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1 Introduction

The recent rise in inflation in many economies has spurred considerable interest in further

understanding the dynamics of prices. Identifying the causes of high inflation hinges critically

on the shape of the Phillips curve. Our goal in this paper is to measure how the slope of

the Phillips curve fluctuates in the U.S. macroeconomic time series. Since a key determinant

of the slope of the Phillips curve is the frequency of price changes, we use a model that

reproduces the widely documented evidence that the frequency of price changes increases in

times of high inflation.1

Though the menu cost model is a natural framework to endogenize the frequency of price

changes,2 it is difficult to use for empirical and policy analysis. This difficulty arises from the

computational challenges associated with aggregating individual decision rules in a setting

in which the state of the economy is characterized by the distribution of prices across firms.

These challenges are especially pronounced when the frequency of price changes responds to

aggregate shocks, which gives rise to important non-linearities, or in the presence of strategic

complementarities, which generate an interaction between the prices of competitors.

Our paper proposes an alternative to the menu cost model that also endogenizes the

frequency of price changes and allows it to vary over time, but, unlike the menu cost model,

is highly tractable. The main challenge in allowing the fraction of price changes to evolve

endogenously over time is that a firm’s price adjustment decision depends on how far from

the optimum its price is: firms whose prices are further from the optimum have stronger

incentives to adjust. Equilibrium outcomes are therefore a function of the entire distribution

of price changes, an infinite-dimensional object. We circumvent this challenge by assuming

that firms sell a continuum of products and choose how many, but not which, prices to adjust

in any given period, subject to an adjustment cost. Because firms cannot choose which prices

to adjust, the distribution of prices is no longer necessary to describe the incentives to adjust,

so the economy admits exact aggregation.3 We show that our model reduces to a one-equation

1See Gagnon (2009), Nakamura et al. (2018), Alvarez et al. (2018), Karadi and Reiff (2019), Montag and
Villar (2023) and Blanco et al. (2024) for evidence that the frequency of price changes increases with inflation,
as well as Hazell et al. (2022) and Fitzgerald et al. (2024) for evidence on the slope of the Phillips curve using
state-level data.

2See, for example, Barro (1972), Sheshinski and Weiss (1977), Dotsey et al. (1999), Golosov and Lucas
(2007), Gertler and Leahy (2008), Midrigan (2011), Alvarez and Lippi (2014), Alvarez et al. (2016), Alvarez
et al. (2018), Auclert et al. (2022). However, Blanco et al. (2024) show that the canonical menu cost model
has difficulties reproducing the extent to which the frequency of price changes comoves with inflation.

3In addition to the menu cost literature, Romer (1990) also endogenizes the frequency of price changes in
a Calvo model, but circumvents the curse of dimensionality by assuming that firms choose the frequency of
price changes once and for all. In that model the frequency of price changes is constant over time.
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extension of the Calvo model, with the additional equation pinning down how many prices

change in a given period.4 Our model nests the Calvo model in the limiting case when

the adjustment cost goes to infinity. More generally, up to a first-order approximation, our

model’s dynamics are identical to those of the Calvo model absent trend inflation.

Our key finding is that the slope of the Phillips curve fluctuates considerably in the U.S.

time series and increases in times of high inflation due to a feedback loop between inflation

and the frequency of price changes. On one hand, an increase in the frequency of price changes

increases inflation, more so the higher the inflation rate to begin with. On the other hand,

an increase in inflation increases the firms’ incentives to adjust prices, further increasing the

frequency of price changes. We refer to this feedback loop as the inflation accelerator and

show that it is responsible for the bulk of the steepening of the Phillips curve in periods

of high inflation. Our findings therefore suggest that reducing inflation is less costly when

inflation is high than when it is low.

We study a relatively standard New Keynesian economy in which multi-product firms

sell a continuum of goods and choose what fraction of their prices to change each period,

subject to an adjustment cost that is increasing and convex in the number of prices that the

firm adjusts. We assume decreasing returns to scale in production which introduce strategic

complementarities in price setting and dampen the slope of the Phillips curve. For clarity, we

start by assuming that monetary policy targets nominal spending, and show in an extension

that our results are robust to considering a conventional Taylor rule. Shocks to the growth

rate of nominal spending are the only source of aggregate fluctuations. Relative to the

standard Calvo model, endogenizing the frequency of price changes adds a single additional

equation that balances the marginal cost of changing prices against the marginal benefit.

The marginal benefit increases with inflation, implying that the frequency of price changes

increases with inflation. Because endogenizing the frequency of price changes introduces non-

linearities in the dynamics of output and inflation, we solve the model using global projection

methods, but show that a third-order perturbation provides an accurate approximation,

suggesting that the model can be solved using readily-available solution techniques.

We first build intuition for the workings of the model by studying impulse responses

to expansionary monetary shocks in environments with low and high trend inflation. We

show that the real effects of monetary shocks are considerably smaller in environments with

high inflation for two reasons. First, the steady-state frequency of price changes is higher

4The assumption we make is reminiscent of that in Greenwald (2018) who uses a large family construct
to endogenize refinancing decisions.
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in environments with high inflation. Second, the frequency of price changes increases in

response to shocks. Though this increase is relatively small, it has a large impact on the

price level because adjusting firms respond to the underlying trend inflation and increase

prices by large amounts, an effect reminiscent of Caplin and Spulber (1987).

We build additional intuition for the dynamics of inflation and output by deriving the

Phillips curve implied by our economy. We show that the slope of the Phillips curve is equal

to the sum of two terms, one identical to the slope in the Calvo model, which increases

mechanically with the frequency of price changes, and another which captures the inflation

accelerator. This second term increases much more rapidly with inflation and thus accounts

for the bulk of the increase in the slope of the Phillips curve in high-inflation environments.

We use our framework to characterize how the slope of the Phillips curve evolves in the

post-war U.S. time series. We do so by first identifying the sequence of monetary shocks that

allows the model to reproduce the path of inflation in the data. We then consider a log-linear

perturbation around the equilibrium point at each date and derive the slope of the Phillips

curve. We find that the slope of the Phillips curve varies considerably, ranging from 0.02

in low-inflation periods such as the 1990s to 0.20 in high-inflation periods such as the 1970s

and the 1980s. The inflation accelerator accounts for the bulk of this increase: in its absence

the higher frequency of price changes in the 1970s and 1980s would only increase the slope

of the Phillips curve to 0.05. We show that our findings are robust to eliminating strategic

complementarities and to assuming that monetary policy follows a conventional Taylor rule.

That the slope of the Phillips curve varies over time has important implications for the

tradeoff between inflation and output stabilization. We gauge how this tradeoff varies over

time by calculating a measure of the sacrifice ratio: the fall in output required to achieve a

one percentage point reduction in inflation. The sacrifice ratio varies considerably, from 1.4%

in the low-inflation period in the 1990s to 0.3% in the high-inflation periods in the 1970s and

1980s. We therefore conclude that our model implies that if inflation is high to begin with,

bringing it down requires a smaller drop in output than if inflation is low. Our model thus

rationalizes the view that reducing inflation from 10% to 9% is a lot less costly than reducing

it from 3% to 2%.

The rest of the paper proceeds as follows. Section 2 presents the model. Section 3

describes the parameterization. Section 4 analyzes the steady state of the model. Section

5 applies the framework to the time-series U.S. data. Section 6 discusses several robustness

exercises. Section 7 concludes.
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2 Model

We study an economy in which firms adjust prices infrequently. In contrast to the standard

New Keynesian model, we allow the frequency of price changes to fluctuate endogenously

over time by assuming that multi-product firms choose what fraction of their prices to adjust

in any given period. We circumvent the need to keep track of the distribution of prices

by assuming that firms choose how many, but not which, prices to change. Owing to this

assumption, our model reduces to a one-equation extension of the standard Calvo model,

with the additional equation describing how the fraction of price changes, and therefore the

slope of the Phillips curve, is pinned down each period.

For clarity, we start by assuming that monetary policy targets nominal spending, which

evolves over time according to a random walk process. Shocks to the growth rate of nominal

spending are the only source of aggregate fluctuations. We then show in the robustness

section below that assuming instead that monetary policy follows a Taylor rule does not

change our key findings.

2.1 Consumers

A representative consumer has preferences over consumption ct and hours worked ht and

maximizes life-time utility

Et

∞∑
t=0

βt (log ct − ht) ,

subject to the budget constraint

Ptct +
1

1 + it
Bt+1 = Wtht +Dt +Bt,

where Pt is the nominal price level, Bt are holdings of a risk-free bond which pays nominal

interest it, Dt are the dividends from the firms the representative consumer owns, and Wt is

the nominal wage rate.

2.2 Monetary Policy

We assume that monetary policy targets nominal spending, Mt ≡ Ptct, which follows a

random walk with drift

log
Mt+1

Mt

= µt+1 = µ+ εt+1,

where µ is the average growth rate of nominal spending and εt+1 are Gaussian innovations

with standard deviation σ. As Afrouzi and Yang (2021) point out, this specification of the
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monetary policy rule is equivalent to an interest rate rule in which the central bank assigns

the same weight to inflation and output growth.

2.3 Technology

There is a continuum of intermediate goods firms indexed by i. Each firm produces a con-

tinuum of products k with technology

yikt = (likt)
η ,

where yikt is the output of product k produced by firm i, likt is the labor used in produc-

tion and η ≤ 1 is the span-of-control parameter which, as in Burstein and Hellwig (2008),

introduces a micro-level strategic complementarity in price setting.

A perfectly competitive final goods sector aggregates the intermediate goods yikt into a

composite final good using a CES aggregator

yt =

(∫ 1

0

∫ 1

0

(yikt)
θ−1
θ dkdi

) θ
θ−1

,

where θ is the elasticity of substitution, which we assume to be the same both across products

and across firms. This implies that the demand for an individual product is

yikt =

(
Pikt

Pt

)−θ

yt, (1)

where Pikt is the price of an individual product and

Pt =

(∫ 1

0

∫ 1

0

(Pikt)
1−θ dkdi

) 1
1−θ

is the aggregate price index.

2.4 Problem of Intermediate Goods Producers

We next describe the profit maximization problem of intermediate goods producers.

Period Profits. The nominal profits of firm i from producing product k are

Piktyikt − τWtlikt,

where τ = 1− 1/θ is a subsidy that removes the markup distortion that would arise even in

the absence of price rigidities. Using the demand function (1), we can express real profits as(
Pikt

Pt

)1−θ

yt − τ
Wt

Pt

(
Pikt

Pt

)− θ
η

y
1
η

t . (2)
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Losses from Misallocation. Differences in the price of products sold by a given firm

generate losses from misallocation, reducing firm productivity. To see this, let

yit =

(∫
(yikt)

θ−1
θ dk

) θ
θ−1

denote the composite output produced firm i and let

lit =

∫
liktdk

denote the total amount of labor the firm uses. We can then derive a firm-level production

function

yit =

(
Xit

Pit

)θ

lηit,

where

Pit =

(∫
(Pikt)

1−θ dk

) 1
1−θ

(3)

denotes the price index of firm i and

Xit =

(∫
(Pikt)

− θ
η dk

)− η
θ

(4)

determines the extent of misallocation. Absent dispersion in prices, Xit/Pit = 1 and produc-

tivity is maximized. With price dispersion, Xit/Pit < 1 and productivity is reduced.

Price Adjustment Cost. We assume that the firm has a convex cost of changing prices

denominated in units of labor. This cost is increasing in the number of prices nit the firm

resets and is equal to
ξ

2
(nit − n̄)2 , if nit > n̄

and zero otherwise. Here, ξ determines the size of the adjustment cost and n̄ is the fraction

of free price changes. The key assumption we make is that although the firm can choose

how many prices to change in a given period, it cannot choose which prices to change. By

endogenizing the frequency of price changes, the model can capture the evidence that firms

are more likely to adjust prices in times of high inflation, as in menu cost models, but in a

much more tractable way. When ξ → ∞, the model collapses to the Calvo model with a

constant frequency n̄.

Our model shares similarities with that in Romer (1990) which endogenizes the frequency

of prices changes in the Calvo model.5 In Romer (1990) firms choose a once-and-for-all price

5See also Kiley (2000), Devereux and Yetman (2002) and Bakhshi et al. (2007).
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adjustment probability, balancing the gains from more frequent adjustment against the costs

of repricing. Extending that model to allow for a time-varying adjustment probability would

require keeping track of the distribution of prices because the gains from adjusting would be

higher for prices further away from the optimum, just like in menu cost models.6 In contrast,

our assumption that firms sell a continuum of products and choose how many, but not which,

prices to change, implies that firms are ex-post identical and that a small number of state

variables are sufficient to characterize a firm’s incentives to adjust prices. This feature allows

exact aggregation and renders our model very tractable.

Price Setting. We next describe the firms’ problem in detail. The value of the firm is

the present discounted sum of its flow profits (2). The log-linear specification of preferences

implies that ct =
Wt

Pt
= yt and allows to write the value of the firm as

Et

∞∑
s=0

βs

(∫ [(
Pikt+s

Pt+s

)1−θ

− τ

(
Pikt+s

Pt+s

)− θ
η

y
1
η

t+s

]
dk − ξ

2
(nit+s − n̄)2

)
,

or, using the definitions of Pit and Xit in equations (3) and (4),

Et

∞∑
s=0

βs

[(
Pit+s

Pt+s

)1−θ

− τ

(
Xit+s

Pt+s

)− θ
η

y
1
η

t+s −
ξ

2
(nit+s − n̄)2

]
. (5)

The firm chooses what fraction of prices nit to reset every period and the reset price P ∗
it.

Because all products are identical, Pikt = P ∗
it for all products whose price is reset.

To characterize these optimal choices, we first describe how the choice of P ∗
it and nit affect

firm profits in future periods. Consider first the term (Pit+s)
1−θ in equation (5). Using the

definition of the firm’s price index in equation (3) and the assumption that the firm chooses

how many, but not which, prices to change, allows us to write this term as a function of the

history of previously chosen reset prices and repricing probabilities as follows

(Pit+s)
1−θ = nit+s

(
P ∗
it+s

)1−θ
+ (1− nit+s)nit+s−1

(
P ∗
it+s−1

)1−θ
+ (6)

(1− nit+s) (1− nit+s−1)nit+s−2

(
P ∗
it+s−2

)1−θ
+ · · ·+

s∏
j=1

(1− nit+j)nit (P
∗
it)

1−θ +
s∏

j=1

(1− nit+j) (1− nit) (Pit−1)
1−θ .

The first term on the right hand side represents the contribution of the nit+s newly reset

prices in period t+ s. The second term represents the contribution of the (1− nit+s)nit+s−1

6See also Alvarez et al. (2021) and Cavallo et al. (2024) for variants of the menu cost model in which firms
choose the price adjustment probability subject to a convex adjustment cost.
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prices that were reset in period t + s − 1 and were not reset in period t + s. This pattern

continues with each subsequent term accounting for the contribution of prices reset in each

period leading up to t + s, including those reset in period t, captured by the first term in

the last line of the expression, as well as those reset prior to period t, captured by the last

term of the expression. In writing this last term we used the definition of the price index in

equation (3) to express the history of all reset prices prior to period t using a single state

variable, Pit−1. A similar argument allows us to rewrite the term (Xit+s)
− θ

η as

(Xit+s)
− θ

η = nit+s

(
P ∗
it+s

)− θ
η + (1− nit+s)nit+s−1

(
P ∗
it+s−1

)− θ
η + (7)

(1− nit+s) (1− nit+s−1)nit+s−2

(
P ∗
it+s−2

)− θ
η + · · ·+

s∏
j=1

(1− nit+j)nit (P
∗
it)

− θ
η +

s∏
j=1

(1− nit+j) (1− nit) (Xit−1)
− θ

η .

We can now characterize the optimal choice of P ∗
it and nit. To derive the optimality

condition with respect to P ∗
it we note that equations (6) and (7) imply that

∂ (Pit+s)
1−θ

∂P ∗
it

= (1− θ) (P ∗
it)

−θ
s∏

j=1

(1− nit+j)nit

and
∂ (Xit+s)

− θ
η

∂P ∗
it

= −θ

η
(P ∗

it)
− θ

η
−1

s∏
j=1

(1− nit+j)nit.

Therefore, the reset price P ∗
it that maximizes the value of the firm satisfies the first order

condition (
P ∗
it

Pt

)1+θ( 1
η
−1)

=
1

η

b2it
b1it

,

where

b1it = Et

∞∑
s=0

βs

s∏
j=1

(1− nit+j)

(
Pt+s

Pt

)θ−1

and

b2it = Et

∞∑
s=0

βs

s∏
j=1

(1− nit+j)

(
Pt+s

Pt

) θ
η

(yt+s)
1
η .

The terms b1it and b2it capture the present value of output and production costs in future

periods, weighted by the probability that a price reset today in still in effect in that future

period. They are analogous to those obtained in a Calvo model, with the only difference

being that in the Calvo model nt is constant.
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To build intuition for these expressions, we can alternatively express the firm’s optimal

reset price as a function of the expected present value of future marginal costs,

P ∗
it = Et

∞∑
s=0

βsωit+sMCit+s,

where

MCit+s =
1

η
Wt+s (yit+s)

1
η
−1 =

1

η
Wt+s

(
P ∗
it

Pt+s

)−θ( 1
η
−1)

y
1
η
−1

t+s

is the marginal cost in period t+ s of a firm that last reset its price in period t and

ωit+s =
βs (Pt+s)

θ−1∏s
j=1 (1− nit+j)

Et

∑∞
s=0 β

s (Pt+s)
θ−1∏s

j=1 (1− nit+j)

denotes the relative weight of period t + s in determining the firm’s optimal price, with the

weight reflecting the probability that the price is still in effect at that point, as well as the

amount the firm expects to sell given the aggregate price index in that period.

To derive the optimality condition with respect to nit, we first note that equations (6)

and (7) imply that

∂ (Pit+s)
1−θ

∂nit

=
s∏

j=1

(1− nit+j)
(
(P ∗

it)
1−θ − (Pit−1)

1−θ
)

and
∂ (Xit+s)

− θ
η

∂nit

=
s∏

j=1

(1− nit+j)
(
(P ∗

it)
− θ

η − (Xit−1)
− θ

η

)
.

The fraction of price changes nit that maximizes the value of the firm therefore satisfies the

first order condition

ξ (nit − n̄) = b1it

((
P ∗
it

Pt

)1−θ

−
(
Pit−1

Pt

)1−θ
)

− τb2it

((
P ∗
it

Pt

)− θ
η

−
(
Xit−1

Pt

)− θ
η

)
.

In choosing what fraction of prices to adjust, the firm balances the price adjustment costs

against the benefits resulting from changing its price index, captured by the first term on

the right hand side, and reducing misallocation inside the firm, captured by the second

term on the right hand side. Notice that the terms b1it and b2it that determine the optimal

reset price also determine the firm’s incentive to adjust prices. For example, the higher is

output yt+s in future periods, the larger is b2it and therefore the stronger the incentive to

reduce misallocation and thus economize on labor costs. Similarly, the more likely the firm

is to adjust its prices in the future, the lower are b1it and b2it and therefore the benefits

9



from adjusting prices today. Note that the firms’ incentives to adjust are shaped by two

state variables, the firm’s price index, Pit−1, and the amount of misallocation inside the firm,

Xit−1, as in the multi-product menu cost model of Blanco et al. (2024). Nevertheless, because

firms are ex-post identical, we do not need to keep track of the joint distribution of these two

state variables.

2.5 Equilibrium

Since all firms are identical, nit = nt and P ∗
it = P ∗

t . Consequently all firms have the same

price indices and losses from misallocation. Let p∗t = P ∗
t /Mt, pt = Pt/Mt and xt = Xt/Pt

and recall that

wt = ct = yt =
1

pt
,

where wt = Wt

Pt
is the real wage. The equilibrium of the model is characterized by the

following system of equations:

1. the definition of the price index, which determines inflation as a function of the relative

reset price and the fraction of price changes

1 = nt

(
p∗t
pt

)1−θ

+ (1− nt) π
θ−1
t , (8)

2. the optimal reset price (
p∗t
pt

)1+θ( 1
η
−1)

=
1

η

b2t
b1t

, (9)

where b1t and b2t are determined by

b1t = 1 + βEt (1− nt+1) (πt+1)
θ−1 b1t+1 (10)

b2t = p
− 1

η

t + βEt (1− nt+1) (πt+1)
θ
η b2t+1, (11)

3. the optimal choice of the fraction of price changes

ξ (nt − n̄) = b1t

((
p∗t
pt

)1−θ

− πθ−1
t

)
− τb2t

((
p∗t
pt

)− θ
η

− x
− θ

η

t−1π
θ
η

t

)
, (12)

4. the endogenous productivity term that captures the losses from misallocation

x
− θ

η

t = nt

(
p∗t
pt

)− θ
η

+ (1− nt)x
− θ

η

t−1π
θ
η

t .
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Notice that inflation is equal to

πt =
Pt

Pt−1

=
pt
pt−1

Mt

Mt−1

=
pt
st
,

where

st =
Pt−1

Mt

=
pt−1

exp (µt)

is the previous period’s price level scaled by current nominal spending. Because the growth

rate of nominal spending is iid, the only two state variables in this economy are st and xt−1,

so the solution of the model is given by functions pt = P (st, xt−1), xt = X (st, xt−1) etc.,

that determine how output and inflation evolve over time in response to monetary policy

shocks.

Relative to the Calvo model, the only new equation is equation (12) which characterizes

how the fraction of price changes evolves over time. The Calvo model is a special case of

our model that can be obtained by setting ξ → ∞, in which case nt = n̄ is constant. In the

Calvo model the previous period’s losses from misallocation xt−1 do not affect the frequency

of price changes, so the price level only depends on a single state variable, st.

We solve the system of functional equations that characterize the solution of the model us-

ing global projection methods, by approximating the equilibrium functions using Chebyshev

polynominals. We found, however, that a third-order pertubation provides a very accurate

approximation, suggesting that the model can be easily solved using readily-available solution

techniques. See the Appendix for details.

3 Parameterization

We next explain how we parameterize the model. We first discuss the parameters we assign

values to and then the parameters we calibrate endogenously.

3.1 Assigned Parameters

A period in the model is a quarter. We set three parameters to values conventional in the

literature: a quarterly discount factor β of 0.99, a demand elasticity θ of 6 and a returns to

scale parameter η of 2/3. In the robustness section below we show that our results are robust

to perturbing θ and η.
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3.2 Calibrated Parameters

The parameters we calibrate endogenously are those determining the average level and volatil-

ity of inflation, as well as the average frequency of price changes and its comovement with

inflation. Specifically, we set the average growth rate of nominal spending µ, the standard

deviation of nominal spending growth σ, the fraction of free price changes n̄, and the price

adjustment cost parameter ξ to reproduce the mean and standard deviation of inflation, the

mean fraction of price changes, and the slope coefficient from regressing the fraction of price

changes on the absolute value of inflation. This last statistic captures the extent to which

the fraction of price changes and inflation comove in the time series.

3.2.1 The Data

Our measure of inflation is the growth rate of the PCE price deflator, available from 1962:Q1

to 2023:Q4. We use data on the fraction of price changes computed from the price quotes

collected by the BLS that underlie the construction of the U.S. CPI.7 Specifically, we use

the monthly median fraction of price changes, excluding sales, available between 1978 and

2023, and seasonally adjust it using a 12-month moving average. We convert the seasonally-

adjusted series to a quarterly fraction of price changes and use a linear interpolation to fill

missing observations between November 1986 and May 1987.

Figure 1 plots the time series we use. For visual clarity, in the figure we show the year-

to-year percent change in the price level and, for consistency, report the average quarterly

fraction of price changes in the preceeding year. On average, approximately 25% of prices

change in a given quarter in periods of low inflation. As documented by Nakamura et al.

(2018), the fraction of price changes was relatively high, approximately 40% per quarter, in

the high-inflation episode in the early 1980s. As documented by Montag and Villar (2023),

the fraction of price changes spiked once again, to approximately 50%, during the post-Covid

inflation episode. This illustrates that the fraction of price changes increases systematically

in times of high inflation, a robust feature of the data documented, for example, by Gagnon

(2009), Alvarez et al. (2018), Karadi and Reiff (2019) and Blanco et al. (2024).

7We are grateful to Daniel Villar for kindly sharing these data with us. See Nakamura et al. (2018) for a
detailed description of how the data was constructed.
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Figure 1: Inflation and the Fraction of Price Changes
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Notes: The gray bars indicate NBER recessions.

3.2.2 Parameter Values

For many of our subsequent exercises, we will contrast the predictions of our model with an

endogenously-varying frequency of price changes to those of a standard Calvo model with

a constant frequency. We therefore also calibrate the Calvo model using the same strategy,

but discard the adjustment cost parameter and choose the fraction of price changes n̄ to

reproduce the average frequency of price changes.

Table 1 reports the results of the calibration. As Panel A of the table shows, both

models reproduce the targeted moments perfectly. In both models and in the data, the

average inflation is equal to 3.3%, the standard deviation of inflation is 2.3% and the average

quarterly fraction of price change is 29.4%. In our model, the fraction of price changes also

comoves systematically with inflation: the slope coefficient of a regression of the fraction of

price changes on the absolute value of inflation is equal to 0.019, as in the data.8

Panel B of the table reports the calibrated parameter values. The mean and volatility of

nominal spending growth are slightly lower in our model, compared to the Calvo model. This

is because in the Calvo model a sudden increase in inflation can only be explained by a large

shock, whereas in our model the endogenous response of the frequency also contributes to

inflation fluctuations. We also note that the fraction of free price changes is equal to 23.2%

in our model, a number required to reproduce the fraction of price changes in low-inflation

8These moments are computed using the year-on-year inflation series and the four-quarter moving average
of the frequency of price changes reported in Figure 1.
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periods. The adjustment cost parameter ξ, though not interpretable on its own, implies that

on average 0.55% of all labor is used in adjusting prices, a number in line with the evidence

in Levy et al. (1997).

Table 1: Endogenously Calibrated Parameters

A. Targeted Moments

Data Our model Calvo

mean inflation 3.291 3.291 3.291
s.d. inflation 2.313 2.313 2.313
mean frequency 0.294 0.294 0.294
slope of nt on |πt| 0.019 0.019 –

B. Calibrated Parameter Values

Our model Calvo

µ mean spending growth rate 0.033 0.034
σ s.d. monetary shocks 0.018 0.020
n̄ fraction free price changes 0.232 0.294
ξ adjustment cost 1.233 –

Notes: The mean nominal spending growth rate is annualized.

4 Steady State Analysis

Before characterizing the dynamics of U.S. inflation through the lens of our model, we first

build intuition for the mechanism of the model by characterizing how the non-stochastic

steady state of the model varies with trend inflation. We also use a first-order approximation

around the non-stochastic steady state to provide intuition for how the economy responds

to monetary policy shocks in environments with high and low trend inflation. Many of

the insights we derive below will carry through in the subsequent section which studies the

responses to monetary policy shocks in the actual U.S. time series.

4.1 Steady State Outcomes

We first characterize how the steady state frequency of price changes, misallocation and

output vary with trend inflation.
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Fraction of Price Changes. Letting π = exp(µ) denote the trend level of inflation

and variables without t subscripts denote the value of a variable in the non-stochastic steady

state, we can show that the fraction of price changes is pinned down by

ξ (n− n̄) =
1

1− β (1− n) πθ−1

1

n

(
1− πθ−1 − τη

1− (1− n) πθ−1

1− (1− n)π
θ
η

(
1− π

θ
η

))
, (13)

where the left-hand side of the equation is the marginal cost of increasing n and the right-hand

side captures the marginal benefit to increasing n.9

The marginal cost is linearly increasing in n. Absent trend inflation, π = 1 and the

marginal benefit of increasing n is equal to 0, implying that n = n̄. Thus, absent trend

inflation, the steady state of our model is identical to that of the Calvo model. More generally,

with positive trend inflation, π > 1, the marginal benefit of changing prices is positive and

decreases with n, as illustrated in Figure 2. The intersection of the marginal benefit and

cost curves pins down the steady-state fraction of price changes. As the figure shows, higher

trend inflation increases the marginal benefit of adjusting prices, thus increasing the fraction

of price changes.

Figure 2: Steady-State Fraction of Price Changes
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We summarize how the steady-state fraction of price changes increases with trend inflation

in the left panel of Figure 3. The fraction of price changes increases from 23% per quarter

at zero inflation to 43% when annual steady-state inflation is 10%.

Output and Productivity. We next explore the implications of endogenizing the frac-

tion of price changes for output and productivity. As we show in the Appendix, the steady-

9See the Appendix for all the derivations.

15



Figure 3: Steady State Outcomes
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Notes: The figure traces out how variables adjust in steady state in response to changes in the parameter

µ that determines steady-state inflation. The x-axis reports the annualized value of steady-state inflation π.

We report the quarterly fraction of price changes. The level of output is normalized to 1 at zero steady state

inflation.

state values of output and productivity can be expressed solely as a function of trend inflation

and the fraction of price changes. Specifically, output is determined by

y
1
η = η

1− β (1− n)π
θ
η

1− β (1− n) πθ−1

(
n

1− (1− n) πθ−1

) 1+θ( 1
η−1)

θ−1

,

and productivity xθ is given by

xθ =

(
1− (1− n) π

θ
η

n

)η (
1− (1− n)πθ−1

n

)− θ
θ−1

.

Absent trend inflation, output is equal to y = ηη and productivity is equal to xθ = 1 and

are therefore both equal to their flexible-price counterparts. The middle and right panels of

Figure 3 plot output and productivity as a function of trend inflation. For reference, we also

plot steady-state outcomes in an otherwise identical economy in which the fraction of price

changes is constant and equal to n̄. The figure shows that both output and productivity

generally decrease with trend inflation10, but much less in our model with an endogenous

fraction of price changes, a result reminiscent of Devereux and Yetman (2002), Bakhshi et

al. (2007) and the menu cost model of Blanco (2021).

10As Ascari and Ropele (2009) point out, in the Calvo model the relationship between output and trend
inflation is hump-shaped at low rates of inflation. This is also the case in our model: output peaks at a level
of approximately 0.02% above its flexible-price (zero trend inflation) level when inflation is equal to 0.5%,
but this effect is too small to be visible in the figure.
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4.2 The Real Effects of Monetary Shocks

We next study the real effects of monetary shocks. We consider impulse responses to both

small and large shocks and discuss how they depend on trend inflation.

Impulse Responses to Small Shocks. We first study how our economy responds to small

monetary policy shocks in environments with low and high trend inflation. We consider two

economies, one with zero and another with 10% trend inflation, and report the impulse

responses of output and the fraction of price changes to a 1% increase in nominal spending

Mt. To build intuition, we consider a log-linear approximation of the model around the

steady state of each economy. We contrast the responses in our model to those predicted

by an otherwise identical model in which the fraction of price changes is equal to that in

the steady state of our model, but ξ = ∞ so the fraction of price changes is constrained

to not respond to shocks. As we discussed above, the steady-state fraction of price changes

is approximately twice higher in the economy with 10% inflation compared to the economy

with no inflation (0.43 vs. 0.23).

The left two panels of Figure 4 show the response of output (upper panel) and the fraction

of price changes (lower panel) in the economy without trend inflation. Note that, up to a

first-order approximation, the fraction of price changes does not respond to the monetary

shock. Hence, our model with an endogenous adjustment frequency has identical responses

to the economy with a time-invariant frequency.

The right two panels of Figure 4 depict the responses in an environment with 10% trend

inflation. We make two observations. First, even when the fraction of price changes is

constrained not to respond to the shock (ξ = ∞), the response of output is weaker in the

economy with 10% trend inflation relative to the economy without trend inflation, owing to

the larger steady-state frequency of price changes. Both the impact output response (0.72%

vs. 0.85%), as well as the cumulative output response (2.52% vs. 5.74%) are lower. Second,

the impulse response of output is smaller and more transient in our model relative to the

ξ = ∞ economy with a constant frequency of price changes. Both the impact output response

(0.62% vs. 0.72%) and the cumulative output response (0.96% vs 2.52%) fall considerably,

owing to the increase in the fraction of price changes from 0.43 in steady state to 0.45 after

the shock. Also note that in our model the output response falls below zero one year after

the shock, owing to the overshooting of the price level caused by the increased frequency of

price changes.
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Figure 4: Impulse Response to a 1% Monetary Shock
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Although the increase in the fraction of price changes following a shock appears small, it

leads to considerable aggregate price flexibility. Since, Ptyt = Mt, the impact response of the

price level to the monetary shock is 0.15% in the economy with zero trend inflation, 0.28%

in the economy with 10% trend inflation and constant frequency, and 0.38% in our model

with 10% trend inflation.

To see why such a small increase in the fraction of price changes has such a large effect

on the aggregate price level, consider the log-linearized system of equilibrium conditions

characterizing the evolution of inflation in our model. Letting hats denote log-deviations

from the steady state, a first-order Taylor expansion of the expression for the aggregate price

level in equation (8) implies that

π̂t =
1

(1− n) πθ−1

πθ−1 − 1

θ − 1︸ ︷︷ ︸
M

n̂t +
1− (1− n) πθ−1

(1− n) πθ−1︸ ︷︷ ︸
N

(p̂∗t − p̂t) . (14)

The second term on the right-hand side of this expression is familiar from the standard Calvo

model and describes how inflation responds to an increase in the relative reset price. The

elasticity

N =
1− (1− n) πθ−1

(1− n)πθ−1
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increases with the fraction of price changes n and decreases with trend inflation π. As Coibion

et al. (2012) point out, a higher trend inflation reduces the sensitivity of inflation to reset

price changes because newly reset prices are larger and therefore have a smaller share in the

consumption weights used to calculate the ideal price index.

The first term on the right-hand side of (14) captures the impact of changes in the fraction

of price changes on the inflation response. The elasticity

M =
1

(1− n) πθ−1

πθ−1 − 1

θ − 1

is equal to zero absent trend inflation and increases as π increases above 1. To understand

why this is the case, note that inflation is approximately equal to the fraction of price changes

nt times the average price change conditional on adjustment. If the average price change is

zero, as is the case absent trend inflation, an increase in the fraction of price changes does

not affect inflation. In contrast, if the average price change is large, inflation greatly responds

to changes in the fraction of price changes. For example, in our economy with 10% annual

inflation the average size of a price change is approximately 5%. An increase in the frequency

of price changes from 0.43 to 0.45 thus contributes an additional (0.45−0.43)×5% = 0.1% to

the increase in the price level in the period of the shock. Since the fraction of price changes

mean-reverts gradually, these effects add up over time, implying that the response of the price

level to a monetary shock is much more rapid relative to a setting with a constant fraction

of price changes. This effect is reminiscent the mechanism in the menu cost model of Caplin

and Spulber (1987) in which small changes in the frequency of repricing render the aggregate

price level flexible. Because newly-adjusting prices increase by a large amount, even small

changes in the fraction of price changes add considerably to the response of inflation.

Impulse Responses to Large Shocks. So far we considered the responses to relatively

small monetary policy shocks using a first-order approximation. To a first order, the increase

in the frequency of price changes only contributes to aggregate price flexibility because ad-

justing firms respond to the underlying trend inflation, but not to the monetary policy shock.

We next consider shocks of larger sizes and solve for the response of output non-linearly, thus

taking into account the interaction between the increase in the frequency of price changes

and the increase in the average price change resulting from the shock. To compute these

responses, we start from the non-stochastic steady state of the economy and consider a one-

time, unanticipated, permanent increase in nominal spending Mt. We then calculate the

resulting transition dynamics using a non-linear shooting method.
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Figure 5 reports the responses to a 1% (left panels) and 10% (right panels) monetary

shock starting from the steady state of our baseline model calibrated to match the U.S.

data with 3.3% trend inflation. Notice first that even in response to small shocks the output

responses in our model are weaker than in the model with a constant frequency. As explained

above, the small increase in the fraction of price changes imparts considerable flexibility to

the aggregate price level because these additional price changes incorporate the larger trend

inflation into their price adjustment decisions. Moreover, the response of output to a 10%

monetary policy shock is considerably smaller in our model, owing to the sharp increase in

the fraction of price changes: nearly 70% of prices change in response to this shock on impact.

Consequently, the cumulative impulse response of output is nearly 1/5th the size of that in

the model with a constant frequency of price changes.

Figure 5: Impulse Response to Small and Large Monetary Shocks
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We thus conclude that our economy has many of the features of menu cost models, such

as the large responsiveness of the price level to movements in the fraction of price changes

in periods of high inflation, as in Caplin and Spulber (1987) and considerable non-linearity

in responses to shocks of different sizes, as in Blanco et al. (2024), but is considerably more

tractable.
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4.3 The Phillips Curve and the Inflation Accelerator

We next derive the Phillips curve in our economy. We show that the slope of the Phillips

curve increases rapidly with trend inflation due to a feedback loop between inflation and the

frequency of price changes. On one hand, an increase in the fraction of price changes increases

inflation, more so in environments with higher trend inflation. On the other hand, an increase

in inflation increases the firms’ incentive to change prices, thus raising the frequency of price

changes. We refer to this feedback loop as the inflation accelerator.

Log-linearizing the expression determining the optimal fraction of price changes (12)

around the non-stochastic steady state, we have

n̂t = Aπ̂t + B (p̂∗t − p̂t)− Cx̂t−1 +
n− n̄

n
b̂1t, (15)

where

A =
θ − 1

ξn

1

1− β (1− n)πθ−1

π
θ
η − πθ−1

1− (1− n) π
θ
η

determines how sensitive the fraction of price changes is to inflation,

B = (1− τη)
θ − 1

ξn

1− (1− n) πθ−1

1− β (1− n) πθ−1

1

n

π
θ
η − 1

1− (1− n) π
θ
η

determines how sensitive the fraction of price changes is to the relative reset price, and

C =
θ − 1

ξn

1− (1− n) πθ−1

1− β (1− n) πθ−1

π
θ
η

1− (1− n) π
θ
η

determines how sensitive the fraction of price changes is to past misallocation.

We note first that both A and B are equal to zero absent trend inflation. Thus, the

frequency of price changes is, to a first-order, irresponsive to monetary policy shocks, as

illustrated in Figure 4. In the presence of trend inflation these elasticities are positive and

decreasing in the adjustment cost parameter ξ. Combining the log-linearized expression for

the price index (14) with (15) implies

π̂t =
MB +N
1−MA

(p̂∗t − p̂t)−
MC

1−MA
x̂t−1 +

M
1−MA

n− n̄

n
b̂1t.

The elasticity of inflation to relative reset prices p̂∗t − p̂t is equal to
MB+N
1−MA and is amplified

relative to the standard Calvo model whenever π > 1, so that M, A and B are all positive.

Intuitively, a higher desired reset price not only directly affects inflation with an elasticity

N , but also leads to more frequent price changes, which then increase inflation and further
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increase the incentives to reset prices. We refer to this feedback loop between the frequency

of price changes, the optimal reset price and inflation as the inflation accelerator.

Finally, log-linearizing equations (9) – (11) which characterize the optimal reset price

allows us to derive the Phillips curve

π̂t = Km̂ct + β (1− n)

 θ
η
π

θ
η − (θ − 1)πθ−1

1 + θ
(

1
η
− 1
) MB +N

1−MA
+ π

θ
η

Etπ̂t+1

+ β (1− n)

 π
θ
η − πθ−1

1 + θ
(

1
η
− 1
)MB +N
1−MA

− π
θ
η

M
1−MA

n− n̄

n

Etb̂1t+1

− βn
π

θ
η − πθ−1

1 + θ
(

1
η
− 1
)MB +N
1−MA

Etn̂t+1

+ β (1− n) π
θ
η

MC
1−MA

x̂t −
MC

1−MA
x̂t−1 +

M
1−MA

n− n̄

n
b̂1t. (16)

We note that all the terms in the last two rows of this expression drop out when M = 0,

that is, when the frequency of price changes is time-invariant.

The key elasticity is the slope of the Phillips curve: the elasticity of inflation with respect

to real aggregate marginal cost, mct =
1
η
Wt

Pt
y

1
η
−1

t . As we show in the Appendix, this elasticity

is equal to

K =
1

1 + θ
(

1
η
− 1
) (1− β (1− n) π

θ
η

)MB +N
1−MA

. (17)

The first term of this expression captures the effect of strategic complementarities which are

stronger the more elastic demand is, that is, the higher is θ and the stronger are decreasing

returns to scale, that is, the lower is η. The second term captures the horizon effect: a

transitory increase in marginal costs in period t only increases the optimal reset price by a

factor 1−β (1− n) π
θ
η which reflects the discount factor and the probability that the current

price will still be in effect in future periods. Finally, as discussed above, the last term captures

the impact of higher reset prices on inflation. Note that absent the feedback effect of the

frequency on inflation, that is, when M = 0, this expression reduces to the familiar slope of

the Phillips curve in a Calvo model with trend inflation

κ =
1

1 + θ
(

1
η
− 1
) (1− β (1− n) π

θ
η

) 1− (1− n)πθ−1

(1− n) πθ−1
.
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The difference between these two slopes, K − κ, reflects the inflation accelerator which is

positive when π > 0 and increases with π.

Figure 6 shows how the slope of the Phillips curve K varies with trend inflation in our

baseline model. We gauge the importance of the inflation accelerator by contrasting the

actual slope K with the slope κ that arises absent the inflation accelerator. In computing

these two objects, we allow the fraction of price changes n to optimally increase with trend

inflation according to equation (13).

At low rates of trend inflation the slope of the Phillips curve declines with inflation, owing

to the negative relationship between N and π discussed above. Moreover, since the elasticity

M governing the response of inflation to changes in the frequency of price changes is close

to zero, the slope of the Phillips curve K is nearly the same as κ. The feedback effect is

considerably amplified, however, at high rates of trend inflation. Though κ only doubles

from approximately 0.02 to 0.04 as trend inflation increases from 0 to 10%, the overall slope

K increases from 0.02 to 0.11. The inflation accelerator thus considerably magnifies the slope

of the Phillips curve.

Figure 6: Trend Inflation and the Slope of Phillips Curve
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5 The Phillips Curve in the Time-Series

We next investigate how the slope of the Phillips curve evolves in the U.S. time series viewed

through the lens of our model. To that end, we first identify the sequence of monetary policy

shocks that allows our model to exactly reproduce the path of inflation in the post-war U.S.
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data. We then consider a log-linear approximation around the equilibrium point at each date

and derive the slope of the Phillips curve. We show that the slope of the Phillips curve varies

considerably, ranging from 0.02 in relatively low-inflation periods to 0.20 in the high-inflation

periods of the 1970s and 1980s.

5.1 Monetary Policy Shocks

Recall that inflation in our model is a function of last period’s price level pt−1, the degree of

misallocation, xt−1, as well as the monetary policy shock εt

πt = π

(
pt−1

exp (µ+ εt)
, xt−1

)
. (18)

We initialize the economy in the stochastic steady state in 1962 and use the non-linear solution

of our model to back out the monetary policy shocks that exactly reproduce the observed

U.S. inflation series. Figure 7 shows the path of monetary policy shocks in our model and

contrasts these to those that allow the Calvo model discussed in Section 3 to reproduce the

same inflation data. As the right panel of the figure shows, the Calvo model requires a lot

more variability in monetary policy shocks compared to our model for it to reproduce the

large inflation observed in the 1970s and 1980s.

Figure 7: Monetary Policy Shocks
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Notes: The gray bars indicate NBER recessions. We back out the monetary shocks using the actual quarterly

inflation series, not the 4-quarter moving average reported in Figure 1.

Figure 8 shows the path of annualized quarterly inflation, which the model matches by

construction, and the fraction of price changes in both the model and the data. The model
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reproduces well the relatively high fraction of price changes in the 1980s and its subsequent

decline following the Volcker disinflation. Though the fraction of price changes also increases

in our model during the post-Covid spike in inflation, the increase is not as large as in the

data. Intuitively, our model predicts a stable relationship between inflation and the fraction

of price changes. Since the post-Covid increase in inflation was not as large as that in the

1980s, the model predicts a smaller frequency response. Allowing for a reduction in the

cost of changing prices to capture improvements in the technology for changing prices would

improve the model’s fit and strengthen our conclusions that the slope of the Phillips curve

considerably steepens in periods of high inflation.

Figure 8: Fraction of Price Changes
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Notes: The gray bars indicate NBER recessions. The left panel plots the annualized quarterly inflation and

the right panel plots the quarterly fraction of price changes.

5.2 The Slope of the Phillips Curve

We first illustrate the non-linear relationship between inflation and the output gap implied by

our model by contrasting the time series of the output gap with that predicted by the Calvo

model. Recall that both models exactly match the time series of inflation in the data and

have the same average frequency of price changes. As Figure 9 shows, the output gap in the

Calvo model is considerably larger than in our model in the high-inflation years of the 1970s

and 1980s, occasionally exceeding 10%. In contrast, in our model the output gap is never

above 4%. Because the fraction of price changes in our model does not increase as much

during the post-Covid inflation episode, the difference between the output gap predicted by
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our model and the Calvo model is not as large, but is nevertheless significant: the output

gap in the first quarter of 2022 was equal to 4.8% in the Calvo model and 2.6% in our

model. Our model therefore implies that the monetary authority is limited in its ability to

use expansionary monetary policy to achieve an increase in the output gap.

Figure 9: Output Gap
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We next discuss in more detail the determinants of the slope of the Phillips curve at each

point in time in our model. To this end, we consider the impact of an additional monetary

policy shock ε̃t that changes the growth rate of nominal spending to µ̃t = µt + ε̃t. We use

tilde to denote the value of a variable following this additional shock and hats denote the

log-deviation of a variable from the original equilibrium. For example, π̂t = log π̃t − log πt

denotes the response of inflation to the shock.

As we show in the Appendix, the expression relating inflation to the fraction of price

changes and the relative reset price is now

π̂t =
1

(1− nt) π
θ−1
t

πθ−1
t − 1

θ − 1︸ ︷︷ ︸
Mt

n̂t +
1− (1− nt) π

θ−1
t

(1− nt) π
θ−1
t︸ ︷︷ ︸

Nt

(p̂∗t − p̂t) .

This expression is similar to that derived in equation (14) which perturbed the economy

around the non-stochastic steady state, except that now the actual values of inflation πt and

fraction of price changes nt determine how inflation reacts to an increase in the optimal reset

price and the fraction of price changes. Once again, if inflation is high in a given period, the

elasticity Mt that determines how inflation responds to an additional increase in the fraction
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of price changes is high as well: in times of high inflation the desired price change is high,

so even a small increase in the fraction of prices that adjust greatly increases aggregate price

flexibility.

Consider next the expression describing how the fraction of price changes responds to

shocks. Up to a first-order approximation,

n̂t = Atπ̂t + Bt (p̂
∗
t − p̂t)− Ctx̂t−1 +

nt − n̄

nt

b̂1t,

where once again the elasticities vary over time as a function of inflation and the optimal

reset price. For example,

At =
θ − 1

ξnt

b1t

((
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η − πθ−1
t

)
,

and

Bt = (1− τη) (θ − 1)
b1t
ξnt

((
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η −
(
p∗t
pt

)1−θ
)
.

Finally, the slope of the Phillips curve is equal to

Kt =
1

1 + θ
(

1
η
− 1
) p− 1

η

t

b2t

MtBt +Nt

1−MtAt

.

We once again find it useful to compare the slope of the Phillips curve in our model to that

in a model with a time-varying frequency of price changes that is constrained not to respond

to the additional shocks ε̃t. Setting Mt = 0, we obtain

κt =
1

1 + θ
(

1
η
− 1
) p− 1

η

t

b2t
Nt,

which captures how an elevated fraction of price changes affects the slope of the Phillips curve.

As before, the difference between the two slopes, Kt − κt, captures the inflation accelerator

which now varies over time and reflects the endogenous response of the frequency of price

changes and its disproportionately larger contribution to aggregate price flexibility in periods

of high inflation.

The left panel of Figure 10 depicts the slope of the Phillips curve in our model and

contrasts it to κt. The slope of the Phillips curve Kt fluctuates significantly over time,

reaching a low of 0.02 in low-inflation periods and increasing to as high as 0.20 in times of

high inflation. Critically, the inflation accelerator is largely responsible for the steeper slope
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in high-inflation periods: absent the inflation accelerator, the slope κt peaks at only 0.05,

a quarter of the overall effect. Even though our model does not fully reproduce the sharp

increase in the frequency of price changes post-Covid, the slope of the Phillips curve increased

by a factor of 3.5, from 0.02 in the first quarter of 2019 to 0.07 in the first quarter of 2022,

an increase once again largely accounted for by the inflation accelerator: κt only increased

from 0.02 to 0.03 in this period.

For comparison, the right panel of Figure 10 reports the slope predicted by the Calvo

model discussed in Section 3. This slope fluctuates much less than in our model and, in fact,

decreases in periods of high inflation. This is because, as discussed in Section 4.2, the price

level is less responsive to changes in the reset price when inflation is high, that is, Nt falls, a

mechanism that reduces the slope of the Phillips curve.

Figure 10: The Slope of the Phillips Curve
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5.3 Time-Varying Responses to Monetary Policy Shocks

We next study the consequences of the elevated slope of the Phillips curve in periods of high

inflation for how the economy responds to monetary policy shocks. We isolate the role of

the inflation accelerator by considering a log-linear approximation of the model’s equilibrium

conditions around each date t and expressing the system as

Atzt = Btzt−1 +CtEtzt+1 +Dtεt, (19)
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where zt is a vector that collects all the equilibrium variables, expressed in log-deviations

from the initial equilibrium, and the matrices At to Dt collect the time-varying elasticities

describing the log-linearized equilibrium conditions, including the elasticities Mt, Nt and Kt

defined above.11 In calculating the matrices At to Dt we use the history of monetary shocks

that reproduces the inflation data up to period 1, and then set the path of all future shocks

to zero.12

We use the representation in equation (19) to recover the solution of the model,

zt = Qtzt−1 +Gtεt, (20)

where

Qt = (At −CtQt+1)Bt and Gt = (At −CtQt+1)Dt.

We do this for periods t = 1 . . . T, where period 1 corresponds to the period in the sample

for which we calculate the impulse response, and T is sufficiently large so that the impact of

initial conditions dies out. Equation (20) thus allows us to compute a conditional forecast of

how the economy would respond to an additional change in monetary policy at any point in

time, assuming no additional monetary policy disturbances in the future. The log-linearized

solution (20) produces impulse responses to relatively small shocks, say of 1%, that are very

similar to those obtained from the non-linear solution. For larger shocks, the non-linearity

in our model is stronger, further reinforcing our conclusions below.

We find the log-linear approximation above useful because it allows us to isolate the role

of the inflation accelerator in determining how output responds to monetary policy shocks.

To this end, we recompute the solution of the model by setting the endogenous response

of the frequency of price changes Mt = 0 at every date and leaving all other elasticities

unchanged. This alternative solution captures what the responses would be if the frequency

of price changes were elevated in periods of high inflation, but not responsive to additional

shocks.

Figure 11 compares the impulse response of output to a 1% monetary shock in the the

first quarter of 1995, when inflation was relatively low, 2.2% year-on-year, and in the first

quarter of 1980, when inflation was much higher, 10.5%. As the figure shows, the real effects

of the monetary shock are much smaller in 1980: our model predicts that the cumulative

response of output is equal to only 0.9%, much smaller than the 4.1% in 1995. Part of this

11See the Appendix for a full list of the log-linearized equilibrium equations.
12We also considered an alternative approach in which we simulated a large number of histories of shocks

going forward and found that the average response is similar to that described here.
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difference is mechanically accounted for by the higher frequency of price changes in 1980: 44%

vs. 26%. The bulk of the difference, however, is accounted for by the inflation accelerator:

setting Mt = 0 increases the cumulative impulse response to a shock in 1980 significantly, to

3.4%. Thus, the endogenous increase in the fraction of price changes significantly increases

the flexibility of the aggregate price level.

Figure 11: Output Responses to Monetary Shocks In Different Periods
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Notes: The year-on-year inflation rate was equal to 2.2% in the first quarter of 1995 and 10.5% in the first

quarter of 1980.

5.4 The Sacrifice Ratio

The time-varying nature of the slope of the Phillips curve in our model has important impli-

cations for the tradeoffs policymakers face in stabilizing prices and real activity. We illustrate

how these tradeoffs change over time by calculating a measure of the sacrifice ratio. Specif-

ically, we ask: what is the drop in output required to reduce inflation by one percentage

point during the course of one year? We use the non-linear solution of the model to back

out the change in nominal spending necessary to achieve this reduction in inflation and then

calculate the average decline in output during the course of the four quarters of that year.

We repeat this experiment for every date and report the results in Figure 12.

As the left panel of the figure shows, in periods of relatively low inflation the sacrifice

ratio is approximately 1.4%. That is, output would have to fall by 1.4% on average over the

course of the year in order for the monetary authority to reduce inflation by one percentage
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Figure 12: Sacrifice Ratio
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point. When inflation is at its peak, in the 1970s and 1980s, the sacrifice ratio is only 0.3%.

Thus, reducing inflation by one percentage point in that period would have been a lot less

costly. Interestingly, even though our model does not fully match the increase in the fraction

of price changes post Covid, it predicts a sharp decline in the sacrifice ratio, from 1.4% prior

to the pandemic to approximately 0.6% when inflation was at its peak in 2022.13 In contrast,

the sacrifice ratio fluctuates much less over time in the Calvo model and, in fact, increases

in times of high inflation.

We therefore conclude that our model implies that if inflation is high to begin with,

bringing it down requires a smaller drop in output than if inflation is low. We illustrate

this point in Figure 13, which shows a scatterplot of the sacrifice ratio against inflation and

highlights the high-inflation period in the 1980s and the low-inflation period at the end of

the 1990s. The figure also highlights the post-Covid period and shows that the sacrifice ratio

was less than 0.6% at the beginning of 2022, when inflation was high, and increased to 1.2%

as inflation fell by the end of 2023.

13Hobijn et al. (2023) also argue that the sacrifice ratio fell after the onset of the pandemic due to the
steepening of the Phillips curve.

31



Figure 13: Inflation and the Sacrifice Ratio
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6 Robustness

We next gauge the robustness of our findings to eliminating strategic complementarities in

price setting as well as to considering a more conventional interest rate rule.

6.1 The Role of Strategic Complementarities

In our baseline model we assumed a moderate degree of strategic complementarities in pricing

by setting η = 2/3 and θ = 6. Here we gauge the robustness of our results to eliminating

strategic complementarities by setting η = 1. We consider two economies, one in which θ = 6,

as in our baseline model, and one in which θ = 3. In both of these, we keep β = 0.99. We

re-calibrate each of these economies to match the same moments as in the baseline calibration.

Table 2 shows that both economies match the targeted moments perfectly. Eliminating

strategic complementarities reduces the curvature of the profit function and thus the firms’

incentives to adjust prices so, as Panel B of the table shows, the model requires smaller

adjustment costs to match the extent to which the fraction of price changes comoves with

inflation, as in menu cost models (see Blanco et al., 2024). When θ = 6, adjustment costs

amount to 0.1% of all labor costs and when θ = 3, they amount to 0.03% of the total labor

costs, lower than the 0.55% implied by our baseline calibration.

Figure 14 shows that eliminating strategic complementarities increases the slope of the

Phillips curve on average by a factor of approximately 4.5 when θ = 6 and 5.4 when θ = 3.

Intuitively, in our baseline model in which η = 2/3, the slope of the Phillips curve is dampened
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Table 2: Calibration: Alternative Parameterization

A. Targeted Moments

Data θ = 6 θ = 3

mean inflation 3.291 3.291 3.291
s.d. inflation 2.313 2.313 2.313
mean frequency 0.294 0.294 0.294
slope of nt on |πt| 0.019 0.019 0.019

B. Calibrated Parameter Values

θ = 6 θ = 3

µ mean spending growth rate 0.033 0.033
σ s.d. monetary shocks 0.016 0.016
n̄ fraction free price changes 0.224 0.221
ξ adjustment cost 0.248 0.079

Note: The mean nominal spending growth rate is annualized.

by a factor of 1+θ
(

1
η
− 1
)
= 4, which is no longer present when η = 1. Additionally, reducing

θ increases the impact of newly reset prices on inflation, as captured by the elasticity Nt,

further increasing the slope of the Phillips curve. Our earlier conclusion stands, however: the

slope of the Phillips curve greatly increases in times of high inflation, primarily due to the

inflation accelerator. For example, as the left panel of the figure shows, the slope Kt reaches

a low of 0.08 and increases to as much as 0.96 in times of high inflation. Absent the inflation

accelerator, κt increases from 0.08 to only 0.20.

6.2 A Taylor Rule Monetary Policy

In our baseline model we assumed that monetary policy follows a nominal spending rule.

We show next that our results are robust to instead assuming that monetary policy follows

an interest rate rule. Specifically, we assume an interest rate rule similar to that used by

Justiniano and Primiceri (2008)

1 + it
1 + i

=

(
1 + it−1

1 + i

)ϕi

((πt

π

)ϕπ
(

yt
yt−1

)ϕy
)1−ϕi

ut, (21)

where π is the inflation target, 1 + i = π/β is the steady-state nominal interest rate, the

parameters ϕi, ϕπ and ϕy determine the inertia in the interest rate rule and the sensitivity of
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Figure 14: Slope of the Phillips Curve, No Strategic Complementarities
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monetary policy to fluctuations in inflation and output, and where ut evolves according to

ut = ρut−1 + εt,

where εt are Gaussian innovations with standard deviation σ. We solve the model using a

third-order perturbation.

We assign the same values to the discount factor, returns to scale and demand elasticity

as in our baseline model. We set ϕi = 0.65, ϕπ = 2.35 and ϕy = 0.51, the median estimates

reported by Justiniano and Primiceri (2008). We consider two economies, one in which ρ = 0,

in which we target the same moments as in the baseline, and one in which ρ > 0, in which

we also target the autocorrelation of year-on-year inflation, that is, of the series reported in

Figure 1. Table 3 reports the results of the calibration.

Figure 15 reports how the slope of the Phillips curve varies in the U.S. time series viewed

through the lens of these two models. As in the baseline, the slope of the Phillips curve varies

substantially over time, from approximately 0.02 in the 1990s to as high as 0.15 – 0.20 in

the 1970s and 1980s. Once again, the inflation accelerator in responsible for the bulk of the

steepening of the Phillips curve in times of high inflation.
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Table 3: Endogenously Calibrated Parameters, Taylor Rule

A. Targeted Moments

Data ρ = 0 ρ > 0

mean inflation 3.291 3.291 3.291
s.d. inflation 2.313 2.313 2.313
mean frequency 0.294 0.294 0.294
slope of nt on |πt| 0.019 0.019 0.019
autocorr. inflation 0.972 0.913 0.972

B. Calibrated Parameter Values

ρ = 0 ρ > 0

log π inflation target 0.036 0.034
σ s.d. monetary shocks ×100 2.186 0.164
ρ persistence money shocks – 0.889
n̄ fraction free price changes 0.230 0.236
ξ adjustment cost 1.182 1.282

Note: The inflation target is annualized. We italicize the autocorrelation of inflation implied by the economy

with ρ = 0, which is not a target in the calibration.

Figure 15: Slope of the Phillips Curve, Taylor Rule
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7 Conclusions

A widely documented fact is that the frequency of price changes increases in periods of

high inflation. We developed a tractable sticky price model in which the frequency of price

changes varies endogenously over time. Tractability stems from assuming that firms sell a

continuum of products and choose how many, but not which, prices to adjust each period.

This eliminates the need to keep track of the price distribution, so our model admits exact

aggregation and reduces to a one-equation extension of the Calvo model. The model predicts

that the frequency of price changes increases in times of high inflation. The endogenous

response of the frequency of price changes to shocks implies a powerful feedback loop between

inflation and the frequency of price changes, which we refer to as the inflation accelerator.

One one hand, an increase in the frequency increases inflation, more so the higher is inflation

to begin with. On the other hand, a increase in inflation increases the benefits to adjusting

prices and thus further increases the frequency.

When applied to the post-war U.S. time-series data, the model predicts that the slope

of the Phillips curve fluctuates considerably over time, ranging from 0.02 in the 1990s to

0.20 in the 1970s and 1980s. The inflation accelerator is responsible for the bulk of this

increase. Our findings imply that the tradeoff between inflation and output stabilization is

also time-varying: reducing inflation from 10% to 9% is a lot less costly than reducing it

from 3% to 2%. Because our model is highly tractable, it can be relatively easily extended

to incorporate richer sources of aggregate uncertainty, other frictions and used to conduct

empirical and policy analysis. We leave these exercises for future work.
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Appendix
For Online Publication

A Detailed Derivations

Here we provide detailed derivations of the main results discussed in text.

A.1 Steady State

We start by characterizing how the key equilibrium variables depend on π = exp (µ) in the
non-stochastic steady state. In steady state, the equilibrium conditions are(

p∗

p
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=
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We first derive an expression for p and x as a function of n and π. Combining equations (24),
(25) and (26) implies that(

p∗
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)1+θ( 1
η
−1)

=
1
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Using equation (22) and p = 1/y, we have that the price level and output satisfy
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To find the losses from misallocation, combine equations (22) and (23) and write
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which implies
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To find n we use equation (28), which can be rearranged as
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or, using equations (22) and (23),
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Since
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this expression simplifies to

ξ (n− n̄) =
1

1− β (1− n) πθ−1

1

n

(
1− πθ−1 − τη

1− (1− n) πθ−1

1− (1− n) π
θ
η

(
1− π

θ
η

))
.

A.2 Log-Linear Approximation Around Steady State

Recall that the system is
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η

t = nt

(
p∗t
pt

)− θ
η

+ (1− nt) (xt−1)
− θ

η π
θ
η

t (31)

ξ (nt − n̄) = b1t

(
(1− τη)

(
p∗t
pt

)1−θ

− (πt)
θ−1 + τη

(
p∗t
pt

)1+θ( 1
η
−1)

(xt−1)
− θ

η π
θ
η

t

)
(32)

b1t = 1 + βEt (1− nt+1) (πt+1)
θ−1 b1t+1 (33)

b2t = p
− 1

η

t + βEt (1− nt+1) (πt+1)
θ
η b2t+1 (34)(

p∗t
pt

)
1+θ( 1

η
−1) =

1

η

b2t
b1t

(35)

πt = π
pt
pt−1

exp (εt) (36)

We next log-linearize all these equations. We use hats to denote the log-deviation of
variables from their non-stochastic steady state levels.
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A.2.1 Price Index

Log-linearizing equation (30) gives

π̂t =
1

(1− n) πθ−1

πθ−1 − 1

θ − 1︸ ︷︷ ︸
M

n̂t +
1− (1− n) πθ−1

(1− n) πθ−1︸ ︷︷ ︸
N

(p̂∗t − p̂t) (37)

A.2.2 Frequency of Price Changes

Log-linearizing equation (32) we have

ξnn̂t = ξ (n− n̄) b̂1t +
1

1− β (1− n)πθ−1

(
(1− τη)

1− (1− n) πθ−1

n
(1− θ) (p̂∗t − p̂t)− πθ−1 (θ − 1) π̂t

)

+
1

1− β (1− n) πθ−1
τη

1− (1− n) πθ−1

1− (1− n) π
θ
η

π
θ
η

((
1 + θ

(
1

η
− 1

))
(p̂∗t − pt)−

θ

η
x̂t−1 +

θ

η
π̂t

)
or, equivalently,

n̂t =
n− n̄

n
b̂1t +

1

ξn

1

1− β (1− n) πθ−1

(
τθ

1− (1− n)πθ−1

1− (1− n) π
θ
η

π
θ
η + πθ−1 (1− θ)

)
︸ ︷︷ ︸

A

π̂t

+
1

ξn

1− (1− n) πθ−1

1− β (1− n)πθ−1

(
(1− τη)

1

n
(1− θ) + τη

π
θ
η

1− (1− n)π
θ
η

(
1 + θ

(
1

η
− 1

)))
︸ ︷︷ ︸

B

(p̂∗t − p̂t) +

− 1

ξn

1

1− β (1− n)πθ−1
τθ

1− (1− n) πθ−1

1− (1− n) π
θ
η

π
θ
η︸ ︷︷ ︸

C

x̂t−1 (38)

Since τθ = θ − 1, we can simply the expression for A to

A =
θ − 1

ξn

1

1− β (1− n) πθ−1

π
θ
η − πθ−1

1− (1− n) π
θ
η

,

which is zero when π = 1 and is increasing in π. Thus, not only is inflation more responsive
to changes in the frequency in economies with higher trend inflation, but the frequency is
itself more sensitive to inflation when trend inflation is higher.

Similarly, we can simplify the expression for B to

B = (1− τη)
θ − 1

ξn

1− (1− n) πθ−1

1− β (1− n) πθ−1

1

n

π
θ
η − 1

1− (1− n) π
θ
η

,

which is also zero when π = 1 and is increasing with π. Finally,

C =
θ − 1

ξn

1− (1− n) πθ−1

1− β (1− n) πθ−1

π
θ
η

1− (1− n) π
θ
η

.
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A.2.3 Optimal Reset Price

Log-linearizing equations (33)-(35) and rearranging implies

p̂∗t − p̂t = − 1

1+θ( 1
η
−1)

1
η

(
1− β (1− n) π

θ
η

)
p̂t +

1

1+θ( 1
η
−1)

β (1− n)
(

θ
η
π

θ
η − (θ − 1) πθ−1

)
Etπ̂t+1

+β (1− n) π
θ
ηEt

(
p̂∗t+1 − p̂t+1

)
+ 1

1+θ( 1
η
−1)

β
(
π

θ
η − πθ−1

)
Et

(
(1− n) b̂1t+1 − nn̂t+1

)
(39)

A.2.4 Losses from Misallocation

Log-linearizing equation (31) we have

x̂t =
(
1− (1− n) π

θ
η

)
(p̂∗t − p̂t)−

η

θ

(
1− π

θ
η

)
n̂t + (1− n)π

θ
η (x̂t−1 − π̂t)

A.2.5 Equation for b1t

Log-linearizing equation (33) we have

b̂1t = β (1− n) πθ−1 (θ − 1)Etπ̂t+1 + β (1− n)πθ−1Etb̂1t+1 − βnπθ−1Etn̂t+1

A.2.6 Slope of Phillips Curve

Combining equations (37) and (38) implies

π̂t =
MB +N
1−MA

(p̂∗t − p̂t)−
MC

1−MA
x̂t−1 +

M
1−MA

n− n̄

n
b̂1t

To derive an expression for inflation, we multiply both sides of equation (39) by MB+N
1−MA and

add − MC
1−MAxt−1 +

M
1−MA

n−n̄
n

b̂1t. Then, the LHS of equation (39) is equal to π̂t. Adding

and subtracting β (1− n) π
θ
η

(
− MC

1−MA x̂t +
M

1−MA
n−n̄
n

Etb̂1t+1

)
to the RHS of (39) to express

Et

(
p̂∗t+1 − p̂t+1

)
as a function of expected inflation and rearranging, implies that

π̂t = Km̂ct + β (1− n)

 θ
η
π

θ
η − (θ − 1) πθ−1

1 + θ
(

1
η
− 1
) MB +N

1−MA
+ π

θ
η

Etπ̂t+1+

+ β (1− n)

 π
θ
η − πθ−1

1 + θ
(

1
η
− 1
)MB +N
1−MA

− π
θ
η

M
1−MA

n− n̄

n

Etb̂1t+1

− βn
π

θ
η − πθ−1

1 + θ
(

1
η
− 1
)MB +N
1−MA

Etn̂t+1

+ β (1− n) π
θ
η

MC
1−MA

x̂t −
MC

1−MA
x̂t−1 +

M
1−MA

n− n̄

n
b̂1t,

where we used that m̂ct =
(
− 1

η
p̂t

)
.
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The slope of the Phillips curve is

K =
1

1 + θ
(

1
η
− 1
) (1− β (1− n) π

θ
η

)MB +N
1−MA

.

A.3 Log-Linear Approximation Around Each Point in Time

We next log-linearized the model around each point in time. To do this we consider the
impact of an additional monetary shock ε̃t which changes the money growth rate to

µ̃t = µt + ε̃t.

We let tildes denote the value of the equilibrium variables following this additional shock and
hat denote the log-difference between the tilde equilbrium variable and the original one, e.g.
π̂t = log π̃t − log πt. The equilibrium of the model can then be described by the system of
equations (30)-(36), where each equilibrium variable is replaced by its tilde counterpart. In
what follows, we log-linearize this new system, but refer to the original equations for brevity.

A.4 Price Index

Log-linearizing equation (30) and using

nt

(
p∗t
pt

)1−θ

= 1− (1− nt) π
θ−1
t

implies

π̂t =
1

(1− nt) π
θ−1
t

πθ−1
t − 1

θ − 1︸ ︷︷ ︸
Mt

n̂t +
1− (1− nt) π

θ−1
t

(1− nt) π
θ−1
t︸ ︷︷ ︸

Nt

(p̂∗t − p̂t) .

A.5 Frequency of Price Changes

Log-linearizing (32) implies

ξntn̂t = ξ (nt − n̄) b̂1t + b1t (1− τη)

(
p∗t
pt

)1−θ

(1− θ) (p̂∗t − p̂t)− b1tπ
θ−1
t (θ − 1) π̂t+

+ b1tτη

(
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η

((
1 + θ

(
1

η
− 1

))
(p̂∗t − p̂t) +

θ

η
π̂t −

θ

η
x̂t−1

)
,
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which can be rearranged as

n̂t =
nt − n̄

nt

b̂1t +
θ − 1

ξnt

b1t

((
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η − πθ−1
t

)
︸ ︷︷ ︸

At

π̂t+

+
b1t
ξnt

(
(1− τη)

(
p∗t
pt

)1−θ

(1− θ) + τη

(
1 + θ

(
1

η
− 1

))(
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η

)
︸ ︷︷ ︸

Bt

(p̂∗t − p̂t)

− (θ − 1)
b1t
ξnt

(
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η︸ ︷︷ ︸
Ct

x̂t−1.

Using

τη

(
1 + θ

(
1

η
− 1

))
= (θ − 1) (1− τη)

allows us to write

Bt = (1− τη) (θ − 1)
b1t
ξnt

((
p∗t
pt

)1+θ( 1
η
−1)

π
θ
η

t (xt−1)
− θ

η −
(
p∗t
pt

)1−θ
)
.

A.6 Optimal Reset Price

The log-linearized versions of equations (33)-(35) are

b1tb̂1t = βEt (1− nt+1) (πt+1)
θ−1 b1t+1

(
(θ − 1) π̂t+1 + b̂1t+1

)
− βEtnt+1 (πt+1)

θ−1 b1t+1n̂t+1

b2tb̂2t = − (pt)
− 1

η
1

η
p̂t + βEt (1− nt+1) (πt+1)

θ
η b2t+1

(
θ

η
π̂t+1 + b̂2t+1

)
− βEtnt+1 (πt+1)

θ
η b2t+1n̂t+1

and

p̂∗t − p̂t =
1

1 + θ
(

1
η
− 1
) (b̂2t − b̂1t

)
.

Because εt and ε̃t are independent, we can write

b̂1t = βEt (1− nt+1) (πt+1)
θ−1 b1t+1

b1t
Et

(
(θ − 1) π̂t+1 + b̂1t+1

)
− βEtnt+1 (πt+1)

θ−1 b1t+1

b1t
Etn̂t+1

b̂2t =
(pt)

− 1
η

b2t

(
−1

η
p̂t

)
+ βEt (1− nt+1) (πt+1)

θ
η
b2t+1

b2t
Et

(
θ

η
π̂t+1 + b̂2t+1

)
− βEtnt+1 (πt+1)

θ
η
b2t+1

b2t
Etn̂t+1.
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Subtracting the first expression from the second and multiplying by 1

1+θ( 1
η
−1)

gives

p̂∗t − p̂t =
1

1 + θ
(

1
η
− 1
) (pt)− 1

η

b2t
m̂ct +

+
1

1 + θ
(

1
η
− 1
)β Et (1− nt+1)

(
θ

η
(πt+1)

θ
η
b2t+1

b2t
− (θ − 1) (πt+1)

θ−1 b1t+1

b1t

)
︸ ︷︷ ︸

Ft

Etπ̂t+1 +

+ β Et (1− nt+1) (πt+1)
θ
η
b2t+1

b2t︸ ︷︷ ︸
Gt

Et

(
p̂∗t+1 − p̂t+1

)

+
1

1 + θ
(

1
η
− 1
)β Et (1− nt+1)

(
(πt+1)

θ
η
b2t+1

b2t
− (πt+1)

θ−1 b1t+1

b1t

)
︸ ︷︷ ︸

Ht

Etb̂1t+1

− 1

1 + θ
(

1
η
− 1
)β Etnt+1

(
(πt+1)

θ
η
b2t+1

b2t
− (πt+1)

θ−1 b1t+1

b1t

)
︸ ︷︷ ︸

It

Etn̂t+1

A.7 Losses from Misallocation

Log-linearizing equation (31) implies

−θ

η
x
− θ

η

t x̂t = nt

(
p∗t
pt

)− θ
η
(
n̂t −

θ

η
(p̂∗t − p̂t)

)
+(1− nt) (xt−1)

− θ
η π

θ
η

t

(
−θ

η
x̂t−1 +

θ

η
π̂t

)
−nt (xt−1)

− θ
η π

θ
η

t n̂t,

which can be rearranged as

x̂t = ntx
θ
η

t

(
p∗t
pt

)− θ
η

(p̂∗t − p̂t)+
η

θ
nt

((
xt

xt−1

) θ
η

π
θ
η

t − x
θ
η

t

(
p∗t
pt

)− θ
η

)
n̂t+(1− nt)

(
xt

xt−1

) θ
η

π
θ
η

t (x̂t−1 − π̂t) .

A.8 Equation for b1t

Lastly, log-linearizing equation (33) gives

b̂1t = β Et (1− nt+1) (πt+1)
θ−1 b1t+1

b1t︸ ︷︷ ︸
Dt

Et

(
(θ − 1) π̂t+1 + b̂1t+1

)
−β Etnt+1 (πt+1)

θ−1 b1t+1

b1t︸ ︷︷ ︸
Et

Etn̂t+1.

A.9 Phillips Curve

Following the same steps as in Section A.2.6 allows us to write the Phillips curve
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π̂t =
1

1 + θ
(

1
η
− 1
) (pt)− 1

η

b2t

MtBt +Nt

1−MtAt

m̂ct +
MtBt+Nt

1−MtAt

Mt+1Bt+1+Nt+1

1−Mt+1At+1

βEt (1− nt+1) (πt+1)
θ
η
b2t+1

b2t
Etπ̂t+1

+
1

1 + θ
(

1
η
− 1
)MtBt +Nt

1−MtAt

βEt (1− nt+1)

(
θ

η
(πt+1)

θ
η
b2t+1

b2t
− (θ − 1) (πt+1)

θ−1 b1t+1

b1t

)
Etπ̂t+1 +

+
1

1 + θ
(

1
η
− 1
)MtBt +Nt

1−MtAt

βEt (1− nt+1)

(
(πt+1)

θ
η
b2t+1

b2t
− (πt+1)

θ−1 b1t+1

b1t

)
Etb̂1t+1

− 1

1 + θ
(

1
η
− 1
)MtBt +Nt

1−MtAt

βEtnt+1

(
(πt+1)

θ
η
b2t+1

b2t
− (πt+1)

θ−1 b1t+1

b1t

)
Etn̂t+1

− MtCt
1−MtAt

x̂t−1 +
Mt

1−MtAt

nt − n̄

nt

b̂1t

−
MtBt+Nt

1−MtAt

Mt+1Bt+1+Nt+1

1−Mt+1At+1

βEt (1− nt+1) (πt+1)
θ
η
b2t+1

b2t

(
− Mt+1Ct+1

1−Mt+1At+1

x̂t +
Mt+1

1−Mt+1At+1

nt+1 − n̄

nt+1

b̂1t+1

)
,

so the slope of the Phillips curve is

Kt =
1

1 + θ
(

1
η
− 1
) (pt)− 1

η

b2t

MtBt +Nt

1−MtAt

.

B Solution Method

We describe our global solution method and show that it produces dynamics that are similar
to those obtained by solving the model using a third-order perturbation.

To solve the model globally, we use Chebyshev polynomials to approximate all equilibrium
objects. Our baseline model has two state variables, last period’s misallocation, xt−1, as well
as last period’s nominal price level deflated by this period’s nominal spending,

st =
Pt−1

Mt

,

which evolves according to

st+1 =
pt

exp(µ+ εt)
,

where recall that pt = Pt/Mt is the nominal price level detrended by nominal spending.
Letting Φ(st, xt−1) denote a row vector collecting the basis functions (tensor product of
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univariate Chebyshev polynomials) and γi a column vector of coefficients characterizing a
particular variable, say, π, we have

π(st, xt−1) = Φ(st, xt−1)× γπ.

We used 6 polynominals in each dimension so γi is 36× 1 and Φ(st, xt−1) is 1× 36.
We use a simulation-based approach to ensure accuracy in the region of the state-space

most often visited in equilibrium and pin down the coefficients γi by minimizing the errors
in the equilibrium conditions at all points that the economy visits in response to a his-
tory of 10,000 monetary shocks.14 We use a time-iteration algorithm. For a given guess
of the coefficients γi we calculate all the equilibrium variables for every date using a 5-node
Gaussian quadrature to compute expectations and update the coefficients using least-squares
projection.

Table B.1 reports several statistics that describe the accuracy of the solution method.
In Panel A we report the mean and maximum absolute error in the equilibrium conditions,
expressed relative to the value of each respective variable. The first column shows that the
projection method produces errors that are near machine precision. The second column
gauges the accuracy of a third-order perturbation: the average error produced by this al-
ternative approach is relatively small, 0.096% of the value of the respective variable, but
occasionaly the perturbation approach produces large errors, with a maximum value of 19%.
Importantly, as Panel B of the table illustrates, both approaches imply similar values for the
moments we targeted in calibration, suggesting that the ocasionally large errors implied by
the pertubation approach do not significantly affect the model’s key predictions.

Table B.1: Accuracy of Solution

A. Errors in Equilibrium Conditions

projection perturbation

mean abs. error 1.4× 10−14 9.6× 10−4

max abs. error 7.8× 10−12 1.9× 10−1

B. Targeted Moments

projection perturbation

mean inflation 3.290 3.291
s.d. inflation 2.322 2.313
mean frequency 0.296 0.294
slope of nt on |πt| 0.019 0.019

14Because ours is a relatively simple problem which converges fast, we do not use the clustering approach
suggested by Maliar and Maliar (2015).
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Figure B.1 plots a time-series of inflation and the frequency of price changes produced
by the projection and perturbation-based solution methods for the same history of monetary
policy shocks. This figure includes the period in which the perturbation method produces the
largest error of 19%, which occurs during the disinflation episode in period 37. The inflation
rate implied by the projection method is equal to -9.1% at this date, while that implied
by the perturbation method is equal to -8.2%. As the right panel of the figure shows, the
perturbation method overstates the fraction of firms that change prices on this date: 0.38
vs. 0.33. With the exception of this episode, the two approaches produce very similar values
for inflation and the frequency of price changes, suggesting that the perturbation method
provides a fairly accurate approximation.

Figure B.1: Simulated Time-Series Paths
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