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ABSTRACT

Estimating the cost to society from a ton of carbon dioxide (CO2) released into the atmosphere 
requires connecting a model of the climate system with a representation of the economic and 
social effects of changes in climate, as well as the valuation and aggregation of diverse, uncertain 
impacts across both time and space. The literature on this cost, termed the social cost of carbon 
(SCC), is large and growing. Prior work has largely focused on better constraining the values of 
parameters such as climate sensitivity, the discount rate, and the damage function. A growing 
literature has also examined the effect of varying more fundamental structural elements of the 
models supporting SCC calculations. These structural model choices—including the introduction 
of climate or economic tipping points, changing the structure of economic preferences, and 
accounting for the persistence of climate damages—have been analyzed in piecemeal, 
uncoordinated fashion, leaving their relative importance unclear. Here we perform a 
comprehensive synthesis of the evidence on the SCC, combining 1823 estimates of the SCC from 
147 studies published between 2000 and 2020 with a survey of the authors of these studies. The 
distribution of published SCC values for a 2020 pulse year is wide and substantially right-
skewed, showing evidence of a heavy right tail (truncated mean of $132, median $39). Analysis 
of variance reveals important roles for structural elements in driving SCC estimates, particularly 
the inclusion of persistent damages via effects on economic growth, representation of the Earth 
system, and distributional weighting. However, our survey reveals that experts believe the 
literature is biased downwards due to an under-sampling of structural model variations, as well as 
biases in damage-function and discount-rate parameters. To address this imbalance, we train a 
random forest model on variation in the literature and use it to generate a synthetic SCC 
distribution that more closely matches expert assessments of appropriate model structure and 
discounting. This synthetic distribution has a median and mean of $185 and $284 per ton CO2, 
respectively, for a 2020 pulse year (5%–95% range: $32–$874), higher than all official 
government estimates, including a 2023 update from the U.S. Environmental Protection Agency.
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1 Introduction1

Anthropogenic climate change a↵ects the welfare of people around the world, and will continue to do2

so for centuries into the future. Because these costs are largely not incorporated into energy, land-use,3

and other economic decisions, climate change has been termed “the greatest and widest-ranging market4

failure ever seen” [1, p. i]. Incorporating climate costs into the prices of economic activities that emit5

greenhouse gases, either directly through carbon pricing or indirectly through emission-regulation or6

subsidies of cleaner alternatives, is essential for averting the worst climate outcomes. Quantifying these7

costs is extremely challenging as it involves projecting and valuing the e↵ects of climate change in all8

countries and sectors far into the future, an exercise that is rife with uncertainties and contestation.9

The external costs of carbon dioxide (CO2) emissions are summarized by the ‘social cost of carbon’10

(SCC): the present value of all future impacts from an additional metric ton of CO2 emissions. The11

SCC is key for understanding the benefits of emissions-reduction policies and is used for climate and12

energy policy analysis in the United States, Europe, and numerous other countries and sub-national13

jurisdictions around the world as well as by companies and other institutions [2, 3]. Integrated assess-14

ment models (IAMs) commonly used to calculate the SCC have been criticized on various grounds,15

including inaccurate climate and carbon-cycle modeling, ignoring irreversibilities and tipping points in16

the climate system, failing to adequately model uncertainty or the potential for catastrophic outcomes,17

and relying on dated science in the representation of climate impacts [4–8].18

The continuing importance of the SCC as a tool for climate policy analysis [2] and recognition of failings19

in IAMs currently used to calculate it has led to a surge of research seeking to improve, expand, and20

update the estimates. Major strands of this literature include: improving modeling of Earth system21

dynamics [9–12]; disentangling preferences over risk and time using more complex utility functions22

[13–15]; representing tipping points and associated uncertainties in damages [16–19]; addressing model23

uncertainty, ambiguity, and learning of new information [20–24]; allowing climate damages to a↵ect24

the growth rate rather than just the level of economic output[11, 25–27]; calibrating aggregate climate25

damages on recent economic and scientific evidence [11, 20, 25, 28, 29]; modeling the distribution of26

climate damages and incorporating inequality aversion [30–32]; and allowing for climate damages to27

non-market goods, such as natural systems or cultural heritage, which are imperfectly substitutable28

with market-traded goods [33–36]. (Section S3 contains more detailed discussion and examples of29

di↵erent elements of model structures used to calculate the SCC discussed in this paper).30

Although this literature is now substantial, it has accumulated piecemeal. The vast majority of papers31

make one or two structural adjustments to a simpler IAM and report how these alter SCC values,32

often with an exploration of associated parametric uncertainty. The collective implications of the full33
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suite of issues addressed by this literature have not been assessed. Previous syntheses have quantified34

the distribution of SCC estimates and explored a limited set of covariates, such as publication year35

and discounting [37, 38], as well as the possible role of publication bias [39]. Previous modeling studies36

have made multiple simultaneous changes to individual IAMs [12, 40], or have undertaken systematic37

IAM inter-comparisons and evaluations [41, 42], albeit focusing on a limited number of IAMs with38

comparable model structures. Previous expert surveys have either imposed very specific structure or39

none at all [43–45], or have focused on carbon prices [46]. Thus, prior studies only illuminate the role40

of a subset of mechanisms and structural models.41

This paper provides the most comprehensive assessment to date of SCC estimates, including how42

elements of model structure shape the SCC. It builds on two complementary approaches. First, we43

perform an analysis of SCC values published in the peer-reviewed literature between 2000 and 2020.44

After reviewing over 2800 abstracts, we identified 1823 estimates (or distributions of estimates) pub-45

lished in 147 studies. We recorded SCC estimates and, where reported, the distribution of parametric46

uncertainty, along with 31 covariates capturing details of the estimate itself (e.g., SCC year, discount-47

ing scheme, and socio-economic and emissions scenarios), important elements of model structure (e.g.,48

growth-rate damages, distributional weighting, and representation of the utility function), and sources49

of parametric variation (e.g., distributions over productivity growth, climate sensitivity, discount rates50

and damage-function parameters). Second, to help place the literature distribution in a broader con-51

text, we conduct an expert survey of the authors of the SCC papers in our analysis. We elicit expert52

estimates of both the distribution of published SCC values in the peer-reviewed literature and their53

best estimate of the SCC distribution, all things considered. We also ask experts to break down the54

wedge between these two SCC estimates into component parts, generating information on what experts55

perceive as potentially missing from on underrepresented in the literature. Furthermore, we elicit ex-56

perts’ views on the degree to which various model structures as currently implemented in the literature57

improve SCC estimates, using this quality assessment to inform our final synthetic SCC estimate.58

Our study therefore contains two complementary data-generating processes: a meta-analysis, which59

collects much richer data on published SCC estimates and their determinants than in previous studies,60

and an expert survey. We combine these lines of evidence to produce a synthetic SCC distribution61

using a random forest model trained on variation in the literature but sampled to more closely match62

experts’ assessment of model structure and discounting parameters. The resulting SCC distribution63

essentially amounts to a structured re-weighting of published SCC estimates to better match expert-64

elicited model structure and discounting, emphasizing features identified by the random forest model65

as most important in driving variance in the SCC distribution. Additional details on the literature66
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review, coding of values, data cleaning and processing, expert survey, construction of the synthetic67

SCC are provided in Section S2.68

2 The SCC Distribution69

The systematic review of the literature yields 1823 SCC estimates (or distributions) from 147 studies70

(full references given in Section S4). Many studies report multiple SCC estimates. For each of the71

1823 estimates, we collect information on the central SCC estimate, emission pulse year, discounting,72

damage function, economic and emissions scenario, model structure, and distribution resulting from73

parametric uncertainty (where reported, specifically 832 of the 1823 estimates). Section S1 provides74

descriptive statistics and summary information on these estimates.75

To characterize the distribution of SCC values appearing in the published literature, we sample from76

the dataset using a hierarchical sampling scheme. We draw 10 million SCC values sampling uniformly77

from the 147 studies in the dataset, then sample uniformly from the set of estimates within each78

paper (i.e. unique SCC year-discounting-scenario-model structure combinations), and finally from the79

parametric uncertainty of each estimate, if applicable. Alternate sampling schemes that account for80

non-independence between papers using sets of shared authors, or for di↵erent quality of studies using81

a normalized citation-based weighting, give quantitatively similar distributions (Table S4).82

Figure 1 shows the distribution of SCC values reported in the literature, both across all estimates (top83

row) and split based on characteristics of the estimates and studies. The Figure gives the distribution84

of SCCs for pulse years between 2010 and 2030, which we use as the 2020-SCC equivalent sample from85

the literature. The variation in SCC values is substantial and asymmetric, exhibiting a long right tail,86

and a mean value ($132 per tCO2 after truncating the upper and lower 0.1% of values) that is several87

times times higher than the median ($39). Statistical tests show evidence for a heavy tail in the SCC88

distribution [8], echoing Antho↵ and Tol [47], with a slope of the mean excess function greater than 189

and ↵ values between 1 and 2, indicative of a distribution with infinite variance but finite mean (see90

Table S5 in the SI).91

Figure 1 also shows how the 2020 SCC distribution di↵ers based on particular characteristics of the92

estimate. The second panel shows variation across model structure, relative to a set of reference93

estimates with similar structure to the original DICE model (versions up to 2016). These suggest94

important roles for the representation of the Earth system, the persistence of damages to the economy95

via impacts on the growth rate, and limited substitutability between aspects of climate damages and96

consumption goods in the utility function. The third panel shows the well-documented sensitivity97
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Figure 1: Distribution of the 2020 SCC from the published literature (2020 $ per ton CO2).
Distribution and top boxplot show the distribution of all 2010-2030 SCC values (which we treat as
the 2020-equivalent sample) from the published literature (equal weighting of all 147 papers). Other
boxplots show subsets of the 2010-2030 distribution split by characteristics of published estimates,
specifically model structure, discount rate, publication year, damage function, and paper type. The
reference distribution refers to SCC estimates coded as not having structural changes, similar to the
DICE model (versions up to 2016). Boxplots show the median (line), inter-quartile range (box), 5-
95% range (solid line) and 2.5-97.5% range (dashed lines). Dots show the mean after trimming the
upper and lower 0.1% of each distribution. Numbers for each plot show the number of papers and, in
parentheses, the number of estimates included in each boxplot.
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to discounting assumptions, with estimates using less than a 2.5% discount rate producing an SCC98

distribution with median and mean values twice those obtained using higher discount rates ($231 per99

ton CO2 vs $107 for the truncated mean, $78 vs $37 for the median). The fourth panel documents a100

shift towards higher SCC values in papers published in the second half of our sample period, a finding101

similar to that reported previously [38].102

The final panel in Figure 1 shows estimates disaggregated by whether the primary goal of the paper was103

one of empirical improvement (e.g., more accurately representing Earth system dynamics or improving104

damage function estimation), integration of new elements into SCC models (e.g., integrating model105

ambiguity, inequality aversion, or Epstein-Zin utility), or sensitivity analysis (e.g., SCC variation with106

alternate damage functions or discount rates). It shows fairly similar distributions across the three107

paper types, but with slightly higher SCC values in papers introducing empirical improvements.108

2.1 Drivers of Variance in SCC Estimates109

Figure 1 documents wide variation in published SCC estimates. The large set of covariates we record110

allows us to investigate how many di↵erent features of SCC modeling—including structural model111

features, parametric uncertainty, and other model covariates—a↵ect SCC values. While Figure 1 shows112

distributions under di↵erent univariate splits of the data, multivariate analysis can better identify the113

e↵ects of particular model structures and parameter values. Figure 2a shows estimated e↵ects of114

structural model characteristics on SCC values after controlling for other aspects of model structure,115

SCC year, emissions and socio-economic scenarios, and discount rate. We plot relative changes in116

the SCC attributable to individual elements of model structure, relying on the fact that many papers117

report modeling results both with and without model changes in order to highlight relative e↵ects.118

These are recorded explicitly in our data collection process and form the basis of the results shown in119

the figure.120

Figure 2a shows large increases in the SCC (on the order of 50%) due to a number of structural model121

elements, specifically improvements to the representation of the Earth system, inclusion of impact122

tipping points, and elements of damages such as limited substitutability with consumption goods and123

persistent e↵ects on economic output. Inclusion of distributional weights (typically used to represent124

aversion to inequality) has the largest e↵ect on relative SCC values, on average more than doubling125

estimates, reflecting the regressive nature of climate-change impacts, [48, 49]. Allowing for learning126

over time (typically about equilibrium climate sensitivity or the damage function) tends to decrease127

the SCC. This is consistent with theoretical models showing that the additional emissions allowed by128

laxer climate policy can provide a more informative signal about uncertain parameters and lead to129
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Figure 2: Drivers of variance in published SCC estimates. a) E↵ects of structural model
characteristics on log SCC, controlling for other aspects of model structure, SCC year, emissions and
socio-economic scenarios, and discount rate. b) ANOVA decomposition of the variance of logged SCC
estimates in the literature, based on a regression of the full distribution of logged SCC estimates on the
full set of covariates describing discounting, model structure, and inclusion of parametric uncertainty,
as well as paper fixed-e↵ects.

better future climate policy [24]. Additional regression models using other types of variation in the130

data are reported in Section S.2.1.9 and Figure S9.131

Figure 2b shows results of an ANOVA decomposition of the SCC variance in the full distribution,132

after controlling for individual papers’ mean values through the inclusion of paper fixed e↵ects. Fig-133

ure 2b shows that the single largest driver of the variance is discounting, followed by model and model134

uncertainty (i.e., this groups together the identity of the IAM, e.g., DICE, FUND, or PAGE, with135

the model uncertainty/ambiguity structural model e↵ects), persistent/growth damages, and the Earth136

system representation (i.e., transient climate response, carbon cycle parametrization, equilibrium cli-137

mate sensitivity, and structure of the Earth system model component). Note that the overall share of138

the variance explained by discounting and damage-function parameters (i.e., damage function, adap-139

tation rates, and the income elasticity of damages) is only 35%, with most of the remainder relating140

to structural model choices and model uncertainty.141
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3 Placing the SCC Literature in Context Through Expert Sur-142

veys143

Figure 1 shows the distribution of 2020 SCC values published in the scientific literature between 2000144

and 2020. Although it provides a useful reference point to characterize SCC values across the full145

set of published studies, this distribution lacks a clear interpretation. The literature distribution may146

be influenced by factors such as researcher interest, model availability and tractability, and path-147

dependency in choices of certain model parameters such as those in the discount rate and damage148

function, issues discussed in more detail in S.2.2.3. Therefore, we complement the literature survey149

described in Section 2 with a survey of expert views on the SCC literature, placing this distribution150

and the set of model structures and parameters that determine it into a larger context. We distributed151

a survey to the population of 176 authors of SCC estimates in our literature review in May 2022, from152

which we received 68 partial and 48 full responses. Section S.2.2 provides further details on survey153

design, distribution, and analysis.154

Figure 3a provides evidence that survey respondents perceive a substantial downward bias in the pub-155

lished literature. More than four fifths of experts (82.8%) report best-estimate SCC values (considering156

all drivers of the SCC and relevant uncertainties) that are higher than their estimates of the existing157

literature distribution (9.1% believe the two values are roughly equal, and the same number believe the158

literature is over-estimating the SCC). On average across complete responses, experts’ best-estimate159

2020 SCC ($142 per ton CO2) is more than double their literature estimate of $60.160

Experts’ mean literature estimate is substantially below the mean from our literature analysis of $132,161

and about 50% larger than our literature median of $39 (Figure 1). A number of reasons could162

account for why experts underestimate the mean SCC in the literature, including the exclusion of163

papers published prior to 2000 from our literature survey (which may report lower values [38]), the164

prominence of focal SCC estimates around $50 for instance from o�cial US government guidance at165

the time of the survey [51], or experts being unfamiliar with some of the papers contributing to the166

long right tail of the SCC distribution that have a substantial e↵ect on the mean value (see Section167

S.2.1.6 for further discussion).168

Figure 3b shows how experts decompose the perceived downward bias in the literature into constituent169

elements (individual responses documenting significant heterogeneity in both the wedge magnitude170

and decomposition are shown in Figure S19). Damage-function and discounting parameters make up171

around a third of the $82 wedge between the experts’ estimates. Around two thirds of the SCC wedge172

is driven by structural model choices, particularly limited substitutability of non-market goods (13%),173
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Figure 3: Expert survey on SCC values, model structure, and discounting. a) Expert
assessment of the mean SCC value in the literature and their best estimate of the mean of the SCC
distribution, accounting for any systematic biases or over- or under-representation of di↵erent model
elements in the published literature. Grey lines connect estimates from the same respondent. Data
shown for 48 experts providing a quantitative breakdown of the wedge between literature and best-
estimate SCCs. Mean values for all 68 experts are $66 for the literature and $160 for the best-estimate.
b) Experts’ attribution of the di↵erence between their estimated mean literature SCC value and the
full or comprehensive SCC. Results shown averaging over all 48 expert responses, decomposing the
average wedge between $60 per ton CO2 and $142. Values in parentheses show the dollar value
attributed to each element. PRTP = pure rate of time preference; EMUC = elasticity of marginal
utility of consumption. c) Expert evaluation of 9 elements of model structure (blue solid line) with
frequency in the published literature shown for comparison (red dashed line). Expert responses to the
question “To what extent do you agree with the statement: ‘Papers that include X produce better SCC
estimates than those that exclude it’?” (Figure S20) are converted into model inclusion probabilities
using Bayesian hierarchical modeling of expert responses (described in Section S.2.2.6) d) Distribution
of discount rates in an expert assessment by Drupp et al. [50] (blue solid line) compared to the
distribution in the published literature for 2020 SCC values (red dashed line).
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persistent/growth damages (9%), tipping points in the climate system (8%) and in damages (8%),174

and distributional weights (6%). Experts also estimate a smaller upward bias in literature estimates175

related to an under-representation of technical progress, adaptation and learning, which contribute176

negatively to the SCC wedge.177

Figures 3c and 3d compare expert assessment of key determinants of the SCC (specifically model178

structure and discounting) with their representation in the published literature. Overall, experts are179

positive on the 9 variations in model structure investigated. Over 50% of experts agree or strongly180

agree that models including these elements are preferred (over a baseline model approximating the181

DICE-2016 IAM [52] with a 2020 SCC of around $40 per tCO2) for all elements except aversion to182

model uncertainty or ambiguity (Figure S20). The strongest agreement is on improvements to Earth183

system modeling, including the integration of climate-system tipping points, and the incorporation184

of limited substitutability between market and non-market goods in the utility function, with some185

polarization over the issue of whether distributional weighting, as applied in the literature, improves186

SCC estimates.187

Figure 3c shows these responses converted into a joint probability distribution over model structure188

(i.e. inclusion or exclusion of the di↵erent structural model elements) using a hierarchical Bayesian189

model (described further in Section S.2.2.6). Because of general agreement among experts on the190

value of these structural model elements, average probabilities are high, ranging from a mean of 0.58191

for ambiguity or model uncertainty to 0.69 for Earth system improvements. Representation of these192

model structures in the published literature, however, is far lower, with values ranging from 0.23 (Earth193

system modeling) to 0.02 for climate tipping points and model ambiguity.194

Figure 3d depicts a similar gap between expert assessment of discount rates (based on a prior expert195

survey reported in Drupp et al. [50]) and the distribution in the literature, with economic experts196

giving a mean of 2.3% (similar to recommendations by expert philosophers found in a related survey197

[53]), more than a percentage point lower than the literature mean of 3.4%. Figures 1 and 2 both198

suggest that these discrepancies in model structure and discounting between the published literature199

and expert assessment would push published SCCs downward, validating experts’ concerns over a200

downward bias in the literature (Figure 3a), and the attribution of this bias (Figure 3b).201
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4 The Synthetic SCC Distribution202

4.1 Motivation and Approach203

In order to address the potential bias in the published literature documented in Figure 3c and d, we204

combine information from both the literature analysis and expert assessments to generate a synthetic205

SCC distribution that more closely matches expert assessment of discounting and model structure.206

This process involves first using the variance across the 1823 published SCC distributions with 31207

explanatory variables to train a random forest model, then generating predictions from this model208

using distributions over input variables based on expert survey results shown in Figures 3c and d.209

This amounts to a re-weighting of the literature to produce an SCC distribution with structure and210

discounting characteristics closer to expert assessments (and with other desirable characteristics, such211

as recent publication year, inclusion of parametric uncertainty, and inclusion of non-market damages).212

The random forest model identifies which set of variables are most important in driving variance across213

SCC distributions, and should therefore be targeted for re-weighting.214

The random forest model estimates a set of 500 regression trees, each based on the 31 explanatory215

variables and a random bootstrap of the 1823 SCC estimates. At each branch in the tree, the algorithm216

chooses the variable from of a random sample of 10 of the possible 31 variables that divides the sample217

into two groups with the largest variance between them. Our data structure is unusual in that each218

of the 1823 observations are a distribution (of which 54% are single-estimate point distributions). We219

therefore use an adapted splitting algorithm based on the Anderson-Darling k-Sample test to maximize220

distance between the two distributions at each split. Trees with fewer than 7 nodes or very large leaves221

are pruned, leaving a final 403 regression trees.222

Figure S21 shows the importance of di↵erent variables from the fitted random forest. The model223

appropriately identifies the SCC pulse year and discount rate as the two most important variables.224

Elements of the damage function and the inclusion of persistent growth damages appear as important,225

as does the publication year (echoing previous findings from Tol [38]) and parametric uncertainty in226

total factor productivity growth (also identified as important in Gillingham et al. [41] and Rennert et227

al. [3]). Additional information on the random forest model is detailed in S.2.3.228

We query the random forest model with just over 1800 draws from the space of model structures and229

discount rates obtained from expert surveys (Figure 3c and d), also including other desirable SCC230

characteristics such as inclusion of parametric uncertainty, accounting for non-market damages, and231

recent publication year (detailed in S.2.3). Figure 4 illustrates the process for generating a prediction232

for a single sample from the input variable space. Each tree identifies the set of published SCC233
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estimates with characteristics corresponding to the sample’s, for the set of variables chosen as splits234

along the path for that regression tree. The subset of published estimates for each of the 403 regression235

trees (the ”leaves” in Figure 4) then forms the random forest’s prediction for the sample. The set of236

published estimates contributing to this prediction will not perfectly match all characteristics of the237

input. For instance, some variables may not appear as splits on a given tree’s path, meaning the238

leaf does not condition on that variable at all. Some model structures combining multiple elements239

are either very sparse in the literature or are not represented at all (see Figure S4). In these cases,240

random forest estimates will average over available relevant model structures, but cannot extrapolate241

interaction e↵ects between combinations of model structures not currently represented in the published242

literature. However, the set of published estimates contributing to the random forest prediction will243

match more closely with the input sample than the literature as a whole and will match most closely244

on the variables with the largest e↵ect on the SCC, since these variables will appear as splits in the245

regression trees more frequently.246
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4.2 The 2020 Synthetic SCC Distribution247

Figure 5a gives the 2020 synthetic SCC. The distribution has a median value of $185 per ton CO2,248

an inter-quartile range of $97-369 and a mean of $283, after truncating the upper and lower 0.1%249

of the distribution. For comparison, Figure 5a also shows two sets of SCC estimates from the US250

government—values from the 2021 Interagency Working Group on the Social Cost of Greenhouse251

Gases (IWG) [51] and a 2023 analysis by the Environmental Protection Agency (EPA) [54] as well252

as o�cial SCC estimates by the German Environment Agency (German EPA). The near-complete253

separation between the IWG distribution and our synthetic SCC is striking: the 75th percentile of the254

IWG distribution ($52 per ton CO2) corresponds to the 10th percentile of the synthetic distribution.255

The EPA distribution has a much closer overlap with the synthetic SCC distribution, with a median256

value of $157 per ton CO2 reasonably similar to the synthetic median of $185. Compared to the IWG257

values, the EPA analysis integrates a number of modeling improvements that make it more similar258

to the set of inputs into the synthetic SCC, including improved representation of the Earth system,259

discount rates closer to the expert assessment in Drupp et al. [50], and a fuller inclusion of parametric260

uncertainties in economic growth, climate damages, and Earth system dynamics. However, the two261

distributions still di↵er substantially at higher SCC values: the synthetic distribution places 27%262

probability on SCC values over $350 per ton CO2, compared with only 17% for the EPA distribution.263

This could be attributable to the integration of a wider set of model structures into the synthetic264

SCC distribution, particularly allowing for persistent climate damages, the inclusion of tipping points,265

distributional weights, and limited substitutability between climate damages and consumption goods266

(Figure 1). By contrast, the German EPA [55] applies distributional weighting in the FUND model267

and reports two SCC estimates: A lower estimate of $223, located between our median and mean268

synthetic SCC, which serves as the main political benchmark, using a pure rate of time preference of269

1 percent, and a higher estimate of $777 using a pure rate of time preference of 0 percent, to be used270

in sensitivity analyses.271

One of the advantages of the random forest model trained on the literature is that it can provide272

SCC estimates under a range of alternate specifications. Figure 5b uses this capability to show pre-273

dicted SCC distributions under alternate input specifications, decomposing the di↵erence between the274

synthetic SCC distribution and random forest predictions designed to match the DICE model [52].275

Reassuringly, the random forest estimates using inputs designed to match the DICE model correspond276

well to published values from DICE (e.g., $43 per ton CO2 in 2020 US dollars from Nordhaus [52]277

compared to an inter-quartile range of $25-$71 in Figure 5b). As expected, the decomposition shows278

large e↵ects of the discount rate, as well as important roles for certain elements of model structure279
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and parametric uncertainty, particularly the representation of the Earth system, inclusion of persistent280

damages via impacts to economic growth, and allowing for uncertainty in damages, TFP growth, and281

discount rate parameters.282

Figure S22 shows additional distributions generated from the random forest model showing sensitivity283

of the synthetic SCC to structural assumptions, discount rate, publication year, pulse year, and damage284

function. Of note is the importance of model structure seen in Figure S22b: keeping all else equal,285

moving from an SCC with no di↵erences in model structure from the standard DICE model to one286

with all 9 elements described in this paper included, increases the median SCC from $124 to $245 per287

ton CO2 and the mean from $186 to $367.288

5 Discussion and Conclusion289

We present the most comprehensive synthesis to date of SCC estimates, as well as their parametric290

and structural drivers. Based on 1823 SCC distributions from 147 studies, we document a distribution291

over published 2020 SCC values that is both wide (with a 90% confidence range spanning 2 orders292

of magnitude) and substantially right-tailed (with a mean value of $132 per ton CO2 more than 4293

times the median value of $39). Analysis of variance in published SCC estimates recovers the well-294

known importance of discounting and damage-function parameters (explaining about one third of295

the variance in published SCC estimates), but also shows a critical role for key elements of model296

structure, including the representation of the Earth system, inclusion of persistent climate impacts to297

the economy, and specification of the utility function.298

Published SCC values are placed in a broader context using a survey of authors of original SCC299

estimates in the literature. Experts on average perceive a substantial downward bias in published300

SCC values and attribute the majority of that bias to an under-representation of alternate model301

structures, as well as discounting and damage parameters. Comparison of expert elicitations with the302

published literature validates this assessment, with both higher discount rates and lower representation303

of alternate model structures in the published literature compared to expert responses.304

Our synthetic SCC distribution partially addresses this concern by e↵ectively re-weighting published305

SCC estimates to more closely match expert assessments of model structure and discount rates (as306

well as other desirable qualities such as more recent publication years and inclusion of parametric307

uncertainties). This procedure is necessarily constrained by the published literature: some combina-308

tions of model structure and parameters simply do not exist in the literature and therefore will not309

appear in the synthetic SCC distribution. More original modelling studies are required to fill those310
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gaps. However, our analysis yielding synthetic SCCs does produce a distribution that is more similar311

to expert assessments than the published distribution, and is most similar for those variables identified312

in the random forest model as most important in driving SCC variance.313

The resulting synthetic SCC is substantially larger than values in the published literature (median314

value more than 4.5 times larger, mean more than double). This relative increase (from literature315

to synthetic) matches how experts’ average estimates more than double from their literature to best-316

estimate mean SCCs. The absolute value of the synthetic SCC (mean of $283) is still substantially317

higher than experts’ best-estimate SCC. This is not surprising, given that experts substantially un-318

derestimate the mean SCC in the literature. The synthetic and expert best-estimate SCC values can319

be rationalized if experts underestimate the absolute value of the mean literature SCC (for reasons320

discussed in Section 3), while providing reasonable estimates of the proportional e↵ects of correcting321

biases in the published literature. Interpreted this way, concordance between the synthetic and expert322

best-estimate SCCs is striking given they are generated from very di↵erent processes: both suggest323

that correcting biases in published SCC estimates increase mean values by just over a factor of two.324

Our synthetic is higher than most o�cial government estimates, including an extensive recent update325

by U.S. EPA [54]. Current guidance to agencies from the IWG requires them to “use their professional326

judgment to determine which estimates of the SC-GHG reflect the best available evidence, are most327

appropriate for particular analytical contexts, and best facilitate sound decision-making.” [56]. Our328

findings strongly suggest that the 2021 IWG estimates are unlikely to provide a sound basis for analyses329

requiring a valuation of climate change damages. They are inconsistent with available evidence from330

both the published scientific literature, expert views, and our synthetic SCC that combines key elements331

of both.332
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