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1 Introduction

The U.S. manufacturing landscape has recently seen significant shifts, notably marked by the

government’s turn towards protectionism in 2018 (Fajgelbaum et al., 2020). The introduc-

tion of trade tari↵s aimed to increase the demand for locally manufactured products, thereby

fostering domestic job creation and industry growth. As firms adjusted to tari↵-induced eco-

nomic pressures, their hiring and workforce management strategies were further complicated

by a tightening supply of skilled labor. The “Buy American and Hire American” Executive

Order in 2017, in particular, reduced the appeal of the U.S. for international students and

professionals, especially engineers and scientists, seeking employment opportunities (Song

and Li, 2022).1

In this paper, we examine the combined impact of these protectionist polices on the

domestic labor markets within the U.S. manufacturing sector, with a particular focus on the

semiconductor (chip) industry. We also explore shifts in global hiring strategies, asking if

there has been changes in recruitment practices of U.S. firms abroad. Lastly, we assess the

broader e↵ects of these policies on the educational and career trajectories of individuals with

chip manufacturing skills, observing shifts in job types and employment rates within this

specialized field.

The e↵ects of protectionist policies on labor markets are ex ante not clear. On the one

hand, protectionist policies could potentially stimulate demand for local employees by in-

centivizing companies to invest more in domestic talent development and training programs.

This shift towards prioritizing local workforce utilization could lead to a more robust and

self-su�cient domestic labor market within the semiconductor industry, albeit with potential

challenges in matching skillsets to industry demands. On the other hand, companies may

slow their recruitment e↵orts and become more selective in their hiring practices in response

to increased tari↵ costs and heightened demand uncertainties. Concurrent tightening of im-

1See https://bit.ly/4aoUnD3, https://bit.ly/3TvFlVq., https://bit.ly/3PxnPij, and https://
bit.ly/3voSKXb.
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migration policies on labor supply side could further result in a reduced availability of skilled

workers, compelling companies to either leave key positions unfilled or to hire less qualified

domestic candidates. These shifts could significantly raise job market uncertainty, leading

employees to reassess their career paths more frequently, especially in industries where talent,

whether domestic or foreign, is in high demand globally.2

To gauge the impact of protectionist policies on labor hiring and retention rates in U.S.

semiconductor firms, we leverage a unique and comprehensive dataset containing detailed

employee-job-employer relationships for millions of individuals employed in this sector glob-

ally. The chip industry is our focal point due to its significant susceptibility to tari↵ impacts,

a result of its intricate global supply chains and trade dependencies.3 Additionally, this sec-

tor has traditionally relied on an international workforce, making it particularly sensitive to

shifts in immigration policies and labor market dynamics. Moreover, our dataset allows us

to trace the career trajectories of individuals in this sector from their educational accom-

plishments to their most recent employment updates — an aspect rarely available for several

other professions. Finally, the movement toward domestic chip production, though beneficial

for local economies and national security, presents significant challenges, including potential

talent shortages. We seek to provide detailed estimates that will inform policy discussions

regarding the extent of these shortages in this strategically vital sector.

2In Appendix A, we provide a framework to understand career and job choices under the lens of uncer-
tainty, focusing on decisions to stay in the current job, search for a new job within the same field, or embark
on a di↵erent career path. This conceptual framework, built on Neal (1999), describes how uncertainty af-
fects these decisions through the distribution of job values, where the choice to leave a position is influenced
by comparing the current job’s value against the value of new opportunities. In this setting, the model
predicts that during periods of or in sectors with high career-specific or job-specific uncertainty, employees
are more inclined to leave their careers, driven by the greater variance in perceived job values that makes
new opportunities seem more beneficial.

3Some of the semiconductor related products a↵ected by the tari↵s include HS Codes 8541 (diodes,
transistors and similar semiconductor devices); 8486.20 (machines and apparatus for the manufacture of
semiconductor devices or of electronic integrates circuits), 8486.90 (machines and apparatus of a kind
used for the manufacture of semiconductor boules or wafers, etc.), 8541.10 (diodes, other than pho-
tosensitive or light-emitting diodes); 8541.29 (transistors, other than photosensitive); 8541.90 (parts,
diodes, transistors parts of diodes, transistors and similar semiconductor devices; ); 8542.31 (proces-
sors and controllers, electronic integrated circuits). Countries subject to these tari↵s include China,
Taiwan, South Korea, Japan, Netherlands, Germany, India, in addition to 50 other countries. Source:
http://www.econ.ucla.edu/pfajgelbaum/rtp_update.pdf. See also https://bit.ly/4a5aoyc.
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We employ a di↵erence-in-di↵erences methodology to examine the impact of U.S. pro-

tectionist policies on the employment landscape for scientists and engineers within U.S.

semiconductor firms, contrasting it with other job categories within the same firm-year. Our

analysis reveals a notable downturn in employment indicators within these firms following the

implementation of protectionist measures in 2018. Specifically, we observe a 9% reduction

in hiring activities, contributing to a 3% decrease in the overall workforce size. To provide

context, the chip manufacturing sector in the United States faces an annual loss of 2,285

science and engineering positions. Between 2019 and 2022, this translates to a cumulative

reduction of 9,140 jobs within the industry, which employed 66,382 engineers and 9,768 sci-

entists during this time. While reduced hiring in chip manufacturing doesn’t automatically

lead to job losses for current or prospective engineers, it does signify a notable decline in

employment opportunities within this sector. Moreover, there’s been a similar decrease in

attrition rates, resulting in a notably lower turnover of engineers and scientists post 2018.

The decline in hiring is especially acute in entry-level and junior positions, indicating that

protectionist policies disproportionately a↵ect those new to the workforce. Importantly, we

also study how the workforce of the U.S. chip manufacturers changes across their segments

around the world (i.e., at the country-job category-year level). This setting allows us to

also control for other layers of endogeneity by introducing geographic variation for each

firm-year-job category. We find that U.S. manufacturers reduce their domestic workforce

in the U.S. and increase hiring of more experienced workers (by 3%) outside the U.S. for

both junior and mid-senior roles. Among the countries where U.S. chip firms have expanded

their presence are Canada, which introduced favorable visa policies (Esterline, 2023), and

European countries such as the Netherlands, which has an established chip manufacturing

industry.4

Finally, we study education and job outcomes of the cohorts of students with chip

4We also test for the parallel trends by showing that the time-specific treatment e↵ects show no pre-trends
in any of our tests. We in fact see strikingly parallel trends for treatment and control job categories before
2018 and a clear change in only the treated group afterwards.
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manufacturing skills. Using a di↵erence-in-di↵erences specification, accounting for within

country-degree-job category, degree-year, country-year fixed e↵ects, and country-degree-job

category-year variation, we find that fewer number of classmates get engineering or scientist

jobs alongside those with chip manufacturing skills with the start of the protectionist policies

in 2018 in the U.S. The e↵ect corresponds to a 15% drop in the number of classmates and is

prevalent mostly at the undergraduate level but also at the graduate levels. The classmates

of the talent in the chips industry that skip engineering and science jobs are more likely to

switch to finance, marketing or other higher paying jobs. We also show that these shifts

among individuals with similar educational and geographical backgrounds extend beyond

the U.S. Overall, we find that there is a discernible decrease in the cohort sizes of students

at both the undergraduate and graduate levels who are peers of individuals possessing chip

manufacturing skills, indicating a waning interest in chip manufacturing industry, especially

in the U.S.

Our paper is mainly related to the vast literature that studies the e↵ects of trade frictions

on labor markets. Along these lines, Irwin (2000) discusses the e↵ect of tari↵s on growth in

19th century America. In the context of how the 2018 trade war a↵ected companies and local

economy in particular, Fajgelbaum et al. (2020) demonstrate substantial declines in both

imports and exports following the imposition of increased tari↵s in the U.S. and retaliation

by trade partners (Goldberg and Pavcnik, 2016; Flaaen and Pierce, 2019). This led to

significant losses exceeding $50 billion for U.S. consumers and firms purchasing imported

goods, resulting in an aggregate real income reduction of $7.2 billion (0.04% of GDP) when

considering tari↵ revenues and gains to domestic producers. Amiti, Redding and Weinstein

(2019) similarly estimates significant losses attributable to the 2018 import tari↵s for U.S.

consumers and firms, amounting to approximately $3.2 billion per month in additional tax

costs and an additional $1.4 billion per month in deadweight welfare losses. Utilizing Burning

Glass Technologies data, Javorcik, Stapleton, Kett and O’Kane (2022) show a 0.6% decrease

in online job postings in commuting zones a↵ected by input tari↵s and retaliations by trading
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partners in 2018. These e↵ects were more pronounced for lower-skilled job postings compared

to higher-skilled ones.

We also contribute to the literature on the China shock. Autor, Dorn, Hanson and Song

(2014) document the adverse e↵ects of heightened imports from China between 1992 and

2007 on employment, labor force participation, and wages within manufacturing industries

competing with more a↵ordable imports. Additionally, they illustrate the substantial ad-

justment costs for individual workers resulting from this import shock, with higher-wage

workers experiencing relatively better outcomes compared to their lower-wage counterparts.

Pierce and Schott (2016) study the e↵ect of the elimination of potential tari↵ increases on

Chinese imports in 2000 on employment, and Autor, Dorn and Hanson (2013), Acemoglu et

al. (2016), Caliendo et al. (2019), and Autor, Dorn and Hanson (2021) analyze the impact of

the China shock on wide range of outcomes, including the labor market, between 2000 and

2019. Stanig and Colantone (2018) argue that this trade shock from China has led to polit-

ical polarization and increased nationalism around the world. Cen et al. (2023) study how

U.S. firms used their internal capital markets to stay resilient to the five year plans of China

between 2001 and 2016, which lead to significant drops in both employment and investments

in the same sectors in the U.S. They show that firms adjusted by shifting production to

upstream or downstream industries, o↵shoring to supported industries in China.

Our paper is also related to the literature on the e↵ect of political uncertainty on firm

investment and employment. Baker et al. (2016) develop a measure of economic policy un-

certainty and show that it is associated with reduced firm-level investment and employment.

Bloom et al. (2022) argue that economic uncertainty in the world has been rising significantly

with various major uncertainty shocks, including China-U.S. trade-tensions, within the last

decade. Their research shows that these shocks have real consequences for companies. See

also Campello and Kankanhalli (2022) for a review of the literature on corporate decision

making under uncertainty.5 There is also a growing literature on the e↵ects of work (H1-B)

5See, e.g., Alfaro et al. (2024) for the e↵ects of financial uncertainty on firm employment
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visas on firm and worker outcomes (see, e.g., Doran, Gelber, and Isen (2022)).

Lastly, our paper adds to the literature on economic nationalism. Dinc and Erel (2013)

provide evidence of prevalent economic nationalism in government responses to significant

corporate merger attempts in Europe, where local authorities exhibit a preference for target

companies to remain under domestic ownership rather than foreign control. Morse and

Shive (2011) analyzes the impact of patriotism on equity investments, while Gupta and

Yu (2007) explore bilateral capital flows. D’Acunto, Huang, Weber, Xie and Yang (2023)

shows hiring restrictions on high-skilled foreign nationals, exemplified by the 2007 Employ

American Workers Act led to reduced patent filings in FinTech, cybersecurity, and payment

systems, alongside increased wage premiums paid to retain pre-crisis foreign hires.

2 Why Semiconductor Industry?

The broad impact of protectionist policies plausibly a↵ected many of the U.S. manufacturing

sectors. We focus on the semiconductor sector, because of three reasons.6 First, the semi-

conductor industry relies heavily on international talent (Ozimek and O’Brien, 2023) and

collaboration for innovation and competitiveness (Jones and Lotze, 2023). Protectionist mea-

sures, such as tari↵s and immigration restrictions, disrupt the flow of skilled professionals and

hinder international collaboration, thereby impeding the industry’s ability to innovate and

adapt to changing technological landscapes. Second, the semiconductor industry operates in

a highly interconnected global supply chain (Thadani and Allen, 2023). Tari↵s on imported

raw materials and components increase production costs for semiconductor manufacturers,

making it more challenging for them to remain competitive in the global market. Addition-

ally, retaliatory tari↵s from trading partners decrease demand for American semiconductor

products abroad, further impacting the industry’s profitability and growth prospects. Third,

6There are not many papers studying the dynamics of workforce in specific industries. The closest study
to ours is Angel (1989) which investigates the labor market organization and geographic concentration of
engineers in the U.S. semiconductor sector. Angel’s use of survey data shows a pronounced localization of
this workforce in Silicon Valley, underscoring the region’s pivotal role in the industry.
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our aim is tracing individuals’ career trajectories and identifing their skill sets. Analyzing

how individuals adapt their careers to protectionist shocks necessitates examining millions

of resumes. Our data is especially apt for studying the semiconductor industry, as many

individuals in this industry voluntarily disclose their information, which is not commonly

observed in other manufacturing sectors (top three industries that constitute the greatest

number of resumes on this platform are financial services, information technology and ser-

vices, hospital & health care).

Historically, the United States (Texas Instruments, Fairchild Manufacturing, and Intel)

led chip manufacturing until the 1980s. Japan (Toshiba, NEC, and Hitachi), followed by

South Korea (Samsung), China, Taiwan (notably TSMC), and select European countries

(such as ASML Holding from the Netherlands), have markedly expanded their market share

in recent years. Presently, the U.S. accounts for a mere 10 percent of global commercial

chip production, yet it maintains its leadership in design, research, and development.7 Chip

production entails processing such as design, manufacturing, and packaging. Integrated

Device Manufacturer (IDM) companies like Intel encompass all these facets, while Fabless

entities like Qualcomm focus solely on design, and Foundry firms such as TSMC specialize in

manufacturing semiconductors designed by Fabless companies. The semiconductor industry

comprises both memory and logic chips markets, with the latter dominating (approximately

70 percent). While South Korea leads in memory chips, necessitating economies of scale for

mass production, the U.S. concentrates on logic chips, demanding skilled architects leveraging

cutting-edge technology. Geographically, chip manufacturing remains highly concentrated,

posing significant supply chain risks (NIST, CHIPS for America).

The globalization wave in chip manufacturing, catalyzed by events like China’s entry

into the World Trade Organization (WTO), has encountered headwinds. Trends towards

nationalist economic policies post-global financial crisis and exacerbated by the COVID-

19 pandemic have spurred a shift towards homeland economics. Recognizing the strategic

7See http://www.chips.gov.
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importance of chip manufacturing, particularly in bolstering national security, initiatives like

the 2021 Facilitating American-Built Semiconductors (FABS) Act and the 2022 CHIPS and

Science Act have emerged. These measures encompass substantial investment tax credits and

grants to stimulate domestic chip manufacturing and research while prioritizing investment

in American workers (see the White House briefing, August 9, 2022).

3 Data

We use Revelio Labs database to obtain detailed information on employee, employer and job

characteristics.8 Revelio Labs positions itself as a company that collects and standardizes

hundreds of millions of publicly available employment records to create “world’s first univer-

sal HR database” to allowing to see the workforce dynamics and trends of any organization.

The data includes near a billion employees around the world across all industries, scraped as

of March 2023. In this data, we narrow our focus on the workforce with chip-related skills or

workforce that have ever worked in the chip industry as well as their classmates from college

or graduate schools (irrespective of industries of their jobs).

The data allows us to observe each employee’s current as well as past jobs, skills, location,

education background, job category, seniority, various personal characteristics like estimated

age and gender as well as employer characteristics. Using this data, we first provide various

statistics on the workforce in the global chip manufacturing industry before moving on to

testing the specific hypothesis laid out above. Section 3.1 provides key summary statistics on

active semiconductor workforce around the globe, in addition to employment characteristics

within the U.S. chip manufacturing industry (Section 3.2), and job market outcomes for

cohorts of potential chip manufacturing talent after graduation (Section 3.3). We provide a

detailed summary of our data collection process in Appendix Section B.1.

8See, for example, Amanzadeh et al. (2024) using the same data vendor.
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3.1 Active Semiconductor Workforce

Table 1 provides the distribution of the physical location of 1.6 million active employees

with chip manufacturing skills as of March 2023 across the world. Note that these people

are not necessarily working for a chips company, nor are they necessarily working for a

local company, all of which we will address later. United States is at the top of the list of

countries hosting these skills, with 680,602 employees being physically in the US. A large

fraction (480,193) of these employees work as an engineer while 49,515 are scientist. An

average employee has been at her current job, which is the 5.5th one over her career, for

2,819 days (almost 8 years). Average salary in the U.S. is just over $100,000 with average

seniority of level 3 (associate level) out of 7.

[Table 1 about here]

India has 165,352 employees with chips skills and a larger fraction of these people (almost

130,000) are engineers. Their job as of March 2023 is their 4th job on average and the

average seniority is similarly at around 3, –i.e., at the associate level. The average salary

is much lower tough, at $12,751.9 Table 1 also highlights the employment and economic

characteristics across prominent European countries. For instance, the United Kingdom

ranks third with a total of 88,527 employees, heavily skewed towards engineering roles with

57,927 engineers, and an average salary of $58,110.89. Germany follows, with 43,597 total

employees, 28,759 of whom are engineers, boasting a higher average salary of $79,377.39.

France and Italy also show significant figures, with total employments of 38,024 and 30,545,

respectively, and engineers forming the largest job category in each country. Canada ranks

fourth, surpassing all European countries in the number of active employees, 63,376 in total,

except for the UK.10

[Figure 1 about here]

9India has a 2022 PPP conversion factor of 22.88. See, e.g., https://data.worldbank.org/indicator/
PA.NUS.PPP.

10As of 2022, United Kingdom, Germany, France, Italy, China and Canada have (World Bank) PPP
conversion factors of 0.68, 0.73, 0.70, 0.63, 3.99, and 1.23, respectively.
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Table 1 further illustrates that countries such as India, Brazil, Pakistan, Turkey, and

Malaysia have a significant number of engineers with chip manufacturing skills and experi-

ence, as indicated by their job positions and tenure lengths. However, these engineers are

compensated at a lower rate compared to their counterparts in other countries. For China,

the data indicates a total employment of 28,664 individuals with the chip manufacturing

skills. Among these, engineers represent the largest job category with 16,330 jobs, high-

lighting China’s substantial focus on engineering talent within the industry. The average

tenure for these positions in China is reported at 3,330.75 days, suggesting a relatively ex-

perienced workforce. Despite this expertise, the average salary is $28,236.07, which also is

lower compared to Western countries. Figure 1 further illustrates the global distribution

of employees with chip manufacturing skills who are actively employed as of March 2023,

including countries not shown in Table 1.

While Table 1 shows the United States as the leading country in terms of the number

of employees skilled in chip manufacturing, it does not specify the particular skills these

employees possess. Therefore, Figure 2 highlights the list of skills utilized to identify indi-

viduals with chip manufacturing expertise, alongside the percentage representation of each

skill among employees in the U.S. The variation in skill distribution reveals both the core

and peripheral abilities that contribute to the U.S. chip manufacturing sector’s operational

breadth.

[Figure 2 about here]

As shown in Figure 2, skills such as Plasma Etch (71.99%), which is a critical skill in

the fabrication of semiconductors for carving fine patterns on the surface of silicon wafers,

and Design Of Experiments (67.67%), another important skill for estimating defect and

scrap rates, which is critical to maximize profitability, exhibit substantial prevalence in the

American workforce. Similarly, Chemical Vapor Deposition (67.39%), used to create high-

quality thin films, underscores its importance. Beyond these specialized skills, our dataset
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encompasses broader skill categories, including Semiconductor Manufacturing, where 57.58%

of the global workforce is based in the US.

On the other end of the spectrum, other skills such as Proteus (9.98%), an important

skill for reducing carbon footprint of semiconductor manufacturing, Autosar (11.32%), a

critical skill in the design and development of automotive electronics, which are increasingly

dependent on sophisticated semiconductor devices, and Electrical Machines (15.18%), which

refers to knowledge in operating electrical machinery, reveal a lesser extent of representa-

tion.11 Overall, Figure 2 indicates that the US holds a leading role in certain key skills

within the chip manufacturing sector, yet there remains room for expanding its presence in

additional skill areas.12

The above findings indicate that while the U.S. has the highest number of employees

with chip manufacturing skills, it does not dominate in every specific skill within the chip

manufacturing sector. A considerable portion of these skills are found in the workforce out-

side the U.S. This leads to questions regarding the utilization of individuals possessing chip

manufacturing skills. To address this, our subsequent analysis focuses on the employment

distribution of chip manufacturing talent. We begin by identifying the companies that em-

ploy these individuals and then assess their distribution across various industries, comparing

those directly involved in chip manufacturing with those in unrelated sectors.

[Table 2 about here]

Table 2 provides the list of top employers of the global workforce with chip manufacturing

skills. Intel Corporation is not surprisingly the number one and the U.S. government, perhaps

more surprisingly, is the number two in the list, with almost 30,000 and 13,400 employees

respectively. Government entities such as the United States Navy, US Air Force, The United

States Army, Sandia National Laboratories, Jet Propulsion Laboratory, Federal Aviation

11In February 2024, the Biden-Harris Administration announced a deal to allocate $1.5 billion from
the CHIPS and Science Act to enhance semiconductor production related to the U.S. auto industry. See
https://bit.ly/3I3e3R1.

12See, e.g., more information on Plasma Etch, Design of Experiments, Chemical Vapor Deposition, and
Autosar.
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Administration, US Department of Defense, Lawrence Livermore National Laboratory, and

the National Aeronautics & Space Administration are notable employers of individuals skilled

in chip manufacturing. Qualcomm is in the top five of employers, with similar number of

employees (10,000–11,000) to Apple and Amazon, which seem to have hired individuals with

these skills.

There are also non-US companies like Siemens from Germany and NPX Semiconduc-

tors from Netherlands in this tops list. The “Other Employers” category encompasses a

significant portion of the workforce, highlighting the extensive demand and versatility of

chip manufacturing skills across diverse set of companies and sectors. Overall, the table

illustrates a wide-ranging employment spectrum for professionals with chip manufacturing

capabilities, extending from conventional chip manufacturing firms to governmental agencies

and software companies worldwide.

Table 2 also showcases the concentration of expertise and experience within these orga-

nizations. Intel Corp stands out with the majority of its 15,397 employees at Seniority Level

2, emphasizing a strong mid-level expertise in its workforce. Qualcomm Inc, with 3,461

employees, sees its largest group at Seniority Level 4, suggesting a workforce with advanced

experience and expertise. NXP Semiconductors NV, employing 6,546 people, has its most

populous group at Seniority Level 2, highlighting a solid foundation of junior-level profes-

sionals. NVIDIA Corp, with a total of 5,057 employees, also shows a majority at Seniority

Level 2.

At Seniority Level 1, the Government of the USA has the highest count with 4,893

employees, indicating a strong entry-level workforce. Intel Corp dominates Seniority Level 2

with 15,397 employees, showcasing its significant mid-level professional base. For Seniority

Level 3, QUALCOMM Inc leads with 2,330 employees, emphasizing its focus on experienced

professionals. At Seniority Level 4, QUALCOMM Inc again has the highest number, with

3,461 employees, reflecting its investment in deeply knowledgeable sta↵. Intel Corp tops

Seniority Level 5 with 4,344 employees, highlighting its leadership in highly experienced
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personnel. At the more advanced Seniority Levels 6 and 7, Intel Corp and the Government

of the USA lead with 697 and 31 employees respectively, pointing to a smaller but essential

group of highly specialized and leadership-oriented sta↵ within these organizations.13

[Table 3 about here]

Table 3 delves into the industry composition of active workforce with chip manufacturing

in the U.S. It displays the industries employing the 680,602 active professionals in the U.S.

with these skills. Panel A identifies core chip manufacturing sectors, with “Semiconductor

and Related Device Manufacturing” leading at 72,512 employees, followed by “Semiconduc-

tor Machinery Manufacturing” and “Instrument Manufacturing for Electricity & Electrical

Signal Testing” with 7,943 and 6,514 employees, respectively. Panel B explores employment

in non-chip manufacturing industries, where “Software Publishers” top the list with 35,572

professionals, and “Colleges, Universities, and Professional Schools” employ 27,661. These

include academic positions, post-docs, researcher roles at universities and related labs. Other

significant sectors include “Radio/TV Broadcasting & Wireless Communications Equipment

Manufacturing” and “Internet Publishing and Broadcasting and Web Search Portals,” hous-

ing 14,591 and 13,512 professionals, respectively.

To summarize, this section shows that the U.S. is at the forefront in terms of active chip

manufacturing workforce, housing approximately 600,000 of the global 1.6 million experts in

this field. However, it appears that the U.S. does not fully capitalize on its chip manufac-

turing workforce’s potential, because many individuals with chip manufacturing skills work

at jobs outside the chip manufacturing industry. Our findings also indicate a gap in several

critical skills essential for chip manufacturing within the U.S. workforce. Moreover, we note

that while other countries have professionals with comparable experience, these individuals

often receive lower salaries compared to their U.S. peers. In the following section, we provide

descriptive statistics about U.S. chip manufacturing companies.

13In untabulated analyses, we verify that our employee counts align with those of key chip manufacturing
firms, which are crucial to our study. For instance, we identify over 119,000 employees for Intel in 2022,
closely matching public data that reports Intel having around 120,000 employees.
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3.2 U.S. Chip Manufacturer Firms

In this section, we provide descriptive statistics for U.S. manufacturing firms over the period

from 2014 to 2022. The dataset is organized at firm, job category, and year. For job category

classification, we employ Revelio’s clustering algorithms, which sort jobs into seven primary

categories: Admin, Engineer, Finance, Marketing, Operations, Sales, and Scientist. It’s

important to note that the job categories here di↵er from those discussed in Section 3.1. In

particular, the categories include a broader range of roles beyond engineers and scientists,

reflecting the diverse workforce within U.S. chip manufacturer firms around the globe.

[Figure 3 about here]

Figure 3 displays the aggregate number of employees categorized by job descriptions at

1,153 U.S. chip manufacturing firms as of the end of 2017. As shown, the total employment

across all job categories in the chip manufacturing industry stands at 170,636. This suggests

an average of 148 employees per firm, or alternatively, 21 employees for each firm-job position

tuple. The largest single group is Engineers, holding 66,382 positions. Administrative roles

make up 16,822 of these positions, while Operations and Sales roles account for 20,072 and

30,890 positions, respectively. Furthermore, Marketing and Finance roles contribute 12,710

and 13,992 positions, respectively. Additionally, there are 9,768 Scientist roles, emphasizing

the industry’s investment in research and development.

[Table 4 about here]

Panel A of Table 4 provides further summary statistics for various employment metrics

across 68,949 firm-job category-year observations over 2014-2022 time period. We focus

on the logged values of employee counts, hiring, separation, and turnover rates, alongside

specific hiring categories. The average of Log(Empi,j,t) stands at 1.76, with a median of 1.39.

The means for Log(Hiringi,j,t) and Log(Separationi,j,t) are 0.62 and 0.59, respectively, while

Log(Turnoveri,j,t) has a higher average at 0.88. In terms of specific rates, the Hiring Ratei,j,t
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averages at 0.16, whereas the Separation Ratei,j,t is slightly lower at 0.12, suggesting a trend

of more hiring than separation.14 The Net Hiring Ratei,j,t averages at 0.04, indicating the

balance between hiring and separation. The Turnover Ratei,j,t is higher at 0.28.

The breakdown into specific hiring categories shows that experienced (fist-time) em-

ployees have the mean log value at 1.56 (0.95), suggesting that firms are more inclined

towards hiring experienced individuals. Employees with junior and mid-senior positions,

(Log(JunPosEmpi,j,t) and Log(MidSenPosEmpi,j,t)), exhibit lower averages, indicating a

lesser but significant volume of hiring in these categories.15 These statistics collectively

provide insights into the hiring patterns and workforce dynamics within firms, highlighting

the prevalence of experienced hires and the general trends in employee turnover. Panel B

displays similar statistics for the U.S. firms across its domestic and international segments.

3.3 Yearly Cohorts of Students Proficient in Chip Manufacturing Skills

The preceding sections o↵er an overview of the active workforce with chip manufacturing

skills and analyze labor dynamics within the U.S. chip manufacturing industry. This section

presents summary statistics on chip manufacturing education and job outcomes. Figure

4 o↵ers a look into the first career steps taken by U.S. graduates who shared the same

graduation year, program, and university with individuals possessing chip manufacturing

skills. This analysis is segmented by degree type and initial job category chosen post-

graduation. The data is as of the end of 2017, and the figure excludes counts of classmates

below 1,000 to enhance readability.

[Figure 4 about here]

The cohort size for the year 2017 totals 109,126. Bachelor’s degree holders (65,290) pre-

dominantly pursued engineering, with 42,100 graduates, followed by roles in science (6,184)

14The mean values of Empi,j,t, Hiringi,j,t, and Separationi,j,t are 70.33, 9.41, 7.31, respectively.
15The mean values of FirstJobEmpi,j,t, ExprEmpi,j,t, JunPosEmpi,j,t, MidSenPosEmpi,j,t are 15.55, 54.78,

47.52, 21.02, respectively.
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and sales (5,862). Administrative, financial, marketing, and operational roles also attracted

Bachelor graduates, but in smaller numbers. For those with Doctoral degrees, a pronounced

preference for scientific (2,180) and engineering (1,282) positions emerges, underscoring a

career focus on research and technical development within the chip manufacturing field.

Master’s degree recipients show a preference for engineering (25,693) and science (3,600),

with additional graduates moving into administrative, financial, marketing, operational, and

sales positions. MBA graduates display a diverse range of initial job preferences, with sig-

nificant numbers entering engineering (1,136) and sales (1,043), alongside finance (801) and

operations (543).

Overall, Figure 4 illustrates that prior to the U.S. protectionist policies, individuals with

a Bachelor’s degree exhibited a preference for roles within technical and commercial sectors.

Those with Doctorate and Master’s degrees predominantly pursued careers in science and

engineering. On the other hand, there is a tendency among MBA graduates to seek positions

that combine technical expertise with strategic and commercial insight.

Panel C of Table 4 presents additional summary statistics for cohorts by providing a de-

tailed snapshot of their employment outcomes. The dataset encompasses 35,496 observations

between 2014 and 2022 at the country-degree-job category-year level, with variables such as

Log(Cohort Sizec,d,j,t), Log(Avg. Salaryc,d,j,t), Avg. Seniorityc,d,j,t, and Log(Tenurec,d,j,t) that

capture the size of each cohort that take job type j after graduating from the same degree

d from the same university in country c in year t, along with their average salary, seniority,

and tenure in their first jobs, respectively. As shown, the average logged classmate size

choosing job type j is equal to 1.21 and the average logged salary is equal to 6.02. Av-

erage seniority stands at 1.51, with a close median of 1.50, reflecting a relatively uniform

early career progression among these individuals. Meanwhile, the tenure of these positions,

Log(Tenurec,d,j,t), has a mean (median) of 3.18 (5.02).
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4 Empirical Strategy

In this section, we discuss the empirical methodologies employed in the study. Section 4.1

details our approach to estimating the impact of U.S. protectionism on worldwide employ-

ment in science and engineering roles within U.S. chip manufacturing companies. Section

4.2 examines how U.S. protectionism influences the decision of students around the globe to

pursue careers in science and engineering. Section 4.3 analyzes how the geographic distribu-

tion of the workforce of U.S. chip manufacturers changes in the post-2018 protectionist era.

Therefore, it allows us to analyze the dynamics and heterogeneity of the estimated e↵ects in

the United States and the rest of the world.

4.1 Science and Engineering Jobs at U.S. Chip Manufacturers

We estimate the average treatment e↵ect of post-2018 U.S. protectionism on science and engi-

neering jobs at U.S. semiconductor manufacturing firms by running the following di↵erence-

in-di↵erences regression:

yi,j,t = �Treatedj ⇥ Postt + ↵i,t + �i,j + ✏i,j,t, (1)

where i denotes the firm, j denotes the job category, and t represents the year. Our study

focuses on several key dependent variables yi,j,t, which include the logarithm of the number

of employees (log(Empi,j,t)), hiring (log(Hiringi,j,t)), separation (log(Separationi,j,t)), and

turnover (log(Turnoveri,j,t)). We also examine rates such as the hiring rate (Hiring Ratei,j,t),

separation rate (Separation Ratei,j,t), net hiring rate (Net Hiring Ratei,j,t), and turnover rate

(Turnurnover Ratei,j,t) across di↵erent job categories and time periods.

The variable Treated j is assigned a value of one for science and engineering job cate-

gories, and it’s equal to zero for finance, marketing, sales, operations, and administrative

job categories. Post t takes a value of one for the years post-2018 and zero for the preceding

years, and ✏i,j,t is the disturbance term. The coe�cient of interest in Equation (1) is �,
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associated with Treated j ⇥ Post t. It quantifies the homogeneous average treatment e↵ect of

U.S. protectionism on science and engineering jobs at U.S. chip manufacturing firms.

The main challenge in estimating the directional e↵ect of U.S. protectionism is discern-

ing how firms’ anticipatory actions, like strategic hiring, stockpiling, lobbying, or supply

chain diversification, might skew our understanding of protectionism’s e↵ect on science and

engineering employment. We therefore incorporate firm-job category fixed e↵ects �j,t and

firm-year fixed e↵ects ↵i,t. The former adjusts for fixed characteristics of firms’ departments,

recognizing that, for instance, some might naturally have large engineering/research (e.g.,

ASML or Intel) or marketing teams (e.g. NVIDIA).

Firm-year fixed e↵ects allow for an intra-firm comparison of employment across vari-

ous job categories, using non-engineering and non-scientist roles within the same year as

counterfactual. For example, they allow us to compare the number of people working in

Qualcomm’s science and engineering teams with the number of people in Qualcomm’s sales,

marketing, operations, and admin teams in the same year. In doing so, our key identifying

assumption is parallel trends. Although this assumption is not formally verifiable (because

it contains potential outcome variables), we provide strong evidence for its observable coun-

terpart. Specifically, we support it by showcasing parallel trends before the intervention

through e↵ect dynamics plots. Furthermore, we also present separate trend plots for both

treated and control job categories within the same firms, illustrating their trajectories in the

event time. This allows us to higlight whether the estimated e↵ects are due to changes in

treated or control departments of the same firm.

We cluster standard errors at the firm level to address potential serial correlation within

firms. This method accounts for unobserved correlations within a firm, possibly causing

correlated disturbances in our analyses. Such correlations might arise from changes in firm

policies, fundamentals, or other factors influencing multiple job categories within the same

firm simultaneously.
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4.2 Entry to Science and Engineering Careers

Our paper also explores how U.S. protectionism influences the entry of graduates into their

first jobs in science and engineering fields. Our strategy involves tracking the career paths of

individuals who graduated alongside those with chip manufacturing skills, within the same

year, and who earned the same degree from the same university in the same country. Our

goal is to analyze the career decisions of these peers in science and engineering jobs versus

other fields, both before and after the protectionist era. To achieve this, we employ the

below di↵erence-in-di↵erences specification:

yc,d,j,t = ⌧Treatedj ⇥ Postt + �c,d,j + ✓c,t + ⇣d,t + ✏c,d,j,t. (2)

Our analysis focuses on yc,d,j,t, a set of dependent variables capturing various labor market

outcomes. Specifically, Log(Classmatesc,d,j,t) measures the number of individuals who, shar-

ing the same graduation country (c), degree type (d) from the same university, and year (t),

entered job category j alongside those with chip manufacturing skills. Log(Avg. Salaryc,d,j,t),

Avg. Seniorityc,d,j,t, and Log(Tenurec,d,j,t) detail the average salary, seniority level, and tenure

duration of these classmates in their first jobs after graduation.

In specification (2), Treated j is assigned a value of one for science and engineering jobs,

while it is equal to zero for finance, marketing, sales, operations, and administrative jobs.

Post t takes a value of one for the years post-2018 and zero for the preceding years. We denote

the disturbance term as ✏c,d,j,t. The coe�cient of interest in specification (2) is ⌧ , which is

associated with the interaction term Treated j ⇥ Post t. This coe�cient quantifies the homo-

geneous average treatment e↵ect of protectionism on the number of science and engineering

jobs taken by di↵erent educational cohorts—i.e., classmates of people with semiconductor

skills—upon graduation.

To account for endogeneity, we incorporate a strong fixed e↵ects structure, including

country-degree-job category fixed e↵ects (�c,d,j), country-year fixed e↵ects (✓c,t), and degree-
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year fixed e↵ects (⇣d,t). The country-degree-job category fixed e↵ects help isolate variation at

the country-degree-job category level, e.g. due to targeted government subsidies, while the

country-year and degree-year fixed e↵ects control for annual shocks specific to each country

and degree, e.g. due to visa policies or educational trends. Once again, our key identifying

assumption is parallel trends, and we support it by showcasing e↵ect dynamics plots and

trend plots for both treated and control job categories. We cluster standard errors at the

country level to address potential serial correlation within countries.

4.3 U.S. Chip Manufacturers’ Workforce Distribution Around the Globe

We complement our analyses in Section 4.1 by also examining how U.S. chip manufacturers

change their workforce dynamics at the country-job category-year level. This helps us shed

light on whether the local (U.S.) segments drive the e↵ects we estimate in Section 4.1. To

do so, we run regressions on

yi,c,j,t = !Treatedj ⇥ Postt ⇥ USc + ↵i,t + ⇡c,t + ⇢j,t + �i,c,j + ✏i,c,j,t, (3)

where i denotes the firm, c denotes country, j denotes the job category, and t represents

the year. The dependent variables, yi,j,t, are the same as the ones in Section 4.1. The

coe�cient of interest in Equation (3) is !, associated with Treatedj ⇥ Postt ⇥ USc. It

quantifies the homogeneous average treatment e↵ect of U.S. protectionism on science and

engineering jobs at U.S. chip manufacturing firms within the United States.

On top of estimating the e↵ect specifically in the U.S., the key advantage of Equation

(3) is that it allows us to control for endogeneity at the job category-year level, which wasn’t

possible in Equation (1). When we drop ⇢j,t from the specification, we also can and do

estimate the e↵ect of protectionism outside the United States, and present e↵ect dynamics

of both U.S. and non-U.S. e↵ects within the same empirical model. We two-way cluster

standard errors at firm and country levels to address potential serial correlation within firms
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and geographic segments.

5 Empirical Findings

In this section, we present the main findings of our paper. Firstly, we analyze the impact

of U.S. protectionism on employment in science and engineering roles within American chip

manufacturing companies, as detailed in Section 5.1. Secondly, we explore how protection-

ism influences the career paths of individuals who studied alongside those skilled in chip

manufacturing, discussed in Section 5.2. Thirdly, we investigate the geographic variation in

workforce dynamics among U.S. chip manufacturers following an increase in U.S. protection-

ist measures, which is examined in Section 5.3.

5.1 E↵ects on U.S. Semiconductor Manufacturers

We start our analyses by investigating the the impact of U.S. protectionism on employment of

scientist and engineers, in comparison to other job categories, within the U.S. semiconductor

firms. Table 5 presents our findings from the main di↵erence-in-di↵erences specification as

detailed in Equation (1). Sample period covers years between 2014 and 2022, leaving four

years before and after the 2018 shock. All specifications include firm-job category as well

as firm-year fixed e↵ects. Standard errors are corrected for clustering of observations at the

firm level.

[Table 5 about here]

As shown, the coe�cient on the treated-post interaction is negative and significant at the

1% level in all specifications in Panel A, with -0.03 for the log employment (Column 1), -0.09

for log hiring (Column 2), -0.04 for log separation (Column 3), and -0.09 for log turnover

(Column 4). In other words, firms in the chips manufacturing industries experienced a

significant decline in employment and hiring counts. They also experienced a similar decline

in attrition, leading to a significantly larger turnover of engineers and scientists starting in
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2018. These results are consistent with the negative e↵ect of the protectionist interventions

on the scientist and engineer workforce within the U.S. chips industry.

Based on our findings shown in column (1) of Table 5 along with descriptive statistics

from Figure 3, the U.S. experiences a yearly loss of 2,285 science and engineering jobs

(3%⇥(66, 382+9, 768)) in the chip manufacturing sector. From 2019 to 2022, during the post-

treatment period, this amounts to a total reduction of 9,138 jobs in this industry. According

to Figure 4, 67,793 engineers (42, 100+25, 693) and 9,784 scientists (6, 184+3, 600) graduate

with undergraduate and master’s degrees each year, positioning them as ideal candidates for

these roles. While the decrease in job opportunities in the chip manufacturing industry

doesn’t necessarily imply these students will be unemployed, it does indicate a considerable

reduction in their employment prospects within the chip manufacturing field.

[Figure 5 about here]

Figure 5 provides clear evidence supporting the observable counterpart of the parallel

trends assumption, which is essential for the di↵erence-in-di↵erences method we used in

Table 5. It shows the time-specific treatment e↵ects of the protectionism on the number of

science and engineering jobs at U.S. chip manufacturers, revealing no discernible pre-trends

in either variable. Post-treatment, the number of science and engineering jobs experiences

a rapid and sustained decline. The second panel of the figure separates the fitted trends

into treated and control groups.16 This panel is crucial to counter the argument that the

estimated e↵ects on science and engineering jobs might be due to a rise in non-technical

roles, such as marketing or legal positions, within the control group. This said, given the

broad impact of protectionism, it’s also reasonable to anticipate a general decline in job

numbers, suggesting our estimates could be conservative. This panel helps us understand

16Using fitted trends is advantageous because it ensures treated and control groups start from the same
point, making it easier to check if their trends were parallel before the treatment. This method clearly
shows where these trends begin and end. For more details on fitted trends, see estat trendplots: https:
//www.stata.com/manuals/tedidregresspostestimation.pdf. Due to the long processing time of Stata’s
xtdidregress command, we limit our trend analysis to fixed e↵ects for both firm-job category and year.
Trends in mean values further support the parallel trends assumption and are available upon request.
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which argument is backed by the data.

The second part of Figure 5 shows strikingly parallel trends for treatment and control

job categories before the beginning of U.S. protectionism. However, for the treated group,

there is a clear drop in job numbers after the beginning of U.S. protectionism. Conversely,

the control units continue to exhibit trends consistent with the period before the beginning

of U.S. protectionism, showing little to no change in their persistence. For brevity, we only

present e↵ect dynamics of column (1) here. Figures B1 and B2 of the Appendix document

e↵ect dynamics associated with other variables.

Next we study the hiring and attrition rates, using a similar estimation method as in the

previous table. As shown in Panel B of Table 5, we see a significant post-2018 drop not only

in the hiring rate but also the attrition rate for engineers and scientists, in comparison to

other job categories within the same firm-years. The coe�cients are -0.03 and -0.02, both

statistically significant at the 1% level. When we use net hiring rate, which is defined as the

di↵erence between the two, we still see a statistically and economically significant coe�cient

of -0.02. In the last column, we present results for the turnover rate, which is the sum of

the hiring and attrition rates, leading to once again a negative and significant coe�cient.

All results provide strong evidence that both hiring and employee retention in these job

categories declined with the start of the rise in U.S. protectionism in 2018.

Our results so far reveal a decrease in science and engineering positions at U.S. manufac-

turing firms following the start of U.S. protectionism. Further analysis indicates that this

reduction stems from fewer hirings rather than an increase in attrition. In fact, we find an

overall decrease in turnover. These results are robust to looking at logged counts along with

rates. Motivated by these findings, we next examine what drives the reduction in hiring.

One wonders, for example, whether the reduction in hiring is due to changes in the entry of

new employees in this sector or changes in the experienced ones.

[Table 6 about here]

Table 6 highlights a significant decrease in first-job employees (with a coe�cient of -0.03,
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significant at the 1% level) and a statistically insignificant and economically small decrease in

the hiring of experienced personnel. In line with this finding, we also observe a 2% reduction

in junior positions and no significant change in mid-senior positions. These results suggest

that the decline in hiring at U.S. chip manufacturing firms can be attributed, at least in

part, to a decrease in the first-time hiring of recent graduates into junior roles within this

sector.

[Figure 6 about here]

Figure 6 provides evidence on the e↵ect dynamics along with trends for treated and con-

trol units in the event time. It shows further evidence supporting the observable counterpart

of the parallel trends assumption. There’s a significant drop in the job categories a↵ected,

which makes up a big part of the observed changes. Overall, the figure highlights that com-

panies aren’t just shifting to hire more newcomers in non-technical positions; rather, they’re

actually hiring fewer science and engineering sta↵ after the beginning of the era of U.S.

protectionism. Figure B3 of the Appendix presents e↵ect dynamics associated with other

variables.

This section’s findings highlight a decrease in science and engineering jobs at U.S. chip

manufacturing firms, primarily due to fewer new hires. This trend could have substantial

implications for students making career choices. In the next section, we delve into how the

rise of U.S. protectionism in 2018 influences the number of students pursuing education in

chip manufacturing and, among those who do, how many secure science and engineering

roles compared to other roles in careers such as marketing, operations, or finance.

5.2 E↵ects on Chip Manufacturing Talent

With the unique feature of our data set, we can track undergraduate or graduate classmates

of the employees with the chips skills around the world. Analyzing classmates will allow us

to explore the reason for the declines in the count and rate of hiring in the semiconductor
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sector. Could the significant declines be due to reduced student interest in the fields of study

teaching skills related to semiconductors? Do students with similar education now prefer

other industries –e.g., finance and marketing, than chips manufacturing?

We start tabulating average annual cohort size of students acquiring semiconductor skills,

as identified by classmates of workforce with semiconductor skills in our data set. Figure 7

presents these numbers after log transformation for undergraduate cohorts in Panel A and for

graduate degrees (both Masters and PhDs) in Panel B. Both panels present data on cohort

sizes in the U.S. As shown in Panel A, from the 2000 to 2010, there was a substantial increase

in undergraduate classmate cohort size, with numbers rising from 12,034 to 34,892. This

growth trend continued, peaking in 2017 with 65,290 undergraduates, indicating a strong

demand and interest in chip manufacturing skills during this period. However, post-2018,

there’s a noticeable decline in the number of graduates, with figures dropping to 58,894 in

2018, and then more sharply to 12,311 by 2022.17

[Figure 7 about here]

Panel B of Figure 7 shows that in 2000, the graduate classmate cohort size was equal

to 3,802. By 2010, this number had expanded significantly to 14,590, reflecting a growing

interest in chip manufacturing education over the decade. The year 2017 saw a peak with

39,019 classmates. However, in 2018, there was a slight reduction to 37,944, indicating a

contraction in the educational focus on chip manufacturing. By 2022, the trend towards

decline became more evident, with the number of classmates decreasing significantly to

20,503.

Overall, these findings indicate a consistent decrease in the number of classmates along-

side whom U.S. employees with semiconductor skills graduate, following the beginning of the

high protectionism era in 2018. The decline in class sizes is significant across both under-

graduate and graduate degrees. This trend suggests a diminishing interest or shift in student

17Note that protectionist actions by the U.S. government started in 2017 and their e↵ect on major selection
can manifest within two years as students typically confirm/change their major in their junior year.
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focus away from semiconductor education during this period. Motivated by this observa-

tion, we delve deeper into the career paths of students who graduated with the same degrees,

from the same universities and countries, in the same year as those currently possessing chip

manufacturing skills.

[Table 7 about here]

Table 7 presents the changes in the number of classmates doing engineering and science

jobs (Panel A), salaries (Panel B), seniority (Panel C), and length of first employment (Panel

D) of the classmates of employees skilled in chips manufacturing post 2018. In each panel, we

include country-job category-degree fixed e↵ects. We also add year (in Column 1), country-

year (in Column 2), degree-year (in Column 3), and finally both country-year and degree-year

fixed e↵ects (in Column 4). This table includes classmates from both undergraduate and

graduate degrees.

Our di↵erence-in-di↵erences specification shows that, with the beginning of the high

protectionism era in 2018, we see fewer number of the remaining classmates get engineering

or scientist jobs. The coe�cients in all four specifications of Panel A of Table 7 are negatively

significant at the 1% level. The economic significance is high as well. We see 14–17% drop

in the log number of classmates. The classmates of the talent in the chips industry, that

skip engineering and science jobs, likely take finance, marketing or other higher paying jobs.

Panel B shows the e↵ect on their salaries. Classmates seem to have been enjoying not only

higher salaries but also higher seniority (Panel C) post 2018.

Overall, our analysis reveals that, following the post-2018 era, there is a discernible

decrease in the cohort sizes of students at both the undergraduate and graduate levels who

are peers of individuals possessing chip manufacturing skills, indicating a waning interest in

chip manufacturing industry within the U.S. Further investigation into those who remain

within the same academic programs as individuals with chip manufacturing skills shows a

tendency towards choosing careers outside of science and engineering.
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In Appendix Table B2, Panel A, we present evidence that this trend extends beyond the

U.S., manifesting globally across continents such as Asia, Europe, Oceania, and Africa. This

widespread phenomenon is further illustrated in Figure B4 of the Appendix, which uses a

bivariate map to display the subsample results for each country using actual counts instead of

logarithmic transformations, alongside the p-values of these findings. The map reveals that

only a small fraction, specifically 0.5%, of countries globally observed an uptick in the number

of classmates pursuing careers in science and engineering. This e↵ect’s statistical significance

is at the 10% level. In stark contrast, 58.7% of countries in our sample witnessed a decline

in classmates entering science and engineering roles each year, with p-values of 10% or less.

Among the significantly impacted, the U.S. and India stand out, with both experiencing

reductions of more than 1000, at p-values of less than 1% (not detailed for simplicity).

Panel B of Appendix Table B2 further highlights the breadth of this trend, showing a

significant decrease in the number of classmates who, upon graduating with the same degree,

opt for careers in science and engineering across Bachelor’s, Master’s, and PhD levels. These

degrees are broadly related to manufacturing, as opposed to fields like Computer Science.

Overall, our findings are in line with the idea that complexity of career changes increase as

the employee experience decreases. An exception to this pattern is observed in the MBA

degree, where an increase in science and engineering roles is noted, suggesting a propensity

among these graduates to seek leadership roles within the industry rather than altering their

career trajectories.

5.3 Global Footprint of U.S. Chip Manufacturers

In this section, we examine geographic variation in the workforce dynamics of U.S. chip

manufacturers after the rise in U.S. protectionism in 2018. We present our findings in

Table 8. In Panel A, the interaction term Treatedj ⇥ Postt, which denotes employment

dynamics of American chip producers outside the United States, shows a slight increase in

employment (2%, t-stat = 2.17). However, the triple interaction with USc, which measures
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the di↵erential e↵ect of U.S. protectionism in U.S. segments of these firms, reveals a notable

decline in employment within the United States (-5%, t-stat=4.76). In columns 2 to 8,

we show that this reduction is driven by a decrease in hiring and it survives despite a

decrease in separations. As shown, our results persist across various fixed e↵ects structures,

including firm-country-job category, firm-year, country-year, and notably, job category-year

fixed e↵ects.

[Table 8 about here]

The findings shown in Panel A corroborate the observations outlined in Section 5.1, high-

lighting a decline in overall employment of engineers and scientists by U.S. firms, primarily

driven by reductions within the United States. Conversely, outside the United States, there’s

a minor increase in employee numbers. Panel B of Table 8 confirms that the findings from

Panel A are robust to using rates rather than logged employee counts. Furthermore, the

e↵ect dynamics, as illustrated in Figure 9, show that pre-treatment employment trends for

both U.S. and non-U.S. segments were parallel to those of their control units. There is a

significant post-treatment decrease in scientist and engineer employment within the U.S.,

suggesting a distinct shift in employment strategies in post-2018 protectionist era.

[Figure 9 about here]

Panel C also presents important findings, underscoring that the increase in the number

of employees in non-U.S. segments is at least partially driven by an increase in the number of

experienced employees overseas. Specifically, there is a 3% increase in experienced overseas

employees that take junior and mid-senior positions. This suggests a strategic focus on

enhancing workforce expertise in international segments. Columns 5 through 8 in Panel

C further substantiate the results presented in Table 6, confirming the consistency and

robustness of our findings across di↵erent specifications and approaches.

The primary objective of Table 8 is to utilize trends in non-U.S. segments as additional

counterfactuals. This involves, for instance, comparing scientist and engineer counts of
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firms like Intel within the same fiscal year in the United States versus the ones in other

geographic segment countries such as Canada and Mexico. To illuminate the e↵ect of U.S.

protectionism on each country, however, we perform subsample analyses. The outcomes of

these analyses are shown in Figure B5 in the Appendix. As shown in this figure, U.S. chip

manufacturers significantly expand their labor force in Canada, which strategically amended

its immigration policies to welcome more foreign engineers and scientists in 2017, as well

as in several European countries including the Netherlands.18 Remarkably, 27.1% of the

segment countries of U.S. chips firms in our sample exhibit a statistically significant positive

e↵ect. Of the remainder, 35.7% experience a positive yet insignificant e↵ect, and 22.9%

see a negative but insignificant e↵ect. A combined total of 14.3% of the segment countries,

including the U.S., experience a statistically significant negative impact.

The results presented in this section are important for two main reasons. First, from a

statistical standpoint, we control for other layers of endogeneity by introducing geographic

variation for each firm-year-job category. This approach allows us to implement more strin-

gent fixed e↵ect structures, enabling us to precisely estimate the e↵ect of U.S. protectionism

specifically on the employment of scientists and engineers within the United States. Second,

we analyze how U.S. firms manage the risks and rewards associated with the rise of U.S.

protectionism in 2018 by altering the geographic distribution of their workforce. We observe

that these firms reduce hiring within the U.S.; however, given the global decline in student

interest in acquiring chip manufacturing skills, U.S. firms appear to recruit more experienced

workers outside the U.S. These individuals fill junior and mid-senior roles, which seem to be

on the decline within the United States.
18Based on Esterline (2023) estimates, the U.S. lost 45,000 college grads to Canada’s high-skill visa from

2017 to 2021.
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6 Conclusion

Protectionist policies of the U.S. government starting in 2018 aimed to revive not only domes-

tic manufacturing but also employment. Focusing on the semiconductor manufacturing, we

ask whether these protectionist policies ended up protecting the key domestic talent. Unlike

what was aimed, we see a significant decline in U.S. manufacturing firms’ ability to attract

not only international but also domestic talent with chip skills. Using a novel data set of 1.6

million employees with chip manufacturing skills worldwide, we find a reduction in domestic

hiring, especially a↵ecting entry-level and junior positions, in the U.S. chip manufacturing

industry post 2018. Moreover, tracing job and compensation trajectories of undergraduate

and graduate cohorts of workforce with chip manufacturing skills, we find significant shifts

away from the chip industry. We observe that the talent educated with these skills, in fact,

move to other countries or other industries post 2018.

Our findings carry significant implications for the 2021 Facilitating American-Built Semi-

conductors (FABS) Act and 2022 CHIPS and Science Act, which aim to bolster the U.S.

semiconductor industry through extensive investments to enhance U.S. competitiveness glob-

ally. A Semiconductor Industry Association (SIA) report anticipates a significant expansion

in the semiconductor workforce by 2030, with projections indicating a growth of nearly

115,000 jobs.19 They also estimate that around 60% of these new positions, predominantly

technical roles, may remain unfilled based on current degree completion rates.20 Our es-

timates are consistent. We observe a significant decline in the number of U.S. students

graduating with skills relevant to chip manufacturing. In 2017, the size of such undergrad-

uates was 39,019, which steadily decreased to 20,503 by 2022. Likewise, the annual count

of graduating postgraduate students dropped from 65,290 in 2017 to 12,311 in 2022. Based

19See https://bit.ly/3SDPD5j. Other forecasts indicate a projected shortfall of 300,000 engineers and
90,000 technical workers in our country by 2030. See https://bit.ly/3OTd35B.

20The breakdown of these unfilled positions reveals a pressing need across various skill levels. Technicians,
predominantly holding certificates or two-year degrees, are expected to account for 39% of unfilled roles,
while engineers with four-year degrees and those with master’s or PhD qualifications constitute 35% and
26%, respectively.
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on our back-of-the-envelope calculations, it will take approximately 16 years for the U.S. to

fill the 115,000 new jobs.21 In other words, our estimates suggest that unless measures are

taken to address the labor shortage by attracting and retaining both domestic and interna-

tional talent, the CHIPS Act may struggle to fully realize its objectives. Overcoming these

challenges requires a nuanced approach that considers the complex interplay of trade poli-

cies, immigration reforms, and educational investments to ensure a skilled and sustainable

workforce for the semiconductor industry.22

21Currently, 13% of active employees with chip manufacturing skills work within the industry, and the
majority of the remainder are employed in science and engineering roles across various sectors. We assume
this trend won’t change in the near future. Moreover, our projections indicate that, without a significant
increase in foreign visa issuances, 64% of these new positions are expected to remain unfilled by 2030.

22See the ‘Chipmaker’s Visa’ for H1B program: https://bit.ly/49dum9E.
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Table 1. Active Chip Manufacturing Workforce

This table showcases the global distribution of employees, who possess skills in chip manufacturing and are actively employed as of March 2023. Panel A
aggregates the total count of these employees across locations of employees and distributes them into various job categories (Admin, Engineer, Finance, Marketing,
Operations, Sales, and Scientist), as defined by Revelio’s clustering algorithms. Total Emp. refers to the total number employees with chip manufacturing skills.
Panel B outlines employment characteristics for each country: Tenure is the average number of days active employees with chip manufacturing skills have spent
in their current position; RN represents the average order of a job within an employee’s career; Salary is the average annual income in USD; and Seniority refers
to the average seniority level, categorized into seven levels. For more details on the data collection methodology and the definition of chip manufacturing skills,
refer to Section B.1.1. For detailed variable definitions, please see Section B.2.

Panel A: Talent Count by Job Category Panel B: Economic Characteristics

Rank Country Total Emp. Admin Engineer Finance Marketing Operations Sales Scientist Tenure RN Salary Seniority

1 United States 680,602 26,373 480,193 8,531 11,578 31,790 72,622 49,515 2,819.03 5.47 100,384.72 2.95
2 India 165,352 9,880 122,978 2,476 2,728 7,216 11,946 8,128 1,986.43 4.11 12,750.81 2.79
3 United Kingdom 88,527 3,728 57,927 1,033 2,121 5,687 10,888 7,143 2,543.08 5.7 58,110.89 3.02
4 Canada 63,376 2,784 44,752 758 1,223 2,770 6,229 4,860 2,407.60 5.58 61,114.26 2.70
5 Germany 43,597 1,272 28,759 261 682 1,725 4,665 6,233 2,037.52 5.7 79,377.39 2.97
6 France 38,024 1,476 25,422 349 916 1,572 3,600 4,689 2,089.61 6.08 52,630.56 2.92
7 Italy 30,545 1,236 20,301 237 697 1,557 3,660 2,857 2,832.06 5.15 55,721.32 2.81
8 Australia 30,199 1,456 20,703 407 603 1,523 3,264 2,243 2,286.17 5.88 80,238.36 2.79
9 China 28,664 1,930 16,330 306 586 1,817 5,320 2,375 3,330.75 3.66 28,236.07 3.19
10 Netherlands 28,320 1,180 18,415 225 755 1,501 2,913 3,331 2,513.68 6.31 64,067.80 2.89
11 Brazil 25,968 1,999 17,787 466 497 1,415 2,396 1,408 2,711.02 5.48 14,588.81 2.51
12 Israel 21,956 572 16,511 103 275 889 1,516 2,090 2,395.99 4.99 73,976.56 3.16
13 Spain 20,989 1,166 14,450 176 493 724 1,708 2,272 2,413.65 5.62 50,341.81 2.72
14 Singapore 18,648 607 12,547 291 244 1,238 2,215 1,506 2,395.93 4.86 46,346.70 3.2
15 Pakistan 18,232 1,820 12,539 198 380 925 1,290 1,080 2,453.57 4.13 13,330.76 2.64
16 Mexico 18,137 843 13,291 175 260 1,237 1,464 867 2,643.00 5.01 29,523.58 2.79
17 Sweden 17,869 561 12,241 83 269 837 1,691 2,187 2,164.33 6.55 66,023.95 2.91
18 Turkey 16,575 885 11,537 125 290 589 1,626 1,523 2,034.55 5.02 20,327.08 2.69
19 Taiwan 16,312 565 10,919 142 221 960 2,320 1,185 3,233.21 3.86 76,870.21 3.25
20 Malaysia 13,874 706 10,613 168 141 730 948 568 2,654.82 4.13 21,392.26 2.85

Other Countries 285,143 16,541 195,247 2,763 5,505 13,647 26,783 24,657 2,524.85 5.07 48,186.61 2.78
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Table 2. Top 25 Employers of Active Chip Manufacturing Workforce

This table ranks the top 25 firms by the number of active employees around the globe with chip manufacturing skills as of March 2023. Total Emp. refers to
the total number employees with chip manufacturing skills. Seniority is classified into seven levels, reflecting the hierarchical position within the company. In
the case of multiple employers for a given employee, we keep the employer matching with the employee’s highest job seniority. Further information on how data
was gathered and the specific criteria used to identify chip manufacturing skills can be found in Section B.1.1. For detailed variable definitions, please see Section B.2.

Seniority

Rank Employer Total Emp. 1 2 3 4 5 6 7

1 Intel Corp. 29,178 1,268 15,397 3,658 3,787 4,344 697 27
2 Government of the USA 13,361 4,893 5,590 891 1,001 914 41 31
3 Apple, Inc. 11,956 449 7,589 1,259 1,177 1,382 96 4
4 Amazon.com, Inc. 10,976 327 4,115 1,677 2,325 2,188 338 6
5 QUALCOMM, Inc. 10,427 78 2,233 2,330 3,461 1,783 539 3
6 Siemens AG 9,063 540 3,977 1,618 1,551 1,203 153 21
7 Alphabet, Inc. 7,877 119 5,561 716 701 686 91 3
8 Raytheon Technologies Corp. 7,455 674 2,784 1,000 1,390 1,497 108 2
9 Advanced Micro Devices, Inc. 7,148 79 2,420 1,234 1,887 1,130 392 6
10 Microsoft Corp. 6,849 150 4,274 582 640 948 243 12
11 NXP Semiconductors NV 6,546 296 2,319 1,068 1,246 1,362 248 7
12 Robert Bosch Stiftung GmbH 6,457 523 3,819 740 658 587 124 6
13 Infineon Technologies AG 6,196 373 2,534 817 891 1,377 183 21
14 Texas Instruments Inc. 6,059 279 2,372 698 1,186 1,293 225 6
15 Samsung Electronics Co., Ltd. 5,996 395 2,615 580 666 1,520 213 7
16 Schneider Electric SE 5,560 572 2,532 727 810 771 138 10
17 Honeywell International, Inc. 5,434 593 3,064 489 609 586 85 8
18 STMicroelectronics NV 5,363 257 2,283 966 1,090 678 85 4
19 IBM Corp. 5,220 126 1,748 798 1,429 978 118 23
20 Analog Devices, Inc. 5,083 351 2,139 743 902 802 142 4
21 Broadcom, Inc. 5,076 159 1,537 647 802 1,799 127 5
22 NVIDIA Corp. 5,057 41 2,188 927 747 946 206 2
23 ABB Ltd. 4,960 378 2,313 693 809 703 57 7
24 Micron Technology, Inc. 4,883 236 1,260 595 1,056 1,427 302 7
25 Applied Materials, Inc. 4,693 163 1,343 680 936 1,236 316 19

Other Employers 1,371,038 189,604 538,598 158,650 200,048 215,743 39,044 29,351
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Table 3. Industry Composition of Active Chip Manufacturing Workforce

This table displays the industries employing the 680,602 active professionals in the U.S. with chip manufacturing skills. Panel A focuses on industries directly
involved in chip manufacturing, while Panel B highlights the top 10 industries outside of chip manufacturing that also utilize U.S. chip manufacturing talent pool.
Total Emp. refers to the total number employees with chip manufacturing skills. Tenure is the average number of days active employees with chip manufacturing
skills have spent in their current position; RN represents the average order of a job within an employee’s career; Salary is the average annual income in USD;
and Seniority refers to the average seniority level, categorized into seven levels. For more details on the data collection methodology and the definition of chip
manufacturing skills, refer to Section B.1.1. For detailed variable definitions, please see Section B.2.

Panel A: Chip Manufacturing Industries

Rank Industry NAICS Total Emp. Tenure RN Salary Seniority

1 Semiconductor and Related Device Manufacturing 334413 72,512 3,035.24 4.9 113,197.25 3.24
2 Semiconductor Machinery Manufacturing 333242 7,943 3,159.26 4.99 109,462.64 3.34
3 Instrument Mfg. for Electricity & Electrical Signal Testing 334515 6,514 3,719.29 4.73 101,481.78 2.97
4 Printed Circuit Assembly (Electronic Assembly) Manufacturing 334418 1,526 4,054.05 4.32 98,851.70 3.16

Panel B: Other Industries

Rank Industry NAICS Total Emp. Tenure RN Salary Seniority

1 Software Publishers 511210 35,572 1,811.93 6.42 122,691.03 3.22
2 Colleges, Universities, and Professional Schools 611310 27,661 2,905.84 5.3 78,354.48 2.46
3 Radio/TV Broadcasting & Wireless Communications Equipment Mfg. 334220 14,591 2,227.03 5.55 125,834.12 2.8
4 Internet Publishing and Broadcasting and Web Search Portals 519130 13,512 1,270.00 6.67 136,641.06 2.74
5 Search & Navigation System Instrument Mfg. 334511 12,868 2,978.82 5.28 96,177.27 2.72
6 Other Computer Related Services 541519 10,877 2,421.91 5.89 109,739.59 3.34
7 Engineering Services 541330 10,593 2,565.56 5.4 94,665.02 2.67
8 Surgical and Medical Instrument Manufacturing 339112 9,991 2,822.09 5.69 102,990.94 3.17
9 Other Electronic Component Manufacturing 334419 9,230 3,534.28 4.82 98,744.39 3.03
10 Automobile Manufacturing 336111 8,664 2,253.57 5.92 93,032.16 2.74
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Table 4. Summary Statistics

This table provides a detailed overview of the variables utilized in our empirical analysis. Panel A o↵ers summary
statistics related to U.S. chip manufacturing firms, Panel B presents these at the geographic segment level, while
Panel C focuses on classmates of individuals with chip manufacturing skills. These classmates are defined as
students who graduated with the same degree, from the same university, in the same country, and year. For detailed
information on data collection methods and detailed definitions of the variables, please see Sections B.1.2, B.1.3, and B.2.

Panel A: U.S. Chip Manufacturer Workforce

N Mean Median SD P5 P95

Log(Empi,j,t) 68,949 1.76 1.39 1.47 0.00 4.86
Log(Hiringi,j,t) 68,949 0.62 0.00 0.96 0.00 2.89
Log(Separationi,j,t) 68,949 0.59 0.00 0.92 0.00 2.77
Log(Turnoveri,j,t) 68,949 0.88 0.69 1.16 0.00 3.50
Hiring Rate.i,j,t 56,497 0.16 0.00 0.38 0.00 0.83
Separation Ratei,j,t 56,497 0.12 0.00 0.22 0.00 0.50
Net Hiring Ratei,j,t 56,497 0.04 0.00 0.38 -0.33 0.50
Turnover Ratei,j,t 56,497 0.28 0.14 0.49 0.00 1.00
Log(FirstJobEmpi,j,t) 68,949 0.95 0.69 1.23 0.00 3.50
Log(ExprEmpi,j,t) 68,949 1.56 1.10 1.52 0.00 4.60
Log(JunPosEmpi,j,t) 68,949 1.45 1.10 1.50 0.00 4.47
Log(MidSenPosEmpi,j,t) 68,949 1.04 0.69 1.29 0.00 3.66

Panel B: Regional U.S. Chip Manufacturer Workforce

N Mean Median SD P5 P95

Log(Empi,c,j,t) 231,696 1.24 0.69 1.24 0.00 3.83
Log(Hiringi,c,j,t) 231,696 0.36 0.00 0.72 0.00 2.08
Log(Separationi,c,j,t) 231,696 0.33 0.00 0.67 0.00 1.79
Log(Turnoveri,c,j,t) 231,696 0.53 0.00 0.89 0.00 2.56
Hiring Rate.i,c,j,t 166,411 0.12 0.00 0.27 0.00 0.75
Separation Ratei,c,j,t 166,411 0.10 0.00 0.22 0.00 0.50
Net Hiring Ratei,c,j,t 166,411 0.01 0.00 0.29 -0.46 0.50
Turnover Ratei,c,j,t 166,411 0.23 0.00 0.39 0.00 1.00
Log(FirstJobEmpi,c,j,t) 231,696 0.60 0.00 0.86 0.00 2.40
Log(ExprEmpi,c,j,t) 231,696 1.02 0.69 1.20 0.00 3.58
Log(JunPosEmpi,c,j,t) 231,696 0.98 0.69 1.15 0.00 3.43
Log(MidSenPosEmpi,c,j,t) 231,696 0.65 0.00 0.93 0.00 2.71

Panel C: Educational Cohorts of Chip Manufacturing Employees

N Mean Median SD P5 P95

Log(Classmatesc,d,j,t) 35,496 1.21 0.69 1.56 0.00 4.44
Log(Avg. Salaryc,d,j,t) 35,496 6.02 9.42 5.14 0.00 11.29
Avg. Seniorityc,d,j,t 35,496 1.51 1.50 1.56 0.00 4.33
Log(Tenurec,d,j,t) 35,496 3.18 5.02 2.79 0.00 6.19
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Table 5. Science and Engineering Employment in U.S. Chip Manufacturing Companies

This table presents our findings on how U.S. protectionism has influenced science and engineering employment at U.S. chip manufacturing companies. Utilizing
the di↵erence-in-di↵erences approach outlined in Equation (1), we analyze the e↵ects on employment metrics. Panel A details the impact on employee count,
hiring practices, separation, and turnover, while Panel B focuses on these metrics in rate form instead of logged numbers. We set missing rate variables to zero
and control for them with an untabulated dummy variable. For information on how data was collected and definitions of the variables used, refer to Sections B.1.2
and B.2, respectively. The analysis spans from 2014 to 2022, with standard errors clustered by firm. Significance levels of 1%, 5%, and 10% are denoted by ? ? ?,
??, and ?, indicating statistically significant deviations from zero.

Panel A: Analyses of Chip Manufacturing Workforce

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj ⇥ Postt -0.03*** -0.09*** -0.04*** -0.09***

(-3.45) (-8.93) (-4.19) (-7.73)

Firm ⇥ Job Category FE Yes Yes Yes Yes
Firm ⇥ Year FE Yes Yes Yes Yes

Observations 68,949 68,949 68,949 68,949
R-squared 0.975 0.874 0.863 0.889

Panel B: Analyses of Employment Growth

Hiring Ratei,j,t Separation Ratei,j,t Net Hiring Ratei,j,t Turnover Ratei,j,t

(1) (2) (3) (4)
Treatedj ⇥ Postt -0.03*** -0.01*** -0.02*** -0.04***

(-4.70) (-3.54) (-3.16) (-5.16)

Firm ⇥ Job Category FE Yes Yes Yes Yes
Firm ⇥ Year FE Yes Yes Yes Yes

Observations 68,949 68,949 68,949 68,949
R-squared 0.393 0.390 0.342 0.421

39



Table 6. Science and Engineering Employment by Career Progression

This table presents the impact of U.S. protectionism on science and engineering employment within U.S. chip manufacturing companies, segmented by experience
and seniority. Utilizing the di↵erence-in-di↵erences methodology outlined in Equation (1), column 1 shows the number of employees hired for the first time,
and column 2 focuses on employees with prior work experience. Columns 3 and 4 present results from categorizing employees based on seniority. For details on
data collection and variable definitions, see Sections B.1.2 and B.2. The analysis, covering 2014 to 2022, uses firm-level clustered standard errors. Statistical
significance at 1%, 5%, and 10% levels is indicated by ? ? ?, ??, and ?, respectively, highlighting significant results.

Log(FirstJobEmpi,j,t) Log(ExprEmpi,j,t) Log(JunPosEmpi,j,t) Log(MidSenPosEmpi,j,t)

(1) (2) (3) (4)
Treatedj ⇥ Postt -0.03*** -0.01 -0.02** -0.01

(-4.27) (-1.55) (-2.04) (-0.81)

Firm ⇥ Job Category FE Yes Yes Yes Yes
Firm ⇥ Year FE Yes Yes Yes Yes

Observations 68,949 68,949 68,949 68,949
R-squared 0.983 0.974 0.974 0.973
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Table 7. Career Choices of Students Graduating with Chip Manufacturing Skills

This table presents our findings on the e↵ect of U.S. protectionism on the unique number of students who complete
their education equipped with relevant skills in chip manufacturing. To pinpoint these students, we identify the peers
of individuals with chip manufacturing skills who graduated in the same year, pursued the same degree at the same
university of the same country. We then examine these peers’ career choices both before and after the beginning of U.S.
protectionism in 2018. We use the di↵erence-in-di↵erences methodology outlined in Equation (2). In Panel A, we display
the number of peers who secured initial jobs in various job categories, distinguishing between science and engineering
positions and other categories. Panel B provides information on the salaries of peers in di↵erent job categories. Panels
C and D analyze the starting seniority levels and tenure, which measures the number of days these peers work in their
first jobs across di↵erent job categories after graduating with the same degree, year, and country as those with chip
manufacturing skills. For detailed insights into data collection and variable definitions, please refer to Sections B.1.3 and
B.2. Our analysis spans the period from 2014 to 2022 and employs country-level clustered standard errors. Statistical
significance at 1%, 5%, and 10% levels is indicated by ? ? ?, ??, and ?, respectively, highlighting significant results.

Panel A: Regressions of Log(Classmatesc,d,j,t)

(1) (2) (3) (4)
Treatedj ⇥ Postt -0.14*** -0.15*** -0.14*** -0.17***

(-11.92) (-13.61) (-11.63) (-14.10)

Observations 35,496 35,424 35,496 35,424
R-squared 0.940 0.950 0.945 0.956

Panel B: Regressions of Log(Salaryc,d,j,t)

(1) (2) (3) (4)
Treatedj ⇥ Postt 0.03*** 0.03*** 0.04*** 0.04***

(3.05) (3.06) (3.48) (3.51)

Observations 35,496 35,424 35,496 35,424
R-squared 0.994 0.995 0.994 0.995

Panel C: Regressions of Seniorityc,d,j,t

(1) (2) (3) (4)
Treatedj ⇥ Postt 0.11*** 0.10*** 0.11*** 0.11***

(6.47) (6.28) (7.00) (6.86)

Observations 35,496 35,424 35,496 35,424
R-squared 0.769 0.780 0.770 0.781

Panel D: Regressions of Log(Tenurec,d,j,t)

(1) (2) (3) (4)
Treatedj ⇥ Postt 0.02 0.02 0.02 0.00

(1.59) (1.14) (0.98) (0.25)

Observations 35,496 35,424 35,496 35,424
R-squared 0.943 0.946 0.943 0.947

Panel E: Controls for Panels A, B, C, and D

(1) (2) (3) (4)
Country ⇥ Job Category ⇥ Degree FE Yes Yes Yes Yes
Year FE Yes No No No
Country ⇥ Year FE No Yes No Yes
Degree ⇥ Year FE No No Yes Yes
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Table 8. Global Footprint of U.S. Semiconductor Companies

This table presents our findings on how U.S. protectionism has influenced the geography of science and engineering employees at U.S. chip manufacturing
companies. Utilizing the di↵erence-in-di↵erences approach outlined in Equation (3), panel A details the impact on employee count, hiring practices, separation,
and turnover, Panel B focuses on these metrics in rate form instead of absolute numbers, and Panel C focuses on metrics by career progression. We set missing
rate variables to zero and control for them with an untabulated dummy variable. FirstJobEmp, JunPosEmp and MidSenPosEmp are shortened to FirstEmp,
JunEmp and MidSenEmp for brevity. For information on how data was collected and definitions of the variables used, refer to Sections B.1.2 and B.2, respectively.
The analysis spans from 2014 to 2022, with standard errors clustered by firm. Significance levels of 1%, 5%, and 10% are denoted by ? ? ?, ??, and ?, indicating
statistically significant deviations from zero.

Panel A: Analyses of Chip Manufacturing Workforce

Log(Empi,c,j,t) Log(Hiringi,c,j,t) Log(Separationi,c,j,t) Log(Turnoveri,c,j,t) Log(Empi,c,j,t) Log(Hiringi,c,j,t) Log(Separationi,c,j,t) Log(Turnoveri,c,j,t)

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj ⇥ Postt 0.02** -0.03** -0.01 -0.04**

(2.17) (-2.39) (-1.00) (-2.28)
Treatedj ⇥ Postt ⇥USc -0.05*** -0.07*** -0.04*** -0.07*** -0.05*** -0.07*** -0.04*** -0.06***

(-4.76) (-4.92) (-3.23) (-4.21) (-4.74) (-4.71) (-3.12) (-4.00)

Firm ⇥ Country ⇥ Job Category FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm ⇥ Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Country ⇥ Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Job Category ⇥ Year FE No No No No Yes Yes Yes Yes

Observations 231,696 231,696 231,696 231,696 231,696 231,696 231,696 231,696
R-squared 0.948 0.781 0.760 0.806 0.948 0.781 0.760 0.807

Panel B: Analyses of Employment Growth

Hiring Ratei,j,t Separation Ratei,j,t Net Hiring Ratei,j,t Turnover Ratei,j,t Hiring Ratei,j,t Separation Ratei,j,t Net Hiring Ratei,j,t Turnover Ratei,j,t

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj ⇥ Postt -0.01*** -0.00 -0.01** -0.02***

(-4.03) (-1.43) (-2.62) (-3.46)
Treatedj ⇥ Postt ⇥USc -0.01*** -0.01*** -0.01** -0.02*** -0.01*** -0.01** -0.01** -0.02***

(-3.83) (-2.68) (-2.62) (-3.88) (-3.60) (-2.64) (-2.40) (-3.72)

Firm ⇥ Country ⇥ Job Category FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm ⇥ Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Country ⇥ Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Job Category ⇥ Year FE No No No No Yes Yes Yes Yes

Observations 231,696 231,696 231,696 231,696 231,696 231,696 231,696 231,696
R-squared 0.329 0.281 0.211 0.349 0.329 0.281 0.212 0.350

Panel C: Analyses of Chip Manufacturing Workforce by Career Progression

Log(FirstEmpi,c,j,t) Log(ExprEmpi,c,j,t) Log(JunEmpi,c,j,t) Log(MidSenEmpi,c,j,t) Log(FirstEmpi,c,j,t) Log(ExprEmpi,c,j,t) Log(JunEmpi,c,j,t) Log(MidSenEmpi,c,j,t)

(1) (2) (3) (4) (5) (6) (7) (8)
Treatedj ⇥ Postt -0.01 0.03*** 0.02** 0.02**

(-1.51) (3.04) (2.10) (2.36)
Treatedj ⇥ Postt ⇥USc -0.01*** -0.06*** -0.04*** -0.03*** -0.01*** -0.06*** -0.05*** -0.03***

(-2.69) (-4.90) (-4.23) (-3.15) (-2.90) (-4.88) (-4.28) (-3.15)

Firm ⇥ Country ⇥ Job Category FE Yes Yes Yes Yes Yes Yes Yes Yes
Firm ⇥ Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Country ⇥ Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Job Category ⇥ Year FE No No No No Yes Yes Yes Yes

Observations 231,696 231,696 231,696 231,696 231,696 231,696 231,696 231,696
R-squared 0.961 0.940 0.943 0.939 0.961 0.940 0.943 0.939
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Figure 1. Active Employees with Chip Manufacturing Skills

This figure illustrates the global distribution of employees with chip manufacturing skills who are actively employed as of March 2023. Methodological details
and definitions regarding chip manufacturing skills are available in Section B.1.1.
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Figure 2. US Share of Chip Manufacturing Skills

This figure presents the list of skills utilized to identify individuals with chip manufacturing expertise, alongside the percentage representation of each skill among
employees in the US. Methodological details and definitions regarding chip manufacturing skills are available in Section B.1.1.
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Figure 3. Total Employment by Job Category in U.S. Chip Manufacturing Firms

This figure displays the aggregate number of employees categorized by job descriptions at U.S. chip manufacturing firms
as of the end of 2017. For detailed methodological information and definitions related to chip manufacturing skills,
please refer to Section B.1.2.
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Figure 4. Total Employment by Job Category in U.S. Chip Manufacturing Firms

This figure displays the aggregate number of employees categorized by job descriptions at U.S. chip manufactur-
ing firms as of the end of 2017. We do not display categories with fewer than 1,000 observations for readability.
For detailed methodological information and definitions related to chip manufacturing skills, please refer to Section B.1.2.
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Figure 5. E↵ect Dynamics: Science and Engineering Positions at U.S. Chip Manufacturers

The initial figure illustrates the time-varying e↵ects of U.S. protectionism on the logarithm of the number of employees
in engineering and science roles. These e↵ects are calculated using a di↵erence in di↵erences model as in specification
(1), which controls for both firm ⇥ job category and firm ⇥ job year dummies. Each point estimate is accompanied by a
95% confidence interval. The second figure displays the fitted trend comparisons between the treated group (employees
in engineering and science) and the control group (employees in administration, finance, marketing, operations, and
sales) employees of the same firm in the same year. In these trend analyses, data are adjusted by removing the e↵ects of
firm ⇥ job category, as well as year fixed e↵ects. See Section 5.1 for more details on this methodology. For information
on how data was collected and definitions of the variables used, refer to Sections B.1.2 and B.2, respectively.
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Figure 6. E↵ect Dynamics: First Science and Engineering Jobs at U.S. Chip Manufacturers

The initial figure illustrates the time-varying e↵ects of U.S. protectionism on the logarithm of the number of first-job
employees in engineering and science roles. These e↵ects are calculated using a di↵erence in di↵erences model as in
specification (1), which controls for both firm ⇥ job category and firm ⇥ job year dummies. Each point estimate is
accompanied by a 95% confidence interval. The second figure displays the trend comparisons between the treated
group (employees in engineering and science) and the control group (employees in administration, finance, marketing,
operations, and sales) employees of the same firm in the same year. In these trend analyses, data are adjusted by
removing the e↵ects of firm ⇥ job category, as well as year fixed e↵ects. See Section 5.1 for more details on this
methodology. For information on how data was collected and definitions of the variables used, refer to Sections B.1.2
and B.2, respectively.
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Figure 7. Cohort Sizes of Chip Manufacturing Workforce

This figure displays the total number of classmates alongside individuals with chip manufacturing skills at graduation.
Panel A illustrates the cohort sizes of individuals graduating within the same country, university, and undergraduate
program, and year as those possessing semiconductor manufacturing expertise. Panel B depicts the cohort sizes of
graduates from the same country, university, and graduate program, and year as individuals skilled in chip manu-
facturing. The dataset extends from 1980 to 2022, with a vertical dotted line highlighting the start of U.S. protectionism.
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Figure 8. E↵ect Dynamics: Classmates’ Shift Away from Chip Manufacturing Jobs

The first figure highlights time-varying e↵ects of U.S. protectionism on the number of classmates of individuals skilled
in chip manufacturing, landing science and engineering jobs. These estimates are based on a di↵erence in di↵erences
approach according to specification (2), which accounts for fixed e↵ects across country ⇥ job category ⇥ degree, country
⇥ year, and degree ⇥ year. Each point estimate is provided alongside a 95% confidence interval. The second figure
illustrates trend comparisons between the treated group (classmates who find engineering and science jobs) and the
control group (classmates entering jobs in administration, finance, marketing, operations, and sales). In these trend
analyses, data adjustments are made to exclude the influences of fixed e↵ects for country ⇥ job category ⇥ degree,
country ⇥ year, and degree ⇥ year. Details on the data collection methodology and the definitions of variables employed
can be found in Sections B.1.3 and B.2, respectively.
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Figure 9. E↵ect Dynamics: Global Workforce Trends in U.S. Chip Manufacturers

The figure illustrates the dynamic e↵ect of U.S. protectionist policies on the logarithmic scale of employment counts
in science and engineering positions, both within (represented by orange squares) and outside (represented by blue
triangles) the United States. This analysis is conducted using a di↵erence-in-di↵erences approach as outlined in
specification (3), accounting for interactions between firm, country, and job category, as well as firm ⇥ year and country
⇥ year fixed e↵ects. Each point estimate is accompanied by a 95% confidence interval. For information on how data
was collected and definitions of the variables used, refer to Sections B.1.2 and B.2, respectively.

51



Internet Appendix for

When Protectionism Kills Talent

A Conceptual Framework

In this appendix, we introduce a conceptual framework, drawing from Neal (1999), that

guides our empirical research.23 Neal (1999) provides a stylized model of occupational search,

where a young worker chooses earnings from career-job pairs (✓, ⇠) drawn from the cumulative

distribution functions F and G, respectively. The young worker maximizes the expected

value of the present discounted sum of earnings: E [
P1

t=0 �
t(✓t + ⇠t)], where ✓t is the earning

component specific to a career (e.g., chip manufacturing) and ⇠t is the component specific

to a particular job (e.g., manufacturing engineer at Intel), and �t is the discount factor.

The value function obeys

v(✓, ⇠) = max{✓ + ⇠ + �v(✓, ⇠),

✓ +

Z
⇠0G(d⇠0) + �

Z
v(✓, ⇠0)G(d⇠0),

Z
✓0F (d✓0) +

Z
⇠0G(d⇠0) + �

Z Z
v(✓0, ⇠0)G(d⇠0)F (d✓0)},

(4)

where the terms inside the max operation refer to utilities from (i) staying put in chip

manufacturing job and industry, (ii) staying put in chip manufacturing industry but changing

job, and (iii) changing career, respectively. Neal (1999)’s assumptions for F and G are:

successive draws are independent, G(0) = F (0) = 0, and G(B⇠) = F (B✓) = 1. We on the

other hand posit that the variances of F and G vary in response to protectionist policies.

Specifically, we assume these distributions exhibit higher uncertainty in the aftermath of the

protectionist era.

The figures below highlight how the optimal policy adjusts to low and high income uncer-

23Also see Miller (1984); McCall (1990); Sullivan (2010); Pavan (2010); Ljungqvist and Sargent (2018).
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(a) Low Uncertainty (b) High Uncertainty

tainty scenarios, generated by changing input parameters for F and G, respectively.24 The

rationale behind protectionist policies suggests that protectionism can bolster employment

in the science and engineering sectors through higher wages underpinned by government

subsidies. As shown in Panel (a), this logic resonates for active workers or recent graduates

who have o↵ers from the industry but still contemplating their career paths. Specifically, as

✓ and ⇠ increase, the optimal strategy shifts towards “stay put in chip manufacturing job

and industry”, which is labelled in the upper right corner as “Chip Man.” for readability.

The restrictions to the H1B visa program and bilateral tari↵s likely increase the un-

certainty surrounding industry and firm wages. This uncertainty can stem from multiple

sources: wages become subject to non-market factors, including political decisions; the allo-

cation of subsidies to specific recipients lacks clarity; and the criteria for industries to qualify

for these subsidies remain vague.25 Panel (b) illustrates how higher uncertainty regarding

✓ and ⇠ influences the young worker’s optimal policy. As shown, a wide range of strategies

24Specifically, Panel (a) illustrates the optimal policy when employing a set of parameters associated with
low uncertainty, characterized by B = 5.0, � = 0.95, Fa = 10, Fb = 10, Ga = 10, and Gb = 10. In contrast,
Panel (b) demonstrates the policy outcomes under high uncertainty conditions, where B = 5.0, � = 0.95,
and the values of Fa, Fb, Ga, and Gb are all set to 0.5. The code for implementation can be accessed at
https://bit.ly/3UvtM2A.

25See https://bit.ly/3HXnrp2. For the sake of simplicity, we have assumed above that uncertainty
related to both ✓ and ⇠ is significant. However, the same reasoning applies, but with certain qualifications,
when only industry wages, represented by either ✓ or ⇠, exhibit increased uncertainty.
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that involved the young worker maintaining her job and/or career in Panel (a) has now con-

solidated into the career change decision, identified as “New Career.” In essence, given the

increase in uncertainty, merely increasing wages, e.g., through subsidies, proves inadequate

in persuading young workers to enter or remain in the chip manufacturing sector.26

A key aspect of Neal (1999)’s model is that the complexity of career changes increases

as worker experience decreases. In fact, Neal (1999)’s main goal was to explore the reasons

behind young workers (i.e., recent graduates) were frequently changing jobs and careers. In

our framework, this concept is applied to the direct examination of first-time jobholders after

graduation. After documenting broader trends in chip manufacturing workforce, we focus

on analyzing the trends in the number of individuals embarking on their careers within the

chip manufacturing industry. We then investigate the initial employment outcomes among

peers of students who have acquired skills relevant to chip manufacturing.

B Data Description

In this section, we outline the methodology behind our data collection process (see Sec-

tion B.1) and provide detailed descriptions of the variables used in our study (see Sec-

tion B.2).

B.1 Methodology for Constructing Dataframes from Revelio Labs

The dataset utilized in our study is sourced from Revelio Labs, which specializes in providing

granular, individual-level employment data.27 This dataset encompasses extensive user-

specific details, including current and past employment positions, educational backgrounds,

names, skill sets, and demographic information, with a temporal benchmark of March 2023.

We construct three principal dataframes for analysis: (i) the active labor force possessing chip

26The standard deviations of salaries for several job categories have shown significant increases after the
beginning of U.S. protectionist era in 2018 across di↵erent educational qualifications. These data are available
upon request.

27A detailed description of dataframes can be found here: https://www.data-dictionary.reveliolabs.
com/data.html#individual-level-data.
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manufacturing skills, (ii) the dynamics within the labor force of chip manufacturers, and (iii)

annual cohorts of students who share educational a�liations with individuals skilled in chip

manufacturing. Sections B.1.1,B.1.2, and B.1.3 below describe the methodology employed

to develop these dataframes, respectively.

B.1.1 The Active Labor Force Possessing Chip Manufacturing Skills

The process begins with identifying individuals with semiconductor skills within the Reve-

lio dataset. This is achieved by filtering the skill file dataset to include only those entries

where the ‘skill k75’ variable—Revelio’s proprietary method for clustering skills reported by

individuals or their connections—equals “electronics / semiconductors / design of experi-

ments.” This category encompasses a broad spectrum of skills related to the semiconductor

field, including electronics, circuit design, semiconductor fabrication, and integrated circuit

design, among others. Specifically, these skills are: logic design, circuit design, pcb design,

soc, semiconductors, verilog, ic, asic, digital electronics, vhdl, doe (design of experiments),

metrology, failure analysis, power supplies, semiconductor industry, integrated circuits (ic),

thin films, silicon, analog, electro-mechanical, hardware development, embedded c, fpga, ca-

dence, vlsi, ni multisim, microcontrollers, power electronics, connectors, tcl, xilinx, digital

signal processors, proteus, rtl coding, xilinx ise, orcad, field-programmable gate arrays (fpga),

rtl design, altera, product engineering, mplab, pspice, autosar, pcie, schematic capture, mixed

signal, analog circuit design, signal integrity, x86, synopsys tools, semiconductor fabrication,

cadence virtuoso, intel, photolithography, mems, ncsim, modelsim, electronics, formal verifi-

cation, systemverilog, integrated circuit design, functional verification, hardware architecture,

multisim, microelectronics, microprocessors, microchip pic, vacuum, electronic engineering,

computer architecture, processors, electrical machines, 8051 microcontroller, pcb layout de-

sign, application-specific integrated circuits (asic), system on a chip (soc), circuit analysis,

keil, logic synthesis, cst microwave studio, hardware design, agilent ads, pll, cmos, power

management, hfss, eda, embedded software programming, sputtering, semiconductor process,
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electronics hardware design, physical verification, can, tcl-tk, fpga prototyping, pvd, process

integration, cvd, plasma etch, pecvd, computer engineering, spice, orcad capture cis, physical

design, low-power design, arm cortex-m, very-large-scale integration, canoe, static timing

analysis, dft, dsp, drc, semiconductor device, device characterization, cadence spectre, ana-

log circuits, timing closure, ltspice, can bus, digital circuit design, very-large-scale integration

(vlsi), electronic circuit design, yield, uvm, field-programmable gate arrays, system verilog,

inverters, serdes, compilers, gage r&r, primetime, systemc, embedded c++, flash memory,

semiconductor manufacturing, integrated circuits, application-specific integrated circuits, sys-

tem on a chip.

Given the repetition in a few skill labels, such as ‘integrated circuits’ appearing in various

forms, we later consolidate similar skills into unified categories for clarity. Utilizing this re-

fined data, we construct a dataframe centered around Revelio’s unique individual identifiers.

This dataframe includes dummy variables for each skill, indicating whether an individual

possesses that particular skill. For instance, if an individual has listed only ’orcad capture

cis’ as their skill, then all dummy variables except for ’orcad capture cis’ will be set to zero,

while the dummy for ’orcad capture cis’ will be marked as one. This methodical approach

enables us to systematically categorize and analyze the semiconductor skills present within

the dataset.

We then merge the above dataframe with position file, which contains the individual level

position data, and company ref, which contains static firm data. We remove rows lacking

‘naics code’ data (0.09% of the firms), which are essential for mapping into two- and six-digit

NAICS codes. The resulting dataset comprises records of job positions held by individuals

identified by their chip manufacturing skills, indicated through dummy variables. To isolate

active employees within this dataset, we apply filters to select only those whose positions

were active as of March 1, 2023, and whose records include a valid name for the ultimate

parent company. Additionally, we exclude records where the country field is marked as

’empty’.
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In this refined dataset, we determine the distinct number of individuals according to

country, firm, and industry. When conducting analyses at the firm level, which involve cat-

egorizing employees based on their seniority, we adopt two key strategies: positions missing

seniority information are omitted, and we set guidelines for handling cases where an indi-

vidual holds more than one position simultaneously. For instance, should an individual be

documented as having concurrent employment (such as an academic with a role at Penn

State University and another at Intel within the same period), we exclusively retain the

position that ranks higher in seniority. This method ensures the accuracy of our data by

eliminating the potential for missing data and double-counting individuals.

In the context of employment within U.S. government entities, our analysis identifies

significant numbers of individuals working for various departments and agencies, showcasing

the breadth of employment within this sector. Notable employers include the United States

Navy, US Air Force, The United States Army, Sandia National Laboratories, Jet Propulsion

Laboratory, Federal Aviation Administration, US Department of Defense, Lawrence Liver-

more National Laboratory, National Aeronautics & Space Administration, and the United

States Marine Corps.

B.1.2 Labor Force Dynamics of U.S. Chip Manufacturers

In our study, we delineate chip manufacturing firms using specific NAICS codes as the basis

for classification. The initial step in our methodology involves processing the data from

the company ref dataframe, which entails iterating through rows to eliminate those lacking

NAICS codes. Out of the 19,448,263 rows processed, 1,361,625 are retained, corresponding

to firms identified by their NAICS codes, while 18,086,638 rows are discarded. The firms

preserved in this filtered dataset are those associated with NAICS codes [334413, 334515,

334418, 333242, 333295, 333248, 333994], which are relevant to the chip manufacturing

industry.

Subsequent to this filtration, we integrate this refined list of firms with data from the
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position file, which contains detailed information on individual employment positions. This

integration aims to construct a person-firm-year panel, enabling a longitudinal study of

employment patterns. To refine this panel further, we implement the following filters: we

exclude records with undefined start dates (i.e., labeled as ‘\\N’), ensure that the start date

precedes the end date, remove entries where the country field is ‘empty’.

The transformation process then involves expanding each row of the dataframe to account

for each year an individual held a position, thus adding a temporal dimension to the dataset.

Consider for example a record which details the employment of an individual assigned user

ID 301252435 and position ID 6893505588650110490 at ”hohenloher spezialmöbelwerk schaf-

fitzel gmbh” (identified by Revelio company ID 872817 and FactSet entity ID 08QGZ3-E), a

German-based company. The tenure extended from February 1, 2016, to March 1, 2023. In

this period, the individual served as the “Assistent der Geschäftsleitung” (Assistant to the

Executive Management), a role within the accounting and finance job category of the finance

sector. Characterized by an entry-level seniority (seniority level 1), this position came with

an annual salary of e37,108.413. The data concerning this employment will be expanded

into panel data covering the years 2016 to 2023.

We emphasize the use of yearly panels over monthly panels to mitigate the introduction

of noise from inaccurately reported start dates on professional platforms like LinkedIn. This

approach addresses the issue of ‘false’ turnover observed at the start and end of years, a com-

mon artifact when individuals do not specify the exact month of employment commencement

or termination. Our methodological choice is validated by the close alignment of our yearly

employment counts with those reported by LinkedIn, indicating the reliability of our data

aggregation technique.

The final step in our analysis involves aggregating the unique number of individuals

employed at each firm within a given year across di↵erent categories, thereby providing a

comprehensive overview of employment trends in the chip manufacturing sector based on

a person-firm-year panel. This aggregate data serves as the foundation for our empirical
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analysis, o↵ering insights into the dynamics of the labor market within this industry.

After transforming individual data into a person-firm-year panel format, we proceed

to calculate the number of employees at each U.S. manufacturing firm by job category

(such as Admin, Engineer, Finance, Marketing, Operations, Sales, and Scientist) for each

year, creating a detailed firm-job category-year dataset. From 2014 onwards, this dataset

encompasses 5,436 distinct firms. To refine our analysis and exclude very small (micro)

firms, and to ensure reliable counterfactual units (i.e., alternative job categories), we apply

the following criteria: only firms that have been operational for at least three years by 2014,

determined by the earliest LinkedIn profiles of their employees, are included. Additionally,

we only consider firm-years that feature at least five job categories. This approach ensures

the availability of at least three alternative job categories for scenarios where engineering

and scientific positions are considered treated. Following these restrictions, the dataset is

narrowed down to 1,153 unique firms, resulting in 68,949 data points. To further enhance

data quality, we apply winsorization to all firm-job category-year variables at the 2.5% level

to eliminate outliers.

In the dataset related to firm-country-job category-year (referenced in Table 8 and de-

scribed in Panel B of Table 4), we apply additional criteria to exclude ‘phantom’ segment

countries. These criteria involve removing countries that have data for fewer than 50 unique

firms over the sampling period. Additionally, we exclude any firm-country-year group that

contains fewer than two observations. This is to ensure that within a given year and country,

firms are represented in at least two job categories.

B.1.3 Annual Cohorts of Students Who Share Educational A�liations With

Individuals Skilled in Chip Manufacturing

We also construct a dataset focusing on the classmates of individuals possessing chip man-

ufacturing skills, drawing on various data sources provided by Revelio. This dataset is

formulated by initially creating a dataframe of individuals with chip manufacturing exper-
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tise, as detailed in Section B.1.1, with the notable distinction that our selection does not

limit itself to individuals currently employed. We begin by filtering for the latest educational

degrees of these individuals using the education file. With this filtered data, we further an-

alyze the education file to pinpoint individuals who graduated from the same school and

program in the same year. During this process, we apply stringent filters to ensure data

quality, excluding rows where details such as ‘school’, ‘enddate’, ‘field raw’, and ‘degree’ are

either not provided, marked as “\N”, or labeled as “empty”. After these exclusions, we only

keep those rows with valid ‘enddate’s.

To identify a person’s classmates accurately, we apply criteria ensuring they share the

same ‘school’, ‘degree’, and ‘field raw’, and have graduated in the same year. This method-

ological approach allows us to comprehensively map out the educational networks surround-

ing individuals skilled in semiconductor manufacturing. Subsequently, we explore the po-

sition file, which contains data on the jobs the classmates take after their graduation. We

impose certain restrictions on the initial positions these classmates take after graduating

from the same programs as the people with chip manufacturing skills. This includes keeping

jobs that are acquired only after graduation date, focusing on positions obtained within two

years of graduating, prioritizing the first job started if multiple jobs are taken simultane-

ously, and excluding jobs without specified ‘country’ data. We also drop classmates from

high schools and associate degree programs. Through these filters, we compile data reflect-

ing the employment characteristics of the classmates of individuals with chip manufacturing

skills. Importantly, to prevent double-counting, we count the number of unique ID num-

bers associated with individuals, thereby avoiding the duplication of counts for classmates

possessing chip manufacturing skills within a specific year.

B.2 Variable Definitions

This section provides detailed descriptions of the variables used in our study. The variables

presented in Panel B of Table 4 correspond to those introduced in Panel A, yet they are
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analyzed at a more granular level, encompassing firm, country, job category, and year. For

the sake of conciseness, their descriptions are not repeated here.

• Log(Empi,j,t): The natural logarithm of the sum of one and the total number of

employees in job category j at company i in year t.

• Log(Hiringi,j,t): The natural logarithm of the sum of one and the number of new

hires in job category j at company i in year t. New hires are employees whose initial

year of work at the firm begins is year t.

• Log(Separationi,j,t): The natural logarithm of the sum of one and the number of

employees in job category j leaving company i in year t. Leaving the company refers

to the employees for whom year t marks the final year of their employment at the firm.

• Log(Turnoveri,j,t): The natural logarithm of the sum of one and the total of new

hires and leaving employees in job category j at company i in year t.

• Hiring Ratei,j,t: The ratio of the number of new hires in job category j at company

i in year t to the total number of employees in the same job category at the company

in the previous year (t� 1).

• Separation Ratei,j,t: The ratio of the number of employees leaving in job category j

at company i in year t to the total number of employees in the same job category at

the company in the previous year (t� 1).

• Net Hiring Ratei,j,t: The di↵erence between the hiring rate and the separation rate

for job category j at company i in year t.

• Turnover Ratei,j,t: The sum of the hiring rate and the separation rate for job category

j at company i in year t.
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• Log(FirstJobEmpi,j,t): The natural logarithm of the sum of one and the number of

employees in job category j at company i whose first year of employment is t and who

are newly hired without prior work experience.

• Log(ExprEmpi,j,t): The natural logarithm of the sum of one and the number of

employees in job category j at company i who are hired in year t with previous work

experience.

• Log(JunPosEmpi,j,t): The natural logarithm of the sum of one and the number of

employees hired in year t for junior positions (seniority levels 1 to 3) in job category j

at company i.

• Log(MidSenPosEmpi,j,t): The natural logarithm of the sum of one and the number

of employees hired in year t for mid-senior positions (seniority levels 4 and 5) in job

category j at company i.

• Seniority: Defined as an ordinal variable between 1 and 7: 1. Entry Level (e.g.,

Software Engineer Trainee); 2. Junior Level (e.g., Junior Software QA Engineer); 3.

Associate Level (e.g., Lead Electrical Engineer); 4. Manager Level (e.g., Superinten-

dent Engineer); 5. Director Level (e.g., VP Network Engineering); 6. Executive Level

(e.g., Director of Engineering, Backend Systems); 7. Senior Executive Level (e.g.,CFO;

CEO)

• Log(Cohort Sizec,d,j,t): This is the logged number of classmates, who graduated

alongside individuals with chip manufacturing skills, in country c in year t, holding a

degree d, and have secured jobs within job category j.

• Log(Avg. Salaryc,d,j,t) : This is the average first-job salaries of classmates, who

graduated alongside individuals with chip manufacturing skills, in country c in year t,

holding a degree d, and have secured jobs within job category j.
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• Avg. Seniorityc,d,j,t : This is the average first-job seniority levels of classmates, who

graduated alongside individuals with chip manufacturing skills, in country c in year t,

holding a degree d, and have secured jobs within job category j.

• Log(Tenurec,d,j,t): This is the average first-job tenures of classmates, who graduated

alongside individuals with chip manufacturing skills, in country c in year t, holding a

degree d, and have secured jobs within job category j.

C Additional Findings

In this section, we present supplementary results not included but mentioned in the main

text. Appendix Table B1 shows the results of our placebo test, examining the impact of

U.S. protectionist policies on employment in science and engineering roles within U.S. firms,

specifically those classified under the NAICS code 423690. This sector includes businesses

primarily focused on the merchant wholesale distribution of electronic parts and equip-

ment.Examples of firms in this category include wholesalers of blank CDs/DVDs (as opposed

to manufacturers of wafers) and blank diskettes (as opposed to manufacturers of chips). Our

findings indicate no significant e↵ects of U.S. protectionism on the employment levels within

these firms. Appendix Table B2 showcases the results of our analysis on how U.S. protection-

ism has influenced the workforce in chip manufacturing globally and across various academic

degree categories. As shown, our results in the main table are robust to subsample tests

across di↵erent geographies and degree types.

Appendix Figures B1, B2, and B3 present e↵ect dynamics and evidence for the observable

counterpart of the parallel trends assumption for all other dependent variables from Tables

5 and 6 that were not displayed in the main body of the text. Appendix Figures B4 and

B5 provide evidence from subsample tests that emphasize a shift away from science and

engineering roles globally and trends in the global workforce among U.S. chip manufacturers,

involving fewer employees in the U.S. but more in alternative locations such as Canada and
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European countries such as the Netherlands.
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Appendix Table B1. Placebo Test: Other Electronic Parts and Equipment Merchant Wholesalers

This table presents our findings from our placebo test on how protectionism has influenced science and engineering employment at U.S. chip manufacturing
companies, based on firms with naics code of 423690. Utilizing the di↵erence-in-di↵erences approach outlined in Equation 1, we analyze the e↵ects on employment
metrics. Panel A details the impact on employee count, hiring practices, separation, and turnover, while Panel B focuses on these metrics in rate form instead of
absolute numbers. For information on how data was collected and definitions of the variables used, refer to Sections B.1.2 and B.2, respectively. The analysis
spans from 2014 to 2022, with standard errors clustered by firm. Significance levels of 1%, 5%, and 10% are denoted by ? ? ?, ??, and ?, indicating statistically
significant deviations from zero.

Panel A: Analysis of Chip Manufacturing Workforce

Log(Empi,j,t) Log(Hiringi,j,t) Log(Separationi,j,t) Log(Turnoveri,j,t)

(1) (2) (3) (4)
Treatedj ⇥ Postt 0.00 -0.02 -0.01 -0.02

(0.14) (-1.15) (-0.35) (-0.87)

Firm ⇥ Job Category FE Yes Yes Yes Yes
Firm ⇥ Year FE Yes Yes Yes Yes

Observations 22,311 22,311 22,311 22,311
R-squared 0.967 0.816 0.799 0.842

Panel B: Analyses of Employment Growth

Hiring Ratei,j,t Separation Ratei,j,t Net Hiring Ratei,j,t Turnover Ratei,j,t

(1) (2) (3) (4)
Treatedj ⇥ Postt -0.01 -0.00 -0.01 -0.01

(-0.89) (-0.19) (-0.81) (-0.76)

Firm ⇥ Job Category FE Yes Yes Yes Yes
Firm ⇥ Year FE Yes Yes Yes Yes

Observations 22,311 22,311 22,311 22,311
R-squared 0.394 0.367 0.344 0.414
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Appendix Table B2. E↵ect Heterogeneity: U.S. Protectionism and Chip Manufacturing Workforce

This table presents the results of our subsample analysis on how U.S. protectionism has impacted the chip manufacturing workforce. We utilize a di↵erence-in-
di↵erences approach as detailed in Equation (2). Panel A shows the estimated e↵ects across various geographic regions, and Panel B presents estimated e↵ects
based on di↵erent academic degrees. For detailed insights into data collection and variable definitions, please refer to Sections B.1.3 and B.2. The analysis,
covering 2014 to 2022, uses country-level clustered standard errors. Statistical significance at 1%, 5%, and 10% levels is indicated by ? ? ?, ??, and ?, respectively,
highlighting significant results.

Panel A: Log(Classmatescdjt) by Region Panel B: Log(Classmatescdjt) by Degree

Africa Americas Asia Europe Oceania Bachelor Master Doctorate MBA

(1) (2) (3) (4) (5) (1) (2) (3) (4)
Treatedj ⇥ Postt -0.10*** -0.10*** -0.19*** -0.23*** -0.15** -0.42*** -0.17*** -0.09*** 0.04***

(-5.24) (-4.59) (-7.77) (-11.76) (-2.53) (-17.25) (-9.55) (-3.48) (3.02)

Country ⇥ Job Category ⇥ Degree FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country ⇥ Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Degree ⇥ Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 7,407 7,551 9,963 9,009 1,260 10,287 10,233 4,752 9,585
R-squared 0.927 0.975 0.953 0.949 0.970 0.969 0.975 0.965 0.974
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Appendix Figure B1. E↵ect Dynamics: Table 5, Panel A

The figure illustrates the dynamic e↵ects on all other dependent variables listed in Panel A of Table 5 that have not
been included in the main text. These e↵ects are calculated using a di↵erence in di↵erences model as in specification
(1), which controls for both firm ⇥ job category and firm ⇥ job year dummies. Each point estimate is accompanied
by a 95% confidence interval. For information on how data was collected and definitions of the variables used, refer to
Sections B.1.2 and B.2, respectively.
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Appendix Figure B2. E↵ect Dynamics: Table 5, Panel B

The figure illustrates the dynamic e↵ects on all other dependent variables listed in Panel B of Table 5 that have not
been included in the main text. These e↵ects are calculated using a di↵erence in di↵erences model as in specification
(1), which controls for both firm ⇥ job category and firm ⇥ job year dummies. Each point estimate is accompanied
by a 95% confidence interval. For information on how data was collected and definitions of the variables used, refer to
Sections B.1.2 and B.2, respectively.
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Appendix Figure B3. E↵ect Dynamics: Table 6

The figure illustrates the dynamic e↵ects on all other dependent variables listed Table 6 that have not been included in
the main text. These e↵ects are calculated using a di↵erence in di↵erences model as in specification (1), which controls
for both firm ⇥ job category and firm ⇥ job year dummies. Each point estimate is accompanied by a 95% confidence
interval. For information on how data was collected and definitions of the variables used, refer to Sections B.1.2 and
B.2, respectively.
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Appendix Figure B4. E↵ect Heterogeneity: Shift Away from Science and Engineering Roles

This figure displays the results of applying Equation (2) separately for each country to analyze the e↵ect of U.S. protectionism on classmates of individuals
skilled in chip manufacturing securing science and engineering positions. We focus on the peers of those with chip manufacturing skills, considering only those
who graduated in the same year, pursued the same degree, and resided in the same country. Our examination covers their career paths both before and after
the beginning of U.S. protectionism in 2018. The analysis is visualized on a bivariate world map, where the subsample e↵ects are shown on the y-axis and the
p-values of these estimated e↵ects on the x-axis, with di↵erent color labels distinguishing the results. The matrix within the figure indicates the percentage of
countries falling into each category, written in black. Countries with no data are shown in white.
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Appendix Figure B5. E↵ect Heterogeneity: Global Workforce Trends in U.S. Chip Manufacturers

This figure shows the outcomes of using Equation (3), incorporating fixed e↵ects only for firm by country by job category and firm by year, with each country
analyzed separately. The results are shown visualized on a bivariate world map, where the estimated e↵ects are shown on the y-axis and the t-stats of these
estimated e↵ects on the x-axis, with di↵erent color labels distinguishing the results. The matrix within the figure indicates the percentage of countries falling into
each category, written in black. Countries with no data are shown in white.
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