remain alive and susceptible, as explained in connection to value function
(3). The third line resembles the second except that it uses the time allocations of
those in the fever state. It accounts for those who entered the period fever-susceptible
and continue to remain susceptible during this period. The right hand side of (13)
gives the map Ωs for the susceptible agents when no vaccine is available by the end
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of the period. If a vaccine is or becomes available (Vt+1 = 1), trivially all susceptible
and fever-susceptible individuals continue as susceptible if they do not die of natural
causes.

The following provides the analogous laws of motions Ωj for agents in the other
states j = fs, fi, f, i, h, r . For completeness it also accounts for Covid deaths and new
infections. The aggregate mapping Ω is then the vector of the Ωj for all states j and
ages a depending on the vaccine availability in t and t+ 1.

In the absence of a vaccine (Vt+1 = Vt = 0) the number of fever-susceptible agents
who have a fever and are not tested but are truly Covid-negative and susceptible is
given by

Mt+1(fs, a) (14)

= Mt(s, a)∆(a)(1− ξt(a))πf (nt(s, a,Vt) + `t(s, a,Vt),Πt,Π
∗
t ,Vt)

Π∗t
Πt + Π∗t

+Mt(fs, a)∆(a)(1− ξt(a))πf (nt(f, a,Vt) + `t(f, a,Vt),Πt,Π
∗
t ,Vt)

Π∗t
Πt + Π∗t

.

It includes in the first line susceptible people from last period who got fever but were
not tested, and are truly Covid-negative and susceptible. The second line again ac-
counts for those in the fever-susceptible state, as they can again catch another fever
while truly remaining susceptible. If a vaccine is available or arrives, transmissions
are suppressed and we label individuals as susceptible as they are not confused even
if they get a cold.

A similar logic applies to those in the fever-infected state in the absence of a vaccine
arrival:

Mt+1(fi, a) (15)

= Mt(s, a)∆(a)(1− ξt(a))πf (nt(s, a,Vt) + `t(s, a,Vt),Πt,Π
∗
t ,Vt)

Πt

Πt + Π∗t

+Mt(fs, a)∆(a)(1− ξt(a))πf (nt(f, a,Vt) + `t(f, a,Vt),Πt,Π
∗
t ,Vt)

Πt

Πt + Π∗t
.

The total number of individuals in the fever state is then

Mt+1(f, a) = Mt+1(fs, a) +Mt+1(fi, a) (16)

To account for infected people in the absence of a vaccine arrival, one counts those
who started last period susceptible or fever-susceptible and get infected and tested this
period, and also those who started last period infected or fever-infected who neither
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required hospitalization nor recovered:

Mt+1(i, a) = Mt(s, a)∆(a)ξt(a)π(nt(s, a,Vt) + `t(s, a,Vt),Πt,Vt) (17)

+Mt(fs, a)∆(a)ξt(a)π(nt(f, a,Vt) + `t(f, a,Vt),Πt,Vt)

+ [Mt(fi, a) +Mt(i, a)] ∆(a)(1− φ(0, a))(1− α(a))

If a vaccine was already present or arrives this period, the equation remains unchanged
but the first two terms are set to zero.

People in hospitals comprise those who entered last period infected or fever-infected
and do not recover but instead require hospitalization, as well as those individuals that
were already hospitalized in the previous period who neither die nor recover:

Mt+1(h, a) = [Mt(fi, a) +Mt(i, a)] ∆(a)(1− φ(0, a))α(a) (18)

+Mt(h, a)∆(a)(1− δ(a))(1− φ(1, a))

For completeness, we also include here the accounting of Covid deaths and new
infections, and the expression for aggregate output. The total number of individuals
hospitalized is then

Mt(h) =
∑
a

Mt(h, a) (19)

Recovered and therefore resistant individuals comprise those who were infected or
fever-infected and recover, those hospitalized who do not die but recover, and resistant
individuals from the previous period:

Mt+1(r, a) = [Mt(fi, a) +Mt(i, a)] ∆(a)φ(0, a) (20)

+Mt(h, a)∆(a)φ(1, a) + ∆(a)Mt(r, a)

The right hand sides of equations (14) to (20) gives the map Ωj for states j = fs, fi, f, i, h, r

under vaccine availability Vt.
For accounting purposes, the measure of deceased agents as a result of Covid-19 is

given by new Covid deaths and those who died of it in previous periods:

Mt+1(deceased, a) = Mt(deceased, a) + (1− φ(1, a))δ(a)Mt(h, a)∆(a),

while the number of newly infected people is given by susceptible or fever-susceptible
agents who get infected

Nt+1(i, a) = Mt(s, a)∆(a)π(nt(s, a,Vt) + `t(s, a,Vt),Πt,Vt)

+Mt(fs, a)∆(a)π(nt(f, a,Vt) + `t(f, a,Vt),Πt,Vt).
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Aggregation for output in the economy in a given period is given by the time young
individuals spend at outside work or telework multiplied by the corresponding wage
rate:

Qt =
∑
j

w[nt(j, y,Vt) + ι(vt(j, y,Vt))vt(j, y,Vt)]Mt(j, y). (21)

For many of the exercises we aggregate these weekly output measures to get overall
GDP measures for longer time periods (e.g., year).
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Table B1: Robustness with respect to ρ (no-lockdown equilibria)

ρ = −4.45 ρ = −1.72 ρ = −0.36
(elast. of subst. (elast. of subst. (elast. of subst.

= 0.183) = 0.368) = 0.735)
(1) (2) (3)

Panel A. Realized statistics

Wks to peak infections Young 9 10 10
Old 10 10 11

Hrs @ home - avg. first year, Young 7.13 6.87 6.61
diff. w.r.t. no-disease Old 9.18 14.47 19.67

Dead p/ 1,000, first year Young 1.03 0.98 0.93
Old 16.76 16.31 15.99
All 4.39 4.26 4.15

Dead p/ 1,000 (by vaccine arrival) Young 1.07 1.02 0.98
Old 17.38 17.08 16.93
All 4.56 4.46 4.39

Recovered, % (by vaccine arrival) Young 46.81 44.84 42.95
Old 18.18 17.89 17.77
All 40.68 39.07 37.56

GDP 1 year, % change w.r.t. no-disease -5.99 -5.77 -5.55

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 6.42 6.1 5.8
Old 7.57 11.87 16.11

Dead p/ 1,000 Young 0.85 0.81 0.77
Old 13.64 13.3 13.09
All 3.59 3.48 3.41

GDP, % change w.r.t. no-disease -5.93 -5.67 -5.43

Note: Vaccine arrival: 1.5 year.

B Extra Tables and Figures

Figure B1 provides the times series of the number of tests performed each week in the
United States. We use this series as the available test capacity over time. The data
ends in the beginning of 2022. From then on, the flat part of the line is an extrapo-
lation using the last value of the time series. The values in the y-axis are in terms of
fraction of population. For example, at the maximum test capacity, more than 5% of
the population could be tested in a single week. This data comes from the University
of Oxford’s Our World in Data.
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Figure B1: Test capacity
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Figure B2: Time tax rates — with and without testing
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Table B2: Synthetic diseases: Laissez-faire Equilibrium

0.5 × 0.5 × 0.5 × 1.5 × 1.5 × 1.5 × 0.5 × Covid CFR 1.5 × Covid CFR
Covid Covid CFR Covid R0 Covid R0 & CFR Covid CFR Covid R0 Covid R0 & CFR 1.5 × Covid R0 0.5 × Covid R0

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Realized statistics

Wks to peak infections Young 10 9 1 1 10 7 7 7 1
Old 10 10 1 1 10 8 8 8 1

Hrs @ home - avg. first year, Young 6.87 3.67 0.37 0.21 9.2 8.51 12.23 4.11 0.5
diff. w.r.t. no-disease Old 14.47 9.36 1.93 1.16 16.37 14.36 16.6 8.75 2.55

Dead p/ 1,000, first year Young 0.98 0.57 0.05 0.03 1.24 1.41 1.88 0.77 0.06
Old 16.31 10.01 0.95 0.56 19.99 27.67 35.72 15.72 1.28
All 4.26 2.59 0.24 0.14 5.25 7.03 9.12 3.97 0.32

Dead p/ 1,000 (by vaccine arrival) Young 1.02 0.58 0.05 0.03 1.34 1.45 2 0.78 0.07
Old 17.08 10.14 0.99 0.57 21.77 28.5 38.09 15.83 1.35
All 4.46 2.63 0.25 0.14 5.71 7.24 9.72 4 0.34

Recovered, % (by vaccine arrival) Young 44.84 50.79 2.17 2.44 39.45 63.41 58.52 68.09 2.01
Old 17.89 22.07 1.03 1.25 14.55 29.66 25.32 34.27 0.89
All 39.07 44.65 1.93 2.19 34.12 56.19 51.42 60.86 1.77

GDP 1 year, % change w.r.t. no-disease -5.77 -3.67 -1.46 -1.37 -7.35 -7.38 -10.13 -4.21 -1.54

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 6.1 3.77 0.44 0.25 7.73 8.49 11.25 4.84 0.6
Old 11.87 8.67 2.26 1.38 13.66 12.33 14.59 8.78 2.91

Dead p/ 1,000 Young 0.81 0.49 0.04 0.02 1.04 1.21 1.61 0.69 0.06
Old 13.3 8.43 0.83 0.48 16.57 23.31 30.23 13.78 1.11
All 3.48 2.19 0.21 0.12 4.36 5.94 7.73 3.49 0.28

GDP, % change w.r.t. no-disease -5.67 -4.1 -1.87 -1.76 -6.78 -7.84 -9.9 -5.12 -1.97

Note: The different columns change the R0 and/or the case fatality rate (CFR) to a multiple of the values of Covid. Vaccine arrival = 1.5 year.
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Table B3: Synthetic diseases: Optimal Policy

0.5 × 0.5 × 0.5 × 1.5 × 1.5 × 1.5 × 0.5 × Covid CFR 1.5 × Covid CFR
Covid Covid CFR Covid R0 Covid R0 & CFR Covid CFR Covid R0 Covid R0 & CFR 1.5 × Covid R0 0.5 × Covid R0

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Realized statistics

Avg. tax, first year Young 0.26 0.25 0.07 0.04 0.27 0.38 0.41 0.39 0.09
Old 0.29 0.29 0.06 0.03 0.29 0.43 0.38 0.46 0.07

Hrs @ home - avg. first year, diff. w.r.t. no-lockdown Young 15.5 17.92 5.77 3.63 13.83 23.45 21.71 29.11 7.19
Old -9.29 -4.35 -0.45 -0.39 -11.06 -6.58 -8.72 -0.66 -0.72

Hrs @ home - avg. first year, diff. w.r.t. no-disease Young 22.37 21.6 6.13 3.84 23.03 31.96 33.93 33.22 7.69
Old 5.18 5.01 1.48 0.77 5.31 7.78 7.88 8.08 1.83

% Deaths averted, first year (rel. to no-lockdown) Young 98.66 98.35 71.93 69.95 98.69 98.99 97.99 98.9 71.41
Old 97.69 97.26 67.67 66.29 97.66 98.33 96.6 98.24 66.15
All 97.87 97.45 68.32 66.84 97.85 98.44 96.83 98.34 66.96

% Change in GDP rel. to no-lockdown, 1 year -12.19 -13.4 -3.58 -2.21 -11.31 -20.57 -19.97 -24.22 -4.55

Panel B. Expected statistics (3 year horizon)

Hrs @ home - diff. w.r.t. no-lockdown Young 16.22 17.81 5.56 3.97 15.14 23.74 20.38 28.23 6.61
Old -6.53 -3.66 -0.65 -0.49 -8.14 -4.53 -6.72 -0.67 -1

Hrs @ home - diff. w.r.t. no-disease Young 22.32 21.58 6 4.22 22.87 32.23 31.62 33.07 7.21
Old 5.33 5.02 1.61 0.89 5.52 7.81 7.87 8.1 1.9

% Deaths averted, rel. to no-lockdown Young 97.95 97.35 70.82 68.55 97.95 98.54 97.81 98.77 70.57
Old 96.73 96.04 66.65 64.94 96.61 97.74 96.44 98.11 65.39
All 96.96 96.27 67.3 65.48 96.86 97.87 96.66 98.22 66.21

% Change in GDP, rel. to no-lockdown -10.61 -11.39 -2.19 -1.4 -10.09 -19.52 -17.56 -21.83 -2.75

Panel C. Welfare

CEV rel. to no-lockdown Young 0.36 0.04 -0.01 0 0.6 0.01 0.48 -0.61 -0.01
Old 16.86 10.05 0.57 0.32 21.67 31.16 42.7 16.62 0.76

Note: The different columns change the R0 and/or the case fatality rate (CFR) to a multiple of the values of Covid. Vaccine arrival = 1.5 year.
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Table B4: Laissez-faire Equilibrium Under Different Testing Regimes

0.5 × 0.9 × 1.1 × 2 × No tests Fewer tests More tests
BM Test BM Test BM Test BM Test for the old for the old for the old

Covid capacity capacity capacity capacity (ξ(o)/ξ(y) = 0) (ξ(o)/ξ(y) = 0.5) (ξ(o)/ξ(y) = 2)
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Realized statistics

Wks to peak infections Young 10 10 10 10 9 10 10 10
Old 10 10 10 10 10 10 10 10

Hrs @ home - avg. first year, Young 6.87 7.22 6.95 6.78 5.69 6.72 6.8 6.98
diff. w.r.t. no-disease Old 14.47 15.01 14.6 14.31 12.01 14.24 14.37 14.62

Dead p/ 1,000, first year Young 0.98 1.07 1 0.96 0.76 0.95 0.96 1
Old 16.31 18.12 16.69 15.93 12.31 15.73 16.04 16.79
All 4.26 4.72 4.36 4.16 3.23 4.11 4.19 4.38

Dead p/ 1,000 (by vaccine arrival) Young 1.02 1.13 1.05 1 0.77 0.99 1 1.05
Old 17.08 19.23 17.53 16.62 12.55 16.42 16.77 17.61
All 4.46 5.01 4.57 4.34 3.29 4.29 4.38 4.59

Recovered, % (by vaccine arrival) Young 44.84 49.74 45.89 43.75 33.72 43.27 44.1 46.09
Old 17.89 20.19 18.37 17.39 13.06 17.19 17.56 18.45
All 39.07 43.42 40 38.11 29.3 37.69 38.42 40.17

GDP 1 year, % change w.r.t. no-disease -5.77 -6.01 -5.82 -5.7 -5 -5.66 -5.72 -5.85

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 6.1 6.25 6.14 6.07 5.62 6.04 6.08 6.15
Old 11.87 12.28 11.96 11.77 10.62 11.74 11.81 11.95

Dead p/ 1,000 Young 0.81 0.89 0.83 0.79 0.64 0.79 0.8 0.83
Old 13.3 14.83 13.61 12.98 10.2 12.84 13.08 13.66
All 3.48 3.87 3.56 3.4 2.68 3.37 3.43 3.58

GDP, % change w.r.t. no-disease -5.67 -5.77 -5.7 -5.65 -5.35 -5.63 -5.65 -5.71

Note: Columns (2)-(5) change the testing capacity to a multiple of that of Covid. Columns (7)-(8) change the allocation of tests across the two age groups. Vaccine
arrival = 1.5 year.
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Table B5: Optimal Lockdown Under Different Testing Regimes

0.5 × 0.9 × 1.1 × 2 × No tests Fewer tests More tests
BM Test BM Test BM Test BM Test for the old for the old for the old

Covid capacity capacity capacity capacity (ξ(o)/ξ(y) = 0) (ξ(o)/ξ(y) = 0.5) (ξ(o)/ξ(y) = 2)
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Realized statistics

Avg. tax, first year Young 0.26 0.28 0.28 0.25 0.24 0.25 0.25 0.26
Old 0.29 0.3 0.31 0.29 0.27 0.32 0.3 0.27

Hrs @ home - avg. first year, diff. w.r.t. no-lockdown Young 15.5 16.84 17.01 15.2 15.57 14.92 15.23 15.88
Old -9.29 -9.68 -8.74 -9.17 -6.73 -8.59 -8.95 -9.78

Hrs @ home - avg. first year, diff. w.r.t. no-disease Young 22.37 24.06 23.96 21.98 21.26 21.64 22.03 22.86
Old 5.18 5.33 5.87 5.14 5.29 5.66 5.42 4.84

% Deaths averted, first year (rel. to no-lockdown) Young 98.66 98.76 98 98.63 97.18 98.59 98.63 98.71
Old 97.69 97.85 96.56 97.64 95.15 97.6 97.65 97.75
All 97.87 98.01 96.82 97.82 95.52 97.78 97.83 97.92

% Change in GDP rel. to no-lockdown, 1 year -12.19 -13.49 -13.61 -11.91 -11.91 -11.65 -11.94 -12.55

Panel B. Expected statistics (3 year horizon)

Hrs @ home - diff. w.r.t. no-lockdown Young 16.22 17.55 16.22 15.94 13.8 15.69 15.97 16.6
Old -6.53 -6.83 -6.11 -6.46 -5.67 -6.09 -6.32 -6.83

Hrs @ home - diff. w.r.t. no-disease Young 22.32 23.79 22.36 22.01 19.42 21.73 22.05 22.75
Old 5.33 5.45 5.85 5.3 4.95 5.66 5.49 5.12

% Deaths averted, rel. to no-lockdown Young 97.95 98.14 97.41 97.9 96.28 97.86 97.91 98.01
Old 96.73 97 95.84 96.66 94.13 96.65 96.71 96.79
All 96.96 97.21 96.13 96.89 94.54 96.87 96.93 97.02

% Change in GDP, rel. to no-lockdown -10.61 -12.25 -10.66 -10.29 -8.05 -10.02 -10.33 -11.04

Panel C. Welfare

CEV rel. to no-lockdown Young 0.36 0.36 0.37 0.36 0.3 0.37 0.37 0.36
Old 16.86 19.05 17.08 16.41 12.31 16.17 16.54 17.42

Note: Columns (2)-(5) change the test capacity relative to the benchmark (BM) level. Columns (6)-(8) change the fraction of tests that is allocated to each age
group.
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Table B6: Varying the ratio of the CFR by age while keeping the time-outside-weighted
average CFR constant, using the time outside in a non-Covid world: no lockdown
equilibria (robustness exercise for Table 13)

CFR CFR CFR CFR CFR
old/yng old/yng old/yng old/yng old/yng

1/39 1/2 1/1 2/1 39/1
(1) (2) (3) (4) (5)

Panel A. Realized statistics

Wks to peak infections Young 11 11 11 11 10
Old 10 10 10 10 10

Hrs @ home - avg. first year, Young 18.7 18.19 17.7 16.87 6.87
\hspace1cmdiff. w.r.t. no-disease Old 0.1 1.67 3.04 5.19 14.47
Dead p/ 1,000, first year Young 2.1 2.06 2.02 1.96 0.98

Old 0.04 0.8 1.5 2.7 16.31
All 1.66 1.79 1.91 2.12 4.26

Dead p/ 1,000 (by vaccine arrival) Young 2.73 2.67 2.6 2.49 1.02
Old 0.05 0.99 1.86 3.32 17.08
All 2.16 2.31 2.44 2.67 4.46

Recovered, % (by vaccine arrival) Young 22.13 22.79 23.48 24.81 44.84
Old 17.78 17.39 17.08 16.68 17.89
All 21.2 21.63 22.11 23.07 39.07

GDP 1 year, % change w.r.t. no-disease -14.52 -14.1 -13.71 -13.04 -5.77

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 15.65 15.2 14.78 14.05 6.1
Old 0.08 1.38 2.53 4.34 11.87

Dead p/ 1,000 Young 2.08 2.03 1.98 1.89 0.81
Old 0.04 0.74 1.39 2.48 13.3
All 1.64 1.75 1.85 2.02 3.48

GDP, % change w.r.t. no-disease -12.61 -12.25 -11.92 -11.35 -5.67

Note: Expected vaccine arrival = 1.5 year.
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Table B7: Varying the ratio of the CFR by age while keeping the time-outside-weighted
average CFR constant, using the time outside in a non-Covid world: optimal policy
(robustness exercise for Table 14)

CFR CFR CFR CFR CFR
old/yng old/yng old/yng old/yng old/yng

1/39 1/2 1/1 2/1 39/1
(1) (2) (3) (4) (5)

Panel A. Realized statistics

Avg. tax, first year Young 0.29 0.28 0.28 0.28 0.26
Old 0.3 0.3 0.29 0.29 0.29

Hrs @ home - avg. first year, diff. w.r.t. no-lockdown Young 7.17 7.01 7.77 8.52 15.5
Old 4.79 3.25 1.81 -0.18 -9.29

Hrs @ home - avg. first year, diff. w.r.t. no-disease Young 25.87 25.2 25.48 25.39 22.37
Old 4.89 4.91 4.85 5.01 5.18

% Deaths averted, first year (rel. to no-lockdown) Young 92.81 92.84 93.23 93.57 98.66
Old 93.16 92.88 92.89 92.72 97.69
All 92.81 92.84 93.17 93.34 97.87

% Change in GDP rel. to no-lockdown, 1 year -6.77 -6.57 -7.24 -7.85 -12.19

Panel B. Expected statistics (3 year horizon)

Hrs @ home - diff. w.r.t. no-lockdown Young 7.49 7.1 7.59 8.32 16.22
Old 4.68 3.41 2.18 0.6 -6.53

Hrs @ home - diff. w.r.t. no-disease Young 23.14 22.31 22.37 22.37 22.32
Old 4.76 4.79 4.71 4.94 5.33

% Deaths averted, rel. to no-lockdown Young 92.58 92.55 92.84 93.14 97.95
Old 93.03 92.75 92.73 92.57 96.73
All 92.59 92.57 92.82 92.99 96.96

% Change in GDP, rel. to no-lockdown -4.95 -4.1 -4.66 -5.22 -10.61

Panel C. Welfare

CEV rel. to no-lockdown Young 1.76 1.71 1.66 1.56 0.36
Old -0.12 0.53 1.18 2.28 16.86

Note: Expected vaccine arrival = 1.5 years.
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Table B8: The Effects of Testing with 2-period uncertainty (robustness exercise for Ta-
ble 15)

Covid R0 Covid R0 Covid R0 0.5 x Covid R0 0.5 x Covid R0 0.5 x Covid R0
No testing No testing Full testing No testing No testing Full testing
1-period 2-period 1&2-period 1-period 2-period 1&2-period

uncertainty uncertainty uncertainty uncertainty uncertainty uncertainty
(1a) (1b) (2) (3a) (3b) (4)

Panel A. Realized statistics

Wks to peak infections Young 10 8 45 48 47 1
Old 11 9 46 48 47 1

Hrs @ home - avg. first year, Young 7.42 7.44 3.86 1.05 1.26 0.1
diff. w.r.t. no-disease Old 15.32 15.11 11.68 4.83 5.72 0.54

Dead p/ 1,000, first year Young 1.15 1.27 0.44 0.11 0.15 0.1
Old 19.74 22.49 7.6 2.25 2.98 0.3
All 5.13 5.81 1.97 0.57 0.76 0.07

Dead p/ 1,000 (by vaccine arrival) Young 1.23 1.32 0.54 0.17 0.23 0.01
Old 21.16 23.28 8.89 3.12 4.06 0.31
All 5.49 6.02 2.33 0.8 1.05 0.08

Recovered, % (by vaccine arrival) Young 53.88 57.75 23.84 7.53 10.17 0.65
Old 22.23 24.34 9.47 3.35 4.36 0.32
All 47.1 50.6 20.77 6.63 8.93 0.58

GDP 1 year, % change w.r.t. no-disease -6.16 -6.29 -3.6 -1.86 -1.98 -1.31

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 6.33 6.54 2.56 0.78 0.83 0.15
Old 12.61 12.12 8.74 3.83 4.24 0.74

Dead p/ 1,000 Young 0.96 1.06 0.37 0.11 0.15 0.01
Old 16.28 18.2 6.04 2.09 2.62 0.26
All 4.24 4.72 1.58 0.54 0.67 0.07

GDP, % change w.r.t. no-disease -5.84 -6.11 -3.17 -2.07 -2.1 -1.7

Note: Columns (1a), (2), (3a) and (4) in this table replicate Table 15). Columns (1b), (2), (3b) and (4) in
this table provide the same statistics for the model with 2 periods of uncertainty. In column (2) and (4)
there is no difference between the model with 1 and 2 periods of uncertainty since full testing eliminates
the uncertainty.
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Table B9: Laissez-faire Equilibrium Under Different Testing Regimes, 2-period uncer-
tainty (robustness exercise for Table B4)

0.5 × 0.9 × 1.1 × 2 × No tests Fewer tests More tests
BM Test BM Test BM Test BM Test for the old for the old for the old

Covid capacity capacity capacity capacity (ξ(o)/ξ(y) = 0) (ξ(o)/ξ(y) = 0.5) (ξ(o)/ξ(y) = 2)
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. Realized statistics

Wks to peak infections Young 8 8 8 8 8 8 8 8
Old 9 9 9 9 9 9 9 9

Hrs @ home - avg. first year, Young 7.12 7.33 7.17 7.07 6.21 7.05 7.09 7.17
\hspace1cmdiff. w.r.t. no-disease Old 14.41 14.86 14.52 14.28 12.08 14.22 14.33 14.51
Dead p/ 1,000, first year Young 1.10 1.19 1.12 1.09 0.88 1.08 1.09 1.12

Old 19.02 20.84 19.39 18.64 14.75 18.59 18.83 19.32
All 4.94 5.40 5.03 4.84 3.85 4.83 4.89 5.02

Dead p/ 1,000 (by vaccine arrival) Young 1.14 1.23 1.16 1.11 0.89 1.11 1.12 1.15
Old 19.49 21.50 19.90 19.06 14.88 19.04 19.26 19.81
All 5.06 5.57 5.17 4.95 3.88 4.95 5.01 5.15

Recovered, % (by vaccine arrival) Young 49.73 54.10 50.64 48.77 38.96 48.65 49.22 50.49
Old 20.33 22.47 20.76 19.87 15.45 19.86 20.09 20.67
All 43.44 47.33 44.25 42.59 33.93 42.49 42.99 44.11

GDP 1 year, % change w.r.t. no-disease -6.05 -6.20 -6.09 -6.01 -5.46 -6.00 -6.03 -6.09

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 6.50 6.54 6.51 6.48 6.23 6.48 6.49 6.51
Old 11.75 11.99 11.81 11.69 10.75 11.68 11.71 11.80

Dead p/ 1,000 Young 0.92 0.99 0.94 0.91 0.75 0.90 0.91 0.93
Old 15.51 16.93 15.80 15.21 12.30 15.18 15.35 15.74
All 4.04 4.40 4.12 3.97 3.22 3.96 4.00 4.10

GDP, % change w.r.t. no-disease -6.06 -6.10 -6.07 -6.05 -5.88 -6.05 -6.06 -6.08

Note: This table shows the effects of different testing capacity and different targeting of tests by age
group in the laissez-faire (no-lockdown) equilibrium when there are two periods of uncertainty. It is
analogous to Table B4), only that we allow for 2 periods of uncertainty in this table while Table B4)
allowed for only one period of uncertainty.

Table B10: Welfare from Increased Testing in the 2-period Uncertainty Model: Laissez-
Faire

0.5 × 0.9 × 1 × 1.1 × 2 ×
BM Test BM Test BM Test BM Test BM Test
Capacity Capacity Capacity Capacity Capacity

CEV gains, testing, young 0.10 0.16 0.17 0.19 0.35
CEV gains, testing, old 1.58 2.90 3.25 3.61 7.24

Note: This table shows the welfare increase through larger testing capacities compared to a setting
without any testing, in the laissez-faire (no-lockdown) equilibrium. It is analogous to Table 16, only
that we allow for two periods of uncertainty in this table while Table 16 allowed for only one period of
uncertainty.
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Table B11: A different value for the value of a statistical life (VSL): laissez-faire equi-
librium

VSL = 9.3M VSL = 5M
(1) (2)

Panel A. Realized statistics

Wks to peak infections Young 10 10
Old 10 10

Hrs @ home - avg. first year, Young 6.87 4
diff. w.r.t. no-disease Old 14.47 10.3

Dead p/ 1,000, first year Young 0.98 1.13
Old 16.31 19.68
All 4.26 5.1

Dead p/ 1,000 (by vaccine arrival) Young 1.02 1.15
Old 17.08 20.01
All 4.46 5.19

Recovered, % (by vaccine arrival) Young 44.84 50.33
Old 17.89 20.79
All 39.07 44.01

GDP 1 year, % change w.r.t. no-disease -5.77 -3.92

Panel B. Expected statistics

Hrs @ home - diff. w.r.t. no-disease Young 6.1 4
Old 11.87 9.22

Dead p/ 1,000 Young 0.81 0.97
Old 13.3 16.45
All 3.48 4.28

GDP, % change w.r.t. no-disease -5.67 -4.29
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Table B12: A different value for the value of a statistical life (VSL): optimal policies

VSL = 9.3M VSL = 5M
(1) (2)

Panel A. Realized statistics

Avg. tax, first year Young 0.26 0.25
Old 0.29 0.29

Hrs @ home - avg. first year, diff. w.r.t. no-lockdown Young 15.5 17.79
Old -9.29 -5.11

Hrs @ home - avg. first year, diff. w.r.t. no-disease Young 22.37 21.79
Old 5.18 5.19

% Deaths averted, first year (rel. to no-lockdown) Young 98.66 98.28
Old 97.69 97.14
All 97.87 97.34

% Change in GDP rel. to no-lockdown, 1 year -12.19 -13.34

Panel B. Expected statistics (3 year horizon)

Hrs @ home - diff. w.r.t. no-lockdown Young 16.22 17.71
Old -6.53 -4.03

Hrs @ home - diff. w.r.t. no-disease Young 22.32 21.71
Old 5.33 5.19

% Deaths averted, rel. to no-lockdown Young 97.95 97.31
Old 96.73 95.94
All 96.96 96.18

% Change in GDP, rel. to no-lockdown -10.61 -11.3

Panel C. Welfare

CEV rel. to no-lockdown Young 0.36 0.07
Old 16.86 11.05
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Table C13: Calibration – Parameters that are different under Spanish Flu

Parameter Value Interpretation

0.077 Fraction of old in population
∆(y) 0.9994 Weekly survival (natural causes), young
∆(o) 0.9978 Weekly survival (natural causes), old
w 0.167 Wage per unit of time
w 0.041 Retirement income
ι0 0.0 Parameter related to telework productivity
ι1 0.0 Parameter related to telework productivity

φ(0, y) 0.981 Prob of recovering from mild Covid-19, young
φ(0, o) 0.960 Prob of recovering from mild Covid-19, old
φ(1, y) 0.0 Prob of recovering from hospitalization, young
φ(1, o) 0.0 Prob of recovering from hospitalization, old
δ(y) 1.0 Weekly death rate (among hospitalized), young
δ(o) 1.0 Weekly death rate (among hospitalized), old
Π0 4.271 Infectiousness of Spanish flu
χt 1/(10×52) Prob of vaccine arrival (average = 10 years)
η0 0.0 Stringency index function
η1 0.0 Stringency index function
ξt 0.0 Probability of testing (no tests

C Calibration: Spanish Flu

Table C13 lists the model parameters that are different for the Spanish flu calibration.
Some parameters relate to how different the world was in the 1910s and others directly
relate to the different disease. The remaining parameters coincide with those for Covid
reported in Tables 1 and 2.

The fraction of the old population comes from the US Census Bureau’s estimates
for the resident population in July 1917. The population was younger then and only
7.7% of the adult population was 65 years old or older. The average person between
20 and 64 years old in the late 1910s was 37 years old. According to the United States
Life Tables for the period, the remaining life expectancy for this person was 32.4 years.
Hence, we set ∆(y) = 1 − 1/(32.4 × 52) = 0.9994. For those above 65 years old,
the average person was 72 and expected to live an extra 8.7 years. Thus, ∆(o) =

1− 1/(8.7× 52) = 0.9978.
According to the Groningen Growth and Development Centre’s Maddison Project

Database 2020, the United States per capita GDP in 2018 was 19% of the value in 2018.
We thus decrease the value of the per-unit-of-time wage w rate to match this target.
We keep the same replacement rate for the old’s income (60%) and adjust this group’s
income accordingly. We also assume that there is no telework in the 1910s and thus set
the telework parameters (ι0 and ι1) to zero.
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Turn attention now to the specifics of the Spanish flu virus. Taubenberger and
Morens (2006) report age-specific case fatality rates (CFR) for the Spanish flu pan-
demic. Aggregating across age groups, the CFR for the young (20-64 years old) is
1.9% and the CFR for the old (65 or above) is 4.01%. We do not have information,
however, on the decomposed transition rates from infection to ICU and from ICU to
death. Hence, we assume that, if an infected individual goes to the ICU with serious
symptoms from the Spanish flu, they die with certainty. Since there are no choices
during ICU treatment, this is not a very strong assumption. So, there is no possibility
of recovery from ICU, φ(1, y) = φ(1, o) = 0, and an ICU patient dies with certainty,
δ(y) = δ(o) = 1. This means that the continuation value of going to the hospital is 0.
We only need to determine φ(0, a) now. These are chosen to match the CFRs. With
α = 1, an infected individual recovers after one period. So, φ(0, a) = 1 − CFR(a).
Hence, φ(0, y) = 0.981 and φ(0, o) = 0.960.

Mills, Robins, and Lipsitch (2004) estimate the basic reproduction number R0 for
the Spanish flu using data for 45 cities in the United States. The median value of their
estimates is less than three. Following their estimates, we target an R0 = 2.7, slightly
lower than that of Covid. In the model, this data target identifies Π0 = 4.271.

A vaccine for influenza did not appear nearly as quickly as the one for Covid. The
first effective vaccine only appeared around 20 years after the Spanish flu pandemic
WHO (2022). However, other vaccines were being used. So, the population probably
expected a quicker turnaround. We thus assume an expected arrival for a flu vaccine
in 10 years and set the weekly probability of a vaccine arrival accordingly. We set the
latest possible date for the vaccine arrival at T ∗ = 546, or 10.5 years after the onset of
the pandemic.

We do not have detailed information about the strictness of lockdowns that were
adopted in response to the Spanish flu pandemic in the 1910s. However, we will not
match the entire time series as we did for Covid. We will solve a no-policy (laissez-
faire) benchmark and the optimal policy in response to the disease. Hence, we set the
parameters of the benchmark lockdown stringency (η0 and η1) to zero. As there was
no equivalent to the modern (PCR and antigent) tests, we assume there was no testing
and isolation in the 1910s. So, the probability of being tested is ξt = 0.
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D Computational Appendix

It is instructive to discuss the first-order conditions that characterize the agents’ choices.
Let’s examine a simplified version of our model, excluding age heterogeneity, uncer-
tainty, and other components. The value function for a susceptible agent is as follows:

Vt(s) = max
c,x,n,`,v,d

ln(c) + γ ln
(
[θx+ (1− θ)`]1/ρ

)
+ λ ln(d) + b

+ β{(n+ `)ΠtVt+1(i) + [1− (n+ `)Πt]Vt+1(s)}

subject to
c+ x = w[n+ ι(v)v],

n+ `

1− τt
+ v + d = 1 + Tt.

To solve the maximization problem above, rewrite it as

max
x,n,`,v

ln(w[n+ ι(v)v]− x) + γ ln
(
[θx+ (1− θ)`]1/ρ

)
+λ ln

(
1 + Tt −

n+ `

1− τt
− v
)

+ β(n+ `)Πt[Vt+1(i)− Vt+1(s)].

The first-order conditions are

[x] : − 1

w[n+ ι(v)v]− x
+

γθxρ−1

θxρ + (1− θ)`ρ
= 0,

[n] :
w

w[n+ ι(v)v]− x
− λ

1 + Tt(s)− (n+ `)/(1− τt)− v
1

1− τt(s)
+βΠt[Vt+1(i)−Vt+1(s)] = 0,

[`] :
γ(1− θ)`ρ−1

θxρ + (1− θ)`ρ
− λ

1 + Tt(s)− (n+ `)/(1− τt)− v
1

1− τt(s)
+βΠt[Vt+1(i)−Vt+1(s)] = 0,

[v] :
w[ι′(v)v + ι(v)]

w[n+ ι(v)v]− x
− λ

1 + Tt(s)− (n+ `)/(1− τt)− v
= 0.

Substitute the lump-sum tax rebate Tt = τt(n+ `)/(1− τt) in the equations above to
obtain the following system of equations in x, n, `, and v:

[x] : − 1

w[n+ ι(v)v]− x
+

γθxρ−1

θxρ + (1− θ)`ρ
= 0, (22)

[n] :
w

w[n+ ι(v)v]− x
− λ

1− n− `− v
1

1− τt
+ βΠt[Vt+1(i)− Vt+1(s)] = 0, (23)

[`] :
γ(1− θ)`ρ−1

θxρ + (1− θ)`ρ
− λ

1− n− `− v
1

1− τt
+ βΠt[Vt+1(i)− Vt+1(s)] = 0, (24)

[v] :
w[ι′(v)v + ι(v)]

w[n+ ι(v)v]− x
− λ

1− n− `− v
= 0. (25)
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The equations above describe the trade-offs faced by agents during the pandemic.
For example, equation (23) demonstrates that an agent equalizes marginal benefits
and costs associated with working outside. The first term represents the marginal util-
ity from consumption acquired through one additional hour of work. The other two
terms pertain to the marginal cost of n: the sacrifice of leisure at home and an increased
probability of contracting Covid. Higher taxation (i.e., a more stringent lockdown) ele-
vates the marginal cost of n by intensifying the sacrifice of home leisure. Additionally,
a more contagious environment (a higher Πt) or a more severe illness (a more negative
Vt+1(i)− Vt+1(s)) amplifies the marginal cost of n.

We use the following computational algorithm to find a general equilibrium of the
main model:

1. Guess the path of general equilibrium variables {Πt, ξt}T
∗

t=0.

2. Starting from the last time period T ∗ and going backward in time, solve the
agents’ problems. For a given time period t, the agents’ optimal choices can
be obtained from solving systems of equations such as (22)-(25), with the general
equilibrium variables and future value functions treated as given.

3. Starting from the first time period and going forward in time, obtain new distri-
bution types using their laws of motion.

4. Using the optimal policies and distribution types obtained in steps 2 and 3, com-
pute new general equilibrium variables {Π′t, ξ′t}T

∗
t=0 using (9)-(11).

5. If {Πt, ξt}T
∗

t=0 is close enough to {Π′t, ξ′t}T
∗

t=0, the algorithm has converged. Other-
wise, go back to step 2 using {Π′t, ξ′t}T

∗
t=0 as a new guess of the general equilibrium

variables.
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E A model with two-period uncertainty

Here we extend the base model to allow for two periods of uncertainty. If a susceptible
person experiences a fever, they do not get any information after this period unless
they get tested. Only at the end of the next period this person gets to know they
started that period. So, in the second period, the uncertainty about the infection is
resolved similar to the fever case in the base model by revealing the beginning-of-
period infection status (which means that the person can continue to be worried about
the health status in the subsequent period if they develop another fever). In the first
period, no information is revealed unless through testing. Testing is assumed to detect
the right status, including ”recovered.”

Unless specifically newly introduced, notation follows the main body of the paper.

E.1 Value Functions in the model with two periods of uncertainty

E.1.1 Susceptible

Vt(s, a,V) = max
c,x,n,v,`,d

u(c, g(x, `), d, v) +

+β(a)[1− πf (n+ `,Πt,Π
∗
t ,V) + π∗(n+ `,Π∗t )ξt(a)]Wt+1(s, a,V|s)

+β(a)π(n+ `,Πt,V)ξt(a)]Wt+1(i, a,V|s) +

β(a)(1− ξt(a))πf (n+ `,Πt,Π
∗
t ,V)Wt+1(f1, a,V|s)

with constraints (1) and (2) from the main paper, and the convention from the main
body that

Wt+1(j, a,V|s) = χ(V)Vt+1(j, a, 1) + (1− χ(V))Vt+1(s, a, 0)

The expressions are similar to those in the main text. Note that they ensure that indi-
viduals arrive in the ”confused” fever state only if a vaccine is not available by the end
of the period.

E.1.2 Infected

Vt(i, a,V) = max
c,x,n,v,`,d

u(c, g(x, `), d, v)

+β(a)φ(0, a)Wt+1(r, a,V)

+β(a)(1− φ(h, a))α(a)Wt+1(h, a,V)

+β(a)(1− φ(h, a))(1− α(a))Wt+1(i, a,V),

again with constraints (1) and (2) from the main text. This is also similar to the main
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text, and the convention from the main body that

Wt+1(j, a,V) = χ(V)Vt+1(j, a, 1) + (1− χ(V))Vt+1(j, a, 0).

E.1.3 f1 fever people

The state ”f1” now replaces our previous fever state ”f”. The index ”1” indicates that
this is the first period of uncertainty over the health status.

In the following, ”f2” stands for having fever in the second period of uncertainty.
This can be if the person is healthy (either susceptible or recovered after infection last
period) but develops another cold. It can also be because the person caught Covid in
one of the last two periods.

In the following, ”nf2” stands for NOT having fever in the second period of un-
certainty (and also not being in hospital and not having been tested). So these include
individuals face uncertainty about being susceptible or recovered.

The value function for a person in the first period of uncertainty (i.e., the first pe-
riod with a fever) is

Vt(f1, a,V) = max
c,x,n,v,`,d

u(c, g(x, `), d, v) +

+
Π∗

t−1β(a)

Πt−1 + Π∗
t−1

(1− χ(Vt))


(1− ξt(a))[1− πf (n+ `,Πt,Π

∗
t , 0)]Vt+1(nf2, a, 0;n+ `)

+(1− ξt(a))πf (n+ `,Πt,Π
∗
t , 0)Vt+1(f2, a, 0;n+ `)

+ξt(a)π(n+ `,Πt, 0)Vt+1(i, a, 0)

+ξt(a)[1− π(n+ `,Πt, 0)]Vt+1(s, a, 0)



+
Π∗

t−1β(a)

Πt−1 + Π∗
t−1

χ(Vt)


(1− ξt(a))[1− πf (n+ `,Πt,Π

∗
t , 1)]Vt+1(nf2, a, 1;n+ `)

+(1− ξt(a))πf (n+ `,Πt,Π
∗
t , 1)Vt+1(f2, a, 1;n+ `)

+ξt(a)π(n+ `,Πt, 1)Vt+1(i, a, 1)

+ξt(a)[1− π(n+ `,Πt, 1)]Vt+1(s, a, 1)



+
Πt−1β(a)

Πt−1 + Π∗
t−1


φ(0, a)(1− π∗(n+ `,Π∗

t )(1− ξt(a))Wt+1(nf2, a,V;n+ `)

+φ(0, a)π∗(n+ `,Π∗
t )(1− ξt(a))Wt+1(f2, a,V;n+ `)

+(1− φ(0, a))(1− α(a))(1− ξt(a))Wt+1(f2, a,V;n+ `)

+φ(0, a)ξt(a)Wt+1(r, a,V)

+(1− φ(0, a))α(a)Wt+1(h, a,V)


The part multiplied by Πt−1β(a)

Πt−1+Π∗
t−1

(1− χ(Vt)) captures the continuation if the individual
started the period truly healthy and no vaccine is available by the end of the period.
The first two lines within the associated square bracket capture the case without test-
ing, where this individual either does not contract another fever and enters nf2 next
period, or does get a fever and enters f2 next period. The third and fourth lines capture
the case of testing, where the individual enters infected or susceptible status depend-
ing on whether they got Covid or not during this period. The simplicity of our setup is
visible in the fact that the multiplier Πt−1

Πt−1+Π∗
t−1

does not depends on the actual choices
last period. This feature is lost when going to more period, and the continuation value
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Vt+1 discussed below depends now on the actions taken in the current period. The rea-
son is that they influence beliefs about states in the next period, which is a continuous
variable (linked to the continuous variable ”time outside”). This increase in state space
for the value functions makes the multi-period-uncertainty setup much less tractable.

The part multiplied by Πt−1β(a)
Πt−1+Π∗

t−1
χ(Vt) captures the continuation for an indiviual

who started the period truly healthy and a vaccine does become available during this
period. The terms in the associated bracket are similar to before, but another fever
only arises in the case of common cold captured through the indicator V = 1 in both
πf and π. Obviously this also affects the beliefs about the infection status in the second
period of uncertainty discussed below.

The part multiplied by Πt−1β(a)
Πt−1+Π∗

t−1
captures the continuation if the individual started

the period truly infected. In the associated square brackets the first three lines capture
the cases without testing. The first is the case where the individual recovers and does
not get another cold, in which case they enter nf2. The second line captures recovery
but the person catches a cold (but cannot again get Covid) and enters f2. The third
line is the case where the person does not recover and neither goes to hospital, in
which case they enters f2 (as a truly infected person). The fifth line captures that the
individual recovers and gets tested, entering the r state. And the last line captures the
transition into hospital, in which case the individual learns their health status and goes
into h state. Transitions are again averaged over vaccine arrival which affects future
lockdowns, with the only slight twist that for the two second-period untested states
j ∈ {f2, nf2} the continuation value also conditions on current-period actions:

Wt+1(j, a,V ;n+ f) = χ(V)Vt+1(j, a, 1;n+ `) + (1− χ(V))Vt+1(j, a, 0;n+ `).

E.1.4 f2 fever people in period t:

To discuss the second period of uncertainty for f2 and nf2 individuals, it is sometimes
convenient to index the transmission probability Πt by the vaccine availability at the
end of that period, i.e., by Vt+1. The presence or arrival of a vaccine suppresses fur-
ther infections and is public knowledge, so we write Πt(Vt+1) where Πt(0) = Πt as
before and Πt(1) = 0 in the presence of a vaccine. With this convention we can also
write πf (nt + `t,Πt(Vt+1)) instead of the longer πf (nt + `t,Πt(Vt+1),Vt) as the number
is independent of the last argument. We do the same for π(·).

For fever-2 people, Π∗
t−2

Πt−2+Π∗
t−2
πf (nt−1 + `t−1,Πt−1(Vt))(1 − ξt−1(a)) is the chance of

entering into the fever-2 state from a healthy state, where nt−1 + `t−1 is the time that
f1 individuals of the same age spent outside in the previous period. For such an individual
who f2 from a healthy state the following holds:

The chance of being susceptible is Π∗
t−1

Πt−1(Vt)+Π∗
t−1
.
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The chance of being infected is Πt−1(Vt)
Πt−1(Vt)+Π∗

t−1
.

The chance of entering into the fever-2 state from the infected state is
Πt−2

Πt−2+Π∗
t−2

(1− φ(0, a))(1− α(a))(1− ξt−1(a)) for someone who continues to be infected
Π∗

t−2

Πt−2+Π∗
t−2
φ(0, a)π∗(nt−1 + `t−1, π

∗
t−1)(1− ξt−1(a)) for someone who recovered

Putting this together, Bayes rule says that the chance of being susceptible condi-
tional on fever-2 state is

Πf2(Πt−2,Πt−1(Vt),Π∗t−1, nt−1 + `t−1)

=

Π∗
t−2

Πt−2+Π∗
t−2

Π∗
t−1

Πt−1(Vt)+Π∗
t−1
πf (nt−1 + `t−1,Πt−1(Vt),Π∗t−1) Π∗

t−2

Πt−2+Π∗
t−2
πf (nt−1 + `t−1,Πt−1(Vt),Π∗t−1) + Πt−2

Πt−2+Π∗
t−2

(1− φ(h, a))(1− α(a))

+
Π∗

t−2

Πt−2+Π∗
t−2
φ(0, a)π∗(nt−1 + `t−1,Π

∗
t−1)


To compute these beliefs, the actions from the previous period matter. So, the state
space of an individual in period t includes all possible actions taken last period, which
is an infinite-dimensional object. Or framed otherwise, beliefs in the current period
can take any value on a continuum and create therefore an infinite-dimensional state
space, while before the beliefs were tied down by a number that depended on the
relative probability of the Covid versus a common cold only.

The chance of being recovered is:

Rf2(Πt−2,Πt−1(Vt),Π∗t−1, nt−1 + `t−1)

=

Π∗
t−2

Πt−2+Π∗
t−2
φ(0, a)π∗(nt−1 + `t−1,Π

∗
t−1) Π∗

t−2

Πt−2+Π∗
t−2
πf (nt−1 + `t−1,Πt−1(Vt),Π∗t−1) + Πt−2

Πt−2+Π∗
t−2

(1− φ(h, a))(1− α(a))

+
Π∗

t−2

Πt−2+Π∗
t−2
φ(0, a)π∗(nt−1 + `t−1,Π

∗
t−1)


The chance of being infected is then the complement of these two.

Except for this belief, the value function for f2 individuals is otherwise identical to
the baseline model:

Vt(f2, a,Vt;nt−1 + `t−1)

= max
c,x,n,v,`,d

u(c, g(x, `), d, v)

+Πf2(Πt−2,Πt−1(Vt),Π∗
t−1, nt−1 + `t−1)Ṽt(c, x, n, l, d; s, a,Vt)

+[1−Πf2(Πt−2,Πt−1(Vt),Π∗
t−1, nt−1 + `t−1)−Rf2(Πt−2,Πt−1(Vt),Π∗

t−1, nt−1 + `t−1)]Ṽt(c, x, n, l, d; i, a,Vt)

+Rf2(Πt−2,Πt−1(Vt),Π∗
t−1, nt−1 + `t−1)β(a)Wt(r, a,Vt)

where Ṽt(c, x, n, l, d; s, a,Vt) represents the last three lines of the value function for sus-
ceptible and Ṽt(c, x, n, l, d; i, a,Vt) the last three lines of the value function of infected
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(who know that they are infected) above, and the last line captures the case of contin-
uation with the knowledge of being recovered.

E.2 nf2 no fever people in period t :

For no-fever-2 people there are again several chances. They might be susceptible or
they are recovered. Let again nt−1 + `t−1 denote the time that f1 individuals of the same age
spent outside the previous period.

The chance to arrive in nf2 being susceptible is Π∗
t−2

Πt−2+Π∗
t−2

[1−πf (nt−1+`t−1,Πt−1(Vt),Π∗t−1)](1−
ξt−1(a))

The chance to arrive in nf2 being recovered is Πt−2

Πt−2+Π∗
t−2
φ(0, a)(1− ξt−1(a))

Putting this together, the chance of being susceptible conditional on the no-fever-2
state is

Πnf2(Πt−2,Πt−1(Vt),Π∗t−1, nt−1 + `t−1)

=

Π∗
t−2

Πt−2+Π∗
t−2

[1− πf (nt−1 + `t−1,Πt−1(Vt),Π∗t−1)]

Π∗
t−2

Πt−2+Π∗
t−2

[1− πf (nt−1 + `t−1,Πt−1(Vt),Π∗t−1)] + Πt−2

Πt−2+Π∗
t−2
φ(0, a)

Then the value function becomes simply

Vt(nf2, a,Vt;nt−1 + `t−1)

= max
c,x,n,v,`,d

u(c, g(x, `), d, v)

+Πnf2(Πt−2,Πt−1(Vt),Π∗t−1, nt−1 + `t−1)Ṽt(c, x, n, l, d; s, a,Vt)

+[1− Πnf2(Πt−2,Πt−1(Vt),Π∗t−1, nt−1 + `t−1)]β(a)Wt+1(r, a,Vt)

where Ṽt(c, x, n, l, d; s, a,Vt) is as explained before, andWt+1(r, a,Vt) is the continuation
value of being recovered and knowing it.

The value from being in hospital Vt(h, a) and the value of knowingly being recov-
ered Vt(r, a) are unchanged from the baseline model in the main text.

E.3 Type Distributions in the model with two periods of uncertainty

Now we have more uncertainty types than in the baseline model. We have f1, as
well as f2 and nf2. The f1 state can be split into fi1 for ”fever-infected1” and fs1 for
”fever-susceptible1”. The same we can do for f2, which can be split into fi2 ”fever-
infected2” and fs2 ”fever-susceptible2” and fr2 ”fever-recovered2” (where the latter
are recovered individuals who have a cold and do not know that they have recovered).
Then we also can split the nf2 into nfs2 for ”no-fever-susceptible2” and nfr2 for ”no-
fever-recovered2”.
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The system of transition equations is similar to before. Just where there used to be
one fever state, there are now f1, f2 and nf2. From the other states s, i, h, r individuals
flow into the first fever state. People flow out of the second fever state and the sec-
ond non-fever-state back into the other states s, i, h, r. And then we need transitions
between the first and the second fever states. Note that optimal choices now not only
condition on the current vaccine availability Vt, but also sometimes on past vaccine
availability Vt−1. This is innocuous for Vt = 0, as Vt−1 = 0 trivially in this case.

We will first discuss the case where no vaccine has arrived until t+ 1.
For the s state we now have evolution:

Mt+1(s, a) = Mt(s, a)∆(a)

[
1− πf (nt(s, a,Vt) + `t(s, a,Vt),Πt,Π

∗
t ,Vt)

+π∗(nt(s, a,Vt) + `t(s, a,Vt),Π∗t )ξt(a)

]

+Mt(nfs2, a)∆(a)

[
1− πf (nt(nf2, a,Vt,Vt−1) + `t(nf2, a,Vt,Vt−1),Πt,Π

∗
t ,Vt)

+π∗(nt(nf2, a,Vt,Vt−1) + `t(nf2, a,Vt,Vt−1),Π∗t )ξt(a)

]

+Mt(fs2, a)∆(a)

[
1− πf (nt(f2, a,Vt,Vt−1) + `t(f2, a,Vt,Vt−1),Πt,Π

∗
t ,Vt)

+π∗(nt(f2, a,Vt,Vt−1) + `t(f2, a,Vt,Vt−1),Π∗t )ξt(a)

]
+Mt(fs1, a)∆(a)[1− π(nt(f1, a,Vt) + `t(f1, a,Vt),Πt,Vt)]ξt(a)

The first line is the same as in the baseline model and describes who of the susceptible
stay susceptible next period. The second line uses exactly the same terms but applies
them to the second-period non-fever-susceptible people. The third line does the same
for the second-period fever-susceptible. The first three lines look similar, but the ac-
tions for n and l that are taken are different. The last line is for the fever-susceptible
in the first period: They can only become susceptible if they get tested. And then only
if they did not catch the disease this period. (In the last line it is the function π that
indicates actually contracting Covid; it is not function πf for any type of fever or π∗ for
a simple cold as in the previous lines.)

The evolution for people who know that they are infected now becomes

Mt+1(i, a) = Mt(s, a)∆(a)ξt(a)π(nt(s, a,Vt) + `t(s, a,Vt),Πt,Vt)

+Mt(nfs2, a)∆(a)ξt(a)π(nt(nf2, a,Vt,Vt−1) + `t(nf2, a,Vt,Vt−1),Πt,Vt)

+Mt(fs2, a)∆(a)ξt(a)π(nt(f2, a,Vt,Vt−1) + `t(f2, a,Vt,Vt−1),Πt,Vt)

+Mt(fs1, a)∆(a)ξt(a)π(nt(f1, a,Vt,Vt−1) + `t(f1, a,Vt,Vt−1),Πt,Vt)

+[Mt(i, a) +Mt(fi2, a) +Mt(fi1, a)ξt(a)](1− φ(0, a))(1− α(a))

The first line remains unchanged and captures those who know that they are suscep-
tible who get Covid this period and are tested. The next three lines have the same
expressions for agents that are susceptible but do not know their status. The last line
captures all those who were already infected and who neither recover nor go to the
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hospital. People in the i state know their type and those in fi2 state get to know it at
the end of the period, but those in fi1 state only get to know it if they get tested.

For those in the hospital state h:

Mt+1(h, a) = [Mt(i, a) +Mt(fi2, a) +Mt(fi1, a)]∆(a)(1− φ(0, a))α(a)

+Mt(h, a)∆(a)(1− δt(a))(1− φ(1, a))

The hospital transitions remain essentially unchanged except that all infected states
are included in the first line. The first line captures infected individuals who do not re-
cover but go to hospital (where their type is revealed even if they did not know before).
The second line capture those who were already in hospital and neither recovered nor
died.

Those that know that they have recovered, i.e., state r:

Mt+1(r, a) = [Mt(i, a) +Mt(fi2, a) +Mt(fi1, a)ξt(a)]∆(a)φ(0, a)

+Mt(h, a)∆(a)φ(1, a)

+[Mt(r, a) +Mt(nfr2, a) +Mt(fr2, a)]∆(a)

The first line adds all infected agents that recover, but for period-one this only counts
those that get tested (because untested agents in period 1 remain unsure about their
type). The second line captures recovery from hospital. The third line adds all recov-
ered agents that survive (note that there are no such individuals in the period-1-fever
state). This includes the nfr2 and the fr2 agents, whose status is revealed at the end
of the second period.

The evolution for Covid-deceased agents does not change:

Mt+1(deceased, a) = Mt(deceased, a) + (1− φ(1, a))δ(a)Mt(h, a)∆(a).

First period of fever:

Mt+1(fs1, a) = Mt(s, a)∆(a)(1− ξt(a))π∗(nt(s, a,Vt) + `t(s, a,Vt),Π∗t )

+Mt(fs2, a)∆(a)(1− ξt(a))π∗(nt(f2, a,Vt,Vt−1) + `t(f2, a,Vt,Vt−1),Π∗t )

+Mt(nfs2, a)∆(a)(1− ξt(a))π∗(nt(nf2, a,Vt,Vt−1) + `t(nf2, a,Vt,Vt−1),Π∗t )

This is identical to the expression (14) for fever-susceptible in the baseline model,
only that the second line captures the fever-susceptible in the second period who can
again become fever-1-susceptible through a new cold. This does not involve fever-
susceptible from period 1, as these either move to period 1 or get tested and their state
revealed. (It is π∗ in the formula, i.e., the chance of contracting the common cold).

A-27



Fever-infected fi1:

Mt+1(fi1, a) = Mt(s, a)∆(a)(1− ξt(a))π(nt(s, a,Vt,Vt−1) + `t(s, a,Vt,Vt−1),Πt,Vt)

+Mt(fs2, a)∆(a)(1− ξt(a))π(nt(f2, a,Vt,Vt−1) + `t(f2, a,Vt,Vt−1),Πt,Vt)

+Mt(nfs2, a)∆(a)(1− ξt(a))π(nt(nf2, a,Vt,Vt−1) + `t(nf2, a,Vt,Vt−1),Πt,Vt)

It has the same logic as for fs1, just that these individuals got Covid instead of the
common cold. (Note that it is π in the formula.)

Second-period:
These transition probabilities have no analogue in the baseline model.
Fever-susceptible fs2 :

Mt+1(fs2, a) = Mt(fs1, a)∆(a)(1− ξt(a))π∗(nt(f1, a,Vt) + `t(f1, a,Vt),Π∗t )

It includes those that are fever-susceptible in period 1, do not get tested, and get an-
other cold.

Fever-infected fi2:

Mt+1(fi2, a) = Mt(fs1, a)∆(a)(1− ξt(a))π(nt(f1, a,Vt) + `t(f1, a,Vt),Πt,Vt)

+Mt(fi1, a)∆(a)(1− ξt(a))(1− α(a))(1− φ(0, a))

It captures the fever-susceptible from period 1 that do not get tested and now get
Covid, as well as the fever-infected from period 1 that do not go to the hospital nor get
healed nor tested.

Fever-recovered fr2:

Mt+1(fr2, a) = Mt(fi1, a)∆(a)φ(0, a)π∗(nt(f1, a,Vt) + `t(f1, a,Vt),Π∗t )(1− ξt(a))

They comprise the first-period fever-infected who recover but get another cold and are
not tested.

No-fever-recovered nfr2:

Mt+1(nfr2, a) = Mt(fi1, a)∆(a)φ(0, a)(1− π∗(nt(f1, a,Vt) + `t(f1, a,Vt),Π∗t ))(1− ξt(a))

The no-fever-recovered comprise the period-1-fever-infected who recover and do not
get a cold nor are tested.

No-fever-susceptible nfs2:

Mt+1(nfs2, a) = Mt(fs1, a)∆(a)(1− ξt(a))[1− πf (nt(f1, a,Vt) + `t(f1, a,Vt),Πt,Π
∗
t ,Vt)]
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They comprise the period-1-fever-susceptible who are not tested and do not develop
a fever.

If a vaccine arrived by t+ 1, the equations in this subsection remain unchanged ex-
cept that πf , π and π∗ need to be set to zero as no new infections and no new confusion
with fever arise.

E.4 Aggregation in the model with two periods of uncertainty

One can now add up the period infection statistic as

Π̂t = Π0

∑
ã,j∈{fi1,fi2,i,h}

(nt(j, ã,Vt,Vt−1) + `t(j, ã,Vt,Vt−1))Mt(j, ã)

and output as

Qt =
∑
j

w[nt(j, y,Vt,Vt−1) + ι(vt(j, y,Vt,Vt−1))vt(j, y,Vt,Vt−1)]Mt(j, y)

where the sum over j now includes all (including the new) states (and where the ar-
gument of the action includes Vt−1 even though this is only relevant for f2-individuals
and nf2-individuals).

And the aggregate capacity constraint for testing becomes

ξt(a) = AaKt/



∑
ãAã[Mt(s, ã)πf (nt(s, ã,Vt) + `t(s, ã,Vt),Πt(Vt))+

Mt(fs1, a) +Mt(fi1, a)+

Mt(fs2, ã)πf (nt(f2, ã,Vt,Vt−1) + `t(f2, ã,Vt,Vt−1),Πt,Π
∗
t ,Vt)+

Mt(fr2, ã)π∗(nt(f2, ã,Vt,Vt−1) + `t(f2, ã,Vt,Vt−1),Π∗t )+

Mt(nfs2, ã)πf (nt(nf2, ã,Vt,Vt−1) + `t(nf2, ã,Vt,Vt−1),Πt,Π
∗
t ,Vt)+

Mt(nfr2, ã)π∗(nt(nf2, ã,Vt,Vt−1) + `t(nf2, ã,Vt,Vt−1),Π∗t )+

Mt(r, ã)π∗(nt(r, ã,Vt) + `t(r, ã,Vt),Π∗t )]


where in the baseline Ay = A0 = 1, but Ay 6= 1 can be applied if the young get tested
at a different frequency from the old. Here the susceptible and recovered might get
tested if they get new symptoms and the fever-1 individuals might get tested based on
their current status.

One can also create other statistics by adding up, as all agents that have some in-
fection I (whether known or not)

Mt(I, a) = Mt(i, a) +Mt(fi1, a) +Mt(fi2, a)

Mt(I) =
∑
ã

Mt(I, ã)
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or that have recovered R (whether known or not)

Mt(R, a) = Mt(r, a) +Mt(fr2, a) +Mt(nfr2, a)

Mt(R) =
∑
ã

Mt(R, ã).
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