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Extreme weather like hurricanes, flooding, and extreme heat has devastated regions around the

world. In the United States alone, these events have caused over $700 billion in damage since 2017,

and trillions of dollars of damage since 1980, with the majority caused by hurricanes (Weinkle et al.,

2018; NOAA, 2022b,a). One of the key levers for mitigating the destructive impacts of extreme

weather, and especially hurricanes, is forecasting. Forecasts provide information on the expected

strength, location, and timing of the event, allowing households and government actors to make

better preparation decisions. Despite their importance and ubiquity, however, there is limited

evidence on the historical value of hurricane forecasts or the potential value of future forecasting

improvements.

In this paper, we investigate the value and economic impact of hurricane forecasts in the US.1

Using the actual models underpinning the national hurricane forecast system, we develop a new

county-level dataset of forecasts and realizations of wind speed and precipitation, as well as the ex

ante uncertainty embedded in the forecasts. Our dataset consists of the 31 Category 1 and greater

hurricanes (maximum wind speeds greater than 33 meters per second [m/s]) that made landfall

in the continental US between 2005–2022. In total, our dataset accounts for over 70% of direct

property damage and about 40% of deaths for all environmental hazards in the US during this time

period. We use these new data to (1) estimate how emergency federal expenditures for protecting

against hurricanes respond to forecast information, (2) estimate the costs of forecast errors in

terms of damages and increased expenditures for post-hurricane recovery, and (3) our primary

contribution, estimate the ex ante marginal value of a forecast improvement using a newly-developed,

theoretically-grounded approach. Our method accounts for unobserved protective actions taken

prior to landfall, and it is flexible enough to be applied to other kinds of hazardous weather forecasts.

We then use our estimates to value the dramatic improvements in wind speed forecast accuracy

since the 2000s.

The value of hurricane forecasts comes from how they help agents make better protective

decisions. We start our analysis by estimating how hurricane forecasts a↵ect the allocation of

federal emergency protective expenditures in the days before a hurricane reaches land. The federal

government disburses significant resources to reduce the immediate impact of hurricanes. For

example, in anticipation of Hurricane Irma, Miami-Dade County was awarded over $13 million to

fund protective protective measures, including more than 9,500 hours of overtime for police o�cers

to conduct evacuations and implement protective operations before landfall (FEMA, 2019).

In our analysis, we find that a county’s allocated federal protective expenditures for an impending

hurricane is increasing in its wind speed forecast. Counties forecast to experience hurricane-force

winds receive $36 million more in protective expenditures than counties forecast to have lower,

sub-hurricane force winds. This is equivalent to 0.8% more funding as a share of county GDP, or

over $300 more per person. These findings suggest that forecasts play a significant role in driving

1We focus on hurricane forecasts that are issued in the several days between a hurricane’s formation and its landfall,
however, there also exist seasonal forecasts of the characteristics of an entire hurricane season. Recent empirical
work has found that seasonal hurricane forecasts, issued once per year, do not seem to be priced in options markets
(Lemoine and Kapnick, 2024).
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protective actions.

We next estimate the consequences of forecast errors. Conditional on hurricane intensity, forecast

errors matter only if protective actions respond to forecasts and also mitigate hurricane impacts. We

find that there are economically significant increases in damages and post-landfall federal disaster

recovery costs from underestimating hurricane wind speed, after flexibly conditioning on realized

wind speed and precipitation. Relative to a perfect forecast, underestimating wind speed by 10

m/s – an error that would be a misclassification by up to two categories on the commonly used

Sa�r-Simpson scale – increases county-specific damages by $220 million and after-landfall federal

emergency expenditures for recovery by $20 million. For damages, this is about 15% of county GDP

or over $5,500 per person.

Finally, our main contribution is a new theoretically-grounded approach to estimate the expected

total cost reduction from a marginal decrease in a forecast’s ex ante standard deviation. We call

this the value of a forecast improvement. Lower standard deviation forecasts have smaller ex post

errors, which means agents are less likely to uptake excess protective costs from an over-forecast, or

incur excess damages and recovery costs from an under-forecast. We show that the marginal value

of a forecast improvement can be identified by first regressing the sum of damages and recovery

expenditures on the ex post squared error in the forecast, and then multiplying the estimate by

the baseline ex ante standard deviation at which we are valuing the marginal improvement. This

approach does not require observing pre-landfall protective actions, so we are able to establish

the value of a forecast improvement without having to track how agents might protect themselves

against a hurricane. Properly estimating the value of a forecast improvement does require observing

the ex ante forecast standard deviation, a feature unique to our newly-constructed forecast dataset.

Overall, we find that a marginal reduction in a forecast’s squared wind speed error reduces

total protective expenditures, damages, and recovery expenditures in a county by $5.5 million per

hurricane, equivalent to about 0.45% of county GDP or $160 per person. Inserting these estimates

into our theoretically-grounded expression for the value of a 1 standard deviation reduction in

forecast uncertainty indicates that this value is about $16 million per hurricane per county when

evaluated at our sample average forecast standard deviation. This value of a forecast improvement

is driven entirely by counties that experience hurricane-force winds. We then use our estimates to

value the historical improvements in forecasting over 2007-2022, and find that they led to a 19%

reduction in total hurricane costs, about $2 billion per hurricane. The average benefit per hurricane

is larger than the budget for all federal weather forecasting in the US in 2015 (Congressional

Research Service, 2015).

Overall, our paper adds to a sparse and relatively new literature on environmental forecasts.

Some of the earliest work studied the role of weather forecasts in agriculture and shipping (Lave, 1963;

Craft, 1998). More recently, researchers have studied the economic e↵ects of precipitation forecasts

in construction and automobile accidents (Downey, Lind and Shrader, 2023; Anand, 2024), as well

as how forecasts can be used to measure climate damages accounting for adaptation (Shrader).

Two recent papers on pollution and temperature are closest to ours in spirit in aiming to
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estimate the value forecasts accounting for adaptation. Barwick, Li, Lin and Zou (2024) estimates

the value of air pollution monitoring in China – accounting for some adaptation costs by directly

estimating them – and finds that the benefits of the monitoring system exceed the costs by an order

of magnitude. Shrader, Bakkensen and Lemoine (2023) evaluates the benefits of improving routine

temperature forecasts – inclusive of protective costs – and finds that cutting errors in half would

save thousands of lives per year, generating benefits of billions of dollars.

We contribute to this literature in several ways. First, we provide a novel overall assessment

of the US hurricane forecast system and the improvements in its accuracy.2 Second, we provide a

general method to value any kind of hazard forecast, inclusive of all ex ante adaptation or protective

costs. Third, after taking a stand on the distributional family of a forecast, our approach can value

changes in the second moment of the forecast. This allows us to go beyond aggregate cost-benefit

analysis and provide marginal values that could be used to analyze optimal levels of investments for

improving forecasts.

This paper also contributes to a broader literature on the economic impacts of hurricanes and

natural disasters. Hurricanes and tropical cyclones have been shown to be strongly associated with

negative impacts on industrial production, national income, municipal financing, mortality, and

welfare (Noy, 2009; Hsiang, 2010; Strobl, 2011; Hsiang and Jina, 2014; Bakkensen and Barrage,

Forthcoming; Auh, Choi, Deryugina and Park, 2022; Jerch, Kahn and Lin, 2023; Young and

Hsiang, 2024). Historically, the US has su↵ered abnormally high damages due to hurricanes, and

climate change is expected to amplify them while also making hurricane forecasting more di�cult

(Mendelsohn et al., 2012; Emanuel, 2017; Kossin et al., 2020).3 Recent research suggests that

damages caused by storms like hurricanes significantly magnify the impacts of climate change (Bilal

and Rossi-Hansberg, 2023), but that a third of the climate change-induced damages in the US could

be o↵set by appropriate investments into long-run adaptation capital (Fried, 2022).

We add to this literature by studying the role of information. Because the US has made only

limited long-run hurricane adaptation investments, accurate forecasts are even more critical to

reduce the impacts of hurricanes. Good forecasts help households and governmental agencies better

allocate the necessary adaptive resources in the short window of time between the formation of a

hurricane and its landfall.4 Our theoretical results indicate that the expected decrease in hurricane

forecastability under climate change will make future improvements more valuable on the margin,

while our empirical results suggest the avoided costs from the actual hurricane forecast improvements

since 2007 are half the size of the avoided climate change-induced costs from optimal long-run

adaptive capital investments (Fried, 2022).

2Martinez (2020) performs a similar exercise but only for forecasts of hurricane track, and using less than 100
observations of outcomes aggregated to the hurricane level.

3Hurricanes have recently been both moving slower across space while also intensifying much more rapidly (Kossin,
2018; Bhatia et al., 2019), potentially leading to their observed rising destructiveness in recent decades (Emanuel,
2005; Grinsted et al., 2019).

4Recent work has shown individuals stock up on emergency supplies before a hurricane and that the costs of
before-landfall evacuations can exceed tens of millions of dollars per hurricane (Beatty et al., 2019; Gellman et al.,
2024).
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Finally, our findings also add to a limited stated-preference literature on the value of hurricane

forecasts. This literature finds that, in the aggregate, households in hurricane-vulnerable areas value

recent forecast improvements at about $300 million per year (Lazo et al., 2010; Lazo and Waldman,

2011; Molina et al., 2021). Using data on actual damages, we find the value of hurricane forecast

improvements is significantly larger.

The paper proceeds as follows. Section 1 provides background information on hurricanes and

hurricane forecasts. Section 2 describes the data we use in our analysis. Section 3 presents our

methods and results. Section 4 concludes.

1 Background

Hurricanes are a type of tropical cyclone, a rotating storm system that forms over warm tropical or

subtropical waters and with 1-minute maximum sustained wind speeds (from hereon “wind speed”)

of at least 17.5 m/s (39 mph). When maximum wind speeds reach 17.5–32.9 m/s (39–73 mph),

the system is classified as a tropical storm and receives an o�cial name. If maximum wind speeds

exceed 33 m/s (� 74 mph), it becomes a hurricane (in the Atlantic and Eastern Pacific), a typhoon

(in the Western Pacific), or a cyclone (in the Indian Ocean and South Pacific). In the rest of the

paper we will refer to the hurricanes in our analysis as hurricanes or storms.

Hurricanes are further categorized on the Sa�r-Simpson Hurricane Wind Scale to provide a

heuristic for hurricane intensity. The scale ranges from Category 1 (33–42 m/s or 74–95 mph) to

Category 5 (� 70 m/s or � 157 mph). The potential for damages increases with Category (Emanuel,

2003). The Sa�r-Simpson categorization is usually done when the hurricane is over water, as it is

there where maximum wind speeds are developed, particularly around the eye wall. An important

feature of hurricanes, however, is that they weaken considerably and rapidly after making contact

with land (Li and Chakraborty, 2020; Nolan et al., 2021). This drives a disconnect between a

hurricane’s reported category and the realized and forecast wind speeds over land.

Despite the historical reliance upon wind speed for hurricane classification, hurricanes are multi-

dimensional disasters. Hurricanes cause damage through wind exposure, inland flooding caused by

extreme precipitation, and coastal flooding caused by storm surge. Recent analyses estimate that

wind causes about 40% of damage, with flooding accounting for the other 60% (US Congressional

Budget O�ce, 2019; Hilderbrand and Xie, 2025), however, the share of damage caused by wind and

storm surge tends to be higher for major hurricanes like those in our data (Hilderbrand and Xie,

2025).5

The National Hurricane Center (NHC) issues o�cial forecasts every six hours during an active

tropical cyclone, providing forecasts of the storm’s track (the path that the eye of the hurricane will

follow), intensity, and size. Each forecast includes deterministic projections as well as probabilistic

guidance intended to convey uncertainty in the storm’s evolution. Forecasts are then communicated

5Although we do not have data on storm surge forecasts and realizations, storm surge is primarily caused by wind
so our wind realization variables will be picking up some of the e↵ects of unobserved storm surge realizations (NOAA,
2025).
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to the public in several ways, with some focusing on the track and others focusing on intensity. One

well-known communication tool is the cone of uncertainty. This is a graphical representation of the

probable path of the center of a storm over time. The cone is constructed so that, given the recent

history of forecast errors, the actual path will fall inside the cone about two-thirds of the time.6

Forecasts are also used to issue o�cial watches and warnings, which guide emergency response

and public communication. A tropical storm warning is issued when winds between 17.5–32.9 m/s

(39–73 mph) are expected within a specific area, typically within 36 hours. Hurricane warnings are

issued when expected wind speeds exceed 33 m/s (74 mph).7

O�cially sanctioned forecasts for hurricanes in the US date back to the late 1800s. Initially,

forecasts and warnings were the responsibility of the US Weather Bureau, which relied on land-based

weather stations and observations from vessels along the Atlantic coast and in the Gulf of Mexico

(DeMaria, 1996). The detection of hurricanes and the ability to predict their paths significantly

improved following World War II, with advances in the understanding of atmospheric processes,

and access to aircraft reconnaissance and radar. These advances eventually led to the establishment

of the Miami Hurricane Warning O�ce to provide yearly hurricane season summaries for the US

(Norton, 1951). Further federal commitment to hurricane forecasts came after a series of devastating

hurricanes in the 1954 and 1955 seasons, which led Congress to create the National Hurricane

Research Project in 1956 (DeMaria, 1996). The eventual coordination and collocation of the

Research Project, the Warning O�ce, and Aircraft Operations resulted in what is now known as

the NHC (Sheets, 1990). The advent of computer modeling and meteorological satellites resulted in

significant improvements in forecasting capabilities after 1970, setting the foundation for modern

forecasts (Sheets, 1990).

While forecasts of hurricane tracks continued to improve gradually over the years, generating

reliable forecasts of wind speed remained a challenge. These limitations became evident when the

country experienced 13 hurricane landfalls during the 2002-2005 hurricane seasons – 10 of them

in 2004 and 2005. The 2004 and 2005 hurricanes alone were responsible for at least 5,200 deaths

and $229 billion in damages, underscoring the need for more aggressive forecast improvements

(Czajkowski et al., 2011; Strobl, 2011).8

Following these catastrophic seasons, Congress mandated the creation of the Hurricane Forecast

Improvement Project (HFIP) in 2007 by the National Oceanic and Atmospheric Administration

(NOAA). The goal of the HFIP was to improve both storm track and wind intensity forecasts

through coordinated e↵orts from the research and operational communities (Gall et al., 2013).

Initially, the project was intended to continue for 10 years. It funded research and operations, and

6The size of the cone reflects historical forecast skill rather than real-time uncertainty in any specific storm.
Importantly, the cone does not represent the size of the storm or the extent of damaging conditions, which can occur
far outside its boundaries (Broad et al., 2007). See the o�cial documentation of the cone of uncertainty, as well as the
guidelines for interpretation here: https://www.nhc.noaa.gov/aboutcone.shtml.

7Storm surge and extreme wind warnings are issued separately, depending on local risk. See the o�cial glossary for
warnings here: https://www.weather.gov/safety/hurricane-ww.

8Hurricane Charley, which struck in 2004, was the strongest hurricane to reach land in the US since 1992. In 2005,
Katrina struck, becoming one of the costliest hurricanes in US history. That same year, Rita and Wilma (two of the
strongest Atlantic hurricanes ever recorded at that time) also struck.
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made significant investments in high-performance computing to support both these aims. The

original 10-year goals were to reduce average track errors by 50%, and to reduce average wind

speed errors by 50%. In addition, the project was also expected to improve the prediction of rapid

intensification of hurricanes and extend the forecast lead time from five to seven days. In 2017 the

project was given a new name, the Hurricane Forecast Improvement Program, and funding was

renewed and extended through at least 2024. The goals of the extension include an emphasis on an

advanced, unified-modeling system, probabilistic guidance, and improved communication of risk

and uncertainty (Marks and Brennan, 2019). From 2009 to 2019, the HFIP budget for research and

operations totaled approximately $250 million.

By any measure, these recent e↵orts to improve forecasts have been successful. Figure 1 plots

the average of the errors in the o�cial 1-, 2-, and 3-day ahead forecasts, as reported by the NHC

at the storm level. The figure shows that prior to the HFIP in 2007, wind speed forecast errors

were declining by 0.03 m/s each year, or about a 0.4% annual improvement. Since the inception of

the HFIP in 2007, there has been a dramatic increase in the quality of the forecasts. Wind speed

forecasts errors have been declining by 0.21 m/s each year since 2007, or 3% annually.9 These

improvements can be attributed to advances in remote sensing, direct observations, model physics,

and data assimilation techniques (Alaka Jr et al., 2024). In our valuation exercises, we will estimate

the value of this change in the rate of forecast improvement.

For forecasts to have value, decision-makers need to use them. A small academic literature finds

that forecasts are important inputs into decisions of local emergency managers facing an impeding

hurricane. Their decisions are well-predicted by storm surge, hurricane category (wind), and timing

of landfall (Gudishala and Wilmot, 2017), while surveys find they focus on flooding, storm surge,

wind speed, and precipitation (Iman et al., 2023). The historical reliance on the Sa�r-Simpson

scale and wind speed as an overall measure of hurricane intensity suggests that wind speed may be

a key factor in driving protective expenditures.10,11

2 Data

Our analysis focuses on a county-hurricane as the unit of observation (e.g., Kings County, NY and

Hurricane Sandy), and uses data on hurricane intensity forecasts, hurricane intensity realizations,

protective expenditures, recovery expenditures, and damages at the county-level for all 31 hurricanes

that made landfall in the continental US from 2005 to 2022. We focus on wind speed as our measure

of hurricane intensity.

9Historically, it has been much more di�cult to forecast the intensity a storm than to forecast the track it will follow
(Resnick, 2018). This is due to a combination of many factors, including previously poor computational resolutions,
and di�culties in predicting which hurricanes will go under rapid intensification as they near landfall (Enten, 2017;
Norcross, 2018).

10The National Hurricane Center and National Weather Service did not begin issuing storm surge warnings until
2017, 12 years into our 17 year sample, making it unlikely that emergency actions were based on storm surge forecasts
for many hurricanes in our sample.

11Assigning hurricanes to categories is based upon the hurricane’s maximum sustained wind speed at a single point,
however this will be strongly correlated with wind speeds in other parts of the hurricane.
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Figure 1: Wind Speed Forecast Error Annual Trend.

Note: The figure shows the average absolute value error in NOAA’s maximum wind speed forecasts. The figure presents
the average between the 1, 2, and 3-day ahead forecast errors across all hurricanes and tropical storms in a given year.
Dotted lines represent the best linear fits for the time series before and after 2007, while the vertical dashed line marks
the implementation of the HFIP in 2007, which expanded funding for forecast research and development. The archive
for o�cial historical records data used to produce the figure is available at: https://www.nhc.noaa.gov/verification
[Last accessed on June 25, 2025].

2.1 Forecasts

For our analysis, we reconstruct the NHC forecast products from their raw data and models to

replicate the contemporaneous o�cial NOAA forecast. Here, we outline the data construction

procedure. The process starts with the baseline “deterministic forecast,” which we obtain from

the NHC archives for each hurricane. The determinstic forecast is a prediction of the hurricane

track and its maximum wind speed at given times along the track. This forecast is produced with

the input of leading weather models such as the US’s Global Forecast System model or Europe’s

European Centre for Medium-Range Weather Forecasts model, as well as the expert judgment of

forecasters at the NHC. These forecasts also incorporate real-time observational data from satellite

imagery, aircraft reconnaissance, and surface measurements (Hamill et al., 2012).

A probabilistic forecast is then derived from the baseline deterministic forecast. The process

consists of sampling 1,000 time series of track and maximum wind speed errors from the distribution

of errors over the previous 5-year forecast history, and then adding them to the current deterministic

track forecast to produce a distribution of hurricane tracks and maximum wind speeds along these

tracks.12 We secure the o�cial 1,000 track and maximum wind speed predictions at di↵erent lead

times for the hurricanes in our sample through a collaboration with the Cooperative Institute for

Research in the Atmosphere at Colorado State University. These predictions are created using the

12The construction of the probabilistic forecast uses an auto-regressive procedure that allows for serial correlation in
forecast errors (DeMaria et al., 2009, 2013). This captures important features of actual forecasts where if, for example,
the 3-day ahead forecast underestimates the maximum wind speed, the 2-day ahead forecast is likely to underestimate
it as well.
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data and model vintage available at the time of each hurricane. We then produce 1,000 gridded

wind speed forecast maps (i.e., rasters) by combining the 1,000 track forecasts and the maximum

wind speeds with a high resolution hurricane wind model. Given a hurricane’s maximum wind speed

and track, the model generates gridded wind speed forecasts at di↵erent distances from the eye of

the hurricane across the entire US (Willoughby et al., 2006; DeMaria et al., 2009, 2013). The

variability across the 1,000 maps captures errors and uncertainties that are specific to each hurricane

because of the relative history of forecast accuracy, the hurricane’s movement and location, and the

local climate.13

For the purpose of this study, we focus on the 1- to 3-day-ahead forecast. This encompasses the

time window followed by NOAA and the National Weather Service to issue watches and warnings to

areas potentially exposed to hurricane wind hazard. The wind speed forecast’s mean and standard

deviation are calculated across all 1,000 maps for forecasts one, two, and three days prior to landfall.

By relying on the o�cial inputs, we ensure that our forecast data are in essence identical to the o�cial

predictions for the hurricanes in our sample. It is worth noting that on average, the standard

deviation of the wind forecast has consistently declined over time. This is because progress in

computing power, measurement and data collection, and forecasters skill has made contemporaneous

forecasts more precise (Alaka Jr et al., 2024). As more precise forecasts accumulate over time,

smaller errors will be sampled to produce the probabilistic model.

Observed, or realized, wind speed is obtained by evaluating the observed hurricane track and

wind speed archived by the NHC in the gridded wind map model. Forecast errors are thus the

di↵erence between observed wind speed and the forecast mean across all predictions. For each

hurricane, we aggregate these forecast statistics and errors to the county-level using an unweighted

average across the forecast’s grid cells within the county. In the Supplemental Appendix, we test

the robustness of our results to population-weighted wind exposure.

To complete the data construction, we extend the framework above to cover precipitation

forecasts and realizations for each storm in our data. This consists of using the o�cial deterministic

forecast, as well as the 1,000 track and maximum wind forecasts, in conjunction with a high-

resolution hurricane precipitation model (Lonfat et al., 2007; DeMaria et al., 2006; Marks et al.,

2020). This model predicts spatial rainfall intensity based on storm intensity, size, forward speed,

and terrain e↵ects. The model produces a gridded map of precipitation forecasts for each lead

time and hurricane in our sample. As with wind, we calculate the mean and standard deviation of

precipitation forecasts across the 1,000 realizations, and compute forecast errors as the di↵erence

between observed precipitation and the gridded forecast mean. Observed precipitation is obtained

from the European Centre for Medium-Range Weather Forecasts (Muñoz-Sabater et al., 2021).14

As with wind speed, precipitation is aggregated up to the county-hurricane level.

13Most environmental economics research only uses aggregated forecast data instead of the full distribution. For
example, previous work has used probabilities of hurricane force winds (Kruttli et al., 2025) or fluctuations in the El
Niño–Southern Oscillation phenomenon (Downey et al., 2023).

14Following expert guidance, only precipitation within 500 km of the hurricane center is considered when computing
observed precipitation in order to avoid confounding hurricane-induced precipitation with precipitation caused by
routine weather.
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Figure 2: An Illustrative Example: Hurricane Katrina.

Note: Panels A, B, and C show Hurricane Katrina’s 1-3 day ahead average landfall forecast wind speed, the forecast’s
ex ante standard deviation, and the forecast’s errors. The dashed line shows the 3-day ahead forecast track, while the
blue line is the realized track. Positive values in Panel C are underestimates of the actual wind speed. The dotted
circles in Panel C display radii of 400 km and 600 km, centered around Nashville, TN, which is marked by the blue
dot. For our empirical results we use Conley Spatial HAC standard errors with a distance radius of 400 km. In the
Supplemental Appendix, we show robustness of our main results to the alternative radius.

Our final dataset includes forecasts, realizations, and forecast errors for wind speed and pre-

cipitation at the county-hurricane level, measured one, two, and three days before landfall. For

the analysis, we use the average forecast across this three-day lead period. This approach reflects

the range of protective actions available: some, such as installing temporary levees, require more

lead time, while others, like deploying emergency generators to hospitals, can be implemented on

shorter notice. Averaging the forecasts over a county provides a parsimonious way to capture the

influence of forecasts on a mix of protective responses. We focus primarily on wind speed in the

main text since it directly causes damage and is the basis for the Sa�r-Simpson hurricane scale,

one of the most common ways for conveying hurricane information. We also analyze hurricane track

and precipitation in the Supplemental Appendix.

Figure 2 illustrates the variation in our data using Hurricane Katrina as an example. Panel A in

the figure shows that winds over 25 m/s (50 mph) were expected to hit the northern Gulf Coast,

with a sharp decrease to 5 m/s (11 mph) as the hurricane moved inland and dissipated. Panel B

shows that, overall, Katrina’s forecast was most uncertain around the predicted point of landfall,

because of uncertainty about the degree of intensification before the storm’s arrival. Panel C shows

that the forecast had errors in both directions, but the underestimates tended to be much larger

than the overestimates. The asymmetry arises because Katrina intensified more than expected

just before landfall. If the forecast error was solely from incorrectly predicting the forecast track,

wind speed underestimates along the realized track would be symmetrically o↵set by wind speed

overestimates along the forecast track. However, since the overall intensity of the storm was also

underestimated, counties along the realized track had even larger underestimates, while counties

along the forecast track had smaller overestimates.

Supplemental Appendix D contains several additional figures highlighting the distribution of
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forecast outcomes. There, we show that errors are correlated with intensity, that wind speed and

precipitation are positively correlated, and that the ex ante uncertainty in the forecast is highly

correlated with the ex post error.15

2.2 Expenditures for Pre-Hurricane Protection and Post-Hurricane Recovery

We obtain data on publicly funded expenditures for hurricane-related protection and recovery e↵orts

through the Federal Emergency Management Agency (FEMA)’s Public Assistance Grant Program

(PAGM). Administered by FEMA, PAGM provides financial assistance to state, local, tribal, and

territorial governments, as well as certain nonprofit organizations, to support response and recovery

activities for major disasters (Kousky et al., 2015). Funding is available across a broad range

of eligible activities, including debris removal, emergency protective measures, and the repair or

replacement of damaged infrastructure.

The program distinguishes between Emergency Work, which includes immediate actions such

as debris removal and emergency protective measures, and Permanent Work, which involves

infrastructure restoration and rebuilding. Funding requests are submitted through FEMA’s Public

Assistance Grants Portal, evaluated for eligibility, and obligated based on estimated costs, with final

reconciliation after project completion. For large projects, funds are disbursed incrementally; for

small projects, funding is often provided upfront (See Appendix A for background and institutional

details of the PAGM).

We assign PAGM expenditures to hurricanes in our data using FEMA’s own categorizations

(FEMA, 2025b). Specifically, expenditures listed as Emergency Work expenditures, we define as

protective expenditures. Some examples of protective expenditures include: transporting and pre-

positioning equipment and other resources for response; search and rescue; emergency evacuations;

constructing emergency berms or temporary levees to provide protection from floodwaters or

landslides; and use or lease of temporary generators for facilities that provide essential community

services. In a specific example, $2 million was allocated to Louisiana for a request titled “Emergency

Evacuation Measures-Police Department Equipment Use” during Hurricane Katrina. This funded

over 170,000 hours of Police Department vehicles and apparatus to reduce and eliminate threats to

life and public safety, assists with the relocation of people to secure shelters, and facilitate response

and recovery operations.

We define expenditures classified under Permanent Work as recovery expenditures. Some examples

of recovery expenditures are permanent repair and replacement of roads, permanent repair of fish

and wildlife habitat, repair of buildings and structures, and repair of utilities facilities. Some projects

may serve multiple purposes and some measures could provide immediate protection, as well as

contribute to longer-term resilience. This makes a strict separation between protective and recovery

expenditures imperfect.

15These correlations will inform our analysis, for example, we will condition on precipitation forecasts when
estimating the e↵ects of wind speed forecasts to disentangle the two, and we will condition on realized hurricane
intensity to ensure that we are not confounding greater forecast errors with simply more intense storms.
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A limitation of the FEMA PAGM data is that they do not report the date when funding was

requested or when the work was done. One consequence of this is that protective expenditures

may occur prior to the forecasts captured in our data. Another consequence is that protective

expenditures that are allocated post-landfall—for example, for search and rescue—may be incorrectly

attributed to the forecast instead of the realized hurricane intensity. We test whether these are

major concerns for our results in our robustness checks in the Supplemental Appendix.

2.3 Economic Damages

Data on hurricane damages come from the Spatial Hazards Event and Losses Database for the

United States (SHELDUS). SHELDUS provides county-level information on the year and month of

the hurricane, and the direct losses that stem from fatalities, injuries, and damages to property and

crops. Following the Environmental Protection Agency’s guidelines, we estimate the losses from

deaths using a value of a statistical life of $9.39 million in 2019 dollars (US EPA, 2024). Because we

do not observe the types of injuries incurred, and have no way to clearly monetize them, we ignore

injuries in our analysis.

SHELDUS estimates damages based on data from sources such as NOAA’s Storm Events

Database, the National Climatic Data Center, and FEMA. SHELDUS provides county-level records

of fatalities, injuries, and property damage, often supplemented with information from federal

disaster declarations and insurance claims data. SHELDUS is updated retroactively, so past records

incorporate newly available information and ensure consistency across a given version. We note

that while SHELDUS has implemented multiple procedures over time to ensure consistency and

improve data quality, some degree of underreporting may occur, for example, in counties with

resource constraints, or in counties that were exposed to low hurricane intensity. This will introduce

unobserved measurement error in our outcome variable that may be systematically correlated with

forecast errors, our main variable of interest in our analysis. Some, but not necessarily all, of this

measurement error will be absorbed by county fixed e↵ects and hurricane intensity controls in our

regressions. Although imperfect, SHELDUS is widely-used, and is typically thought of as the best

available dataset for measuring direct damages at a county-level (Gallagher, 2021; Auh et al., 2022).

All values in our analysis are in 2019 dollars.

2.4 Summary Statistics

Table 1 shows summary statistics for the 31 hurricanes in our sample. The wind speed and

precipitation columns are averages across all counties, the wind speed and precipitation error

columns are averages of the absolute value of the errors across all counties, and the damages and

expenditures columns are summed across all counties. The table shows that there is substantial

heterogeneity in mean wind speed, precipitation, and forecast errors across storms. The total

damages associated with all hurricanes is $377 billion. Total protective and recovery expenditures

are about $45 billion, about one-tenth of the reported damages. Standard deviations associated

with the reported means are provided in the Supplemental Appendix, Table D.1.
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Figure 3: The Distribution of Realized Wind and Wind Speed Error.

Note: Panel A shows the observed distribution of the realized and forecast wind speed by county-hurricane. The red
dashed line is the distribution of the forecast and the blue line is the distribution of the realization. Values of 0 are
omitted for clarity. Panel B plots the underestimate of wind speed by a forecast. We omit observations where the
forecast and realized wind speed was zero for clarity.

Figure 3 presents the distributions of wind speeds and wind speed forecasts across our county-

hurricane observations. Panel A shows the distribution of both realized and forecast wind speeds.

While our data cover a wide range of intensities—including county-level wind speeds as high as 67

m/s (e.g., Hurricane Michael)—most observations fall below 17 m/s. This pattern reflects the fact

that hurricane intensity decays rapidly over land, and that the majority of counties are not coastal.

The forecast wind speeds in Figure 3 are predominantly below the 33 m/s threshold for classifying

a tropical cyclone as a hurricane. This follows from categorizations being done over water. Our

analysis on the other hand, uses predicted and realized wind speed at the county level on land. In

practice, this means that even coastal counties will show attenuated predicted and observed wind

speeds relative to the ones used to categorize the hurricanes that hit them.

Panel B plots the distribution of wind forecast errors. The average forecast error is only 0.15

m/s with a standard deviation of 2.59. The distribution is right-skewed: there are slightly more

underestimates of wind speed than overestimates, likely driven by di�culties with forecasting rapidly

intensifying storms.
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Table 1: Summary Statistics by Hurricane.

Hurricane Year Wind Speed Wind Speed Error Precipitation Precipitation Error Total Damage Protective Exp. Recovery Exp.

(m/s) abs(m/s) (mm) abs(mm) (Billion $) (Billion $) (Billion $)

Cindy 2005 3.02 1.83 8.25 9.05 2.39 0.00 0.00
Dennis 2005 2.84 1.24 9.79 5.99 2.39 0.02 0.13
Katrina 2005 4.05 1.70 11.63 10.13 110.54 1.96 11.45
Rita 2005 3.35 1.30 9.86 8.52 15.56 0.14 0.42
Wilma 2005 1.10 0.55 0.70 0.71 13.81 0.17 1.11
Dolly 2008 0.80 0.16 1.01 0.50 1.68 0.01 0.05
Gustav 2008 2.71 0.76 11.22 9.72 21.26 0.12 0.28
Ike 2008 6.41 3.81 8.01 7.09 21.26 0.24 1.17
Irene 2011 3.10 0.75 8.97 6.88 5.12 0.19 0.86
Isaac 2012 2.45 0.89 7.63 5.23 0.82 0.11 0.21
Sandy 2012 3.00 0.78 6.57 4.21 29.16 2.26 12.49
Arthur 2014 2.52 0.64 1.54 1.99 0.00 0.00 0.00
Hermine 2016 3.28 1.27 5.81 4.28 0.46 0.01 0.05
Matthew 2016 2.63 0.68 8.68 7.16 4.64 0.14 0.76
Harvey 2017 1.27 0.46 6.87 5.54 55.30 0.43 1.86
Irma 2017 2.44 1.12 11.31 7.05 5.97 0.41 1.77
Nate 2017 4.07 1.36 8.19 5.63 0.06 0.01 0.03
Florence 2018 3.11 0.37 9.54 5.76 2.54 0.15 0.54
Michael 2018 4.65 1.12 9.12 6.44 21.11 0.21 1.38
Barry 2019 2.02 0.95 6.22 5.02 0.02 0.02 0.02
Dorian 2019 2.41 0.32 2.26 1.35 0.02 0.06 0.12
Delta 2020 2.43 0.67 6.38 3.95 3.86 0.02 0.03
Hanna 2020 0.92 0.13 0.87 0.73 0.00 0.00 0.00
Isaias 2020 4.06 1.34 4.89 4.46 12.42 0.02 0.18
Laura 2020 3.71 1.77 6.40 5.05 12.42 0.30 1.31
Sally 2020 2.69 1.11 10.95 11.04 0.61 0.02 0.36
Zeta 2020 5.17 1.54 6.34 4.64 3.86 0.02 0.18
Ida 2021 3.35 1.23 11.48 9.63 12.05 0.61 1.43
Nicholas 2021 1.35 0.51 3.70 4.06 1.50 0.00 0.00
Ian 2022 2.22 1.19 4.86 5.02 15.98 0.19 0.57
Nicole 2022 2.29 0.91 4.35 2.89 0.51 0.03 0.07

Note:
The table includes all category 1 and greater hurricanes (maximum wind speeds greater than 33 m/s) that made landfall in the continental US between
2005–2022. Wind speed, precipitation, and their associated errors are averaged across counties to the hurricane level. Damages and expenditures are
summed across counties to the hurricane level. “Exp.” is short for Expenditure. Wind speed is the maximum sustained wind speed in m/s, precipitation is
the total precipitation in mm. Wind speed and precipitation errors are averages of the absolute values of county-level errors. All damage and expenditures
are reported in billions of US$.
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3 Methods and Results

We present our results in three steps. First, we show that FEMA, the federal agency responsible for

allocating before-landfall protective emergency funding, responds to forecasts of hurricane intensity.

Second, we provide evidence that the forecasts generated economic value by showing that larger

underestimates of hurricane intensity lead to larger damages and recovery costs, conditional on

the actual hurricane intensity. Third, we develop a theoretical model to guide estimation of the

ex ante value of reducing uncertainty in hurricane forecasts, which gives us the value of a forecast

improvement. While in the main text we focus on wind speed, the Supplemental Appendix expands

these results to track and precipitation.16

3.1 Does FEMA Respond to Forecasts?

First, we provide evidence that forecasts drive protective actions by estimating how FEMA’s

pre-landfall, protective emergency expenditures respond to the wind speed forecast.17 Here, and

for the rest of the paper, we will use c, s, and h to index county, state, and hurricane, respectively.

Our model is:

FEMA Protective Expenditurescsh =
X

b2Bw

�w
b 1(Wind Forecastcsh 2 b)

+
X

b2Bp

�p
b 1(Precip Forecastcsh 2 b)

+ �c + ⌘sh + "csh. (1)

The outcome variable is FEMA protective expenditures. We also present results normalized by

county GDP and in per capita terms to adjust for how protective expenditures may be directed

toward areas with larger economies or more people. Bw is a set of 5 m/s bins of wind speed

forecasts up to 35 m/s, with forecasts of 0-5 m/s as the omitted category. Bp is a set of 20 mm bins

of precipitation forecasts up to 200 mm. Recall that these forecasts are averages of the 1-3 day prior

to landfall forecasts. We include both wind and precipitation forecasts in the same regression as

they are positively correlated (Supplemental Appendix D), and omitting one may result in omitted

variable bias.

All specifications include county fixed e↵ects, �c, and state-by-hurricane fixed e↵ects, ⌘sh. �c

controls for time-invariant factors that vary across counties that may drive protective expenditures

and forecast hurricane intensity, like distance to the coast or elevation. ⌘sh addresses factors that

16In the main results we will include both wind speed and precipitation in our specifications since both can directly
cause damage. We omit track because the location of the hurricane only matters for damage through how it a↵ects a
county’s exposure to the hurricanes other characteristics like wind speed. The analyses in the Supplemental Appendix
include all three.

17One channel through which FEMA protective expenditures are able to respond rapidly to new forecast information
is the Hurricane Liaison Team. Its purpose is to connect local and federal o�cials with scientists and meteorologists
at the NHC. The Hurricane Liaison Team assists with properly communicating the forecast in order to better guide
response operations, including evacuations, sheltering, and mobilizing manpower and equipment (Cannon, 2008).
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Figure 4: FEMA Protective Expenditures Responses to Forecasts.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each
panel is [0,5]. All panels control for bins for the precipitation forecast, and for county and state-by-hurricane fixed
e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties. The number of observations is 95,263.

vary across states for the same hurricane, such as the political composition of the state government,

and whether states used emergency declarations to marshall local resources. Following other

papers in the literature (Hsiang, 2010; Deryugina, 2017), we compute spatial heteroskedasticity

and autocorrelation consistent (HAC) standard errors using the approach documented by Conley

(1999). Our standard errors account for arbitrary serial correlation within a county, and spatial

correlation across all other counties that are within 400 km of a county’s centroid. We note that

this radius is about double the values used in this prior literature, and thus more conservative. The

area traced out by this radius is larger than Florida, Georgia, and Alabama combined. Figure 2

Panel C illustrates the geographical span of this radius along with an additional 600 km radius that

we use as a robustness check in the Supplemental Appendix.

Figure 4 plots the estimates from equation (1). Panel A shows the e↵ect of wind speed forecasts

on pre-landfall protective expenditures. The results indicate that the e↵ects of the wind speed

forecast are negligible until above 20 m/s and increase rapidly up to 35 m/s, about the threshold

for hurricane-force winds that would trigger an o�cial hurricane warning.18 Relative to counties

forecast to have winds of 0-5 m/s, counties predicted to experience wind speeds over 30 m/s

receive $36 million more, while counties predicted to only experience wind speeds of 20-25 m/s – a

low-end tropical storm forecast – receive only $4 million more. Overall, these estimates show that

protective expenditures increase monotonically with the anticipated wind speed, and that protective

expenditures are targeted toward areas predicted to experience hurricane-force winds.

Panels B and C plot estimates for protective expenditures as a share of county GDP and per

capita. Relative to 15-20 m/s or lower forecasts, expenditures increases by over 0.1% of county

GDP or $60/person for wind speed forecasts of 25-30 m/s, and by over 0.8% of county GDP or

$300 per person for hurricanes forecast above 30 m/s.

18 About 18% of protective expenditures go to counties with realized wind speeds below 20 m/s. If o�cials have
accurate beliefs that damages (and thus the benefits of protective expenditures) are negligible under this threshold,
this suggests that 18% of pre-landfall protective expenditures may be misallocated ex post.
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3.2 Does Forecast Accuracy Matter?

Next, we test whether forecast errors a↵ect hurricane damages and after-landfall recovery expendi-

tures, conditional on realized hurricane intensity. As in Figure 2, we define a forecast error as how

much the forecast underestimated realized wind speeds. We estimate the e↵ect of forecast errors on

damages and FEMA recovery expenditures using the following model:

Ycsh =
X

b2Ew

�w
b 1(Wind Errorcsh 2 b) +

X

b2Ep

�p
b 1(Precip Errorcsh 2 b)

+
X

b2Ew
i

�wb 1(Wind Realizationcsh 2 b) +
X

b2Ep
i

�pb 1(Precip Realizationcsh 2 b)

+ �c + ⌘sh + "csh. (2)

Ycsh is either damages caused by the hurricane, or FEMA’s post-landfall expenditures aimed at

recovering the damaged area. As before, we also report results scaled as a percentage of county

GDP and per capita. Ew and Ep are sets of bins of forecast errors (realization minus forecast)

and Ew
i and Ep

i are sets of bins of intensity realizations. The omitted error bin for wind is (-2,0].

We flexibly control for hurricane wind speed and precipitation realizations using 20 quantile-based

bins each to ensure we are picking up the e↵ect of forecast errors and not just that more intense

hurricanes tend to have larger errors as shown in Figure 3.19 The fixed e↵ects and standard errors

are identical to equation (1).

Figure 5 plots the results. Panels A and D plot the e↵ect of wind speed forecast underestimates

on damages and after-landfall recovery expenditures, Panels B and E plot the e↵ect in terms of

share of county GDP, while panels C and F plot the e↵ect in per capita terms. All six panels

show an increasing relationship between the outcome and wind speed underestimates. County

damages are $47 million higher if wind speed is underestimated by 4-6 m/s, and over $220 million

higher if underestimated by 8-10 m/s. To put this into context, an 8-10 m/s error would result

in misclassifying a hurricane by 1-2 categories and only occurs for about 1.7% of the observations

in our data. In county GDP or per capita terms, a 10 m/s underestimate increases damages

by about 15% of county GDP or $5,600/person. The e↵ects on recovery expenditures follow the

same pattern: underestimating wind speed by 4-6 m/s increases expenditures by $9 million, while

underestimating by 8-10 m/s increases expenditures by over $20 million; the precision of these

estimates increases considerably once we normalize by county GDP and population. An 8-10 m/s

error increases recovery expenditures by about 0.5% of county GDP or about $300/person. These
estimates provide indirect evidence that forecasts drive protective actions and that the uptaken

protective actions mitigate damages. Conditional on a storm’s intensity, forecast errors only matter

through how the forecast directed e↵ective protective actions.

19Since we are not visualizing the intensity realizations, we use quantile-based bins to ensure good data coverage
across all the bins. In the Supplemental Appendix, we test the robustness of our results to between 5–120 bins for each,
including full interactions of the wind speed and precipitation bins, as well as interactions with indicators capturing
wind direction and potential exposure to storm surge.
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Figure 5: Forecast Errors, Damages, and After-Landfall Recovery Expenditures.

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0].
All panels control for binned precipitation errors, binned realized wind speed, binned realized precipitation, and for
county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km
for spatial correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.

3.3 What is the Ex Ante Value of Improving Hurricane Forecasts?

Figures 4 and 5 provide evidence for how the information in forecasts generates social value. Figure 4

shows that higher forecasts marshall more costly protective resources to an area. Figure 5 shows that,

conditional on realized hurricane intensity, overestimating intensity, through higher forecasts, reduces

ex post costs. We now formalize the ex ante value of improving hurricane forecasts accounting for

both of these forces on total costs.

3.3.1 Theoretical Foundation

Suppose a representative agent faces a future hurricane with total after-landfall costs from damages

and recovery expenditures, D(x, a, i, t). To be concise, we will call D damages from hereon. x is the

hurricane’s deterministic but unobserved intensity (e.g., wind speed, precipitation); x̃ is the forecast

of this intensity; a is the agent’s continuous choice of before-landfall protective actions to reduce

damages (e.g., sandbags, evacuations, structure hardening), which is a function of the forecast

and has an associated continuous and increasing cost function C(a); i is a vector of time-invariant

features of the agent’s location i (e.g., elevation, proximity to the coast, long-lived capital structures);

and t is a vector of common features across locations in period t. D is continuous and decreasing

in a. The agent has access to a forecast x̃ of the realized hurricane intensity x at time t, specific
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to location i. The forecast is a noisy signal with normally distributed error: e ⇠ N (µ,�). We can

write the intensity as a function of forecast and its error: x = x̃+ e.20

The agent’s objective is to minimize their expected total costs:

C(x̃, µ,�, i, t) = min
a

E

2

4D(x̃+ e| {z }
x

, a, i, t)

3

5+ C (a) .

We define the value of a forecast improvement as the reduction in minimized expected total cost

— inclusive of both before-landfall protective expenditures, and after-landfall damages – from a

marginal reduction in the standard deviation of the forecast error.21 Proposition 1 provides an

intuitive closed-form expression for this quantity.

Proposition 1 The value of a forecast improvement is:

dC(x̃, µ,�, i, t)
d�

=
1

�3
cov

�
D(x̃+ e, a⇤, i, t), (e� µ)2

�
(3)

= 2��2. (4)

Where a⇤ is the optimized protective action choice, and �2 is the coe�cient from a regression of

observed damages D(x̃+ e, a⇤, i, t) on the observed squared demeaned forecast error (e� µ)2.

Proof: See Appendix B.1. ⇤
Proposition 1 shows that the marginal value of a forecast improvement is proportional to a covariance

between realized damages at the optimized protective actions and the squared demeaned forecast

error.22 The value of an improvement and the covariance is positive if damages tend to be higher

when the squared demeaned error is higher. Figure 5 provides evidence the covariance is positive:

damages are increasing and convex in errors, conditional on intensity. Better forecasts help the

agent reduce the di↵erence between the ex ante optimized level of protective expenditures and the

protective expenditures they would have chosen if they could observe realized hurricane intensity

when making their decision.

The second line of Proposition 1 shows the value of a forecast improvement, inclusive of any

protective actions, can be recovered by regressing total after-landfall costs on squared demeaned

20 This setup reflects the fact the underlying physical processes are fundamentally deterministic, and the agent can
only observe or predict the hurricane subject to some noise. All observed uncertainty arises from limitations in the
forecast signal rather than the physical system itself. Our model can be relaxed if one wanted to allow for randomness
in the physical system itself. If realized hurricane intensity is normally distributed, and the forecast is of the mean of
this distribution, the agent’s distribution of hurricane intensity is still normally distributed, but with a variance that
is the sum of the forecast error variance and the variance in the physical system.

21 In principle, forecast improvements can arise from reducing either the bias (µ) or the standard deviation (�)
of forecast errors. We focus on � as our measure of forecast quality because hurricane forecasts are approximately
unbiased on average (Figure 3). Alternative metrics of forecast quality like root mean squared error are ex post and
depend on the realized hurricane intensity, which complicates their use in formal ex ante valuation frameworks. The
use of standard deviations to measure model spread and uncertainty is common in other scientific areas, including the
Intergovernmental Panel on Climate Change (IPCC) Assessment Reports (Masson-Delmotte et al., 2021).

22Section B.3 in the Appendix formalizes a version of the result for a risk-averse agent.
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errors, and evaluating it at some reference forecast standard deviation. A higher standard devi-

ation baseline, reflecting more ex ante forecast uncertainty, tends to raise the value of a forecast

improvement. Unlike prior work, our new dataset reports the standard deviation of the forecast

and forecast error, which turns out is a necessary piece of data to properly calculate the value of a

forecast improvement.

In the empirical analysis, we derive estimates of �2 with the following model:

Dcsh = �w
2 (ewcsh � µw

csh)
2 + �p

2

�
epcsh � µp

csh

�2

+
X

b2Ew
i

�wb 1(xcsh 2 b) +
X

b2Ep
i

�pb 1(pcsh 2 b)

+ �c + ⌘sh + "csh. (5)

Dcsh is observed post-landfall damages (i.e., economic damages and recovery expenditures), which

we will normalize by county GDP or population in some specifications. (ewcsh � µw
csh)

2 is the observed

squared demeaned error in wind speed, and
�
epcsh � µp

csh

�2
is the observed squared demeaned error

in precipitation. We compute the mean error terms within each hurricane and within each of our

hurricane intensity bins to account for forecast errors correlation with realized intensity. To further

ensure that our estimates isolate the impact of forecast uncertainty rather than hurricane severity,

we flexibly control for realized intensity by including binned indicators for wind and precipitation

realizations. This design ensures that the identifying variation arises from forecast errors conditional

on hurricane intensity, consistent with the structure of equation (2). The model also includes the

same set of fixed e↵ects and standard errors used in earlier specifications.

Before presenting the results we highlight two key assumptions that make this approach work.

First, the theoretical model assumes constant and independent distributional parameters for

forecasts. Figure D.1 shows that forecast errors tend to increase with hurricane intensity, and that

the forecast standard deviation increases with the forecast intensity. In Appendix B.2, we relax this

assumption to allow the forecast standard deviation to depend on the forecast intensity and find

similar quantitative results. Second, we assume that forecast errors are normally distributed. This

parametric assumption allows us to quantify how expectations change as � changes.23 Appendix B.4

shows that this assumption appears reasonable, while Supplemental Appendix C.3 demonstrates

that the results are robust to normalizing the error distribution to remove the observed skewness in

the data.

3.3.2 Estimation Results

Table 2 reports our results corresponding to Proposition 1. The first panel shows the results assuming

the agent is minimizing total costs, while the second and third panels show results if the agent

is minimizing costs as a share of county GDP or per capita costs. Within each panel, we report

23Since forecast errors are often substantial for wind speed, we make a distributional assumption instead of using
local approaches like Taylor approximations (e.g., Shrader et al., 2023).
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the coe�cient estimate on squared demeaned wind errors. The sample average forecast standard

deviation is 1.4, so the marginal value of an improvement of the average forecast is 2.8 times the

coe�cient. Because this is the main contribution of the paper, we show robustness of our results

to a variety of specification choices. These include county-by-month of year e↵ects which address

county-specific seasonality in exposure or forecastability, county-by-year e↵ects which control for

things like prior hurricane experience and damage that may change how forecast errors a↵ect current

damages, as well as linear forecast errors. Our preferred specification is in column 7, which has

our base fixed e↵ects along with controls for intensity realizations and linear forecast errors. This

specification allows for heterogeneous e↵ects for hurricane versus sub-hurricane force winds in a

county, reflecting how protective expenditures increase significantly at this level in Figure 4.

The first panel shows that a one unit increase in the squared error of wind speed forecasts

increases damages. For the sample average, the value of a forecast improvement is about $15.5
million per hurricane per county in our preferred specification, but only for counties experiencing

hurricane-force winds. A forecast improvement of 0.046 standard deviations, about 3% of the sample

mean and an improvement that occurs annually on average, reduces total costs by over $500,000 for

the average county hit with hurricane-force winds. This result suggests that every year, forecast

improvements are generating hundreds of millions of dollars of benefits per hurricane.

The second and third panels show that the value of a 1 standard deviation forecast improvement

is about 0.45% of county GDP, or $160 in per-person terms. Using the same thought experiment as

in the top panel, the annual average forecast improvement reduces costs by 0.04% of county GDP,

or $15 per person. The estimates in Column 7 also demonstrate that the value of improvements

comes entirely from places experiencing hurricane-force winds.
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Table 2: The Value of a Wind Speed Forecast Improvement.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 4.51*** 4.49*** 3.65*** 3.61*** 4.25*** 4.03***
(1.42) (1.43) (1.13) (1.04) (1.45) (1.25)

Hurricane �2 : (e� µ)2 5.49***
(1.73)

Sub-Hurricane �2 : (e� µ)2 -0.39
(0.45)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.34** 0.35** 0.32** 0.31*** 0.29*** 0.29***
(0.14) (0.14) (0.13) (0.11) (0.11) (0.10)

Hurricane �2 : (e� µ)2 0.45***
(0.16)

Sub-Hurricane �2 : (e� µ)2 0.02
(0.02)

Damages + Recovery ExpendituresPer Capita ($/person)

�2 : (e� µ)2 124.30*** 126.29*** 110.82*** 112.76*** 113.05*** 117.04***
(35.74) (36.05) (30.88) (29.82) (32.92) (30.50)

Hurricane �2 : (e� µ)2 158.61***
(38.64)

Sub-Hurricane �2 : (e� µ)2 5.67
(5.57)

Observations 95,263 95,263 95,263 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of 400 km for
spatial correlation and arbitrary autocorrelation within counties. e is the county-hurricane-specific forecast error, µ
is the hurricane-intensity bin-specific mean forecast error. Hurricane wind speeds are those greater than 33 m/s (74
mph), while Sub-Hurricane wind speeds fall below that threshold.
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3.4 The Value of Historical Forecast Improvements

We now use our estimates in Table 2 to value historical improvements in forecast accuracy. Specifically,

we estimate the value of the sudden increase in the rate of forecast improvement in 2007, as depicted

in Figure 1.24 For each of the 26 hurricanes after 2007, we compute its counterfactual forecast

uncertainty if forecasts had continued to follow only the pre-HFIP 0.4% annual improvement, and

then use the estimate in Column 7 of the top panel of Table 2 to value the increase in costs compared

to the actual forecast uncertainty.

Our findings suggest that accelerated improvements in forecast accuracy since 2007 reduced

hurricane costs – damages, recovery expenditures, and protective expenditures – by 19% or $2
billion per hurricane. How large is this value? $2 billion is about 30% of NOAA’s budget; two times

the 2015 budget of the National Weather Service, the weather forecasting arm of NOAA; and more

than ten times the cumulative budget of the HFIP since its inception in 2007, which was tasked

with accelerating forecast improvements.

3.5 Robustness

Our Supplemental Appendix contains a large number of robustness checks that we list here. First, we

show all of our results are robust to using more conservative Conley standard errors, more granular

fixed e↵ects, more granular controls for hurricane intensity, population-weighting the forecast data

when aggregating to the county-level, and alternative transformations of our outcome variables.

Second, we show our results are robust to subsamples of the data that focus on coastal areas, and

subsamples that aim to purge our analysis of issues with mismeasurement in our damages and

protective expenditures data. Third, we show that protective expenditures respond to the forecast

standard deviation, suggesting that decision-makers respond to forecast quality. Fourth, we show

that our measure of before-landfall protective expenditures does not respond to after-landfall forecast

errors as we should expect if we have classified expenditures correctly into before-landfall protective

expenditures and after-landfall recovery expenditures. Fifth, we show that forecast errors are more

costly and that forecast improvements are more valuable for stronger hurricanes. Sixth, we show

that transforming our data so that it precisely fits a normal distribution does not meaningfully a↵ect

our results. Seventh, we show that our results for the value of a forecast improvement are not solely

driven by errors in whether wind speeds are below or above the 33 m/s hurricane threshold, and are

not solely driven by any particular hurricane. Eighth, we show that precipitation forecasts and track

forecasts have little e↵ect on FEMA emergency protective expenditures, but that value of a track

forecast improvement may be non-negligible. The limited impact of precipitation forecasts may

be because the widely-used Sa�r-Simpson categories for classifying hurricanes are based entirely

on wind speed, and also the way in which hurricane strength has historically been communicated

(Kantha, 2006; Murnane and Elsner, 2012). Last, we show that our wind speed forecast and error

24Note that Figure 1 shows the decline in absolute wind speed error which is not quite the same as wind speed
uncertainty. The wind speed forecast standard deviation shows a 4.5% annual decline since the first hurricane in our
dataset.
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results are not driven by omitted track forecasts and errors.

4 Conclusion

In this paper we estimate the economic impact of hurricane forecasts and the value of improving

them. We find forecasts are major determinants of the allocation of emergency resources, both before

and after the storm. Counties projected to face the strongest wind speeds receive millions more

in protective expenditures, while those that experienced the largest forecast underestimates had

several times higher after-landfall recovery expenditures. We also find that forecasts a↵ect realized

hurricane damages. Conditional on realized intensity, an under-forecast can increase damages by

tens or hundreds of millions of dollars compared to an accurate one. These results suggest that

forecasts direct valuable protective resources and actions.

Our main contribution is an estimate of the marginal value of reducing forecast uncertainty,

inclusive of observed hurricane damages, observed after-landfall recovery costs, and unobserved

before-landfall protective costs. Per-hurricane benefits from forecast improvements since 2007

amount to $2 billion – a figure that exceeds the total budget for all federal weather forecasting.

We conclude with several limitations that we leave for future work. First, our data do not capture

all forms of damages, recovery costs, and before-landfall protection. Accounting for additional

factors, such as longer-run social insurance costs (Deryugina, 2017), or longer-run mortality impacts

(Young and Hsiang, 2024), would only increase the value of a forecast improvement. Individuals

can take before-landfall protective actions such as evacuating (Gellman et al., 2024), or buying

emergency supplies (Beatty et al., 2019). Although our valuation exercise is not specific to any

protective action and thus accounts for the private choices individuals may make in responding to

a forecast, there is little to no existing work studying the e�cacy of di↵erent protective actions,

private or public.

Second, our estimates in the main text only cover the value generated by wind speed forecasts.

While wind speed is arguably one of the leading attributes when it comes to hurricane damage

(Murnane and Elsner, 2012), flooding and storm surge are important as well. Storm surge forecasting

is in its infancy and likely less accurate compared to predicting hurricane track and wind speed,

so there may be significant gains from further forecasting improvements along these additional

dimensions of a hurricane.

Third, here we focus on the aggregate e↵ect of forecasting up to 3 days ahead of landfall. This

is well ahead of the 36-hour window used by the NHC to issue o�cial warnings, and it ensures that

the full range of actionable forecast information is accounted for. The timeliness of the forecast,

however, undoubtedly plays an important role. Anand (2024) for example, demonstrates that more

precise early forecasts reduce tra�c accidents in winter storms. Exploring how precise and early

warnings may reduce the impact of hurricanes is an area ripe for future research and policy impact.

This issue is of particular relevance as recent advances in machine learning techniques and methods

show promise in supporting early forecasting e↵orts (Price et al., 2025).
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Fourth, our analysis does not directly account for the interactions between forecasts, insurance

markets, and moral hazard. We find that improved forecasts reduce damages, which in principle

should be reflected in lower insurance premia. However, fully insured households may have diminished

incentives to undertake protective measures since they do not bear as much hurricane risk, potentially

muting the benefits of improved forecast accuracy.25 Understanding how public and private insurance

design interacts with forecast improvements remains an important area for future research.

Fifth, our results show asymmetric impacts of forecast errors, with under-predictions leading

to significantly greater damages and recovery costs, while over-predictions do not. In fact, over-

predictions lead to modest reductions in damages as one may expect. This result should not be

interpreted as evidence that systematically inflating forecasts would be socially beneficial. Overstated

forecasts may lead to costly protective actions that we have not measured in this paper. Over time,

overstated forecasts may also erode trust in forecast information. As agents form beliefs about

forecast accuracy, persistent overestimation may reduce compliance with future warnings. This

dynamic tradeo↵ underscores the importance of maintaining forecast credibility. Modeling how

agents learn and respond to forecast bias over time is a promising direction for future work.

Last, the forecast improvement valuation framework we developed above is reliant upon an

independence assumption, specifically that the forecast standard deviation is a constant independent

of other forecast characteristics. This assumption is not critical, it can be relaxed to allow forecast

uncertainty to depend on functions of ex ante observables, such as forecast intensity. We demonstrate

how to do this with a linear relationship in the Appendix, but in principle it could be done with

other functional forms. In settings where there may be particularly thorny relationships between

the forecast standard deviation and other variables, researchers and policymakers could take a

local approximation approach to adopt our framework. For example, one could use our constant

or linear relationship frameworks locally within bins of some variable that the standard deviation

depends upon. If the relationship is constant or linear within some given set of bins, this makes the

estimation locally valid and amenable to be aggregated.

25Insurance coverage is often incomplete, and delays or uncertainty in payouts may preserve incentives to respond
(Michel-Kerjan and Kunreuther, 2011; Hudson et al., 2017).
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Appendix

A Additional Details on the FEMA PAGM Program

PAGM disburses funds through Sta↵ord Act procedures to assist state, local, tribal, and territorial

governments and certain private nonprofit organizations in responding to and recovering from major

disasters or emergencies. The background on the FEMA PAGM process described here follows from

o�cial federal documents (U.S. Congress, 1988; Congressional Research Service, 2021; FEMA, 2024,

2025b). Under the Sta↵ord Act, emergency declarations and disaster declarations are made by the

President after a governor’s request. These declarations are issued when the hurricane is beyond

state and local capabilities and federal assistance is needed. A declaration request must include

information on state and local resources already allocated and the type and amount of federal aid

that is needed. Requests for emergency versus disaster declarations di↵er in two ways. The first

is that emergency declarations can be issued prior to landfall, but disaster declarations are issued

after landfall.26 The second is that disaster declaration requests require estimates of the damage

caused by a disaster, which is often determined by a Preliminary Damage Assessment done jointly

between the state and FEMA.

PAGM provides funding for a variety of of potential actions and investments such as debris

removal, temporary levees, and the repair or replacement of disaster-damaged public infrastructure

(Moss et al., 2009). We break PAGM funding into two groups in our paper following FEMA’s own

classifications. What FEMA calls “Category B - Emergency Work” corresponds to our protective

expenditures. FEMA explicitly categorizes protective expenditures for actions taken before, during,

and immediately after a disaster to save lives, protect public health and safety, and prevent damage

to property. Protective expenditures include pre-disaster and immediate response actions, such as

activating emergency operations centers, deploying emergency personnel, providing medical care,

setting up emergency shelters, and conducting search-and-rescue operations.

Funding for protective expenditures can be authorized under either an emergency or disaster

declaration. These funds are often authorized prior to hurricane landfall, as the assistance is intended

to “[...] supplement State and local e↵orts and capabilities to save lives and to protect property and

public health and safety, or to lessen or avert the threat of a catastrophe in any part of the United

States.” (U.S. Congress, 1988; Congressional Research Service, 2021).27 Protective expenditures

26FEMA policy during our sample period states that pre-landfall emergency declarations require that “[...] the State,
or a portion thereof, is threatened by landfall of a major hurricane or typhoon [...]” providing a clear link between
hurricane forecasts, pre-landfall emergency declarations, and protective expenditures (FEMA, 2007). Historically,
pre-landfall emergency declarations were rare prior to Hurricanes Katrina and Rita, however they have become much
more common.

27Volusia County, FL specifically enumerates the pre-landfall actions taken in their cost recovery documents for
Hurricane Irma (Volusia County Government, 2023). These include “[...] preparations to secure locations, hand
out sandbags, stage essential personnel and equipment, evacuate patients from hospitals and other facilities, and
prepare evacuation shelters as well as other pre-storm activities. It also includes activities during the hurricane
including sta�ng the Emergency Operations Center with extra personnel to answer phones, personnel to work in
shelters, extra sheri↵ patrols, and fire services as well as other services.” The Biden White House also reports that the
pre-landfall emergency declaration for Hurricane Fiona was to “[...] to save lives and to protect property and public

25



associated with pre-landfall emergency declarations are often associated to expedited funding given

the short timeframe for action. To support legal responsibility, eligibility, and determine costs,

applicants for protective expenditures must provide detailed information describing the work to be

done, the timeframe, and who will conduct the work (FEMA, 2024).

Protective expenditures follow federal cost-share guidelines, with FEMA typically covering at

least 75% of eligible costs. However, under extraordinary circumstances, this percentage can be

increased. Funding is not provided upfront for protective expenditures, but is instead typically

disbursed after the hurricane as a reimbursement.

What FEMA calls “Categories C-G - Permanent Work” corresponds to our recovery expenditures.

These are expenditures that are to rebuild an area such as restoring a facility like a building, road,

dam, or natural gas transmission facility to its pre-hurricane design and function. Recovery

expenditures can be authorized after a post-hurricane disaster declaration.28 After a disaster is

declared, states conduct briefings with local applicants to inform them of the application process.

Applicants can then submit requests for public assistance through the FEMA Public Assistance

Grant Portal. These applications are then reviewed by the state and FEMA for eligibility. After

an application is approved, a Program Delivery Manager is assigned by FEMA who works with

the local applicant through the granting process which consists of several steps, including damage

documentation and identification, project formulation, and a final review by FEMA (FEMA, 2025a).

For large projects, funding is released incrementally based on actual incurred costs. For small

projects, funds are often provided upfront based on estimated costs. As with protective expenditures,

recovery expenditures also follow federal cost-share guidelines.

The timing of expenditures follows specific regulatory deadlines. Emergency work funding is

available for up to six months from the disaster declaration date. Permanent work must generally

be completed within 18 months, with possible extensions granted for factors like permitting delays

or environmental compliance.

It is important to note that protective expenditures may serve dual purposes so that the

distinction versus recovery expenditures is not sharp. For instance, protective expenditures like

reinforced temporary flood barriers may also contribute to long-term resilience if left in place,

blurring the lines between immediate protective measures and recovery work. Emergency protective

expenditures can also be incurred after landfall, potentially being a function of hurricane realizations

instead of just the forecast.

health and safety and fund emergency protective measures” such as “prepositioning supplies on the island including
four strategically located warehouses throughout the island, more than 7 million liters of water, more than 4 million
ready-to-eat meals, more than 215 generators, more than 100,000 tarps, more than 28,000 plastic covers and more
than 10,300 cots and other emergency supplies.” (The White House, 2022).

28For example, recovery expenditures were authorized for Louisiana to repair utility lines in the wake of Hurricane
Ida (FEMA, 2023), and Nassau County received funds to repair a wastewater treatment plant damaged during
Hurricane Sandy (Long Island Press, 2014).
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B Theoretical Foundation

B.1 Proof of Proposition 1

An agent is aiming to minimize the total costs of an incoming hurricane which consist of protective

expenditures before the storm, and uncertain damages and recovery costs after the storm. The

agent has access to a forecast x̃ of the realized hurricane intensity x. The forecast is a noisy signal

with error e = x� x̃ where we can write the intensity as the deviation from the forecast: x = x̃+ e.

As in Figure 5, the error e measures how much the forecast underestimates the actual intensity.

We assume that forecast errors are normally distributed: e ⇠ N (µ,�2). We denote the probability

density function as a function: �(e, µ,�).

The agent uses the forecast to choose their level of protective actions, a, that mitigate hurricane

damage and reduce recovery costs. Protective actions have a cost C(a) which is increasing and

convex. Damages and recovery costs are a function D of realized intensity, the chosen level of

protective actions, and location-specific and time-specific factors: D(x, a, i, t). D is decreasing in

protective actions. Our agent’s objective is to minimize their expected total costs:

C(x̃, µ,�, i, t) = min
a

E

2

4D(x̃+ e| {z }
x

, a, i, t)

3

5+ C(a)

where the expectation is only over damages since protective actions are determined before the

hurricane intensity realizes. We are interested in the reduction in the minimized expected total cost

from a marginal decrease in the standard deviation of the forecast error:

dC(x̃, µ,�, i, t)
d�

=
@C(x̃, µ,�, i, t)

@�
. (B.1)

The envelope theorem gives us that:

@C(x̃, µ,�, i, t)
@�

=

Z
D(x̃+ e, a⇤, i, t)

@�(e, µ,�)

@�
de,

where a⇤ is the optimized protective action that is a function of the intensity forecast but not

intensity realization. Taking the partial derivative inside the integral then gives:

@C(x̃, µ,�, i, t)
@�

=

Z
D(x̃+ e, a⇤, i, t)


(e� µ)2 � �2

�3

�
� (e, µ,�) de.

Since the normal density is still in the expression, it can go back into expectation notation as:

@C(x̃, µ,�, i, t)
@�

= E
⇢
D(x̃+ e, a⇤, i, t)


(e� µ)2 � �2

�3

��
,

where the expectation is again with respect to e. We can get a closed form solution by using the
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covariance identity:

@C(x̃, µ,�, i, t)
@�

=E
⇢
D(x̃+ e, a⇤, i, t)⇥


(e� µ)2 � �2

�3

��

=
1

�3
E
�
D(x̃+ e, a⇤, i, t)⇥

⇥
(e� µ)2 � �2

⇤ 

=
1

�3

"
cov

�
D(x̃+ e, a⇤, i, t), (e� µ)2

�

+ E {D(x̃+ e, a⇤, i, t)}E
�
(e� µ)2 � �2

 
| {z }

=0

#

=
1

�3
cov

0

@D(x̃+ e| {z }
x

, a⇤, i, t), (e� µ)2

1

A , (B.2)

where we use e ⇠ N (µ,�) so that E{(e � µ)2} = �2. This result proves the first part of the

proposition.

Next, we return to the last line in equation (B.2):

dC(x̃, µ,�, i, t)
d�

=
1

�3
cov

�
D(x̃+ e, a⇤, i, t), (e� µ)2

�
.

First, compute the variance of (e� µ)2:

var
�
(e� µ)2

�
= E

h�
(e� µ)2 � E

⇥
(e� µ)2

⇤�2i

= E
h�
(e� µ)2 � �2

�2i

= E
⇥
(e� µ)4

⇤
� 2�4 + �4

= 3�4 � 2�4 + �4

= 2�4, (B.3)

where the last line uses the fact that the fourth central moment of a normal variable x is 3�4.

Use this to result to rewrite the last line in equation (B.2) as:

dC(x̃, µ,�, i, t)
d�

=2�
cov

�
D(x̃+ e, a⇤, i, t), (e� µ)2

�

var ((e� µ)2)
. (B.4)

The covariance-variance ratio term is just a coe�cient from a regression of damages on the squared

demeaned error in wind speed. Denote this regression coe�cient as �2. The final expression is:

dC(x̃, µ,�, i, t)
d�

= 2��2. (B.5)

The marginal value of a forecast improvement is the product of this regression coe�cient and the

standard deviation of forecast errors at which we want to evaluate the marginal value.
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Note that this result depends on assuming that the forecast error distribution has constant

parameters that do not depend on the actual hurricane intensity. Figure D.1 shows that this is

unlikely to be the case: forecast errors and squared demeaned forecast errors are both correlated

with realized intensity. This means that we need to flexibly condition on hurricane intensity when

performing the regression over our full dataset, otherwise the coe�cient on squared errors may just

be picking up the fact that stronger hurricanes cause more damage regardless of the forecast error.

Appendix B.2 below relaxes this assumption.

B.2 Allowing the Forecast Standard Deviation to Depend on Forecast Intensity

Here we extend the model to allow the forecast error standard deviation to depend on the forecast

hurricane intensity x̃. Figure B.1 shows that there is an approximately linear positive relationship

between the two.

Figure B.1: Forecast Uncertainty by Wind Speed Forecast

Note: The red line shows a binscatter of the standard deviation of wind forecast errors as a function of forecast wind
speed. The black dashed line is the linear fit from a regression of standard deviation on forecast wind speed.

Given this empirical relationship, we generalize our model so that the standard deviation takes

on a linear form:

�(x̃) = �̄ + �slope · x̃. (B.6)

The error, e, is assumed to be normally distributed with mean µ and standard deviation �(x̃), so

that:

e ⇠ N
�
µ,�2(x̃)

�
and x = x̃+ e. (B.7)

More intense storms will have greater forecast standard deviations and forecast errors.

The agent’s objective is to minimize expected total cost:
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C(x̃, µ, �̄,�slope, i, t) = min
a

E[D(x̃+ e, a, i, t)] + C(a). (B.8)

We are interested in the marginal change in total expected cost from a marginal change in �slope.

This is given in the proposition below.

Proposition 2 The marginal value of a forecast improvement from reducing �slope is:

dC(x̃, µ, �̄,�slope, i, t)

d�slope
=

x̃

�3(x̃)
· cov

�
D(x̃+ e, a⇤, i, t), (e� µ)2

�
(B.9)

= 2x̃ · �(x̃) · �2, (B.10)

where a⇤ is the optimized protective action choice, and �2 is the coe�cient from a regression

of observed damages on squared demeaned forecast errors, conditional on forecast intensity and

covariates.

Proof: Let a⇤ denote the optimal protective action. The minimized expected total cost is:

C(x̃, µ, �̄,�slope, i, t) =

Z
D(x̃+ e, a⇤, i, t) · �(e;µ,�2(x̃)) de. (B.11)

Let � ⌘ �(x̃) and di↵erentiate with respect to �slope using the envelope theorem:

dC

d�slope
=

Z
D(x̃+ e, a⇤, i, t) · @�(e;µ,�

2)

@�slope
de. (B.12)

Apply the chain rule:

@�

@�slope
=

@�

@�2
· d�2

d�slope
(B.13)

=
@�

@�2
· 2�(x̃) · d�

d�slope
(B.14)

=
@�

@�2
· 2�(x̃) · x̃. (B.15)

As in Proposition 1, the derivative of the normal density with respect to variance is:

@�(e;µ,�2)

@�2
= �(e;µ,�2) ·

✓
(e� µ)2 � �2

2�4

◆
. (B.16)

Combining these results and using the same expectation-covariance substitutions as in the proof for
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Proposition 1 gives:

dC

d�slope
=

Z
D(x̃+ e, a⇤, i, t) · �(e;µ,�2) ·

✓
(e� µ)2 � �2

2�4

◆
· 2�x̃ de

=
x̃

�3
·
Z

D(x̃+ e, a⇤, i, t) ·
�
(e� µ)2 � �2

�
· �(e) de

=
x̃

�3
· cov(D(x̃+ e, a⇤, i, t), (e� µ)2).

We can now express the covariance in terms of the regression coe�cient �2:

cov(D(x̃+ e, a⇤, i, t), (e� µ)2) = var((e� µ)2) · �2 (B.17)

= 2�4 · �2 (B.18)

and substitute back:

dC

d�slope
=

x̃

�3
· 2�4 · �2 (B.19)

= 2x̃ · �(x̃) · �2 (B.20)

⇤

We estimate this expression using the estimated coe�cient �2 from Table 2, along with observed

values of x̃ and standard deviation �(x̃). We compute the marginal value for each county that

experienced hurricane-force winds in the dataset, and average across years to obtain an annualized

estimate. The results indicate that a 1-unit reduction in �slope generates an average annual benefit

of approximately $42 billion. This magnitude reflects the disproportionate impact from reducing

uncertainty in high-intensity storms, which have both greater damages and higher baseline variance.

To facilitate a comparison with the constant-variance model in our main analysis, we also

compute the value of a 1-unit reduction in �(x̃) at the mean forecast intensity through reducing

�slope. This yields an annual benefit of approximately $1.7 billion. Performing a similar calculation

under the constant and independent variance assumption yields nearly identical results, with an

annual valuation that is only $20 million lower.

In this generalized framework, we can also obtain dC
d�̄ . The proof follows almost identically

except that in equation (B.14) we have d�
d�̄ = 1. The marginal value of reducing the intercept term,

which captures a uniform reduction across all intensities, just boils down to our expression in the

main text:

dC

d�̄
= 2��2. (B.21)

This provides an alternative interpretation of our main text results.
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B.3 Risk Averse Agent

Suppose that now the agent is risk-averse with some continuous, increasing, and concave utility

function U . The agent’s utility is over their total income Y , less the costs of protective actions C(a),

and damages D(x, a, i, t). The agent maximizes their expected utility:

V (x̃, µ,�, Y, i, t) = max
a

E

8
<

:U

0

@Y �D(x̃+ e| {z }
x

, a, i, t)� C(a)

1

A

9
=

; .

To simplify notation, let U(x̃ + e, a, Y, i, t) ⌘ U (Y �D(x̃+ e, a, i, t)� C(a)). The value of a

forecast improvement is:

�dV (x̃, µ,�, Y, i, t)

d�
= �@V (x̃, µ,�, Y, i, t)

@�
. (B.22)

First, note that here we use a decrease in the standard deviation since we are maximizing utility

instead of minimizing costs. Second, note that since the agent has a utility function over their

(random) payo↵, the value of a forecast improvement is in units of utility and will need to be

translated back into dollar terms if one wishes to monetize the value of an improvement.

The envelope theorem gives us that:

@V (x̃, µ,�, Y, i, t)

@�
=

Z
U(x̃+ e, a⇤, Y, i, t)

@�(e, µ,�)

@�
de

recalling that x = x̃� e.

The rest of the proof follows identically to Proposition 1 except where D(x, a⇤, i, t) is replaced

by U(x̃+ e, a⇤, Y, i, t). We can get a closed form solution by using the covariance identity:

�@V (µ,�, Y, i, t)

@�
=� E

⇢
U(x̃+ e, a⇤, Y, i, t)⇥


(e� µ)2 � �2

�3

��

=� 1

�3
E
�
U(x̃+ e, a⇤, Y, i, t)⇥

⇥
(e� µ)2 � �2

⇤ 

=� 1

�3

"
cov

�
U(x̃+ e, a⇤, Y, i, t), (e� µ)2

�

+ E {U(x̃+ e, a⇤, Y, i, t)}E
�
(e� µ)2 � �2

 
| {z }

=0

#

=� 1

�3
cov

�
U(x̃+ e, a⇤, Y, i, t), (e� µ)2

�
. (B.23)

If errors and utility are negatively correlated, then a decrease in the forecast standard deviation

increases maximized utility. Since we do not observe utility like we do damages, to compute
@V (µ,�,Y,i,t)

@� requires observing protective actions.
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B.4 Model Assumption

The assumption in our theoretical model is that the hurricane intensity errors should be normally

distributed. Figure 3 plots the empirical distribution of wind speed forecast errors, while Figure B.2

below plots the empirical distribution of precipitation and track errors. Both appear to be roughly

normal, although with a slight right skew indicating that the average forecast slightly underestimates

both precipitation and distance from track.

Figure B.2: The Distribution of Realized Wind Speeds and Precipitation.

Note: Panel A shows the observed distribution of the realized precipitation error by county-hurricane. The panel
omits observations where the forecast and realized precipitation was zero for clarity. Panel B shows the observed
distribution of the realized distance from track error by county-hurricane.
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Supplemental Appendix

C Robustness Checks

Here we show robustness checks for all three sets of main results: how forecasts a↵ect emergency

protective expenditures by FEMA, how forecast errors drive damages and emergency recovery

expenditures by FEMA, and the value of a forecast improvement. Across these sections, we assess

robustness to spatial correlation assumptions; alternative fixed e↵ects, sample restrictions, and

functional forms for our variables of interest; and alternative ways of constructing or transforming

the data. We also explore robustness to the inclusion of additional hurricane features such as

intensity bins, track forecasts, and categorical forecast accuracy. Taken together, these results

demonstrate that our main findings are highly robust across a wide range of reasonable empirical

choices.

C.1 Does FEMA Respond to Forecasts?

Table C.1 presents estimates of the e↵ect of the forecast wind speed and precipitation on before-

landfall FEMA protective expenditures. Our binned estimates in Figure 4 are highly convex, so

we include a quadratic term here to capture the convexity. The first column corresponds to the

fixed e↵ects in our main results. The second column adds county-by-month-of-year fixed e↵ects to

account for potential location-specific seasonality. The third column adds county-by-year e↵ects

to flexibly account for variables trending over time but di↵erentially across counties. The fourth

column adds both of these additional fixed e↵ects. Consistent with Figure 4, we find that given

a su�ciently high wind forecast, protective expenditures is increasing and convex in the forecast.

Precipitation estimates are small and often noisy.

Figure C.1 increases our Conley cuto↵ to 600 km, allowing for spatial correlation over an area

over twice as large. This has little e↵ect on our standard errors.

Figures C.2 and C.3 replicate Figure 4 but where we drop “error counties”, those with a

Presidential Disaster Declaration (PDD) but zero reported damage in SHELDUS, or where we only

include Atlantic and Gulf Coast states. These di↵erent sample restrictions have essentially no e↵ect

on our results.

Figure C.4 shows protective expenditures results, for wind speed and precipitation, when using

an inverse hyperbolic sine transformation. Using this alternative outcome, we still find that forecasts

of higher wind speeds spur more protective expenditures. This functional form also suggest greater

precipitation forecasts increase protective expenditures as well.

Figure C.5 replicates Figure 4 but for precipitation. The plots show mixed, noisy results. Given

the lack of a clear relationship between precipitation forecasts and FEMA protective expenditures,

we may not expect to find consistent e↵ects for precipitation forecast errors or for the value of

improving precipitation forecasts.

Figure C.6 tests whether our results are driven by cases where emergency expenditures may
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be in response to forecasts issued prior to 3 days before landfall. The FEMA PAGM data do not

provide enough information to discern the timing of the protective actions, but they do allow us to

identify when an emergency or disaster was declared relative to landfall when combining it with our

hurricane dataset. We find that only about 10% of declarations are made more than 3 days before

landfall. These 10% of declarations may pose issues for our claims about protective expenditures

and forecasts so here we re-produce our protective expenditures results dropping all hurricanes for

which there is a declaration more than 3 days before landfall. The results are essentially unchanged.

Figure C.7 tests whether our results are driven by cases where what we classify as protective

expenditures may actually be in response to post-landfall outcomes, such as deploying search and

rescue. Because forecasts and realized intensity are strongly positively associated, erroneously

including post-landfall “protective” expenditures in a variable that we want to only have pre-landfall

expenditures may artificially inflate our estimates. We test how severe of a problem this is by

flexibly controlling for realized wind and precipitation intensity using the same realized wind speed

and precipitation bins as in equation (2) as controls. If post-landfall expenditures are driven by

hurricane realizations and damage, these intensity controls will soak up that variation. The figure

shows that including these controls does not change our results.

In addition to responding to the forecast intensity, protection actions may also respond to

the forecast quality. We test this by estimating equation (1), but including additional sets of bin

variables for the standard deviation of the wind speed and precipitation forecasts. We plot the

wind speed standard deviation estimates in Figure C.8. Conditional on forecast intensity and the

set of fixed e↵ects, a lower standard deviation wind speed forecast—which we interpret as higher

quality–is associated with more protective expenditures.

Figure C.9 tests the sensitivity of our results to population-weighting when constructing our

county-level measures of hurricane forecasts and intensity. Population-weighting has little e↵ect on

the results.

Figures C.10 and C.12 analyze the role of hurricane track forecasts. We define track forecasts

distance from the hurricane’s eye path to a county centroid. Specifically, the forecast distance is

computed using the hurricane’s predicted track at 1-, 2-, and 3-day lead times, and then averaged as

in our wind speed analysis. Figure C.10 reports estimates of the distance of a county to the forecast

hurricane track on protective expenditures. When studying hurricane track, we focus on counties

within 400 km of the forecast track. We do so because unlike wind speed and precipitation, even

counties thousands of kilometers away (for example, Orange County, CA) can have large track errors

despite having no risk of actual hurricane exposure. The blue triangles are estimates that do not

condition on binned wind speed or precipitation forecasts, while the black circles condition on both.

The blue triangles show that track forecasts are associated with greater protective expenditures.

Forecasting a hurricane to be within 40 km results in about $2 million more protective expenditures

than a forecast further away. Results are similar in county GDP or per capita terms. Overall, these

estimates are smaller than the wind speed forecast e↵ects by about an order of magnitude. Once

we condition on wind speed and precipitation forecasts, track forecasts appear to have no e↵ect
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on protective expenditures as shown in the black circles. Figure C.11 shows that these results are

robust to alternative distance cuto↵s.

Figure C.12 presents estimates of the e↵ect of wind speed forecasts when conditioning or not

conditioning on the distance to the track forecast. Results are nearly identical to our main results.

Track forecasts are not driving our findings that wind speed forecasts a↵ect FEMA protective

expenditures.
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Table C.1: The E↵ect of Forecast Attributes on Before-Landfall FEMA Protective Expenditures.

(1) (2) (3) (4)

Protective Expenditures (million $)

Wind Forecast (m/s) -0.4010** -0.4068*** -0.3599 -0.3393*
(0.1663) (0.1404) (0.2246) (0.1743)

Wind Forecast2 0.0399*** 0.0395*** 0.0407*** 0.0385***
(0.0116) (0.0111) (0.0125) (0.0104)

Precip Forecast (mm) -0.0754* -0.0713* -0.0855* -0.0765
(0.0456) (0.0397) (0.0496) (0.0480)

Precip Forecast2 0.0001 0.0001 0.0002 0.0001
(0.0002) (0.0002) (0.0002) (0.0002)

Protective Expenditures / GDP (%)

Wind Forecast (m/s) -0.0078*** -0.0074*** -0.0080*** -0.0075***
(0.0026) (0.0024) (0.0028) (0.0023)

Wind Forecast2 0.0007*** 0.0007*** 0.0007*** 0.0007***
(0.0002) (0.0002) (0.0002) (0.0002)

Precip Forecast (mm) -0.0016*** -0.0016*** -0.0015*** -0.0015***
(0.0005) (0.0005) (0.0005) (0.0005)

Precip Forecast2 0.0000** 0.0000** 0.0000*** 0.0000**
(0.0000) (0.0000) (0.0000) (0.0000)

Protective Expenditures / Person ($)

Wind Forecast (m/s) -4.6397** -4.2334** -5.3487* -4.5687**
(2.2058) (1.8434) (2.8480) (2.0728)

Wind Forecast2 0.3558*** 0.3426*** 0.4022*** 0.3564***
(0.1098) (0.0954) (0.1418) (0.1015)

Precip Forecast (mm) -0.4730 -0.4930 -0.5331* -0.5047
(0.3085) (0.3000) (0.3010) (0.3100)

Precip Forecast2 0.0017 0.0017 0.0020 0.0026
(0.0018) (0.0018) (0.0017) (0.0016)

Observations 95,263 95,263 95,263 95,263

State-Hurricane FE X X X X
County FE X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial
HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties.
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Figure C.1: FEMA Protective Expenditures Responses to Forecasts: 600 km Conley Cuto↵.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,5]. All panels control for bins for the
precipitation forecast, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 600 km for spatial
correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.
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Figure C.2: FEMA Protective Expenditures Responses to Forecasts: PDD Robustness.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,5]. All panels control for bins for the
precipitation forecast, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial
correlation and arbitrary autocorrelation within counties. The plots drop all “error counties” with a PDD but zero damage. The number of observations is 94,105.
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Figure C.3: FEMA Protective Expenditures Responses to Forecasts: Coastal States.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,5]. All panels control for bins for the
precipitation forecast, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial
correlation and arbitrary autocorrelation within counties. Only the following states are included in the sample: Texas, Louisiana, Mississippi, Alabama, Georgia,
Florida, South Carolina, North Carolina, Virginia, Maryland, New Jersey, Pennsylvania, Connecticut, Delaware, New York, Rhode Island, Massachusetts, New
Hampshire, and Maine. The number of observations is 33,914.
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Figure C.4: FEMA Protective Expenditures Responses to Forecasts: Inverse Hyperbolic Sine.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for wind speed is [0,5] and for precipitation is [0,20]. The
estimates from both panels are from a single regression. All panels control for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC
with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.
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Figure C.5: FEMA Protective Expenditures Responses to Forecasts: Precipitation.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,20]. All panels control for bins for the
wind speed forecast, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial
correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.
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Figure C.6: FEMA Protective Expenditures Responses to Forecasts (No Early Declarations).

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,5]. All panels control for bins for the
precipitation forecast, and for county and state-by-hurricane fixed e↵ects. County-Hurricane combinations with emergency or disaster declarations issued before 3
days before landfall are dropped. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation
within counties. The number of observations is 70,679.
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Figure C.7: FEMA Protective Expenditures Responses to Forecasts with Intensity Controls.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,5]. All panels control for binned realized
wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of
400 km for spatial correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.
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Figure C.8: FEMA Protective Expenditure Responses to Forecast Uncertainty.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,0.5]. All panels control for bins for the
wind and precipitation forecast, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for
spatial correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.
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Figure C.9: FEMA Protective Expenditures Responses to Forecasts with Population-Weighted Wind Aggregation.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,5]. All panels control for bins for
the precipitation forecast, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for
spatial correlation and arbitrary autocorrelation within counties. Wind speed forecasts and wind speed intensities are population-weighted within-county when
constructing the county-level variables. The number of observations is 95,263.
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Figure C.10: FEMA Protective Expenditures Responses to Track Forecasts.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,40]. Black circles are estimates that
control for bins for the wind and precipitation forecast, while blue triangles are estimates that do not. All estimates control for county and state-by-hurricane fixed
e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number
of observations is 15,018.
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Figure C.11: FEMA Protective Expenditures Responses to Track Forecasts with Multiple Distance Cuto↵s.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,40]. All estimates control for binned wind
and precipitation errors, binned realized distance from track, binned realized wind speed, and binned realized precipitation. All estimates control for county and
state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation
within counties. The number of observations are: 400 km = 15,018; 500 km = 20,072; 600 km = 25,195; 700 km = 30,470; 800 km = 35,874.

54



55

Figure C.12: FEMA Protective Expenditures Responses to Forecasts with Track Controls.

Note: Points are point estimates and the bars are the 95% confidence intervals. The omitted category for each panel is [0,5]. Black circles are estimates that
control for bins of the track forecast, while blue triangles are estimates that do not. All estimates control for bins of the precipitation forecast, and county and
state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation
within counties. The number of observations is 15,018.
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C.2 Does Forecast Accuracy Matter?

Table C.2 presents estimates of the e↵ect of the forecast errors on damages and recovery expenditures.

The columns correspond to the same sets of fixed e↵ects as in Table C.1. All specifications show that

wind speed underestimates increase damages and recovery expenditures conditional on the realization

of wind speed and precipitation. These costs are substantial: for a 1 m/s worse underestimate in a

county, costs increase by almost $30 million per county, or $700 per person. Precipitation estimates

are noisy, negative, and an order of magnitude smaller.

Table C.3 reports the same estimates as Table C.2 but where we also interact the wind speed

forecast error with an indicator variable for whether the wind speed was hurricane-force, or sub-

hurricane-force. This tests whether errors are more costly for higher-intensity storms. Across all

specifications, forecast errors are more costly for hurricane-force winds than for sub-hurricane-force

winds.

Figure C.13 presents results using a more conservative 600 km Conley spatial cuto↵. The main

results are all still statistically significant.

Figures C.14 and C.15 show that our wind speed forecast error results are robust to dropping

“error counties” with a Presidential Disaster Declaration (PDD) but zero reported SHELDUS damage,

and to only including Atlantic Coast and Gulf Coast states.

Figure C.16 shows the wind speed results are robust to using an inverse hyperbolic sine

transformation.

Figure C.17 shows that wind speed forecast underestimates increase all of property damage,

crop damage, and mortality damage independently in addition to increasing the aggregate cost.

The plot makes clear that aggregate damage is driven by property losses.

Figure C.18 replicates our main results but for precipitation. Precipitation shows no strong

pattern. This is consistent with our finding that precipitation forecasts do not have a consistent

e↵ect on protective expenditures. This may be because hurricane strength has historically been

communicated through its wind speed (Kantha, 2006; Murnane and Elsner, 2012).

Figure C.19 tests the sensitivity of our results to a more comprehensive set of hurricane intensity

controls. Specifically, we now include up to a four-way interaction of the wind speed and precipitation

intensity control bins, an indicator for whether the county is on the coast, and an indicator for

whether a county was to the east or west of a hurricane track. The coastal indicator is to better

capture storm surge, and the direction relative to hurricane track is to better capture wind direction.

Results are almost identical across the di↵erent specifications.

Figure C.20 tests the sensitivity of our results to the more comprehensive set of hurricane

intensity controls while increasing the number of wind speed and precipitation intensity bins. The

figure reports results from the four-way interaction of the wind speed and precipitation intensity

control bins, an indicator for whether the county is on the coast, and an indicator for whether

a county was to the east or west of a hurricane track, but varying the number of bins for wind

speed and precipitation between 5 and 120. Results are essentially the same regardless of the

number of bins, though recovery expenditures are noisy when not normalized by county GDP and/or
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population.

Figure C.21 tests the sensitivity of our results to population-weighting when constructing our

county-level measures of hurricane forecasts and intensity. Population-weighting has little e↵ect on

the results.

Figure C.22 presents results from interacting our wind speed error bins with the inverse hyperbolic

sine of realized wind speed to test whether errors are more costly for more intense hurricanes. The

figure presents the estimates evaluated at six di↵erent wind speeds representing the thresholds for

classification as a tropical storm, a Category 1 hurricane, and all the way to a Category 5 hurricane.

The estimates show that errors tend to be more costly when hurricanes are more intense.

Figures C.23 and C.25 perform analogous track exercises as Figures C.10 and C.12 to understand

the role of track errors. As before, the data used for estimation are restricted to be counties within

400 km of the forecast track. Track forecast error is the di↵erence between the forecast and realized

distance from the hurricane’s eye path to the county centroid. A positive track error indicates

that the hurricane was closer to the county than forecast (underprediction), while a negative value

reflects overprediction (i.e., the hurricane stayed farther away than expected).

Figure C.23 plots the e↵ect of forecast track errors on damages and recovery expenditures

conditioning only on the realized track and fixed e↵ects in blue triangles, and further conditioning

on realized wind speed and precipitation as well as wind speed and precipitation errors in black

circles. No clear relationship appears in any specification. Figure C.24 shows that these results are

robust to alternative distance cuto↵s.

Figure C.25 presents wind speed error results as in our main results in blue triangles, and further

conditioning on track error and realized track in black circles. The results are essentially identical.

Track and track errors do not appear to be driving the e↵ects of wind speed.

Figure C.26 presents estimates of the e↵ect of wind speed forecast errors on protective expendi-

tures. If we have properly classified protective actions as being for before-landfall protection, they

should not be correlated with forecast errors. Unlike the results in the main text we condition

here on forecasts instead of realizations so that the variation in forecast errors is from variation in

the hurricane’s intensity realization. This changes the interpretation of the estimates to be that,

given a forecast intensity, how much does an (after-landfall) error in this intensity drive protective

expenditures? The results show no systematic relationship between forecast error and protective

expenditures.
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Table C.2: The E↵ect of Underestimating Wind and Precipitation on Damages and FEMA Recovery
Expenditures.

(1) (2) (3) (4)

Damages + Recovery Expenditures (million $)

Wind Forecast Underestimate (m/s) 31.63*** 31.95*** 31.01** 29.84**
(11.66) (10.59) (13.93) (12.03)

Precip Forecast Underestimate (mm) -0.82 -0.93 -1.17 -1.23
(1.34) (1.29) (1.69) (1.54)

(Damages + Recovery Expenditures) / GDP (%)

Wind Forecast Underestimate (m/s) 1.91** 1.91** 1.72** 1.82**
(0.91) (0.81) (0.78) (0.71)

Precip Forecast Underestimate (mm) -0.08* -0.09** -0.09* -0.10**
(0.05) (0.04) (0.05) (0.04)

(Damages + Recovery Expenditures) / Person ($)

Wind Forecast Underestimate (m/s) 716.12*** 722.41*** 709.74** 748.70***
(276.81) (258.26) (287.10) (272.45)

Precip Forecast Underestimate (mm) -35.21** -37.40** -42.94** -46.98**
(15.58) (15.23) (19.85) (19.42)

Observations 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X
State-Hurricane FE X X X X
County FE X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a
distance radius of 400 km for spatial correlation and arbitrary autocorrelation within
counties.
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Table C.3: The Marginal E↵ect of Underestimating Wind and Precipitation on Damages and FEMA
Recovery Expenditures As a Function of Hurricane Intensity.

(1) (2) (3) (4)

Damages + Recovery Expenditures (million $)

Wind Forecast Underestimate (m/s): Hurricane 79.58*** 78.71*** 81.47** 76.34***
(25.77) (22.64) (31.74) (25.77)

Wind Forecast Underestimate (m/s): Sub-Hurricane -3.17 -2.50 -7.61 -5.23
(4.77) (4.25) (6.15) (4.43)

(Damages + Recovery Expenditures) / GDP (%)

Wind Forecast Underestimate (m/s): Hurricane 4.21** 4.15*** 3.75** 3.81***
(1.71) (1.53) (1.50) (1.35)

Wind Forecast Underestimate (m/s): Sub-Hurricane 0.25 0.26 0.17 0.32*
(0.18) (0.16) (0.16) (0.17)

(Damages + Recovery Expenditures) / Person ($)

Wind Forecast Underestimate (m/s): Hurricane 1597.38*** 1595.02*** 1577.65*** 1607.76***
(535.28) (501.30) (582.22) (531.96)

Wind Forecast Underestimate (m/s): Sub-Hurricane 76.51 79.68* 45.42 100.75**
(50.10) (46.39) (54.28) (50.94)

Observations 95,263 95,263 95,263 95,263

Precipitation Underestimate X X X X
Realized Wind/Precip Bins X X X X
State-Hurricane FE X X X X
County FE X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of 400
km for spatial correlation and arbitrary autocorrelation within counties. Hurricane wind speeds are those
greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds fall below that threshold.
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Figure C.13: Forecast Errors, Damages, and Ex Post Recovery Expenditures: 600 km Conley Cuto↵.

Note: Points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0]. All panels control for binned precipitation errors,
binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a
distance radius of 600 km for spatial correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.
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Figure C.14: Forecast Errors, Damages, and Ex Post Recovery Expenditures: PDD Robustness.

Note: Points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0]. All panels control for binned precipitation errors,
binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a
distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The plots drop all “error counties” with a PDD but zero damage.
Dropping error counties results in omitting the lowest bin. The number of observations is 94,105.
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Figure C.15: Forecast Errors, Damages, and Ex Post Recovery Expenditures: Coastal States.

Note: Points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0]. All panels control for binned precipitation errors,
binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a
distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. Only the following states are included in the sample: Texas,
Louisiana, Mississippi, Alabama, Georgia, Florida, South Carolina, North Carolina, Virginia, Maryland, New Jersey, Pennsylvania, Connecticut, Delaware, New
York, Rhode Island, Massachusetts, New Hampshire, and Maine. The number of observations is 33,194.
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Figure C.16: Forecast Errors, Damages, and Ex Post Recovery Expenditures: Inverse Hyperbolic Sine.

Note: Points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0] for wind speed and (�20, 0] for precipitation.
All panels control for binned precipitation errors, binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects.
Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number of
observations is 95,263.
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Figure C.17: Forecast Errors, Damages, and Ex Post Recovery Expenditures: By Damage Type.

Note: Points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0] for wind speed and (�20, 0] for precipitation.
All panels control for binned precipitation errors, binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects.
Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number of
observations is 95,263.
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Figure C.18: Forecast Errors, Damages, and Ex Post Recovery Expenditures: Precipitation.

Note: Points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�20, 0]. All panels control for binned wind speed errors,
binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a
distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.
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Figure C.19: Forecast Errors, Damages, and Ex Post Recovery Expenditures with Multiple Fixed E↵ects.

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0]. Each color represents a di↵erent specification
varying the hurricane intensity fixed e↵ects. All panels control for binned precipitation errors, binned realized wind speed, binned realized precipitation, and
for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties. The number of observations is 95,263.
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Figure C.20: Forecast Errors, Damages, and Ex Post Recovery Expenditures with Multiple Bin Sizes.

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0]. Each color represents a di↵erent specification
varying the number of bins (from 20 to 120) used to control for wind and precipitation intensity. All panels control for binned precipitation errors; a four-way
interaction of binned realized wind speed, binned realized precipitation, a coastal indicator, and a west-of-track indicator; and for county and state-by-hurricane
fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The
number of observations is 95,263.
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Figure C.21: Forecast Errors, Damages, and Ex Post Recovery Expenditures with Population-Weighted Wind Exposure.

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0]. All panels control for binned precipitation
errors, binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC
with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. Wind speed forecasts and wind speed intensities are
population-weighted within-county when constructing the county-level variables. The number of observations is 95,263.
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Figure C.22: Wind Forecast Errors, Wind Intensity, and Their Interaction E↵ects on Damages and Recovery Expenditures

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0]. Estimates are based on a regression
specification where wind forecast error bins are interacted with the inverse hyperbolic sine of observed wind speed. All panels control for binned precipitation
errors, binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with
a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.
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Figure C.23: Track Forecast Errors, Damages, and Ex Post Recovery Expenditures.

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�80, 0]. Black circles are estimates that control for
binned wind and precipitation errors, binned realized distance from track, binned realized wind speed, and binned realized precipitation, while blue triangles are
estimates that do not. All estimates control for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400
km for spatial correlation and arbitrary autocorrelation within counties. The number of observations is 15,018.
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Figure C.24: Track Forecast Errors, Damages, and Ex Post Recovery Expenditures with Multiple Distance Cuto↵s.

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�80, 0]. Each estimate comes from a di↵erent sample
that retains counties within a certain distance (400-800 km) from the forecast and observed track. All estimates control for binned wind and precipitation errors,
binned realized distance from track, binned realized wind speed, and binned realized precipitation. All estimates control for county and state-by-hurricane fixed
e↵ects. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number
of observations are: 400 km = 15,018; 500 km = 20,072; 600 km = 25,195; 700 km = 30,470; 800 km = 35,874.
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Figure C.25: Forecast Errors, Damages, and Ex Post Recovery Expenditures with Track Controls.

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0]. All panels control for binned precipitation
errors, binned realized wind speed, binned realized precipitation, and for county and state-by-hurricane fixed e↵ects. The black circles further control for binned
track errors and binned realized distance to the center of the hurricane. Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial
correlation and arbitrary autocorrelation within counties. The number of observations is 15,018.
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Figure C.26: Forecast Errors and Protective Expenditures.

Note: The points are point estimates, and the bars are the 95% confidence intervals. The omitted category is (�2, 0]. All panels control for binned precipitation
errors, binned forecast wind speed, binned forecast precipitation, and for county and state-by-hurricane fixed e↵ects. Standard errors are Conley Spatial HAC with
a distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. The number of observations is 95,263.
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C.3 What is the Ex Ante Value of Improving Hurricane Forecasts?

The fixed e↵ects in all table columns follow similarly to the previous sections. All specifications

include binned wind speed and precipitation realizations as well as first-order forecast error terms.

Table C.4 shows our results using the alternative 600 km Conley cuto↵. The results are all still

statistically significant.

Tables C.5 and C.6 show our results are robust to dropping counties issued a Presidential

Disaster Declaration (PDD) but with no reported SHELDUS damage, and working only with coastal

counties. The results are robust to either sampling approach.

Table C.7 performs the same exercise as Figure C.17, where we estimate impacts on di↵erent

types of damage. The value of a forecast improvement is positive for all three, but it is driven by

property damage, consistent with Figure C.17.

Table C.8 shows our estimates when we do not demean the error. The results follow the main

pattern in the main text and are all statistically significant.

Table C.9 shows our estimates when conditioning on the interaction of two indicator variables:

one for whether a county was forecast to experience hurricane-force winds, and one for whether the

county actually experienced hurricane-force winds. Conditioning on the interaction of these variables

controls for the error in categorizing whether a county would be hit by hurricane-force winds or not.

This tests whether the value in a forecast improvement is from solely getting the binary aspect of

predicting hurricane-force winds correct, or if there is still remaining value in forecast improvements

conditional on getting this binary prediction right. Depending on the specification and outcomes,

results are unchanged or up to about 40% smaller indicating that improving wind speed forecasts,

conditional on correctly predicting hurricane status, are still highly valuable.

Table C.10 presents the value of improving the precipitation forecasts. We find that they are

smaller in magnitude than their equivalent estimates for wind speed forecasts and statistically

indistinguishable from zero at the 95% confidence level in all specifications. This is consistent with

our results showing that precipitation forecasts do not seem to drive protective expenditures and

precipitation forecast errors do not seem to have large e↵ects on damages or recovery expenditures.

Table C.11 tests the sensitivity of our results to a more comprehensive set of hurricane intensity

controls where we now do up to a four-way interaction of the wind speed and precipitation intensity

control bins, an indicator for whether the county is on the coast, and an indicator for whether a

county was to the east or west of a hurricane track. Results are essentially identical.

Table C.12 tests the sensitivity of our results to a more comprehensive set of hurricane intensity

controls analogously to Table C.11, but where we increase the number of bins for wind speed and

precipitation. Results are similar across all specifications.

Table C.13 tests the sensitivity of our results to population-weighting when constructing our

county-level measures of hurricane forecasts and intensity similarly to Figure C.21. Population-

weighting again has little e↵ect on the results.

Table C.14 presents results from interacting squared demeaned error with the inverse hyperbolic

sine of realized wind speed, analogously to Figure C.22. The table presents the estimates evaluated
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at six di↵erent wind speeds representing the thresholds for classification as a tropical storm, a

Category 1 hurricane, all the way to a Category 5 hurricane. The estimates show that the value of

a forecast improvement is higher when the hurricane is more intense.

Table C.15 presents estimates of the value of a track forecast improvement, conditional on the

wind speed and precipitation error and realization variables included in the main text. The estimates

are small and imprecise except for Column 7 of the top panel. Taking this estimate along with the

sample standard deviation of a track forecast error of 90 km yields a marginal value of a forecast

improvement of $22 million per county per hurricane. Table C.16 presents the same estimates, but

when not conditioning on any wind speed or precipitation variables to allow track to pick up on the

e↵ects of wind speed and precipitation. The estimates are similar but are more precise in Column 7.

Tables C.17 and C.18 replicate the track analysis above using di↵erent distance cuto↵s. The

result are basically unchanged.

Table C.19 presents estimates of the value of a wind speed forecast improvement, conditional on

the analogous track error and realization variables. The estimates are very close to those in the

main text. On this restricted sample, the standard deviation of a wind speed forecast is 4.3 m/s,

delivering a value of a forecast improvement of $47 million per hurricane per county.

The key assumption underlying the estimate in equation (5) is the normality of forecast errors.

A formal Kolmogorov-Smirnov test rejects normality for both wind and precipitation forecast errors,

primarily due to skewness, excess kurtosis, and the large sample size. Even small deviations from

normality can be rejected with nearly 100,000 observations.

To quantify the deviation from normality, we use the Continuous Ranked Probability Score

(CRPS). Given some assumed normal error distribution CDF, F , and some observed error value,

eobs, the CRPS is:

CRPS
�
F, e

�
=

Z 1

�1

�
F (z)� 1{eobs  z}

 2
dz,

where 1{ · } is the indicator function.

What the CRPS does is compare a normal CDF, F , to the empirical CDF of a single error

observation. Because this observation is just a point, its CDF boils down to an indicator function.

The measure of fit between the two is then the squared area di↵erence between the two CDFs.29

We compute the average CRPS in our data across all observations. We do so by having F be

a normal distribution that matches the mean and standard deviation for the wind speed error in

our dataset. That is, we are comparing our forecast errors to a proposed normal distribution that

matches the empirical forecast error distribution’s first two moments.

We get that the average CRPS when comparing against this normal distribution is 1.05 m/s: on

average, the assumed normal distribution misses the actual error by 1.05 m/s. We can compare this

to the CRPS of the actual empirical error distribution as a benchmark. The average CRPS here is

29To provide some intuition, the CRPS is a generalization of mean absolute error. Mean absolute error measures
the di↵erence between a point (degenerate) distribution and a point outcome. The CRPS measures the di↵erence
between a continuous distribution and a point outcome.
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0.89 m/s. The di↵erence between the two is 0.17 m/s, which is less than one-tenth of a standard

deviation (2.27 m/s). What this comparison suggests, is that while assuming normality is not a

perfect fit, it does little in terms of changing the distribution.

Table C.20 and Table C.21 assess the robustness of our results after imposing normality via a

rank-based inverse-normal transformation. We transform the data according to the following steps:

1. Compute the empirical mean, µ̂, and standard deviation, �̂, of the errors.

2. Rank each county’s error from smallest to largest and convert those ranks to percentiles in

(0, 1).

3. Map each percentile to a standard normal deviate via the inverse standard-normal cumulative

distribution function, ��1(·).

4. Shift and scale those deviates to match the mean and standard deviation of the sample: µ̂

and �̂.

This ensures the errors follow a normal distribution and match the mean and variance of the

data. Table C.20 applies the transformation across the full sample, while Table C.21 does so within

each hurricane. Both sets of estimates corroborate the main finding that improving forecasts has

positive and meaningful ex ante value.

Tables C.22 through C.25 present a second transformation that imposes normality within wind

speed bins (bin widths of 2, 5, 10, and 20 m/s) for each hurricane, allowing the forecast error

distribution to vary with hurricane intensity and better reflect the fact that forecasts are more

uncertain and errors are larger when wind speeds are higher. Here we use the following steps to

transform the data:

1. Split counties within each hurricane into bins according to their wind speed, e.g., 5 m/s wide

bins of wind speed.

2. For each bin in each hurricane, compute the mean and variance of the errors.

3. Apply the same rank-based inverse-normal transform within each bin as in the prior results.

These results remain consistent with our main estimates. Note that minor di↵erences in the

number of observations across tables are due to counties being dropped during the binning in the

data transformation.

Figure C.27 plots the t-statistic from the estimate in Column 7 of Table 2, but when we smoothly

vary the distance cuto↵ for the Conley standard errors. The figure shows that our estimates are

significant at the 95% level while allowing for spatial correlation up to over 1,000 km away from the

county centroid.

Figure C.28 shows the distribution of estimates corresponding to Column 7 of Table 2, but

where we drop hurricanes from the sample, one-by-one. Most of the estimates are tightly clustered

around the full sample estimate which is given by the dashed line. The large estimate is when we

drop Michael, and the low estimate is when we drop Katrina.
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Table C.4: The Value of a Wind Speed Forecast Improvement: Conley Robustness.

(1) (2) (3) (4) (5)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 3.65*** 3.61*** 4.25*** 4.03***
(1.19) (1.10) (1.56) (1.33)

Hurricane �2 : (e� µ)2 5.49***
(1.81)

Sub-Hurricane �2 : (e� µ)2 -0.39
(0.48)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.32** 0.31*** 0.29** 0.29***
(0.13) (0.12) (0.12) (0.10)

Hurricane �2 : (e� µ)2 0.45***
(0.16)

Sub-Hurricane �2 : (e� µ)2 0.02
(0.02)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 110.82*** 112.76*** 113.05*** 117.04***
(33.24) (32.05) (37.02) (33.63)

Hurricane �2 : (e� µ)2 158.61***
(41.45)

Sub-Hurricane �2 : (e� µ)2 5.67
(5.93)

Observations 95,263 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance
radius of 600 km for spatial correlation and arbitrary autocorrelation within counties. e is
the county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific mean
forecast error. Hurricane wind speeds are those greater than 33 m/s (74 mph), while
Sub-Hurricane wind speeds fall below that threshold.
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Table C.5: The Value of a Wind Speed Forecast Improvement: PDD Robustness.

(1) (2) (3) (4) (5)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 3.74*** 3.69*** 4.26*** 3.89***
(1.18) (1.10) (1.52) (1.23)

Hurricane �2 : (e� µ)2 5.50***
(1.81)

Sub-Hurricane �2 : (e� µ)2 -0.44
(0.50)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.33*** 0.33*** 0.32*** 0.31***
(0.13) (0.12) (0.12) (0.11)

Hurricane �2 : (e� µ)2 0.47***
(0.16)

Sub-Hurricane �2 : (e� µ)2 0.01
(0.02)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 115.56*** 118.31*** 122.54*** 114.17***
(31.21) (30.43) (33.97) (28.71)

Hurricane �2 : (e� µ)2 162.93***
(39.20)

Sub-Hurricane �2 : (e� µ)2 3.43
(6.07)

Observations 94,105 94,105 94,105 94,105 94,105

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance
radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. e is
the county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific mean
forecast error. Hurricane wind speeds are those greater than 33 m/s (74 mph), while
Sub-Hurricane wind speeds fall below that threshold. Counties issued a Presidential Disaster
Declaration but without reported SHELDUS damage are dropped from the sample.
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Table C.6: The Value of a Wind Speed Forecast Improvement: Coastal States.

(1) (2) (3) (4) (5)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 3.68*** 3.63*** 4.34*** 4.09***
(1.18) (1.09) (1.53) (1.31)

Hurricane �2 : (e� µ)2 5.32***
(1.72)

Sub-Hurricane �2 : (e� µ)2 -0.22
(0.52)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.36*** 0.37*** 0.32** 0.32***
(0.14) (0.14) (0.13) (0.11)

Hurricane �2 : (e� µ)2 0.42***
(0.15)

Sub-Hurricane �2 : (e� µ)2 0.02
(0.02)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 131.14*** 133.13*** 114.11*** 121.37***
(36.89) (37.15) (30.79) (30.76)

Hurricane �2 : (e� µ)2 158.40***
(38.12)

Sub-Hurricane �2 : (e� µ)2 9.01
(7.10)

Observations 33,914 33,914 33,914 33,914 33,914

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance
radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. e is
the county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific mean
forecast error. Hurricane wind speeds are those greater than 33 m/s (74 mph), while
Sub-Hurricane wind speeds fall below that threshold. Only the following states are included
in the sample: Texas, Louisiana, Mississippi, Alabama, Georgia, Florida, South Carolina,
North Carolina, Virginia, Maryland, New Jersey, Pennsylvania, Connecticut, Delaware, New
York, Rhode Island, Massachusetts, New Hampshire, and Maine.
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Table C.7: The Value of a Wind Speed Forecast Improvement by Damage Type.

(1) (2) (3) (4) (5)

Property Damages (million $)

�2 : (e� µ)2 3.02*** 2.99*** 3.59*** 3.37***
(1.06) (0.97) (1.31) (1.13)

Hurricane �2 : (e� µ)2 4.55***
(1.63)

Sub-Hurricane �2 : (e� µ)2 -0.35
(0.44)

Crop Damages (million $)

�2 : (e� µ)2 0.28 0.27* 0.21 0.21
(0.18) (0.16) (0.15) (0.13)

Hurricane �2 : (e� µ)2 0.39*
(0.23)

Sub-Hurricane �2 : (e� µ)2 0.03
(0.02)

Mortality Damages (million $)

�2 : (e� µ)2 0.11 0.11* 0.14 0.13
(0.07) (0.06) (0.10) (0.08)

Hurricane �2 : (e� µ)2 0.16
(0.11)

Sub-Hurricane �2 : (e� µ)2 -0.02
(0.02)

Observations 95,263 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial
HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties. e is the county-hurricane-specific forecast error,
µ is the hurricane-intensity bin-specific mean forecast error. Hurricane wind
speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds
fall below that threshold.

80



Table C.8: The Value of a Wind Speed Forecast Improvement without Demeaning.

(1) (2) (3) (4) (5)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 1.94*** 1.93*** 2.13** 1.87**
(0.69) (0.66) (0.84) (0.73)

Hurricane �2 : (e� µ)2 3.51***
(1.13)

Sub-Hurricane �2 : (e� µ)2 -0.18
(0.21)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.13* 0.13** 0.12** 0.12**
(0.07) (0.06) (0.06) (0.05)

Hurricane �2 : (e� µ)2 0.21**
(0.09)

Sub-Hurricane �2 : (e� µ)2 0.01
(0.01)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 42.39** 43.15*** 42.26** 43.69***
(17.63) (16.45) (17.56) (16.20)

Hurricane �2 : (e� µ)2 73.29***
(24.25)

Sub-Hurricane �2 : (e� µ)2 0.67
(4.28)

Observations 95,263 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a
distance radius of 400 km for spatial correlation and arbitrary autocorrelation within
counties. The squared error terms are not demeaned. e is the county-hurricane-
specific forecast error, µ is the hurricane-intensity bin-specific mean forecast error.
Hurricane wind speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane
wind speeds fall below that threshold.
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Table C.9: The Value of a Wind Speed Forecast Improvement: Category Error Controls.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 2.36*** 2.36*** 2.46*** 2.46*** 2.90*** 2.82***
(0.70) (0.70) (0.74) (0.74) (0.84) (0.85)

Hurricane �2 : (e� µ)2 3.83***
(1.12)

Sub-Hurricane �2 : (e� µ)2 0.19
(0.52)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.29** 0.30** 0.29** 0.29** 0.26** 0.27***
(0.13) (0.14) (0.13) (0.12) (0.11) (0.10)

Hurricane �2 : (e� µ)2 0.45**
(0.18)

Sub-Hurricane �2 : (e� µ)2 0.02
(0.02)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 97.35*** 100.70*** 98.81*** 101.52*** 98.53*** 105.50***
(30.38) (31.01) (30.05) (28.29) (28.96) (27.21)

Hurricane �2 : (e� µ)2 151.80***
(39.50)

Sub-Hurricane �2 : (e� µ)2 9.34
(8.09)

Observations 95,263 95,263 95,263 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of 400 km for
spatial correlation and arbitrary autocorrelation within counties. e is the county-hurricane-specific forecast error,
µ is the hurricane-intensity bin-specific mean forecast error. Hurricane wind speeds are those greater than 33 m/s
(74 mph), while Sub-Hurricane wind speeds fall below that threshold. All specifications control for an interaction
between an indicator for forecast hurricane-force winds and an indicator for realized hurricane-force winds.

82



Table C.10: The Value of a Precipitation Forecast Improvement.

(1) (2) (3) (4) (5)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 0.00 0.01 0.00 0.01*
(0.00) (0.00) (0.00) (0.00)

Hurricane �2 : (e� µ)2 0.01
(0.01)

Sub-Hurricane �2 : (e� µ)2 0.00
(0.00)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 -0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Hurricane �2 : (e� µ)2 0.00
(0.00)

Sub-Hurricane �2 : (e� µ)2 -0.00
(0.00)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 -0.02 0.00 -0.01 0.05
(0.04) (0.03) (0.04) (0.05)

Hurricane �2 : (e� µ)2 0.04
(0.18)

Sub-Hurricane �2 : (e� µ)2 -0.02
(0.03)

Observations 95,263 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X
County FE X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial
HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties. e is the county-hurricane-specific forecast
error, µ is the hurricane-intensity bin-specific mean forecast error. Hurricane
wind speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane
wind speeds fall below that threshold.
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Table C.11: The Value of a Wind Speed Forecast Improvement.

(1) (2) (3) (4) (5) (6) (7) (8)

Damages + Recovery Expenditures (million $)

Hurricane �2 : (e� µ)2 5.61*** 5.49*** 5.49*** 5.49*** 5.42*** 5.10*** 5.38*** 4.79***
(1.82) (1.73) (1.73) (1.73) (1.71) (1.54) (1.72) (1.54)

Sub-Hurricane �2 : (e� µ)2 -0.38 -0.39 -0.39 -0.41 -0.36 -0.53 -0.35 -0.47
(0.43) (0.45) (0.45) (0.44) (0.49) (0.47) (0.49) (0.47)

(Damages + Recovery Expenditures) / GDP (%)

Hurricane �2 : (e� µ)2 0.45*** 0.45*** 0.45*** 0.45*** 0.45*** 0.45*** 0.45*** 0.45***
(0.15) (0.16) (0.16) (0.16) (0.16) (0.16) (0.15) (0.16)

Sub-Hurricane �2 : (e� µ)2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Damages + Recovery Expenditures Per Capita ($/person)

Hurricane �2 : (e� µ)2 159.90*** 158.61*** 158.61*** 158.60*** 157.90*** 155.18*** 157.10*** 151.42***
(38.84) (38.64) (38.64) (38.63) (38.41) (37.70) (38.10) (37.28)

Sub-Hurricane �2 : (e� µ)2 5.73 5.67 5.67 5.70 6.38 4.57 7.04 5.10
(5.44) (5.57) (5.57) (5.61) (5.77) (5.30) (6.23) (6.18)

Observations 95,263 95,263 95,263 95,263 95,263 95,263 95,263 95,263

State-Hurricane FE X X X X X X X X
County FE X X X X X X X X
Realized Wind Bins X X X X
Realized Precip Bins X X X
Coastal Indicator X X
West of Track Indicator X
Wind-by-Precip Bins X
Wind-by-Precip-by-Coastal Indicator X
Wind-by-Precip-by-West of Track Indicator X
Wind-by-Precip-by-Coastal-by-West of Track Indicator X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of 400 km for spatial correlation and arbitrary
autocorrelation within counties. e is the county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific mean forecast error. Hurricane
wind speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds fall below that threshold.
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Table C.12: The Value of a Wind Speed Forecast Improvement Under Di↵erent Wind Bins.

5 Bins 10 Bins 20 Bins 40 Bins 60 Bins 80 Bins 100 Bins 120 Bins

Damages + Recovery Expenditures (million $)

Hurricane �2 : (e� µ)2 5.30*** 5.01*** 4.79*** 4.74*** 4.92*** 4.62*** 4.89*** 4.30***
(1.77) (1.62) (1.54) (1.49) (1.45) (1.24) (1.40) (1.19)

Sub-Hurricane �2 : (e� µ)2 -0.54 -0.57 -0.47 -0.37 -0.42 -0.07 -0.65 -0.40
(0.49) (0.47) (0.47) (0.46) (0.43) (0.69) (0.61) (0.67)

(Damages + Recovery Expenditures) / GDP (%)

Hurricane �2 : (e� µ)2 0.45*** 0.45*** 0.45*** 0.44*** 0.45*** 0.44*** 0.42*** 0.40***
(0.16) (0.16) (0.16) (0.16) (0.16) (0.14) (0.14) (0.13)

Sub-Hurricane �2 : (e� µ)2 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.04
(0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.03)

Damages + Recovery Expenditures Per Capita ($/person)

Hurricane �2 : (e� µ)2 157.75*** 153.58*** 151.42*** 145.69*** 145.54*** 140.21*** 138.28*** 123.78***
(39.06) (37.60) (37.28) (35.29) (36.92) (32.14) (32.48) (32.08)

Sub-Hurricane �2 : (e� µ)2 4.92 4.25 5.10 4.69 5.19 0.76 -0.10 20.10*
(5.76) (5.60) (6.18) (6.54) (6.69) (9.96) (10.10) (11.61)

Observations 95,263 95,263 95,263 95,263 95,263 95,263 95,263 95,263

State-Hurricane FE X X X X X X X X
County FE X X X X X X X X
Wind-by-Precip-by-Coastal-by-West of Track Indicator X X X X X X X X
* p < 0.1, ** p < 0.05, *** p < 0.01 * p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of 400 km for
spatial correlation and arbitrary autocorrelation within counties. e is the county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific
mean forecast error. Each column shows estimates using a di↵erent number of bins to control for wind and precipitation intensity, ranging from 5 to 120
bins. Hurricane wind speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds fall below that threshold.

85



Table C.13: The Value of a Wind Speed Forecast Improvement with Population-Weighted Wind
Aggregation.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 4.51*** 4.49*** 3.69*** 3.66*** 4.29*** 4.09***
(1.42) (1.43) (1.14) (1.06) (1.49) (1.29)

Hurricane �2 : (e� µ)2 5.50***
(1.75)

Sub-Hurricane �2 : (e� µ)2 -0.41
(0.48)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.34** 0.35** 0.32** 0.31*** 0.29** 0.29***
(0.14) (0.14) (0.13) (0.12) (0.11) (0.10)

Hurricane �2 : (e� µ)2 0.45***
(0.16)

Sub-Hurricane �2 : (e� µ)2 0.02
(0.02)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 124.30*** 125.94*** 111.71*** 113.77*** 114.01*** 118.63***
(35.74) (35.98) (31.33) (30.31) (33.45) (31.22)

Hurricane �2 : (e� µ)2 158.46***
(38.81)

Sub-Hurricane �2 : (e� µ)2 5.72
(5.74)

Observations 95,263 95,263 95,263 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Wind speed forecasts and wind speed intensities are population-weighted
within-county when constructing the county-level variables. Standard errors are Conley Spatial HAC with a distance
radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. Estimates are conditional on
an interaction between an indicator variable whether the county was forecast to be hit by hurricane-force winds, and
an indicator variable whether the county was hit by hurricane-force winds. e is the county-hurricane-specific forecast
error, µ is the hurricane-intensity bin-specific mean forecast error. Hurricane wind speeds are those greater than 33
m/s (74 mph), while Sub-Hurricane wind speeds fall below that threshold.
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Table C.14: Marginal E↵ect of Squared Forecast Error by Wind Intensity

18 m/s 33 m/s 43 m/s 50 m/s 58 m/s 70 m/s

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 2.15* 3.39*** 3.93*** 4.24*** 4.54*** 4.93***
(1.11) (1.15) (1.26) (1.34) (1.44) (1.57)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.14** 0.30*** 0.36*** 0.40*** 0.44*** 0.49***
(0.06) (0.11) (0.13) (0.14) (0.16) (0.17)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 63.93** 105.81*** 124.11*** 134.54*** 144.80*** 157.80***
(26.74) (28.87) (31.64) (33.58) (35.71) (38.65)

Observations 95,263 95,263 95,263 95,263 95,263 95,263

State-Hurricane FE X X X X X X
County FE X X X X X X
Wind-by-Precip-by-Coastal-by-West of Track Indicator X X X X X X
* p < 0.1, ** p < 0.05, *** p < 0.01 * p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a
distance radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. e is the county-hurricane-specific
forecast error, µ is the hurricane-intensity bin-specific mean forecast error. Each column reports the marginal e↵ect of squared
forecast error (e�mu)2 evaluated at di↵erent observed wind speeds, ranging from tropical storm (18 m/s) to major hurricane
strength (70 m/s).
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Table C.15: The Value of a Track Distance Forecast Improvement Conditional on Wind and
Precipitation.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 0.000 0.000 0.001 0.000 0.001 -0.001
(0.001) (0.000) (0.001) (0.001) (0.001) (0.002)

Hurricane �2 : (e� µ)2 0.125*
(0.072)

Sub-Hurricane �2 : (e� µ)2 0.000
(0.000)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 -0.000 -0.000 0.000 0.000 0.000* 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Hurricane �2 : (e� µ)2 0.002
(0.002)

Sub-Hurricane �2 : (e� µ)2 -0.000
(0.000)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 0.001 -0.001 0.008 0.011 0.021 0.018
(0.008) (0.008) (0.008) (0.010) (0.016) (0.036)

Hurricane �2 : (e� µ)2 2.166
(1.387)

Sub-Hurricane �2 : (e� µ)2 0.002
(0.005)

Observations 15,018 15,018 15,018 15,018 15,018 15,018 15,018

Realized Wind/Precip/Track Bins X X X X X X
Level Wind/Precip/Track Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of
400 km for spatial correlation and arbitrary autocorrelation within counties. e is the county-hurricane-
specific forecast error, µ is the hurricane-intensity bin-specific mean forecast error. Hurricane wind
speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds fall below that
threshold.

88



Table C.16: The Unconditional Value of a Track Distance Forecast Improvement.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 0.001 0.000 0.000 0.000 0.000 -0.001
(0.001) (0.000) (0.000) (0.000) (0.001) (0.001)

Hurricane �2 : (e� µ)2 0.151**
(0.075)

Sub-Hurricane �2 : (e� µ)2 0.000
(0.000)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.000 -0.000 -0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Hurricane �2 : (e� µ)2 0.004**
(0.002)

Sub-Hurricane �2 : (e� µ)2 -0.000
(0.000)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 0.013 -0.002 0.003 0.012 0.017 0.019
(0.010) (0.008) (0.007) (0.007) (0.014) (0.023)

Hurricane �2 : (e� µ)2 2.917**
(1.414)

Sub-Hurricane �2 : (e� µ)2 0.004
(0.006)

Observations 15,018 15,018 15,018 15,018 15,018 15,018 15,018

Realized Wind/Precip/Track Bins X X X X X X
Level Wind/Precip/Track Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of
400 km for spatial correlation and arbitrary autocorrelation within counties. e is the county-hurricane-
specific forecast error, µ is the hurricane-intensity bin-specific mean forecast error. Hurricane wind
speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds fall below that
threshold.
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Table C.17: The Value of a Track Distance Forecast Improvement: Cuto↵ Robustness.

400 km 500 km 600 km 700 km 800 km

Damages + Recovery Expenditures (million $)

Hurricane �2 : (e� µ)2 0.125* 0.123* 0.122* 0.121* 0.120*
(0.072) (0.073) (0.072) (0.072) (0.072)

Sub-Hurricane �2 : (e� µ)2 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

(Damages + Recovery Expenditures) / GDP (%)

Hurricane �2 : (e� µ)2 0.002 0.002 0.002 0.002 0.002
(0.002) (0.002) (0.002) (0.002) (0.002)

Sub-Hurricane �2 : (e� µ)2 -0.000 -0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Damages + Recovery Expenditures Per Capita ($/person)

Hurricane �2 : (e� µ)2 2.166 2.116 2.077 2.047 2.037
(1.387) (1.368) (1.354) (1.354) (1.349)

Sub-Hurricane �2 : (e� µ)2 0.002 0.000 0.001 0.003 0.002
(0.005) (0.003) (0.003) (0.003) (0.003)

Observations 15,018 20,072 25,195 30,470 35,874

Realized Wind/Precip/Track Bins X X X X X
Level Wind/Precip/Track Error X X X X X
State-Hurricane FE X X X X X
County FE X X X X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a
distance radius of 400 km for spatial correlation and arbitrary autocorrelation within
counties. e is the county-hurricane-specific forecast error, µ is the hurricane-intensity
bin-specific mean forecast error. Hurricane wind speeds are those greater than 33
m/s (74 mph), while Sub-Hurricane wind speeds fall below that threshold. Each
column corresponds to a di↵erent distance cuto↵ (in kilometers) used to define the
maximum allowable distance between county centroids and the hurricane track.
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Table C.18: The Value of a Track Distance Forecast Improvement: Cuto↵ Robustness.

400 km 500 km 600 km 700 km 800 km

Damages + Recovery Expenditures (million $)

Hurricane �2 : (e� µ)2 0.151** 0.150** 0.150** 0.149** 0.149**
(0.075) (0.075) (0.075) (0.075) (0.075)

Sub-Hurricane �2 : (e� µ)2 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

(Damages + Recovery Expenditures) / GDP (%)

Hurricane �2 : (e� µ)2 0.004** 0.004** 0.004** 0.004** 0.004**
(0.002) (0.002) (0.002) (0.002) (0.002)

Sub-Hurricane �2 : (e� µ)2 -0.000 -0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000)

Damages + Recovery Expenditures Per Capita ($/person)

Hurricane �2 : (e� µ)2 2.917** 2.865** 2.836** 2.812** 2.805**
(1.414) (1.396) (1.383) (1.385) (1.384)

Sub-Hurricane �2 : (e� µ)2 0.004 0.003 0.005 0.006 0.005
(0.006) (0.004) (0.003) (0.004) (0.003)

Observations 15,018 20,072 25,195 30,470 35,874

Realized Wind/Precip/Track Bins X X X X X
Level Wind/Precip/Track Error X X X X X
State-Hurricane FE X X X X X
County FE X X X X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a
distance radius of 400 km for spatial correlation and arbitrary autocorrelation within
counties. e is the county-hurricane-specific forecast error, µ is the hurricane-intensity
bin-specific mean forecast error. Hurricane wind speeds are those greater than 33
m/s (74 mph), while Sub-Hurricane wind speeds fall below that threshold. Each
column corresponds to a di↵erent distance cuto↵ (in kilometers) used to define the
maximum allowable distance between county centroids and the hurricane track.

91



Table C.19: The Value of a Wind Speed Forecast Improvement with Track Controls.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 4.77*** 4.63*** 3.60*** 3.65*** 5.06** 4.07**
(1.50) (1.40) (1.11) (1.14) (2.07) (1.86)

Hurricane �2 : (e� µ)2 5.25***
(1.65)

Sub-Hurricane �2 : (e� µ)2 -0.59
(0.56)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.37*** 0.37*** 0.32*** 0.32*** 0.18** 0.08*
(0.13) (0.13) (0.12) (0.10) (0.07) (0.05)

Hurricane �2 : (e� µ)2 0.43***
(0.15)

Sub-Hurricane �2 : (e� µ)2 0.03
(0.02)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 133.06*** 132.34*** 111.73*** 127.01*** 118.36*** 65.79**
(35.13) (34.79) (28.75) (30.59) (42.15) (31.14)

Hurricane �2 : (e� µ)2 153.15***
(36.14)

Sub-Hurricane �2 : (e� µ)2 7.13
(6.26)

Observations 15,018 15,018 15,018 15,018 15,018 15,018 15,018

Realized Wind/Precip/Track Bins X X X X X X
Level Wind/Precip/Track Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of 400 km for
spatial correlation and arbitrary autocorrelation within counties. e is the county-hurricane-specific forecast error, µ
is the hurricane-intensity bin-specific mean forecast error. Hurricane wind speeds are those greater than 33 m/s (74
mph), while Sub-Hurricane wind speeds fall below that threshold.
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Table C.20: The Value of a Wind Speed Forecast Improvement: Global Inverse Normal Transforma-
tion.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 7.12*** 7.26** 7.27*** 7.78*** 8.27** 9.45***
(2.76) (2.94) (2.81) (2.75) (3.51) (3.54)

Hurricane �2 : (e� µ)2 29.54***
(9.57)

Sub-Hurricane �2 : (e� µ)2 0.36
(0.56)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.42** 0.46** 0.45** 0.48** 0.42** 0.49***
(0.21) (0.23) (0.23) (0.21) (0.19) (0.19)

Hurricane �2 : (e� µ)2 1.56**
(0.63)

Sub-Hurricane �2 : (e� µ)2 0.11**
(0.05)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 157.77** 169.98** 168.15** 179.86*** 175.01** 206.20***
(65.79) (72.31) (69.43) (67.81) (72.26) (75.99)

Hurricane �2 : (e� µ)2 589.11***
(195.83)

Sub-Hurricane �2 : (e� µ)2 37.53**
(14.69)

Observations 95,263 95,263 95,263 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius of 400
km for spatial correlation and arbitrary autocorrelation within counties. Forecast errors are normalized across
hurricanes. e is the county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific mean forecast
error. Hurricane wind speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds fall
below that threshold.
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Table C.21: The Value of a Wind Speed Forecast Improvement: Inverse Normal Transformation by
Hurricane.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 2.08** 1.88** 1.78* 1.87** 1.67* 1.61*
(0.96) (0.94) (0.94) (0.92) (0.97) (0.89)

Hurricane �2 : (e� µ)2 10.12*
(5.54)

Sub-Hurricane �2 : (e� µ)2 -0.35
(0.26)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.10* 0.09* 0.09* 0.09* 0.09* 0.08**
(0.05) (0.05) (0.05) (0.05) (0.05) (0.04)

Hurricane �2 : (e� µ)2 0.46
(0.31)

Sub-Hurricane �2 : (e� µ)2 -0.00
(0.01)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 39.91** 38.09** 36.42* 37.52** 36.37* 35.72**
(19.39) (19.41) (18.93) (18.23) (19.32) (18.19)

Hurricane �2 : (e� µ)2 179.82
(115.23)

Sub-Hurricane �2 : (e� µ)2 -0.30
(3.43)

Observations 95,263 95,263 95,263 95,263 95,263 95,263 95,263

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance radius
of 400 km for spatial correlation and arbitrary autocorrelation within counties. Forecast errors are
normalized by hurricane. e is the county-hurricane-specific forecast error, µ is the hurricane-intensity
bin-specific mean forecast error. Hurricane wind speeds are those greater than 33 m/s (74 mph),
while Sub-Hurricane wind speeds fall below that threshold.
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Table C.22: The Value of a Wind Speed Forecast Improvement Using Binned Normal Transform
with 2 m/s bins.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 1.45** 1.52** 1.33* 1.32* 1.50* 1.35*
(0.69) (0.75) (0.73) (0.71) (0.85) (0.76)

Hurricane �2 : (e� µ)2 4.78**
(1.96)

Sub-Hurricane �2 : (e� µ)2 0.04
(0.12)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.07* 0.08* 0.07 0.07 0.06 0.06*
(0.04) (0.05) (0.04) (0.04) (0.04) (0.03)

Hurricane �2 : (e� µ)2 0.23**
(0.11)

Sub-Hurricane �2 : (e� µ)2 0.01
(0.01)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 23.94** 26.60** 22.09* 21.62* 21.18* 19.48*
(11.75) (13.45) (13.32) (12.37) (12.16) (11.08)

Hurricane �2 : (e� µ)2 76.33**
(32.50)

Sub-Hurricane �2 : (e� µ)2 1.96
(2.46)

Observations 95,186 95,186 95,186 95,186 95,186 95,186 95,186

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance
radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. e is the
county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific mean forecast error.
Hurricane wind speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds
fall below that threshold.
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Table C.23: The Value of a Wind Speed Forecast Improvement Using Binned Normal Transform
with 5 m/s bins.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 1.92** 2.04** 1.86** 1.86** 2.08** 1.78**
(0.77) (0.84) (0.86) (0.82) (1.01) (0.89)

Hurricane �2 : (e� µ)2 4.72***
(1.54)

Sub-Hurricane �2 : (e� µ)2 0.05
(0.12)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.10** 0.11** 0.10* 0.09* 0.09* 0.09*
(0.05) (0.05) (0.06) (0.05) (0.05) (0.05)

Hurricane �2 : (e� µ)2 0.23**
(0.10)

Sub-Hurricane �2 : (e� µ)2 0.01
(0.01)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 38.85** 42.90** 36.25* 35.80** 36.89* 37.03**
(17.08) (19.14) (19.59) (18.07) (19.88) (18.69)

Hurricane �2 : (e� µ)2 90.43**
(35.56)

Sub-Hurricane �2 : (e� µ)2 1.80
(4.31)

Observations 95,238 95,238 95,238 95,238 95,238 95,238 95,238

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance
radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. e is the
county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific mean forecast error.
Hurricane wind speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds
fall below that threshold.
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Table C.24: The Value of a Wind Speed Forecast Improvement Using Binned Normal Transform
with 10 m/s bins.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 1.85*** 1.95*** 1.77** 1.77** 2.03** 1.79**
(0.68) (0.73) (0.74) (0.70) (0.91) (0.81)

Hurricane �2 : (e� µ)2 3.75***
(1.26)

Sub-Hurricane �2 : (e� µ)2 -0.09
(0.17)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.11** 0.13** 0.12* 0.12* 0.12* 0.11**
(0.06) (0.06) (0.07) (0.06) (0.06) (0.06)

Hurricane �2 : (e� µ)2 0.24**
(0.10)

Sub-Hurricane �2 : (e� µ)2 0.02
(0.01)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 40.21** 44.45** 39.06** 38.33** 39.64** 39.92**
(16.36) (18.20) (18.80) (17.22) (19.24) (17.85)

Hurricane �2 : (e� µ)2 79.24***
(26.93)

Sub-Hurricane �2 : (e� µ)2 1.13
(3.86)

Observations 95,256 95,256 95,256 95,256 95,256 95,256 95,256

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance
radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. e is the
county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific mean forecast error.
Hurricane wind speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds fall
below that threshold.
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Table C.25: The Value of a Wind Speed Forecast Improvement Using Binned Normal Transform
with 20 m/s bins.

(1) (2) (3) (4) (5) (6) (7)

Damages + Recovery Expenditures (million $)

�2 : (e� µ)2 1.98*** 2.01*** 1.81** 1.79*** 2.00** 1.75**
(0.71) (0.72) (0.73) (0.69) (0.87) (0.77)

Hurricane �2 : (e� µ)2 3.93***
(1.24)

Sub-Hurricane �2 : (e� µ)2 -0.08
(0.13)

(Damages + Recovery Expenditures) / GDP (%)

�2 : (e� µ)2 0.12** 0.13** 0.12* 0.12** 0.11* 0.11**
(0.06) (0.06) (0.07) (0.06) (0.06) (0.05)

Hurricane �2 : (e� µ)2 0.24**
(0.09)

Sub-Hurricane �2 : (e� µ)2 0.01
(0.01)

Damages + Recovery Expenditures Per Capita ($/person)

�2 : (e� µ)2 42.07** 44.18** 39.57** 39.28** 39.56** 39.55**
(17.11) (18.20) (18.46) (17.13) (18.80) (17.61)

Hurricane �2 : (e� µ)2 81.92***
(26.71)

Sub-Hurricane �2 : (e� µ)2 1.80
(2.94)

Observations 95,260 95,260 95,260 95,260 95,260 95,260 95,260

Realized Wind/Precip Bins X X X X X X
Level Wind/Precip Error X X X X X
State-Hurricane FE X X X X X X X
County FE X X X X
County-Month of Year FE X X
County-Year FE X X
* p < 0.1, ** p < 0.05, *** p < 0.01 Standard errors are Conley Spatial HAC with a distance
radius of 400 km for spatial correlation and arbitrary autocorrelation within counties. e is the
county-hurricane-specific forecast error, µ is the hurricane-intensity bin-specific mean forecast error.
Hurricane wind speeds are those greater than 33 m/s (74 mph), while Sub-Hurricane wind speeds fall
below that threshold.
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Figure C.27: Conley Spatial HAC Distance Cuto↵ and Conley Spatial HAC T-Statistics.

The figure plots t-statistics of the hurricane-force coe�cient estimate from Table 2 Column 7, but using Conley (1999)
standard errors that account for arbitrary autocorrelation within counties and spatial correlation up to 1,050 km in 100
km steps. Dashed lines correspond to 10%, 5%, and 1% levels of statistical significance. The number of observations is
95,263.
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Figure C.28: The Value of a Wind Speed Forecast Improvement Dropping Individual Hurricanes.

Note: The figure plots a histogram of the distribution of estimates of the value of a forecast improvement for
hurricane-force winds corresponding to Column 7 of Table 2 but where we drop individual hurricanes. The lowest
value comes from dropping Katrina while the highest values come from dropping Michael.
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D Additional Results

D.1 Correlations and Distributions

Table D.1 reports the within-hurricane standard deviations of wind speed, wind speed error,

precipitation, and precipitation error across counties. When comparing against the means in Table 1,

this table highlights that precipitation is more spatially variable than wind speed, and precipitation

forecasts tend to be less accurate. This suggests greater uncertainty and heterogeneity in local

precipitation impacts.

Figure D.1 presents correlations between hurricane and forecast attributes. Panels A and B

show that higher-intensity hurricanes tend to be under-forecast, while lower-intensity hurricanes

were over-forecast but to a lesser extent. Panels C and D show that this results in higher intensity

hurricanes having larger squared demeaned forecast errors, which is why we flexibly control for

realized hurricane intensity in valuing forecast improvements. Panel E shows that more uncertain

forecasts, in terms of the ex ante standard deviation, tend to result in larger ex post forecast errors.

This provides evidence for why reductions in the forecast standard deviation will result in more

accurate forecasts ex post. Panel F shows that realized wind speed and realized precipitation are

highly positively correlated. Thus, omitting one from a regression may result in omitted variable

bias.

Figure D.2 plots the distribution of realizations and forecasts of wind speed in panel A and

precipitation in panel B. The distributions are only over those with strictly positive values. The

plots show that our data cover a large range of intensities. Most forecasts and realizations fall in

the “tropical depression” category with wind speeds under 17 m/s. This is because most counties

are not near the coast and end up not experiencing hurricane-force winds. However, our data do

include counties experiencing wind speeds of up to 67 m/s, which would correspond to a high-end

category 4 storm. Overall, our data covers nearly the entire range of potential intensities.

Figure D.3 shows additional information about the hurricane forecast. Panel A plots the realized

wind speed against the forecast wind speed using a 5 percentile binscatter. All the points are

essentially on the 45 degree line: forecasts are quite accurate on average. Panel B plots the

distribution of wind speed forecast errors as in Figure 3. The average forecast error is only 0.15

m/s with a standard deviation of 2.59. The distribution is right-skewed: there are slightly more

underestimates of wind speed than overestimates, likely driven by di�culties with forecasting rapidly

intensifying storms.

Figure D.4 presents additional information on hurricane track and its relationship to wind speed

to highlight how wind speed and track are only weakly correlated. Here we focus on counties that are

within 400 km of a hurricane to isolate counties that are exposed to the hurricane to some degree.30

Panel A shows the track error is approximately normally distributed. Panel B plots three histograms

of wind speed errors. The first, in orange with stripes, is the unconditional wind speed distribution

30If we included all counties as in our main analysis, the correlations between wind speed and track would be
artificially low because distant counties would still have track error, however, their wind speed error would always be
near zero since they are not near the hurricane.
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in this restricted sample. The second histogram, in blue with dots, is the distribution of wind

speed errors conditional on track errors. This is the distribution of residuals from regressing wind

speed errors on track errors. The third histogram in red is the wind speed distribution predicted

by track errors, which are just the fitted values from the same regression. The greater dispersion

of the wind speed errors conditional on track and the fact that it is a near-perfect match for the

unconditional distribution suggests that track errors play a role in wind speed errors, but are not

the sole driver. Panel C plots wind speed errors against track errors. They are positively correlated:

if the hurricane is closer than expected, the experienced wind speed is also higher than expected.

However the relationship is weak, the R2 is only 0.15. There is substantial variation in wind speed

errors not predicted by track errors. Panel D plots damages as a function of track errors and wind

speed errors. The plot shows that there is a relatively clear correlation between damages and wind

speed errors, but not with track errors.
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Table D.1: Standard Deviations of Physical Values by Hurricane.

Hurricane Year Wind Speed Wind Speed Error Precipitation Precipitation Error

(m/s) abs(m/s) (mm) abs(mm)

Cindy 2005 3.64 2.26 18.01 15.92
Dennis 2005 4.19 1.11 19.31 10.64
Katrina 2005 5.58 2.21 26.61 19.41
Rita 2005 4.12 1.79 24.97 17.29
Wilma 2005 2.44 1.06 7.33 5.27
Dolly 2008 2.23 0.68 8.96 4.68
Gustav 2008 4.37 1.35 35.39 29.05
Ike 2008 6.48 4.95 19.92 15.69
Irene 2011 5.63 1.71 30.27 23.98
Isaac 2012 4.01 1.01 27.82 15.73
Sandy 2012 5.26 1.59 18.94 12.33
Arthur 2014 4.42 1.57 6.07 6.81
Hermine 2016 5.48 2.61 19.04 14.57
Matthew 2016 4.93 1.48 30.48 25.54
Harvey 2017 3.74 0.97 39.07 30.82
Irma 2017 4.55 1.25 29.98 18.85
Nate 2017 4.21 1.86 14.26 9.72
Florence 2018 4.69 0.59 36.37 19.46
Michael 2018 7.45 2.37 21.57 15.72
Barry 2019 3.57 1.02 21.84 13.25
Dorian 2019 4.23 0.25 12.64 5.77
Delta 2020 4.11 0.69 17.98 10.96
Hanna 2020 2.51 0.52 7.84 5.49
Isaias 2020 6.84 3.10 14.94 13.27
Laura 2020 5.28 2.14 17.78 10.56
Sally 2020 4.40 1.90 32.63 28.22
Zeta 2020 6.76 3.03 11.05 7.73
Ida 2021 4.95 1.86 24.39 17.48
Nicholas 2021 2.98 0.72 18.17 16.29
Ian 2022 4.61 2.39 19.78 14.46
Nicole 2022 3.49 1.41 11.11 6.07

Note:
The table includes all Category 1 and greater hurricanes (maximum wind speeds greater than 33
m/s) that made landfall in the continental US between 2005–2022. Wind speed, precipitation,
and their associated errors are averaged across counties to the hurricane level. Wind speed is the
maximum sustained wind speed in m/s, precipitation is the total precipitation in mm. Wind speed
and precipitation errors are averages of the absolute values of county-level errors.
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Figure D.1: Relationships Between Di↵erent Forecast Attributes and Hurricane Attributes.

Note: Panel A plots the absolute error in the wind speed forecast (actual wind speed minus predicted wind speed)
against the realized wind speed. Panel B plots the absolute error in the precipitation forecast against the realized
precipitation. Panel C plots the squared demeaned error in the wind speed forecast against the realized wind speed.
Panel D plots the squared demeaned error in the precipitation forecast against the realized precipitation. Panel E
plots the absolute value of the wind speed forecast’s error against the forecast’s standard deviation. Panel F plots
realized precipitation against realized wind speed. For all panels, each point is the mean of the x and y-axis variable
within each viginile of the x-axis variable (i.e., a 20 bin binscatter).
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Figure D.2: The Distribution of Realized Wind Speeds and Precipitation.

Note: Panel A shows the observed distribution of the realized and forecast wind speed by county-hurricane. Panel B
shows the observed distribution of the realized and forecast precipitation by county-hurricane. The red dashed line is
the distribution of the forecast and the blue line is the distribution of the realization. Values of 0 are omitted for
clarity.

Figure D.3: The Distribution of Wind Speed Errors.

Note: Panel A plots a 20 bin binscatter of realized wind speed against the wind speed forecast. The dotted line is the
45 degree line. Panel B plots the underestimate of wind speed by a forecast. We omit observations where the forecast
and the realized wind speed was zero for clarity.
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Figure D.4: Track Error and its Relationship with Wind Error and Damages.

Note: Panel A shows the distribution of track errors. Panel B shows three histograms of wind speed errors. The
orange striped histogram is the unconditional distribution of wind speed errors obtained from a regression of wind
speed errors on an intercept term. The blue dotted histogram is the wind speed error distribution conditional on track
errors obtained from the residuals of a regression of wind speed errors on an intercept term and track error. The red
histogram is the wind speed error distribution predicted by track error, which comes from the fitted values of the
same regression used for the blue dotted histogram. Panel C shows the fitted relationship between between wind
speed level errors and track distance level errors. Panel D shows a heatmap of total economic damages between wind
speed error bins and track distance error bins. Lighter colors imply more higher damage. Data are from counties
within 400 km from the forecast and observed hurricane track. The number of observations is 15,018.
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