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ABSTRACT

Many centralized assignment systems seek to not only provide good matches for participants’ 
current needs, but also to accommodate changes in preferences and circumstances. We study the 
problem of designing a dynamic reassignment mechanism in the context of Norway’s system for 
allocating patients to general practitioners (GPs). We provide direct evidence of misallocation 
under the current system––patients sitting on waitlists for each others’ GPs, but who cannot 
trade––and analyze an alternative mechanism that adapts the Top-Trading Cycles (TTC) 
algorithm to a dynamic environment. In contrast to the static case, dynamic TTC may leave some 
agents worse off relative to a status quo where trades are not permitted, introducing novel 
concerns about fairness. We empirically evaluate how this mechanism would perform by 
estimating a structural model of switching behavior and GP choice. While introducing TTC 
would on average reduce waiting times and increase patient welfare––with especially large 
benefits for female patients and recent movers––patients endowed with undesirable GPs would be 
harmed. Adjustments to the priority system can avoid harming this group while preserving most 
of the gains from TTC.

Ingrid Huitfeldt
BI Norwegian Business School
0442 Oslo
Norway 
ingrid.huitfeldt@gmail.com

Victoria Marone
Department of Economics
University of Texas at Austin
2225 Speedway
Austin, TX 78712
and NBER
marone@utexas.edu

Daniel C. Waldinger
Department of Economics
New York University
19 West 4th Street
New York, NY 10012
and NBER
danielwaldinger@nyu.edu



I Introduction

Centralized (non-price) assignment mechanisms are used to allocate many important resources
in the economy, including schools, jobs, housing, and healthcare. A rich theoretical and em-
pirical literature has studied the design of such mechanisms. Much of this work has focused on
providing good matches for participants’ current needs. However, in many of these markets,
agents’ preferences over objects may change over time. Students may wish to transfer schools;
public housing residents may want to down-/up-size as household composition changes; work-
ers may want to relocate. Much less is known about how to design markets when there are
repeated matching opportunities. Even in markets with sophisticated centralized assignment
mechanisms, aftermarkets and reassignment systems are often less carefully designed.

This paper studies the problem of dynamically re-assigning agents to objects, when agents’
preferences change over time. We make three conceptual and empirical contributions. First,
we provide direct empirical evidence of unrealized gains from trade in an important dynamic
assignment market—the market for general practitioners (GPs) in Norway. Second, we intro-
duce an alternative mechanism that adapts a standard tool for centralized reassignment—the
Top-Trading Cycles (TTC) algorithm—to a dynamic environment, and clarify the incentive
and distributional challenges that arise. Finally, we develop and estimate a model of patient
preferences and choice over GPs and evaluate counterfactual mechanisms within a dynamic
equilibrium model of a patient-GP (re)assignment system.

Our empirical setting is the Norwegian primary care system. As in many national health
insurance schemes, every individual in Norway has a formally assigned GP who acts as a first
point of contact and gatekeeper to secondary care. In principle, individuals (or hereafter,
patients) have free choice of GP. In practice, each GP has a cap on the number of patients
they can have on their “panel,” creating capacity constraints that limit patients’ effective
choice of GP.1 In an effort to facilitate GP switching, in 2016 Norway began allowing patients
to join waitlists for oversubscribed GPs while keeping their spot on their current GP’s panel.
Patients are permitted to stand on at most one GP’s waitlist a time, and are then reassigned
from the waitlist on a first-come, first-served basis to vacancies on the desired GP’s panel.

The starting point for this paper is the observation that strictly enforcing first-come first-
served priority and only allowing reassignments when there is a vacancy may substantially
limit gains from trade. At any given time, there may be many patients waiting for each others’

1Similar constraints exist in many primary care systems around the world, as well as in the context of Health
Maintenance Organizations (HMOs) in the US.
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GPs, but who have no means by which to trade. Indeed, we find that 15 percent of patients on
a waitlist in December 2019 (the last month of our data) could be reassigned through a single
run of the TTC algorithm, which looks for not only bilateral trades among pairs of patients,
but also for “cycles” of trades among an arbitrary number of patients.2 Moreover, a simple
mechanical simulation suggests that if TTC had been run every month since the inception of
waitlists—holding patients’ GP choices fixed—the number of patients standing on waitlists
would have been 23 percent lower at the end of 2019.

Despite clear evidence of unrealized gains from trade, the equilibrium consequences of in-
corporating TTC into Norway’s GP reassignment system are not immediately obvious. In a
static setting, TTC is known to be both strategy-proof (meaning it is a dominant strategy for
agents to report their preferences truthfully) as well as Pareto-improving (Shapley and Scarf,
1974; Roth, 1982). In a dynamic setting, these results no longer hold. A dynamic mechanism
that repeatedly runs TTC is not strategy-proof because patients’ choices affect not only which
GP they will receive, but also how long they will have to wait.3 Patients’ equilibrium strategic
responses to changes in the mechanism may therefore offset the mechanical reductions in wait-
ing time that arise when patients’ GP choices are held fixed. Moreover, relative to a status
quo with strictly first-come first-served priority, introducing TTC may leave some patients
worse off. These patients may experience longer waiting times under TTC because the panel
slot they would have taken under the status quo system is instead given to another patient
who arrived later, but who can form a trading cycle with the owner of that slot.4 These dy-
namic effects reflect a more subtle aspect of TTC: only a patient with an oversubscribed GP
(whose endowment is a scarce resource) has the opportunity to trade. Patients with under-
subscribed GPs are effectively de-prioritized, and may thus experience systematically longer
waiting times. Ultimately, the size of both the average gains from introducing TTC and any
associated harms are an empirical question.

The rest of the paper studies the equilibrium impacts of introducing TTC and other related
matching algorithms to Norway’s existing waitlist system. We address two key empirical

2For example, suppose patient A is on the waitlist for the GP of patient B, who is on the waitlist for the GP
of patient C, who is on the waitlist for the GP of patient A. A three-way exchange (“trading cycle”) among
the three patients can leave all with their requested GP.

3Our primary mechanisms of interest maintain the restriction that a patient may stand on at most one
waitlist at a time. This amounts to limiting submitted rank-order lists to length two, in which case TTC is
not strategy-proof even in a static setting. However, even if patients could submit unrestricted preference
lists (as in the canonical TTC mechanism), they would have an incentive to truncate their submitted lists
under TTC in the dynamic model we consider. See Section V.E for further discussion.

4See Appendix B.3 for a stylized example of this phenomenon.
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challenges. First, patients’ GP choices will likely respond to changes in waitlist lengths as
well as to changes in their beliefs about how quickly waitlists will move, both of which may
vary across mechanisms. Second, the number of patients standing on waitlists grew rapidly
during our sample period (2016–2019). The data are therefore not drawn from a stationary
environment, where we ultimately want to make comparisons. Addressing these challenges
requires economic modelling on two fronts. We first formulate a demand model of patients’
decisions to switch GP. We then introduce a dynamic equilibrium model of a patient-GP
reassignment system, which will allow us to predict outcomes in a stationary equilibrium.

We estimate the demand model parameters via a Gibbs’ sampler using monthly adminis-
trative data on Norway’s GP assignment system. Our estimates imply substantial horizontal
differentiation across GPs, suggesting large returns to an efficiently designed reassignment
system. Much of this differentiation is driven by geographic location, but we also find that
patients have strong preferences for a doctor of the same gender (worth the equivalent of 6–7
minutes of travel time) and similar age (1 minute). The estimated attention probabilities
closely match switch request rates by age, gender, and whether and how far a patient recently
moved. Moves are a particularly important driver of mismatch between patients and their
GPs, and strongly predict switch requests. Our preferred specification estimates an annual
discount factor of approximately 0.91, consistent with reduced-form evidence that patients’
GP choices are responsive to waitlist lengths.

We apply these estimates within a dynamic equilibrium model of Norway’s patient-GP
reassignment system. Our model is calibrated to match the basic elements of the Norwegian
setting, including the distribution of patient and GP characteristics and the rate at which
patients age, die, and move between municipalities. We define an equilibrium in which there
is a fixed point between patients’ beliefs about waiting time and their optimal GP decisions,
where beliefs match the long-run stationary distributions generated by optimal behavior. Our
simulations imply that under Norway’s status quo mechanism, 9 percent of the population
would be standing on a waitlist in the stationary equilibrium, and the average patient would
expect to wait over a year to switch to their chosen GP.5

Our primary counterfactual is to run the TTC algorithm at the end of each month, after
all naturally arising vacancies have been filled from waitlists. We find that relative to the
status quo, the gains from introducing TTC are equivalent to reducing patients’ travel time

5As of February 2024, 6.5 percent of the population was standing on a GP waitlist, more than twice the
number at the end of our sample period. Our prediction that waitlists would continue to grow dramatically
is thus qualitatively consistent with what has actually occurred.
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to their GP by 0.7 minutes for every patient in the economy. Over half of this improvement
(0.4 minutes) is directly due to patients obtaining closer GPs, with the remainder due to
better matching on other dimensions. These gains are economically meaningful, representing
14 percent of the upper bound achievable under a benchmark with no capacity constraints.
Overall, TTC benefits the majority of patients, and in particular younger and female patients
and recent movers, who are most likely to request to switch GPs and to use waitlists.

As in our mechanical simulation, however, some patients are harmed. In particular, pa-
tients whose GPs are undersubscribed face longer waiting times and are worse off. This harm
is driven both directly by the fact that TTC prioritizes patients with desirable endowments,
and indirectly by these patients’ resulting increased willingness to wait for the most desir-
able GPs. Since it may seem unfair to disadvantage patients who already have less desirable
GPs, we consider two alternative mechanisms intended to mitigate these distributional con-
sequences. First, we implement the patient-proposing deferred acceptance (DA) algorithm
instead of TTC. This mechanism strictly respects first-come first-served waiting time prior-
ity, and thus does represent a Pareto improvement relative to the status quo.6 However,
it produces almost negligible gains, illustrating a fundamental trade-off between respecting
first-come first-served priority and exploiting gains from trade. Second, we implement a “TTC
with priority” (TTCP) algorithm that prioritizes patients with undersubscribed GPs for panel
vacancies.7 The results are encouraging. TTCP achieves 61 percent of the welfare gains from
TTC, while leaving patients with undersubscribed GPs just as well off as under the status
quo.

In a final analysis, we compare Norway’s current mechanism to one in which there are
not formal waitlists to ration excess demand for GPs. Specifically, we simulate a mechanism
in which patients may only choose from among GPs that have open slots at the moment
they consider switching, meaning there is a substantial degree of “luck” involved.8 Strikingly,
mean patient welfare is slightly higher than under Norway’s current mechanism. However,
median welfare is lower. The gains from eliminating waitlists are concentrated among a
minority of patients who are highly mismatched with their current GP. These patients prefer

6DA is distinct from Norway’s status quo mechanism because DA allows trades among patients at the top of
each waitlist, whereas Norway’s system requires a vacancy before any reassignments can be made.

7This idea is similar in spirit to the priority given to blood type O patients for blood type O donors in organ
allocation. We are grateful to Al Roth and Itai Ashlagi for this suggestion.

8Importantly, this simulation does not allow patients to “check back later” if their desired GP is not available
when they first consider switching, which would add an element of patient effort to the rationing mechanism.
We therefore view this simulation as simply a suggestive benchmark for what a “no waitlists” environment
might look like. See Section V.E for further discussion.
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an environment with more limited choice and no waiting times, whereas most patients prefer
the ability to choose from a wider set of GPs. While suggestive only, these findings may partly
explain why waitlists are rarely seen in other primary care systems. In contrast, the TTC and
TTCP mechanisms reduce waiting times while also keeping the benefits from the increased
choice that waitlists afford.

Related Literature. This paper contributes to a growing empirical literature on the design
of centralized allocation mechanisms. In studying dynamic reassignment, we build on two
specific strands of prior work. The first is static reassignment, in which all agents and objects
are matched at a single point in time, and agents may have an endowed object. Canonical
examples are the housing allocation problem with existing tenants and paired kidney exchange
(Shapley and Scarf, 1974; Abdulkadiroğlu and Sönmez, 1999; Roth, Sönmez and Ünver, 2004).
In this context, the TTC algorithm is known to be efficient and strategy-proof (Ibid.).9 These
properties motivate adapting TTC to a dynamic environment, but as we will demonstrate, may
break down when participants face dynamic incentives. The second is dynamic assignment,
in which agents and objects arrive stochastically over time, but agents do not arrive with
endowments. Examples include waitlists for public housing (Waldinger, 2021; Lee, Ferdowsian
and Yap, 2024), deceased donor kidneys (Agarwal et al., 2021), and hunting licenses (Verdier
and Reeling, 2022). Like in our setting, the trade-off for participants between shorter waiting
times and a preferred assignment is central to the optimal design of such mechanisms, as well
as in revealed preference analysis of choice data.10

In the context of dynamic reassignment, Combe et al. (2022) study the reassignment system
for French teachers in an infinite horizon environment, but model teachers as truthfully re-
porting their (static) preferences. Narita (2018) and Kapor, Karnani and Neilson (2024) study
models of school choice with aftermarkets in which agents can exhibit forward-looking behav-
ior, but limit consideration to two periods. Our work builds on these studies by considering

9TTC has also been applied in settings of static assignment in which agents do not have endowments, par-
ticularly in the context of school choice (Abdulkadiroğlu and Sönmez, 2003; Pathak and Sethuraman, 2011;
Leshno and Lo, 2020). This literature highlights a tension between efficiently assigning students and respect-
ing school priorities, which features prominently in our setting.

10Several theoretical papers study how dynamic incentives impact the optimal design of dynamic assignment
mechanisms (e.g., Su and Zenios, 2004; Bloch and Cantala, 2017; Arnosti and Shi, 2020; Baccara, Lee and
Yariv, 2020; Leshno, 2022; Che and Tercieux, 2023). To our knowledge, there is no theoretical characteriza-
tion of optimal mechanisms for the class of dynamic reassignment models we consider. Existing theoretical
work largely abstracts from strategic behavior, or focuses on a limited form of agent heterogeneity (Ashlagi,
Nikzad and Strack, 2022; Akbarpour, Li and Gharan, 2020; Akbarpour et al., 2023; Combe, Tercieux and
Terrier, 2022). Work that has considered strategic behavior largely focuses on characterizing strategy-proof
and stable mechanisms (Narita, 2018; Feigenbaum et al., 2020; Pereyra, 2013).
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the combination of an infinite horizon and forward-looking agent behavior, which raises a new
set of issues regarding how agents think about waiting times. Larroucau and Ríos (2022) also
study a setting (college major choice) in which both these elements are present. Their focus is
on learning and congestion externalities (without the possibility of waitlists), while our focus
is on finding gains from trade and the distributional issues that arise (when agents may choose
to wait). Waiting time is a natural market-clearing mechanism for processing reassignments
in a number of other related settings (e.g., public housing, public schools, university parking
spots), and our study represents a first step in understanding its equilibrium implications.

Finally, as in other countries, the existence of a national health insurance scheme in Norway
motivates using a non-price mechanism to allocate healthcare resources at the point of service.
Our paper contributes to a literature studying the optimal design of such mechanisms, and is
among the first to bring the tools of market design to bear on this topic. The existing literature
has largely focused on service-level allocation, in which context early work studied whether
limiting capacity and running waitlists for non-emergency services could deter low-value care
(Nichols, Smolensky and Tideman, 1971; Propper, 1990, 1995; Gravelle and Siciliani, 2008b).
Subsequent work has studied the design of prioritization schemes on such waitlists (Gravelle
and Siciliani, 2008a; Shen et al., 2020; Gruber, Hoe and Stoye, 2023) as well as the relative
merits of price versus waiting times as the rationing mechanism (Russo, 2023). Our work,
in contrast, considers the issue of provider-level allocation, where the potential for repeated
interactions raises the issue of whether patients may wish to be reassigned. In a setting closely
related to ours, Mark (2021) studies the Canadian primary care system, in which the process
for switching GPs is decentralized and patients who wish to do so must exert costly effort to
find vacancies. We see our work as complementary in that we study the design of a centralized
mechanism, allowing us to apply tools from the field of market design.

The paper proceeds as follows. Section II introduces our setting and data and demonstrates
the existence of gains from trade among waiting patients. Section III presents the structural
model of patient attention and GP choice. Section IV describes our estimation procedure
and parameter estimates. Section V presents our counterfactual simulations, and Section VI
concludes.

6



II Background, Data, and Descriptive Evidence

II.A Empirical Setting

Norway has a comprehensive national health insurance scheme primarily financed by general
taxation. Patient cost-sharing at the point of service is nonzero for most outpatient care, but
is still limited. Healthcare utilization is primarily managed via supply-side forces. Central
among these forces is a gate-keeping system whereby patients need a referral from a primary
care provider before receiving specialist care. Such providers therefore play a central role in
the healthcare system.

Primary care is almost exclusively provided by GPs.11 GP care is organized via a patient
panel system, whereby every person enrolled in the national health insurance scheme is as-
signed to a specific GP. Patients enrolled on a given panel are in general only permitted to
visit that GP for their primary care needs.12 Similar primary care systems exist in Canada,
Great Britain, Italy, and Sweden (among other countries), as well as in the context of Health
Maintenance Organizations (HMOs) in the US. The key reason for maintaining a central-
ized administrative linkage between a patient and a specific GP is to allow for a “capitated”
payment model, under which GPs receive a fixed payment for each person enrolled on their
patient panel. Norway uses a partially capitated payment model, meaning GPs receive a
fraction of their revenue from capitated payments (on average 30 percent) and the remainder
from fee-for-service payments.

The supply of GPs is regulated through a fixed number of government contracts.13 Similar
to Medicare and Medicaid physician contracts in the US, government contracts involve take-
it-or-leave-it payment terms, with some exceptions made to attract physicians to rural areas.
One important difference in Norway is that at the time a GP enters into a government contract,

11As of 2023, nurses in Norway do not have prescribing or referring authority outside of a few special cases.
While it is common for nurses to handle well visits for children and adolescents, adult patients must typically
consult a GP for the majority of their primary care needs (Robstad et al., 2022; Hansen, Boman and
Fagerström, 2020). Primary care needs could include periodic well-visits, non-urgent sick visits, obtaining
prescriptions or referrals to specialist care, or receiving documentation for sick leave through the national
sick leave scheme.

12There are some exceptions; for example, patients have the right to seek a second opinion from another GP
on a matter already discussed with their own GP.

13While GPs can also practice outside of the national health insurance scheme, the market for private practice
primary care remains small or non-existent in most of the country (The European Observatory On Health
Systems and Policies, 2023)
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both parties must agree on a maximum number of patients that the GP’s panel can take.14 In
entering into the contract, the GP agrees to take on a workload sufficient to serve all patients
that enroll on their panel, up to the agreed panel cap. GPs are required to be able to provide
an appointment to patients within 5 working days, which in part motivates the existence of
panel caps (Lovdata, 2012).

Patients make GP enrollment elections via a nationally centralized online platform.15 The
system operates on a rolling basis, without any special enrollment periods or forced re-
enrollment decisions. Enrollment changes take effect on the first day of the next month,
and GPs have no way to control which patients enroll on their panel. When a GP retires or
quits, patients receive six months’ notice and can either switch GP or remain on the panel of
the replacement GP.16 Newborns are by default assigned to their mother’s GP, regardless of
whether the panel cap is violated. Every patient is thus assigned to a GP panel at all times.

While patients in principle have free choice over GPs, in practice the panel caps generate
capacity constraints. A GP with no open slots on their panel is listed as “unavailable” on the
online enrollment platform. Patients that wish to switch GP immediately may therefore only
choose among the set of GPs with open slots on their panels (henceforth, “open panels”). Prior
to 2016, a patient would simply need to check back later if their desired GP was unavailable.17

In November 2016, a new functionality was introduced whereby patients could join a waitlist.
Patients are permitted to join only one waitlist at a time, but can switch which waitlist they
are on as often as they would like.18 Panel slots that become available are filled from the
waitlist on a first-come, first-served basis, according to when each patient joined that waitlist.
Once a patient joins a waitlist, they commit to being reassigned to the target GP once they
reach the front of the list; there is no opportunity to renege except to remove oneself from the
waitlist before it is too late.

14Operationally, local municipal governments work with GPs to set panel caps and negotiate any other id-
iosyncratic features of a GP’s contract, such as reduced working hours or coverage for parental leave spells.

15The online platform is publicly available at https://tjenester.helsenorge.no/bytte-fastlege. Appendix Figure
A.1 provides a screenshot of the interface. Patients are permitted to switch GPs at will up to two times per
year (though this constraint rarely binds), with additional switches granted for qualifying life events.

16If the replacement GP has a lower panel cap, a randomly selected subset of patients are administratively
reassigned, without their explicit consent, to another GP in the local area.

17In fact, a cottage industry arose of private companies that automated the process of monitoring the central
web platform for when GP panel slots became available and selling an email/text alert service to consumers
for a monthly fee.

18The centralized web platform provides real-time information on the number of patients on each waitlist, and
if a patient is logged in, on their current position on the waitlist they are standing on (see Appendix Figure
A.1).
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II.B Data

Our data are derived from two main sources. First, we observe detailed administrative data
on the GP assignment system itself (Fastlegedatabasen). These data include a full history
of patient enrollment, waitlist spells, and GP characteristics. We can therefore reconstruct
the state of each GP’s panel and waitlist at any point in time. Second, we link these data to
register data from Statistics Norway on individual demographics, including age, gender, family
relationships, income, education, and monthly municipality of residence. Further details are
provided in Appendix A.1. We have data for the period 2014–2019.

Figure 1 shows the number of GP switches and waitlist use over time. GP switches take
one of two forms: (i) standard switches to an open panel, and (ii) switches that occur once
an individual reaches the front of a waitlist and is reassigned. Between 2014 and 2019, there
were an average of 5,259,076 patients per month in the GP allocation system. An average of
31,856 patients (0.6 percent) switched their GP each month. Once waitlists were introduced in
November 2016, an average of 28 percent of switches were executed via a waitlist, whereas the
remaining 72 percent were switches to an open GP panel. The total number of switches per
month did not change dramatically. The waitlists have grown steadily since their introduction.
By the end of 2019, 133,538 people were standing on a waitlist (2.5 percent of all patients).
As of February 2024, this number had risen to 326,506 (6.5 percent of all patients).

Figure 1. Number of GP Switches and Waitlist Use Over Time

Number of persons
on a waitlist

Number of GP
switches

Switches to an
open panel

Switches via
waitlist

/

Introduction of waitlists
(Nov. 2016)

0

50,000

100,000

150,000

2014 2015 2016 2017 2018 2019

Notes: The figure shows the number of GP switches per month and the stock of individuals
standing on a waitlist each month between 2014 and 2019, including both adults and children.
GP switches are decomposed into standard switches to an open GP panel (light blue) and switches
that occur only after going through a waitlist (dark blue).
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Patients. Our primary restriction on patients is to exclude those who are under 16 years
old. Children’s interactions with the healthcare system, including GP enrollment, are for-
mally managed by parents until a child turns 16. There are also special exceptions given to
children that allow them to bypass GP panel caps in certain situations, as well as to switch
GPs alongside a parent without themselves going through a waitlist. As these factors would
substantially complicate our analysis, we limit our focus to the experience of adults.

Table 1 provides summary statistics on patients, focusing on the three-year period from
2017 to 2019. The sample is an unbalanced panel at the patient-month level (panel entry
occurs at age 16 or immigration; panel exit occurs at death or emigration). The first column
describes the full sample. There are 4.78 million unique patients, representing the universe of
over-16 individuals registered as resident in Norway and covered under the national insurance
scheme. Patients are on average 47 years old and earn 425,374 NOK annually. Just over 7
percent of individuals are temporary residents, 32 percent have post-secondary education, and
10 percent moved to a new municipality at least once during 2017–2019.

In terms of GP choice, 19 percent of patients requested to switch their GP at least once (4
percent of patients did so more than once). The average travel time (by car) to a patient’s
GP was 10.7 minutes; the median was 5.8 minutes.19 More than half (58 percent) of patients
have a GP of the same gender as themselves. In terms of waitlist use, 9 percent of individuals
were at any point on a waitlist over this period. Conditional on ever being on a waitlist, the
average number of months on a waitlist was 6.5.

The remaining three columns of Table 1 break up the full patient sample into three sub-
groups: (i) patients who never switched their GP nor joined a waitlist, (ii) patients who
switched GP but never joined a waitlist, and (iii) patients who joined a waitlist (and may or
may not have successfully switched their GP). Several patterns are apparent. First, gender
homophily appears to be a driver of switching behavior. While 56 percent of patients on
waitlists currently held a GP with the same gender as themselves, 64 percent of them were
waiting for a GP of the same gender. Waiters are also disproportionately female, which could
be driven by a scarcity of female GPs or a stronger gender homophily preference among female
patients.

Second, there is a striking pattern with respect to moves. Among patients who never
requested to switch their GP, only 6 percent of individuals moved municipality during this

19Travel time is measured between the population-weighted centroid of patients’ municipality of residence and
the address of their GP’s office.
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Table 1. Patient Summary Statistics

Never used waitlist
Sample demographic

Full
Sample Never switched Ever switched

Ever
used waitlist

Number of individuals 4,780,647 3,875,753 497,111 407,783
Pct. of individuals 0.81 0.10 0.09

Demographics
Pct. female 0.50 0.48 0.51 0.64
Age 47 49 40 42
Pct. with post-secondary education 0.32 0.31 0.32 0.37
Annual income (000 NOK) 425 437 358 390
Pct. temporary resident 0.07 0.07 0.08 0.08
Pct. rural 0.30 0.31 0.30 0.28
Pct. ever moved 0.10 0.06 0.34 0.26

Choice of GP
Pct. ever switched to open GP 0.13 –– 1.00 0.28
Travel time to current GP (min.) 10.7 9.5 17.1 14.3
Pct. with GP of same gender 0.58 0.57 0.59 0.56

Use of waitlists
Pct. ever on a waitlist 0.09 –– –– 1.00
Number of months on a waitlist | > 0 6.5 6.5
Pct. waiting for GP of same gender 0.64 0.64
Travel time to wl. GP – curr. GP (min.) -6.8 -6.8

Notes: The table provides summary statistics on adult patients present in the data from 2017–2019. Except where otherwise
specified, all values in the table represent means over patient-months. “Ever” means at any point during 2017–2019. Moves are
counted only if they are across municipalities. Age, gender, education, and income data are not available for temporary residents,
so those means are only among permanent residents.

period. Among those who switched GP but never used a waitlist (meaning they switched to
an open GP), 34 percent of individuals moved. Among those who used a waitlist, 26 percent
moved. These facts suggest that geographic proximity is an important factor in GP choice.
The even higher move rate among patients who only open-switched is consistent with patients
who are far from their current GP being less selective, i.e., more likely to simply settle for an
open GP. Finally, the last row of the table shows that among patients who used a waitlist,
the waitlist GP was on average 6.8 minutes closer than their current GP (on a base of 14.3
minutes travel time to current GP).

GPs. Table 2 provides summary statistics on the 6,470 GP panels active during 2017-2019. As
with patients, the data consist of an unbalanced panel at the GP panel-month level.20 There
is an important distinction between a GP panel and a GP. A GP panel is the administrative
unit to which patients are actually linked. Each panel is then served by a GP (a licensed

20The average GP panel appears in the data for 28 months (out of 36 possible). At a given time, between
4,840 and 5,106 panels are in operation.
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medical doctor). The GP that serves a given panel may change over time, independently of
the patients enrolled on that panel.

The first column of Table 2 describes the full set of GP panels. The average panel had a cap
of 1,138 patients and had available slots for 36 percent of months. Across all months between
2017 and 2019, the average GP serving these panels was 47 years old, 42 percent of GPs were
female, and 11 percent were temporary GPs.21 The average GP panel-month had 18 people
standing on its waitlist, and the average enrollment-to-cap ratio was 94 percent.

Table 2. GP Panel Summary Statistics

All Undersubscribed Oversubscribed
Number of GP panels 6,470 3,532 2,938
Pct. of GP panels 1.00 0.55 0.45

Panel characteristics
Enrollment cap 1,138 1,143 1,135
Pct. months with available slots 0.36 0.70 0.06
Pct. rural 0.37 0.44 0.30

GP demographics
Age 47 47 48
Pct. months with female GP 0.42 0.34 0.50
Pct. months with temporary GP 0.11 0.15 0.08

Panel enrollment stats.
Num. enrollees on a waitlist 18 21 14
Num. waiting on waitlist 18 4 30
Num. enrollees / cap 0.94 0.87 1.00

Notes: The table provides summary statistics on the set of GP panels present in the data from 2017–
2019. Except where otherwise specified, all values in the table represent means over GP panel-months.
Oversubscribed GP panels are those which are at capacity for more than 75 percent of months. Enrollment
and waitlist use statistics reflect the full population (including children under 16).

The remaining two columns of Table 2 separate GP panels into two subgroups: (i) those
that were not consistently oversubscribed, and (ii) those that were. We define “consistently
oversubscribed” to mean that a given GP panel was at capacity for more than 75 percent of the
months that it appeared in the data from 2017–2019. There are several notable patterns. First,
GP panels in urban areas and those served by female GPs are more likely to be oversubscribed,
while GP panels served by temporary GPs are more likely to be undersubscribed. Second,
among the current enrollees of undersubscribed panels, an average of 21 patients (2.1 percent
of enrollees) were themselves standing on a waitlist (and therefore trying to leave the panel).

21Temporary GPs (vikar) are used while the primary GP (fastlege) is on parental leave or while the position
is vacant and the municipality is actively searching for a new permanent GP.
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Among oversubscribed panels, this is true for fewer patients—an average of 14 people per
panel (1.2 percent of enrollees). Thus, while some GPs are systematically more demanded
than others, there are still many patients requesting to switch away from over-demanded GPs.
Finally, capacity utilization in the system is high. Even for consistently undersubscribed GPs,
87 percent of panel slots were occupied.

II.C Prevalence of Double Coincidence of Wants

We now provide direct evidence of unrealized gains from trade among patients on Norway’s
GP waitlists. This prima facie evidence motivates the structural model and counterfactual
simulations developed in the remainder of the paper.

Static Gains From Trade. Norway’s current GP allocation system does not permit trades
among patients standing on waitlists. Even when two people are each at the front of the
waitlist for the other’s GP, this “trade” cannot occur until there is a vacancy on one of the
two panels, allowing one waiting patient to vacate their spot for the other. Note that the same
problem exists in a mechanism without formal waitlists. Two individuals could simultaneously
check to see if there was an opening at one another’s GP, see that there was not, and not be
able to trade. The advantage (from the analyst’s perspective) of the waitlist system is that
we have a record of these preferences. In particular, we are able to observe whether there are
individuals who would want to trade with one another.

Using the waitlists data, we begin by calculating the extent to which such “double coinci-
dence of wants” exist. We search for possible trades using the Top Trading Cycles algorithm
(Shapley and Scarf, 1974; Abdulkadiroğlu and Sönmez, 1999). We first run the algorithm on
the waitlists from the last month of our data, December 2019. At the end of this month,
there were 133,332 individuals standing on a waitlist. These waiters were currently enrolled
on almost every existing GP panel (4,963 out of 5,010), but were standing on the waitlist for
only 3,695 unique GPs.22

The TTC algorithm takes two primary sets of inputs: (i) the set of participating agents and
their rank-order preference lists over objects, and (ii) the set of participating objects and their
rank-order priority lists over agents. In our setting, agents (patients) have preference lists of
length at most two. Patients standing on a waitlist first prefer their waitlist GP, and then their
current GP. Patients not standing on a waitlist prefer only their current GP. Objects (GPs)

22Appendix Figure A.2 provides a histogram of waitlist lengths across these 3,695 waitlists.
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first prioritize all patients currently on their panel (guaranteeing each patient an assignment no
worse than their current GP), and then prioritize the patients on their waitlist in descending
order of waiting time.23 We run the algorithm and find that 20,377 people (15 percent of
waiters) could have been immediately reassigned via TTC.24 Appendix Table A.1 describes
the types of adult patients that could be immediately reassigned. Reassigned patients tended
to have a larger difference in travel time between their current and waitlist GPs, consistent
with location preference heterogeneity being a key driver of gains from trade.

The fact that gains from trade exist tells us that patients must differ—at least to some
extent—in their preferred GP. We explore the sources of this horizontal preference hetero-
geneity descriptively using a conditional logistic regression predicting which GP a patient
chooses, conditional on making a switch request. Appendix B.2 provides a detailed descrip-
tion of these results. We find that indeed, the most important source of horizontal preference
heterogeneity is patients geographic location relative to GP offices. We also find patients have
a preference for a same-gender and similar-age GP.

Impact on Evolution of Waitlists. The static analysis suggests that the gains from trade
among patients with oversubscribed GPs may be substantial. The welfare impact of these
trades, however, will depend on the extent to which they affect patients’ waiting times and
GP assignments in a dynamic environment. We can begin to get a sense of these dynamic
effects through a simple mechanical simulation of how the waitlist would have evolved if
trades were processed periodically in the first three years the waitlists were operational. From
November 2016 through December 2019, we run the TTC algorithm on the remaining waitlists
at the end of each month. Importantly, patients’ actions—GP switch requests—are held fixed.
We then compare the number of reassignments and waiting times to those under the status
quo mechanism.25

Figure 2 presents the results of this exercise, comparing the status quo waitlists mechanism
(Waitlists) to the counterfactual monthly implementation of Top-Trading Cycles (TTC). Panel
(a) shows the number of people on waitlists each month. By the end of 2019, there would
have been 23 percent fewer waiting patients under TTC. Panel (b) shows the realized waiting

23Appendix B.1 describes the algorithm we use to find and clear cycles, as well as other implementation details.
24There is substantial geographic heterogeneity in the fraction of waiters that could be reassigned. In rural

Åsnes municipality, it is only 2 percent (out of 420 waiters, where waiters represent 6 percent of the popula-
tion). In urban college town Bergen, it is 26 percent (out of 7,991 waiters, where waiters represent 3 percent
of the population).

25We compare simulated outcomes under the status quo mechanism to simulated outcomes under the TTC
mechanism. Appendix B.1 provides additional details about the implementation of this analysis.
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times. The blue series shows the average elapsed waiting time among the stock of individuals
standing on waitlists each month, while the red series shows the average waiting time among
the flow of individuals successfully reassigned from a waitlist each month. Among reassigned
patients, average waiting times would have been 29 percent shorter under TTC, suggesting
that trades generated by TTC may lead to significant reductions in waiting times.

Figure 2. Results of Running TTC on Historical Data
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Notes: The figure shows outcomes from a mechanical simulation in which TTC is run each month on the
historical waitlists data, holding all patient actions fixed. Panel (a) shows the number of persons standing on
waitlists each month. Panel (b) shows the average elapsed waiting time among the stock of patients standing
on waitlists each month (blue) and the average waiting time among the flow of patients who were successfully
reassigned from a waitlist each month (red).

While TTC reduces average waiting time, it does not offer a Pareto improvement relative
to the status quo. Some patients are harmed in the form of longer waiting times. This can
happen because a slot that would have been taken by the first person on the waitlist might
be filled earlier by a different patient who is further back on the waitlist but participated in
a cycle with the patient previously in that slot. Appendix B.3 provides stylized examples of
this phenomenon in our setting. Appendix Figure A.3 shows the distribution of waiting time
differences among patients in our simulation. A minority of patients (4.5 percent) have longer
waiting times under TTC because they are effectively de-prioritized relative to the status quo.

While this analysis suggests there could be significant welfare gains from introducing TTC,
it has two important limitations. First, the simulation holds patient behavior fixed. If the
implementation of TTC changed the distribution of waitlist lengths, patients might have re-
quested different GPs. Indeed, the reduced form analysis in Appendix B.2 shows that patients’
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choice of GP is responsive to waitlist length. Moreover, if patients understand that TTC may
allow them to be reassigned faster, expected waiting times would fall even conditional on wait-
list lengths, again potentially influencing patient choices. A second limitation of this analysis
is that the market was far from a steady state during our sample period. Use of waitlists
rose rapidly after their introduction, and has continued to do so after the end of our sample.
The long-run stationary distribution of Norway’s GP allocation system—and the associated
impact of introducing TTC—may be different when queues are systematically longer. Our
counterfactual simulations will rely on a stationary demographic evolution and GP switching
process, allowing us to evaluate the impacts of TTC in a long-run equilibrium.

III Model of GP Preferences and Choice

Section III.A presents a model of attention and GP choice that will form the basis of our
strategy to estimate patient demand for GPs. Section III.B then presents a belief model
under which patients map waitlist lengths into beliefs about waiting time, which will be an
important input into patients’ GP choices.

III.A Attention, Preferences, and Choice

Patients are indexed by i, GPs by j, and time by t. Time is continuous. We model patient
preferences at the time they consider switching GPs. At time t, patient i’s preferences are
represented by indirect flow utilities from being assigned to each GP vit ≡ (vi1t, ..., viJt) ∈ RJ

and a discount rate ρ. The patient has observable attributes Xit and is currently assigned to
GP j0t. Going forward, we suppress t subscripts when they do not affect the exposition.

A patient “pays attention” and considers switching GPs at Poisson rate pλit.26 When a
patient is attentive, two things happen: (i) she draws new preferences vit ∼ F (· | Xit), and
(ii) she decides whether to switch GP and, if so, to which one. A patient might pay attention
due to an event we observe, such as a recent move, or for reasons we do not observe, such as
a health event or an interaction with their GP. We model the attention rate pλit as a function
of observables Xit and assume attention follows a memoryless Poisson process, so paying

26In practice, because our data are at the monthly level, we will estimate monthly attention probabilities
and assume that patients can only be attentive once within a month. In reality, patients do make GP
selections continuously throughout the month, and our counterfactuals will simulate within-month patient
arrival times.
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attention at time s does not predict attention at t > s conditional on Xit.

Attentive patients consider the waiting time for each GP, but do not anticipate future
preference changes or switching opportunities. If patient i must wait T ≥ 0 periods to be
assigned to GP j, the net present value of requesting this GP is∫ T

τ=0

e−ρτvij0dτ +

∫ ∞

τ=T

e−ρτvijdτ =
1

ρ

[
vij0 + e−ρT (vij − vij0)

]
. (1)

Equation 1 shows that the value of switching to another GP can be decomposed into two
parts. The first is the value of being forever assigned to their current GP j0. The second is
the incremental value of being assigned to GP j instead of j0 at some point in the future,
discounted by waiting time T . Only the second term depends on the chosen GP j.

It remains to specify patients’ information and beliefs about waiting time. The online GP
choice interface displays whether each GP has open slots at time t and, if not, the number
of individuals on the waitlist for each GP. Let wit = {wi1t, ..., wiJt} ∈ NJ

+ denote patient i’s
position if she joined each waitlist. If a GP has open slots or patient i is already on their
panel, i’s waitlist position is zero. Letting Jit denote patient i’s choice set at time t, her choice
problem can then be written

max
j∈Jit

E
[
e−ρTij | wit

]
(vijt − vij0t) . (2)

This choice problem maximizes the value of being assigned to GP j after some waiting time Tij,
accounting for uncertainty in waiting time given current waitlist lengths and acknowledging
that the patient will remain with her current GP while waiting.

This formulation has several implications. First, there is no explicit cost of waiting. The
distaste for waiting time arises only due to exponential discounting. An attentive patient will
therefore always request to switch to another GP as long as there is some other GP in the
choice set that delivers higher flow utility than the patient’s current GP, regardless of wait
time. Our model thus interprets any switch request in the data as implying both that (i) the
consumer received an attention shock, and (ii) the requested GP is preferred to the current
GP. Any patient who does not request to switch, on the other hand, may be either simply
inattentive, or else attentive but prefer their current GP to all others. A second implication of
our model is that patients do not necessarily request to switch to their most-preferred GP, in
the sense of delivering the highest flow utility. A patient may choose a less preferred GP with
a shorter waitlist in order to wait for less time. Finally, an attentive patient who is relatively
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satisfied with her current GP is less likely to request to switch. But conditional on requesting
to switch, such a patient is more likely to be willing to wait for her most-preferred GP, due
to a high “outside option” while waiting.

Discussion of Modeling Choices. The goal of our model of attention and GP choice is to
predict how patients might change their behavior when faced with different waitlist lengths and
beliefs about waiting time under alternative waitlist mechanisms. A number of our modeling
choices warrant specific discussion.

First, we choose to focus on inattention rather than switching costs as the explanation
for why GP switch requests are infrequent within patient. This choice is not without loss
of generality. A model with switching costs would predict that more patients would request
to switch should aggregate waiting times fall, while a model of exogenous inattention would
not.27 We choose to neutralize this channel and focus only on exogenous inattention because
GP switch request rates do not appear to respond to local changes in aggregate waiting times.
Specifically, we test in the data whether the number of switch requests responds to short-run
changes in the average waitlist lengths of all nearby GPs, exploiting a technical change in the
reassignment algorithm made during our sample period. Appendix B.5 presents this analysis.
We do not find any evidence that patients are more likely to request to switch when waitlists
for nearby GPs are particularly short. While we cannot rule out the possibility of a longer-
term increase in switch requests as patients become aware that the mechanism has improved,
the evidence points toward focusing on modeling which GP a patient requests, rather than
the decision to switch at all.28

Second, our formulation of the choice problem rules out behaviors that would be optimal if
patients were fully forward-looking. In particular, patients do not anticipate future preference
changes and switching opportunities; they choose a GP as if it will be permanent. This
assumption is relatively innocuous for estimation because switch requests are rare at the
individual level, and because the identity of a patient’s current GP does not affect their
ability to switch GPs under the current system. The assumption is stronger, however, for a
counterfactual mechanism with TTC. Because patients’ expected waiting times will depend on
whether their current GP is oversubscribed, they may consider not only a GP’s current value,

27Several papers have considered both exogenous inattention and endogenous switching behavior as explana-
tions for persistent choices (Ho, Hogan and Scott Morton, 2017; Hortacsu, Madanizadeh and Puller, 2017;
Abaluck and Adams-Prassl, 2021; Heiss et al., 2021).

28Note that in our counterfactual simulations, the number of switch requests is still endogenous because the
mechanism may change patients’ current GPs when they consider switching. If a patient’s current GP is
preferable to all others when they are attentive, they will not request to switch.
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but also its future “trading value.” In our view, it is unlikely that patients would systematically
engage in this type of behavior. Since switch requests are rare, a GP’s trading value is limited
by the fact that any gain from modifying one’s chosen GP would likely be realized far into the
future. Furthermore, patients often fail to fully exploit strategic opportunities even within
the relatively simple current system. For example, it might be optimal for a patient to
simultaneously switch to an open GP and join the waitlist for an even more preferred GP,
which is allowed under the current mechanism. While there are instances of this type of
behavior in the data, they are rare—simultaneous open-switches and waitlist joins occur in
only 3 percent of patient-months in which a switch request was made.

Finally, we ignore the value of a long-term relationship with your GP. In principle, we
could allow a patient’s taste for their current GP to depend on the length of the relationship.
However, our ability to credibly estimate this object is limited by the fact that we rarely
observe the same patient switching multiple times after being assigned to different GPs. Our
counterfactual simulations suggest that the rate of switch requests would change very little
under alternative mechanisms, even though patients’ specific GP choices would adjust in
equilibrium. We therefore believe that the mechanism design changes we study would have
limited impact on patient-GP relationship capital.

III.B Waiting Time Beliefs

Modeling beliefs is a key challenge in empirical market design, where market participants
often do not have direct access to the information they need to understand the payoffs from
different actions. In our setting, patients can easily observe the length of each GP’s waitlist,
but must infer how this would map into a waiting time. We propse a tractable model of beliefs
that approximates the structure of a first-come, first-served queue in a way that depends on
a small number of parameters that can be directly estimated from the data. Combined with
the choice model, this belief model allows us to translate patients’ observed responsiveness to
waitlist lengths under the current system to similar responses under alternative mechanisms.

Beginning in waitlist position s, waiting time can be thought of as the sum of the time it
takes to move from position s to position s− 1; from s− 1 to s− 2; and so on up to the time
from position 1 to being assigned. The time each step takes will depend on the rate at which
slots become available on the GP’s panel (through departures of incumbent enrollees), and the
rate at which patients higher on the waitlist abandon it before being reassigned. Incumbent
enrollees may depart their panel in the event of death, emigration, or a switch to another GP.
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Patients standing on waitlists may abandon it in the event of death, emigration, or actively
removing themselves from the waitlist.

We assume that patients perceive that slot vacancies and waitlist abandonments follow
independent Poisson processes in continuous time. Each slot on GP j’s panel becomes vacant
at exponential rate ηj, and each patient waiting for GP j abandons the waitlist at exponential
rate κj. If these processes are independent, then the time ts it takes to move from position s

to s− 1 follows an exponential distribution with parameter Njηj + (s− 1)κj, where Nj is GP
j’s panel cap. For a given patient, ts and ts′ are independent for s ̸= s′. A patient’s expected
total waiting time when entering GP j’s waitlist at position w can then be written as

E[Tj | w] = E

[
w∑

s=1

ts

]
=

w∑
s=1

1

Njηj + (s− 1)κj

, (3)

and the expected discount factor as

E
[
e−ρTj | w

]
=

w∏
s=1

Njηj + (s− 1)κj

ρ+Njηj + (s− 1)κj

, (4)

where equation Equation 4 is derived using the facts that the increments ts are independent
and exponentially distributed.

This belief model embeds two primary simplifications. First, it assumes assignments occur
in continuous time at the moment vacancies become available. In practice, assignments are
processed at the end of each month.29 Second, it assumes that patients only consider the
length of each waitlist in isolation when forming waiting time predictions. In principle, the
fact that GP k’s waitlist is unusually long—or that all nearby GPs have long waitlists—may
predict how quickly GP j’s waitlist will move. Given that in practice patients have limited
information about the mapping from waitlist lengths to waiting times, we believe our belief
model is a reasonable approximation.

29In addition, at least 10 slots must be available before any patients are assigned from the waiting list. This
is done to provide a buffer in case there are multiple births to patients already on the GP’s panel.
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IV Estimation

IV.A Sample and Parameterization

Geographic Subsample. For computational tractability, we estimate demand using a geo-
graphic and time-period subsample of our data. Geographically, we restrict to patients resid-
ing in the Trondelag region. Trondelag is attractive for this purpose because it is a populous
region with a major population center (Trondheim), but the region boundaries are sparsely
populated.30 Its population accounts for about 8 percent of the country. In terms of time
period, we focus on the 12 month period from December 2018 to November 2019, by which
time GP waitlists were well-established. Appendix Table A.2 provides a comparison of key
demographic characteristics between Trondelag and all of Norway over this period. Nothing
about the two areas appears substantially different, with the exception that Trondelag is on
average more rural.

In addition to geographic and time period restrictions, we also restrict patient choice sets.
Our baseline choice set definition is a driving time radius of 60 minutes around a patient’s
municipality of residence.31 Details about the construction of the demand estimation sample
are provided in Appendix A.2. Our final demand estimation sample represents 4,213,049
patient-months (379,330 unique patients) and 457 unique GP panels.

Parameterization. We parameterize the attention and GP choice models as follows.

λit
iid∼ Bernoulli(pλ(Xit)) (Attention)

vijt = −dijt + δj +Xijtβ + ϵijt | λit = 1 (GP choice)

ϵijt
iid∼ N

(
0, σ2

ϵ (Xijt)
)

ρit = ρ (Discount rate)

The attention shock λit is drawn independently each period according to a probability pλ(Xit)

that depends on patient observables. Motivated by reduced form evidence in Appendix B.4, we
include patient demographics (age, gender, permanent residency status), whether the patient

30 Of the 11 administrative regions (fylke) in Norway, Trondelag has the lowest outside-region GP enrollment.
Only 1.7 percent of residents of Trondelag enroll with a GP outside of the region, compared to 7.7 percent
of residents of the Oslo region. Appendix Figure A.4 provides a map of Norway and of Trondelag.

31This definition is motivated by the fact that 97 percent of patients enroll with a GP within 60 minutes. Our
estimates are not sensitive to adjusting the choice set definition between 45 and 90 minutes.
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has recently or will imminently move, and if so, the distance of the move. An attentive patient
(λit = 1) draws new taste shocks for each GP and makes a GP choice. Inattentive patients
retain their taste shocks from the previous period. The flow payoff vijt from being assigned
GP j depends on travel time dijt between patient i’s municipality of residence and the GP’s
office; a GP fixed effect δj capturing the common component of j’s desirability, including any
unobserved factors (Berry, Levinsohn and Pakes, 2004); interactions Xijtβ between patient
and GP characteristics, capturing common components of patient-GP specific match value;
and the idiosyncratic taste shock. Motivated by reduced-form evidence in Appendix B.2, Xijt

includes indicators for whether the patient and GP are of the same gender and same age, and
we allow the value of age/gender homophily to vary across patient demographics. We allow
the variance of the idiosyncratic taste shock to vary by patient age and residency status, in
effect allowing variation in the distaste for travel time along these dimensions.

We normalize scale in the model by fixing patients’ (dis)taste for travel time at -1. Travel
time thus acts as a numeraire in the absence of prices, as is common in empirical market design
applications (Abdulkadiroğlu, Agarwal and Pathak, 2017; Agarwal and Somaini, 2018). We
normalize location by setting the fixed effect for one GP to zero. This leaves us with the
following model parameters to estimate: {ρ, δ, β, σϵ, p

λ}.

IV.B Estimation Procedure & Identification

We estimate the model in two steps. We first estimate the parameters governing the formation
of patient beliefs using the empirical analogs of the objects described in section III.B. We then
jointly recover the attention and preference parameters that best describe the observed data
given our model and patient beliefs.

Waiting Time Beliefs. Consumers have concrete information about waitlist lengths and
panel sizes, but have limited information about other factors. We therefore assume that
(ηj, κj) = (η, κ) and estimate the latter on a per-month basis across all waitlist-month ob-
servations in our demand estimation sample. Out of 5,140 total GP panel-months considered
(representing 457 unique GPs), 2,161 were panel-months in which the panel had a waitlist
(representing 298 unique GPs). Among these panel-months, we then calculate the average
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panel slot vacancy rate and the average waitlist abandonment rate, yielding belief parameters:

η = 0.0018 (Panel slot vacancy rate)

κ = 0.0170 (Waitlist abandonment rate)

The average waitlist length over these months was 28, and the average panel cap was 1,084.
Using our formula for expected waiting time (Equation 3), this panel cap and waitlist length
coupled with our belief parameters would imply an expected waiting time of 12.8 months.
For comparison, the average elapsed waiting time among patients on waitlists as of December
2019 was 7.9 months, which is a lower bound on the waiting time those patients ultimately
experienced.

Attention and Preferences. We estimate the attention and GP choice model using Markov
Chain Monte Carlo (MCMC) methods. We use a Gibbs’ sampler with data augmentation
to draw attention shocks λit and flow utilities vijt from their posterior distributions, and a
Metropolis-Hastings step to update the discount rate ρ (McCulloch and Rossi, 1994; Gelman
et al., 2013). We assume conjugate priors of (δ, β) ∼ N(µ0,Σ0), pλ ∼ Beta(α, φ), and
σ2
ϵ ∼ IW (Ψ0

ϵ , ν
0
ϵ ). The steps of the Gibbs’ sampler can be written as follows for iteration

b, where each step also conditions on patients’ observable characteristics (Z) and choices (y):

(i) δb, βb | vb−1, σ
2
ϵ,b−1, µ0,Σ0

(ii) σ2
ϵ,b | vb−1, δb, βb,Ψ

0
ϵ , ν

0
ϵ

(iii) ρb | δb, βb, σ
2
ϵ,b, y, Z

(iv) λb | pλb−1, δb, βb, σ
2
ϵ,b, y, Z

(v) pλb | λb, α, φ

(vi) vb | λb, δb, βb, σ
2
ϵ,b, ρb, y, Z

Appendix C provides additional details on the updating steps. Though our estimator is
Bayesian, it is asymptotically equivalent to maximum likelihood estimation (see, e.g., Van der
Vaart 2000, Theorem 10.1, Bernstein von Mises) and computationally less demanding.32 We
interpret the posterior means and standard deviations in a frequentist manner for the purposes
of inference.

32Because discounting is multiplicative, the full likelihood would not have a tractable closed-form even if we
assumed ϵ was distributed Type-1 Extreme Value.
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Identification. We can think of identification in three steps: identifying (i) the distribution
of flow payoffs, (ii) the discount rate, and (iii) the attention parameters. Beliefs are assumed
known.

First, suppose the discount rate ρ is known and attention is observed. The distribution
of flow payoffs is non-parametrically identified by variation in travel time between patients’
residences and GP offices. This argument treats travel time as a special regressor (Berry
and Haile, 2014; Agarwal and Somaini, 2018) and requires that unobserved determinants of
preferences for GPs are uncorrelated with patients’ proximity to GP offices, conditional on
observables. The key economic assumptions are that patients do not choose where to live
based on access to primary healthcare, and that GPs do not locate their offices close to where
patients live who particularly value seeing those GPs. We believe this is plausible in our
context.

Second, given the distribution of flow payoffs, the discount rate is identified by the sensitivity
of patients’ choices to waitlist lengths (Waldinger, 2021).33 A key identification challenge is
that more desirable GPs will tend to have longer waitlists. However, because panel vacancies
and waitlist departures are stochastic events, queue lengths naturally fluctuate due to events
outside the control of a patient considering switching. This generates exogenous variation
in the relative waitlist lengths of different GPs for patients who consider switching GPs at
different times. A key identifying assumption is that patients do not time when they request
to switch based on the waitlist lengths of specific GPs. In a first-come fist-served queue,
when there is no direct cost of standing on a waitlist, there is no benefit to delaying a switch
request until a patient’s desired GP’s queue is unusually short. We therefore view this threat
as unlikely. It is also possible that a component of GP desirability is time-varying, so that
a GP’s waitlist tends to grow when the GP becomes more desirable. To the extent that this
occurs, it would lead us to underestimate the discount rate.

Finally, the attention parameters are separately identified by attention shifters that are
uncorrelated with preferences for specific GPs. In the ideal experiment, imagine a group of
patients who pay attention with probability one (Abaluck and Adams-Prassl, 2021). If their
preferences are drawn from the same distribution as the general population, their choices
identify the other model parameters. We can then recover attention probabilities for the
remaining patients by comparing their frequencies of switch requests and GP choices to those

33Though we estimate a common discount rate for all patients, one could allow it to depend on observed
characteristics. In practice, it was difficult to obtain precise estimates of ρ for different subgroups, and we
could not reject that our point estimates were the same among subgroups in the specifications we tried.
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of always-attentive patients. In the data, we observe that patients who move a long distance
are much more likely to request to switch GPs than patients who move shorter distances or stay
put. Our identifying assumption is that conditional on other observables, the distribution of
GP preferences is uncorrelated with when or how far patients move. In practice, some patients
wait years to switch GPs even after a long move, so we rely on parametric assumptions to
jointly estimate patients’ preferences and attention probabilities.

IV.C Estimates

We estimate three specifications. All specifications allow attention probabilities to differ flex-
ibly by patient age, gender, and whether the patient is about to or recently moved. The first
specification limits flow payoffs to depend only on distance and interactions between patient
and GP age and gender. The second specification adds GP fixed effects, and the third speci-
fication allows the standard deviation of the idiosyncratic taste shock to vary by patient age
and permanent residency status. All specifications estimate a common monthly discount rate
ρ, reported as an annual rate.

Table 3 presents the parameter estimates. Column (1) estimates considerable sensitivity to
waiting time, with an annual discount factor slightly below 0.95. When GP fixed effects are
added in columns (2) and (3), this value falls to between 0.90 and 0.91, reflecting the fact
that more desirable GPs have longer waitlists. As in the reduced form analysis, we estimate
considerable homophily by gender and age. Based on estimates in column (1), a female patient
under age 45 would travel 7.3 minutes farther than a male patient under 45 to see a female
GP (6.3 minutes for a female/male patient over 45). Patients under 45 would travel about
one minute farther than a patients over 45 to see a GP under 45. Adding GP fixed effects and
heterogeneity in the variance of the taste shock to the model leaves the estimates of age and
gender homophily nearly unchanged.

Column (3) allows the variance of the idiosyncratic taste shock to vary by patient age and
residency status, which can be equivalently thought of as allowing for heterogeneity in the
distaste for travel time relative to idiosyncratic factors. We find that the distaste for travel
time is considerably higher for older permanent residents than for other patients. In both
columns (2) and (3), we estimate considerable variation in overall GP desirability as well as in
the value of the idiosyncratic taste shock. Column (2) estimates a standard deviation of GP
fixed effects of 31 minutes, and a standard deviation of idiosyncratic shock of 12.6 minutes.
In column (3), the standard deviation of GP fixed effects falls to between 16 and 24 minutes,
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Table 3. Preference Parameter Estimates

(1) (2) (3)
Variable β SE β SE β SE

Annual Discount Factor 0.944 0.002 0.904 0.007 0.908 0.007

Travel time (minutes)† −1.000 −1.000 −1.000

S.D. GP Fixed Effects 31.008 4.962
S.D. GP Fixed Effects, Temp. res. 23.092 1.776
S.D. GP Fixed Effects, Perm. res. age ≤ 45 24.195 1.722
S.D. GP Fixed Effects, Perm. res. age > 45 16.400 1.264

Male GP −3.036 0.365
× Perm. res. female, age 16–45 −1.300 0.414 −2.448 1.051 −2.886 0.425
× Perm. res. female, age 45+ −0.608 0.424 −0.922 1.014 −1.170 0.477
× Perm. res. male, age 16–45 5.986 0.421 4.967 0.997 4.054 0.474
× Perm. res. male, age 45+ 5.754 0.477 5.947 1.018 2.761 0.686

GP age 45+ −2.184 0.404
× Perm. res. female, age 16–45 −0.446 0.441 −0.821 1.090 −1.787 0.394
× Perm. res. female, age 45+ 0.499 0.440 0.330 1.053 −0.583 0.482
× Perm. res. male, age 16–45 −0.404 0.460 −0.309 1.071 −1.496 0.424
× Perm. res. male, age 45+ 0.267 0.558 0.937 1.069 −0.713 0.632

S.D. idiosyncratic shock 14.885 0.161 12.643 0.334
S.D. idiosyncratic shock, Temp. res. 12.296 0.314
S.D. idiosyncratic shock, Perm. res. age ≤ 45 12.894 0.470
S.D. idiosyncratic shock, Perm. res. age > 45 8.738 0.378

Notes: The table reports parameter estimates from the GP choice model described in Section IV. We
simulate 40,000 draws from the Markov chain and drop the first 20,000 for each specification. The table
reports the mean and standard deviation of the remaining draws as the point estimate and standard error of
each parameter (respectively). Columns (2) and (3) include a fixed effect for each GP, with one normalized
to zero. Column (3) allows the standard deviation of the idiosyncratic shock to differ by residency status
and age. †By normalization

and the standard deviation of idiosyncratic shock falls to between 9 and 12 minutes.34

Table 4 presents parameter estimates for the attention model. Estimates are very similar
across specifications, so we focus on column (3). Our estimates imply that non-movers consider
switching GPs far less often than patients who have recently moved, consistent with observed
switching patterns (c.f. Table 1). Among non-movers, temporary residents pay attention most
often–––1.084 percent chance per month (approximately once every 7.5 years)–––while older
men consider switching just once every 25 years.

34Variance in the idiosyncratic shock may in part reflect the fact that we observe only a patient’s municipality
of residence rather than their exact address, introducing measurement error in travel time. Using data from
an earlier time period in which we had exact address, we investigated whether measurement error in travel
time from observing municipality rather than exact address is correlated with other patient characteristics,
and found essentially no relationship.
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Table 4. Monthly Attention Probability Estimates

(1) (2) (3)
Variable pλ SE pλ SE pλ SE

No Recent or Imminent Move
× Temporary resident 1.21 0.02 1.33 0.02 1.08 0.02
× Perm. res. female, age ≤ 45 0.75 0.01 0.85 0.01 0.82 0.02
× Perm. res. female, age > 45 0.47 0.01 0.47 0.01 0.47 0.01
× Perm. res. male, age ≤ 45 0.44 0.01 0.44 0.01 0.48 0.03
× Perm. res. male, age > 45 0.28 0.01 0.28 0.01 0.33 0.01

Moved ≤30 minutes, this or next month
× Temporary resident 6.92 1.13 6.86 1.13 6.93 1.13
× Perm. res. female 4.63 0.38 4.63 0.37 4.63 0.39
× Perm. res. male 3.35 0.33 3.35 0.33 3.35 0.33

Moved ≤30 minutes, prev. 6 months
× Temporary resident 3.43 0.55 3.42 0.55 3.41 0.57
× Perm. res. female 2.44 0.18 2.45 0.18 2.45 0.17
× Perm. res. male 5.99 0.27 1.71 0.15 1.71 0.15

Moved >30 minutes, this or next month
× Temporary resident 18.50 2.27 18.51 2.26 18.59 2.32
× Perm. res. female 8.85 0.67 8.84 0.66 8.83 0.65
× Perm. res. male 6.86 0.59 6.82 0.58 6.84 0.61

Moved >30 minutes, prev. 6 months
× Temporary resident 7.28 1.13 7.33 1.17 7.28 1.12
× Perm. res. female 3.83 0.28 3.82 0.28 3.83 0.29
× Perm. res. male 2.86 0.24 2.85 0.24 2.85 0.24

Notes: The table reports parameter estimates from the attention model. Parameters represent the
probability a patient is attentive in a given month, reported in percentage points. These parameters
are estimated jointly with the preference parameters reported in Table 3. The categories are mutually
exclusive and exhaustive. A patient has No Recent or Imminent Move if they did not change their
municipality of residence in the six months prior to or one month after the current month. After a
patient has been attentive during a given move spell, they are treated as a non-mover during the
rest of that move spell.

Patients who have moved consider switching an order of magnitude more often. We estimate
separate attention probabilities for short and long moves, where short means less than 30
minutes’ drive time between origin and destination municipality, and long means over 30
minutes. We also allow attention to differ by whether the move is imminent (occurring this
month or next month) or recent (in the past 6 months), reflecting the fact that we see a large
immediate impact of moving on the probability of switching GPs in the data (c.f. Appendix
Table B.2). Finally, we allow mover attention to depend on gender and residency status.
Movers exhibit stark differences in attention probabilities along all three dimensions. Patients
are most attentive in the month prior to or of a move. A temporary resident moving over 30
minutes this or next month has an 18.59 percent chance of considering switching GPs. The
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probability remains high, but falls to 7 percent per month in the six months following the
move. Permanent residents exhibit a similar pattern, but with lower attention probabilities.
Distance of move is also highly predictive. A female permanent resident moving less than 30
minutes has only a 22 percent cumulative attention probability in the 8 months around that
move. If the move were over 30 minutes, this rises to 34 percent. Attention around move
events will be important for counterfactual simulations, because patients are most attentive
when they are also most mismatched with their current GP.

V Counterfactual Simulations and Welfare

We now use our estimates to predict equilibrium assignments under alternative waitlists mech-
anisms. Section V.A describes the simulated dynamic economy. Section V.B then formally
defines our counterfactual mechanisms of interest, Section V.C defines an equilibrium, and
Section V.D presents the results.

V.A Simulated Dynamic Economy

We consider an economy with a finite set of patients (agents) and GPs (objects). The set of
patients is given by I = {i1, ..., in}. Patients have types x ∈ X . The set of GPs is given by
J = {j1, ..., jm}. GPs have types z ∈ Z. We treat X and Z as finite sets. An allocation
µ : I → J is a many-to-one mapping of patients to GPs, such that each patient is assigned to
exactly one GP.

GP types include age, gender, office location, and panel cap size. All GP characteristics
are fixed over time. Patient types include demographics and location of residence. There are
five possible demographic types: {Perm. res. female ≤ 45, Perm. res. female > 45, Perm.
res. male ≤ 45, Perm. res. male > 45, Temp. res.}, and 45 possible locations of residence
(municipalities in the Trondelag region). The combination of patient municipality and GP
office location pin down a travel time between every patient type and every GP.

Patient characteristics evolve over time according to a stationary Markov process M :

X → X . Patients also have a chance of dying, in which case they immediately experience
a “rebirth” in which they are removed from their current GP and reassigned to the current
GP of a randomly selected young woman living in their same location of residence. The
simulation therefore allows for panel vacancies to arise naturally but, given the standard
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practice of enrolling babies with their mother’s GP, less frequently on GP panels with many
young women.

We initialize the set of patients and GPs in the economy based on the distribution of patient
and GP types observed in the Trondelag region in December 2019. We calibrate the patient
type transition process M based on type transitions observed in Trondelag over the period
2017–2019. Appendix Table D.1 provides summary statistics on the set of patients and GPs
in the simulated economy. Appendix D.1 provides additional details on the construction of
our initial conditions as well as on the transition process M .

Simulation Procedure. In each period, the following steps occur (in order):

1. (Demographic transitions) Patients draw a new type and a death shock. Patients that
die are removed from their current GP panel as well as any waitlists they are on, and
added to the GP panel of the mother to whom they are reborn.

2. (Attention) Patients draw attention shocks according to the probabilities pλ(x) estimated
in Table 4.

3. (GP Choice) Attentive patients sequentially arrive to the mechanism. Upon entry, they
consider all GPs, draw new preferences (ϵij), formulate flow indirect utilities for each
GP (vij) (based on parameter estimates in Table 3), and report their GP request(s) to
the mechanism. Patients who request to stay with their current GP or switch to an
open GP are immediately reassigned and exit the mechanism. Patients who request a
full GP are placed on the waitlist.

4. (Matching Algorithm) The patient-GP matching algorithm is executed. Patients that
are successfully reassigned exit the mechanism. All other patients remain there until
the following period.

Realizations of the demographic transition process, the receipt of attention shocks, and draws
of idiosyncratic preferences are held fixed across simulations of alternative mechanisms. Ap-
pendix Table A.3 summarizes these realizations.

V.B Allocation Mechanisms

Let µ0 be the allocation at the start of a given period. Each GP j has capacity Nj, a set of
currently enrolled patients µ−1

0 (j), and a set of patients wj on their waitlist. Each patient
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on a waitlist has waited a length of time ti. Let ≻j denote GP j’s (strict) preferences over
patients, which encode the priority rules of the mechanism. Under a first-come, first-served
(FCFS) priority rule, patients that have waited longer have higher priority: ∀ l, k /∈ µ−1

0 (j)

and ∀ l, k ∈ µ−1
0 (j), l ≻j k iff tl > tk. Under a priority rule that respects endowments,

incumbent patients always have higher priority than non-incumbent patients at their current
GP: ∀ l, k ∈ I, k ≻j l if k ∈ µ−1

0 (j) and l /∈ µ−1
0 (j). All priority rules we consider will respect

endowments.

An attentive patient’s GP request takes the form of a rank-order preference list (ROL)
Ri. In all of our mechanisms of interest, patients may join at most one waitlist, so Ri has
length at most two. The requested (waitlist) GP is ranked first, and the current GP is ranked
second. A matching algorithm ϕ maps a set of patient-reported ROLs R, GP priorities ≻, and
panel caps N into an allocation µ. An allocation mechanism is defined as the triplet [N,≻, ϕ],
in combination with rules regarding the maximum length of patients’ ROLs and how often
the matching algorithm is run. Our counterfactuals change both the priority rule ≻ and the
matching algorithm ϕ applied each period. Patients’ reported ROLs respond endogenously to
these changes.

While the matching algorithm is run only periodically (once per month), an allocation
mechanism operates in continuous time. Attentive patients arrive continuously and submit
ROLs. They then remain in the mechanism until they can be successfully reassigned (or they
die). If they receive a subsequent attention shock while still in the mechanism, they have the
option to change their ROL (switch waitlists), resetting their wait time priority. So long as GP
priorities respect endowments, priority increases with waiting time, and patients can include
their current GP at the end of their ROL, it is ex-post individually rational for attentive
patients to participate in the mechanism.

We consider three primary counterfactual allocation mechanisms, in addition to the status
quo mechanism. First, we run the TTC algorithm on top of Norway’s existing waitlists
algorithm, just as in the mechanical simulations from Section B.1, but where we can now
endogenize patient responses. We then consider two alternatives intended to address the
distributional and fairness concerns that—as we saw in the naive simulations—may arise
under TTC. Each of these mechanisms is described below.

Waitlists. This is the allocation mechanism currently used in Norway. Priorities are FCFS.
The matching algorithm used is the following:

Step 1: For each GP j, let Oj = Nj − |µ−1
0 (j)| be the number of open slots on j’s panel.
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Assign the Oj highest-priority patients on j’s waitlist to j’s panel; remove each of these
patients from their current GP’s panel and from the waitlist.

Step k: Repeat Step 1 for the panels and waitlists resulting from Step k − 1.

The algorithm terminates if no patients are reassigned in a step. When this occurs, there are
no patients waiting for GPs with open slots.

Waitlists with Top-Trading Cycles (TTC). Priorities are still FCFS. The matching al-
gorithm first runs the Waitlists algorithm (as above), and then runs the TTC algorithm. The
TTC algorithm works as follows. Each GP begins with pseudo-capacity Ñj equal to their
number of open panel slots plus the number of their current patients who are currently in the
mechanism hoping to switch away to another GP.

Step 1: Each patient “points to” their preferred GP according to Ri, and each GP points
to their preferred patient according to ≻j. There is at least one cycle, i.e., an ordered
list {i1, j1, i2, j2, ..., ik, jk} where i1 points to j1, j1, points to i2, ... , and jk points to i1.
Further, each patient and GP can be part of at most one cycle. Each patient in a cycle is
assigned to the GP they point to and is removed from their current GP’s panel and the
algorithm. Each GP in a cycle has their pseudo-capacity reduced by one, and is removed
from the algorithm when their pseudo-capacity falls to zero.

Step k: Repeat Step 1 with the remaining patients and updated GP pseudo-capacities
from the end of Step k − 1.

The algorithm terminates when no patients remain in the algorithm.

Waitlists with Top-Trading Cycles and Priority (TTCP). This mechanism is iden-
tical to TTC, but modifies priorities so that patients with undersubscribed GPs are priori-
tized above patients with oversubscribed GPs (while still respecting endowments). Formally,
∀ l, k /∈ µ−1

0 (j), l ≻j k if l currently has an undersubscribed GP and k currently has an over-
subscribed GP. Among patients with the same over/undersubscribed status, there is FCFS
priority. We classify a patient’s current GP as over/undersubscribed at the moment they
enter the mechanism.35 A GP is undersubscribed if it has at least one open slot on its panel.

TTCP attempts to address some of the adverse distributional consequences from introducing
TTC, while preserving its benefits. Rather than preventing waiting patients from exchanging

35While it is possible that a GP could transition to/from being over/undersubscribed while their patient
remains in the mechanism, these transitions rarely occurred in our simulations, and modeling patient beliefs
about this possibility would be highly complex.
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their GPs, TTCP gives patients who are unlikely to benefit from cycles priority for other
vacancies.

Waitlists with Deferred Acceptance (DA). This mechanism is identical to Waitlists, but
replaces the matching algorithm used with the patient-proposing deferred acceptance (DA)
algorithm. Again, let Ñj denote GP j’s pseudo-capacity. The DA algorithm proceeds as
follows:

Step 1: Each patient “proposes to” their preferred GP according to Ri. Each GP j

provisionally accepts proposals from its Ñj most preferred patients according to ≻j and
rejects any remaining proposals.

Step k: Any patients who were rejected in the previous round propose to their most-
preferred GP (according to Ri) who has not yet rejected them. Each GP j provisionally
accepts proposals from its Ñj most preferred patients according to ≻j and rejects any
remaining proposals.

The algorithm terminates when no patient is rejected.

Relative to Waitlists, the key advantage of DA is to allow trades among patients at the
front of their respective waitlists. Relative to TTC, however, an attractive property of DA is
that, like Waitlists, it strictly respects FCFS waiting time priority. No patient may “jump”
to the front of the queue and be reassigned to a GP for whom another patient was waiting
longer. This idea reflects DA’s well-known property of stability (Gale and Shapley, 1962),
which is also known as elimination of justified envy (Abdulkadiroğlu and Sönmez, 2003).
Further, because patient-proposing DA yields the patient-optimal stable match with respect
to reported preferences, it represents the best any algorithm in this class can do without
violating FCFS priority (i.e., generating envy). Nevertheless, by strictly respecting waiting
time priority, DA may substantially limit trading opportunities relative to TTC.

V.C Beliefs, Decisions, and Equilibrium

In all of our counterfactuals, attentive patients choose a GP by solving the choice problem in
Equation (2):

max
j∈Jit

E
[
e−ρTij | wit

]
(vijt − vij0t) .
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Counterfactual mechanisms will not only change the number of patients on the waitlist at
a given time wit, but also patients’ beliefs about the speed with which waitlists move, i.e.,
the expected discount factor function E

[
e−ρTij | wit

]
. How these beliefs adjust will determine

patients’ equilibrium responses to alternative mechanisms. To accommodate the additional
complexity of TTC, we must adapt the belief model from Section III.B.

As before, patients have beliefs about how quickly a waitlist moves from the front (η), and
how often waiting patients depart the waitlist before reaching the top (κ). Under TTC, beliefs
must also account for the fact that a patient can be successfully reassigned before reaching
the top of the waitlist if they participate in a cycle. Further, patients ahead in the queue may
depart because they are assigned through a cycle, as well as due to exogenous departures.

We modify the belief structure as follows. In each position s, a patient will either (i) move
to position s − 1 due to a waitlist departure or assignment from the front of the queue, or
(ii) be reassigned through a cycle. We assume that these two events are perceived to follow
independent, memoryless arrival processes. We allow the rate of being assigned through a
cycle χj0s to depend on a patient’s position s as well as on whether their current GP j0

is undersubscribed.36 Patients are assigned from the top of GP j’s waitlist at rate Njη.
Each patient on the waitlist departs at rate κ, which now includes both abandonments and
reassignments through a cycle. A patient’s expected discount factor when entering GP j’s
waitlist at position s can now be written

E[e−ρTij | j0, s] =
mjs + χj0s

ρ+mjs + χj0s

(
χj0s

mjs + χj0s

+
mjs

mjs + χj0s

E[e−ρTij | j0, s− 1]

)
=

χj0s

ρ+mjs + χj0s

+
mjs

ρ+mjs + χj0s

E[e−ρTij | j0, s− 1] , (5)

where mjs ≡ Njη + (s − 1)κ is the rate at which the patient moves forward in the queue.37

Equation 5 provides a recursive formula for the expected discount factor at any position s.
We parameterize χj0s such that it equals zero for patients with an undersubscribed GP (who

36In principle, χj0s could depend in a complex way on the state of the mechanism, including the lengths of
all GP waitlists and number of open slots on each GP’s panel, as well as the GP the patient has requested.
Our simplification strikes a balance between capturing the most important determinants of waiting times
and having low complexity.

37The intuition behind this formula is as follows. The next event that occurs is either participating in a cycle
or moving one position forward in the queue. If these two processes are independent and memoryless, then
the next event occurs at exponential rate mjs+χj0s. The ratio mjs+χj0s

ρ+mjs+χj0s
is the expected discount factor for

the time of that event. Given that an event occurs, it is participating in a cycle with probability χj0s

χj0s+mjs
,

in which case assignment is immediate and the subsequent discount factor is 1. The probability the event is
moving up a position is mjs

χj0s+mjs
, and the subsequent discount is simply E[e−ρTij | j0, s− 1].
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have no chance of participating in a cycle), and is log-linearly related to waitlist position-
relative-to-panel cap for patients with an oversubscribed GP: χj0s = 1[j0 oversub.] exp(χ0 +

χ1 log(s/N)).38 Note that if χj0s is restricted to zero for all patients, this formulation of beliefs
collapses to the original beliefs structure relevant for Waitlists and DA.

We compute counterfactual equilibria in which belief parameters are consistent with the
waiting times implied by patients’ optimal decisions. Appendix D.2 describes our procedure
in detail. The algorithm iteratively updates patients’ optimal decisions given the state of
the simulation algorithm and the belief parameters implied by the simulation, until the belief
parameters (and hence decisions) converge. Appendix Table D.2 reports equilibrium beliefs.

V.D Results

Table 5 reports equilibrium outcomes under our primary mechanisms of interest. It also
reports outcomes under a benchmark simulation, No Caps, in which GP panel caps (and
thus all scarcity in the economy) are removed. This benchmark provides an upper bound
on the welfare that can be achieved by any mechanism within our framework.39 We report
outcomes from a 5-year window at the end of out simulation period, when the economy has
reached a stationary equilibrium.

In the long-run stationary equilibrium of Norway’s current mechanism (Waitlists), 9.4 per-
cent of patients are on a waitlist, and 82.2 percent of GPs have a waitlist. Patients’ expected
waiting time to switch to the average GP (including zeros for those without waitlists) would be
16.7 months. Each month, an average of 2,299 patients receive attention shocks and consider
switching GPs (c.f. Appendix Table A.3). Among these patients, 85.2 percent choose to join
a waitlist, while the rest choose a GP with open slots or to remain with their current GP. The
average attentive patient expects to successfully obtain their chosen GP after 16.8 months.40

Despite considerable sensitivity to waiting time, many patients are willing to wait for their

38In the TTCP mechanism, we allow patients with undersubscribed GPs to have different beliefs about κ,
since any patients ahead of them on a waitlist will also have undersubscribed GPs and thus have no chance
of departing the waitlist by participating in a cycle.

39Of course, allowing GP panel sizes to grow arbitrarily would in reality likely reduce the value of highly-
demanded GPs, for example by increasing waiting time for appointment. The advantage of this infeasible
benchmark is that it is straightforward to compute. In contrast, the first- or second-best allocation would re-
quire solving a high-dimensional dynamic optimization problem that accounts for future (stochastic) arrivals
as well as all current patients’ preferences and all GPs’ availability.

40Relative to our data, these longer equilibrium waiting times reflect the fact that the waitlists were still
growing rapidly during our sample period.
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Table 5. Outcomes under Alternative Mechanisms

Waitlists TTC DA TTCP No Caps

GP waitlists
Pct. of population on a waitlist 9.4 8.9 9.3 9.6 –
Pct. of GPs with a waitlist 82.2 78.3 82.1 79.3 –
Mean E(waittime) | curr. GP undersub. 16.7 22.8 16.7 18.9 –
Mean E(waittime) | curr. GP oversub. 16.7 10.7 16.7 12.2 –

Attentive patient choices
Mean E(waittime) at chosen GP 16.8 14.1 16.8 15.2 –
Pct. waitlist joins 85.2 84.6 85.2 85.1 –
Pct. waitlist joins | curr. GP undersub. 79.0 74.8 79.1 77.2 –
Pct. waitlist joins | curr. GP oversub. 86.2 86.3 86.1 86.3 –
True pref. rank of chosen GP 1.79 1.63 1.78 1.63 1.00
Pct. waitlist joins | curr. GP undersub. 1.94 2.29 1.93 2.04 1.00
Pct. waitlist joins | curr. GP oversub. 1.76 1.52 1.76 1.56 1.00

Realized assignments
Travel time to current GP, mean (med.) 17.3 ( 6.5) 16.9 ( 6.4) 17.3 ( 6.5) 17.1 ( 6.4) 16.8 ( 6.4)
Pct. with same gender GP | young female 59.3 60.3 59.3 60.3 68.7
Pct. with same gender GP | young male 61.8 61.2 61.9 61.1 52.6

Welfare
Flow payoff from current GP, mean (med.) –† 0.75 (0.69) 0.01 (0.01) 0.46 (0.45) 5.34 (4.53)
Perpituity equiv. of GP choice, mean (med.) –† 1.25 (0.83) 0.01 (0.00) 1.08 (0.54) 6.15 (4.21)

Notes: The table reports statistics on outcomes generated in months 392–451 of the simulation, out of 500 total
months. Statistics are first computed within month and then averaged across simulation months. E(waittime)
is the expected waiting time implied by patient’s equilibrium beliefs and current waitlist lengths. True pref.
rank of requested GP is the rank of a patient’s requested GP in their true flow payoff ordering. †By normal-
ization.

first choice GP. The average rank of a patient’s requested GP in their true preference list is
1.79.

To quantify the gains from introducing TTC, we measure welfare in two different ways.
First, we calculate the flow payoff experienced by every patient in the economy each period.
This measure would be relevant to a utilitarian social planner interested in maximizing the
present discounted value of all future payoffs in the economy. It also has the advantage that
it relies only on realized assignments. However, in a dynamic economy, a patient’s current
GP at any given time may differ across mechanisms for two reasons: (i) due to GP switch-
ing events (attention spells) that occurred earlier in time, and (ii) due to contemporaneous
differences in the ease with which an attentive patient can switch GPs due to changes in equi-
librium waiting times. To highlight the latter channel, we introduce an alternative welfare
measure that isolates the value of switching opportunities. Specifically, we measure the net
present value (NPV) of an attentive patient’s choice problem, holding the patient’s current
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GP fixed.41 We then multiply by patients’ discount rate ρ (estimated to be 0.0081), yielding
the perceived perpetuity flow payoff associated with attentive patients’ optimal choice under
each mechanism. This measure highlights the gains for patients precisely when they consider
switching GPs. It also allows us to compare patient welfare as a function of characteristics
that are endogenous to the mechanism, including whether the patient currently has an over-
or undersubscribed GP. For both welfare measures, we normalize welfare under Waitlists to
zero for all patients.

Relative to the status quo, introducing TTC reduces waiting times and increases patient
welfare. The average attentive patient now successfully obtains their chosen GP after 14.1
months, and a smaller share of patients are on a waitlist at a given time. Measured by mean
flow payoffs from realized assignments, patient welfare increases by the equivalent of 0.75
minutes’ driving time. This improvement is significant in magnitude (more than 13 percent of
the gains under the benchmark of No Caps). More than half is attributable directly to patients
being matched with closer GPs (0.4 minutes), with the remainder driven by improved match
quality on both observable and unobservable dimensions. The equivalent perpetuity payoff
perceived by the average attentive patient is 1.25 minutes.42 These average improvements are
reflected in patients’ behavioral responses; they are more likely to request their first-choice
GP, with the mean flow payoff rank of their chosen GP falling to 1.63.

Distributional Implications. Table 6 summarizes welfare outcomes (using the NPV mea-
sure) by subgroups of attentive patients. In terms of demographics, the welfare gains from
TTC conditional on being attentive are concentrated among younger patients. Female pa-
tients also derive especially large benefits because they are more likely to be attentive than
male patients. Patients who moved in the last 12 months also realize large benefits from TTC
(2.3 minutes), reflecting the fact that TTC reduces waiting times and these patients tend to be
highly mismatched with their current GP. However, patient moves are not the only dynamic
driving patient-GP mismatch; patients who have never moved also benefit (1.0 minutes). In
terms of geography, patients in both urban and rural areas benefit, but the gains are largest

41Appendix D.3 provides additional details.
42The difference between these numbers reflects two things. First, the NPV measure re-weights patient months

relative to the flow payoff measure because it is calculated in attentive patient months only, and from there
discounts future payoffs according to ρ. Since attentive patients are weakly improving their situation (relative
to being inattentive), welfare gains tend to be larger according to the NPV measure than according to the
flow payoff measure. Second, patients are over-optimistic about the flow of welfare gains they will receive
over an infinite horizon because in reality they experience subsequent shocks (e.g., moving or dying), the
probability of which they do not take into account at the moment of attention.
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among rural patients (2.1 minutes), who tend to face the longest travel times and thus have
the greatest potential for geographic mismatch. Finally, it is worth noting that for most
groups, changes in median welfare are also positive and economically significant, suggesting
that gains are widely spread rather than concentrated among a minority of patients.

Table 6. Distribution of Welfare Gains Relative to Waitlists

Frac. of
attn. pats. TTC DA TTCP No Caps

All attentive patient-months 1.00 1.3 (0.8) 0.0 (0.0) 1.1 (0.5) 6.1 (4.2)
Patient demographics
Perm res. male<45 0.19 1.4 (1.0) 0.0 (0.0) 1.2 (0.6) 6.9 (4.8)
Perm res. male≥45 0.16 1.0 (0.6) 0.0 (0) 0.9 (0.3) 4.8 (3.0)
Perm. res. female<45 0.30 1.5 (1.1) 0.0 (0.0) 1.2 (0.8) 7.1 (5.3)
Perm. res. female≥45 0.22 0.9 (0.6) 0.0 (0) 0.8 (0.4) 4.7 (3.2)
Temporary resident 0.13 1.4 (0.9) 0.0 (0.0) 1.2 (0.6) 6.9 (4.8)

Months since move
Moved in last year 0.13 2.3 (1.1) 0.0 (0) 2.1 (0.7) 11.3 (7.9)
Moved over a year ago 0.34 1.2 (0.8) 0.0 (0.0) 1.0 (0.5) 6.2 (4.3)
Never moved 0.53 1.0 (0.8) 0.0 (0.0) 0.8 (0.5) 4.8 (3.6)

Geographic location
Rural 0.19 2.1 (0.4) 0.0 (0) 2.0 (0.3) 8.0 (3.6)
Suburban 0.36 1.0 (0.7) 0.0 (0.0) 0.8 (0.4) 5.9 (4.2)
Urban (Trondheim) 0.45 1.1 (1.0) 0.0 (0.0) 0.9 (0.6) 5.5 (4.4)

Current GP oversubscribed?
No 0.13 -0.8 (-0.4) 0.0 (0) 0.0 (0) 6.4 (4.4)
Yes 0.87 1.6 (1.0) 0.0 (0.0) 1.2 (0.6) 6.1 (4.2)

Notes: This table compares the perceived value of the mean (median) attentive patient’s optimal GP choice
under each mechanism, relative to the status quo mechanism Waitlists. Value is reported in a perpetuity
equivalent monthly flow payoff in terms of travel time minutes to GP. Statistics are averaged across all
attentive patients in months 392–451 of the simulation, holding each patient’s current GP fixed at their
assignment under Waitlists. See Appendix D.3 for additional details.

Although TTC benefits the majority of patients, it has particularly uneven consequences
along an important dimension––whether a patient’s current GP is oversubscribed. Table 5
shows that while TTC reduces waiting times for the average GP by 6 months (from 16.7
to 10.7) for patients with oversubscribed GPs, it increases waiting times (from 16.7 to 22.8
months) for patients with undersubscribed GPs. Patients’ GP choices reflect the disparity
along this dimension. Patients with undersubscribed GPs become less selective under TTC,
choosing GPs with an average preference rank of 2.29 (instead of 1.94 under Waitlists), and
joining waitlists less frequently. Patients with oversubscribed GPs, on the other hand, become
more selective, choosing better-matched GPs and becoming more likely to join a waitlist.

These differences in waiting times and behavioral responses are reflected in patient welfare.
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Table 6 reports that attentive patients with an undersubscribed GP are substantially worse off
under TTC—the perpetuity equivalent of 0.8 minutes’ travel time. Although these harms are
offset by larger gains for patients with oversubscribed GPs, they may raise equity concerns.
In particular, it may seem unfair to disadvantage patients who already have a less desirable
GP. This motivates exploring alternative mechanisms that attempt to improve outcomes for
this group of patients.

Addressing Harms using DA and TTCP. The third column of Table 5 shows that DA
achieves essentially no improvement over the status quo mechanism. Recall that DA does not
execute trades that violate FCFS priority; patients may only swap GPs if all patients in front
of them on their respective waitlists are also reassigned that month. As a result, DA reassigns
few patients earlier than under Waitlists, and since those patients are already near the front
of the queue, their waiting time reduction is small. This finding demonstrates a fundamental
trade-off between eliminating envy––here, not allowing patients to “cut” in line––and finding
additional gains from trade.43

In contrast to DA, TTCP attempts to improve outcomes for patients with undersubscribed
GPs without preventing feasible trades. This is done by prioritizing patients with undersub-
scribed GPs above those with oversubscribed GPs, in effect ensuring that vacant slots are first
offered to patients unlikely to benefit from cycles. The fourth column of Table 5 shows that
TTCP achieves the majority of the welfare gains of TTC (0.46 vs 0.75 minutes in terms of the
flow payoff measure; 1.08 vs 1.25 in terms of the NPV measure). Compared to TTC, more
patients are standing on a waitlist at a given time, and patients expect to wait 1.1 months
longer at their chosen GPs. For a patient with an oversubscribed GP, the expected waiting
time for the average GP in their choice set rises from 10.7 to 12.2 months. However, this
is offset by a much larger drop in expected waiting times for patients with undersubscribed
GPs, from 22.8 to 18.9 months. These patients become more selective, requesting a GP with
an average preference rank of 2.04 instead of 2.29, while patients with oversubscribed GPs
become only slightly less selective.

One reason why TTCP yields smaller welfare gains than TTC is that prioritizing patients
with undersubscribed GPs may reduce the total number of switches. When a patient with
an undersubscribed GP is reassigned, the slot they vacate on their current GP’s panel is
unlikely to be demanded by another patient. Thus, the “chain” created by their assignment

43The result that DA heavily restrict gains from trade mirrors empirical findings in other studies, e.g., Combe
et al. (2022).
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to a vacancy is short. Rather than facilitating more assignments, as would often occur under
TTC, assignments to a vacancy under TTCP usually end with the assigned patient. Indeed,
the rate at which the waitlist moves from the front is 30 percent lower under TTCP than under
TTC (c.f. Appendix Table D.2). Patients with undersubscribed GPs still benefit because they
are placed higher on the waitlist, but the waitlists move more slowly overall.

Despite yielding smaller improvements than TTC, the results from TTCP are encouraging
insofar as they address some of the distributional concerns with introducing TTC in a market
where some patients have more desirable endowments than others. The harms to patients
with undersubscribed GPs are eliminated—they are equally well of as under the status quo.
At the same time, patients with oversubscribed GPs retain the benefits of being able to trade
GPs, and are still considerably better off than under the status quo.

V.E Extensions

We find that simple changes to the assignment algorithm and priority rules of Norway’s GP
allocation mechanism can significantly reduce waiting times and increase patient welfare.
However, the changes we analyze hold many aspects of the mechanism fixed. In this section
we consider two possible directions that would involve more dramatic changes: (i) eliminating
waitlists, and (ii) allowing patients to join multiple GP waitlists. In both cases, our ability to
predict equilibrium outcomes is limited to some degree, so we view these results as suggestive
only.

Eliminating Waitlists. Many primary care systems otherwise similar to the one in Norway—
including (to our knowledge) all HMOs in the U.S.—do not allow patients to join a waitlist for
a GP who is currently not taking patients. A natural question is therefore whether introducing
waitlists, as Norway did in 2016, in fact improves patient welfare. The answer is not obvious.
Eliminating waitlists may mean that at any given time, more GPs are available immediately,
but also that many GPs are not available to choose at all.

To attempt to evaluate this trade-off, we run a benchmark simulation, No Waitlists, in
which an attentive patient may only choose among the GPs with open slots at the moment they
consider switching. GPs are thus effectively rationed by “luck” due to stochastic availability,
rather than through a first-come first-served priority system. We emphasize that outcomes
arising from this simulation are not necessarily an equilibrium. In reality, patients would
have an incentive to exert effort (e.g., frequently checking the website until a spot opens up)
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to obtain their desired GP. Nonetheless, this benchmark helps us assess whether eliminating
waiting times would likely come at a significant cost in terms of post-assignment match quality.

Column (3) of Appendix Table D.3 summarizes outcomes under this simulation. We find
that mean patient welfare is slightly higher than under the status quo (0.19 minutes). Patients
are reassigned to less-preferred GPs on average, but because waiting times are eliminated,
patients spend less time mismatched with their current GP. This offsetting effect is especially
valuable for patients with highly mismatched current GPs. It is therefore not so surprising
that while mean welfare increases, median welfare decreases. The median patient is worse
off relative to the status quo by 0.60 minutes. While patients with a highly-mismatched
current GP benefit from the full elimination of waiting times, the majority of patients prefer
an environment with more options and some waiting time. We interpret these results as
suggesting that the desirability of introducing waitlists depends on how the gains for highly
mismatched patients are weighed against the losses for patients who would prefer to wait for
a more desirable option.

Joining Multiple Waitlists. An important restriction in all of the mechanisms analyzed
in Section V.D is that patients may only sit on one GP’s waitlist at a time. This restriction
fundamentally limits the mechanism’s ability to find gains from trade because patients may
only express that one GP is preferred to their current assignment. Allowing patients to
submit longer or even unrestricted rank order lists could dramatically reduce waiting times
if patients would rank many GPs. Moreover, if patients were roughly indifferent between
many GPs, these reductions in waiting times could minimally impact ex-post match quality.
Unfortunately, assessing the equilibrium implications of allowing patients to rank multiple GPs
is challenging because such a change adds considerable computational complexity to a patient’s
choice problem.44 We therefore instead consider a benchmark simulation, Truthful TTC, in
which patients truthfully report their full preference list to the mechanism. This mechanism
in effect allows patients to join an unlimited number of waitlists, but is implemented in such
a way that we assume patients do so truthfully (i.e., patients join the waitlists for all GPs

44In static implementations of DA or TTC with unrestricted preference lists, patients can do no better than
truthfully reporting their ordinal preferences. In a dynamic implementation of these algorithms, “strategy-
proofness” would no longer hold. It may be optimal for a patient to truncate their true preference list
to ensure that they receive a more desirable GP, even if they must wait longer. Calculating a patient’s
optimal truncation point requires calculating their continuation value from every possible truncated list.
Even mechanisms which allow patients to rank a small number of GPs becomes complex in a market with
many alternatives—if joining two waitlists were allowed, there are

(
J
2

)
possible rank-order lists. Further,

these alternative designs would require modeling patients’ beliefs about the joint distribution of waiting
times across multiple waitlists, as well as modeling their strategic behavior under much more complex choice
problems than those considered so far.
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preferred to their current GP). The mechanism is formally described in Appendix D.4, and
the results are reported in column (4) of Appendix Table D.3.

Truthful TTC effectively eliminates waiting times––almost all patients can be reassigned
to some preferred GP at the end of the same month in which they are attentive. This
result is driven by the fact that most patients prefer many GPs to their current one (often
including at least one undersubscribed GP), as well as the large degree of horizontal preference
heterogeneity that exists. The reduction in waiting times does come at the cost of a less
preferred assignment. The average preference rank of a patient’s reassigned GP is 2.72 under
Truthful TTC, compared to 1.79 under Waitlists and 1.63 under TTC. It is nonetheless striking
that even when patients cannot choose to wait longer for a more highly preferred GP, most
are still reassigned to one of their top few choices.

Truthful TTC has qualitatively similar impacts compared to No Waitlists—it nearly elimi-
nates waiting times, but leads to lower post-assignment match quality. Quantitatively, how-
ever, the loss in match quality under Truthful TTC is smaller than under No Waitlists (and
the resulting welfare gains greater) because Truthful TTC also finds gains from trade among
attentive patients, as opposed to only allowing assignments to vacancies. In fact, mean patient
welfare is higher under Truthful TTC than under any of the mechanisms we analyze. In terms
of realized flow payoffs, patients are on average 1.04 minutes better off relative to Waitlists
(compared to 0.75 minutes under TTC). However, as under No Waitlists, these gains are
concentrated among a minority of patients; the median patient is no better off. In contrast,
TTC and TTCP modestly reduce waiting times while still improving post-reassignment match
quality, yielding more widely distributed gains.

VI Conclusion

This paper studies the problem of dynamically reassigning a set of agents to a set of objects
when agents’ preferences over objects may change over time. Our application is Norway’s pri-
mary healthcare system, in which individuals are matched with a GP throughout their whole
life, and may over time wish to switch their assigned GP. We provide direct evidence of unre-
alized gains from trade under Norway’s current reassignment mechanism, and introduce alter-
native mechanisms which find and execute such trades. To predict outcomes under alternative
mechanisms, we estimate a structural model of patient demand for GPs and apply the esti-
mates within a dynamic equilibrium model of a GP reassignment system. Our results suggest
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that applying straightforward ideas from the market design literature—particularly the TTC
algorithm—can reduce waiting times and improve patients’ ability to obtain a well-matched
GP. However, our results also highlight the fact that tools designed for static environments
may have unintended consequences in a dynamic setting. In particular, introducing TTC
within a dynamic reassignment system can leave some agents worse off relative to operating
strictly first-come first-served waitlists. Patients who are matched with the least demanded
GPs are especially disadvantaged. We then show that modifications to the priority system
can eliminate harms to these patients while preserving about 60 percent of the gains from
TTC.

The existence of formal waitlists in our empirical setting makes unrealized gains from trade
directly visible to the researcher, but similar gains could very well be present in other set-
tings where there is currently no formal way to register a desire to be reassigned. Canonical
market design applications such as public housing, specialized labor markets, public school
seats, and hunting permits share many of the features of our present study, and often lack
centralized reassignment mechanisms. Reassignment mechanisms that do exist—for example,
public housing transfer systems in the U.S., and public school reassignment systems in NYC
and Chile—often use waitlists that are similar to Norway’s.

Even so, our analysis leaves several design questions unexplored. Within the class of mecha-
nisms we have considered, one could optimize on several dimensions we simply hold fixed—for
example, the frequency with which the matching algorithm is run, the information made
available to patients, or as discussed, the ability to join multiple waitlists. More broadly, this
study raises the question of how scarce resources should be rationed in dynamic assignment
settings where prices do not clear the market. Many, if not most, settings of this type do
not use formal waiting lists, and instead require agents to “check back later” for availability,
effectively rationing desirable objects through agent effort and luck rather than by waiting
times. Finally, there is a question of whether to impose formal capacity constraints (as in
Norway), or to allow the market to clear through endogenous quality degradation from over-
crowding (as in England). With some extension, our framework could be useful for studying
these questions.
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Appendix A Data Details

A.1 Data Sources

The data for this study are derived from Fastlegedatabasen, maintained by the Norwegian
Directorate of Health, as well as the administrative registries at Statistics Norway (SSB).
Individuals in the data (both patients and GPs) are each assigned a unique identifier which
can be merged across datasets. Patients’ municipalities of residence are identified at the
monthly level using information from Fastlegedatabasen. Monthly municipality of residence is
carefully tracked in this data because municipalities make monthly transfer payments to one
another when a patient residing in one municipality enrolls with a GP located in another.

The raw GP enrollment and waitlist data are provided at the enrollment spell and waitlist
spell level, respectively. Enrollment spells start and end only on the first and last days of
a month (and so are in increments of full months). Waitlist spells can begin and end in
continuous time. The time at which an individual joins a waitlist governs their priority in
the waitlist. We convert the spells data to an individual-month panel. If an individual is on
multiple waitlists in the course of a month, we take the most recent waitlist they were on. For
our primary analyses, we make only three restrictions: (i) dropping individual-months that
occur after the individual’s registered date of death, (ii) dropping individuals under age 16,
and (iii) dropping individual-months in which no current GP was registered. Appendix Table
A.1 shows the number of individual-months dropped by these restrictions. Children under
age 16 represent 17 percent of the data and population.

Table A.1. Sample Construction Statistics

2017 2018 2019
Criteria Number Pct. of initial Number Pct. of initial Number Pct. of initial

Initial patient-months 63,437,631 63,813,290 64,212,740
Registered after death 1,918 <0.01 48 <0.01 27 <0.01
Age < 16 11,475,019 0.18 10,694,796 0.17 9,918,551 0.15
No current GP 1,801 <0.01 2,066 <0.01 2,810 <0.01

Final total 51,958,893 53,116,380 54,291,352

Notes: This table shows the number of patient-months each year dropped due to each sample selection criterion
(in the order in which drops were made). The primary restriction on the data is to remove children under the
age of 16.
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A.2 Construction of Demand Estimation Sample

We estimate our model using the set of (adult) patient-months where the patient is resident
in the Trondelag region and the month is between December 2018 and November 2019. We
make further restrictions relating to the definition and construction of patients’ GP choice
sets. Our baseline choice set definition is a 60 minute drive time radius around each patient’s
municipality of residence. Any individuals that were enrolled with or joined a waitlist for a
GP further than 60 minutes driving time are dropped from the analysis. In addition, we drop
patient-months in which the current or requested GP exited during the subsequent month.
Finally, for patient-months in which no GP switch was requested, we drop observations where
the patient was currently standing on a waitlist. These months reflect the outcome of a prior
decision to join a waitlist, which we already capture in the set of patient-months where was a
switch was requested.

Appendix Table A.2 describes the observations dropped at each step. We are left with
4,238,740 patient-months in which a switch was not requested, and 19,335 months in which a
switch was requested. These observations together are informative about when patients are
attentive and consider switching GPs. Conditional on making a switch request, the switcher-
month observations are informative about which GP characteristics patients value.

Table A.2. Demand Estimation Sample Construction

Non-switches Switches
Criteria Number Pct. of initial Number Pct. of initial

Initial patient-months in Trondelag region 4,617,483 29,771
Current GP further than 60 minutes 151,315 0.03 6,958 0.23
Requested a GP further than 60 minutes 2,976 0.10
Current GP exiting next month 158,457 0.03 404 0.01
Requested an exiting GP 98 <0.01
Currently on a waitlist 68,971 0.01

Final total 4,238,740 19,335

Notes: This table describes the sample selection criteria used in constructing the demand estimation sample.
The unit of observation is a patient-month, and location of residence is measured at the monthly level.
“Switches” are patient months in which the patient either joined a waitlist or else switched to a GP with open
slots. “Non-switches” are patient months where a patient took no action. Both switches and non-switches are
used in demand estimation.

Given the large size of the data, we proceed with estimation using all switcher patient-
months and a random sample of 15,000 non-switcher patient-months. In estimation, we then
re-weight the sampled non-switcher observations such that they represent the full set of ob-
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servations. Given that patients with recent moves are disproportionately likely to be excluded
from demand estimation because they hold a GP further than 60 minutes, we also adjust
the sampling weights to match the original observed proportion of movers versus non-movers
in both the non-switcher and switcher samples. Finally, once the random sample of non-
switchers is drawn, we enforce a final restriction that all GPs remaining the analysis are
chosen a sufficient number of times for a GP fixed effect to be estimated. We require each GP
to be present in at least 400 individuals’ choice sets. GPs that do not meet this requirement
are dropped from all choices sets (and all patients that choose such a GP are also dropped).
Our final estimation sample consists of 14,809 non-switcher months (re-weighted to represent
4,617,483) and 19,335 switcher months (re-weighted to represent 29,771).

Appendix B Additional Analysis

B.1 Mechanical Simulations: Implementation Details

Implementation of TTC. Only patients on waitlists participate in the TTC algorithm, as
any patient not standing on a waitlist retains their slot on their current GP’s panel. TTC
is thus run to find a matching between (a) the set of patients standing on waitlists, and (b)
the set of GP panel slots currently held by those patients. Preferences are all strict and are
determined as follows:

(a) Patients standing on a waitlist first prefer their waitlist GP, then their current GP.

(b) GPs first prefer all their incumbent patients who are participating in TTC. Since these
patients must be waiting on a waitlist, they have a global priority order determined
by the moment in time at which they joined that waitlist. GPs prefer their incumbent
patients in order of this global priority. GPs then prefer all the patients on their waitlist
in the order in which they joined (which again corresponds to this global priority).

We iteratively look for cycles within chains that begin with a patient, starting with the patient
who is highest on the global priority list and going down the list from there.

Mechanical Simulation of TTC on Historical Data. We implement the TTC algorithm
monthly on the historical waitlists data between November 2016 and December 2019. The
purpose of this exercise is to generate a simple (but naive) estimate of how TTC would
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have changed the waiting lists had it been in place during this period. In that spirit, we
hold all of the following objects fixed as they are observed in the data: patient entry (births
or immigration), patient exit (deaths or emigration), administrative auto reassignments of
patients, GP entry, GP exit, GP panel caps, and, critically, patient actions. A patient’s action
each month can be (a) doing nothing and remaining with their current GP, (b) switching to an
open GP, or (c) joining a waitlist for a full GP. We then run the TTC algorithm on all patients
standing on waitlists each month. Patients who can participate in a cycle are reassigned to
their desired GP’s panel and removed from waitlists.

B.2 Preferences for GP Characteristics

This section investigates patient preferences for GP characteristics using a conditional logit
analysis of GP choice. Given the size of the data, we limit attention to the geographic
subsample of patients described in Section IV.A and Appendix A.2. Further, for the purposes
of this specific analysis, we limit to the set of patient-months in which the patient requested
to switch their GP, either by switching to an open GP or else by joining a waitlist. Within
this subsample, we estimate the following conditional logistic regression specification:

uijt = −dijt + wijtα + δj +Xijtβ + σϵϵijt ,

where dijt is driving time between patient i’s municipality of residence and GP j’s office, wijt

is the number of patients on GP j’s waitlist at the beginning of the month t when patient i
made their switch request, δj is a set of GP fixed effects, Xijt includes interactions between
patient and GP age and gender, and ϵijt is a type-1 extreme value idiosyncratic shock. We
normalize the coefficient on driving time to -1.

Appendix Table B.1 reports results from three specifications. Column (1) excludes GP
fixed effects and interactions between patient and GP characteristics. It controls only for
GP age and gender, such that all horizontal GP differentiation comes from travel time and
idiosyncratic taste shocks. Younger and female GPs are chosen more often, as are GPs with
shorter waitlists. Column (2) adds observable patient-GP match-specific heterogeneity based
on age and gender.45 Compared to male patients, female patients have a strong preference
for female GPs; they would be willing to travel more than 5 minutes longer to see one. There

45Temporary residents are treated as a distinct category because their demographic information is not available.
We explored other GP and patient characteristics, and found few that were statistically and economically
significant in explaining patients’ GP choices.
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is also clear, though weaker, homophily on age: all patient groups prefer younger GPs, but
compared to a patient over age 45, a younger patient would travel about a minute longer to
see a GP who is also under 45.

Table B.1. Preferences for GP Characteristics: Conditional Logit

(1) (2) (3)
Variable β SE β SE β SE

Travel time (minutes)† −1.000 −1.000 −1.000

Waitlist length −0.026 0.002 −0.026 0.002 −0.090 0.006

Female GP 1.335 0.094
× Temporary resident 2.490 0.247
× Perm. res. female, age 16–45 3.723 0.173 1.209 0.274
× Perm. res. female, age 45+ 2.838 0.189 0.131 0.286
× Perm. res. male, age 16–45 −1.910 0.221 −4.122 0.315
× Perm. res. male, age 45+ −2.461 0.258 −4.747 0.344

GP age 45+ −1.901 0.095
× Temporary resident −1.573 0.247
× Perm. res. female, age 16–45 −2.353 0.168 −0.694 0.280
× Perm. res. female, age 45+ −1.544 0.183 0.060 0.290
× Perm. res. male, age 16–45 −2.118 0.217 −0.394 0.310
× Perm. res. male, age 45+ −1.343 0.243 0.303 0.329

Coeff. on epsilon shock 6.296 0.105 6.284 0.105 5.905 0.110

GP FE N N Y
Dep. variable mean 0.005 0.005 0.005
# Observations 3,492,876 3,492,876 3,492,876

Notes: This table reports coefficient estimates from conditional logistic regressions predicting the GP choices
of patients who requested to switch GP between December 2018 and November 2019. The unit of observation
is a (patient-month, GP) pair. The sample includes patient-months and GPs in Trondelag who meet the
inclusion criteria for our structural estimation sample, with the additional restriction that each included GP
is in at least 500 patient choice sets. The average patient-month has 192 GPs within choice set. Since this
analysis conditions on requesting to switch, we exclude each patient’s current GP from choice set. The outcome
variable is an indicator for whether the patient requested to switch to a specific GP. GP FE indicates whether
the specification includes a fixed effect for each GP, with one GP’s fixed effect normalized to zero. In column
(3), temporary residents serve as the omitted category for interactions between GP and patient characteristics.
†By normalization

Column (3) adds GP fixed effects, absorbing any persistent GP-specific differences in desir-
ability. The coefficients related to match specific heterogeneity—age and gender interactions
and the standard deviation of the idiosyncratic shock—are very similar to column (2).46 How-
ever, adding GP fixed effects more than triples the magnitude of the estimated coefficient on
46The levels of the coefficients are different than in column (2) because column (3) normalizes the preferences

of temporary residents for GP age and gender to zero, but the difference between any two coefficients is
nearly unchanged.
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waitlist length. This is consistent with more desirable GPs having longer waitlists. Column
(3) isolates responsiveness to variation in the length of the same GP’s waitlist (relative to
other waitlists) over time. This type of variation occurs naturally in queues due to statistical
fluctuations in the number and types of agents and objects arriving over time (Waldinger,
2021; Leshno, 2022). The sensitivity of patients’ choices to waiting time (information) will
be a key determinant of the equilibrium implications of changing the design of the waitlist
mechanism.

B.3 TTC is Not Pareto Improving: Styled Examples

This section constructs simple examples in which TTC is and is not Pareto improving over
Norway’s status quo mechanism (Waitlists). We also compare to the patient-optimal stable
match produced by DA, which is always Pareto improving over Norway’s status quo mecha-
nism. As in our mechanical simulations, each example holds initial assignments and patient
switch requests fixed across assignment algorithms, and maintains FCFS priority among wait-
ing patients. Section V.B formally describes each algorithm.

Example 1. We begin with an example in which TTC generates a Pareto improvement.
Appendix Figure B.1 illustrates an economy with the following primitives:

• There are five patients (i1, i2, i3, i4, i5) and three GPs (A, B, and C), each with a panel
cap of two.

• At t = 0, i1 and i2 are assigned to A; i3 and i4 are assigned to B; and i5 is assigned to
C. As a result, A and B have full panels, while C has an open slot.

• At t = 0, i1 requests to switch from A to B, while i3 requests to switch from B to A.
Since there are no other waiting patients, each patient is placed at the front of their
requested GP’s waitlist.

• At t = 2, patient i5 requests to switch from C to B, and is placed behind patient i1 on
B’s waitlist.

• At t = 10, patient i4 requests to switch from B to C, which can be immediately executed
because there is an open slot.

• At t = 20, patient i2 dies, vacating a slot on A’s panel.
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Figure B.1. Example 1: TTC Generates a Pareto Improvement

C B A

i5 i3 i4 i1 i2

i1
i5

(t=0)
(t=2)

i3 (t=0)

(t=10)

We now consider when each patient is reassigned under each assignment algorithm:

Waitlists: Under Norway’s status quo mechanism, patients i1 and i3 cannot trade immediately,
even though each is waiting for the other’s GP. Instead, they must wait for a vacancy on either
A’s or B’s panel. A vacancy arises at t = 10, when i4 requests to switch from B to C. Since
C has an open slot, the following steps occur: i4 is assigned to C, creating a vacancy on B’s
panel; i1 is assigned to B from the front of the waitlist, creating a vacancy on A’s panel; i3
is assigned to A from the front of the waitlist, creating another vacancy on B’s panel; and
i5 is assigned to B, creating a vacancy on C’s panel. At this point, no patients remain on a
waitlist. Thus, all patients who have requested to switch GP are reassigned at t = 10.

DA: We next consider the allocation produced by running patient-proposing DA each month,
after filling any vacant slots from waitlists. At t = 0, i1 and i3 are allowed to “trade” GPs
since each is at the top of their respective waitlist. During the DA algorithm, i1 first proposes
to B, and i3 first proposes to A; since neither patient is rejected, the algorithm terminates
with each patient reassigned to their requested GP. Between t = 0 and t = 10, only patient
i5 is waiting to switch GP, so DA produces no additional reassignments. i5 must still wait
until t = 10, when i4 open switches from B to C, to be reassigned to B. Thus, compared to
Waitlists, DA allows patients i1 and i3 to be reassigned at t = 0 instead of t = 10, while i5

is still reassigned at t = 10. This is a Pareto improvement because i1 and i3 wait for strictly
less time, whereas i5 waits for the same amount of time.

TTC: In this example, the TTC algorithm produces the same allocations as DA. At t = 0,
pairs (i1, A) and (i3, B) immediately form a cycle, so the two patients are reassigned. TTC
produces no additional reassignments, and patient i5 is reassigned to B at t = 10, after patient
i4 switches to C. Like DA, TTC generates a Pareto improvement relative to Waitlists.
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Example 2. Figure B.2 illustrates an example that is identical to Example 1 except that (i)
patient i5 requests GP A instead of B, and (ii) patients i5 and i3 request A in reverse order:
i5 requests to switch from C to A at t = 0, while i3 requests to switch from B to A at t = 2.
We again consider when each patient is reassigned under each algorithm.

Figure B.2. Example 2: TTC is not Pareto Improving

C B A

i5 i3 i4 i1 i2

i1 i5(t=0) (t=0)
i3 (t=2)

(t=10)

Waitlists: As in the previous example, no reassignments occur until t = 10. At t = 10, patient
i4 open switches to C’s panel, leaving a vacant slot on B’s panel; patient i1 is reassigned to the
vacant slot on B’s panel, leaving a vacant slot on A’s panel; and patient i5 is reassigned to the
vacant slot on A’s panel, leaving a vacant slot on C’s panel. No further reassignments occur
this period, and patient i3 remains on the waitlist for A. At t = 20, patient i2 dies, vacating a
slot on A’s panel which is reallocated to patient i3. No further patients are waiting to switch
GP. Thus, all waiting patients are reassigned at t = 10 except i3, who is reassigned at t = 20.

DA: In this example, patients i1 and i3 could execute a mutually beneficial trade beginning
in t = 2, when i3 joins GP A’s waitlist. However, the DA algorithm will not execute this
trade while patient i5 remains on A’s waitlist because it would violate waiting time priority
to reassign i3 before i5. The specific steps would be as follows:

• In each period t = 2, 3, ..., 9, the DA algorithm would reassign zero patients, despite the
potential gains from allowing i1 and i3 to trade. The sequence of proposals would be
as follows. i1 first proposes to B and i5 and i3 propose to A; A provisionally holds i5’s
proposal and rejects i3, who is lower on the waitlist. In the next round, i3 proposes to B
(their current GP), who then rejects i1. In the next round, i1 proposes to A, who then
rejects i5, who then proposes to C. At this point, all waiting patients propose to their
current GPs, and since no patient is rejected, the algorithm terminates.

• At t = 10, DA reassigns the same patients that are reassigned under Waitlists (all except
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i3). To see this, note that this is the patient-optimal stable match; reassigning i3 would
require not reassigning i5, which would violate waiting time priority.

• At t = 20, patient i3 is reassigned to A after patient i2 dies.

Thus, in this example, DA produces exactly the same outcomes as Waitlists because it cannot
violate waiting time priority.

TTC: In this example, TTC produces a different allocation than Waitlists and DA, and in the
process, harms patient i5 (while benefiting patients i1 and i3). At t = 2, when i3 requests to
switch from B to A, i1 and i3 form a cycle and trade GPs when the TTC algorithm is run.
Patient i5 remains on the waitlist for GP A. At t = 10, patient i4 open switches to panel C,
vacating a slot on B’s panel. This slot remains vacant since there are no patients waiting for
B, and i5 remains on the waitlist for GP A. At t = 20, patient i5 is reassigned to the slot
vacated by i2, who dies.

Compared to Waitlists and DA, patients i1 and i3 are reassigned 8 and 18 periods earlier,
respectively, since they trade GPs at t = 2 instead of being reassigned at (respectively) t = 10

and t = 20. However, patient i5, whose GP is not oversubscribed, waits 10 periods longer,
being reassigned at t = 20 instead of t = 10. This example illustrates how TTC not only
moves reassignments forward in time, but also reallocates slots towards patients that can
facilitate trades. Specifically, TTC allows patient i1’s slot on A’s panel to be reallocated
sooner, reducing the total amount of time waited in the economy. However, it also reallocates
i1’s slot from patient i5, who cannot form a cycle, to i1, who can.

B.4 Predictors of Switching GPs

A number of patient characteristics appear predictive of a desire to switch GPs. For example,
Table 1 shows that 34 percent of patients who had switched to an open GP and never used
a waitlist over the period 2017–2019 had moved at some point during that period, compared
only 6 percent of patients who had neither switched GP nor used a waitlist. To investigate
the relative importance of various factors that may motivate GP switching, we regress an
indicator for a GP switch request on patient characteristics. A GP switch request includes
either an immediate switch to an open GP or a waitlist join. Our focal patient characteristics
include time-invariant patient demographics and the timing of a switch relative to a move.

Appendix Table B.2 reports these results. The outcome variable (the switching indicator)
is scaled by 100 for readability, so coefficients should be interpreted as percentage points. The
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overall probability of observing a switch request is 0.718 percent. Specification (1) includes
only a set of five mutually exclusive and exhaustive patient demographic types. We find that
temporary residents are substantially more likely to request to switch GPs than permanent
residents, with a baseline probability of 1.501 percent. Among permanent residents, younger
patients (particularly females) are more likely to switch.

Table B.2. Predictors of Switching GPs

(1) (2)
Variable β SE β SE

Patient demographic category
Temporary resident 1.501 0.005 1.302 0.005
Perm. res. female, age 16–45 1.171 0.002 0.952 0.002
Perm. res. female, age 45+ 0.501 0.001 0.459 0.001
Perm. res. male, age 16–45 0.782 0.001 0.568 0.001
Perm. res. male, age 45+ 0.375 0.001 0.326 0.001

Timing relative to move
Move in [t-6, t-1]; <30 min. 1.428 0.013
Move in [t-6, t-1]; ≥30 min. 3.243 0.013
Move in [t, t+1]; <30 min. 3.471 0.031
Move in [t, t+1]; ≥30 min. 11.451 0.037

Dep. variable mean 0.718 0.718
R2 0.009 0.021
# Observations 154,793,455 154,793,455

Notes: This table investigates observable predictors of requesting to switch GPs. The
unit of observation is the patient-month. The sample includes all adult patients in Nor-
way over the period January 2017 to November 2019. Regressions are linear probability
models where the outcome variable is an indicator for a GP switch request (either a
waitlist join or a switch to a GP panel with open slots). All covariates are indicator
variables. For readability, the outcome variable is scaled by 100; coefficients should
therefore be interpreted as percentage points.

Specification (2) introduces information on the timing of a given patient-month relative to
a patient move. Conditional on a move being observed in the past 6 months, the current
month, or the next month, we create four categories of moves based on an intersection of
timing and distance of move. We find that switches are substantially more likely to occur in
the month concurrent with or directly preceding the month of a move, and also that switches
are far more likely to be associated with longer moves relative to shorter moves. For example,
someone moving over 30 minutes away either this month or next month (i.e., in month [t,
t+1]) has an extra 11.451 percent chance of requesting to switch GPs. Variation induced by
moves therefore appears, unsurprisingly, to be an important determinant of when patients
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request to switch GPs.

B.5 Responsiveness to Aggregate Waitlist Length

An important question in our counterfactuals is whether more patients would request to switch
GPs if expected waiting times fell systematically. Such a response would be predicted by a
model where patients pay a “switching cost” at the time they request to switch GPs. In
contrast, our model of exogenous inattention rules out this type of response. As there is
no direct switching cost, an attentive patient will always request to switch GP if any GP is
preferable to their current one.

Testing for such a response is challenging because it requires aggregate variation in waitlist
lengths, holding other demand and supply conditions fixed. One observation we can make
is that the rates of switch requests have remained steady since waitlists were introduced in
November 2016, and the number of waiting patients has grown almost linearly since then.
If patients were more likely to make switch requests when waiting times were shorter, we
would have expected a spike and then decline in switch requests after the introduction of
waitlist. The time series evidence therefore weighs against a fully attentive model. However,
it is also possible that patients gradually became aware of the new waitlist system, offsetting a
deterring effect of increasing waiting times. We therefore also look for shorter-term variation
in aggregate waitlist lengths.

Another source of variation that occurred during our sample period—but before the period
used for structural estimation—systematically reduced both perceived and actual waiting
times. Until October 2017, Norway maintained a “buffer” of 20 slots on each GP’s panel,
and only assigned waiting patients after 20 slots were available.47 The buffer was intended
to prevent other additions to a GP’s panel, such as births and administrative reassignments,
from violating the panel cap. However, recognizing that this buffer kept patients waiting
for GPs with open slots, the buffer was reduced from 20 to 10 slots in October 2017. GPs
with 10–19 open slots had their panels filled with patients from the waitlist at the end of the
month, resulting in a one-time drop in aggregate waitlist lengths. We use this variation to
test whether aggregate switching rates increased immediately after this policy change, both
overall and differentially by the amount different geographic regions were impacted.

Figure B.3 plots the monthly share of patients requesting to switch GP in a two-year window
47The algorithm would fill all of the open slots once the buffer was exceeded, so a given GP did not always

have 20 extra slots.
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around the month of the buffer change. Monthly switching rates range between 0.5 percent and
1 percent, but there is no visible increase in the aggregate number of switch requests beginning
in October 2017. While there is not a clear aggregate response in switching requests, there was
substantial variation across municipalities in the extent to which the change in the waitlist
buffer affected waitlist lengths. In particular, smaller municipalities were much more affected.
We can therefore explore geographic heterogeneity in the impact of the buffer change.

Figure B.3. Probability of GP Switch Request: Event Study
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Notes: The figure shows the average rate of GP switch requests in Norway over time, where
a switch request includes both joining a waitlist and switching to an open GP. Waiters were
introduced in November 2016. The waitlist buffer was reduced from 20 to 10 in October
2017.

The GPs directly impacted by the buffer change were those with 10–19 slots available prior
to the change. For these GPs, all available slots were filled once the buffer was reduced to
10, but would not have been had the buffer remained at 20. We measure exposure to the
buffer change in two ways. First, we calculate the fraction of GPs in each municipality who
are near the buffer (“Near-Buffer”), meaning they had 10–19 open slots on their panel as of
September 2017. Second, since waitlist lengths varied among Near-Buffer GPs, we multiply
each municipality’s Near-Buffer share by the average change in the length of the waitlist among
Near-Buffer GPs. This measure isolates the average change in the length of all GP waitlists
induced by the buffer change, which is more than 1.5 patients in the median municipality.
We interact both measures with indicators for 1–3 and 4–12 months after the buffer change.
Table B.3 reports these results. We find no differential impact of these exposure measures on
switching rates, regardless of whether or not we control for a linear time trend in switching

57



rates.

Table B.3. Switch Requests by Exposure to Buffer Change

Near Buffer Waitlist Change
(1) (2) (1) (4)

Variable β SE β SE β SE β SE
Oct.-Dec 2017 × 1 S.D. Exposure 0.120 0.153 0.121 0.153 0.000 0.117 −0.000 0.117
Jan.-Oct 2018 × 1 S.D. Exposure 0.153 0.135 0.154 0.135 −0.155 0.117 −0.155 0.117
Trend −0.000 0.011 −0.000 0.011

Municipality FEs Y Y Y Y
Month FEs Y N Y N
Dep. variable mean 0.009 0.009 0.009 0.009
# Observations 10,424 10,424 10,424 10,424

Notes: The table reports estimates from linear regressions predicting the share of residents within a
municipality-month who request to switch GP, weighted by population. The sample includes all municipality-
months between October 2016 and October 2018. The outcome variable is the share of residents who requested
during that month to switch to a new GP. In Columns (1) and (2), exposure is defined as the share of GPs
“Near Buffer,” i.e. with 10–19 open slots as of September 2017. In Columns (3) and (4), exposure is defined as
“Waitlist Change,” the change in waitlist length from September to October 2017 interacted with an indicator
for GPs being near the buffer. Both measures are in standard-deviation units. All coefficients and standard
errors are scaled by 1,000 for readability.

Appendix C Estimation Details

This section provides details on the Gibbs’ Sampler used to estimate the structural model
parameters. We first describe the restrictions that the choice data place on the model primi-
tives; then how we draw patient attention λit and flow payoffs vit; and finally, how we update
the discount rate ρ. The updating steps for (β, σϵ) are standard. Unless otherwise specified,
we condition on the month t in what follows and omit it from the notation.

Restrictions on Primitives. Consider a patient i with current GP j0 who requests to switch
in a given month. We learn two things from this patient. First, since they requested to switch
GP, they were attentive: λi = 1. Second, their chosen GP j∗ must have higher expected net
present value than any other GP, given the patient’s preferences and waiting time beliefs:

E
[
e−ρTij∗ | wi

]︸ ︷︷ ︸
ωj∗ (ρ)

(vij∗ − vij0) ≥ E
[
e−ρTij | wi

]︸ ︷︷ ︸
ωj(ρ)

(vij − vij0) ∀j ∈ J , (6)

where we define ωj(ρ) to be the expected discount factor to simplify notation. This set of
inequalities implies a lower bound on the flow payoff vij∗ from the chosen GP, and an upper
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bound on the flow payoff vij from each GP that was not chosen:

• Upper Bound: Rearranging Equation (6), for each j ∈ J \ j∗,

vij ≤
ωj∗(ρ)

ωj(ρ)
vij∗ −

ωj∗(ρ)− ωj(ρ)

ωj(ρ)
vij0︸ ︷︷ ︸

ubij(vij∗ ,vij0 ;ρ)

,

where the notation ubij(vij∗ , vij0 ; ρ) will be useful later.

• Lower Bound For chosen j∗,

vij∗ ≥ max
j∈J\j∗

ωj(ρ)

ωj∗(ρ)
vij +

ωj∗(ρ)− ωj(ρ)

ωj∗(ρ)
vij0︸ ︷︷ ︸

lbij∗ (vi;ρ)

.

For patients who do not request to switch, it is not known whether they were paying attention.
If the patient was not attentive (λi = 0), then not switching contains no information about
their preferences. If the patient was attentive (λi = 1), then not switching implies that their
current GP was preferable to all others: vij0 ≥ maxj ̸=j0 vij .

Attention and Flow Payoffs. The Gibbs’ sampler uses data augmentation to draw patients’
attention and flow payoffs. The key challenge in drawing attention is calculating the likelihood
that a non-switcher was attentive. By Bayes’ Rule,

Pr(λi = 1 | no switch, X, j0; θ) =
Pr(no switch | λi = 1, X, j0; θ)Pr(λi = 1)

Pr(no switch | X, j0; θ)
(7)

=
Pr(no switch | λi = 1, X, j0; θ)Pr(λi = 1)

Pr(λi = 0) + Pr(no switch | λi = 1, X, j0; θ)Pr(λi = 1)
,

where θ = (ρ, β, σϵ(·), pλ(·)) collects the model parameters. By definition, Pr(λi = 1) = pλ(Xi)

and Pr(λi = 0) = 1− pλ(Xi), and we can express

Pr(no switch | λi = 1, X, j0; θ) = Pr(vij0 ≥ max
j ̸=j0

vij | X; θ)

=

∫ ∞

−∞
Φ

[
Πj ̸=j0

(
vij0 −Xijβ

σϵ

)]
ϕ

(
vij0 −Xijβ

σϵ

)
dvij0 , (8)

where Φ(·) and ϕ(·) are the standard normal CDF and PDF, respectively. For each inattentive
patient, the estimator evaluates this integral using Gauss-Hermite quadrature. Each patient’s
λi is an iid Bernoulli draw with probability defined in Equation 8 for non-switchers. The
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attention probabilities pλ(x) are then drawn from their posterior Beta distributions, given
attention draws across all periods t:

pλ(x) | {λit} ∼ Beta

α +
∑

(i,t):Xit=x

λit , φ+
∑

(i,t):Xit=x

(1− λit)

 , (9)

where the prior is Beta(α, φ). In practice, we resample the individual attention draws and
parameters every 10 iterations of the Gibbs’ sampler.

Drawing patients’ flow payoffs for each GP is more straightforward. For attentive patients,
we redraw the flow payoff from each non-chosen GP from a truncated normal distribution with
upper bound ubij(vij∗ , vij0 ; ρ), and the flow payoff vij∗ for the chosen GP from a truncated
normal distribution with lower bound lbij∗(vi; ρ).

Discount Rate. The discount rate is updated via a Metropolis-Hastings step which requires
calculating the likelihood of the data given the other parameters. The algorithm begins with
a previous draw ρb−1 and a proposal distribution Fρ(. | ρb−1; τ), which is truncated normal.48

Each iteration, the following steps occur:

(i) Take a draw ρ̃b ∼ Fρ(. | ρb−1)

(ii) Calculate the ratio r(ρ̃b, ρb−1) =
L(ρ̃b)

L(ρb−1)
, where L(ρ) is the likelihood of the data given ρ

and the other current draws of the model parameters.

(iii) Set ρb =
{

ρ̃b w.p. min{1, r(ρ̃b, ρb−1)}
ρb−1 w.p. 1−min{1, r(ρ̃b, ρb−1)}

}
.

The main difficulty in implementing this is calculating the likelihood

L(ρ) = Πi:λi=1 Pr

(
j∗ = argmax

k ̸=j0
E
[
e−ρTik

]
(vik − vij0) | Xi,wi, β, σϵ, ρ

)
(10)

for different values of the discount rate. This likelihood does not have a simple closed form,
but it can be approximated with a high degree of accuracy using quadrature and exploiting
the fact that the flow payoffs are conditionally independent given vij0 . Specifically, we can

48We experimented with an adaptive variance parameter τ , but settled on fixing τ = 0.001.

60



rewrite each probability in equation 10 as

Li(ρ) =

∫ +∞

−∞

∫ ∞

vij0

Pr(vik ≤ ubik(vij, vij0 ; ρ) ∀k ̸= j, j0 | β, σϵ) dFij(vij) dFij0(vij0)

=

∫ +∞

−∞

∫ ∞

vij0

Πk ̸=j∗,j0Φ

(
ubik(vij∗ , vij0 ; ρ)−Xikβ

σϵ

)
dFij(vij) dFij0(vij0), (11)

where the last equality exploits conditional independence of vik given the flow payoffs from the
patient’s current and chosen GPs. To reduce the dimensionality of the integral, we condition
on the value of vij0 when evaluating it, and evaluate the inner integral using Gauss-Laguerre
quadrature.

Appendix D Counterfactual Simulation Details

D.1 Simulated Economy

As described in Section V.A, the simulated economy contains a finite set of patients I and
GPs J . Patients have type x ∈ X , where X = {demographic type, location of residence}.
GPs have type z ∈ Z , where Z = {demographic type, office coordinates, panel cap}.

GP characteristics are fixed over time. Patient characteristics evolve according to a sta-
tionary Markov process M : X → X . Patients are assumed to indefinitely retain their gender
({Perm. res. female, Perm. res. male, Temp. res.}), so aging is the only relevant demographic
transition. The transition process can therefore be thought of as drawing two independent
shocks: a moving shock and an aging shock, where the probability of both shocks depends
on a patient’s current demographic type and location of residence. We calibrate transition
probabilities to match observed transitions in Trondelag over 2017–2019. We then adjust the
transition process to make it stationary.

Appendix Table D.1 reports details of the distribution of patient and GP types as well as
the patient type transition process. Panel A describes patients. Seven percent of patients
are temporary residents. Among permanent residents, half are female (with the remainder
male), and 46 percent are age 16–45 (with the remainder 45 or older). Across all patients, the
average probability of receiving an aging shock is 0.19 percent and the average probability of
receiving a moving shock is 0.21 percent. The probability of aging is highest for temporary
residents and lowest for females over age 45. The probability of moving is highest for female
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under age 45 and lowest for females over age 45. Conditional on moving, patients are more
likely to move to a nearby location than a distant location. Given the observed distribution of
patient and GP locations, the average patient has 94 GPs within 15 minutes’ driving time and
190 GPs within 60 minutes driving time, but there is substantial heterogeneity. In some rural
areas, patients have only 5 GPs within 60 minutes, while in the central city of Trondheim,
there are 189 GPs within only 15 minutes.

Table D.1. Fundamentals of Simulated Economy

Percentile
Mean Min 25th 50th 75th Max

Panel A: Patients (N = 371,536)
Demographic Type
Temporary resident 0.07
Perm. res. female, age 16–45 0.21
Perm. res. female, age 45+ 0.26
Perm. res. male, age 16–45 0.22
Perm. res. male, age 45+ 0.25

Other Characteristics
Prob. aging shock 0.002 0.001 0.002 0.002 0.002 0.007
Prob. moving shock 0.002 <0.001 0.001 0.002 0.002 0.012
Num. GPs within 15 min. 95 0 15 34 189 189
Num. GPs within 60 min. 190 5 73 262 262 279
Travel time to avg. GP 94 47 47 60 118 523

Panel B: GPs (N = 425)
Demographic Type
Female, age≤45 0.31
Female, age>45 0.17
Male, age≤45 0.25
Male, age>45 0.27

Other Characteristics
Panel cap 930 80 794 936 1,098 1,695
Travel time to avg. municipality 210 97 100 135 281 746
Travel time to closest municipality 6 3 5 6 7 23
GP fixed effect -1.0 -10.5 -1.3 -1.1 -0.7 5.6

Panel C: Locations (N = 45)
Population 8,256 46 1,318 3,144 5,658 163,939
Pct. temp. res. 0.06 0.02 0.05 0.06 0.07 0.10
Pct. perm. res. female 0.47 0.41 0.46 0.46 0.47 0.54
Pct. perm. res. ≤45 0.37 0.21 0.33 0.36 0.40 0.52

Notes: The table describes the fundamentals of our simulated economy. These fundamentals are
calibrated to match the Trondelag region as of December 2019. The 45 patient locations correspond
to municipalities in the Trondelag region.
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Panel B of Table D.1 describes the 425 GPs in the simulated economy. 48 percent of GPs
are female, and 56 percent are under age 45. Among female GPs, however, 65 percent are
under 45, reflecting growth of gender equity in this profession in recent decades. The average
GP has a panel cap of 930 patients. The smallest GP has a cap of 80, while the largest has a
cap of 1,695. For the purpose of our simulations, we do not use the panel caps observed in the
data, but rather let them be determined based on the set of patients used in the simulation.
For GPs that have waitlists as of December 2019, we set their panel cap equal to the observed
number of patients that are enrolled with that GP and who reside in the Trondelag region.
For GPs without waitlists, we set their panel cap equal to their observed enrollment among
Trondelag patients times their observed ratio of enrollment to panel cap in the full data.

Finally, Panel C of Table D.1 describes the 45 possible locations where patients may live.
The largest location is Trondheim municipality, with a population of 163,939 (nearly half
the total population in the economy). The smallest location is Røyrvik municipality, with a
population of only 46. The average location has 6 percent temporary residents, 47 percent
female permanent residents, and 37 percent young permanent residents. Urban locations have
a higher fraction of temporary residents as well as young permanent residents.

D.2 Algorithm to Compute Equilibrium

For each mechanism, we compute a stationary equilibrium in which patients’ beliefs about
waiting time are consistent the waiting times implied by patients’ optimal decisions. We
initialize the economy to have no patients standing on waitlists (i.e., no patients in the reas-
signment mechanism). We draw a sequence of patient types (demographic type, location of
residence, identity of mother if reborn) and patient attention shocks for 500 periods (months)
for all 371,536 patients in our simulation. These draws are held fixed across counterfactual
mechanisms.

We search for a fixed point between patients’ belief parameters b = (η, κ, κOS, χ0, χ1) and
their sample analogs within the simulated economy. The algorithm works as follows. Iteration
q begins with a vector of belief parameters bq. The following steps then occur:

(1) The simulation is run for 500 periods. Each period, the steps described in Section V.A
occur, with all demographic transitions and attention shocks predetermined. Each pe-
riod, attentive patients sequentially enter the reassignment mechanism and consider all
GPs in the economy, observing their current waitlist lengths. Patients form beliefs about
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waiting time according to bq and then decide which GP to choose. If they choose their
current GP or an open GP, they are reassigned immediately and exit the mechanism. If
they choose a GP with a waitlist, they wait there until they are successfully reassigned
by the mechanism, they get another attention shock, or they die.

(2) The simulation provides data on the distribution of realized waiting times given the
optimal actions implied by beliefs bq. We use this information to construct the sample
analog of belief parameters, relying only on the last 100 periods of the simulation to
allow the economy to converge to a stationary distribution.

(3) Beliefs are then updated as a convex combination of the initial and implied values:
bq+1 = λqbq + (1− λq)b′. The factor λq determines how quickly beliefs are updated.

Implied beliefs. Table D.2 reports equilibrium belief parameters. Under the status quo
Waitlists mechanism, 0.52 percent of panel slots become vacant each month. Under the
mechanisms with TTC, such natural vacancies arise less frequently (0.10 percent per panel
slot per month), since many incumbent patients who switch away no longer leave a vacant
seat in their wake.

While TTC lowers the panel vacancy rate, it raises the waitlist departure rate, as waiters
may now participate in a cycle. Under TTC, all patients perceive this rate as 4.68 percent
per waiter ahead of them per month. Under TTCP, patients with undersubscribed GPs
perceive it to be only 0.76 percent, since the only patients ahead of them on waitlists are
other patients with undersubscribed GPs, who have no chance of participating in a cycle.
Under TTC, a patient with an oversubscribed GP who is 10th on the waitlist for a GP
with a panel cap of 1,000 believes they will participate in a cycle with probability 0.132 =

exp(−4.9074 − 0.6273 × log(10/1000)) each month. As their position-relative-to-panel-cap
increases, this probability declines log-linearly. The same patient expects to participate in a
cycle with monthly probability 0.031 in waitlist position 100.

Appendix Figure A.5 provides a depiction of how our beliefs model translated into expected
waiting times and discount factors across mechanisms. A patient with an oversubscribed GP
believes that the expected waiting time (in months) for a GP with panel size 1,000 with a
waitlist length of 100 would be 18.0 under Waitlists, 16.8 under TTC, 18.0 under TTCP, and
18.0 under DA. For a patient with an undersubscribed GP, the corresponding beliefs would be
18.0 under Waitlists, 37.5 under TTC, 97.6 under TTCP, and 18.0 under DA. Note, however,
that because patients with an undersubscribed GP get waitlist priority under TTCP, they
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would rarely find themselves so far back on a waitlist. Appendix Figure A.6 reports the
density of observed chosen waitlist lengths across mechanisms. Under TTCP, almost all the
mass of chosen waitlist length is below a waitlist rank of 25. Finally, Appendix Figure A.7
provides a depiction of how our beliefs model interacts with panel capacities. Under the TTC
mechanism, a patient with an oversubscribed GP believes that for a GP with a waitlist length
of 50, expected waiting time would be 14 months if the GP had panel capacity of 750 and 11
months if capacity were 1,250. The average panel cap among GPs in our simulation is 930
(c.f. Appendix Table D.1).

Table D.2. Equilibrium Beliefs

Waitlists TTC TTCP DA
Panel vacancy rate (η) 0.0052 0.0010 0.0007 0.0052
Waitlist departure rate (κ) 0.0074 0.0468 0.0076 0.0074
Waitlist departure rate, curr. GP oversub. (κOS) – – 0.0386 –
Cycle participation rate, curr. GP oversub. (χ1) -4.9074 -4.7997
Cycle participation rate, curr. GP oversub. (χ2) -0.6273 -0.5816

Notes: The table reports equilibrium belief parameters. In the TTCP mechanism, patients beliefs about
the waitlist departure rate among waiters in front of them are κ for patients with an undersubscribed
GP and κ+κOS for patients with an oversubscribed GP. In all other mechanisms, patients have common
beliefs about κ. For patients with an oversubscribed GP, the perceived probability of participating in a
cycle in waitlist position s for a desired GP with panel cap N is given by χ = exp(χ0 + χ1 log(s/N)).

D.3 Welfare Decomposition

A natural way to understand welfare under alternative mechanisms is to compare the NPV of
an attentive patient’s optimal choice of GP, which accounts for both the waitlist lengths they
face when making a GP choice as well as their beliefs about how fast waitlists will move. Such
a comparison is complicated, however, by the fact that at any given moment of attention,
patients’ current GP may change across mechanisms due to prior attention shocks. Since
their degree of (dis)satisfaction with their current GP will directly affect how long they are
willing to wait for a new GP, a patient’s current GP is an important factor driving optimal
choices. It is therefore useful to decompose NPV differences across mechanisms into (i) the
component driven by a change in a patient’s current GP, and (ii) the component driven by
everything else, namely waitlist lengths, beliefs about how waitlist lengths map to wait times,
and patients’ optimal GP choice conditional on current GP.

To perform this decomposition, we introduce some additional notation. Throughout, we
consider a single attentive patient in a single period whose preferences are held fixed across
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mechanisms. Express an attentive patient’s perceived NPV from choosing GP j while currently
enrolled with GP j0 as

NPV (j; j0,w, ξ) = E

[∫ Tj

τ=0

e−ρτvj0dτ +

∫ ∞

τ=Tj

e−ρτvijdτ | w, ξ

]
, (12)

where w represents the vector of waitlist lengths for all GPs, ξ represents the patient’s beliefs
about the mapping from waitlist lengths to waiting time Tj, and vj represents the per-period
flow utility the patient derives from GP j. The NPV derived from a patient’s optimal choice
of GP is then given by

NPV ∗(j0,w, ξ) = max
j∈J

NPV (j; j0,w, ξ), (13)

where J is the set of all GPs. We can now isolate differences in the value derived from
optimal behavior under each mechanism by differences in the arguments of NPV ∗. As in
Section V.D, we use the current Waitlists mechanism as our reference point. To that end,
define the difference in the value derived from optimal behavior under focal mechanism M

relative to the reference mechanism W as

∆NPV ∗,M−W = NPV ∗(jM0 ,wM , ξM)−NPV ∗(jW0 ,wW , ξW ), (14)

where jM0 is the patient’s current GP under mechanism M , wM is the vector of prevailing
waitlist lengths under mechanism M , and ξM is the patient’s beliefs about the mapping from
waitlist lengths to wait times under mechanism M . Given this notation, we can then express
the decomposition as

∆NPV ∗,M−W = NPV ∗(jM0 ,wM , ξM)−NPV ∗(jW0 ,wM , ξM) (i)

+ NPV ∗(jW0 ,wM , ξM)−NPV ∗(jW0 ,wW , ξW ), (ii)

where as noted above, line (i) is the component of the welfare difference driven by a change
in a patient’s current GP, and line (ii) is the component driven by everything else, namely
waitlist lengths, beliefs about how waitlist lengths map to wait times, and patients’ optimal GP
choice conditional on current GP. Because it more accurately represents the contemporaneous
difference in the value of switching opportunities under different mechanisms, component (ii)
is reported in the main text (Tables 5 and 6).
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D.4 Benchmark Simulations

No Caps. Each GP’s panel cap is infinite, so an attentive patient may switch to any GP
immediately. This simulation provides an upper bound on the welfare that can be achieved
by any mechanism with capacity constraints.

No Waitlists. An attentive patient may switch to any GP panel with open slots, but may
not request a GP whose panel is currently full. The GP choice action is therefore a discrete
choice among all open GPs plus the patient’s current GP. We run the simulation under the
assumption that patients are not strategic about when to request a GP (attention shocks are
exogenously timed). Because there are no waitlists, no patients remain in the mechanism
between periods.

Truthful TTC. This mechanism is identical to TTC with the exception that patients can
submit ROLs of arbitrary length. We run the simulation under the assumption that when
they arrive to the mechanism, attentive patients truthfully report their full ordinal preferences
over GPs, truncated at their current GP.
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Table D.3. Results from Benchmark Simulations

Waitlists TTC No Waitlists Truthful TTC No Caps

GP waitlists
Pct. of population on a waitlist 9.36 8.88 – 0.03 –
Pct. of GPs with a waitlist 82.2 78.3 – 32.3 –
Mean E(waittime) | curr. GP undersub. 16.7 22.8 –
Mean E(waittime) | curr. GP oversub. 16.7 10.7 –

Attentive patient choices
Mean E(waittime) at chosen GP 16.8 14.1 –
Pct. waitlist joins 85.2 84.6 – 93.6 –
Pct. waitlist joins | curr. GP undersub. 79.0 74.8 – 92.3 –
Pct. waitlist joins | curr. GP oversub. 86.2 86.3 – 94.1 –
True pref. rank of chosen GP 1.79 1.63 2.90 2.72 1.00
Pct. waitlist joins | curr. GP undersub. 1.94 2.29 2.87 2.67 1.00
Pct. waitlist joins | curr. GP oversub. 1.76 1.52 2.94 2.74 1.00

Realized assignments
Travel time to current GP, mean (med.) 17.3 (6.5) 16.9 (6.4) 16.8 (6.5) 16.8 (6.5) 16.8 (6.4)
Pct. with same gender GP | young female 59.3 60.3 58.5 58.6 68.7
Pct. with same gender GP | young male 61.8 61.2 60.9 61.2 52.6

Welfare
Flow payoff from current GP, mean (med.) –† 0.75 (0.69) 0.19 (-0.60) 1.04 (0.01) 5.34 (4.53)

Notes: The table reports results under the benchmark simulations of No Waitlists and Truthful TTC (described
in Section V.E). Results for Waitlists, TTC, and No Caps are reproduced from Table 5. Statistics are generated
in months 392–451 of the simulation, out of 500 total months. They are first computed within month and then
averaged across simulation months. E(waittime) is the expected waiting time implied by patient’s equilibrium
beliefs and current waitlist lengths. True pref. rank of requested GP is the rank of a patient’s requested GP
in their true flow payoff ordering. This table is referenced in Section V.E. †By normalization.
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Figure A.1. HelseNorge Screenshots

(a) Sorted Alphabetically (b) Sorted by Free Seats

Notes: The figure shows two screenshots from the “Change GP” (bytte fastlege) tool on Norway’s centralized
online health platform, HelseNorge. The page shows the list of 37 GPs located in the Sagene neighborhood
of Oslo. Panel (a) sorts this list alphabetically by GP last name (the default), and panel (b) sorts the list
by the number of free slots available on each GP’s panel. Only three GPs have available slots on their panel.
(Webpage translated from Norwegian to English using Google Chrome, which slightly affects the rendering of
graphics relative to the original.) Accessed August 18, 2023; available at https://tjenester.helsenorge.
no/bytte-fastlege?fylke=03&kommuner=0301&bydeler=030103. This figure is referenced at footnote 15.
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Figure A.2. Distribution of Waitlist lengths in December 2019
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Notes: The figure shows the distribution of waiting list lengths in Norway in December 2019,
among GPs that had a waiting list. Waitlist length is top-coded at 100 for readability. There
were 3,695 unique GPs with waiting lists (out of 5,010 total GPs). This figure is referenced in
footnote 22.
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Table A.1. Patient Demographics by Outcome of Running TTC in December 2019

On a waitlist
Sample demographic

Full
Sample

Not
on a waitlist Reassigned Not reassigned

Number of individuals 4,573,170 4,463,532 18,667 90,971
Pct. of individuals 0.98 0.00 0.02

Demographics
Pct. female 0.50 0.49 0.66 0.66
Age 47 47 42 41
Years of education 13.1 13.1 13.4 13.3
Annual income (000 NOK) 413 414 397 373
Pct. temporary resident 0.07 0.07 0.04 0.12
Pct. ever moved 0.11 0.10 0.24 0.24

Choice of GP
Pct. ever switched to open GP 0.13 0.13 0.17 0.30
Travel time to current GP (min.) 10.8 10.7 15.8 14.5
Pct. with GP of same gender 0.58 0.58 0.55 0.53

Use of waitlists
Pct. ever on a waitlist 0.09 0.07 1.00 1.00
Number of months on a waitlist | > 0 6.4 4.9 7.9 10.7
Pct. waiting for GP of same gender 0.64 0.64 0.65 0.65
Travel time to wl. GP – curr. GP (min.) -6.8 -7.2 -8.4 -5.6

Notes: The table provides summary statistics on adult patients based on the outcome of running TTC
on waitlists as of December 2019. Summary statistics for each individual are calculated based on the
time period 2017–2019, not just as they were observed in December 2019. “Ever” means at any point
during 2017–2019. The first column reports means among all adult patients in the population. The
remaining three columns are a partition of patients based on whether they were not standing on a
waitlist in December 2019 and thus did not participate in TTC (“Not on a waitlist”), whether they were
on a waitlist and were successfully reassigned by the TTC algorithm (“On a waitlist/Reassigned”), and
finally those patients who were on a waitlist but were not successfully reassigned via TTC. This table is
referenced in Section II.C.
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Figure A.3. Distribution of Waittime Differences Under Mechanical Simulation
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Notes: The figure shows the distribution of waiting time differences that result from the simple
mechanical simulation of TTC using the historical waitlist data. An observation is a waitlist
spell. The figure reports the difference between the number of months the patient waited under
the status quo mechanism (Waitlists) and that under the TTC mechanism (TTC). While most
patients wait for less time under TTC, 4.5 percent of patients wait for longer. This figure is
referenced in Section II.C.
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Figure A.4. Population Density Map

(a) All of Norway (b) Trondelag Region

Notes: The figure shows a population density map of all of Norway as well as just the Trondelag region. In
panel (a), the Trondelag region is shaded in gray. The outlined shapes within the map are municipalities.
There are 421 municipalities in Norway and 58 in Trondelag (using 2019 region boundaries). The population
center of Trondelag (the city Trondheim) lies at the center of the region in the darkest shaded municipality.
This figure is referenced in footnote 30.

73



Table A.2. Comparison of Norway and Trondelag Region, 2019

Sample demographic All of Norway Trondelag
Panel A. Patient characteristics
Number of individuals 4,633,395 412,774

Demographics
Pct. female 0.50 0.49
Age 48 47
Pct. with post-secondary education 0.32 0.31
Annual income (000 NOK) 429 403
Pct. temporary resident 0.07 0.07
Pct. ever moved 0.04 0.06

Choice of GP
Pct. ever switched to open GP 0.05 0.05
Travel time to current GP (min.) 10.7 10.9
Pct. with GP of same gender 0.58 0.57

Use of waitlists
Pct. ever on a waitlist 0.05 0.05
Number of months on a waitlist | > 0 5.0 4.9
Pct. waiting for GP of same gender 0.64 0.65
Travel time to wl. GP – curr. GP (min.) -6.7 -7.9

Panel B. GP characteristics
Number of GP panels 5,549 474

Panel characteristics
Enrollment cap 1,120 1,078
Pct. months with available slots 0.32 0.27
Pct. months with temporary GP 0.12 0.12

GP demographics
Pct. female 0.43 0.46
Pct. rural 0.37 0.52
Age 47 45

Panel enrollment stats.
Num. waiting on waitlist 24 22
Num. enrollees / cap 0.94 0.97

Notes: The table compares descriptive statistics between all of Norway and the Trondelag region
in 2019. Panel A reports statistics on (adult) patients, and all values represent means over
patient-months. “Ever” means at any point during 2019. Moves are counted only if they are
across municipalities. Age, gender, education, and income data are not available for temporary
residents, so those means are only among permanent residents. Panel B reports statistics on GPs,
and all values in the table represent means over GP panel-months. GP enrollment and waitlist
use statistics reflect the full population (including children under 16). This table is referenced in
Section IV.A.
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Table A.3. Summary Statistics on Realizations from Exogenous Processes

Mean SD
Number of patients 371,536 –
Number of attention shocks received 2,299 47
Number of moves 773 28
Number of aging shocks 735 26
Number of deaths 428 21
Number of moves in past 6 months 6,102 332
Number of attn. shocks in past 12 months 28,393 2,506

Notes: The table describes the realizations of exogenous processes in our simulated
economy. These include the demographic transition processes (patients aging, dying,
and moving) and the attention process (patients receiving attention shocks). Patients
that die are immediately reborn, so there are a fixed number of patients in all periods.
Statistics in the table are calculated across the 500 periods in the simulation. This table
is referenced in section V.A.
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Figure A.5. Relationship Between Beliefs and Waitlist Rank by Mechanism

(a) EDF | curr. GP undersubscr.
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(b) EDF | curr. GP oversubscr.
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(c) E(waittime) | curr. GP undersubscr.
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(d) E(waittime) | curr. GP oversubscr.
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Notes: The figure shows the relationship between beliefs and waitlist rank across our four focal mechanisms,
supposing all waitlists were for a GP with a panel cap of 1,000. Panels (a) and (b) report a patient’s expected
discount factor (EDF) as a function of waitlist rank. Panel (a) shows the EDF for a patient whose current GP
is undersubscribed, while panel (b) shows the EDF for a patient whose current GP is oversubscribed. Panels
(c) and (d) show the corresponding expected waiting times. This figure is referenced in Appendix D.2.
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Figure A.6. Distribution of Chosen Waitlist Lengths by Mechanism

(a) Chosen waitlist rank | curr. GP US
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(b) Chosen waitlist rank | curr. GP OS
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(c) E(waittime) | curr. GP undersubscr.
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(d) E(waittime) | curr. GP oversubscr.
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Notes: The figure shows the distribution of chosen waitlist ranks and the corresponding expected waiting
times among attentive patients in each of our focal mechanisms. Panels (a) and (b) report the distribution
of attentive patients’ chosen waitlist rank conditional on being less than 400. The dots (scaled on the right
axis) report the probability mass above this truncation point. Panels (c) and (d) report the distribution of
corresponding expected waiting times, conditional on being below 36 months. Again, the dots (scaled on the
right axis) report the probability mass above the truncation point. This figure is referenced in Appendix D.2.
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Figure A.7. Relationship Between Beliefs and Waitlist Rank by Panel Cap (TTC Mechanism)

(a) EDF | curr. GP undersubscr.
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(b) EDF | curr. GP oversubscr.
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(c) E(wait-time) | curr. GP undersubscr.
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(d) E(wait-time) | curr. GP oversubscr.
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Notes: The figure shows the relationship between patient beliefs and waitlist rank for three different GP panel
cap sizes, under the TTC mechanism. Panels (a) and (b) report a patient’s expected discount factor (EDF)
as a function of waitlist rank, if the waitlist considered was for a GP with a panel cap of 750, 1,000, or 1,250.
Panel (a) shows the EDF for a patient whose current GP is undersubscribed, while panel (b) shows the EDF
for a patient whose current GP is oversubscribed. Panels (c) and (d) show the corresponding expected waiting
times. A higher panel capacity will make the waitlist move faster, and thus expected wait-time lower (and
EDF higher). If a patient’s current GP is oversubscribed, they will understand that they have the possibility
of being reassigned via TTC, and thus have more optimistic expectations about waiting time. This figure is
referenced in Appendix D.2.
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