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1 Introduction

The recent rise in inflation in many economies has spurred considerable interest in further

understanding the dynamics of prices. Identifying the causes of high inflation hinges critically

on the slope of the Phillips curve, which serves as a key summary measure of monetary

non-neutrality and governs the tradeoff between inflation and output stabilization faced by

monetary policy. Our goal in this paper is to measure how the slope of the Phillips curve

fluctuates in the U.S. time series. Since a key determinant of this slope is the fraction of

price changes, it is imperative that we use a model that reproduces the widely-documented

evidence that the fraction of price changes increases in times of high inflation. We illustrate

this pattern for the U.S. in Figure 1.1

Figure 1: Inflation and the Fraction of Price Changes
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Notes: The gray bars indicate NBER recessions. The CPI series excludes shelter.

Two classes of sticky price models are widely used in macroeconomics. The more popular

time-dependent model2 has the advantage of being tractable, but assumes a time-invariant

fraction of price changes, making it less suitable for analyzing episodes in which inflation and

the fraction of price changes increase considerably, such as the 1980s. The class of state-

dependent (menu cost) models is a natural framework to endogenize the fraction of price

1We describe the data that underlies the figure in Section 3. See Gagnon (2009), Nakamura et al. (2018),
Alvarez et al. (2018), Karadi and Reiff (2019), Montag and Villar (2023) and Blanco et al. (2024), who also
document this pattern for the U.S. and other countries.

2See Calvo (1983) and Taylor (1980). Another widely used model is Rotemberg (1982), in which all firms
adjust prices every period but face adjustment costs that depend on the size of price changes. As Reiter and
Wende (2024) point out, this model behaves similar to the Calvo model even when inflation is high.
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changes,3 but it is considerably more difficult to use for empirical and policy analysis. This

difficulty arises because characterizing the general equilibrium dynamics of a model subject

to aggregate shocks requires keeping track of the distribution of prices across firms. This

challenge is especially pronounced when the fraction of price changes responds to aggregate

shocks, which gives rise to important non-linearities.

Our paper proposes a model in which the fraction of price changes evolves endogenously

over time, as in state-dependent models, but which is as tractable as time-dependent models.

The main challenge in allowing the fraction of price changes to evolve endogenously over

time is that a firm’s price adjustment decision depends on how far from the optimum its

price is. Equilibrium outcomes are therefore a function of the entire distribution of price

changes, an infinite-dimensional object. We circumvent this challenge by assuming that

firms sell a continuum of products and choose how many, but not which, prices to adjust in

every period, subject to an adjustment cost.4 Because firms cannot choose which prices to

adjust, the distribution of prices is no longer necessary to describe adjustment incentives, so

the economy admits exact aggregation. We show that our model reduces to a one-equation

extension of the Calvo model, with the additional equation pinning down how many prices

change in a given period. Our model nests the Calvo model in the limiting case when the

adjustment cost goes to infinity.

Our key finding is that the slope of the Phillips curve fluctuates considerably in the U.S.

time series and increases in times of high inflation due to a feedback loop between inflation

and the fraction of price changes. On one hand, an increase in the fraction of price changes

increases inflation, more so the higher inflation is to begin with. On the other hand, an

increase in inflation increases the firms’ incentives to adjust prices, further increasing the

fraction of price changes. We refer to this feedback loop as the inflation accelerator and

show that it is responsible for the bulk of the steepening of the Phillips curve in periods of

high inflation. Our model therefore suggests that reducing inflation is much less costly when

inflation is high than when it is low.

We study an economy in which multi-product firms sell a continuum of goods and choose

what fraction of their prices to change each period, subject to an adjustment cost that is

3See, for example, Barro (1972), Sheshinski and Weiss (1977), Dotsey et al. (1999), Golosov and Lucas
(2007), Gertler and Leahy (2008), Midrigan (2011), Alvarez and Lippi (2014), Alvarez et al. (2016), Alvarez
et al. (2018), Auclert et al. (2023). However, Blanco et al. (2024) show that the standard menu cost model
has difficulties simultaneously reproducing the extent to which the fraction of price changes comoves with
inflation and the distribution of price changes.

4This assumption is reminiscent of that in Greenwald (2018) who uses a large family construct to endog-
enize refinancing decisions.
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increasing and convex in the number of prices that the firm adjusts. We assume decreasing

returns to scale in production, which introduce strategic complementarities in price setting

that dampen the slope of the Phillips curve. For clarity, we start by assuming that monetary

policy targets nominal spending and that monetary shocks are the only source of aggregate

uncertainty. We show, however, in a robustness section, that our results are robust to assum-

ing a conventional Taylor rule and introducing additional sources of aggregate uncertainty.5

Relative to the standard Calvo model, endogenizing the fraction of price changes adds

a single additional equation that balances the marginal cost of changing prices against the

marginal benefit. The marginal benefit increases with inflation, implying that the fraction

of price changes increases with inflation. Because endogenizing the fraction of price changes

introduces non-linearities in the dynamics of output and inflation, we solve the model using

global projection methods, but show that a third-order perturbation provides an accurate

approximation, so the model can be solved using readily available solution techniques.

We start by building intuition for the workings of the model by studying impulse responses

to expansionary monetary shocks in environments with low and high trend inflation. We

show that the real effects of monetary shocks are considerably smaller in environments with

high inflation for two reasons. First, the steady-state fraction of price changes is higher in

environments with high inflation. Second, the fraction of price changes increases in response

to shocks. Though this increase is relatively small, it has a large impact on the price level

because adjusting firms respond to the underlying trend inflation and increase prices by large

amounts, an effect reminiscent of Caplin and Spulber (1987).

We build additional intuition for the dynamics of inflation and output by deriving the

Phillips curve in our model. The slope of the Phillips curve is equal to the sum of two terms,

one identical to the slope in the Calvo model, which increases mechanically with the fraction

of price changes, and another which captures the inflation accelerator. Importantly, we show

that this second term increases much more rapidly with trend inflation and thus accounts for

the bulk of the increase in the slope of the Phillips curve in high-inflation environments.

We use our model to characterize how the slope of the Phillips curve evolves in the post-

war U.S. time series. We do so by first identifying the sequence of monetary shocks that

allows the model to reproduce the path of inflation in the data. We show that the model

reproduces well the path of the fraction of price changes, notably the sharp rise during the

5In that section, we also show that the inflation accelerator continues to explain most of the steepening of
the Phillips curve in periods of high inflation when we eliminate strategic complementarities in price setting
or introduce idiosyncratic shocks.
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high inflation in the 1970s and 1980s. We then consider log-linear perturbations around the

equilibrium point at each date and derive the slope of the Phillips curve. We find that the

slope of the Phillips curve varies considerably, ranging from 0.02 in low-inflation periods such

as the 1990s to 0.12 in high-inflation periods such as the 1970s and the 1980s.6 The inflation

accelerator accounts for the bulk of this increase: in its absence the higher fraction of price

changes in the 1970s and 1980s would only increase the slope of the Phillips curve to 0.04.

That the slope of the Phillips curve varies over time has important implications for the

tradeoff between inflation and output stabilization. We gauge how this tradeoff varies over

time by calculating the sacrifice ratio: the fall in output required to reduce inflation by one

percentage point. The sacrifice ratio varies considerably, from 1.4% in the low-inflation 1990s

to 0.4% in the high-inflation 1970s and 1980s. We therefore conclude that our model implies

that if inflation is high to begin with, bringing it down requires a smaller drop in output than

if inflation is low.

The paper proceeds as follows. Section 2 presents the model. Section 3 describes the

parameterization. Section 4 analyzes the steady state. Section 5 applies the framework to

the U.S. time series data. Section 6 discusses robustness exercises. Section 7 concludes.

2 Model

We study an economy in which firms adjust prices infrequently. In contrast to the standard

New Keynesian model, we allow the fraction of price changes to fluctuate endogenously over

time by assuming that multi-product firms choose what fraction of their prices to adjust

in any given period. We circumvent the need to keep track of the distribution of prices

by assuming that firms choose how many, but not which, prices to change. Owing to this

assumption, our model reduces to a one-equation extension of the standard Calvo model,

with the additional equation describing how the fraction of price changes is pinned down

each period. Relative to a menu cost model, our model does not feature selection effects

(Golosov and Lucas, 2007), consistent with the evidence.7

6That the slope of the Phillips curve is high in times of high inflation and low in times of low inflation
is consistent with Morales-Jimenez and Stevens (2024), who use a model with menu costs and information
frictions, and Flynn et al. (2024), who use a model with information frictions, to show that output responds
less to monetary shocks when inflation is high. It is also broadly consistent with the empirical evidence in
Ball and Mazumder (2011) and Hazell et al. (2022), where estimates of the slope are higher in samples that
include periods of high inflation.

7Both indirect evidence from the distribution of price changes (Midrigan, 2011; Alvarez et al., 2016),
as well as more direct evidence on how adjustment hazards vary with individual price gaps (Carvalho and
Kryvtsov, 2021; Karadi et al., 2024; Gagliardone et al., 2025) suggests that these effects are relatively weak.
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For clarity, we start by assuming that monetary policy targets nominal spending, which

evolves over time according to a random walk process. Shocks to the growth rate of nominal

spending are the only source of aggregate fluctuations. We then show in the robustness

section below that adding other sources of aggregate uncertainty and assuming instead that

monetary policy follows a Taylor rule does not change our key findings.

2.1 Consumers

A representative consumer has preferences over consumption ct and hours worked ht and

maximizes life-time utility

Et

∞∑
t=0

βt (log ct − ht) ,

subject to the budget constraint

Ptct +
1

1 + it
Bt+1 = Wtht +Dt +Bt,

where Pt is the nominal price level, Bt are holdings of a risk-free bond which pays nominal

interest it, Dt are the dividends from the firms the representative consumer owns, and Wt is

the nominal wage rate.

2.2 Monetary Policy

We assume that monetary policy targets nominal spending, Mt ≡ Ptct, which follows a

random walk with drift

log
Mt+1

Mt

= µt+1 = µ+ εt+1,

where µ is the average growth rate of nominal spending and εt+1 are Gaussian innovations

with standard deviation σ. As Afrouzi and Yang (2021) point out, this specification of the

monetary policy rule is equivalent to an interest rate rule in which the central bank assigns

the same weight to inflation and output growth.

2.3 Technology

There is a continuum of intermediate goods firms indexed by i. Each firm produces a con-

tinuum of products k with technology

yikt = (likt)
η ,
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where yikt is the output of product k produced by firm i, likt is the labor used in produc-

tion and η ≤ 1 is the span-of-control parameter which, as in Burstein and Hellwig (2008),

introduces a micro-level strategic complementarity in price setting.

A perfectly competitive final goods sector aggregates the intermediate goods yikt into a

composite final good using a CES aggregator

yt =

(∫ 1

0

∫ 1

0

(yikt)
θ−1
θ dkdi

) θ
θ−1

,

where θ is the elasticity of substitution, which we assume to be the same both across products

and across firms. This implies that the demand for an individual product is

yikt =

(
Pikt

Pt

)−θ

yt, (1)

where Pikt is the price of an individual product and

Pt =

(∫ 1

0

∫ 1

0

(Pikt)
1−θ dkdi

) 1
1−θ

is the aggregate price index.

2.4 Problem of Intermediate Goods Producers

We next describe the profit maximization problem of intermediate goods producers.

2.4.1 Period Profits

The nominal profits of firm i from producing product k are

Piktyikt − τWtlikt,

where τ = 1− 1/θ is a subsidy that removes the markup distortion that would arise even in

the absence of price rigidities. Using the demand function (1), we can express real profits as(
Pikt

Pt

)1−θ

yt − τ
Wt

Pt

(
Pikt

Pt

)− θ
η

y
1
η

t . (2)

2.4.2 Losses from Misallocation

Differences in the prices of products sold by a given firm generate losses from misallocation,

reducing firm productivity. To see this, let

yit =

(∫
(yikt)

θ−1
θ dk

) θ
θ−1

6



denote the composite output produced firm i and let

lit =

∫
liktdk

denote the total amount of labor the firm uses. We can then derive a firm-level production

function

yit =

(
Xit

Pit

)θ

lηit,

where

Pit =

(∫
(Pikt)

1−θ dk

) 1
1−θ

(3)

denotes the price index of firm i and

Xit =

(∫
(Pikt)

− θ
η dk

)− η
θ

(4)

determines the extent of misallocation. Absent dispersion in prices, Xit/Pit = 1 and produc-

tivity is maximized. With price dispersion, Xit/Pit < 1 and productivity is reduced.

2.4.3 Price Adjustment Cost

We assume that the firm has a convex cost of changing prices denominated in units of labor.

This cost is increasing in the number of prices nit the firm resets and is equal to

ξ

2
(nit − n̄)2 , if nit > n̄

and zero otherwise. Here, ξ determines the size of the adjustment cost and n̄ is the fraction

of free price changes. The key assumption we make is that although the firm can choose

how many prices to change in a given period, it cannot choose which prices to change. By

endogenizing the fraction of price changes, the model can capture the evidence that firms are

more likely to adjust prices in times of high inflation, as in menu cost models, but in a much

more tractable way. When ξ → ∞, the model collapses to the Calvo model with a constant

fraction of price changes n̄.

Our model shares similarities with that in Romer (1990) which also endogenizes the

fraction of prices changes in the Calvo model.8 However, in Romer (1990) firms choose a once-

and-for-all price adjustment probability, balancing the gains from more frequent adjustment

against the costs of repricing. Extending that model to allow for a time-varying adjustment

probability would require keeping track of the distribution of prices because the gains from

8See also Kiley (2000), Devereux and Yetman (2002) and Bakhshi et al. (2007).
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adjusting would be higher for prices further away from the optimum, just like in menu cost

models.9 In contrast, our assumption that firms sell a continuum of products and choose

how many, but not which, prices to change, implies that firms are ex-post identical and that

a small number of state variables are sufficient to characterize a firm’s incentives to adjust

prices. This feature allows exact aggregation and renders our model very tractable.

2.4.4 Price Setting

We next describe the firm’s problem in detail. The value of the firm is the present discounted

sum of its flow profits (2) from all products

Et

∞∑
s=0

βs 1

ct+s

(∫ [(
Pikt+s

Pt+s

)1−θ

yt+s − τ
Wt+s

Pt+s

(
Pikt+s

Pt+s

)− θ
η

y
1
η

t+s

]
dk − ξ

2
(nit+s − n̄)2

Wt+s

Pt+s

)
.

The log-linear specification of preferences implies that ct =
Wt

Pt
= yt and, together with the

definitions of Pit and Xit in equations (3) and (4), allows us to write the value of the firm as

Et

∞∑
s=0

βs

[(
Pit+s

Pt+s

)1−θ

− τ

(
Xit+s

Pt+s

)− θ
η

y
1
η

t+s −
ξ

2
(nit+s − n̄)2

]
. (5)

The firm chooses what fraction of prices nit to reset every period and the reset price P ∗
it.

Because all products are identical,10 Pikt = P ∗
it for all products whose price is reset.

To characterize these optimal choices, we first describe how P ∗
it and nit affect firm profits

in future periods through their effect on the price and misallocation indices Pit+s and Xit+s in

equation (5). Consider first the term (Pit+s)
1−θ. Using the definition of the firm’s price index

in equation (3) and the assumption that the firm chooses how many, but not which, prices

to change, we can write this term as a function of the history of reset prices and repricing

probabilities as follows

(Pit+s)
1−θ = nit+s

(
P ∗
it+s

)1−θ
+ (1− nit+s)nit+s−1

(
P ∗
it+s−1

)1−θ
+ (6)

(1− nit+s) (1− nit+s−1)nit+s−2

(
P ∗
it+s−2

)1−θ
+ · · ·+

s∏
j=1

(1− nit+j)nit (P
∗
it)

1−θ +
s∏

j=1

(1− nit+j) (1− nit) (Pit−1)
1−θ .

The first term on the right hand side represents the contribution of the nit+s newly reset

prices in period t+ s. The second term represents the contribution of the (1− nit+s)nit+s−1

9See also Alvarez et al. (2021) and Cavallo et al. (2024) for variants of the menu cost model in which firms
choose the price adjustment probability subject to a convex adjustment cost.

10In Section 6 we allow for idiosyncratic product-level shocks.
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prices that were reset in period t + s − 1 and were not reset in period t + s. This pattern

continues with each subsequent term accounting for the contribution of prices reset in each

period leading up to t + s, including those reset in period t, captured by the first term in

the last line of the expression, as well as those reset prior to period t, captured by the last

term of the expression. In writing this last term we used the definition of the price index in

equation (3) to express the history of all reset prices prior to period t using a single state

variable, Pit−1.

A similar argument allows us to rewrite the term (Xit+s)
− θ

η as

(Xit+s)
− θ

η = nit+s

(
P ∗
it+s

)− θ
η + (1− nit+s)nit+s−1

(
P ∗
it+s−1

)− θ
η + (7)

(1− nit+s) (1− nit+s−1)nit+s−2

(
P ∗
it+s−2

)− θ
η + · · ·+

s∏
j=1

(1− nit+j)nit (P
∗
it)

− θ
η +

s∏
j=1

(1− nit+j) (1− nit) (Xit−1)
− θ

η .

We next characterize the optimal choice of P ∗
it and nit.

Optimal reset price. To derive the optimality condition with respect to P ∗
it we note that

equations (6) and (7) imply that

∂ (Pit+s)
1−θ

∂P ∗
it

= (1− θ) (P ∗
it)

−θ
s∏

j=1

(1− nit+j)nit

and
∂ (Xit+s)

− θ
η

∂P ∗
it

= −θ

η
(P ∗

it)
− θ

η
−1

s∏
j=1

(1− nit+j)nit.

Therefore, the reset price P ∗
it that maximizes the value of the firm satisfies the first order

condition (
P ∗
it

Pt

)1+θ( 1
η
−1)

=
1

η

b2it
b1it

,

where

b1it = Et

∞∑
s=0

βs

s∏
j=1

(1− nit+j)

(
Pt+s

Pt

)θ−1

and

b2it = Et

∞∑
s=0

βs

s∏
j=1

(1− nit+j)

(
Pt+s

Pt

) θ
η

(yt+s)
1
η .

The terms b1it and b2it capture the present value of revenue and marginal costs in future

periods, weighted by the probability that a price reset today in still in effect in that future
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period. An increase in future inflation reduces the real value of the reset price and increases

revenue and marginal costs and therefore the weight that the firm places on that period.

Strategic complementarities, captured by the term 1 + θ
(

1
η
− 1
)
, dampen the extent to

which the reset price responds to aggregate shocks, generating additional price stickiness.

These expressions that determine the optimal reset price are analogous to those obtained in

a Calvo model, with the only difference being that in the Calvo model nt is constant.

Optimal Fraction of Price Changes. To derive the optimality condition with respect

to nit, we first note that equations (6) and (7) imply that

∂ (Pit+s)
1−θ

∂nit

=
s∏

j=1

(1− nit+j)
(
(P ∗

it)
1−θ − (Pit−1)

1−θ
)

and
∂ (Xit+s)

− θ
η

∂nit

=
s∏

j=1

(1− nit+j)
(
(P ∗

it)
− θ

η − (Xit−1)
− θ

η

)
.

The fraction of price changes nit that maximizes the value of the firm therefore satisfies

the first order condition

ξ (nit − n̄) = b1it

((
P ∗
it

Pt

)1−θ

−
(
Pit−1

Pt

)1−θ
)

− τb2it

((
P ∗
it

Pt

)− θ
η

−
(
Xit−1

Pt

)− θ
η

)
.

In choosing what fraction of prices to adjust, the firm balances the price adjustment costs

on the left hand side against the benefits resulting from changing its price index–captured

by the first term on the right hand side–and reducing misallocation inside the firm–captured

by the second term on the right hand side. Notice that the terms b1it and b2it that determine

the optimal reset price also determine the firm’s incentive to adjust prices. For example,

the higher is output yt+s in future periods, the larger is b2it and therefore the stronger the

incentive to reduce misallocation and thus economize on labor costs. Similarly, the more

likely the firm is to adjust its prices in the future, the lower are b1it and b2it and therefore

the benefits from adjusting prices today.

Importantly, the firm’s incentives to adjust are shaped by only two state variables, the

firm’s price index, Pit−1, and the amount of misallocation inside the firm, Xit−1, as in the

multi-product menu cost model of Blanco et al. (2024). In contrast to that paper, because

firms are ex-post identical, we do not need to keep track of the joint distribution of these two

state variables.
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2.5 Equilibrium

Since all firms are identical, nit = nt and P ∗
it = P ∗

t . Consequently all firms have the same

price indices and losses from misallocation. Let p∗t = P ∗
t /Mt, pt = Pt/Mt, xt = Xt/Pt and

πt = Pt/Pt−1 and recall that

wt = ct = yt =
1

pt
,

where wt = Wt

Pt
is the real wage. The equilibrium of the model is characterized by the

following system of equations:

1. the definition of the price index, which determines inflation as a function of the relative

reset price and the fraction of price changes

1 = nt

(
p∗t
pt

)1−θ

+ (1− nt) π
θ−1
t , (8)

2. the optimal reset price (
p∗t
pt

)1+θ( 1
η
−1)

=
1

η

b2t
b1t

, (9)

where b1t and b2t are determined by

b1t = 1 + βEt (1− nt+1) π
θ−1
t+1 b1t+1 (10)

b2t = p
− 1

η

t + βEt (1− nt+1)π
θ
η

t+1b2t+1, (11)

3. the optimal choice of the fraction of price changes

ξ (nt − n̄) = b1t

((
p∗t
pt

)1−θ

− πθ−1
t

)
− τb2t

((
p∗t
pt

)− θ
η

− x
− θ

η

t−1π
θ
η

t

)
, (12)

4. the productivity term that captures the losses from misallocation

x
− θ

η

t = nt

(
p∗t
pt

)− θ
η

+ (1− nt)x
− θ

η

t−1π
θ
η

t .

Notice that inflation is equal to

πt =
Pt

Pt−1

=
pt
pt−1

Mt

Mt−1

=
pt
st
,

where

st =
Pt−1

Mt

=
pt−1

exp (µt)
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is the previous period’s price level scaled by current nominal spending. Because the growth

rate of nominal spending is iid, the only two state variables in this economy are st and xt−1,

so the solution of the model is given by functions pt = P (st, xt−1), xt = X (st, xt−1) etc.,

that determine how output and inflation evolve over time in response to monetary shocks.

Relative to the Calvo model, the only new equation is equation (12) which characterizes

how the fraction of price changes evolves over time. The Calvo model is a special case of

our model that can be obtained by setting ξ → ∞, in which case nt = n̄ is constant. In the

Calvo model the previous period’s losses from misallocation xt−1 do not affect the fraction

of price changes, so the price level only depends on a single state variable, st.

We solve the system of functional equations that characterize the solution of the model us-

ing global projection methods, by approximating the equilibrium functions using Chebyshev

polynomials. We found, however, that a third-order perturbation provides a very accurate

approximation, suggesting that the model can be reliably solved using readily available so-

lution techniques. See Appendix B for details.

3 Parameterization

We next explain how we parameterize the model. We first discuss the parameters we assign

values to and then the parameters we calibrate endogenously.

3.1 Assigned Parameters

A period in the model is a quarter. We set three parameters to values conventional in the

literature: a quarterly discount factor β of 0.99, a demand elasticity θ of 6 and a returns

to scale parameter η of 2/3. In the robustness section below, we show that our results are

robust to alternative values of θ and η that imply weaker strategic complementarities.

3.2 Calibrated Parameters

The parameters we calibrate endogenously are those determining the average level and volatil-

ity of inflation, as well as the average fraction of price changes and its comovement with

inflation. Specifically, we set the average growth rate of nominal spending µ, the standard

deviation of nominal spending growth σ, the fraction of free price changes n̄, and the price

adjustment cost parameter ξ to reproduce the mean and standard deviation of inflation, the

mean fraction of price changes, and the slope coefficient from regressing the fraction of price
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changes on the absolute value of inflation. This last statistic summarizes the extent to which

the fraction of price changes and inflation comove in the time series.

3.2.1 The Data

Our measure of inflation is the growth rate of the U.S. CPI, available from 1962:Q1 to

2023:Q4. We follow Nakamura et al. (2018) in using the series excluding shelter to ensure that

the inflation data is compatible with the data on the fraction of price changes. The fraction

of price changes is computed from the price quotes collected by the BLS that underlie the

construction of the CPI.11 Specifically, we use the monthly median fraction of price changes,

excluding sales, available between 1978 and 2023. We convert the monthly series into a

quarterly one, so the series we use is the fraction of prices that change in a quarter.

Figure 1 plots the year-to-year percent change in the price level and the average quarterly

fraction of price changes in the preceding year. On average, approximately 25% of prices

change in a given quarter in periods of low inflation. As documented by Nakamura et al.

(2018), the fraction of price changes was relatively high, approximately 40% per quarter, in

the high-inflation episode in the early 1980s. As documented by Montag and Villar (2023),

the fraction of price changes spiked once again, to approximately 50%, during the post-Covid

inflation episode. The fraction of price changes thus increases systematically in times of high

inflation, a robust feature of the data documented, for example, by Gagnon (2009), Alvarez

et al. (2018), Karadi and Reiff (2019) and Blanco et al. (2024).

3.2.2 Parameter Values

For many of our subsequent exercises, we will contrast the predictions of our model to those of

a standard Calvo model with a constant fraction of price changes. We therefore also calibrate

the Calvo model using the same strategy, but discard the adjustment cost parameter and

choose the fraction of price changes n̄ to reproduce the average fraction of price changes.

Table 1 reports the results of the calibration. As Panel A of the table shows, both models

reproduce the targeted moments exactly. In both models and in the data, the average inflation

rate is equal to 3.5%, the standard deviation of inflation is 2.7% and the average quarterly

fraction of price change is 29.7%. In our model, as in the data, the fraction of price changes

comoves systematically with inflation: the slope coefficient of a regression of the fraction of

price changes on the absolute value of inflation is equal to 0.016.

11We are grateful to Hugh Montag and Daniel Villar for kindly sharing these data with us. See Nakamura
et al. (2018) for a detailed description of how the data was constructed.

13



Panel B of the table reports the calibrated parameter values. The volatility of nominal

spending growth is slightly lower in our model compared to the Calvo model because in

our model endogenous movements in the fraction of price changes contribute to inflation

fluctuations. We also note that the fraction of free price changes is equal to 24.1% in our

model and that the adjustment cost parameter ξ, though not interpretable on its own, implies

that on average 0.65% of all labor is used in adjusting prices, a number in line with the

evidence in Levy et al. (1997).

Table 1: Endogenously Calibrated Parameters

A. Targeted Moments

Data Our model Calvo

mean inflation 3.517 3.517 3.517
s.d. inflation 2.739 2.739 2.739
mean frequency 0.297 0.297 0.297
slope of nt on |πt| 0.016 0.016 –

B. Calibrated Parameter Values

Our model Calvo

µ mean spending growth rate 0.035 0.035
σ s.d. monetary shocks 0.022 0.024
n̄ fraction free price changes 0.241 0.297
ξ adjustment cost 1.767 –

Notes: The mean nominal spending growth rate is annualized.

4 Steady State Analysis

Before confronting our model with the time-series evidence, we first build intuition for the

mechanism by characterizing how the non-stochastic steady state of the model varies with

trend inflation. We use a first-order approximation around the non-stochastic steady state to

provide intuition for how the economy responds to monetary policy shocks in environments

with high and low trend inflation. Many of the insights we derive below will carry through in

the subsequent section which studies the responses to monetary policy shocks in the actual

time series.
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4.1 Steady State Fraction of Price Changes

We first characterize how the steady state fraction of price changes varies with trend inflation.

Letting π = exp(µ) denote the trend level of inflation and variables without t subscripts

denote the value of a variable in the non-stochastic steady state, we can show that the

fraction of price changes is pinned down by

ξ (n− n̄) =
1

1− β (1− n) πθ−1

1

n

(
1− πθ−1 − τη

1− (1− n) πθ−1

1− (1− n)π
θ
η

(
1− π

θ
η

))
, (13)

where the left-hand side of the equation is the marginal cost of increasing n and the right-hand

side captures the marginal benefit to increasing n.12

The marginal cost is linearly increasing in n. Absent trend inflation, π = 1 and the

marginal benefit of increasing n is equal to 0, implying that n = n̄. Thus, absent trend

inflation, the steady state of our model is identical to that of the Calvo model. More generally,

with positive trend inflation, π > 1, the marginal benefit of changing prices is positive and

decreases with n, as illustrated in Figure 2. The intersection of the marginal benefit and

cost curves pins down the steady-state fraction of price changes. As the figure shows, higher

trend inflation increases the marginal benefit of adjusting prices, thus increasing the fraction

of price changes.13

Figure 2: Steady-State Fraction of Price Changes
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12See Appendix A for all the derivations.
13In Appendix C, we show that trend inflation reduces output and productivity by a lot less in our model

relative of a model with a constant fraction of price changes.

15



4.2 The Real Effects of Monetary Shocks

We next study the real effects of monetary shocks. We consider impulse responses to both

small and large shocks and discuss how they depend on trend inflation.

4.2.1 Impulse Responses to Small Shocks

We first study how our economy responds to small monetary policy shocks in environments

with low and high trend inflation. We consider two economies, one with zero and another

with 10% trend inflation, and report the impulse responses of output and the fraction of

price changes to a 1% increase in nominal spending Mt. To build intuition, we consider a

log-linear approximation of the model around the steady state of each economy. We contrast

the responses in our model to those predicted by an otherwise identical model in which the

fraction of price changes is equal to that in the steady state of our model, but ξ = ∞ so

the fraction of price changes is constrained to not respond to shocks. We note that the

steady-state fraction of price changes is approximately twice as high in the economy with

10% inflation compared to the economy with no inflation (0.41 vs. 0.24).

The left two panels of Figure 3 show the response of output (upper panel) and the fraction

of price changes (lower panel) in the economy without trend inflation. Note that, up to a

first-order approximation, the fraction of price changes does not respond to the monetary

shock. Hence, our model with an endogenous adjustment frequency has identical responses

to the economy with a time-invariant frequency.

The right two panels of Figure 3 depict the responses in an environment with 10% trend

inflation. We make two observations. First, even when the fraction of price changes is

constrained not to respond to the shock (ξ = ∞), the response of output is weaker in the

economy with 10% trend inflation relative to the economy without trend inflation, owing to

the larger steady-state fraction of price changes. Both the impact output response (0.73%

vs. 0.85%), as well as the cumulative output response (2.72% vs. 5.50%) are lower. Second,

the response of output is smaller and more transient in our model relative to the ξ = ∞
economy with a constant fraction of price changes. Both the impact output response (0.66%

vs. 0.73%) and the cumulative output response (1.22% vs 2.72%) fall considerably, owing to

the increase in the fraction of price changes from 0.41 in steady state to 0.43 after the shock.

In sum, although the increase in the fraction of price changes following a shock appears

small, it leads to considerable aggregate price flexibility in the economy with high inflation.

To see why, consider the log-linearized system of equilibrium conditions characterizing the
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Figure 3: Impulse Response to a 1% Monetary Shock
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evolution of inflation in our model. Letting hats denote log-deviations from the steady state,

a first-order Taylor expansion of the expression for the aggregate price level in equation (8)

implies that

π̂t =
1

(1− n) πθ−1

πθ−1 − 1

θ − 1︸ ︷︷ ︸
M

n̂t +
1− (1− n) πθ−1

(1− n) πθ−1︸ ︷︷ ︸
N

(p̂∗t − p̂t) . (14)

The second term on the right-hand side of this expression is familiar from the standard Calvo

model and describes how inflation responds to an increase in the relative reset price. The

elasticity

N =
1− (1− n) πθ−1

(1− n)πθ−1

increases with the fraction of price changes n and decreases with trend inflation π. As Coibion

et al. (2012) point out, a higher trend inflation reduces the sensitivity of inflation to reset

price changes because newly reset prices are larger and therefore have a smaller share in the

consumption weights used to calculate the ideal price index.

The first term on the right-hand side of (14) is new to our model and captures the impact

of changes in the fraction of price changes on the inflation response. The elasticity

M =
1

(1− n) πθ−1

πθ−1 − 1

θ − 1
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is equal to zero absent trend inflation and increases with inflation, π. To understand why

this is the case, note that inflation is approximately equal to the fraction of price changes

nt times the average price change conditional on adjustment. If the average price change is

zero, as is the case absent trend inflation, an increase in the fraction of price changes does not

affect inflation. In contrast, if the average price change is large, inflation greatly responds to

changes in the fraction of price changes. This effect is reminiscent of the mechanism in the

menu cost model of Caplin and Spulber (1987) in which small changes in the fraction of price

changes render the aggregate price level flexible. Because newly-adjusting prices increase by

a large amount, even small changes in the fraction of price changes add considerably to the

response of inflation.

4.2.2 Impulse Responses to Large Shocks

So far we considered the responses to relatively small monetary policy shocks using a first-

order approximation. To a first order, the increase in the fraction of price changes only

contributes to aggregate price flexibility because adjusting firms respond to the underlying

trend inflation, but not to the monetary policy shock. We next consider shocks of larger

sizes and solve for the response of output non-linearly, thus taking into account the inter-

action between the increase in the fraction of price changes and the increase in the average

price change resulting from the shock. To compute these responses, we start from the non-

stochastic steady state of the economy and consider a one-time, unanticipated, permanent

increase in nominal spending Mt. We then calculate the resulting transition dynamics using

a non-linear shooting method.

Figure 4 reports the responses to a 1% (left panels) and 10% (right panels) monetary

shock starting from the steady state of our baseline model calibrated to match the U.S.

data with 3.5% trend inflation. Notice first that even in response to small shocks the output

responses in our model are weaker than in the model with a constant fraction of price changes.

As explained above, the small increase in the fraction of price changes imparts considerable

flexibility to the aggregate price level because these additional price changes incorporate the

larger trend inflation into their price adjustment decisions. Moreover, the response of output

to a 10% monetary policy shock is considerably smaller in our model, owing to the sharp

increase in the fraction of price changes: 50% of prices change in response to this shock on

impact. Consequently, the cumulative impulse response of output is one third of that in the

model with a constant fraction of price changes.
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Figure 4: Impulse Response to Small and Large Monetary Shocks
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We thus conclude that our economy has many of the features of menu cost models, such

as the large responsiveness of the price level to movements in the fraction of price changes

in periods of high inflation (as in Caplin and Spulber, 1987) and considerable non-linearity

in responses to shocks of different sizes (as in Blanco et al., 2024), but is considerably more

tractable.14

4.3 The Phillips Curve and the Inflation Accelerator

We next derive the Phillips curve in our economy. We show that the slope of the Phillips

curve increases rapidly with trend inflation due to a feedback loop between inflation and

the fraction of price changes. On the one hand, an increase in the fraction of price changes

increases inflation, more so in environments with higher trend inflation. On the other hand,

an increase in inflation increases the firms’ incentive to change prices, thus raising the fraction

of price changes. We refer to this feedback loop as the inflation accelerator.

Log-linearizing the expression determining the optimal fraction of price changes (12)

14As Reiter and Wende (2024) show, a Rotemberg (1982) model with a suitably modified adjustment cost
function can also generate non-linearities.
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around the non-stochastic steady state, we have

n̂t = Aπ̂t + B (p̂∗t − p̂t)− Cx̂t−1 +
n− n̄

n
b̂1t, (15)

where

A =
θ − 1

ξn

1

1− β (1− n)πθ−1

π
θ
η − πθ−1

1− (1− n) π
θ
η

determines how sensitive the fraction of price changes is to inflation,

B = (1− τη)
θ − 1

ξn

1− (1− n) πθ−1

1− β (1− n) πθ−1

1

n

π
θ
η − 1

1− (1− n) π
θ
η

determines how sensitive the fraction of price changes is to the relative reset price, and

C =
θ − 1

ξn

1− (1− n) πθ−1

1− β (1− n) πθ−1

π
θ
η

1− (1− n) π
θ
η

determines how sensitive the fraction of price changes is to past misallocation.

We note first that bothA and B are equal to zero absent trend inflation. Thus, the fraction

of price changes is, to a first-order, irresponsive to monetary policy shocks, as illustrated in

Figure 3. In the presence of trend inflation these elasticities are positive and decreasing in

the adjustment cost parameter ξ.

Combining the log-linearized expression for the price index (14) with equation (15) implies

π̂t =
MB +N
1−MA

(p̂∗t − p̂t)−
MC

1−MA
x̂t−1 +

M
1−MA

n− n̄

n
b̂1t.

The elasticity of inflation to relative reset prices, p̂∗t − p̂t, is equal to
MB+N
1−MA and is amplified

relative to the standard Calvo model whenever π > 1, so that M, A and B are all positive.

Intuitively, a higher desired reset price not only directly affects inflation with an elasticity

N , but also leads to more frequent price changes with an elasticity B, which then increases

inflation with an elasticity M and further increases the incentives to adjust prices with an

elasticity A, triggering a feedback loop. We refer to this feedback loop between the fraction

of price changes, the optimal reset price and inflation as the inflation accelerator.

Finally, log-linearizing equations (9) – (11) which characterize the optimal reset price
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allows us to derive the Phillips curve

π̂t = Km̂ct + β (1− n)

 θ
η
π

θ
η − (θ − 1)πθ−1

1 + θ
(

1
η
− 1
) MB +N

1−MA
+ π

θ
η

Etπ̂t+1

+ β (1− n)

 π
θ
η − πθ−1

1 + θ
(

1
η
− 1
)MB +N
1−MA

− π
θ
η

M
1−MA

n− n̄

n

Etb̂1t+1

− βn
π

θ
η − πθ−1

1 + θ
(

1
η
− 1
)MB +N
1−MA

Etn̂t+1

+ β (1− n) π
θ
η

MC
1−MA

x̂t −
MC

1−MA
x̂t−1 +

M
1−MA

n− n̄

n
b̂1t. (16)

We note that all the terms in the last two rows of this expression drop out when the fraction

of price changes is time-invariant.

The key elasticity is the slope of the Phillips curve: the elasticity of inflation with respect

to real aggregate marginal cost, mct =
1
η
Wt

Pt
y

1
η
−1

t . As we show in Appendix A, this elasticity

is equal to

K =
1

1 + θ
(

1
η
− 1
) (1− β (1− n) π

θ
η

)MB +N
1−MA

. (17)

The first term of this expression captures the effect of strategic complementarities which

are stronger the more elastic demand is–i.e., the higher is θ–and the stronger are decreasing

returns to scale–i.e., the lower is η. The second term captures the horizon effect: a transitory

increase in marginal costs in period t only increases the optimal reset price by a factor

1−β (1− n) π
θ
η , which reflects the discount factor and the probability that the current price

will still be in effect in future periods. Finally, as discussed above, the last term captures the

impact of higher reset prices on inflation.

Absent the feedback effect of the fraction of price changes on inflation, i.e. when M = 0,

this expression reduces to the familiar slope of the Phillips curve in a Calvo model with trend

inflation

κ =
1

1 + θ
(

1
η
− 1
) (1− β (1− n) π

θ
η

) 1− (1− n)πθ−1

(1− n) πθ−1
.

The difference between these two slopes, K − κ, reflects the inflation accelerator which is

positive when π > 0 and increases with π.

Figure 5 shows how the slope of the Phillips curve K varies with trend inflation. We gauge

the importance of the inflation accelerator by contrasting the slope K with the slope κ that
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arises absent the inflation accelerator. In computing these two objects, we let the fraction

of price changes n optimally increase with trend inflation according to equation (13). The

slope of the Phillips curve increases considerably with inflation: as trend inflation increases

from 0 to 10%, K increases from 0.020 to 0.076. Most of this increase is due to the inflation

accelerator: as trend inflation increases from 0 to 10%, the slope κ only increases from 0.020

to 0.034. The inflation accelerator thus considerably magnifies the slope of the Phillips curve.

Figure 5: Trend Inflation and the Slope of Phillips Curve
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5 The Phillips Curve in the Time-Series

We next investigate how the slope of the Phillips curve evolves in the U.S. time series viewed

through the lens of our model. To that end, we first identify the sequence of monetary policy

shocks that allows the model to exactly reproduce the path of inflation in the post-war U.S.

data. We then consider a log-linear approximation around the equilibrium point at each date

and derive the slope of the Phillips curve. We show that the slope of the Phillips curve varies

considerably, ranging from 0.02 in relatively low-inflation periods to 0.12 in the high-inflation

periods of the 1970s and 1980s.
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5.1 Inflation and the Fraction of Price Changes

Recall that inflation in our model is a function of last period’s price level pt−1, the degree of

misallocation, xt−1, as well as the monetary policy shock εt

πt = π

(
pt−1

exp (µ+ εt)
, xt−1

)
. (18)

We initialize the economy in the stochastic steady state in 1962 and use the non-linear

solution of our model to back out the monetary policy shocks that reproduce the observed

U.S. inflation series. For visual clarity, we target an inflation series that removes high-

frequency fluctuations using a 3-quarter centered moving average.15

Figure 6 shows the path of annualized quarterly inflation, which the model matches by

construction, and the fraction of price changes in both the model and the data. The model

reproduces well the relatively high fraction of price changes in the 1980s and its subsequent

decline following the Volcker disinflation. Though the fraction of price changes also increases

in our model during the post-Covid spike in inflation, the increase is not as large as in the

data. Intuitively, our model predicts a stable relationship between inflation and the fraction

of price changes. Since the post-Covid increase in inflation was not as large as that in

the 1980s, the model predicts a smaller frequency response.16 As we show in Appendix C,

our model also reproduces the Klenow and Kryvtsov (2008) decomposition of inflation into

intensive and extensive margin components, suggesting that the model provides a reasonable

account of the role of fluctuations in the fraction of price changes for inflation dynamics.

5.2 The Slope of the Phillips Curve

We next discuss the slope of the Phillips curve at each point in time in our model. To this end,

we consider the impact of an additional monetary policy shock ε̃t that changes the growth

rate of nominal spending to µ̃t = µt + ε̃t in period t. We use a tilde to denote the value of a

variable following this additional shock and hats denote the log-deviation of a variable from

the original equilibrium. For example, π̂t = log π̃t − log πt denotes the response of inflation

to the shock.

15In Appendix C, we compare the raw inflation series and the smoother series we target and report the
implied slope of the Phillips curve when we target the raw inflation data.

16We conjecture that allowing for sectoral shocks that trigger price increases in some sectors and price
decreases in others would improve the model’s fit because both the fraction of price increases and that of
price decreases increased post-Covid (see Montag and Villar, 2023 and Morales-Jimenez and Stevens, 2024).
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Figure 6: Inflation and the Fraction of Price Changes
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Notes: The gray bars indicate NBER recessions. The left panel plots the annualized quarterly inflation and

the right panel plots the quarterly fraction of price changes. Both data series are smoothed with a 3-quarter

centered moving average.

As we show in Appendix A, the expression relating inflation to the fraction of price

changes and the relative reset price is now

π̂t =
1

(1− nt) π
θ−1
t

πθ−1
t − 1

θ − 1︸ ︷︷ ︸
Mt

n̂t +
1− (1− nt) π

θ−1
t

(1− nt) π
θ−1
t︸ ︷︷ ︸

Nt

(p̂∗t − p̂t) .

This expression is similar to that derived in equation (14) which perturbed the economy

around the non-stochastic steady state, except that now the actual values of inflation πt and

fraction of price changes nt determine how inflation reacts to an increase in the optimal reset

price and the fraction of price changes. Once again, if inflation is high in a given period, the

elasticity Mt that determines how inflation responds to an additional increase in the fraction

of price changes is high as well: in times of elevated inflation the desired price change is high,

so even a small increase in the fraction of price changes greatly increases aggregate price

flexibility.

Consider next the expression describing how the fraction of price changes responds to

shocks. Up to a first-order approximation,

n̂t = Atπ̂t + Bt (p̂
∗
t − p̂t)− Ctx̂t−1 +

nt − n̄

nt

b̂1t,

where once again the elasticities vary over time as a function of inflation and the optimal
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reset price. For example,

At =
θ − 1

ξnt

b1t

((
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η − πθ−1
t

)
,

and

Bt = (1− τη) (θ − 1)
b1t
ξnt

((
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η −
(
p∗t
pt

)1−θ
)
.

Finally, the slope of the Phillips curve is equal to17

Kt =
1

1 + θ
(

1
η
− 1
) p− 1

η

t

b2t

MtBt +Nt

1−MtAt

and is similar to that derived in equation (17), with the notable difference that now the

elasticities At, Bt, Mt and Nt are time-varying.

We find it useful to compare the slope of the Phillips curve in our model to that in a

model with a time-varying fraction of price changes that is constrained not to respond to the

additional shocks ε̃t. In this case, the elasticities At, Bt and Mt are all equal to zero and the

slope is equal to

κt =
1

1 + θ
(

1
η
− 1
) p− 1

η

t

b2t
Nt.

This slope captures the fact that an elevated fraction of price changes mechanically increases

the slope of the Phillips curve.

Thus, the difference between the two slopes, Kt − κt, captures the inflation accelerator,

which now varies over time and reflects the endogenous response of the fraction of price

changes–as well as its disproportionately larger contribution to aggregate price flexibility in

periods of high inflation.

The left panel of Figure 7 depicts the slope of the Phillips curve in our model and contrasts

it to κt. The slope of the Phillips curve Kt fluctuates significantly over time, reaching a low

of 0.02 in low-inflation periods and increasing to as high as 0.12 in times of high inflation.

Crucially, the inflation accelerator is largely responsible for the steeper slope in high-inflation

periods: in its absence, the slope κt peaks at just 0.04–only a third of the overall effect. Even

though our model does not fully reproduce the sharp increase in the fraction of price changes

post-Covid, the slope of the Phillips curve increased by a factor of five, from 0.019 in the first

17Appendix A derives the Phillips curve in its entirety.
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quarter of 2019 to 0.095 in the first quarter of 2022, an increase once again largely accounted

for by the inflation accelerator: κt only increased from 0.018 to 0.034 in this period.

For comparison, the right panel of Figure 7 reports the slope predicted by the Calvo

model discussed in Section 3 in which the fraction of price changes is constant

κcalvo
t =

1

1 + θ
(

1
η
− 1
) p− 1

η

t

b2t

1− (1− n̄) πθ−1
t

(1− n̄) πθ−1
t

.

This slope fluctuates much less than in our model and, importantly, decreases in periods of

high inflation. This is because the fraction of price changes does not increase with inflation

and, as discussed in Section 4.2, the price level is less responsive to changes in the reset price

when inflation is high, a mechanism that reduces the slope of the Phillips curve.

Figure 7: The Slope of the Phillips Curve
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Notes: The gray bars indicate NBER recessions.

5.3 Time-Varying Responses to Monetary Policy Shocks

We next study the consequences of the elevated slope of the Phillips curve in periods of high

inflation for how the economy responds to monetary policy shocks. We isolate the role of

the inflation accelerator by considering a log-linear approximation of the model’s equilibrium

conditions around each date t and expressing the system as

Atzt = Btzt−1 +Ctzt+1, (19)
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where zt is a vector that collects all the equilibrium variables, expressed in log-deviations

from the initial equilibrium, and the matrices At to Ct collect the time-varying elasticities

describing the log-linearized equilibrium conditions, including the elasticities Mt, Nt and Kt

defined above.18 In calculating the matrices At to Ct we use the history of monetary shocks

that reproduces the inflation data up to the period of the shock, and then set the path of all

future shocks to zero.19

We use the representation in equation (19) to recover the solution of the model,

zt = Qtzt−1, (20)

where

Qt = (At −CtQt+1)
−1Bt.

We do this for periods t = 1 . . . T, where period 1 corresponds to the period in the sample

for which we calculate the impulse response, and T is sufficiently large so that the impact of

initial conditions dies out. Equation (20) thus allows us to compute a conditional forecast of

how the economy would respond to an additional change in monetary policy at any point in

time. The log-linearized solution (20) produces impulse responses to relatively small shocks,

say of 1%, that are very similar to those obtained from the non-linear solution. For larger

shocks, the non-linearity in our model is stronger, further reinforcing our conclusions below.

We find the log-linear approximation above useful because it allows us to isolate the role

of the inflation accelerator in determining how output responds to monetary policy shocks.

To this end, we recompute the solution of the model by setting Mt = 0 at every date and

leaving all other elasticities unchanged. This alternative solution captures what the responses

would be in the absence of the inflation accelerator.

Figure 8 compares the impulse response of output to a 1% monetary shock in the the

first quarter of 1995, when inflation was relatively low, 2.8% year-on-year, and in the first

quarter of 1980, when inflation was much higher, 11.7%. As the figure shows, the real effects

of the monetary shock are much smaller in 1980: our model predicts that the cumulative

response of output is equal to only 1.4%, much smaller than the 4.0% in 1995. Part of this

difference is mechanically accounted for by the higher fraction of price changes in 1980: 44%

vs. 27%. The bulk of the difference, however, is accounted for by the inflation accelerator:

setting Mt = 0 increases the cumulative impulse response to a shock in 1980 significantly, to

18See Appendix A for a full list of the log-linearized equilibrium equations.
19We also considered an alternative approach in which we simulated a large number of histories of shocks

going forward and found that the average response is similar to that described here.

27



3.7%. Thus, the endogenous increase in the fraction of price changes significantly increases

the flexibility of the aggregate price level.

Figure 8: Output Responses to Monetary Shocks In Different Periods
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Notes: The year-on-year inflation rate was equal to 2.8% in the first quarter of 1995 and 11.7% in the first

quarter of 1980.

5.4 The Sacrifice Ratio

The time-varying nature of the slope of the Phillips curve in our model has important impli-

cations for the tradeoffs policymakers face in stabilizing prices and real activity. We illustrate

how these tradeoffs change over time by calculating a measure of the sacrifice ratio. Specif-

ically, we ask: what is the drop in output required to reduce inflation by one percentage

point during the course of one year? We use the non-linear solution of the model to back

out the change in nominal spending necessary to achieve this reduction in inflation and then

calculate the average decline in output during the course of the four quarters of that year.

We repeat this experiment for every date and report the results in Figure 9.

As the left panel of the figure shows, in periods of low inflation the sacrifice ratio is

approximately 1.4%. That is, output would have to fall by 1.4% on average over the course

of the year in order for the monetary authority to reduce inflation by one percentage point.

When inflation is at its peak, in the 1970s and 1980s, the sacrifice ratio is only 0.4%. Thus,

reducing inflation by one percentage point in that period would have been a lot less costly.

Interestingly, even though our model does not fully match the increase in the fraction of price
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Figure 9: Sacrifice Ratio
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changes post Covid, it predicts a sharp decline in the sacrifice ratio, from 1.4% prior to the

pandemic to approximately 0.45% when inflation was at its peak in 2022.20 In contrast, the

sacrifice ratio fluctuates much less over time in the Calvo model and, in fact, increases in

times of high inflation.

Figure 10: Inflation and the Sacrifice Ratio
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We therefore conclude that our model implies that if inflation is high to begin with,

20Hobijn et al. (2023) also argue that the sacrifice ratio fell after the onset of the pandemic due to the
steepening of the Phillips curve.
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bringing it down requires a smaller drop in output than if inflation is low. We illustrate

this point in Figure 10, which shows a scatterplot of the sacrifice ratio against inflation and

highlights the high-inflation period in the 1980s and the low-inflation period at the end of the

1990s. The figure also highlights the post-Covid period and shows that the sacrifice ratio was

0.45% at the beginning of 2022, when inflation was high, and increased to 1.25% as inflation

fell by the end of 2023.

6 Robustness

In this section, we show that our results are robust to eliminating strategic complementarities

in price setting, to adding idiosyncratic shocks to match the dispersion in price changes, to

considering a more conventional interest rate rule and to adding multiple sources of aggregate

uncertainty.

6.1 The Role of Strategic Complementarities

In our baseline model we assumed a moderate degree of strategic complementarities in pricing

by setting η = 2/3 and θ = 6. Here we gauge the robustness of our results to eliminating

strategic complementarities by setting η = 1. We consider two economies, one in which θ = 6,

as in our baseline model, and one in which θ = 3. In both of these, we keep β = 0.99. We

re-calibrate each of these economies to match the same moments as in the baseline calibration.

Table 2 shows that both economies match the targeted moments exactly. Eliminating

strategic complementarities reduces the curvature of the profit function and thus the firms’

incentives to adjust prices. Therefore, as Panel B of the table shows, the model requires

smaller adjustment costs to match the extent to which the fraction of price changes comoves

with inflation, as in menu cost models (see Blanco et al., 2024). When θ = 6, adjustment

costs amount to 0.12% of all labor costs and when θ = 3, they amount to 0.04% of the total

labor costs, lower than the 0.65% implied by our baseline calibration.

Figure 11 shows that eliminating strategic complementarities increases the slope of the

Phillips curve considerably, more so when θ is lower. Intuitively, in our baseline model in

which η = 2/3, the slope of the Phillips curve is dampened by a factor of 1 + θ
(

1
η
− 1
)
= 4,

which is no longer present when η = 1. Additionally, reducing θ increases the impact of

newly reset prices on inflation, as captured by the elasticity Nt, further increasing the slope

of the Phillips curve. However, our earlier conclusion stands: the slope of the Phillips curve

greatly increases in times of high inflation, primarily due to the inflation accelerator. For
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Table 2: Calibration: Alternative Parameterization

A. Targeted Moments

Data θ = 6 θ = 3

mean inflation 3.517 3.517 3.517
s.d. inflation 2.739 2.739 2.739
mean frequency 0.297 0.297 0.297
slope of nt on |πt| 0.016 0.016 0.016

B. Calibrated Parameter Values

θ = 6 θ = 3

µ mean spending growth rate 0.035 0.035
σ s.d. monetary shocks 0.019 0.018
n̄ fraction free price changes 0.232 0.227
ξ adjustment cost 0.365 0.109

Note: The mean nominal spending growth rate is annualized.

example, as the left panel of the figure shows, the slope Kt reaches a low of 0.07 and increases

to as much as 0.55 in times of high inflation. Absent the inflation accelerator, κt increases

only from 0.07 to 0.17–just a fifth of the overall effect.

Figure 11: Slope of the Phillips Curve, No Strategic Complementarities
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6.2 Adding Idiosyncratic Shocks

For clarity of exposition, in our baseline model we abstracted from idiosyncratic shocks.

Therefore, that model cannot reproduce the large dispersion in price changes observed in the

data. We show next that the model can be easily extended to allow for such idiosyncratic

shocks, as in the literature on menu cost models inspired by Golosov and Lucas (2007), and

that our results are robust to this. To continue maintaining tractability, we assume that

these shocks are at the product level.21 Since idiosyncratic now generate a motive for price

changes even when inflation is zero, we assume that n̄ = 0, so there are no free price changes.

Environment. We assume that intermediate good firms produce a continuum of prod-

ucts k with technology

yikt = zikt (likt)
η ,

where zikt is a product-level shock that evolves according to

log zikt = log zikt−1 + σzϵikt

and ϵikt is a iid standard normal random variable. Intermediate goods are aggregated into a

final good with a CES aggregator

yt =

(∫ 1

0

∫ 1

0

(
yikt
zikt−1

) θ−1
θ

dkdi

) θ
θ−1

,

so the shock zikt has the interpretation of a quality shock (Midrigan, 2011, Blanco et al.,

2024). This implies that the demand for an individual product,

yikt = zikt

(
ziktPikt

Pt

)−θ

yt,

is a function of its quality-adjusted price and the corresponding aggregate price index is

Pt =

(∫ 1

0

∫ 1

0

(ziktPikt)
1−θ dkdi

) 1
1−θ

.

Price Setting and Equilibrium. Adding idiosyncratic shocks requires that we evaluate

the price index and misallocation in equations (3) and (4) using the quality-adjusted product

21Assuming, instead, that shocks are to individual firms would require keeping track of the distribution of
firm prices, as in menu cost models.
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prices, ziktPikt. The firms’ price setting problem can then be characterized as in the baseline

model. In a symmetric equilibrium, the price index is

1 = nt

(
p∗t
pt

)1−θ

+ (1− nt) exp

(
σ2
z

2
(1− θ)2

)
πθ−1
t .

The only difference relative to the definition of the price index in equation (8) is the term

exp
(

σ2
z

2
(1− θ)2

)
, which effectively decreases inflation. To see this, notice that if the relative

reset price, p∗t/pt = 1, inflation is equal to πt = exp
(
−σ2

z

2
(θ − 1)

)
< 1, reflecting that con-

sumers reallocate spending towards cheaper quality-adjusted varieties. A similar adjustment

appears in the law of motion of misallocation,22

x
− θ

η

t = nt

(
p∗t
pt

)− θ
η

+ (1− nt) exp

(
σ2
z

2

(
θ

η

)2
)(

xt−1

πt

)− θ
η

,

the optimal fraction of price changes,

ξnt = b1t

((
p∗t
pt

)1−θ

− exp

(
σ2
z

2
(1− θ)2

)
πθ−1
t

)
−τb2t

((
p∗t
pt

)− θ
η

− exp

(
σ2
z

2

(
θ

η

)2
)
x
− θ

η

t−1π
θ
η

t

)
,

and the expressions for b1t and b2t,

b1t = 1 + β exp

(
σ2
z

2
(1− θ)2

)
Et

(
(1− nt+1)π

θ−1
t+1 b1t+1

)
b2t = p

− 1
η

t + β exp

(
σ2
z

2

(
θ

η

)2
)
Et

(
(1− nt+1)π

θ
η

t+1b2t+1

)
.

Phillips Curve. The expression for the slope of the Phillips curve is identical to that

in the baseline model discussed in Section 5.2, except that the terms involving πθ−1
t in the

elasticities At, Bt, Mt and Nt are scaled by exp
(

σ2
z

2
(1− θ)2

)
and those involving π

θ
η

t are

scaled by exp

(
σ2
z

2

(
θ
η

)2)
.

Quantification. We assign the same values to the discount factor, returns to scale and

demand elasticity. In addition to the moments targeted in the baseline model, we also match

the standard deviation of individual price changes, ∆pikt, which is 0.129 in the BLS data

(Morales-Jimenez and Stevens, 2024), by appropriately setting the standard deviation of

22In the presence of idiosyncratic shocks, the losses from misallocation are large. As shown by Blanco et
al. (2024), this problem can be remedied by assuming that the elasticity of substitution inside the firm is
lower than θ. In this case, misallocation would be a function of the within-firm demand elasticity.
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idiosyncratic shocks, σz.
23 Table 3 reports the results of the calibration. We note that the

the model now requires a larger adjustment cost, ξ, since idiosyncratic shocks increase the

marginal benefit of adjusting and also make it more sensitive to inflation.

Table 3: Endogenously Calibrated Parameters, Model with Idiosyncratic Shocks

A. Targeted Moments

Data Model

mean inflation 3.517 3.517
s.d. inflation 2.739 2.739
mean frequency 0.297 0.297
slope of nt on |πt| 0.016 0.015
s.d. price changes 0.129 0.129

B. Calibrated Parameter Values

Model

µ mean spending growth rate 0.035
σ s.d. monetary shocks 0.023
ξ adjustment cost 17.00
σz s.d. idiosyncratic shocks 0.068

Notes: The mean nominal spending growth rate is annualized.

Figure 12 shows how the slope of the Phillips curve, Kt, evolves over time in this model. As

in the baseline, this slope fluctuates considerably, ranging from 0.01 in the 1990s to 0.05 in the

1970s. While idiosyncratic shocks dampen the slope of the Phillips curve because consumers

reallocate towards products whose prices have not adjusted, the inflation accelerator is as

powerful as in the baseline. For example, absent the inflation accelerator, the slope κt peaks

at only 0.01 in the 1970s, one-fifth of the overall effect.

6.3 A Taylor Rule Monetary Policy

Until now, we have assumed that monetary policy follows a nominal spending rule. We show

next that our results are robust to assuming instead that monetary policy follows an interest

rate rule. Specifically, we follow Justiniano and Primiceri (2008) and assume that

1 + it
1 + i

=

(
1 + it−1

1 + i

)ϕi

((πt

π

)ϕπ
(

yt
yt−1

)ϕy
)1−ϕi

ut, (21)

23In Appendix D, we derive closed form expressions for the moments of the distribution of price changes.
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Figure 12: Slope of the Phillips Curve, Model with Idiosyncratic Shocks
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where π is the inflation target, 1 + i = π/β is the steady-state nominal interest rate, the

parameters ϕi, ϕπ and ϕy determine the inertia in the interest rate rule and the sensitivity

of monetary policy to fluctuations in inflation and output growth, and where the monetary

policy shock, ut, evolves according to

log ut = ρu log ut−1 + σuεt,

where the innovations εt ∼ N(0, 1). We solve the model using a third-order perturbation.

We assign the same values to the discount factor, returns to scale and demand elasticity

as in our baseline model. We set ϕi = 0.65, ϕπ = 2.35 and ϕy = 0.51, the median estimates

reported by Justiniano and Primiceri (2008). We consider two economies, one in which

ρu = 0, in which we target the same moments as in the baseline, and one in which ρu > 0,

in which we also target the autocorrelation of year-on-year inflation, that is, of the series

reported in Figure 1. Table 4 reports the results of the calibration.

Figure 13 reports how the slope of the Phillips curve varies in the U.S. time series viewed

through the lens of these two models. As in the baseline, the slope of the Phillips curve

varies substantially over time, from approximately 0.02 in the 1990s to as high as 0.12–0.14

in the 1970s and 1980s. Once again, the inflation accelerator in responsible for the bulk of

the steepening of the Phillips curve in times of high inflation.

6.4 Adding Multiple Aggregate Shocks

To illustrate the mechanism as transparently as possible, in the baseline model we assume

that the only source of aggregate uncertainty comes from monetary shocks. In this section, we
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Table 4: Endogenously Calibrated Parameters, Taylor Rule

A. Targeted Moments

Data ρu = 0 ρu > 0

mean inflation 3.517 3.517 3.517
s.d. inflation 2.739 2.739 2.739
mean frequency 0.297 0.297 0.297
slope of nt on |πt| 0.016 0.016 0.016
autocorr. inflation 0.942 0.913 0.942

B. Calibrated Parameter Values

ρu = 0 ρu > 0

log π inflation target 0.040 0.037
σu s.d. monetary shocks ×100 2.626 0.551
ρu persistence monetary shocks – 0.685
n̄ fraction free price changes 0.241 0.241
ξ adjustment cost 1.671 1.688

Note: The inflation target is annualized. We italicize the autocorrelation of inflation implied by the economy

with ρu = 0, which is not a target in the calibration.

Figure 13: Slope of the Phillips Curve, Taylor Rule
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incorporate other sources of aggregate fluctuations and estimate the model using likelihood

methods. Specifically, we study an economy in which, in addition to shocks to the interest

rate rule, firms are also subject to aggregate shocks to productivity and a time-varying tax
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on labor, which we refer to as a “cost-push” shock.

The setup of the model and the derivations are, to a very large extent, as in the baseline.

We highlight here the new elements. First, we assume a more general utility function where

consumers’ life-time utility is

Et

∞∑
t=0

βt

(
log ct −

h1+γ
t

1 + γ

)
,

and where 1/γ is the Frisch elasticity of labor supply. Second, the technology of intermediate

goods producers is

yikt = zt (likt)
η ,

where zt is aggregate productivity and follows an AR(1) process. Third, the per period profits

from producing a good k are

Piktyikt − τtWtlikt,

where τt is a time-varying tax on labor that also follows an AR(1) process. Lastly, the central

bank follows the Taylor rule described in Section 6.3 and the monetary shocks also follow an

AR(1) process.

We estimate this model using Bayesian likelihood methods. We discuss the details of the

estimation in Appendix D. To compute the slope of the Phillips curve, we use the solution

of the model to back out the sequences of technology, cost-push and monetary shocks that

allow the model to exactly reproduce the time-series paths of inflation, output growth and

the interest rate. Even though the shocks were not chosen to match the path of the fraction

of price changes, the model reproduces it well (see Figure D.8).

The left panel of Figure 14 plots the path for the slope of the Phillips curve, Kt, predicted

by the model. As in the baseline model, the slope fluctuates considerably over time: from

0.02 in the 1990s to 0.2 in the 1970s and 1980s. Once again, the inflation accelerator is

responsible for the bulk of these fluctuations.

In the right panel of Figure 14, we isolate the contribution of each shock to the slope of

the Phillips curve by subjecting the economy to one shock at a time. The figure shows that

monetary policy shocks are primarily responsible for the increase in the slope of the Phillips

curve in periods of high inflation. Notably, the model features important non-linearities from

the endogenously increasing fraction of price changes in the 1970s and 1980s: the cumulative

increase in the slope of the Phillips curve predicted by each of the three shocks in isolation

is much smaller than when the economy is subject to all three shocks at once.24

24In Appendix D, we provide a similar decomposition for inflation.
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Figure 14: Slope of the Phillips Curve, Model with Multiple Aggregate Shocks
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7 Conclusions

A widely documented fact is that the fraction of price changes increases in periods of high

inflation. We developed a tractable sticky price model in which the fraction of price changes

varies endogenously over time and, as in the data, increases in times of high inflation.

Tractability stems from assuming that firms sell a continuum of products and choose how

many, but not which, prices to adjust each period. This eliminates the need to keep track of

the price distribution, so our model admits exact aggregation and reduces to a one-equation

extension of the Calvo model. The endogenous response of the fraction of price changes to

shocks implies a powerful feedback loop between inflation and the fraction of price changes,

which we refer to as the inflation accelerator. One one hand, an increase in the fraction

of price changes increases inflation, more so the higher is inflation to begin with. On the

other hand, a increase in inflation increases the benefits to adjusting prices and thus further

increases the fraction of price changes.

When applied to the post-war U.S. time-series data, the model predicts that the slope of

the Phillips curve fluctuates considerably over time, ranging from 0.02 in the 1990s to 0.12

in the 1970s and 1980s. The inflation accelerator is responsible for the bulk of this increase.

Our findings imply that the tradeoff between inflation and output stabilization is also time-

varying: reducing inflation from 10% to 9% is a lot less costly than reducing it from 3% to

2%. Because our model is highly tractable, it can be relatively easily extended to incorporate

richer sources of aggregate and sectoral shocks, introduce additional frictions and be used in

empirical and policy analysis.
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Appendix
For Online Publication

A Detailed Derivations

Here we provide detailed derivations of the main results discussed in text.

A.1 Steady State

We start by characterizing how the key equilibrium variables depend on π = exp (µ) in the
non-stochastic steady state. In steady state, the equilibrium conditions are(

p∗

p

)1−θ

=
1− (1− n) πθ−1

n
, (22)

x− θ
η =

n
(

p∗

p

)− θ
η

1− (1− n) π
θ
η

, (23)

(
p∗

p

)1+θ( 1
η
−1)

=
1

η

b2
b1
, (24)

b1 =
1

1− β (1− n) πθ−1
, (25)

b2 =
p−

1
η

1− β (1− n) π
θ
η

, (26)

ξ (n− n̄) = b1

((
p∗

p

)1−θ

− πθ−1 − τ
b2
b1

((
p∗

p

)− θ
η

− x− θ
ηπ

θ
η

))
. (27)

We first derive an expression for p and x as a function of n and π. Combining equations (24),
(25) and (26) implies that(

p∗

p

)1+θ( 1
η
−1)

=
1

η

1− β (1− n) πθ−1

1− β (1− n) π
θ
η

p−
1
η . (28)

Using equation (22) and p = 1/y, we have that the price level and output satisfy

p−
1
η = y

1
η = η

1− β (1− n) π
θ
η

1− β (1− n) πθ−1

(
n

1− (1− n) πθ−1

) 1+θ( 1
η−1)

θ−1

. (29)

To find the losses from misallocation, combine equations (22) and (23) and write

x− θ
η =

n

1− (1− n) π
θ
η

(
1− (1− n) πθ−1

n

) 1
η

θ
θ−1

,

1



which implies

xθ =

(
1− (1− n) π

θ
η

n

)η (
1− (1− n)πθ−1

n

)− θ
θ−1

.

To find n we use equation (28), which can be rearranged as

ξ (n− n̄) =
1

1− β (1− n) πθ−1

(
(1− τη)

(
p∗

p

)1−θ

− πθ−1 + τη

(
p∗

p

)1+θ( 1
η
−1)

x− θ
ηπ

θ
η

)
,

or, using equations (22) and (23),

ξ (n− n̄) =
1

1− β (1− n) πθ−1

(
(1− τη)

1− (1− n)πθ−1

n
− πθ−1 + τη

1− (1− n) πθ−1

n

nπ
θ
η

1− (1− n) π
θ
η

)
.

Since
1− (1− n) πθ−1

n
− πθ−1 =

1− πθ−1

n
,

this expression simplifies to

ξ (n− n̄) =
1

1− β (1− n) πθ−1

1

n

(
1− πθ−1 − τη

1− (1− n) πθ−1

1− (1− n) π
θ
η

(
1− π

θ
η

))
.

A.2 Log-Linear Approximation Around the Steady State

Recall that the system is

1 = nt

(
p∗t
pt

)1−θ

+ (1− nt) π
θ−1
t (30)

x
− θ

η

t = nt

(
p∗t
pt

)− θ
η

+ (1− nt) (xt−1)
− θ

η π
θ
η

t (31)

ξ (nt − n̄) = b1t

(
(1− τη)

(
p∗t
pt

)1−θ

− (πt)
θ−1 + τη

(
p∗t
pt

)1+θ( 1
η
−1)

(xt−1)
− θ

η π
θ
η

t

)
(32)

b1t = 1 + βEt (1− nt+1) (πt+1)
θ−1 b1t+1 (33)

b2t = p
− 1

η

t + βEt (1− nt+1) (πt+1)
θ
η b2t+1 (34)(

p∗t
pt

)
1+θ( 1

η
−1) =

1

η

b2t
b1t

(35)

πt = π
pt
pt−1

exp (εt) (36)

We next log-linearize all these equations. We use hats to denote the log-deviation of
variables from their non-stochastic steady state levels.
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A.2.1 Price Index

Log-linearizing equation (30) gives

π̂t =
1

(1− n) πθ−1

πθ−1 − 1

θ − 1︸ ︷︷ ︸
M

n̂t +
1− (1− n) πθ−1

(1− n) πθ−1︸ ︷︷ ︸
N

(p̂∗t − p̂t) (37)

A.2.2 Fraction of Price Changes

Log-linearizing equation (32) we have

ξnn̂t = ξ (n− n̄) b̂1t +
1

1− β (1− n)πθ−1

(
(1− τη)

1− (1− n) πθ−1

n
(1− θ) (p̂∗t − p̂t)− πθ−1 (θ − 1) π̂t

)

+
1

1− β (1− n) πθ−1
τη

1− (1− n) πθ−1

1− (1− n) π
θ
η

π
θ
η

((
1 + θ

(
1

η
− 1

))
(p̂∗t − pt)−

θ

η
x̂t−1 +

θ

η
π̂t

)
or, equivalently,

n̂t =
n− n̄

n
b̂1t +

1

ξn

1

1− β (1− n) πθ−1

(
τθ

1− (1− n)πθ−1

1− (1− n) π
θ
η

π
θ
η + πθ−1 (1− θ)

)
︸ ︷︷ ︸

A

π̂t

+
1

ξn

1− (1− n) πθ−1

1− β (1− n)πθ−1

(
(1− τη)

1

n
(1− θ) + τη

π
θ
η

1− (1− n)π
θ
η

(
1 + θ

(
1

η
− 1

)))
︸ ︷︷ ︸

B

(p̂∗t − p̂t) +

− 1

ξn

1

1− β (1− n)πθ−1
τθ

1− (1− n) πθ−1

1− (1− n) π
θ
η

π
θ
η︸ ︷︷ ︸

C

x̂t−1 (38)

Since τθ = θ − 1, we can simply the expression for A to

A =
θ − 1

ξn

1

1− β (1− n) πθ−1

π
θ
η − πθ−1

1− (1− n) π
θ
η

,

which is zero when π = 1 and is increasing in π. Thus, not only is inflation more responsive
to changes in the fraction of price changes in economies with higher trend inflation, but the
fraction of price changes is itself more sensitive to inflation when trend inflation is higher.

Similarly, we can simplify the expression for B to

B = (1− τη)
θ − 1

ξn

1− (1− n) πθ−1

1− β (1− n) πθ−1

1

n

π
θ
η − 1

1− (1− n) π
θ
η

,

which is also zero when π = 1 and is increasing with π. Finally,

C =
θ − 1

ξn

1− (1− n) πθ−1

1− β (1− n) πθ−1

π
θ
η

1− (1− n) π
θ
η

.
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A.2.3 Optimal Reset Price

Log-linearizing equations (33)-(35) and rearranging implies

p̂∗t − p̂t = − 1

1+θ( 1
η
−1)

1
η

(
1− β (1− n) π

θ
η

)
p̂t +

1

1+θ( 1
η
−1)

β (1− n)
(

θ
η
π

θ
η − (θ − 1) πθ−1

)
Etπ̂t+1

+β (1− n) π
θ
ηEt

(
p̂∗t+1 − p̂t+1

)
+ 1

1+θ( 1
η
−1)

β
(
π

θ
η − πθ−1

)
Et

(
(1− n) b̂1t+1 − nn̂t+1

)
(39)

A.2.4 Losses from Misallocation

Log-linearizing equation (31) we have

x̂t =
(
1− (1− n) π

θ
η

)
(p̂∗t − p̂t)−

η

θ

(
1− π

θ
η

)
n̂t + (1− n)π

θ
η (x̂t−1 − π̂t)

A.2.5 Equation for b1t

Log-linearizing equation (33) we have

b̂1t = β (1− n) πθ−1 (θ − 1)Etπ̂t+1 + β (1− n)πθ−1Etb̂1t+1 − βnπθ−1Etn̂t+1

A.2.6 Slope of Phillips Curve

Combining equations (37) and (38) implies

π̂t =
MB +N
1−MA

(p̂∗t − p̂t)−
MC

1−MA
x̂t−1 +

M
1−MA

n− n̄

n
b̂1t

To derive an expression for inflation, we multiply both sides of equation (39) by MB+N
1−MA and

add − MC
1−MAxt−1 +

M
1−MA

n−n̄
n

b̂1t. Then, the LHS of equation (39) is equal to π̂t. Adding

and subtracting β (1− n) π
θ
η

(
− MC

1−MA x̂t +
M

1−MA
n−n̄
n

Etb̂1t+1

)
to the RHS of (39) to express

Et

(
p̂∗t+1 − p̂t+1

)
as a function of expected inflation and rearranging, implies that

π̂t = Km̂ct + β (1− n)

 θ
η
π

θ
η − (θ − 1) πθ−1

1 + θ
(

1
η
− 1
) MB +N

1−MA
+ π

θ
η

Etπ̂t+1+

+ β (1− n)

 π
θ
η − πθ−1

1 + θ
(

1
η
− 1
)MB +N
1−MA

− π
θ
η

M
1−MA

n− n̄

n

Etb̂1t+1

− βn
π

θ
η − πθ−1

1 + θ
(

1
η
− 1
)MB +N
1−MA

Etn̂t+1

+ β (1− n) π
θ
η

MC
1−MA

x̂t −
MC

1−MA
x̂t−1 +

M
1−MA

n− n̄

n
b̂1t,

where we used that m̂ct =
(
− 1

η
p̂t

)
.
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The slope of the Phillips curve is

K =
1

1 + θ
(

1
η
− 1
) (1− β (1− n) π

θ
η

)MB +N
1−MA

.

A.3 Log-Linear Approximation Around Each Point in Time

We next log-linearized the model around each point in time. To do this we consider the
impact of an additional monetary shock ε̃t which changes the money growth rate to

µ̃t = µt + ε̃t.

We let tildes denote the value of the equilibrium variables following this additional shock and
hat denote the log-difference between the tilde equilbrium variable and the original one, e.g.
π̂t = log π̃t − log πt. The equilibrium of the model can then be described by the system of
equations (30)-(36), where each equilibrium variable is replaced by its tilde counterpart. In
what follows, we log-linearize this new system, but refer to the original equations for brevity.

A.3.1 Price Index

Log-linearizing equation (30) and using

nt

(
p∗t
pt

)1−θ

= 1− (1− nt) π
θ−1
t

implies

π̂t =
1

(1− nt) π
θ−1
t

πθ−1
t − 1

θ − 1︸ ︷︷ ︸
Mt

n̂t +
1− (1− nt) π

θ−1
t

(1− nt) π
θ−1
t︸ ︷︷ ︸

Nt

(p̂∗t − p̂t) .

A.3.2 Fraction of Price Changes

Log-linearizing (32) implies

ξntn̂t = ξ (nt − n̄) b̂1t + b1t (1− τη)

(
p∗t
pt

)1−θ

(1− θ) (p̂∗t − p̂t)− b1tπ
θ−1
t (θ − 1) π̂t+

+ b1tτη

(
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η

((
1 + θ

(
1

η
− 1

))
(p̂∗t − p̂t) +

θ

η
π̂t −

θ

η
x̂t−1

)
,
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which can be rearranged as

n̂t =
nt − n̄

nt

b̂1t +
θ − 1

ξnt

b1t

((
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η − πθ−1
t

)
︸ ︷︷ ︸

At

π̂t+

+
b1t
ξnt

(
(1− τη)

(
p∗t
pt

)1−θ

(1− θ) + τη

(
1 + θ

(
1

η
− 1

))(
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η

)
︸ ︷︷ ︸

Bt

(p̂∗t − p̂t)

− (θ − 1)
b1t
ξnt

(
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η︸ ︷︷ ︸
Ct

x̂t−1.

Using

τη

(
1 + θ

(
1

η
− 1

))
= (θ − 1) (1− τη)

allows us to write

Bt = (1− τη) (θ − 1)
b1t
ξnt

((
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η −
(
p∗t
pt

)1−θ
)
.

A.3.3 Optimal Reset Price

The log-linearized versions of equations (33)-(35) are

b1tb̂1t = βEt (1− nt+1) (πt+1)
θ−1 b1t+1

(
(θ − 1) π̂t+1 + b̂1t+1

)
− βEtnt+1 (πt+1)

θ−1 b1t+1n̂t+1

b2tb̂2t = − (pt)
− 1

η
1

η
p̂t + βEt (1− nt+1) (πt+1)

θ
η b2t+1

(
θ

η
π̂t+1 + b̂2t+1

)
− βEtnt+1 (πt+1)

θ
η b2t+1n̂t+1

and

p̂∗t − p̂t =
1

1 + θ
(

1
η
− 1
) (b̂2t − b̂1t

)
.

Because we consider a one-time unanticipated shock ε̃t, the resulting transition, that is,
the evolution of variables involving hats is deterministic, so we can write

b̂1t = β

(
Et (1− nt+1) (πt+1)

θ−1 b1t+1

b1t

)(
(θ − 1) π̂t+1 + b̂1t+1

)
− β

(
Etnt+1 (πt+1)

θ−1 b1t+1

b1t

)
n̂t+1

b̂2t =
(pt)

− 1
η

b2t

(
−1

η
p̂t

)
+ β

(
Et (1− nt+1) (πt+1)

θ
η
b2t+1

b2t

)(
θ

η
π̂t+1 + b̂2t+1

)
− β

(
Etnt+1 (πt+1)

θ
η
b2t+1

b2t

)
n̂t+1.
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Subtracting the first expression from the second and multiplying by 1

1+θ( 1
η
−1)

gives

p̂∗t − p̂t =
1

1 + θ
(

1
η
− 1
) (pt)− 1

η

b2t
m̂ct +

+
1

1 + θ
(

1
η
− 1
)β Et (1− nt+1)

(
θ

η
(πt+1)

θ
η
b2t+1

b2t
− (θ − 1) (πt+1)

θ−1 b1t+1

b1t

)
︸ ︷︷ ︸

Ft

π̂t+1 +

+ β Et (1− nt+1) (πt+1)
θ
η
b2t+1

b2t︸ ︷︷ ︸
Gt

(
p̂∗t+1 − p̂t+1

)

+
1

1 + θ
(

1
η
− 1
)β Et (1− nt+1)

(
(πt+1)

θ
η
b2t+1

b2t
− (πt+1)

θ−1 b1t+1

b1t

)
︸ ︷︷ ︸

Ht

b̂1t+1

− 1

1 + θ
(

1
η
− 1
)β Etnt+1

(
(πt+1)

θ
η
b2t+1

b2t
− (πt+1)

θ−1 b1t+1

b1t

)
︸ ︷︷ ︸

It

n̂t+1

A.3.4 Losses from Misallocation

Log-linearizing equation (31) implies

−θ

η
x
− θ

η

t x̂t = nt

(
p∗t
pt

)− θ
η
(
n̂t −

θ

η
(p̂∗t − p̂t)

)
+(1− nt) (xt−1)

− θ
η π

θ
η

t

(
−θ

η
x̂t−1 +

θ

η
π̂t

)
−nt (xt−1)

− θ
η π

θ
η

t n̂t,

which can be rearranged as

x̂t = ntx
θ
η

t

(
p∗t
pt

)− θ
η

(p̂∗t − p̂t)+
η

θ
nt

((
xt

xt−1

) θ
η

π
θ
η

t − x
θ
η

t

(
p∗t
pt

)− θ
η

)
n̂t+(1− nt)

(
xt

xt−1

) θ
η

π
θ
η

t (x̂t−1 − π̂t) .

A.3.5 Equation for b1t

Lastly, log-linearizing equation (33) gives

b̂1t = β Et (1− nt+1) (πt+1)
θ−1 b1t+1

b1t︸ ︷︷ ︸
Dt

(
(θ − 1) π̂t+1 + b̂1t+1

)
− β Etnt+1 (πt+1)

θ−1 b1t+1

b1t︸ ︷︷ ︸
Et

n̂t+1.

A.3.6 Phillips Curve

Following the same steps as in Section A.2.6 allows us to write the Phillips curve
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π̂t =
1

1 + θ
(

1
η
− 1
) (pt)− 1

η

b2t

MtBt +Nt

1−MtAt

m̂ct +
MtBt+Nt

1−MtAt

Mt+1Bt+1+Nt+1

1−Mt+1At+1

βEt (1− nt+1) (πt+1)
θ
η
b2t+1

b2t
π̂t+1

+
1

1 + θ
(

1
η
− 1
)MtBt +Nt

1−MtAt

βEt (1− nt+1)

(
θ

η
(πt+1)

θ
η
b2t+1

b2t
− (θ − 1) (πt+1)

θ−1 b1t+1

b1t

)
π̂t+1 +

+
1

1 + θ
(

1
η
− 1
)MtBt +Nt

1−MtAt

βEt (1− nt+1)

(
(πt+1)

θ
η
b2t+1

b2t
− (πt+1)

θ−1 b1t+1

b1t

)
b̂1t+1

− 1

1 + θ
(

1
η
− 1
)MtBt +Nt

1−MtAt

βEtnt+1

(
(πt+1)

θ
η
b2t+1

b2t
− (πt+1)

θ−1 b1t+1

b1t

)
n̂t+1

− MtCt
1−MtAt

x̂t−1 +
Mt

1−MtAt

nt − n̄

nt

b̂1t

−
MtBt+Nt

1−MtAt

Mt+1Bt+1+Nt+1

1−Mt+1At+1

βEt (1− nt+1) (πt+1)
θ
η
b2t+1

b2t

(
− Mt+1Ct+1

1−Mt+1At+1

x̂t +
Mt+1

1−Mt+1At+1

nt+1 − n̄

nt+1

b̂1t+1

)
,

so the slope of the Phillips curve is

Kt =
1

1 + θ
(

1
η
− 1
) (pt)− 1

η

b2t

MtBt +Nt

1−MtAt

.

B Solution Method

We describe our global solution method and show that it produces dynamics that are similar
to those obtained by solving the model using a third-order perturbation.

To solve the model globally, we use Chebyshev polynomials to approximate all equilibrium
objects. Our baseline model has two state variables, last period’s misallocation, xt−1, as well
as last period’s nominal price level deflated by this period’s nominal spending,

st =
Pt−1

Mt

,

which evolves according to

st+1 =
pt

exp(µ+ εt)
,

where recall that pt = Pt/Mt is the nominal price level detrended by nominal spending.
Letting Φ(st, xt−1) denote a row vector collecting the basis functions (tensor product of
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univariate Chebyshev polynomials) and γi a column vector of coefficients characterizing a
particular variable, say, π, we have

π(st, xt−1) = Φ(st, xt−1)× γπ.

We used 7 polynomials in the st dimension and 6 in the xt−1 dimension, so γi is 42× 1 and
Φ(st, xt−1) is 1× 42.

We use a simulation-based approach to ensure accuracy in the region of the state-space
most often visited in equilibrium and pin down the coefficients γi by minimizing the errors
in the equilibrium conditions at all points that the economy visits in response to a his-
tory of 10,000 monetary shocks.25 We use a time-iteration algorithm. For a given guess
of the coefficients γi we calculate all the equilibrium variables for every date using a 5-node
Gaussian quadrature to compute expectations and update the coefficients using least-squares
projection.

Table B.1 reports several statistics that describe the accuracy of the solution method.
In Panel A we report the mean and maximum absolute error in the equilibrium conditions,
expressed relative to the value of each respective variable. The first column shows that
the projection method produces small errors in the equilibrium conditions. The second
column gauges the accuracy of a third-order perturbation: the average error produced by
this alternative approach is relatively small, 0.11% of the value of the respective variable, but
occasionally the perturbation approach produces large errors, with a maximum value of 35%.
Importantly, as Panel B of the table illustrates, both approaches imply similar values for the
moments we targeted in calibration, suggesting that the occasionally large errors implied by
the perturbation approach do not significantly affect the model’s key predictions.

Figure B.1 plots a time-series of inflation and the fraction of price changes produced by
the projection and perturbation-based solution methods for the same history of monetary
policy shocks. This figure includes the period in which the perturbation method produces the
largest error of 35%, which occurs during the disinflation episode in period 37. The inflation
rate implied by the projection method is equal to -12.3% at this date, while that implied
by the perturbation method is equal to -11.3%. As the right panel of the figure shows, the
perturbation method overstates the fraction of firms that change prices on this date: 0.45 vs.
0.34. With the exception of this episode, the two approaches produce very similar values for
inflation and the fraction of price changes, suggesting that the perturbation method provides
a fairly accurate approximation.

C Additional Figures

C.1 Steady State Outcomes and Trend Inflation

Figure C.2 shows the implications of endogenizing the fraction of price changes for output
and productivity. The steady-state values of output and productivity can be expressed solely
as a function of trend inflation and the fraction of price changes. Specifically, output is

25Because ours is a relatively simple problem which converges fast, we do not use the clustering approach
suggested by Maliar and Maliar (2015).
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Table B.1: Accuracy of Solution

A. Errors in Equilibrium Conditions

projection perturbation

mean abs. error 3.7× 10−6 1.1× 10−3

max abs. error 2.7× 10−3 3.5× 10−1

B. Targeted Moments

projection perturbation

mean inflation 3.517 3.517
s.d. inflation 2.739 2.727
mean frequency 0.297 0.296
slope of nt on |πt| 0.016 0.016

Figure B.1: Simulated Time-Series Paths
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determined by

y
1
η = η

1− β (1− n)π
θ
η

1− β (1− n) πθ−1

(
n

1− (1− n) πθ−1

) 1+θ( 1
η−1)

θ−1

,

and productivity xθ is given by

xθ =

(
1− (1− n) π

θ
η

n

)η (
1− (1− n)πθ−1

n

)− θ
θ−1

.

Absent trend inflation, output is equal to y = ηη and productivity is equal to xθ = 1 and
are therefore both equal to their flexible-price counterparts. The middle and right panels of
Figure C.2 plot output and productivity as a function of trend inflation. For reference, we
also plot steady-state outcomes in an otherwise identical economy in which the fraction of
price changes is constant and equal to n̄. The figure shows that both output and productivity
generally decrease with trend inflation26, but much less in our model with an endogenous
fraction of price changes, a result reminiscent of Devereux and Yetman (2002), Bakhshi et
al. (2007) and the menu cost model of Blanco (2021).

Figure C.2: Steady State Outcomes
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Notes: The figure traces out how variables adjust in steady state in response to changes in the parameter

µ that determines steady-state inflation. The x-axis reports the annualized value of steady-state inflation π.

We report the quarterly fraction of price changes. The level of output is normalized to 1 at zero steady state

inflation.

26As Ascari and Ropele (2009) point out, in the Calvo model the relationship between output and trend
inflation is hump-shaped at low rates of inflation. This is also the case in our model: output peaks at a level
of approximately 0.02% above its flexible-price (zero trend inflation) level when inflation is equal to 0.5%,
but this effect is too small to be visible in the figure.
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C.2 Raw Inflation Data

Figure C.3 contrasts the raw quarterly annualized inflation series with its counterpart smoothed
using a centered 3-quarter moving average. We target the smoothed series in Section 5. Fig-
ure C.4 reports the slope of the Phillips curve we obtain when targeting the raw inflation
data. Notice that the slope spikes to a level above 0.2 for one quarter in 1980, but is otherwise
comparable to the magnitudes we report in the main text.

Figure C.3: Inflation Data
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Notes: The gray bars indicate NBER recessions.

Figure C.4: Slope of the Phillips Curve, Target Raw Inflation Data
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Figure C.5: Inflation Decomposition
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C.3 Extensive Margin Decomposition of Inflation

To illustrate the role of the extensive margin of price changes in explaining inflation fluctu-
ations, we follow Klenow and Kryvtsov (2008) and decompose inflation

πt = ∆tnt

into two components: ∆t, the average price change conditional on adjustment, and nt, the
fraction of price changes. We isolate the role of the intensive margin by computing a coun-
terfactual inflation series

πi
t = ∆tn̄,

where we set the fraction of price changes equal to its time series average n̄. We isolate the
role of the extensive margin by computing a counterfactual inflation series

πe
t = ∆̄nt,

where we set the average size of price changes equal to its time series average ∆̄. Figure C.5
plots this decomposition. As Klenow and Kryvtsov (2008) point out, the intensive margin of
price changes accounts for the bulk of the fluctuations in inflation, except for periods of high
inflation, when the extensive margin plays a bigger role.

In Figure C.6, we repeat this decomposition with data simulated from our model, which
recall matches the inflation time series by construction. As the figure shows, out model
reproduces both the intensive and extensive margins well.

Our results may appear to contradict those of Montag and Villar (2023), who argued
that the extensive margin of price changes played a minor role in the post-Covid increase in
inflation. We show that their conclusion follows from the choice of the value at which to fix
the fraction of price changes and the average size of price changes in calculating counterfactual
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Figure C.6: Inflation Decomposition, Data vs. Model

1960 1980 2000 2020
-5

0

5

10

15
:i

t

data
our model

1960 1980 2000 2020
-5

0

5

10

15
:e

t

data
our model

Notes: The gray bars indicate NBER recessions.

inflation series πi
t and πe

t . Specifically, they set n̄ and ∆̄ equal to the value of the fraction of
price changes and the average size of price changes in January 2020. Because of seasonality,
January is a month with an unusually large fraction of price change and an unusually low
average size of price changes, biasing the decomposition towards finding no role for the
extensive margin. We repeat the decomposition above using their approach and confirm
their results in Figure C.7.

D Robustness

D.1 A Model with Idiosyncratic Shocks

In this section, we derive expressions that characterize moments of the distribution of price

changes. Let p̂ikt := log
(

Pt

ziktPikt

)
be the inverse of the log-price gap andMt(q) =

∫ 1

0

∫ 1

0
p̂qiktdkdi

be the q-th moment of the distribution in period t. We can then recursively express Mt(1)
and Mt(2) as

Mt(1) = −nt log(p
∗
t/pt) + (1− nt)[log(πt) +Mt−1(1)],

Mt(2) = nt log(p
∗
t/pt)

2 + (1− nt)
[
log(πt)

2 + σ2
z + 2 log(πt)Mt−1(1) +Mt−1(2)

]
.

Let Et[∆pm] denote them-th moment of the log of price changes in period t. By definition,
and under the assumption of random adjustment, it satisfies

Et[∆pm] =

∫ 1

0

∫ 1

0

[
log

(
P ∗
ikt

Pikt−1

)]m
dkdi,

where P ∗
ikt is the optimal nominal reset price and Pikt−1 is the nominal price in the previous
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Figure C.7: Inflation Decomposition, Montag and Villar
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period. It is straightforward to show that

Et[∆p] = log(p∗t/pt) + log(πt) +Mt−1(1),

Et[∆p2] = log(p∗t/ptπt)
2 + σ2

z + 2 log(p∗t/ptπt)Mt−1(1) +Mt−1(2),

Stdt[∆p] =
√

Et[∆p2]− Et[∆p]2.

To provide intuition for the micro-price statistics, notice that in the steady state, M(1) =
− log(p∗/p) + 1−n

n
log(π). Since E[∆p] = log(p∗/p) + log(π) +M(1), we obtain

E[∆p] = log(p∗/p) + log(π) +M(1)

= log(p∗/p) + log(π)− log(p∗/p) +
1− n

n
log(π)

=
log(π)

n
.

Thus, inflation is equal to the fraction of price changes times the size of price changes.
Similarly, assuming zero inflation in the steady state (log(π) = 0), we find that M(2) =
− log(p∗/p)2 + 1−n

n
σ2
z . Since E[∆p2] = − log(p∗/p)2 + σ2

z +Mt−1(2), we obtain

E[∆p2] = log(p∗/p)2 + σ2
z + 2 log(p∗/p)2 − log(p∗/p)2 +

1− n

n
σ2
z

=
σ2
z

n
+ 2 log(p∗/p)2

≈ σ2
z

n
.

Thus, the variance of idiosyncratic shocks is equal to the fraction of price changes times
the variance of price changes, plus a small correction term related to consumer substitution
effects.
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D.2 A Model with Multiple Aggregate Shocks

In this section, we describe how we estimate the model with multiple aggregate shocks in
Section 6.4. We assume that each of the three aggregate shocks, zt, τt and ut, follow an
AR(1) process with persistence ρz, ρτ and ρu, and standard deviation of innovations σz, στ

and σu

log zt = (1− ρz) log z + ρz log zt−1 + σzϵzt

log τt = (1− ρτ ) log τ + ρτ log τt−1 + στϵτt

log ut = (1− ρu) log u+ ρu log ut−1 + σuϵut

where z = u = 1, and τ = 1− 1/θ.
To parameterize this model, we first set a number of parameters to values typical in the

literature. We then conduct a Bayesian likelihood estimation to estimate the variance and
standard deviations of the shock processes, as well as the parameter ξ determining the cost
of changing prices and the fraction of free price changes n̄.

D.2.1 Data

We use quarterly data on inflation, output and the nominal federal funds rate from 1962:Q1
to 2023:Q4. As in the baseline, we use the CPI price index excluding shelter for inflation.
We use real gross domestic product for output growth, and the fed funds rate for the nominal
interest rate. For periods when the zero lower bound binds, we substitute the fed funds rate
with the shadow interest rate calculated by Wu and Xia (2016). Since there is no trend
growth in output in our model, we de-trend output in the data using a linear trend. We also
use data on the fraction of price changes from Montag and Villar (2023) and Nakamura et
al. (2018) that we discussed in the main text.

D.2.2 Solution

Let yt be a vector of observables, st a vector of hidden state variables and ϑ a vector of
parameters. The state and measurement equations are

st = Φ(st−1, ϵt, ϑ) (40)

yt = Htst + νt (41)

where st is the vector of state variables, yt is the vector of observed variables, ϑ is the vector
of parameters, and ϵt and νt are shocks, with ϵt the state innovation with density N(0,Ω),
and where νt is a measurement innovation with density N(0, R).

We use the third-order approximation for equation (40) that we solve using Dynare. Recall
that in Appendix B we showed the third-order approximation is accurate when compared to
the global solution. Because we solve the model with a third-order approximation, we use a
particle filter to compute the likelihood of the model. Finally, because the fraction of price
changes is not available for all time periods of our sample, we conduct a mixed-frequency
estimation, in which the set of observables in our measurement equation (41) varies over
time, reflected in the time-varying matrix Ht.
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We discuss the steps of the estimation below. Our goal is to characterize the posterior
distribution of ϑ. The prior is p(ϑ). By Bayes rule, the posterior is proportional to the
likelihood and the prior

p(ϑ | yT ) ∝ p(yT | ϑ)p(ϑ)

where p(yT | ϑ) is the likelihood. By the chain rule, we can write

p(yT | ϑ) =
T∏

s=0

p(ys | ys−1, . . . , y0, ϑ)

= p(y0, ϑ)
T∏

s=1

p(ys | ys−1, ϑ) (42)

where p(ys | ys−1, ϑ) is the one-step ahead predictive density, and where the last line follows
from our assumption of i.i.d. normal errors.

Equation (42) is the prediction error decomposition. We want the terms in the prediction
error decomposition. The filter we use to compute these terms depends on the functional
forms of Φ and Ψ in the state-space representation. Because Φ and Ψ are non-linear functions,
we cannot use the Kalman filter, so we use a particle filter instead (see Gust et al., 2017).

Particle Filter. The particle filter simulates many paths (particles) of the state of the
system through the nonlinear state-space (40), and weights those particles according to how
well they fit the data. This weight is the likelihood of the observed measurement given the
state represented by the particle. Each period, we resample the particles to generate a new
set of particles; particles with higher likelihood weights are more likely to be chosen. This
focuses the particle set on regions of higher likelihood.

To compute the likelihood of the model we want the elements of the one-step ahead
predictive density

p(yt | yt−1, ϑ) =

∫
p(yt | st, ϑ)p(st | yt−1, ϑ) dst.

We know the distribution of the measuerment error r(ε) and H(•), so we can evaluate

p(yt | st, ϑ) = |JH | • r
[
H−1(yt, st, ϑ)

]
,

where JH is the Jacobian.
We need to evaluate the posterior predictive density

p(st | yt−1, ϑ) =

∫
p(st | st−1, ϑ)p(st−1 | yt−1, ϑ) dst−1.

Then we update using the data yt to get p(st | yt, ϑ)

p(st | yt, ϑ) =
p(yt | st, ϑ)p(st | yt−1, ϑ)

p(yt | yt−1, ϑ)
.

This is computationally challenging, because we map probability densities into probabil-
ities densities, so we use the Monte Carlo bootstrap filter of Gordon et al. (1993).
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Monte Carlo Bootstrap Particle Filter Algorithm. The algorithm recursively
produces discrete approximations to the distribution of states st conditional on time t − 1
information (forecasting distribution) as well as time t information (updated distribution).
The algorithm takes existing particles sjt−1, simulating forward using the state equation to

obtain particles sjt , and then reweights those particles based on the new data. We can
compute the likelihood as a byproduct of computing those weights.

The algorithm is as follows.

1. At t = 0 initialize particles by sampling from the prior p(x0).

2. For each period t = 1, . . . , T :

(a) Map sample from p(st−1 | yt−1, ϑ) into sample from p(st | yt−1, ϑ).

p(st | yt−1) =

∫
p(st | st−1, ϑ)p(st−1 | yt−1, ϑ) dst−1

Simulate p(st | yt−1, ϑ) by sampling in parts:

i. Draw xi,t−1 from p(st−1 | yt−1, ϑ).

ii. Draw xit from p(st | xi,t−1, ϑ). In this step, we iterate on the state equation.

iii. Marginalize with respect to st−1 by discarding xi,t−1.

(b) For each draw i, evaluate p(yt | xit, ϑ) using the measurement equation:

p(yt | st, ϑ) = |JH | • r
[
H−1(yt, st, ϑ)

]
,

where JH is the Jacobian.

(c) Use Monte-Carlo integration to evaluate p(yt | yt−1, ϑ):

p(yt | yt−1, ϑ) ≈ 1

N

∑
i

p(yt | xit, ϑ).

(d) Resample. Map sample from p(st | yt−1, ϑ) into sample from p(st | yt, ϑ).
i. With draws p(yt | xit, ϑ) from p(st | yt−1, ϑ), normalize so that probability

weights sum to 1.

ii. Resample the particles xit using the new probability weights, using multino-
mial resampling.

iii. This gives an evenly weighted sample from p(st | yt, ϑ).

3. The approximated log-likelihood is given by

log p(yT | ϑ) =
T∑
t=1

log p(y | yt−1, ϑ).
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Degeneracy. In practice, an important consideration is that the particles do not de-
generate, in that the distribution of likelihood weights across the particles is highly uneven.
This occurs when the forecast distribution may be highly mismatched with the updated
distribution. A consequence of this is that the likelihood function can become imprecisely
estimated. In our application in this paper, to handle cases like these, we assign zero like-
lihood weight to period in which one particle forms at least 50%. In pratice, this occurs in
quarters in which there are large swings in the data, such as 2009:Q1 and 2020:Q2.

Parallelization. The particle filter can be computationally intensive, since we may
need to work with a very large set of particles to obtain a low-variance estimate of the
likelihood (an estimate of the likelihood that does not vary much with different draws of
particles). In Matlab, we use single program multiple data (spmd) blocks over the particles
within the computation of the likelihood, i.e. in step 2 of the algorithm described above.
This yields substantial speed gains.

Metropolis Hastings Algorithm. The final step is to summarize the procedure that
we use to generate the Markov Chain that yields the posterior distribution of ϑ. It has a
single block, corresponding to parameters ϑ. The algorithm is as follows.

Let N be the length of the chain. For j = 1, . . . , N ,

1. Draw a new proposal of ϑ, denoted by ϑ̂j, from a thick-tailed proposal density centered

at ϑ̂j−1 to ensure sufficient coverage of the parameter space. In practice, we draw
random values from the Student t-distribution, and scale the draws by covariance matrix
of the Hessian implied by the posterior maximization of the linearized version of the
model.

2. The proposal ϑ̂j is accepted with probability
p(ϑ̂j |yT )

p(ϑ̂j−1|yT )
. If ϑ̂j is accepted, then set

ϑ̂j−1 = ϑ̂j. In practice, it is important to compute both p(ϑ̂j | yT ) and p(ϑ̂j−1 | yT )
within in each step j, due to the variance of the estimate of the likelihood using the
particle filter.

We use four chains of length 15,000 and discard the first quarter of the chain as a burn-in. We
choose a scaling parameter for the proposal density for the Metropolis Hastings algorithm.

D.3 Parameter Estimates

We assign the same values as in the baseline to the discount factor, demand elasticity, returns
to scale. We parameterize the Taylor rule as in Section 6.3. We set γ, the inverse of the labor
supply elasticity, equal to 2.

Table D.2 reports the parameters estimates from the Bayesian estimation. We choose
standard priors for the model’s parameters. Importantly, we use relatively diffuse priors for
the key parameter governing the cost of adjusting prices, ξ, as well as the fraction of free
price changes, n̄. We find that, at the median of the posterior distribution, the value of ξ
and n̄ are similar to those estimated in the baseline model.
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Table D.2: Parameter Estimates, Model with Multiple Aggregate Shocks

Prior Posterior

Type Mean SD Mode Median 5% 95%

σz IG 1.00 2.0 1.16 1.26 0.85 1.82
στ IG 1.00 2.0 7.23 8.84 5.69 14.29
σu IG 0.25 5.0 0.34 0.35 0.24 0.48

ρz B 0.50 0.1 0.99 0.99 0.96 1.00
ρτ B 0.50 0.1 0.74 0.70 0.53 0.83
ρu B 0.50 0.1 0.38 0.41 0.16 0.64

ξ N 0.75 0.5 1.37 1.70 1.06 2.82
n̄ N 0.23 0.1 0.23 0.23 0.21 0.25

Notes: IG = Inverse Gamma, B = Beta, N = Normal distribution.

D.4 Slope of the Phillips Curve

As in the baseline, to gauge how the Phillips curve evolves over time, we initialize the economy
in the stochastic steady state in 1962 and use the non-linear solution of the model to back out
the sequences of productivity, cost-push and monetary shocks that reproduce the observed
time series for inflation, output growth and the nominal interest rate. Figure D.8 shows these
time series. Importantly, as the bottom-right panel of the figure shows, the model reproduces
relatively well the time series for the fraction of price changes.

Figure D.9 illustrates the role of each aggregate shock for the path of inflation.
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Figure D.8: Inflation, Output Growth, Interest Rate and the Fraction of Price Changes
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Notes: The gray bars indicate NBER recessions.

Figure D.9: Decomposition of Inflation
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