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1 Introduction

Modeling the response of output and prices to monetary policy shocks has long been cen-
tral to macroeconomic research. Empirical studies consistently show that such shocks have
persistent and substantial effects on real output (Christiano et al., 1999; Ramey, 2016). The
non-neutrality of monetary policy, where real activity responds to nominal shocks, stems
from incomplete price adjustments to nominal disturbances. When prices do not fully ad-
just, quantities must change, driving fluctuations in real activity. Traditionally, this sluggish
price adjustment, or nominal rigidity, has been attributed to frictions such as menu costs or
informational barriers that prevent firms from updating prices.

However, Ball and Romer (1990) argued that nominal frictions alone are insufficient to
generate significant monetary non-neutrality. They emphasized that real rigidities, combined
with nominal frictions, are necessary to generate large real effects from nominal shocks. Real
rigidities arise from structural features of the economy, such as preferences, technology, and
market competition, that limit firms’ price adjustments even when nominal frictions are
absent. Real rigidities are often manifested in strategic complementarity in pricing, where a
firm’s optimal pricing strategy depends on the pricing behavior of its competitors.

Following the classification of Nakamura and Steinsson (2010) and Gopinath and It-
skhoki (2011), real rigidities can be grouped into two categories: micro (w-type) and macro
(Q-type).! While micro-level real rigidities, often modeled using non-CES (constant elas-
ticity of substitution) demand systems, are widely employed in fields such as international
trade and industrial organization, their adoption in quantitative monetary models of pricing
has been limited.? This limited use, as noted by Nakamura and Steinsson (2010), arises
partly from the fact that micro real rigidities cannot match observed micro pricing facts
under plausible parameter values. For example, Klenow and Willis (2016) argue that the
idiosyncratic productivity shocks required to fit price-setting data under the non-constant

elasticity demand system of Kimball (1995) are implausibly large and inconsistent with firm

!Examples of micro real rigidities include non-constant marginal costs (e.g., decreasing returns to scale,
as in Burstein and Hellwig (2007)), strategic complementarities between large firms (Atkeson and Burstein,
2008; Mongey, 2021), and non-constant elasticities and markups (Kimball, 1995). Examples of macro real
rigidities include production networks (Nakamura and Steinsson, 2010; Basu, 1995), segmented labor markets
(Gertler and Leahy, 2008; Woodford, 2003) and real wage rigidity (Blanchard and Gali, 2007).. Section 2
develops a simple theoretical framework that clearly defines micro and macro real rigidities.

2Non-CES demand systems are crucial for explaining markup variability (Edmond et al., 2023; Arkolakis
et al., 2019), exchange rate pass-through (Gopinath and Itskhoki, 2010; Amiti et al., 2019; Berger and
Vavra, 2019), and inflation dynamics and optimal monetary policy (Harding et al., 2022, 2023; Fujiwara and
Matsuyama, 2022).



dynamics.?

In this paper, we revisit the role of micro real rigidities in monetary economics using
a menu cost model with a non-CES demand system a la Kimball (1995). In particular,
we incorporate idiosyncratic demand shocks alongside standard idiosyncratic productivity
shocks, which we argue may address the long-standing critique of micro real rigidities in
the literature.* Our objective is to evaluate whether this quantitative model can reconcile
micro-level evidence on both pricing and firm dynamics while also generating substantial
monetary non-neutrality.

While quantitative menu cost models typically target pricing moments to discipline id-
iosyncratic shocks, we deviate from this approach by calibrating our model to firm-level evi-
dence from Foster et al. (2008), ensuring consistency with the firm dynamics literature while
leaving several pricing moments untargeted. Specifically, we calibrate the model to match
key moments from Foster et al. (2008), including the autocorrelation and cross-sectional
standard deviations of firm-level productivity and demand. Additionally, we target mo-
ments such as the correlation between revenue-based TFP (TFPR) and quantity-based TFP
(TFPQ), as well as the correlation between price and TFPQ. Our calibrated model success-
fully replicates several untargeted micro-level pricing moments, namely the size and direction
of price changes, and the dispersion of non-zero price adjustments. Furthermore, the model
generates a downward-sloping pricing hazard function consistent with empirical data, and
effortlessly delivers empirically-consistent distributions of markups and firm-level growth.

We demonstrate that our model generates substantial monetary non-neutrality, with
cumulative output responses approximately four times larger than those produced by a
comparable CES-based model—consistent with the findings of Golosov and Lucas (2007).
Two key features drive these results: the Kimball demand system, which induces strategic
pricing complementarities, and the inclusion of both idiosyncratic productivity and demand
shocks, which mitigate the selection effect in price adjustments to aggregate shocks. The
lion’s share of the effect stems from pricing complementarities. Notably, our micro-calibrated
demand system more than doubles monetary non-neutrality even in a Calvo (1983) model,
where the selection effect is fully muted.

The key innovation of our framework lies in the inclusion of idiosyncratic demand shocks.

3Burstein and Hellwig (2007) also show that a calibrated model with decreasing returns to scale is unable
to deliver significant non-neutrality.

4We focus on the Kimball (1995) demand system due to its widespread use across various fields of
economiics, its flexibility, and its central role in the critique by Klenow and Willis (2016). Additionally, we
show that alternative sources of micro real rigidities, such as non-constant marginal costs, fail to align with
evidence on firm dynamics.



Unlike models with CES demand systems, where demand shocks fail to generate price ad-
justments, the Kimball demand system allows firms to pass through portions of both pro-
ductivity and demand shocks to prices. This demand system introduces a trade-off between
strategic complementarities and the pass-through of productivity shocks. Previous studies
that focused solely on productivity shocks found that matching price-adjustment moments
required unrealistically large shocks (Klenow and Willis, 2016). By incorporating demand
shocks, we achieve a realistic calibration that remains consistent with empirical evidence.

In conclusion, this paper demonstrates that a menu cost model with micro real rigidities
can simultaneously align with micro-level pricing and firm dynamics data, and produce
significant monetary non-neutrality. Our approach paves the way for future research that
integrates real, nominal, and other firm-level decisions into a unified framework.?

The paper is organized as follows: Section 2 develops a simple theoretical framework that
highlights our key contributions. Section 3 introduces the quantitative menu cost model
with idiosyncratic shocks and a Kimball demand system. Section 4 discusses the calibration
strategy and untargeted moments. Section 5 examines the implications for monetary non-

neutrality. Finally, Section 6 concludes.

2 Real Rigidities and Demand Shocks

This section describes the main elements of our model and their interactions. The first key
feature of our model is a real rigidity, which causes a reduction in the responsiveness of
a firm’s price to an nominal aggregate shock. This is the primary mechanism for deliver-
ing monetary non-neutrality. For the real rigidity specification in our model, we employ
the demand system proposed by Kimball (1995). The second key feature of our model is
the introduction of an idiosyncratic demand process in addition to the more standard id-
iosyncratic productivity process. We then demonstrate the interaction between the Kimball
demand system and idiosyncratic demand shocks, which is critical for reconciling firm and

pricing dynamics.

5 Aruoba et al. (2022) underscore the flexibility of the Kimball framework using Chilean microdata, incor-
porating additional features such as leptokurtic shocks and news shocks. While distinct from our approach,
their findings highlight the framework’s value in explaining pricing behavior.



2.1 Micro and Macro Real Rigidities

Real rigidities are mechanisms that cause firms to refrain from fully adjusting their relative
prices in response to changes in aggregate conditions, even when there are no nominal pric-
ing frictions. As shown by Ball and Romer (1990), quantitative monetary models need to
combine both nominal and real rigidities to ensure that monetary shocks have meaningful
real aggregate effects. This section presents a simple price-setting problem to examine two
key sources of real rigidities that lead to increased monetary non-neutrality.® Consider a

static, frictionless price-setting problem for a firm with the profit function

pi S
II (Fa F’Al) ) (1)
pi

where % is the firm’s relative price, % =Y is the real money supply—equal to real aggregate

demand in equilibrium—and A; represents a collection of additional idiosyncratic variables
affecting the profit function. In the absence of nominal pricing frictions, the firm optimally

chooses p?; to maximize profit by satisfying the first-order condition
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We define the degree of real rigidity by the responsiveness of the firm’s desired relative

price p?f to a change in real aggregate demand %

pi pi S,
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Assuming II;5 > 0, which ensures a stable equilibrium, and noting that profit maximization

¢

requires Il;; < 0, the firm’s optimal relative price is increasing in real aggregate demand

(¢ >0).7
Real rigidities are stronger when ¢ is small. This occurs when IIj5 is small or |[TTj4] is

large. Intuitively, when II;5 is close to zero, changes in real aggregate demand have a small

6The expositions of Ball and Romer (1990) and Nakamura and Steinsson (2010) serve as the primary
sources for this section.

“If II;5 < 0, an increase in S would trigger a chain of events where prices keep decreasing. If II;, = 0,
prices do not respond at all to changes in S so nominal shocks have permanent effects on real output. Il15 > 0
ensures that S/P is convergent following a nominal shock.



effect on II;. As a result, a firm’s desired price, which is determined by II; = 0, is less
sensitive to aggregate demand shocks. Alternatively, ¢ is smaller when the profit function
is more concave, or when |IIy;| is large. This increases the slope of II; so that firms’ prices
respond less to a given aggregate demand shock, as it is more costly for firms’ relative prices
to deviate from their competitors. This in turn also leads to a muted response of prices to
a change in aggregate demand.

Real rigidities are closely linked to strategic interactions between firms’ pricing decisions
through IIy;. To illustrate this, we can define the strategic interaction between firms’ price-
setting decisions by . .

¢ = % - % + E—i% (4)
When ¢ > 0, firms’ pricing decisions are said to be strategic complements, as their optimal
prices comove positively with the aggregate price index. Conversely, firms’ pricing decisions
are strategic substitutes when ( < 0. In a symmetric equilibrium where all firms choose the
same price, and by normalizing Y = S/P to 1, equations (3) and (4) yield ¢ = 1 — {, which
shows that stronger real rigidities (¢ close to zero) lead to stronger strategic complementarity
in pricing (¢ close to unity).

Going back to real rigidities, the literature typically refers to mechanisms that operate
through II;5 as macro real rigidities (termed Q-type strategic complementarity by Nakamura
and Steinsson (2010)) and those that operate through II;; as micro real rigidities (termed
w-type strategic complementarity). Macro real rigidities, which work through smaller Il;,,
make firms less responsive to aggregate shocks. This can occur, for example, if firms’ costs
are sticky and do not respond to changes in aggregate conditions. Examples of macro real
rigidities include real wage rigidities (Blanchard and Gali, 2007) and sticky input prices in
production networks (Basu, 1995).

In contrast, due to the concavity of the profit function as captured by |II;;|, micro real
rigidities make adjusting one’s own relative price costly. This can dampen firms’ pricing
responses to aggregate shocks when paired with nominal pricing frictions. This type of real
rigidity can have two sources: the demand function and the cost function. To see this,

consider the real profit function

Di Pi Di Di
w(G) =50 () -c (5]
iz PD iz C\|\D iz (5)
where D (%; ) is the demand schedule, which depends on the firm’s relative price and other
factors, and C' [D (%; )] is the total real cost of production. The second derivative of the



profit function with respect to the firm’s relative price is given by

o (35) =301 (35 [ [0 (3 )]] o () o (5] [o1 (3]

A more concave demand function (D;; << 0) can increase |IIj1], as firms incur larger
losses when their relative prices deviate from the optimal level. Examples of demand-side
micro real rigidities include CES demand systems that allow for more curvature, such as those
in Kimball (1995) and translog demands (Bergin and Feenstra, 2000). Alternatively, firms
may also find relative price adjustments costly if they face an increasing marginal cost curve
(C11 >> 0). When the marginal cost curve is increasing, the average cost rises whenever firms
cut prices to increase quantity sold, reducing profit per unit sold and offsetting the gains from
lowering prices. This effect is more pronounced when the marginal cost curve is more convex.
Examples of cost-side mechanisms include decreasing returns to scale production technology
Burstein and Hellwig (2007) and segmented input markets leading to upward-sloping cost
curves at the firm level (Woodford, 2003; Gertler and Leahy, 2008).5

Despite its theoretical soundness, the literature has largely regarded micro real rigidities
(or w-type strategic complementarity) of limited relevance in quantitative pricing models.
As noted by Klenow and Willis (2016), the scale of idiosyncratic productivity shocks or
price adjustment costs needed to replicate the empirically observed price change sizes is
implausibly high within menu cost models that incorporate micro real rigidities.

To clarify this critique, observe the expression

Op; _ I3
P T (6)

Assuming II;3 is invariant to the presence of real rigidities, this demonstrates that when
micro real rigidities are present—that is, when |II;] is large —the sensitivity of firms’ prices
to changes in idiosyncratic variables, such as productivity shocks, is reduced. As a result,
to achieve a certain magnitude of price changes under stronger micro real rigidities, larger

disturbances to idiosyncratic variables would be required.

8 Alternative mechanisms that do not fall into the demand or cost side mechanisms discussed here are
typically concerned with market structure and competition, such as the oligopolistic competition framework
in Mongey (2021).



2.2 Revisiting Micro Real Rigidities

Our focus in this paper is on demand-side micro real real rigidities that increase the concav-
ity of profit function through concave demand functions, though we also examine cost-side

mechanisms for robustness.?

To capture these demand-side rigidities, we employ the de-
mand system proposed by Kimball (1995), which produces variable price elasticity and can
accommodate any curvature of the demand function.

The Kimball demand framework defines an aggregator GG that combines varieties y; into

a composite good Y through the implicit equation

1= /G (y?) di, (7)

where G satisfies G(1) = 1, G'(x) > 0, and G”(x) < 0 for all z > 0. Under this demand

structure, a producer of variety y; faces an inverse demand function®

)

A key feature of the Kimball demand system is that the price elasticity of demand, e,
depends on the relative output ¥ of the firm’s product
1 yz G//

W e Y

With an appropriate choice of the G(.) function, any desired relationship between demand
elasticity and relative output—and, therefore, any desired degree of curvature in the demand
function—can be generated. To produce micro real rigidity and strategic complementarity,
we focus on the case where demand elasticity decreases with relative output. In this setting,
the incremental output from a price reduction decreases as firms move down the demand

curve, resulting in greater concavity of the demand function.!* This greater concavity in the

9 Appendix D.3 examines the quantitative performance of a cost-side model, comparing our baseline model
to Burstein and Hellwig (2007), which uses a CES framework with decreasing returns to scale and demand
shocks.

10This inverse demand function is derived from the cost minimization problem Hlllin J piyidi, subject to

1= [ G (%) di. The associated Lagrangian is £ = [ pyy;di — A [1 — [ G (%) di].
1 The super-elasticity of demand, S, defined as the elasticity of demand elasticity with respect to price, is

— dep _ D”"(p)-pD(p)+D'(p)-D(p)—D’(p)*-p
—dpe D’(p)-D(p) ’

As concavity in D(p) increases (i.e., more negative D”(p)), the super-elasticity becomes more positive,
indicating that demand elasticity declines faster as price decreases and relative output rises.

insightful here. For a generic demand function D(p), it is given by S




profit function penalizes deviations from the optimal relative price %, leading to strategic
complementarity in pricing.

A significant implication of variable demand elasticity is its effect on desired markups and
cost pass-through. For a firm experiencing a positive productivity shock, its marginal cost
decreases, encouraging a price reduction to boost sales. Under CES demand, prices adjust
proportionally to changes in marginal cost and markup remains constant. However, with
Kimball demand, demand elasticity decreases as prices fall and relative output increases,
which lessens the revenue gains from further price reductions. As a result, the firm adjusts
prices by less than one-for-one relative to marginal cost changes, leading to higher markups.
This incomplete pass-through of costs forms the basis of the critique by Klenow and Willis
(2016), who argue that because micro real rigidities dampen price responses to idiosyncratic
productivity shocks, implausibly high productivity shock volatility would be needed to match
observed price changes.

We propose that this critique can be addressed by incorporating idiosyncratic demand
n; into the Kimball aggregator, modifying it as 1 = [ G (%) di. Here, n; alters each firm’s
effective market share, impacting its demand elasticity and, thus, its desired markups and
prices. Intuitively, varieties with higher n; attract greater consumer preference, leading to
smaller demand elasticities and higher permissible markups. Consequently, demand shock
volatility contributes directly to price volatility, offsetting the reduced impact of idiosyn-
cratic productivity shocks on price adjustments. Put differently, for a given degree of price
volatility, the presence of demand shocks reduces the need for large productivity shocks.

In our quantitative analysis, following Dotsey and King (2005), we specify G(.) as:

14wy
niYi W iYi w(I9) W
G( ) _ [ | _ 1— , 10

Y 1+ wy (1+9) Y 4 * 14wy (10)
where n; is an idiosyncratic demand shifter. Here, 1 plays a crucial role, influencing the
relationship between demand elasticity and effective market share, the curvature of the
demand function, and the pass-through of idiosyncratic productivity and cost changes to
prices.

Given the aggregator G(.) in (10), solving the final producer’s cost-minimization problem



yields the demand function for each variety '

w(ll-‘rdl)
Di -

where A is the Lagrange multiplier on the aggregator G in the cost-minimization problem

ny 1
Y 149

, (11)

and P is the aggregate price index.'® Following (9), the price elasticity of the demand system

for firm ¢ is given by

w(1+y)
s D 1-w
e:ay@_ w (1+¥9)5* —v  w(l+y) ()\niP
T opy 1-w . o l-w ="
' (shp)

When ¢ < 0, the price elasticity of demand increases with the relative price of the variety, %,
and decreases with the effective market share of the variety, %.14 The opposite effects hold
when 1 > 0. When ¢ = 0, this specification simplifies to the familiar constant elasticity
of substitution (CES) Dixit-Stiglitz aggregator, which results in iso-elastic demand. The

parameter 1 also controls the super-elasticity of demand, given by

_aeipi_ W (U
T Opie 1—wYi

Y

Vi (12)

Assuming w > 1, the super-elasticity becomes more negative as 1) < 0 decreases, which
creates greater curvature in the demand function. Thus, more negative values of ¢ lead to
stronger real rigidity measured by ¢ in (3), as illustrated in Figure A-1.

The parameter 1) is also critical for addressing the Klenow and Willis (2016) critique, as
it determines the pass-through of idiosyncratic demand and cost to firms’ desired prices in
conjunction with w. To see this, we log-linearize the optimal pricing problem of a variety

producer who does not face any pricing frictions and react to idiosyncratic shocks z and n.

12The full final producer’s problem is presented in Section 3.2.1.
13The Lagrange multiplier A can be obtained by substituting final producer’s first-order condition into the

1—w
1, | e TRy
Kimball aggregator: A = [ i (nﬂ? P) ' dz} . The aggregate price index is derived from the zero-profit
0
1, L\ e (TS -
condition of the final producer: P = ﬁ {f (%) dz} + % J B di.
0 0

4 Appendix A.1 show the partial derivatives of the demand elasticity with respect to relative price, demand,
and market share.
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The optimal price is

w N N
5= ¢1<A+P+m)+

wY —

Zi, 13
wyp —17" (13)
where hatted variables denote log-deviations from the steady state. Note that me; = —2;
denotes the log-deviation in marginal cost, which is inversely related to productivity under
constant returns to scale. The price elasticities with respect to productivity and demand
shocks, respectively, are given by

op; 1 op; w

L = — and L = 4 )
ome; wp —1 on; wy—1

We refer to these as cost and demand pass-through, respectively.

When ¢ = 0, cost pass-through is complete: price decreases one-to-one with a positive
z shock (negative mc shock). However, when ¢ < 0, cost pass-through becomes incomplete.
When ¢ = 0, demand pass-through is zero, which is the standard result under CES. When
1 < 0, demand pass-through becomes positive: a firm experiencing a demand shock chooses
to increase its price or, equivalently, applies a higher markup over its marginal cost. Thus
the relative importance of demand and cost shocks in determining prices depends on the
degree of micro real rigidity, as controlled by 1. Figure 1 shows the pass-through of cost
and demand to the optimal frictionless price as a function of ¥ for a given value of w. As
1 decreases, the pass-through of productivity shocks declines, while the pass-through of
demand shocks increases.

Interestingly, although the analysis around (6) shows that stronger micro real rigidities
(larger |II;;|) dampen the response to productivity shocks, this conclusion is reversed for
demand shocks. The key to this difference lies not in the behavior of |IIj;| but in the rela-
tionship between ¢ and II;3 for different types of idiosyncratic shocks. As shown in Appendix
A4, under a symmetric equilibrium, the value of I3 is independent of 1 for productivity
shocks, implying that (6) is dominated by the increase in |IIy;| triggered by more negative
values of 1. In contrast, I3 increases with ¢ when considering idiosyncratic demand shocks.
This increase dominates the dynamics of (6), producing the behavior illustrated in Figure 1.
This is why demand shocks within a Kimball demand system have the potential to overturn

the volatility-dampening effect documented by Klenow and Willis (2016).

11



Figure 1: Pass-through of Demand and Cost Shocks to Price
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Note: This plots pass-through of a small (1%) change in demand and productivity to the optimal frictionless
price around a symmetric equilibrium with w = 1.29

3 Quantitative Menu Cost Model

This section builds a quantitative menu-cost model similar to Golosov and Lucas (2007) and
Nakamura and Steinsson (2008), consisting of a representative household, a representative
final-good producer, and a continuum of monopolistically competitive intermediate-variety
producers facing nominal pricing frictions. The key difference is the inclusion of the elements
described in Section 2, i.e., a Kimball (1995) demand system with idiosyncratic demand

shocks.

3.1 Households

A representative household supplies labor to firms in exchange for wage payments, purchases
a complete set of Arrow-Debreu securities, B¢, 1, and consumes a final good, Cy. It also owns
all firms in the economy and receives all accrued profits. The representative household solves

the following problem
max By Y B'[log(Cy) — xhi] (14)
t=0

Ct,ht,Bty1

12



subject to the budget constraint
PCy + Qi - Beyr < By + Wihy + 11, (15)

where Qq is a vector that contains the prices of the state-contingent securities, Byy1. B
represents the payoff of the state-contingent security purchased in period ¢ — 1 that had a
non-zero payoff in period ¢t. P, and W, are the price of the final good and nominal wage,
respectively, both of which are taken as given by the households. II; denotes the net dividends
the household receives from the producers.

Household optimality requires

B = XCta (16)

and we can also define the household’s stochastic discount factor as

_ )
= = [E . 17
= P8 (G (1

3.2 Producers

Production is carried out by a continuum of perfectly-competitive final-good producers, who
purchase varieties of intermediate goods and sell a combined final good to the households.
A continuum of intermediate-good producers each produce a differentiated variety and are

monopolistically competitive due to imperfect substitution across varieties.

3.2.1 Final Good Producers

A representative final-good firm combines intermediate varieties, y!, to produce the final
good, Y}, using the Kimball (1995) aggregator defined in (10). The representative final-good
producer chooses y! to maximize profits taking as given variety prices, p{, as well as P;, ni

and the real aggregate demand, Y;, solving the problem
1

o L o
max 1 — /%dz subject to /G (%) di = 1. (18)
0

Yi t
0

The optimality condition of the final-good producer’s maximization problem implicitly de-
fines the demand function for each variety in (11) and the aggregate price index follows from

the zero-profit condition.

13



3.2.2 Intermediate Variety Producers

There is a continuum of intermediate-good producers indexed by ¢, each producing a differ-
entiated variety y;. Intermediate producers are heterogeneous in their productivity, z;, and
face demand shocks for their variety, n!. The production technology is linear with labor as
the only input

v = 2ily. (19)

Idiosyncratic productivity, z{, and idiosyncratic demand, n}, evolve according to a VAR(1)

og(zt-) = |° Og(zt__l) + uy where uy ~ N | 0, 7 (20)
log(n}) 0 pa| \log(ni_,) Oen O

At the beginning of each period, intermediate-good producers inherit their prices from

process

the previous period p!_; and observe the realizations of z! and ni. They then decide whether
or not to adjust their nominal prices and if so, by how much. Nominal price adjustments
are subject to a fixed cost, f, in terms of labor. Given the demand schedule for individual

varieties, the intermediate producers’ gross profit when they charge price p! is

w(l+7)

ii i pi Wi\ Yo 1 pi o
sy (P Wi\ Y : 21
7(p}, 2, ny, St) <Pt Z§Pt> nil+1) ()\tn;Pt> +v, (21)

where §; = (P, Wy, Y;, A¢) collects all the relevant state variables, and the firms can approx-
imate well the law of motion for S;.

The firms choose whether or not to change their prices by solving the problem
1% (pf;_l, zf,nf;,St) = max [VN (pf;_l, zf',nf;,St) ,Va (zé, ni,St)} , (22)

where Vy(.) and V4(.) are the values for the firm not adjusting and adjusting their prices,
respectively.

The value of not adjusting prices is
VN (piflv ZZ? nf‘:; St) =7 (pifb sz nia St) + Et [Et,t—i-lv (piflv ni+17 ZZ+17 St—i-l)} ) (23>

which is equal to the flow profit evaluated at last period’s price plus a continuation value. If

the firm chooses to adjust its price, it pays the fixed price adjustment cost and chooses p! to
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maximize the sum of current flow profit and the present discounted value of future profits

given by

o W o _ o

VA (zllfa ’I’L;, St) = _th + mE}X {ﬂ-(pjﬁ Z;fb) niv St) + ]E't |::‘t,t+1V (pta N1y 211 St-i—l)} } . (24)
t ya

The intermediate-good producers solve this problem taking as given the laws of motion for

the idiosyncratic state variables as in (20) and those for the aggregate variables in &;.

3.2.3 Aggregate Nominal Expenditure

Money supply, S;, which must be equal to nominal aggregate expenditures, P,C}, in equilib-

rium, follows the stochastic process
10g (St) = U + 10g (St—1> + Og€¢, € ™~ N(O, ].), (25)

where money supply grows at rate of p every period with stationary fluctuations around
it given by €. As standard in the literature, because a one-time change in ¢; creates a
permanent change in money balances, we interpret it as a monetary policy shock. This
shock is the only source of aggregate uncertainty in our model. In calibrating our model, we

set og = 0 as it has minimal influence on the model-implied moments used for calibration.'®

4 Calibration

This section outlines the calibration strategy and demonstrates that a simple menu cost
model incorporating micro real rigidities aligns with firm-level estimated shocks and gener-
ates appropriate pricing dynamics. Additionally, the parsimonious model captures several
non-targeted empirical regularities documented in the literature.

The calibration approach departs from standard menu cost models in one significant way.
In some quantitative menu cost models there is a shock that directly affects the desired price
(e.g., Caplin and Spulber (1987)). More commonly, a productivity shock is introduced (e.g.,
Golosov and Lucas (2007); Nakamura and Steinsson (2010); Midrigan (2011); Vavra (2014))
however its properties are calibrated to match various pricing moments without any reference
to empirical evidence on firm-level productivity. We take a novel approach by disciplining

idiosyncratic demand and productivity processes with direct firm-level evidence.

15 Appendix B.2 describes our solution method.
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Table 1: Externally Calibrated Parameters

Parameter Description Value Source
15} Discount Factor 0.9966 Annual discount rate of 4%
X Labor disutility 1 Normalization
I Growth rate of S 0.002  Annual inflation rate of 2.4%
Os SD of shocks to nom. expenditure 0.0037 Vavra (2014)
Oz Corr. b/w productivity and demand innov. 0 Foster et al. (2008)

Note: This table displays the externally calibrated parameters in the model.

Our methodology also contributes to the macroeconomic literature using Kimball demand
systems (Smets and Wouters, 2007; Klenow and Willis, 2016; Harding et al., 2022, 2023),
demonstrating how micro moments can discipline key parameters characterizing the demand
system.

The model involves calibrating 12 parameters. Five parameters (3, x, 14, 0s, 0., ) are exter-

nally calibrated, while the remaining seven (p,, 0., pn, on,w, ¥, f) are determined internally.

4.1 Externally Calibrated Parameters

We begin by detailing the externally calibrated parameters. The model is calibrated to U.S.
data, with each model period representing one month. The monthly discount factor 5 is set
to 0.9966, corresponding to an annual discount rate of 4%. Following standard practice in
the literature (Midrigan, 2011), the disutility of labor, ¥, is normalized to 1, ensuring that
the nominal wage, W;, equals the money supply, S;. The monthly growth rate of the money
supply, u, is set at 0.2%, implying an annual inflation rate of approximately 2.4%. For
firm-level processes, we assume that idiosyncratic demand and productivity innovations are
uncorrelated (o, = 0).! Lastly, in monetary policy experiments, we calibrate o5 = 0.0037,
following Vavra (2014), to match the observed volatility of nominal output growth in the

U.S. Table 1 summarizes the five externally calibrated parameters.

16This assumption aligns with Foster et al. (2008), where o, = 0 is necessary for their estimation strategy,
which assumes orthogonality between demand and productivity. Using Colombian data and an alternative
strategy that relaxes this assumption, Eslava et al. (2024) report a correlation of —0.07 between demand
and productivity. We address this in Appendix D.2; showing that our results are robust even when allowing
for correlated shocks.
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4.2 Internally Calibrated Parameters

To be consistent with the firm dynamics evidence, we refer to Foster et al. (2008), who provide
direct estimates of firm-level idiosyncratic productivity and demand processes using data on
U.S. manufacturing firms from 1977 to 1997.17 We rely on these estimates to discipline the
parameters governing the AR(1) processes for idiosyncratic firm productivity (p,, o) and
demand shocks (p,,, 0,,) in the model. In addition, we use two moments from the same study
to calibrate the parameters governing the Kimball demand system (w, ). In contrast to the
conventional calibration strategy in the menu cost literature, we rely on only a single pricing
moment — the frequency of price changes.!®

We jointly calibrate these seven parameters to match the frequency of price changes and
six firm-dynamics moments from Foster et al. (2008): the five-year autocorrelation and the
annual variance of demand and TFP, the correlation between TFPQ and price, and the
correlation between TFPQ and TFPR. We construct firm-dynamics moments from model
simulated data in the exact same way as Foster et al. (2008) do in their empirical analysis.*?
Details on the empirical data targets as well as the calibration algorithm are delegated to
Appendix C.

Before presenting the results, a discussion on the identification of parameters is in order.
While all seven parameters influence the model’s ability to match all calibration targets,
some parameters are more responsible for matching specific target moments. Some of these
relationships are intuitive. The fixed cost, f, plays a significant role in determining the
model-implied frequency of price changes, while the shock-process parameters (p,, 0., pn, op)
are closely related to the empirical persistence and cross-sectional dispersion in firm-level
demand and productivity reported in Foster et al. (2008).

Less obvious may be the links between 1, w and the correlations of TFPQ with prices
and TFPQ with TFPR. To understand these, it is instructive to start from a CES demand
system (with ¢» = 0). In the absence of pricing frictions, the profit-maximizing rule in that

framework delivers a pricing strategy that sets price as a constant markup over marginal

17 Appendix C.1.1 describes the procedure used by Foster et al. (2008), and Appendix C.2 provides details
on how we replicate their estimation using model-simulated data.

18 Appendix C.4 considers an alternative strategy where we target the average size of price changes instead
of the frequency and show that the two strategies lead to very similar outcomes.

190ne may be concerned that some of the underlying assumptions in Foster et al. (2008) are not satisfied
in our model. Two noteworthy ones are flexible prices and CES demand. The former is less likely to
have large effects on annual firm aggregates and five-year autocorrelations of firm idiosyncratic demand and
productivity. In general, treating the model generated data in the same way as Foster et al. (2008) means
that the model moments and empirical moments are affected by these two sources of misspecification equally.
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cost. As a result, a firm’s optimal price is inversely proportional to its productivity, that
is, Corr(P,TPFQ) = —1. Moreover, in a CES demand system, TFPR is equalized across
firms, so Corr(TFPR, TPFQ) = 0. This occurs because optimizing firms operate at the
point where the marginal revenue product of labor (p;;2;;) equals the nominal market wage.

Under a Kimball demand system, both productivity and demand factors affect a firm’s
optimal price, as shown in Section 2.2. In particular, deviations from CES, controlled by the
parameter 1, reduce the influence of productivity on pricing relative to demand. Because
some price changes are due to demand shocks, this weakens the perfect negative correlation
between price and TFPQ. The parameter w, on the other hand, governs the elasticity of
substitution between varieties around a symmetric equilibrium, with a higher w indicating
less substitutability across varieties. In a Kimball demand system, more productive firms
can charge higher prices if the elasticity of substitution is lower (w is higher), leading to a
higher correlation coefficient between TFPQ and TFPR.?

To demonstrate that the calibration targets are indeed informative for the respective
parameters, we solve the model for a large set of quasi-random parameter vectors and show
a strong relationship between each internally calibrated parameter and its corresponding
empirical target moment. The results are reported in Appendix C.3.

The results of the internal calibration are reported in Table 2. The top panel shows
the targeted moments, whose calculations are described in more detail in Appendices C.1.1
and C.1.2. The second panel presents the seven parameters calibrated jointly. The results
indicate that all seven moments are matched very closely. The calibrated processes for
idiosyncratic demand and productivity are highly persistent, with monthly autocorrelations
of 0.997 and 0.98, respectively. While innovations to idiosyncratic productivity are larger,
with a standard deviation of 0.06 compared to 0.02 for demand, the stationary distribution
of idiosyncratic demand exhibits greater dispersion due to the highly persistent nature of
the process.

Regarding the parameters governing the shape of the demand function, the calibrated
value of ¥ = —1.27 suggests that a substantial deviation from CES demand is necessary to
match the data. The calibrated value of w = 1.29 implies a price elasticity of demand of 4.44
and a markup of 29% under a symmetric equilibrium. Appendix C.5 discusses calibrations
and estimates from other studies with Kimball demand, showing that our calibration lies

modestly within the range of values considered in the literature.

20 Appendix A.2 provides supplementary derivations on the properties of the symmetric equilibrium.
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Table 2: Internal Calibration

Moment Data Baseline Model
Frequency of price changes 0.11 0.12
5-year autocorrelation of z; 0.32 0.32
Cross-sectional standard deviation of z; 0.26 0.25
5-year autocorrelation of n} 0.62 0.62
Cross-sectional standard deviation of n! 1.16 1.05
Corr between TFPR and TFPQ 0.75 0.74
Corr between price and TFPQ —0.54 —0.57
Parameter Description Value
0 Super-elasticity -1.27
w Elasticity 1.29
- Persistence of 2! 0.98
o, Standard deviation of z; 0.06
Pn Persistence of n} 0.997
On Standard deviation of n! 0.02
f Menu cost 0.03

Note: The top panel of this table compares the targeted moments and model-implied moments. The bottom
panel shows the parameter values for each calibration.

Table 3: Untargeted Pricing Moments

Moments Data Baseline

Average Size 0.08 0.07
Fraction Up  0.65 0.58
SD(Ap) 0.08 0.07

Note: This table shows the three untargeted moments: average size of adjustment conditional on a price
change, the fraction of adjustments that are positive, and the standard deviation of price changes excluding
zeros from the data and from model simulated data.

4.3 Untargeted Pricing Moments

Table 3 reports three important pricing moments that are not targeted in the calibration of
the baseline model, alongside their data counterparts computed from U.S. CPI microdata.?!
These moments include the average size of a price change conditional on a change, the

fraction of adjustments that are positive, and the dispersion of non-zero price changes. Our

2'We borrow these estimates from Vavra (2014), which we review in more detail in Appendix C.1.2.
One may be concerned about whether pricing facts from CPI data are the correct benchmark. However,
Nakamura and Steinsson (2008) show that the key pricing moments computed from PPI data do not differ
significantly.
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model matches all three moments very well.

The success of the model addresses the skepticism in Klenow and Willis (2016) regarding
the relevance of micro real rigidities by demonstrating that a menu cost model incorporating
micro real rigidities can indeed be consistent with both direct estimates of idiosyncratic firm
processes and the price-setting behavior of firms. This success is due to the interplay between
micro real rigidities introduced through Kimball demand and the inclusion of demand shocks.
Crucially, the precise calibration of these two components is essential for achieving the results.
Figure A-5 in Appendix C.3 illustrates that the value of 1) is positively related to the average
size of price changes, as stronger strategic complementarities reduce the dispersion between
firms’ prices. Furthermore, Table A-7 in Appendix D.4 demonstrates that an alternative
calibration without demand shocks results in smaller price changes. Thus, it is remarkable
that our model matches the pricing moments as well as it does given that the key parameters
are informed by the firm dynamics moments in Foster et al. (2008).

We also examine the hazard function of price changes generated by the model. The price
adjustment hazard is defined as the probability that a price will change h periods after the
last adjustment, conditional on the price spell lasting h periods. Empirically, the hazard
function is observed to be either downward-sloping (Nakamura and Steinsson, 2008; Baley
and Blanco, 2019) or flat (Klenow and Kryvtsov, 2008).22 As highlighted by Nakamura and
Steinsson (2008), simple menu cost models are typically unable to produce hazard functions
consistent with the empirical evidence. This limitation largely depends on the calibration of
the idiosyncratic processes.

In models with trend inflation, the hazard function tends to be upward-sloping when
idiosyncratic shocks are small. This occurs because, once a price changes, it takes time for
trend inflation, the dominant source of price changes under small idiosyncratic shocks,to
accumulate sufficiently to trigger another adjustment. Larger and more persistent idiosyn-
cratic shocks flatten the hazard function by inducing temporary price changes, which are
often quickly reversed, thus increasing the early part of the hazard function. Thus when
idiosyncratic shocks become sufficiently large, a simple menu-cost model can produce a
downward-sloping hazard function. However, Nakamura and Steinsson (2008) argue that
such calibrations are unrealistic, as they conflict with micro-level pricing facts. This con-
clusion has motivated alternative pricing models that aim to rationalize a downward-sloping

hazard. For instance, Baley and Blanco (2019) introduce firm-level uncertainty and learning

22While the literature generally finds a mildly negative slope, Alvarez et al. (2023a) show that controlling
for product heterogeneity can reverse the sign of the slope.
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Figure 2: Hazard Function of Price Change
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Note: This figure plots the pricing hazard from model generated data against the empirical hazard estimated
from US CPI in Baley and Blanco (2019).

to generate frequent price changes shortly after an adjustment.

Figure 2 shows the mildly downward-sloping hazard curve produced by our model, com-
pared with the empirical hazard function estimated by Baley and Blanco (2019) using U.S.
CPI data.?® While the model-implied hazard does not exhibit a steep decline in the first
few months, it successfully captures the overall downward-sloping pattern observed in the
data. This is consistent with the logic explained earlier. The presence of idiosyncratic shocks
increases the hazard rate, as having two orthogonal shocks provides more reasons for price
changes shortly after an adjustment. Furthermore, the inclusion of both types of shocks re-
duces the need for each shock to be particularly large, addressing the criticism of Nakamura
and Steinsson (2008) noted above.

4.4 External Validity: Markups, Pass-through, and the Size Distribution

The work of Foster et al. (2008) is the only study for the U.S. that systematically estimates
productivity and demand shocks at the firm level across different industries. This estimation

relies on price and quantity data at the product level, alongside other information such as

23The shape of the hazard function reported by Baley and Blanco (2019) aligns with that reported by
Nakamura and Steinsson (2008) for processed food, which they suggest is representative of the hazard
function for many other product groups.
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Figure 3: Cross-Sectional Distribution of Gross Markup: Model vs. Data
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The figure plots the kernel density of the empirical markup distribution from publicly traded firms in the
U.S. as well as the kernel density of the markup distribution in the ergodic distribution of the model. Both
kernel densities are computed using the optimal bandwidth for normal densities.

inputs. By focusing on a carefully selected set of firms operating in industries that produce
homogeneous products, they are able to separately estimate the processes for productivity
and demand shocks.

However, one might question the external validity of the estimations provided by Foster
et al. (2008) when applied to the broader economy. We address these concerns by comparing
our model to additional statistics computed from different samples. Despite being calibrated
to a limited set of manufacturing industries, our model successfully matches untargeted
moments for the broader economy across several dimensions—namely, price-setting evidence,

the cross-sectional markup distribution, and the overall dispersion of firm growth rates.

4.4.1 Markups

One prominent application of Kimball demand, among other non-CES systems, is in mod-
eling variable markups. Because a firm’s desired markup depends on both its idiosyncratic
productivity and demand, the cross-sectional distribution of productivity and demand, com-

bined with pricing frictions, results in a non-degenerate markup distribution in the model.
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Figure 3 plots the kernel density of the cross-sectional distribution of gross markups
from both the model and the data. The empirical distribution of markups is computed
using data on public firms between 1980 and 2000, following the method of De Loecker et al.
(2020).2* We find that the markup distribution generated by the model closely resembles the
untargeted empirical distribution. The median gross markup in the model is 1.35, compared
to 1.33 in the data. However, the model-implied markup distribution exhibits lower variance
than the empirical distribution, particularly in the tails. Specifically, our model generates
fewer firms with gross markups exceeding 2 and does not produce markups significantly below
1. Matching these extreme tails would require additional features, such as non-Gaussian
demand shocks, monopolistic firms (large positive markups), customer capital, or firm exit
(negative markups).

The success of our model in replicating the empirical markup distribution is perhaps
unsurprising given the findings of Edmond et al. (2023), among others, who use Kimball
demand systems to model firm markups. Nonetheless, it is noteworthy that while our model
is calibrated to six moments related to demand, supply, and productivity estimated from
selected manufacturing industries, it provides a remarkable fit to the untargeted distribution
of estimated markups across a broad set of industries. This result lends external validity to

the generalizability of the estimates from Foster et al. (2008).

4.4.2 Cost Pass-through

We turn to comparing the degree of cost pass-through implied by our calibration to the
empirical estimates from the literature. In the model, as shown in (14), the strength of
cost pass-through is determined by w and 1. Given the calibrated values of these two
parameters, the model implies a cost pass-through of 38%. The literature in both open-
economy and closed-economy macroeconomics, reviewed in Appendix C.1.3, has estimated
cost pass-through using various datasets from different countries and consistently finds pass-
through rates in the range of 20% to 40%. The alignment of the model’s implied cost
pass-through with this extensive empirical evidence provides additional external validity to

our calibration strategy.

24Despite the potential limitations of using revenue data to estimate markups, De Ridder et al. (2024)
show that while the estimated levels of markups can be noisy, this method provides reliable estimates of the
dispersion and shape of the markup distribution. More details on the empirical markup estimation can be
found in Appendix C.1.3.
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4.4.3 Comparison with Other Countries

Several other countries have similar data for a wider set of firms, and researchers have esti-
mated some of the moments that we use for our identification strategy. For instance, Eslava
et al. (2013) use Colombian firm-level data covering the entire manufacturing industry to
separately identify productivity and demand processes at the firm level, employing the same
methodology as Foster et al. (2008). They report similar values for Corr(TFPQ,TFPR)
and Corr(TF PQ, P), which are crucial for pinning down the Kimball demand system param-
eters. Specifically, they report Corr(TFPQ,TFPR) = 0.69 and Corr(TFPQ, P) = —0.65,
compared to the Foster et al. (2008) values of 0.75 and —0.54, respectively.

In more recent work, Eslava et al. (2024) apply a different approach to the same Colom-
bian manufacturing firms data, which allows them to relax the orthogonality assumption
between idiosyncratic supply and demand. In Appendix D.1, we report an alternative cali-
bration of our model to the moments reported in Eslava et al. (2024). We observe that the
properties of idiosyncratic demand and productivity among Colombian manufacturing firms
exhibit similar patterns to those studied in Foster et al. (2008). Furthermore, we find that
under the alternative calibration, the model is also able to match the average size of price

changes in Colombia and cost pass-through, even though these are untargeted moments.

4.4.4 Firm Dynamics

Because idiosyncratic demand and productivity processes determine the ergodic properties
of firm growth, we can also compare the cross-sectional dispersion of output growth rates
computed from model-simulated data with external evidence to gauge whether the estimates
from Foster et al. (2008) can be generalized beyond the eleven industries they study. We
benchmark our estimates to Davis et al. (2006), a study that utilizes the Longitudinal Busi-
ness Database, providing a comprehensive measure of U.S. business dynamics. They estimate
the cross-sectional standard deviation of firm revenue growth rates to be 0.39 over the period

1982-1997, while in our simulated data, this untargeted moment is 0.41.

4.5 Robustness

In this section, we explore a range of robustness exercises to our quantitative analysis.
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4.5.1 CES Demand with Decreasing Returns to Scale

The baseline analysis focuses on Kimball demand as a source of micro real rigidity. Al-
ternatively, micro real rigidity and strategic complementarity in pricing can arise from an
upward-sloping marginal cost curve. We explore this setup with supply-side micro real
rigidity, featuring CES demand and decreasing returns to scale at the firm level, similar to
Burstein and Hellwig (2007). By applying the same calibration strategy, we show in Ap-
pendix D.3 that this model setup can also match both targeted and untargeted moments
of the data, similar to the baseline model. While supply-side micro real rigidity can jointly
match pricing and firm dynamics evidence, it requires an extremely low returns to scale of
0.21 and does not replicate the untargeted markup distribution well. Nonetheless, while
we focus solely on the demand side in our analysis for simplicity, there may be potential

advantages for combining both supply and demand-side micro real rigidities in future work.

4.5.2 Correlated Shocks

The estimation strategy of Foster et al. (2008) assumes orthogonality between shocks to
idiosyncratic demand and productivity. The approach ofEslava et al. (2024) relaxes this
assumption and finds that demand and supply shocks estimated using data on Colombian
manufacturing firms exhibit a weak negative correlation of —0.07. Appendix D.2 summa-
rizes two alternative calibrations where we allow o, to be non-zero while holding all other
parameters fixed at their baseline levels. The results show that even with a moderately high
correlation coefficients of 0.4 or —0.4, the key model moments do not differ significantly.
The degree of correlation does affect the average size of price changes implied by the model.
When productivity shocks are positively correlated with demand shocks, the average size
of price changes is smaller. This occurs because firms that receive favorable productivity
shocks—which put downward pressure on prices—tend to receive negative demand shocks,

that dampen the firm’s desire to lower prices.

4.5.3 No Idiosyncratic Demand

Appendix D.4 analyzes the baseline model in the absence of demand shocks. In doing so,
we must give up on matching the demand moments. Moreover, the model can no longer
match the two firm-dynamics correlations, and as such, we fix the values for ¢ and w at their
baseline values. The failure of the model to match these four moments is the main downside

of this version of the model. Furthermore, the average price change is somewhat smaller, and
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the markup distribution is less dispersed. These results arise from the absence of demand
shocks that prompt firms to change their prices, thus highlighting the role of demand shocks
in delivering a better match with untargeted pricing moments.

To further scrutinize the role of demand shocks in helping the model match micro pricing
data, we solve the model while turning off supply shocks, holding all other parameters fixed
at the baseline values. Without either demand or supply shocks, the model would fall short
in both the frequency and size of price changes, showing that having both shocks is crucial

in explaining micro pricing facts in the data.

4.5.4 Leptokurtic Shocks

It is well known that the distribution of price changes implied by a standard menu-cost model,
like our baseline model, exhibits negative excess kurtosis, in contrast to the positive excess
kurtosis found in the empirical distribution. Our baseline model delivers a raw kurtosis of
1.75, which falls short of the median estimated kurtosis of 4.5 in the literature (Alvarez et
al., 2016). In Appendix C.4, we introduce leptokurtic demand shocks following Midrigan
(2011) to generate more realistic kurtosis of non-zero price changes. This extension does not

change the conclusions of the baseline model.

4.5.5 Klenow and Willis (2016)

We revisit the original critique of micro real rigidity from Klenow and Willis (2016) by
assessing the fit of their quantitative model in light of firm dynamics evidence. Appendix
D.5 summarizes the model using their calibration, which targets a frequency of price change
of 0.09.% The key observation is that their calibration does not fit the firm dynamics in
Foster et al. (2008) well. In fact, once TFP and demand shocks are properly disciplined by
the evidence, a model with Kimball demand turns out to generate an average size of price

changes that is just right.

4.5.6 Translog Demand

The literature has used other demand systems with variable demand elasticity, besides Kim-

ball demand, which also lead to strategic complementarity in pricing. In Appendix D.6, we

2The baseline calibration in Klenow and Willis (2016) (6 = 5, = 10 using their specification) translates
roughly to parameter values w = 1.25 and 1 = —2 under our specification of the Kimball aggregator,
neither of which are too far from our calibrated values. 1) is more negative, indicating stronger pricing
complementarities and a smaller pass-through of cost shocks.
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consider a translog demand system that is frequently used in trade and industrial organiza-
tion literature as an alternative non-CES demand system. As Bergin and Feenstra (2000)
explains, this system achieves the same goals as the original Kimball (1995) paper, but does
so in a more explicitly parametric way.

The model featuring a translog demand system matches the four moments derived from
the shock processes. However, the correlation between TFPR and TFPQ is too weak, and the
correlation between price and TFP is too strong relative to the data and the baseline model.
This can be attributed to the properties of translog that restrict the cost pass-through to be
between 50% and 100%. Relatedly, given the size of the underlying shocks, the size of price
changes turns out to be 12%, which is considerably larger than observed in the data. Due
to having one additional degree of freedom and no restrictions on the cost pass-through, a
Kimball demand system is more flexible than a translog system and thus more desirable to
work with. Nonetheless, the translog demand system performs better than models with CES

demand.

5 Monetary Non-Neutrality

Having validated the model’s ability to reconcile firm-level shocks with pricing dynamics, we
now assess the degree of monetary non-neutrality that the calibrated model can generate.
In particular, we examine how a nominal expenditure shock, — ¢ in (25) — which can also be
interpreted as a monetary policy shock, affects real output in the model. Monetary policy is
said to be neutral if the nominal shock is fully transmitted to prices leaving real aggregate
output and consumption unaffected. If prices do not respond or only partially respond to
the shock, monetary policy will affect real output in the economy.

We consider four measures of non-neutrality. The first measure is the unconditional
standard deviation of consumption in a long model simulation. Greater volatility in real
consumption indicates less monetary neutrality and larger real effects of nominal shocks
in the model because there are no other aggregate shocks that can cause fluctuations in
aggregate consumption. The other three measures pertain to the Impulse Response Function
(IRF) of real output in response to a monetary innovation. Specifically, we examine the
response of real output to a positive nominal expenditure shock of size 0.2%, which doubles

the monthly growth rate of aggregate expenditure.? From this IRF, we report three key

26 As the model is solved non-linearly, response of output also display some non-linearity with respect to
the size of the shock. We leave a more complete analysis of this nonlinearity to future work.
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Figure 4: Impulse Response of Real Output to a Nominal Expenditure Shock
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Note: This figure plots the impulse response of real output expressed as a fraction of the nominal expenditure
shock on the vertical axis and periods elapsed since the shock on the horizontal axis.

outcomes. The first is the peak response of output as a fraction of the shock size, which, in
a model without internal propagation, occurs on impact. The second is the half-life of the
impulse response, measuring the persistence of the shock’s effect. Lastly, these two measures
are synthesized in the cumulative impulse response (CIR), which sums the output response
as a fraction of the shock over the period it is non-zero and normalizes by the number of
periods in a year—12 in our case.

Our calibrated model generates substantial volatility in aggregate consumption, with
a monthly standard deviation of 0.52%.2" Turning to output responsiveness to monetary
shocks, Figure 4 displays the impulse response of real output as a fraction of the shock size
for the baseline model. On impact, approximately 82% of the nominal expenditure increase
translates into higher real output. The real effects of the shock diminish over time, with
a half-life of 4.5 months, eventually dissipating after 20 months. The cumulative impulse
response over this horizon is 0.42.

The degree of monetary non-neutrality generated by the calibrated model lies in the upper

2TThe standard deviation of detrended U.S. quarterly consumption during 1989 to 1998 is 1.5% (Golosov
and Lucas, 2007). Thus, a back-of-the-envelope calculation suggests that monetary shocks in our model
account for roughly a third of the consumption volatility observed in the data.
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Table 4: Monetary Non-neutrality across Models

Baseline CES No Demand CES+DRS Translog

Impact Response 0.82 0.56 0.80 0.77 0.73
CIR 0.42 0.11 0.39 0.25 0.29

The first column refers to the baseline calibrated model. The second column refers to a model with CES
and only productivity shocks calibrated to the frequency and average size of price changes, which is named
CES I in Appendix D.8. The third column refers to the baseline model without idiosyncratic demand shocks
(Appendix D.4). The fourth column refers to the calibrated model with CES demand and decreasing returns
to scale (Appendix D.3). Lastly, the fifth column refers to the model with translog demand in Appendix
D.6.

range of values reported in the literature, as summarized by Mongey (2021). Moreover,
the peak output response to nominal shocks in our model is comparable to results from
studies that incorporate macro real rigidity as an alternative source of real transmission.
For example, Nakamura and Steinsson (2010) develop a multi-sector model with production
networks, introducing macro real rigidity via sticky marginal costs, and obtain a peak impulse
response of 0.80. This comparison highlights that micro real rigidity, as represented in
our model, can generate a degree of non-neutrality comparable to models with macro real
rigidities, while simultaneously aligning with micro-data on firm dynamics and pricing.?®

It is useful to highlight the two key sources of amplification in our setup relative to a
simple menu cost model (Golosov and Lucas, 2007). The first source is micro real rigidities,
which introduce strategic complementarities in pricing via the Kimball demand system. With
micro real rigidities, firms adjusting their prices tend to make smaller adjustments than they
would under a CES demand system. This behavior reflects their desire to remain closer to
the prices of competitors who are not adjusting. This real rigidity amplifies the degree of
monetary non-neutrality.?”

To assess the quantitative role of micro real rigidities in generating monetary non-
neutrality, we compare the baseline model to a CES menu cost model similar to Golosov
and Lucas (2007). The second column in Table 4 presents the impact response and CIR

for a menu cost model with CES demand and only idiosyncratic productivity shocks, cali-

28Table A.1 in Mongey (2021) shows that menu-cost models without real rigidities that are calibrated to
the US economy, typically generate a peak output response in the range of 0.35 to 0.50. Richer models that
include alternative sources of real rigidities find higher values in the 0.7-0.8 range.

2This intuition is formalized in Alvarez et al. (2023b), who derive analytic results in a menu cost model
with strategic complementarities framed as a Mean Field Game. Their findings show that complementarity
consistently increases the impulse response of output to a nominal shock at every horizon. They also show
that their theoretical result holds under a Calvo model of pricing.
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brated exclusively to pricing moments, without accounting for any firm dynamics moments.*’
Deviating from CES demand has substantial effects on the impact and persistence of the
monetary shock. Specifically, the impact response is 45% larger, and the CIR measure is
nearly four times larger.

The second factor that affects the degree of monetary non-neutrality is the strength of
selection in price adjustment. The real response to nominal shocks depends not only on
how many prices adjust but also on which prices adjust. In menu cost models, selection
is strong: the firms that incur the fixed costs of price adjustment are precisely those with
the largest desired price changes. In the absence of idiosyncratic shocks, prices respond
solely to aggregate shocks, and only those prices most misaligned with the aggregate shock
adjust. However, the introduction of idiosyncratic shocks weakens this selection effect, as
firms now respond to both aggregate shocks and disturbances in their individual states.
In fact, Nakamura and Steinsson (2010) demonstrate that, holding the frequency of price
changes constant, more volatile idiosyncratic shocks lead to weaker selection and stronger
non-neutrality.

In our baseline model, firms are subject to two orthogonal idiosyncratic shocks, a feature
that potentially weakens the selection of price changes. To quantify the impact of this
second force, the third column in Table 4 examines a version of the baseline model without
idiosyncratic demand shocks. Consistent with the presence of a selection effect, we observe
a slightly smaller degree of monetary non-neutrality. A back-of-the-envelope calculation
reveals that less than 10% of the amplification when moving from the standard CES model
to the baseline model can be attributed to the inclusion of idiosyncratic demand shocks, as
disciplined by the data. The remaining 90% arises from micro real rigidity in the form of
the Kimball demand system.3!

Given the centrality of micro real rigidities in amplifying monetary non-neutrality, it is
natural to ask whether this channel could be as important in other sticky price models. To
explore this, Appendix D.7 uses a Calvo (1983) pricing framework in which firms receive
i.i.d. shocks that determine when they can adjust their prices. This setup serves as a useful
benchmark, as it eliminates the selection margin by construction. Specifically, the random-
ness of price adjustments means that the probability of price adjustment is independent
of the size of desired price change. Therefore, any difference observed under the Kimball

demand system must be attributed to micro real rigidities. In fact, we find that under our

30Further details on the calibration are provided in Appendix D.8, referring to the CES I model.
31Table A-5 shows that a model with with correlated demand and supply shocks exhibit less non-neutrality,
lending support to the potential relevance of the selection channel.

30



calibrated idiosyncratic processes, transitioning from CES demand to the calibrated Kimball
demand system nearly doubles the CIR non-neutrality measure in the Calvo model.
Finally, the last two columns of Table 4 explore alternative strategies for generating
micro real rigidities. The fourth column examines a model where the concavity in the profit
function arises from increasing marginal costs. Specifically, we report the degree of non-
neutrality generated by the model described in Appendix D.3, which features CES demand
and decreasing returns to scale at the firm level, similar to Burstein and Hellwig (2007). The
fifth column presents another demand-based micro real rigidity, stemming from the translog
model described in Appendix D.6. Interestingly, while both models increase the degree of
non-neutrality relative to the CES framework in the second column, the amplification is

noticeably milder in these alternative setups compared to the benchmark model.

6 Conclusion

We re-investigate the importance of micro real rigidities as a source of monetary non-
neutrality. While prior studies, such as Golosov and Lucas (2007), demonstrate that nominal
frictions alone cannot account for the observed non-neutrality, Ball and Romer (1990) high-
lights that adding real rigidities can amplify these effects. Among real rigidities, micro real
rigidities in the form of strategic complementarities have been proposed as a key mecha-
nism. However, the literature summarized by Nakamura and Steinsson (2010) concludes
that models with micro real rigidities fail to replicate observed pricing moments for plausible
parameter values.

We address these limitations by introducing a simple menu-cost model featuring a Kim-
ball demand system with non-constant elasticity and idiosyncratic productivity and demand
shocks. Crucially, our calibration draws directly from empirical estimates of firm-level pro-
ductivity and demand processes that incorporate both prices and quantities. This avoids
relying on ad hoc calibrations to match pricing moments and allows for a richer investigation
of strategic complementarities.

Our calibrated model successfully replicates key empirical moments across the firm dy-
namics and pricing literatures. It matches firm-level dynamics from Foster et al. (2008),
including price, quantity, and revenue responses, while also aligning with pricing facts such
as the frequency, size, direction, and dispersion of price changes. Importantly, the degree
of monetary non-neutrality generated by our model lies at the upper range reported in the

literature, overcoming prior negative results.
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The inclusion of idiosyncratic demand shocks, in conjunction with a Kimball demand
system, dampens the selection effect in price adjustments, leading to stronger real output
responses to aggregate shocks. This highlights the importance of jointly modeling produc-
tivity and demand shocks, addressing critiques such as those raised by Klenow and Willis
(2016). Additionally, our model produces realistic pass-through rates and a markup dis-
tribution consistent with data. Moreover, our calibration of Kimball demand system offers
a tractable and empirically grounded approach that DSGE models can adopt to generate
levels of monetary non-neutrality consistent with U.S. microdata.

By bridging pricing, markup, and firm dynamics within a unified framework, our model
provides a foundation for future research. This work opens the door to integrating real (e.g.,
investment, employment, entry/exit), nominal (e.g., price setting), and other firm decisions
(e.g., markup adjustments, pass-through) into a cohesive modeling structure, paving the
way for deeper insights into the interplay between monetary policy, firm dynamics, and

macroeconomic outcomes.
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Internet Appendix (For Online Publication)

A Derivations

A.1 Demand Elasticity

For our specification of Kimball demand, the price elasticity of demand depends on p/P, n,

and %Z in the following ways
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A.2 Symmetric Equilibrium

In a symmetric equilibrium, all firms have identical demand (n’ = n), productivity (z* = 2),

and prices (p' = p). As a result, the aggregate price index under our specification of G(.)
1
1
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Substituting P = £ into the expression for A = [ J (%) 1w dz} yields A = 1 in a
0

symmetric equilibrium.
Finally, fol “di = ¢ = 1 holds in the symmetric equilibrium because all firms have the

same effective market share.

A.3 Pass-through

Consider the static optimization problem of an intermediate firm without any pricing fric-

tions. The nominal profit of an intermediate firm is
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The first-order condition with respect to p; is given by
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Log-linearizing the first-order condition around a symmetric steady state yield
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where hat variables denote log-deviations from the steady state and bar variables denote the

steady state values.
Note that in a symmetric steady state, all firms are identical, have the same market
share, and set the same price. Specifically, the optimal price is a fixed markup over cost

Di = w%. Substituting this into the log-linearized first-order condition gives
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As we show in Appendix A.2, A = 1 and & = n in a symmetric equilibrium. When this

is the case, the condition Mp= — () holds (solid blue line in Figure A-2b). Consequently, as

o
1 becomes more negative, |IIy;| increases (Figure A-2a) and the responsiveness of prices to
productivity shocks (¢ = —g—ﬁ) is increasingly muted.
Meanwhile for demand shocks, the cross-derivative II,, varies with ¢. In particular,
_Yw2Phi(Pi_ W
6;2’" = ;nf(gil);i) < 0. For more negative values of 1, both II,, and |II;;| increases.

As illustrated in Figure A-2, II,, increases at a faster rate than |II;;| as ¢ decreases, so ¢
in Equation (4) increases signifying larger pass-through of demand shocks to desired prices.
This highlights that while stronger micro real rigidities mute the response of prices to pro-

ductivity, they raise price responsiveness to idiosyncratic demand.

B Quantitative Model

B.1 Rewriting the Problem

Firms need to observe § and understand its law of motion to solve their problem. These
relevant aggregate variables in & can be summarized by a single aggregate state variable
P,_1/S;.

Because money supply S; = P,C; exhibits positive growth on average, nominal prices will

increase over time. To ensure that the state variables remain stationary, we normalize all
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Figure A-1: Degree of real rigidity ¢
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Note: The left panel plots II;; against 1 under a symmetric equilibrium. The right panel plots II13 and ¢
in Equation (4) against 1 for productivity and demand separately.

nominal variables by S;. Consequently, we can rewrite the firm’s profit function
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where we use V; = C; = % from goods market clearing and W, = S; from the household’s
intratemporal optimality condition.

P,/S; and A, are the collective results of the pricing decisions of all firms. To know these,
firms must know the entire firm distribution over the idiosyncratic states which is an infinite-
dimensional object. Following the application of the Krusell and Smith (1998) algorithm
in menu-cost models (Nakamura and Steinsson, 2010; Midrigan, 2011; Vavra, 2014), we

conjecture the following forecasting rules for P;/S; and ),
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Using these, the law of motion of the aggregate variable P,_;/S; is also given by
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Now, we rewrite the intermediate producers’ problem using these state variables. At the
beginning of a period, each intermediate producer starts off with a price p_, /.S;, idiosyncratic
demand n!, and idiosyncratic productivity zi. They also observe P,_;/S; and forecast P;/S;

and \; using the aforementioned laws of motion. The value of not adjusting is
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which is equal to the flow profit evaluated at last period’s price adjusted for inflation plus a
continuation value.

If the firm chooses to adjust its price, it pays the fixed price adjustment cost and chooses
p! to maximize the sum of the current flow profit and the present discounted value of future

profit
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A ( tr ~t St ft St pé St tr ~t St t t,i+1 StJrl t+17 “t4+1 StJrl

A firm chooses to adjust its price if and only if the value of doing so exceeds the value of
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inaction. Therefore, the value function of the firm is

i i i P i i i P i i P
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B.2 Computational Strategy

A sketch of the computation algorithm is as follows. We first make guesses of the coefficients
(a,a?, 3, 8Y) in the forecasting equations F' and G. Given the guesses, use value function
iteration to solve for the intermediate-good producers’ value functions as well as the optimal
pricing rules. Using pricing rules, simulate the model for a large number of periods and
obtain simulated sequences of %, A¢, and Pfg—:l. Estimate the regressions F' and G with
model simulated data and obtain estimated coefficients (af, a1, 35, 81) which is then used to
update the initial guesses. Repeat this process until the coefficient guesses and sufficiently
close to the estimated coefficients from the linear regressions. In doing so, we find that the
conjectured law of motion approximates the true law of motion from the model simulation

well, as the regression yields an R? larger than 0.99.

C Calibration

C.1 Empirical Moments
C.1.1 Firm-Level Productivity and Demand Processes

Using the quinquennial Census of Manufactures between 1977 to 1997, Foster et al. (2008)
estimate firm-level productivity and demand for eleven product markets with minimal ver-
tical differentiation.®? With data on sales, quantity sold, and input usage, they estimate
the production function of firms assuming Cobb-Douglas technology and recover firm-level
physical TFP (TFPQ) as the residual of the following estimation:

TFPQ, =Ilnqg; —aInly —oplnk; — o Inmy — o Iney, (A-9)

where T'F'PQ),, is the firm-level physical TFP of firm 7 at time ¢, ¢;; is the quantity produced
by the firm, [;; is the labor input, k;; is the capital input, m;; represents intermediate inputs

used in production, and e; is the energy used by the firm. Foster et al. (2008) also estimate

32Examples include bread, block ice, and ready-mix concrete.
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revenue-based TFP, which is derived similarly but replaces the quantity produced with the

firm’s revenue:,
TFPR; = Inpyqg: — aylnly — agInk;; — o, Inmyy — e Ineyy. (A-10)

To estimate firm-level idiosyncratic demand, Foster et al. (2008) estimate the demand func-
tion
Ing; = o + ozllz-p\it + Z a, YEAR; + ay In(INCOME),,,; + ni, (A-11)
t

using an instrumental variable regression. Here, the log-price, In pj, is instrumented by the
estimate of TFPQ from (A-9), which acts as a supply shifter. The regression includes time
fixed effects and the average income in a plant’s local market, m, defined using the Bureau
of Economic Analysis’ Economic Areas. The residual from this equation is interpreted as a
pure demand shifter for the firm.

For the eleven products analyzed, Foster et al. (2008) report average five-year autocorre-
lations of 0.32 for idiosyncratic TFPQ and 0.62 for demand. The cross-sectional dispersion
of TFPQ and demand are 0.26 and 1.16, respectively. This indicates that demand shocks
are more persistent and more dispersed across firms. Additionally, they report a correlation
of —0.54 between firm-level prices and TFPQ, and a correlation of 0.75 between firm-level
TFPQ and TFPR.

C.1.2 Pricing Moments

For moments related to micro-level pricing behavior, we reference Vavra (2014) who reports
pricing moments using CPI micro-data from the Bureau of Labor Statistics spanning the
period from 1988 through 2012.3% Price data are at the product-outlet level and temporary
sales are discarded from the analysis. In his sample, Vavra (2014) reports a monthly fre-
quency of a regular price change to be 11%, of which 65% are upward adjustments. The
average size of a price change excluding non-adjustments is 7.7%, and the standard deviation

of price changes is 0.075.

33The same dataset is widely used in the literature, see Bils and Klenow (2004) and Nakamura and
Steinsson (2008).
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C.1.3 Markup and Pass-Through of Cost Shocks to Prices

Following the methods of De Loecker et al. (2020), we estimate the markup distribution of
U.S. public firms using Standard and Poor’s Compustat data. To be in line with the time
period in Foster et al. (2008), we restrict the analysis to data between 1980 and 2000. We
follow the production approach and compute firm-level markups as the ratio of sales to cost
of goods sold, multiplied by the output elasticity of variable inputs estimated at the two-digit
NAICS level.** In our sample, the average markup is 56% and the median markup is 33%.

A major theoretical implication of a Kimball demand system is the incompleteness of
cost pass-through to prices. One of the ways of capturing empirically the magnitude of cost
pass-through can be found in the international finance literature. This literature looks at
the pass-through of exchange rate shocks to importer prices, with the understanding that
the exchange rate movements are exogenous from the viewpoint of importers. The empirical
evidence is overwhelmingly in support of an incomplete pass-through of costs even in the
medium and long-run: Campa and Goldberg (2005) estimate the long-run pass-through in
the US to be 42% whereas Bergin and Feenstra (2009) report 24%, Gopinath and Itskhoki
(2010) find it to be between 20% to 40%, and Gopinath et al. (2010) find an aggregate pass-
through of 30%. Estimation of cost pass-through is more challenging in a purely domestic
setting, due to the scarcity of appropriate data and well-identified shocks. Using indirect
estimates of marginal costs, De Loecker et al. (2016) report cost pass-through between 31%
to 41% among manufacturing firms in India. Amiti et al. (2019) find a 60% cost pass-
through — in the higher end among estimates in the literature — and a 40% pass-through of
competitors’ price changes using Belgian manufacturing data. Recent studies using merged
data on both costs and prices recover cost pass-through estimates that are similar to the
international macro evidence. Using Chilean supermarket-supplier merged data, Aruoba et
al. (2022) find that 29% of a supplier price change is passed onto the retail price conditional
on a price change at the supermarket level. Carlsson et al. (2022) estimate that between
21% to 33% of innovations to firm productivity are passed through to prices using data on
Swedish manufacturing firms. Gagliardone et al. (2023) uses a structural model and Belgian
manufacturing microdata and find the cost pass-through in the range of 0.35 to 0.47 across
different model specifications. Overall, the evidence from both the open- and closed-economy

literature points to incomplete cost pass-through to prices in the range of 20% to 40%.

34Following the literature, we exclude the following two-digit industries: utilities, finance and insurance,
real estate and rental and leasing, as well as public administration.

A-8



C.2 Calibration Details

The model-based moments we need for calibration are computed via simulation. To that
end, we simulate 20,000 firms for 700 periods and drop the first 100 periods before com-
puting any statistics. Computing moments that are monthly is straightforward. In order
to compute moments that have their data counterpart in Foster et al. (2008), we aggregate
the simulated data to the corresponding frequency and replicate their methodology. In par-
ticular, we aggregate the simulated monthly data into annual frequency by taking simple
sums of revenue, sales, and employment. We then construct a panel dataset with the same
time structure as Foster et al. (2008), namely five waves of annual observations that are five
years apart. Because labor is the only input and production technology is constant returns
to scale in the model, we recover firm-level TFPQ and TFPR as,

TFPQ, = Ing;—Inly, (A-12)
TFPR”: = In (pthzt) —1In lit- (A-lg)

This is equivalent to mapping our unique inputs to their basket of inputs. We estimate the

demand function using the same IV specification as Foster et al. (2008),
Ing;; = ag + a1@ + Time FE + n;, (A-14)

where In p;; is instrumented by TF PQ),,, and recover firm-level demand shifters as the resid-
uals, 1;;. At the end of this process, we obtain five-yearly measures that are direct counter-
parts of those computed by Foster et al. (2008). To be clear, in computing the model-implied

moments we treat the model-generated data exactly the same way they treat actual data.

C.3 Identification of Model Parameters

In order to demonstrate that the calibration targets are indeed informative for the respective
parameters we borrow an exercise from Daruich (2022), which mimics the first stage of the
multistart global optimization proposed by Arnoud et al. (2022).

The main idea is to generate variation in the parameter space and investigate how the
implied calibration targets are impacted — essentially taking a partial derivative. To do
so, we first draw 500 parameter vectors from uniform Sobol points given a hypercube of

the parameter space, which generates a quasi-random set of candidate parameter vectors.®

35 A uniform Sobol sequence (Sobol, 1967) is a sequence of points that spans the n-dimensional hypercube
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Figure A-3: Identification of Internally-Calibrated Parameters

(a) Price Adjustment Freq. vs. f  (b) Corr(TFPQ,P) vs. v  (c) Corr(TFPQ,TFPR) vs. w
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Note: For each decile of a given parameter plotted on the horizontal axis, the red dot shows the median
of the moment that is assigned to the parameter. The blue down-pointing triangles and green up-pointing
triangles show the 25" and 75" percentiles respectively.

Then, for each parameter vector, we solve and simulate the model to compute the relevant
model-implied moments. This allows us to see how each of the seven parameters influences
each of the seven calibration targets.

Figure A-3 plots the values of three key model-implied target moment against the values
of the parameter it is assigned t0.%® In particular, we group the values of each parameter in
deciles, which we plot on the horizontal axis. Then, for each decile, we show the median value
of the associated moment in red circled dots and the 25" and 75" percentiles in blue down-
pointing triangles and green up-pointing triangles, respectively. The slope of the scatter
plot is informative about the importance of that parameter, whereas the vertical dispersion
reveals the influences of all other parameters on a particular moment.

The frequency of price adjustment exhibits a strong negative correlation with the menu
cost f. Meanwhile, other parameters also play a role as is evident in the vertical dispersion.
For example, for a fixed value of f, larger idiosyncratic shocks generate more frequent price
changes. Consistent with our reasoning, we recover a strong negative relationship between
Corr(TFPQ,P) and 1. We also observe a weaker but visibly positive relationship between
Corr(TFPQ,TFPR) and w. The large variation in this correlation given a value of w reveals
that it is sensitive to the values of other parameters in addition to w. In particular, we
find that o, and o,, which determine the stationary distribution of idiosyncratic produc-

tivity and demand, have sizable effects on the level of this correlation. Given that all the

in an even and quasi-random manner. For the purpose of the exercise, using quasi-random Sobol numbers
are more efficient than drawing random numbers because Sobol numbers are designed to sample the space of
possibilities evenly given the total number of draws, whereas a truly random sample is subject to sampling
noise.

36We delegate the figures for the stochastic properties of the demand and supply shocks to Appendix C.
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Figure A-4: Identification of Internally-Calibrated Parameters
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Note: For each decile of a given parameter plotted on the horizontal axis, the red dot shows the median
of the moment that is assigned to the parameter. The blue down-pointing triangles and green up-pointing
triangles show the 25" and 75" percentiles respectively.

parameters except for w exhibit tight links with their associated targets, w can be identified
by Corr(TFPQ,TFPR) when all other parameters are fixed and matched to their respective
targets.

Figure A-4 exhibit the link between the parameters governing the idiosyncratic produc-
tivity and demand processes and the corresponding empirical moments. The parameters
(p.,0,) are strongly correlated with the five-year autocorrelation and cross-sectional distri-
bution of firm productivity, whereas other parameters play a minimal role as can be seen
in the tight vertical variation in the scatter plots. For (p,,0,), we observe a similar re-
lationship, but there is noticeably more noise in the cross-sectional standard deviation of
demand. This is mainly because at a given decile of ¢,,, the remaining parameters, including
pn are randomly drawn. Because the value of p,, is generally very close to one, the resulting
cross-sectional dispersion of demand is very sensitive to the value of p,, in addition to a,.

The key takeaway from this exercise is that the links between the parameters and mo-
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Figure A-5: Value of ) and Average Size of Non-zero Price Changes
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Note: We group values of ¢ into deciles. For each decile of ¢ values plotted on the horizontal axis, the
red dots, blue down-pointing triangles, and green up-pointing triangles show the median, 25", and 75"
percentiles of a given untargeted pricing moment respectively. The underlying data is the same as that used
for Figure A-3. Specifically, they are random draws from a hypercube of parameter space.

ments are quite tight. While it is too computationally intensive, if one were to consider a
formal generalized method of moments approach to estimating the parameters of interest,

this analysis suggests that one would obtain fairly tight standard errors for the estimates.

C.4 Alternative Calibration Strategies

We explore two alternative calibration strategies. In the first one, we target the size rather
than the frequency of price changes as we did in the baseline calibration. Second, as it is well
known that the distribution of price changes implied by a standard menu-cost model with
Gaussian shocks exhibits negative excess kurtosis in contrast to the positive excess kurtosis
found in the empirical distribution, we consider an alternative calibration with leptokurtic
demand shocks which can better match the empirical kurtosis.?”

The results are presented in Table A-1. The first two columns replicate the results in
Table 2, where we continue to use boldface to emphasize the moments being targeted and
parameters used to do so. The third column reports the results from the calibration where
we target the size of non-zero price changes. This alternative calibration delivers a similar fit

to the data and the calibrated parameters do not differ much from the baseline. At the same

370ur baseline model delivers a raw kurtosis of 1.75, which falls short of the U.S. estimates of 4.5, which
is the middle of the range reported in Alvarez et al. (2016).
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Table A-1: Baseline Calibration and Alternative Calibrations

Moment Data Baseline Target Size Leptokurtic
Frequency of price changes 0.11 0.12 0.09 0.12
Fraction of price increases 0.65 0.58 0.63 0.61
Size of price changes 0.08 0.07 0.08 0.08
Raw Kurtosis of Price Changes 4.50 1.75 1.38 4.13
5-year autocorr of z; 0.32 0.32 0.31 0.32
Cross-sectional SD of 2} 0.26 0.25 0.27 0.24
5-year autocorr of ni 0.62 0.62 0.68 0.58
Cross-sectional SD of ni 1.16 1.05 1.07 1.07
Corr b/w TFPR and TFPQ 0.75 0.74 0.73 0.58
Corr b/w price and TFPQ —0.54 -0.57 —-0.59 -0.55

Parameter Description
P Super-elasticity -1.27 -1.32 -1.10
w Elasticity of Substitution 1.29 1.25 1.32
- Persistence of 2] 0.98 0.98 0.98
o, Standard deviation of 2] 0.06 0.05 0.05
Pn Persistence of ni 0.997 0.996 0.82
on Standard deviation of ni 0.02 0.02 0.18
Dn Poisson prob. for n! shock - - 0.025
f Menu cost 0.03 0.06 0.01
Impact Response of Monetary Policy 0.82 0.77 0.77

Note: The top panel of this table compares the targeted moments and model-implied moments for the two
model specifications, where the bolded numbers highlight moments that are targeted in the calibration. The
bottom panel shows the parameter values for each calibration.

time, it is able to match both the frequency of price changes and fraction of price changes
that are price increases — both untargeted — well. The frequency is price changes is is lower
than the baseline model at 9% in order to generate larger price adjustments on average.
The last column in Table A-1 uses a leptokurtic shock, following Midrigan (2011), applied
to the idiosyncratic demand shock, in order to target the kurtosis of non-zero price changes.
In particular, we assume that the demand shock n! follows the persistent AR(1) process in
(20) with probability p, and remains unchanged with probability (1 — p,,) from one month
to the next. We add p,, to the list of parameters being calibrated, and add the kurtosis of
non-zero price changes at 4.5 as a target to match. The calibration delivers a kurtosis of
4.13 and is able to match rest of moments. p, is calibrated to be 0.025, which means 97.5%

of the time a firm inherits the demand from the previous month.?® This calibration delivers

38In comparison, Vavra (2014) obtains p, = 0.13 where he applies the leptokurtic process on firm-level
TFP. We choose to apply the leptokurtic process on demand rather than TFP since the former is much more
persistent according to Foster et al. (2008) and this process is a convenient way of delivering this persistence.
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Source Elasticity Super-elasticity

Bergin and Feenstra (2000) 3 1.3
Chari et al. (2000) 10 385
Fisher and Eichenbaum (2005) 11 10
Gopinath and Itskhoki (2010) 5 4
Kimball (1995) 11 471
Klenow and Willis (2016) 5 10
Woodford (2003) 7.8 6.7
Beck and Lein (2020) 3.2 1.93
Harding et al. (2022) 11 138.1
Harding et al. (2023) 2.6 26.4
This paper 4.4 5.7

Table A-2: Elasticity and Super-elasticity Specifications from the Literature

Note: This table summarizes the demand elasticity and super-elasticity implied by the calibration of non-
CES demand systems in the literature. The numbers reported for Beck and Lein (2020) are their median
empirical estimates.

the large degree of persistence found in the results of Foster et al. (2008) using a low p,
while the p,, is substantially reduced and o, is substantially increased. This delivers a highly
leptokurtic path for demand shocks for a firm, which is flat for long periods and experiences
large jumps when it changes, and this translates in to prices that display high kurtosis in

price changes.

C.5 Comparison with Literature

Our baseline calibration of 1) and w implies a demand elasticity of 4.4 and super-elasticity of
5.7. Table (A-2) summarizes the implied elasticities and super-elasticities from the literature.
Among the specifications surveyed, demand elasticities range from 3 to 11. The super-
elasticity features much more variation from as low as 1.3 to as high as 471, while the
majority are in the range from 2 to 10. In fact, the implied demand curvature in our baseline

calibration is broadly consistent with the literature and does not represent an outlier.
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D Robustness

D.1 Colombian Data

Drawing upon empirical firm dynamics evidence based on narrowly defined manufacturing
industries in the United States (Foster et al., 2008), our baseline analysis arrives at the
conclusion that a menu cost model featuring micro real rigidities and carefully calibrated
supply and demand processes can indeed be consistent with non-targeted firm-level pricing
facts. To test the robustness of this result, we apply our model to data from Colombian
manufacturing firms as reported in Eslava et al. (2024). Like Foster et al. (2008), Eslava
et al. (2024) uses price and quantity data of manufacturing firms inputs and outputs to
estimate firm-level productivity and demand processes. However, instead of separately es-
timating firms’ production and demand function using an instrumental variable strategy,
Eslava et al. (2024) utilizes a Generalized Method of Moments (GMM) approach to jointly
estimate productivity and demand. This method allows for a more flexible analysis by relax-
ing the orthogonality assumption between productivity and demand shocks. Furthermore,
the analysis is performed using data drawn from a broad set of manufacturing industries and
products rather than from selected industries with homogeneous products.

Using the empirical estimates reported in Eslava et al. (2024) for Colombia, we re-
calibrate our baseline model following a similar calibration strategy as in the main analysis.
Specifically, we choose the parameters {f, p., 0., pn, On,w, ¥, 0., } to match seven empirical
moments in Eslava et al. (2024), as well as the price adjustment frequency in Colombia.
The firm dynamics moments that we use to discipline the model are largely the same as
those we use in the main analysis with one exception. Because Eslava et al. (2024) do not
report statistics on TFPR, we replace corr(TFPR,TF P(Q) with the correlation between
firm output and markup as a data target. For the price adjustment frequency in Colom-
bia, we reference statistics from Julio et al. (2011) who compute micro pricing moments
using Colombian CPI data. Between 1999 and 2008, the average monthly price adjustment
frequency for goods in the CPI basket is approximately 10% to 15%.

Table A-4 reports the internal calibration to Colombian data. Overall, the model is
able to fit Colombia firm dynamics statistics well. In terms of firm-level idiosyncratic pro-
cesses, we observe a number of similarities between the calibration to Colombian data and
the calibration in our main analysis using US data. First of all, the calibrated process for

idiosyncratic productivity and demand are both highly persistent, with a monthly autocor-
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Table A-3: Externally Calibrated Parameters with Colombian Data

Parameter Description Value Source
I5; Discount Factor 0.9966 Annual discount rate of 4%
X Labor disutility 1 Normalization
I Growth rate of S 0.0056 Annual inflation rate of 7%
Os SD of shocks to nom. expenditure 0.0104 Vavra (2014)

Note: This table displays the externally calibrated parameters in the model calibrated to Colombian data.

relation of 0.994 for demand and 0.987 for productivity.?® In both samples, idiosyncratic
demand exhibits more persistence compared to idiosyncratic productivity. Also, in both
calibrations, the standard deviation of shocks to productivity is larger than that of shocks
to demand. In terms of the curvature of the demand system, the calibrated values of v
and w imply a high cost passthrough to price of 70%, as compared to 38% in our baseline
calibration.

In the main analysis, the model calibrated only to firm dynamics moments and price
adjustment frequency is able to match untargeted pricing moments well. Interestingly, we
find that this also holds in the alternative calibration using Colombian data. In the calibrated
model, the average size of price adjustment is 20% — which is roughly in line with the size
distribution reported in Figure 8 of Julio et al. (2011). In terms of real response to nominal
shocks, we find that the model calibrated to Colombian data exhibit less monetary non-
neutrality due to smaller degree of strategic complementarity. While the impact response is

high at 0.75, the cumulative impact response is 0.18 and the half-life is 3 months.

D.2 Correlated Shocks

In this section, we relax the assumption of p., = 2= = 0 and allow stochastic innovations
to firm demand and productivity to be correlated. In particular, we solve the model with
two levels of correlation between demand and productivity shocks p,, = {—0.4,0.4}. In
doing so, we keep all other parameters fixed at their baseline values but vary the menu cost
f to keep the frequency of price changes identical across all specifications. The results are
summarized in Table (A-5). They show that even with the mildly large correlations assumed,

our conclusions in the main text are robust.

39Table A-4 report the annual autocorrelations of productivity and demand.
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Table A-4: Internal Calibration with Colombian Data

Moment Data Model
Frequency of price changes 0.10 - 0.15 0.13
Yearly autocorrelation of 2] 0.91 0.91
Cross-sectional standard deviation of 2! 0.75 0.76
Yearly autocorrelation of n} 0.98 0.98
Cross-sectional standard deviation of ni 0.89 0.87
Corr between demand and TFPQ -0.07 -0.12
Corr between price and TFPQ -0.73 -0.75
Corr between output and markup 0.45 —-0.50
Parameter Description Value
Y Super-elasticity -0.30
w Elasticity 1.69
p- Persistence of 2] 0.987
o, Standard deviation of z; 0.11
Pn Persistence of n} 0.994
On Standard deviation of n! 0.08
f Menu cost 0.025
Pan Correlation between ¢, and ¢,  —0.07

Note: The top panel of this table compares the targeted moments and model-implied moments in the model
calibrated to Colombian data. The bottom panel shows the parameter values for each calibration.

Table A-5: Model Summary with Correlated Supply and Demand Shocks

Moment Data p., =0 p,, =040 p,, =-0.40
5-year autocorr of z{ 032  0.32 0.32 0.32
Cross-sectional SD of 2} 0.26 0.25 0.28 0.29
5-year autocorr of ni 0.62  0.62 0.82 0.76
Cross-sectional SD of n! 1.16  1.05 1.28 0.99
Corr b/w TFPR and TFPQ 0.75 0.74 0.72 0.67
Corr b/w price and TFPQ 0.54 —0.57 0.42 0.63
Frequency of Price Changes 0.11 0.11 0.11 0.11
Average Size of Price Changes (.08 0.07 0.05 0.08
Average Markup 1.56 1.42 1.53 1.46
Cross-sectional SD of Markup — 0.72 0.39 0.51 0.40
Impact Response 0.83 0.77 0.77
CIR 0.43 0.43 0.36

D.3 Model with CES Demand and Decreasing Returns to Scale

In this section, we consider an alternative source of micro real rigidity arising from decreasing

returns to scale technology. To do this, we make two changes to our baseline model. Instead
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of Kimball demand, intermediate goods producers face CES demand with a demand shifter

pi\~?
Yit = Nt Yit (F> (A-15)

In addition, the production technology exhibits decreasing returns to scale (« < 1).%°

Besides these two modifications, all other aspects of the model remain unchanged and
the resulting structure is identical to the baseline model in Burstein and Hellwig (2007).

This version of the model share many properties as our baseline model, which is unsur-
prising given the discussion in Section 2.2 that both curvature in the demand function and
marginal cost function can raise the concavity of the profit function, which is central to micro
real rigidity. In particular, the two model specifications deliver similar implications for the
pass-through of productivity and demand shocks to prices.

To see this, consider again the static price-setting problem of a firm under flexible prices.

The first-order condition to the static profit-maximization problem is

6 W, i
(1—0)p;°n,Y, Pt + =L (”t

1
a —0
ty pt) pe t—p A-17
a , Zit t4t ) pzt ( )

Log-linearizing (A-17) around a symmetric steady state yields the following expression

for the optimal price:

1—a N ab —0 - o A 1
Ax A Y) — — 7 A-1
P a@—@—a(n+ t 0ol T ai—i—a tas—o—a’ (A1

where hatted variables denote log-deviations from the steady state.

The cost and demand pass-throughs under this specification are then given by

op; -1
ome  ab—60—« (A-19)

5 1—
o _ _1-a_ 20

On; ad —0—a’

Notice that with constant returns to scale (« = 1), the cost pass-through to price is

complete and the demand pass-through to price is zero. When the returns to scale parameter

4ONote that a setup with CES demand and increasing returns to scale leads to strategic substitution in
pricing. Even though we do not impose a < 1, it is needed to match the model to data.
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« falls below one so that technology exhibits decreasing returns to scale, the cost pass-through

becomes smaller while demand begins to matter for optimal pricing as shown in Figure (A-6).

Figure A-6: Pass-through of Demand and Cost Shocks to Price
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This figure plots the cost and demand pass-through in a model with CES demand with varying levels of
returns to scale «, holding 6 fixed.

Next, we explore if this alternative setup would have been successful at matching un-
targeted pricing moments if calibrated using our strategy to the same empirical data. In
doing so, we replace the two parameters pertaining to the Kimball demand system (w, 1))
with the elasticity of demand 6 and return to scale parameter o while targeting the exact
same set of data moments used in our main analysis.*! We first note that a model with CES
demand, idiosyncratic demand shifters, and decreasing returns to scale technology can be
calibrated to the targeted moments as well as our baseline model, as shown in Table (A-6).
It is worth pointing out that the correlations between TFPR and TFPQ, and between price
and TFPQ, turn out to be informative about the elasticity of substitution # and returns to
scale parameter a.

With respect to the untargeted pricing moments, the calibrated model is able to match

the average size of price changes, the fraction of changes that are upward, and the dispersion

H Externally calibrated parameters are held fixed at the values used in the main analysis.
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Figure A-7: Cross-Sectional Distribution of Gross Markup: Model vs. Data
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The figure plots the kernel density of the empirical markup distribution from publicly traded firms in the U.S.
as well as the kernel density of the markup distribution in the ergodic distribution of the model with CES
demand and decreasing returns to scale technology. Both kernel densities are computed using the optimal
bandwidth for normal densities.

of price changes in the data almost exactly as shown in the bottom panel of Table (A-
6). Furthermore, it is interesting that the pass-through of supply shocks implied by the
calibration turns out to be 38%, which is identical to the pass-through implied by our
baseline model with Kimball demand. Furthermore, this number is close to the value of 40%
in the preferred calibration of Burstein and Hellwig (2007) even though they use a different
calibration strategy than ours.

However, this model specification has two shortcomings compared to our baseline model.
Firstly, although the average and cross-sectional dispersion of the model-implied markup
distribution compare well with the data, the shape of the model-implied distribution exhibits
a large hump near the frictionless desired markup which is counterfactual to the data.*? Also,
the calibrated returns to scale parameter of 0.21 appears to be implausibly low given that the
literature typically finds constant returns to scale among manufacturing firms (Foster et al.,
2008; Eslava et al., 2024). Even if one includes fixed or quasi-fixed inputs in the production

function, a labor-share of 0.21 is fairly low.

42The frictionless desired gross markup under CES is given by 1 + % = 1.48.
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Table A-6: Internal Calibration: CES Demand with DRS

Parameter Description Value
0 Elasticity of Substitution 3.1
o} Returns to scale 0.21

- Persistence of z; 0.98

o, Standard deviation of z; 0.053

Pn Persistence of n} 0.992

On Standard deviation of n} 0.062
f Menu cost 0.12

Targeted Moment Data Model: CES+DRS
Frequency of price changes 0.11 0.11
5-year autocorrelation of z; 0.32 0.32
Cross-sectional standard deviation of z; 0.26 0.26
5-year autocorrelation of n} 0.62 0.64
Cross-sectional standard deviation of n! 1.16 1.01
Corr between TFPR and TFPQ 0.75 0.75
Corr between price and TFPQ —0.54 —0.55
Unargeted Moment

Average Size of Price Changes 0.08 0.08
Fraction Up 0.65 0.64
SD(Ap) 0.08 0.08
Pass-through of Supply Shocks 20%-40% 38%
Average Markup 1.56 1.59
Cross-sectional SD of Markup 0.72 0.53
Impact Response NA 0.77
CIR NA 0.38

This table reports the calibration of the model with CES demand and decreasing returns to scale technology.
The top panel reports the values of the calibrated parameters. The middle panel reports the targeted
moments in the data and the model. The bottom panel reports various untargeted moments in the data and
their model counterparts.

D.4 Baseline Model without Demand Shocks

Table (A-7) considers a modification to the baseline model without demand shocks. In this
version of the model, o, is set to zero while all other parameters are fixed at the baseline
calibration with the exception of f which is recalibrated to maintain the same frequency of
price adjustment as in the baseline model.

The third and fourth columns in Table (A-8) report the pricing moments of two versions
of the model with idiosyncratic demand or idiosyncratic productivity turned off, holding all

other parameters fixed at the baseline value. Without demand shocks, frequency of price
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Table A-7: Baseline Model without Demand

Moment Data  Baseline No Demand
5-year autocorr of z} 0.32 0.32 0.32
Cross-sectional SD of 2} 0.26 0.25 0.26
5-year autocorr of n! 0.62 0.62 0.04
Cross-sectional SD of n} 1.16 1.05 0.42
Corr b/w TFPR and TFPQ 0.75 0.75 0.99
Corr b/w price and TFPQ -0.54 —0.57 -0.98
Frequency of Price Changes 0.11 0.12 0.12
Average Size of Price Changes 0.08 0.07 0.06
Pass-through of Supply Shocks 20%-40% 38% 38%
Average Markup 1.56 1.42 1.38
Cross-sectional SD of Markup 0.79 0.39 0.28
Impact Response NA 0.82 0.80
CIR NA 0.42 0.39

Note: Boldface denotes calibration targets for each model.

Table A-8: Untargeted Pricing Moments

Moments Data Baseline No Demand No TFP

Frequency 0.11 0.12 0.10 0.06
Average Size 0.08 0.07 0.06 0.06
Fraction Up  0.65 0.58 0.66 0.73

SD(Ap) 0.08 0.07 0.06 0.05

Note: This table shows the four pricing moments: frequency of price adjustments, average size of adjustment
conditional on a price change, the fraction of adjustments that are positive, and the standard deviation of
price changes excluding zeros from the data and from model simulated data. The first column refers to the
empirical data, the second column refers to the baseline model, and the third and last column refer to the
model without idiosyncratic demand and productivity shocks respectively.

changes decreases slightly from 0.12 to 0.1 while the size of price changes drops from 0.07
to 0.06. Without productivity shocks, frequency goes down by half — due to the persistent
nature of the demand process — while size of price changes only decreases slightly to 0.06. Of
course we should emphasize that here we hold the parameters constant based on our baseline

calibration, which was only feasible because we had demand shocks.
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Table A-9: Alternative Model: Klenow-Willis

Moment Data  Baseline KW (2016)
5-year autocorr of z{ 0.32 0.32 0.00
Cross-sectional SD of 2} 0.26 0.25 0.27
5-year autocorr of n! 0.62 0.62 0.00
Cross-sectional SD of n! 1.16 1.05 0.23
Corr b/w TFPR and TFPQ 0.75 0.75 0.98
Corr b/w price and TFPQ -0.54 -0.57 -0.77
Frequency of Price Changes 0.11 0.12 0.09
Average Size of Price Changes 0.08 0.07 0.14
Pass-through of Supply Shocks 20%-40% 38% 28%
Average Markup 1.56 1.42 1.64
Cross-sectional SD of Markup 0.79 0.39 0.57
Impact Response NA 0.82 0.85

Note: Boldface denotes calibration targets for each model. KW (2016) refers the calibration in the third row
of Table 6 in Klenow and Willis (2016) where they target a frequency of price change of 0.09.

D.5 Klenow and Willis (2016)

We solve our model using the calibration of Klenow and Willis (2016) in which they target
a frequency of price change of 0.09.** The results are summarized in Table (A-9).

This model has three main problems. First, because the model does not feature an
idiosyncratic demand shock, it fails to match moments related to demand, as well as the cor-
relation between TFPR and TFPQ. The correlation of price and TFPQ is stronger than what
is in the data, but still considerably less than 1 in absolute value due to the incomplete and
non-linear pass-through of cost (productivity) shocks, which is 28% with their calibration.
Second, the average size of price changes is too high at 0.14. Third, in order to match other
price moments they use (standard deviation and some sectoral price moments) they need
large firm-level TFP innovations. Their calibration for TFP has p, = 0.89 and o, = 0.18,
where the former yields virtually no autocorrelation at the 5-year frequency and the latter
is about three times as large as our calibration. Comparing our results with that of Klenow
and Willis (2016), we see that the key is the inclusion of demand shocks. In order to match

the same pricing moments, one needs much smaller TFP shocks in our model because the

43The baseline calibration in Klenow and Willis (2016) (# = 5, ¢ = 10 using their specification) translates
roughly to parameter values w = 1.25 and ¥ = —2 under our specification of the Kimball aggregator,
neither of which are too far from our calibrated values. 1 is more negative indicating stronger pricing
complementarities and thus a smaller pass-through of cost shocks.
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demand shocks, with their 72% pass-through, create more reasons for the firm the change
its price. What is a key result, however, is the outcome that once TFP and demand shocks
are disciplined by the evidence in Foster et al. (2008), the size of price changes turns out

just right.

D.6 Translog Demand System

In addition to Kimball demand, we explore the translog demand system which is frequently
used in the trade and industrial organization literatures as an alternative deviation from
CES demand. As Bergin and Feenstra (2000) explains, this system achieves the same goals
as the original Kimball (1995) paper, but does so in a more explicitly parametric way. They
start with a sub-utility function defined by the dual expenditure function that has the form

In P, = Zal In Py + = ZZ% In P, In P, (A-21)

11]1

with restrictions v;; = 7;s, Z a; = 1 and Z%] = 0, where N is the number of distinct
=1
intermediate goods and Py 1s the price of good 1.

In order to solve our model using this demand system, we take advantage of results
provided in Mrézova and Neary (2017) who provide formulas to nest a translog demand
system inside the Kimball demand system, under the assumptions of symmetric firms and at
a steady state. This makes computation much easier and also enables us to easily compare
the results to our baseline model. The detailed derivations at the back of this section show
that a restriction of ¢ = —ﬁ in a Kimball demand system would lead to a translog demand
system with an elasticity of demand given by *-

The last column in Table A-10 shows the results from a calibrated version of our model
with a translog demand system. To make it as comparable to our baseline as possible,
we calibrate its parameters to the same moments as our baseline model. Given that a
translog demand system is equivalent to a Kimball demand system with a restriction on
the parameters 1) and w, this implies that we have one more moment than parameters in
the calibration. Our results are robust to dropping one of the correlation moments and
calibrating a balanced system. The model featuring a translog demand system matches the
four moments that come from the shock processes. However the correlation between TFPR
and TFPQ is too weak and the correlation between price and TFP is too strong relative to

the data (and the baseline model). This is because the pass-through of supply shocks turns

A-24



Table A-10: Alternative Model with Translog Demand

Moment Data  Baseline Translog
5-year autocorr of z{ 0.32 0.32 0.29
Cross-sectional SD of 2! 0.26 0.25 0.27
5-year autocorr of n} 0.62 0.62 0.68
Cross-sectional SD of n} 1.16 1.05 1.11
Corr b/w TFPR and TFPQ 0.75 0.75 0.55
Corr b/w price and TFPQ -0.54 —0.57 —0.76
Frequency of Price Changes 0.11 0.12 0.10
Average Size of Price Changes 0.08 0.07 0.12
Pass-through of Supply Shocks 20%-40% 38% 60%
Average Markup 1.56 1.42 1.46
Cross-sectional SD of Markup 0.79 0.39 0.31
Impact Response NA 0.82 0.73

Note: Boldface denotes calibration targets.

out to be 60%, well outside the relevant range. In fact, we show in Appendix D.6 that cost
pass-through in the translog model is constrained to be between 50% and 100%.** Relatedly,
given the size of the underlying shocks, the size of price changes turn out to be 12%, which
is much larger than the data. Turning to the effects of monetary policy, the impact response
is somewhat smaller at 0.73. Considering all results together, the baseline model with a
Kimball demand system is more consistent with the firm-level evidence regarding prices,
pass-through and productivity than a model with a translog demand system. Due to having
one additional degree of freedom and no restrictions on the cost pass-through, a Kimball
demand system is more flexible over a translog system and thus more desirable to work
with. Nonetheless, as a model with non-CES demand, the translog demand system certainly

performs better than models using CES demand.

44We compute this pass-through in two ways. First, we use the formula we derived for Kimball in Appendix
A as we did for the baseline model. Second, Mrazova and Neary (2017) provide a formula for pass-through
for all demand systems they consider, one of which is translog. Plugging in the parameter values in to that
formula yields the identical result. Bergin and Feenstra (2000) apply an approximation, which is valid for
small shares of expenditures or equivalently small markups, that shows the pass-through to cost shocks is
50%. Rodriguez-Lopez (2011) derive an exact formula for the cost pass-through and show that it is in general
different from 50%.
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D.6.1 Link Between Translog and Kimball Demand Systems

This appendix establishes the link between a translog demand system and the Kimball
demand system. The derivations follow Mrazova and Neary (2017) closely, who define a

demand system as a locus of (e, p) where

p(r)

_ _:L‘p”(:[‘) )
() > 0 and p(x) = (A-22)

e(r) = —

where p(z) is the inverse demand function satisfying p'(z) < 0. In this notation € is the
minus of the elasticity of demand and p is a measure of demand convexity. In their paper
they show how many popular demand systems can be expressed as a mapping between p
and ¢, under the assumptions of a steady state and symmetric firms.

For our purposes, they show that for translog demand, the mapping is given by

_36—1

" (€) 5

(A-23)

€

For Kimball demand, they define the super-elasticity as S = be for some b > 0 and the

mapping is given by
(I—=b)e+1
PR (e b) = 20

Our goal is to represent the translog mapping from € to p as one that holds in Kimball,

(A-24)

where we pick a particular b for every e by setting p’(¢) = p%(e,b) and solving for the b.

b@:(“*f (A-25)

Doing so yields

€
So far we used the notation of Mrézova and Neary (2017). To convert the restriction

in (A-25) to our notation, based on the expressions of the elasticity of demand and super-

elasticity for our Kimball aggregator specification, we get

and 1) = —b (A-26)

6:
w—1

Using the relationships in (A-26) in (A-25) we obtain

y=— (A-27)

w?

which shows that given w, we can find a value of ¢ such that the Kimball system with (¢, w)
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corresponds to a translog system with an elasticity of demand of = under the assumptions
in Mréazovéa and Neary (2017) listed above. (Note that the € in the notation of Mrazové and
Neary (2017) was minus the elasticity of demand.)

D.6.2 Cost Pass-through with Translog and Kimball Demands

Mrazova and Neary (2017) show that for a general demand system, the cost pass-through

to demand can be obtained as

dlogp e—1 1

= A-28
dlogme € 2—0p ( )
where mc denotes the marginal cost of the firm and € and p are specific to the particular
demand system used. Given the representation for translog demand in (A-23), this simplifies

to
dlogp ¢

= A-29
dlogme  2e—1 ( )

which is bounded between 0.5 and 1 for € € (1, 00).

As we derived in Appendix A.3, our Kimball specification yields a cost pass-through
of 1_11/M in the symmetric steady state. Using (A-24) and (A-26), the formula in (A-28)
simplifies exactly to the same formula.

D.7 Calvo Models

In this section, we consider the degree of non-neutrality in Calvo models, which serve as
a good benchmark due to its prevalance as a modelling tool of nominal rigidities in the
macroeconomics literature. Also, it features no state-dependency and hence no selection in
price adjustment, and therefore can be used as an upper bound to the real effect of nominal
shocks.

We first study a CES model with Calvo pricing and no idiosyncratic shocks to firms. Each
period, a random fraction « of firms can adjust their prices freely while the other fraction
1 — a cannot change their prices. For simplicity, assume that there are no aggregate risks
and the economy is initially in a symmetric equilibrium where all firms set nominal prices
to p and nominal expenditure S = PC' is equal to S.

Under the Calvo setup, the aggregate price index P, can be written as a combination of

the optimal reset price X;, which is the price chosen by firms that are adjusting, and the
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lagged price index, which summarizes the prices of non-adjusters, as follows
Po=[aX""+(1—-a) P ] (A-30)

Log-linearizing around the initial steady state where P, = X; = p and using hatted

variables to denote log-deviations from the steady state yields

~

Pl =aX] 4+ (1—a)P (A-31)

Suppose that in period ¢ = 1, there is an unanticipated permanent shock u > 0 to
nominal expenditure shock S, such that Sy = 1. Because the nominal wage is proportional
to nominal expenditure, firms with the opportunity to adjust will respond to the shock by
increasing their prices by p as the optimal markup is a constant % over the marginal cost.
In other words, the optimal reset price is X = L

As such, the aggregate price in period one is given by
P =apu (A-32)

Iterating forward, the aggregate price in period h can be written as

B, = (Z (1-— oz)il) QL (A-33)

=1

The response of real output is therefore given by

G, = §5- B, (A-34)
o (S s
= (1—-a)"u (A-36)

which implies that the output response as a fraction of the shock is (1 — a)" at period h.
Given the empirical price adjustment frequency, o would be set to 0.11. This implies an
initial (and peak) response of output equalling 89% of the shock and a cumulative impulse

response of 0.76.4°

45The CIR in the Calvo model is given by >~ %;t = 0.76. This also coincides with the result of Alvarez

et al. (2016) who show that the CIR can be expressed in terms of the kurtosis and frequency of price changes.

A-28



Table A-11: Monetary Non-neutrality: Calvo

Baseline CalvoI Calvo Il Calvo III

Impact Response 0.82 0.89 0.86 0.98
CIR 0.42 0.76 0.67 1.31

Calvo I refers to the theoretical impulse response from a Calvo model with CES demand and no idiosyncratic
shocks. Calvo II refers to a Calvo model with CES demand v = 0 and all other parameters held at the
baseline calibration. Calvo III refers to a Calvo model with the same calibration as the baseline model which
includes Kimball demand. All three models set the probability of price adjustment to be 0.11.

In Table (A-11), we also report non-neutrality results of Calvo models with idiosyncratic
TFP and demand shocks with CES and Kimball demand. We do this by replacing state-
dependent pricing with Calvo pricing, setting the probability of price adjustment to 0.11. In
the CES version, we set ) = 0 while holding all other parameters at the baseline level and find
an impact response of 0.86 and CIR of 0.67. In the Kimball version, we keep all parameters
related to demand curvature and idiosyncratic processes at the baseline calibration. The
model with Kimball demand greatly amplifies the real effects of nominal shocks with an
impact response of 0.98 and CIR of 1.31. This demonstrates that the role of micro real
rigidities in generating monetary non-neutrality applies both to sticky price models with
and without state-dependent pricing. Meanwhile, comparing the baseline menu cost model
and the Calvo model with Kimball demand illustrate the role of selection in price adjustment.
The Calvo model without selection exhibits substantially more non-neutrality relative to an

otherwise identical model with state-dependent pricing due to menu costs.

D.8 Models with CES Demand

We present three alternative calibration of the model with CES demand, neither of which
feature a demand shock. In CES I, we use the standard, or agnostic, approach in the liter-
ature and calibrate (f, p,,0,) to match three pricing moments: frequency of price changes,
fraction of positive changes and the average size of price changes. In CES II, we take the first
step in trying to be consistent with the firm-dynamics facts from Foster et al. (2008) and
calibrate (p,,0,) to match two moments: the five-year autocorrelation and cross-sectional
standard deviation of TFP . We still calibrate f to match the frequency of price changes. In

CES 111, we turn on the idiosyncratic demand on top of productivity and calibrate (p,, o)

According to their formula, the Calvo model has a CIR of 0.76 whereas a menu cost model a la Golosov and
Lucas (2007) has a CIR of 0.13.
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Table A-12: Internal Calibration

Moment Data CESI CESII CESIII Baseline
Frequency of price changes 0.11 0.11 0.11 0.11 0.12
Fraction of price increases 0.65 0.64 0.61 0.58 0.58
Size of price changes 0.08 0.08 0.15 0.14 0.07
5-year autocorr of z} 0.32 0.00 0.32 0.32 0.32
Cross-sectional SD of 2! 0.26 0.03 0.26 0.26 0.25
5-year autocorr of n! 0.62 0.01 0.00 0.62 0.62
Cross-sectional SD of n! 1.16 0.01 0.04 1.18 1.05
Corr b/w TFPR and TFPQ 0.75 0.00 0.00 0.00 0.74
Corr b/w price and TFPQ —0.54 -1.00 -1.00 -1.00 —0.57

Parameter Description
P Super-elasticity 0 0 0 -1.27
w Elasticity 1.33 1.33 1.33 1.29
Pz Persistence of 2! 0.66 0.98 0.98 0.98
o, Standard deviation of z;  0.04 0.05 0.05 0.06
Pn Persistence of ni — — 0.992 0.997
On Standard deviation of n} — — 0.05 0.02
f Menu cost 0.01 0.06 0.03 0.03

Note: The top panel of this table compares the targeted moments and model-implied moments for the four
model specifications, where the bolded numbers highlight moments that are targeted in the calibration. The
bottom panel shows the parameter values for each calibration.

to match the five-year autocorrelation and standard deviation of demand. In all versions we
set w = 1.33 to obtain a desired markup of 33%, which is the median markup in our data,
and, naturally ¢» = 0 so that demand is CES.

Results are presented in Table A-12. CES I, which uses (p,, 0., f) to match the first
three pricing moments in the first panel,is able to match those moments very well. However,
it completely misses the firm-dynamics moments. In addition, the size and persistence
of the z process used to match pricing moments implies very small and nearly transitory
movements in idiosyncratic productivity that is counterfactual to empirical estimates of firm
productivity processes. Due to the absence of demand shocks, this version is, by definition,
unable to address the remaining firm-dynamics moments. Turning to CES II, we focus
on matching the first two firm-dynamics moments using (p,, o), while only targeting the
frequency of price changes among pricing moments. The calibration is successful in the sense
that the targeted moments are matched, including the dynamics of idiosyncratic productivity.
However, this version misses the average size of price changes completely. In an effort

to match the more volatile and persistent idiosyncratic productivity process, the model

A-30



0.8 1 — —CESI
— - -CES I
------ CES I

x Baseline

%,
0.6

\ \‘

Vo
0.4 \ V‘\

\
N\,
\
\ N
0.2 \ N \‘\\
\ N
N ST
e
N~ - e S
00 | B — E—————
5 10 15 20

Figure A-8: Impulse Response of Real Output to a Nominal Expenditure Shock

Note: This figure plots the impulse response of real output expressed as a fraction of the nominal expenditure
shock on the vertical axis and periods elapsed since the shock on the horizontal axis.

generates price changes that are about twice as large on average than the data. Moreover,
due to the absence of demand shocks, the four remaining firm-dynamics moments are also
not matched. CES III attempts to match additional firm dynamics moments by including
a idiosyncratic demand shock in addition to a idiosyncratic productivity shock, once again
leaving all pricing moments except for the frequency of price changes as untargeted. This
version is able to match the four firm-dynamics moments by picking appropriate parameters
for the aforementioned shocks. Due to the CES structure, as explained above, the last two
moments are still elusive for this version. And just like CES II, it fails to deliver on the
untargeted pricing moments.

Figure A-8 plots the impulse response of real output expressed as a fraction of the size of
the shock for the baseline model as well as the three CES versions we introduced earlier. Table
A-13 contains the four statistics that summarize the degree of monetary non-neutrality we
discussed above. CES I (blue dashed line), which was calibrated to pricing moments, deliver
a peak response of 0.56, which is substantially lower than the Calvo response. The response
is also fairly short-lived with a half-life of 1.25 months. The resulting cumulative impulse
response is 0.11, which is close to the number reported in Alvarez et al. (2016) for a Golosov-
Lucas type menu cost model. CES II (orange dashed dotted line) which calibrates the model
to the productivity process of Foster et al. (2008) produces more non-neutrality with a peak

response of 0.69. It is also somewhat more long-lived with a half-life of 2.9 months and has a
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Table A-13: Measures of Monetary Non-neutrality

Moment CESI CESII CESIII Baseline

SD(C) 0.22% 0.39%  0.44%  0.52%

Impact 0.56  0.69  0.69 0.82

Halflife 1.25  2.90  3.46 4.50
CIR 0.1 028  0.30 0.42

Note: This table displays four measures of monetary non-neutrality for the four model calibrations.

larger CIR of 0.28 compared to CES I. Neither of these versions delivers a substantial level of
non-neutrality, which is the key result of Golosov and Lucas (2007). CES III shows an impact
response of 0.69, a half-life of 3.5 months, and a CIR of 0.30. Monetary policy in this version
exhibits slightly greater non-neutrality due to the fact that idiosyncratic demand shocks
act as random menu costs.*® In the presence of random menu costs, firms are responding
not only to the aggregate shock but also to idiosyncratic realizations of the adjustment cost,
thereby weakening the selection effect of responding to idiosyncratic productivity shocks and

thereby raising monetary non-neutrality.

46Random menu costs were first introduced by Dotsey et al. (1999). Recent works by Nakamura and
Steinsson (2010), Midrigan (2011), and Alvarez et al. (2016) explicitly explore the implications of random
menu costs on monetary non-neutrality.
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