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1 Introduction

The classical idea that inflation “greases the wheels of the labor market” (Keynes, 1936; Tobin, 1972)
forms the bedrock of many theories of macroeconomic fluctuations: After the onset of a recession,
nominal wage rigidities lead to inefficiently high wages and depressed labor demand, which
creates a role for inflation to restore the economy’s optimal employment by reducing real wages.
While models in the Keynesian tradition (e.g., Erceg et al., 2000) take seriously the proposition that
frictions prevent the efficient adjustment of wages, they are usually silent on the micromechanics
of the labor market, including the determinants of turnover—i.e., which jobs are saved, destroyed,
and created. Conversely, models in the search-theoretic tradition (e.g., Mortensen and Pissarides,
1994) yield rich predictions for the distribution of wages and employment flows in the labor market
but abstract from inefficient turnover due to the simplifying assumption that contracts can be
continuously and costlessly renegotiated.

Motivated by empirical evidence linking wage rigidity to the employment sensitivity to ag-
gregate shocks, bilaterally inefficient job separations, and real effects of monetary policy in the
labor market, we explore the implications of inefficient turnover in a labor market model with four
features. First, job search is frictional. Second, workers are subject to idiosyncratic productivity
shocks. Third, wages are rigid in between staggered renegotiations. Fourth, neither workers nor
firms can commit to staying in a match. In our environment, all four features are necessary to
generate inefficient turnover. At the center stage of our model are endogenous quits and layoffs
that are unilaterally initiated whenever a worker’s wage-to-productivity ratio moves outside an
inaction region, giving rise to inefficient job separations.! In turn, inefficiencies on the separation
margin feed back into job creation through workers” and firms’ search decisions. In summary, our
contribution is to analytically characterize inefficient turnover and to derive sufficient statistics for
the economy’s response to aggregate shocks in an equilibrium labor market model.

We first study a stationary environment in continuous time. The labor market is populated
by a unit mass of heterogeneous workers and an endogenous mass of homogeneous firms. Work-
ers’ incomes depend on their employment state and idiosyncratic productivity, which follows a

Brownian motion in logarithms. Unemployed workers and idle firms direct their search across

1Coase (1960) explicitly pointed out that realistic transaction costs may prevent bilaterally efficient outcomes since “it
is necessary to discover who it is that one wishes to deal with, to inform people that one wishes to deal and on what terms, to conduct
negotiations leading up to a bargain, to draw up the contract, to undertake the inspection needed to make sure that the terms of the
contract are being observed” and that “these operations are often extremely costly, sufficiently costly at any rate to prevent many
transactions that would be carried out in a world in which the pricing system worked without cost.”



submarkets indexed by their wage rate and productivity, as in Shimer (1996) and Moen (1997).
Worker-firm matches are subject to two contractual frictions. First, wages are rigid in between
staggered renegotiations a la Calvo (1983).> Second, neither workers nor firms can commit to
staying in a match, which can be endogenously dissolved in the form of unilateral quits and layoffs.
Once matched, a worker and a firm play a nonzero-sum stochastic differential game with stopping
times (Bensoussan and Friedman, 1977). Their interaction forms a game due to their strategic choices
of their own stopping times, defining when to unilaterally separate from the match. The game is
stochastic and differential because worker productivity evolves according to a Brownian motion. It is
nonzero-sum because the equilibrium match surplus is positive. To characterize the solution to this
problem, we leverage powerful tools based on variational inequalities (Lions and Stampacchia, 1967).
While workers and firms engage in complex forward-looking behavior, we show that their
decisions depend only on a single state variable: the wage-to-productivity ratio. A match is
dissolved when this ratio falls outside an inaction region with two thresholds. On one side, workers
quit when their wage-to-productivity ratio falls beneath a lower threshold. On the other side, firms
lay off workers whose wage-to-productivity ratio exceeds an upper threshold. Endogenous job
separations due to quits and layoffs are unilateral in the sense that they occur voluntarily in the
eyes of one party, even if they are involuntary in the eyes of the other party (McLaughlin, 1991).
Our analysis yields three main results. First, we prove the existence and uniqueness of a block-
recursive equilibrium (BRE). This result requires substantially different methods than those in the
seminal work of Menzio and Shi (2010, 2011), which we extend to a continuous-time setting with
two-sided lack of commitment. Second, we provide a novel characterization of match surplus, entry
wages, and job-separation under inefficient turnover by linking them to the expected discounted
duration of a match, which here—unlike in models with flexible wages or full commitment—
distinctly depends on rent sharing between a worker and a firm. Third, we demonstrate that
two-sided lack of commitment has implications for labor markets that are profoundly different
from prominent models of product pricing and investment. Unlike in models of inaction (e.g.,
Barro, 1972; Bernanke, 1983), workers” and firms’ ability to unilaterally separate bounds the option
value of a match, even as the volatility of productivity shocks grows unboundedly. Compared

to Sheshinski and Weiss (1977), the quit threshold and entry wage in our environment are less

2We follow a long tradition of modeling wage rigidity through staggered renegotiations, as in Erceg et al. (2000).
While our model abstracts from their specific microfoundations, we think of such rigidities as capturing a list of reasons
surveyed by Bewley (1999), including transaction costs, wage norms, fairness concerns, or information asymmetries. On
the relationship between time- and state-dependent pricing models, see Alvarez et al. (2016a,b) and Auclert et al. (2023).



responsive to expected productivity growth and trend inflation.

Having characterized the stationary economy, we then introduce aggregate shocks. To this end,
we assume that incumbents” wages are nominally rigid while there are fluctuations in aggregate
revenue productivity (TFPR)—i.e., either aggregate physical productivity (TFPQ) or the price level. Such
aggregate shocks shift incumbents” TFPR-adjusted wages, leading to movements in the rate of
endogenous job separations in the form of quits and layoffs. Under flexible entry wages, the wage
that unemployed workers search for responds to the aggregate shock. Motivated by the allocative
role of new-hire wages (Pissarides, 2009) and the limited cyclicality of reservation wages (Koenig
et al., 2023), we also study rigid entry wages, under which unemployed workers search for the same
nominal wage schedule as before the aggregate shock, thereby changing firms” vacancy posting
incentives. In this environment, inflation can “grease the wheels of the labor market” by affecting
both job-separation and job-finding rates.

To study the effects of an economy-wide TFPR shock on aggregate employment, we analyze the
economy'’s cumulative impulse response (CIR), defined as the area under an impulse response function
(IRF). To this end, we extend the seminal work of Alvarez et al. (2016a) on sufficient statistics in
the product market to a labor market context. Under flexible entry wages, the CIR of aggregate
employment is fully described by three data moments: the job-finding rate, the variance of workers’
wage changes across jobs, and a measure of the skewness of wage changes across jobs. That
skewness appears in the sufficient statistic is a novel result. Intuitively, wage changes between jobs
reflect workers” wage-to-productivity ratios, the skewness of which reflects the relative mass of
workers near the quit versus layoff thresholds.

Under rigid entry wages, the CIR of aggregate employment additionally depends on the job-
finding rate’s elasticity with respect to the aggregate shock, which itself is a function of the share of
inefficient job separations. Intuitively, an increase in TFPR incentivizes firms to post more vacancies
but the magnitude of this effect is decreasing in the share of inefficient job separations: Firms
choose when to lay off workers but do not control workers” quit decisions, which limit a firm’s
expected returns from vacancies.

While our theory highlights the relevant mechanisms at play in labor markets with inefficient
turnover, we also lay the foundation for quantifying these mechanisms. To this end, we show how
to recover the distribution of unobserved wage-to-productivity ratios and the productivity process

parameters from conventional labor market microdata on wage changes between job spells.



Related Literature. Relative to the existing literature, we make two contributions. Our first
contribution is to develop an equilibrium framework with inefficient turnover, in which nominal
fluctuations affect both job-finding and job-separation rates through the split of match surplus. This
approach sets us apart from the two traditions. On one hand, models in the Keynesian tradition
have highlighted wage rigidity as the key friction for quantitative models to generate a realistic
transmission of shocks (e.g., Christiano et al., 2005). We add to this literature an equilibrium model
of endogenous job creation and destruction with inefficient turnover due to wage rigidity, which
naturally connects to labor market microdata on quits and layoffs (Graves et al., 2023).

On the other hand, models in the search-theoretic tradition have studied the role of wage
rigidity in amplifying unemployment fluctuations, following Shimer (2005a). These models restrict
attention to bilaterally efficient contracts, as in Hall (2003) and Elsby et al. (2023), where costless
wage renegotiations prevent the dissolution of matches with positive surplus. Similarly, the wage-
setting protocols assumed by Hall (2005), Hall and Milgrom (2008), and Moscarini and Postel-Vinay
(2023) yield only efficient job separations. In related work by Gertler and Trigari (2009) and Gertler
et al. (2020, 2022), inefficient job separations arise from wage rigidity and productivity shocks in
theory but are ignored in practice.

All aforementioned models steer clear of the Barro (1977) critique of inefficient outcomes under
long-term contracts. Models in this tradition have produced many important insights. At the same
time, there is mounting empirical evidence linking wage rigidity to the employment sensitivity
to aggregate shocks,? bilaterally inefficient job separations,* and real effects of monetary policy in
the labor market.> Our work represents a stark departure from this tradition in that we explicitly
model inefficient turnover as a result of search frictions, productivity shocks, wage rigidity, and
two-sided lack of commitment. In doing so, our theory yields a novel characterization of job
creation, job separation, and wage determination under inefficient turnover in steady state and
over the business cycle. In this sense, our work connects with a theoretical literature’s conclusion
that “regrettable layoffs when demand is weak and regrettable quits when demand is strong are the outcome

of practical limitations on contracts” (p. 255 of Hall and Lazear, 1984). Recent work along these lines

3Schmieder and von Wachter (2010) document that workers with higher wages and more rigid wages face increased
layoff risk in the U.S. Kaur (2019) finds that wage rigidity distorts employment in the presence of labor demand shocks
in India. Ehrlich and Montes (2024) show that wage rigidity increases layoffs but decreases quits and hiring in Germany.
4ager et al. (2022) provide quasi-experimental evidence of inefficient job separations following changes in unemploy-
ment insurance (UI) policies. Furthermore, many UI recipients would accept significant wage cuts in lieu of being laid
off (Davis and Krolikowski, 2023), yet employers do not consider pay cuts a substitute for layoffs (Bertheau ef al., 2023).
5Qlivei and Tenreyro (2007, 2010) show that staggered wage contracts transmit monetary policy to output in the U.S.
and other countries. Coglianese ef al. (2023) link wage rigidity to monetary policy-induced unemployment in Sweden.
Faia and Pezone (2023) find greater employment sensitivity to monetary policy at firms with more rigid wages in Italy.
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includes Mueller (2017) who calibrates a model with inefficient separations due to wage rigidity,
Carlsson and Westermark (2022) who develop a model of inefficient layoffs, and Heathcote and
Cai (2023) who study the implications of inefficient quits for optimal UI design. More broadly, our
theory opens up the door to a new research agenda studying the propagation of aggregate shocks
in frictional labor markets subject to wage rigidity.

Our second contribution is methodological in nature and adds to two prominent literatures.
Relative to the search-theoretic literature, we introduce the powerful tools of nonzero-sum stochastic
differential games with stopping times (Bensoussan and Friedman, 1977). Such continuous-time
methods are well suited to our environment because they offer three distinct benefits. First, they
allow us to prove the existence and uniqueness of a BRE under inefficient turnover. Second,
they yield convenient properties of value functions (e.g., continuity) and policy functions (e.g.,
connectedness), allowing us to study equilibrium conditions using variational inequalities. Third,
they allow us to derive sharp comparative statics (e.g., anticipatory and option value effects).
The foundational work of Menzio and Shi (2010) studies BRE in a discrete-time model under
efficient turnover. We complement their work by leveraging new tools to characterize BRE in a
continuous-time model under two-sided lack of commitment.

There are important differences between our analysis and the product pricing literature.®
Specifically, we introduce new methods to extend the sufficient statistic approach to an environment
with no commitment on behalf of two strategically interacting parties (i.e., workers and firms) and
endogenous transitions between discrete states (i.e., employment and unemployment) in our labor
market setting. A notable contribution of Alvarez et al. (2016a) is to link the CIR of output to the
ratio of the kurtosis and frequency of price changes in a large class of product pricing models. We
complement their important insights by deriving the novel result that the CIR of employment in

our labor market context is proportional to a measure of skewness of wage changes.

Outline. The rest of the paper is organized as follows. Section 2 characterizes inefficient turnover
in the labor market. Section 3 derives sufficient statistics for the economy’s response to aggregate

shocks. Section 4 connects the model to labor market microdata. Finally, Section 5 concludes.

6See, for example, Alvarez et al. (2021) and Baley and Blanco (2021, 2022).



2 A Model of Labor Markets with Inefficient Turnover

In this section, we develop a model of inefficient turnover arising from the combination of search

frictions, idiosyncratic productivity shocks, wage rigidity, and two-sided lack of commitment.

2.1 Environment

Time is continuous and indexed by t. A unit mass of heterogeneous workers and an endogenous

mass of homogeneous firms meet in a frictional labor market.

Preferences. Both workers and firms discount the future at rate p > 0. Firms maximize profits.

Workers have risk-neutral preferences over consumption streams {C; }$> givenby E [ [~ e *'C; dt].

Technology. A worker’s flow income depends on their productivity Z; and their employment
state E;, which can be either employed (/) or unemployed (#). Employed workers produce Y; = Z;
and consume their wage W;. Unemployed workers consume BZ; from home production, with

B € (0,1). Henceforth, lower-case letters denote the logarithm of variables in uppercase.

Stochastic Process. Workers’ idiosyncratic productivities follow a Brownian motion in logarithms,

dz; = ydt + ¢ AWy, with drift v, volatility o, and a Wiener process Wy that is iid across workers.

Search Frictions. Unemployed workers and idle firms direct their search across segmented
submarkets indexed by worker productivity z and the wage w. In each submarket (z; w), firms
post vacancies at flow cost Ke? for K > 0. Given U (z;w) unemployed workers and V(z;w) va-
cancies, a Cobb-Douglas matching function with constant returns to scale produces m(z;w) =
U(z;w)*V(z; w)!~* matches, where « is the elasticity of matches with respect to the unemployed.
Given market tightness 6(z;w) := V(z;w)/U(z; w), workers’ job-finding rate is f(0(z;w)) =
m(z;w)/U(z;w) = 0(z;w)'~* and firms’ job-filling rate is q(0(z; w) ) = m(z; w)/V(z;w) = 0(z; w) ~*.
Existing matches can end for any of three reasons: they can be exogenously dissolved at Poisson

rate 6, or they can be endogenously and unilaterally dissolved by either the worker or the firm.

Wage Determination. While wages are competitively set at match formation, they are intermit-

tently rigid thereafter, with staggered wage renegotiations occurring at rate 6" > 0 and following a



Nash bargaining protocol with worker weight a. We present the limiting case with 6" = 0 in the

main text. All results extend to the case of 6" > 0, shown in Online Appendix I1.3.”

Agents’ Choices. An unemployed worker’s choice of submarket (z;w) is associated with a
job-finding rate f(0(z;w)). Exogenous separations occur at rate 6, inducing a stopping time °.
Given the wage w, a matched worker chooses a continuation productivity set Z(w), inducing
the worker’s stopping time 7 (z;w) = inf{t > 0 : z; € Z"(w)%,z0 = z}, where X° := R\X.
Similarly, given w, a matched firm chooses a continuation productivity set Z/(w), inducing the
firm’s stopping time v/ (z; w) = inf{t > 0: z; € Z/(w), z9 = z}. Naturally, agents’ stopping times
must be measurable with respect to their productivity history. Given the worker’s and the firm'’s
continuation sets and the exogenous separation hazard, the match duration is the first stopping

h

time in T" = (1", 1/,7%), denoted " = min{t", /, t°}.

2.2 Block-Recursive Equilibrium

A BRE can be described in two s’ceps.8 In the first step, we describe the optimal search behavior of
unmatched workers and firms. Let u(z) be the value of an unemployed worker under the optimal
search policy given productivity z. Let 6(z; w) denote market tightness in submarket (z; w). Let
h(z;w) and j(z; w) be the equilibrium values of an employed worker and a filled job. The problem

of an unemployed worker is characterized by the Hamilton-Jacobi-Bellman (H]JB) equation,

ou(z) N 0 9%u(2)

_NZ
pu(z) = Be* + 0z 2 9z2

+ max £(6(z0)) [h(z;w) — u(2)], )

with optimal search strategy w*(z). Equation (1) states that unemployed workers’ flow value is that
of an asset with a return equal to the sum of flow dividends (i.e., home production) and expected

capital gains (i.e., productivity fluctuations and finding a job). Free entry requires that
min {Ke* — q(0(z;w))j(z;w), 6(z;w) } = 0. ()

Equation (2) dictates zero profits in open submarkets and nonpositive profits in closed ones.

In the second step, which is the novel focus of this paper, we describe the strategic interaction

"We treat wage rigidity as technological in nature, similar to adjustment costs in product pricing (Barro, 1972) and
investment (Cooper and Haltiwanger, 2006).

8BRE objects do not depend on the distribution of productivities, wages, and employment states, allowing us to omit
it from all notation, as in Menzio and Shi (2010).



that forms part of the game between a matched worker-firm pair, which has three features. First,
payoffs are nonzero-sum, since the match flow value, €?, exceeds the flow value of separating, Be=.
Second, agents’ payoffs are stochastic and differential, since worker productivity z follows a Brownian
motion. Third, agents’ strategies consist of when to unilaterally separate from the match; i.e., the
stopping times implied by their continuation sets Z”(w) and Z/(w). Thus, the interaction between a
worker-firm pair can be formulated as a nonzero-sum stochastic differential game with stopping
times (Bensoussan and Friedman, 1977). The application of these mathematical methods in a labor

market context is different from existing work and a key contribution of this paper.

Value Functions. As long as one agent stays in the match with state z, the other agent chooses
whether to stay in the match or to separate, reflecting the two-sided lack of commitment. Thus, we
use variational inequalities to characterize the values of both agents. The HJB equation of a worker

employed at wage w with productivity z inside the firm’s optimal continuation set Z/*(w) is

z, 0'2 2 z, W
ph(ziw) = max {e@ 17 21 1 CEEED 4 5uta) — hizw) pu) | @)

Equation (3) reflects the employed worker’s choice between staying matched and quitting the firm.
The flow value of staying is that of an asset for which the return is the sum of flow dividends (i.e.,
the wage) and expected capital gains (i.e., productivity fluctuations and separation). The flow value
of quitting the firm is simply that of unemployment. The variational inequality in equation (3)
satisfies h(-;w) € C'(Z7*(w)) N C(R). That is, the value of the employed worker is continuously
once-differentiable inside the firm’s optimal continuation set and continuous everywhere. These
continuity and differentiability conditions correspond to the value matching and smooth pasting
conditions of the worker’s value function under their own best response. Importantly, a smooth
pasting condition characterizes the optimal boundary of the worker’s continuation region.
Analogously, the HJB equation of a firm employing a worker at wage w with productivity z

inside the worker’s optimal continuation set Z"*(w) is

2

di(z: d%i(z:
o) G S bjeiw), 0. @

dz

0j(z; w) = max {ez —e+

Equation (4) reflects the firm’s choice between staying matched and laying off the worker. The
flow value of staying is that of an asset for which the return is the sum of flow dividends (i.e.,

profits) and expected capital gains (i.e., productivity fluctuations and separation). The flow value



of laying off the worker is simply that of being idle. The variational inequality in equation (4)
satisfies j(-;w) € C'(Z2"(w)) N C(R). That is, the value of the matched firm is continuously once-
differentiable inside the worker’s optimal continuation set and continuous everywhere. Again, a
smooth pasting condition characterizes the optimal boundary of the firm’s continuation region.

If either agent dissolves the match, then the other agent receives their outside option value.

Therefore, the worker’s and the firm’s values of a match with productivity z and wage w satisfy:

hz;w) =u(z) Vze (2*(w)), )
j(Zw)=0  Vze (2"(w))". (6)

Equations (5)—(6) define each agent’s payoff outside the other agent’s continuation set. Value-
matching conditions imply the continuity of each agent’s value function at the boundaries of the
other agent’s continuation set. However, smooth pasting conditions do not apply to either agent’s
value at the boundary of the other agent’s continuation set because the HJB equations (3)—(4) do not
hold when an agent has no optimization problem to solve, which happens outside the other agent’s
continuation set.? For the same reason, we do not require value functions to be differentiable in the

entire domain, but only in the part where an agent has a choice between staying matched or not.

Continuation Sets. Two sets of conditions characterize agents” optimal continuation sets. First,

agents optimally choose to continue whenever

h(z;w) > u(z), )
i(z;w) > 0. ®)

Second, to resolve any ambiguity in the strategic choice of an indifferent party, we focus on the
socially (weakly) preferable outcome by invoking an equilibrium refinement. Specifically, we
assume that agents choose to continue whenever staying in the match is a weakly dominant
strategy. For any policy of the worker, the firm strictly prefers to continue the match if flow profits
are strictly positive—i.e., e* — e > 0—because the firm always has the option of firing the worker

in the future. Therefore, the firm’s optimal continuation set is

ZI*(w) := int{z : j(z;w) > 0 ore* —e” > 0}. )

9For example, for z € (2" (w))¢, 0 = pj(z;w) < max{e? — eV + 19j(z;w) /9z + (02 /2)9%j(z;w) /9z% — 8j(z; w) , O}.
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Analogously, the worker’s optimal continuation set includes all productivity levels for which the

sum of the current wage and the discounted capital gains from unemployment is positive:

232
ZM (w) := int {z th(z;w) > u(z) or 0 < e” — pu(z) + ’yabg(zz) + (728;12(22) } . (10)

Intuitively, the unemployed worker’s HJB equation (1) implies 0 < e — pu(z) + y(du(z)/9z) +
(02/2)0%u(z) /922 if and only if Be? + maxy f(0(z;w'))[h(z;w') — u(z)] < €. Thus, continuing
strictly dominates quitting precisely when the wage strictly exceeds the flow opportunity cost.

Figure 1 illustrates the equilibrium values and optimal policies of a worker-firm match. The
firm’s continuation set is Z/*(w) = (z~(w), o), which contains productivities for which the
firm makes strictly positive flow profits—i.e., z > Z~ (w) := w—as well as productivities for
which the worker and the firm continue despite negative flow profits due to a positive and large
enough continuation value—i.e., z € (z~ (w),Z~ (w)). Analogously, the worker’s continuation set is
ZM(w) = (—o0,z*(w)), which contains productivities for which the worker’s wage strictly exceeds
the flow opportunity cost—i.e., z < Z7(w), where Z" satisfies 0 = e¥ — pu(z") + you(z")/9z +
(02/2)0%u(z")/9z>—as well as productivities for which the worker and the firm continue despite
the worker’s negative net flow value due to a positive and large enough continuation value—i.e.,
z € (2% (w),z"(w)). The existence and uniqueness of a threshold characterizing each agent’s
separation policy are not assumptions but results formally derived below.

A Markov perfect equilibrium of this game is a fixed point between agents’ best-response
mappings involving continuation productivity levels z, given wage w.1% To address the trivial
multiplicity of equilibria, our equilibrium definition implicitly imposes weakly dominant strategies.
Definition 1. A BRE consists of a set of value functions {u(z),h(z;w),j(z;w)}, a market tightness
function 8(z;w), the matched worker’s and the matched firm’s continuation sets { Z"* (w), 2/*(w)}, and

the unemployed worker’s search strategy function w*(z) s.t.:
1. Given h(z;w) and 6(z; w), u(z) solves (1) with optimal search strategqy w*(z).
2. Given j(z;w), market tightness 0(z; w) satisfies the free-entry condition (2).

3. Given u(z) and Z7*(z), h(z;w) € CY(Z*(w)) N C(R) solves (3) and (5). Given Z"*(z), j(z;w) €
C' (2" (w)) NC(R) solves (4) and (6).

19The Markovian nature of the equilibrium reflects two-sided lack of commitment. Online Appendix 1.3 derives the
recursive equilibrium in continuous time from its discrete-time counterpart.
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4. Given u(z), the continuation set of the firm, Zi*(z), is (9) and that of the worker, Z"(z), is (10).

FIGURE 1. EQUILIBRIUM VALUES AND OPTIMAL POLICIES

= hzw) = ) -

/

N

Values

/ h(z;w) > u(z) and j(z;w) > 0

//
Z/"‘"(w) X
) 2 (w)
z~ (w) 7~ (w) Log Productivity T (w) zH(w)

Notes: The figure plots the value functions of workers (blue lines) and firms (red lines) for a given log wage w as a
function of log productivity z. Solid lines show the values in the match, which are h(z; w) for the worker and j(z; w)
for the firm. Dashed lines show the values outside of a match, which are u(z) for the worker and 0 for the firm.
The equilibrium continuation sets of the worker and the firm are Z"*(w) = (—oc0,z* (w)) and Z/*(w) = (z™ (w), ®),
respectively. The worker has positive net flow payoff for any productivity level z < Z+(w), where 1 satisfies 0 =
eV — pu(zt) + you(z+)/9z + (0% /2)9%u(z*) /9z%. The firm makes strictly positive flow profits for any productivity
level z >z~ (w) := w. Source: Model simulations.

Part 1 of Definition 1 requires unemployed workers’ search strategies to be optimal. Part
2 imposes free entry. The remaining parts describe agents’ best responses in two steps. Given
the other agent’s optimal continuation set, Part 3 describes the value function under the optimal

continuation policy. Given these value functions, Part 4 describes the optimal continuation sets.

Equilibrium Refinement. Our equilibrium definition incorporates an equilibrium refinement
based on weakly dominant strategies. For illustration, suppose time is discrete, a period lasts dt,
and the match will end in the following period with certainty. If continuation is optimal today in
expectation of match separation next period, which is the worst possible outcome from the next
period onward, then continuation must be optimal under any possible outcome from next period
onward. Table 1 lists the payoffs in the period game. Suppose that productivity z is such that flow
payoffs in the match exceed flow payoffs from the outside options for both the worker and the

firm—i.e., (e? —e“) dt > 0and e” dt + E, [e ?%u(z’)|z] > u(z). Then, there are two equilibria: one
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in which both agents choose to separate and one in which both players decide to continue. However,
the first equilibrium does not survive the iterated elimination of weakly dominated strategies since,
independent of what the other agent does, it is weakly better to continue. As dt — 0, we recover
the continuation sets in equations (9)—(10), which incorporate a restriction to weakly dominant
strategies in continuous time. That is, (¢ — %) dt > 0 and eV dt + E, [e ?Yu(z')|z] > u(z) imply
¢ —e¥ >0and 0 < e — pu(z) + you(z) /9z + (02/2)0%u(z)/9z* as dt — 0.

TABLE 1. ILLUSTRATING THE EQUILIBRIUM REFINEMENT USING PAYOFFS IN THE PERIOD GAME

‘ Worker separates Worker continues
Firm separates (0,u(z)) (0,u(z))
Firm continues (0,u(z)) ((e# —ev)dt,e” dt + B, [e P u(z')|z])

Notes: This table shows the payoffs in a discrete-time approximation of the game played between a worker and a firm
under the assumption that in the next period, match separat.

Inefficient Turnover. The flow benefit of a match, net of its opportunity cost, is given by ¢* — (Be* +
maxy, f(0(z;w))[h(z;w) —u(z)]) > 0, reflecting the positive social value of a match. Given that
wages are allocative in the sense that match duration depends on their level, given wage rigidity. For
this reason, inefficient job separations occur whenever a match is endogenously dissolved by either the
worker or the firm. The lack of commitment is reflected in the equilibrium definition: Endogenous
separations are optimal at each point of the state space for at least one of the agents. Importantly,
inefficiencies on the job separation margin also imply inefficient job match creation due to their effects
on unemployed workers’ search decisions through /(z; w) and on firms’ vacancy posting decisions
through j(z; w). Thus, inefficient turnover manifests itself in the form of endogenous quits versus
layoffs, in contrast to standard labor market theories (e.g., Mortensen and Pissarides, 1994) in which

the two events are not separately defined and separations occur when match surplus is exhausted.

2.3 Equilibrium Characterization

To understand the dependence of equilibrium objects on state variables, we recast the model
in terms of a reduced state space. It turns out that the relevant state variable for both workers
and firms is the log-wage-to-productivity ratio, @ := w — z. We can express agents’ values and
policies as functions of the scalar @ instead of the duplet (z; w). To simplify notation, we define
the transformed drift 4 := -y + ¢2 and the transformed discount factor p := p — vy — ¢?/2. The

following Lemma characterizes the equilibrium.
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Lemma 1. Suppose that the set (u(z),h(z; w), j(z;w), 0(z; w)) satisfies the equilibrium conditions (1)—(6),
given the continuation sets Z* (w) and Z7* (w) defined in (9)—(10) and search policy w*(z). Then,

h(z;w) — u(z)

(1, Jo ), W —2), 0w ) = (42, 1)

e* e*

, 9(2;w)>

equivalently characterizes the equilibrium if the following conditions are satisfied:

1. Given W(w) and (), U satisfies

pU = B +max f(8(0))W(b), (11)

w

where the optimal choice of submarket for an unemployed worker to search in is W* = w*(z) — z.

3. Given 2" := int {: W(d) > 0o0re® > pU} and Z* = int {@: J(d) > 0ore? < 1}, the
transformed value functions W () and () satisfy the variational inequalities

max {ew — o — AW/ (@) + SW" (@) — SW (), o} Vi € 27,

pW (D) = (12)

0 Vo € (2%,

X max {1 —e® — 4f(d) + ZJ" (@) — 5] (@), 0} Vo e 2",
pf(@) = { ’ } (13)
0 Vb € (M),

with W € CY(Z27*) NC(R) and | € C'(Z2") N C(R). Finally, the optimal stopping times are given

by T = inf{t > 0 : Wy € (2", wy = ®*} and T* = inf{t > 0: W € (2/*)°, wo = D*}.
Proof. See Appendix A.1. O

The equilibrium conditions in Lemma 1 are transformed versions of those of the original
problem stated above. Part 1 gives the value of unemployment under the optimal search strategy
in equation (11). Part 2 states the transformed free-entry condition. Part 3 describes a nontrivial
equilibrium, with equations (12)—(13) referencing agents’ optimal continuation regions such that
workers’ wages are above the flow value of unemployment whenever e? > pU and firms’ flow
profits are positive whenever ¢? < 1.

Next, we state a key result on equilibrium existence and uniqueness.
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Proposition 1. There exists a unique BRE.
Proof. See Appendix A.2. O

Although equilibrium existence and uniqueness are important properties of models of directed
search, in our context they do not follow from previous work. Standard arguments in discrete time
with only exogenous job separations involve Schauder’s fixed-point theorem (e.g., Menzio and
Shi, 2010; Schaal, 2017), which critically relies on two conditions: continuity in the value functions
and continuity in the mapping between value functions that characterize the BRE. These standard
arguments no longer apply to the above-referenced models in discrete time after the inclusion of
endogenous separations, nor do they carry over to our continuous-time setup.

Instead, we leverage quasi-variational inequalities to prove the existence and uniqueness of
a nontrivial equilibrium in our model. The proof proceeds in three steps. In the first step, we
represent the equilibrium conditions (12)—(13) in terms of quasi-variational inequalities (cf. Antman,
1983). In the second step, we use the existence and uniqueness results in Lions and Stampacchia
(1967) to show the existence of the agents” best response functions and their associated value
functions. In the third step, we define a functional equation Q(-) that maps the worker’s value
function to itself using both agents’ best response functional equations. Thus, proving the existence
of a unique nontrivial Nash equilibrium becomes equivalent to finding a fixed point W* such
that Q(W*) = W*. To this end, we show that the operator Q(-) is monotonic, thus allowing us to
establish the existence of the fixed point by invoking the Birkhoff-Tartar theorem (Aubin, 2007),
which applies under relatively weak regularity conditions. Finally, we show that the operator Q(+)
satisfies a type of concavity property, which allows us to establish the uniqueness of the fixed point.
This uniqueness result is nontrivial given the complementarity in agents” continuation decisions
based on strategic worker-firm interactions within a match. Importantly, our continuous-time setup
also allows us to leverage properties of the employed worker’s and the firm’s value functions—e.g.,
continuity with respect to U—which are necessary to find a unique equilibrium of this economy.

At an intuitive level, the result follows from two observations. First, taking the value of
unemployment as given, the firm chooses a layoff productivity threshold z~ (w) and the worker
chooses a quit productivity threshold z*(w). If the firm decides to delay a layoff (i.e., a lower
z~ (w)), then the worker’s best response is also to delay a quit (i.e., higher z* (w)). But the response
is less than one-for-one, because the benefit from delaying separation materializes in the future. In

the extreme, as one agent commits to staying in the match, the other party still has an incentive
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to separate in some future states. Thus, each agent’s best-response threshold is decreasing and
concave in the other agent’s threshold. Second, if the future value of unemployment is higher, then
workers will quit sooner (i.e., lower z* (w)) and the match value is lower. This in turn reduces
the current value of an unemployed worker. Thus, current and future unemployment values are
“strategic substitutes,” pushing toward the uniqueness of equilibrium.

Next, we characterize properties of the BRE. Recalling the definition of the transformed state
variable @ := w — z, we postulate that there exist optimal policies 0~ < @* < @™, where W™ is the
worker’s optimal job-separation threshold, @* is the optimal search strategy at match formation, and
@™ is the firm’s optimal job separation threshold. We define the transformed surplus of the match as
S(w) := J(@) + W (@) and the worker’s share of the transformed surplus as #(®) := W (@) /S().

Proposition 2. The BRE has the following properties:

1. The joint match surplus satisfies
S(w) = (1—pU)T (@, p), (14)
where B < pU < 1 and the expected discounted match duration is given by

T(W,0):=E

-L-Wl*
/ e Pt dt|wy = w] ) (15)
0

2. The competitive entry wage, &* = argmaxy f((@))W (@), exists and is unique. Moreover, it solves

" = argmax { W()*] (@)~ } = argmax {y(@)*(1 - y(@))'*T (@)}, (16)

w w

with the unique solution characterized by the following optimality condition:

I (o~ a 1—w _ 7;{;(@*45)
7@ <n<w*> ‘1—n<w*>) =T Tp) an

share channel surplus channel

3. The equilibrium job-finding rate f(0(v*)) and the flow opportunity cost of employment pU are

fO@") = [(1=n(@))(1 - pU)T (@",p)/K] *, (18)

pUL = B+ (R (1= (@) (@) (1—pU) T(@",p)) " (19)



4. Ify # 0or o # 0, then each agent’s continuation set is connected and that of the game is bounded:
2 = (™, 00) and ZI* = (—oc0, "), (20)

where —co < ®~ < log(pU) < 0 < @* < oo. Workers” and firms’ value functions satisfy the

following smooth pasting conditions: W' () = J'(@*) = 0.
Proof. See Appendix A.3. O

Starting with Part 1 of Proposition 2, equation (14) states that the match surplus equals the
product of the transformed flow surplus 1 — pU and the expected discounted match duration
T (W,p) defined in equation (15), which depends on the wage @ and the width of the match’s
continuation set (@, @"). Also, the flow opportunity cost of employment pU is bounded between
1 (i.e., the transformed value of flow output in the match) and B (i.e., the transformed value of
home production). Since 1 > pU, the joint match surplus is always strictly positive, so that all
endogenous job separations are inefficient.

Equations (16)—(17) of Part 2 show that the optimal entry wage @w* balances a share channel and
a surplus channel. Unemployed workers search for wages that are competitively set as if they were a
Nash bargaining solution with worker weight &, thereby satisfying the Hosios (1990) condition.
This result derives from free entry, which implies that workers’ job-finding rate is proportional to
the firm’s value. A larger entry wage increases the worker’s surplus share by #'(@*)a /5 (*) but
reduces the job-finding probability by #'(@*)(1 — a) /(1 — n(@*)). This trade-off is reflected in the
share channel and standard in models of directed search (e.g., Shimer, 1996; Moen, 1997).

In addition, the novel surplus channel captures the dependence of expected match duration on
the wage set at match formation. The higher (lower) the entry wage, the sooner the firm (worker)
will dissolve the match in expectation. Only if 7 (@*, p) = 0, then the worker’s surplus share is
n(@*) = a, as in bilaterally efficient models. These considerations are unique to our environment.

Part 3 states workers’ job-finding rate (18) and the flow opportunity cost of employment (19) as
functions of the worker’s surplus share and the expected discounted match duration.

Part 4 shows that the continuation set of the worker and that of the firm in (20) follow threshold
rules in the log-wage-to-productivity ratio @. Workers do not quit as long as @ > @~, while firms
refrain from firing the worker as long as @ < @™. Thus, the continuation set for the match is given
by 2" N Z* = (@™, @"). These thresholds satisfy &~ < log(pU) and @+ > 0, reflecting both

parties” willingness to accept flow payoffs below that from their respective outside option. Finally,
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the smooth pasting conditions apply at the worker’s quit threshold @~ and at the firm’s firing
threshold @™, reflecting the optimality of agents’ continuation thresholds.

Finally, it is worth highlighting that the optimal entry wage (see Part 2) will be set at an optimal
distance from both separation thresholds (see Part 4). To convey the intuition, consider a wage-to-
productivity ratio @ close to the quit threshold @~. The worker’s and firm'’s value functions are
increasing for @ sufficiently close to @~ since both values are zero when @ < @~ and positive when
@ > @~ .1 Therefore, around the quit threshold, raising wages is Pareto improving, as it results in
a higher flow payoff for the worker and at the same time a lower quit probability, which extends
the expected match duration and increases the firm’s value. Following a symmetric argument,

lowering wages is Pareto improving near the layoff threshold.

2.4 Understanding the Economic Mechanisms

Static Considerations. We first consider equilibrium policies under fixed productivity.

Proposition 3. If v = o = 0, then optimal policies are given by
(o, &, &) = log(pU, a + (1 —a)pU, 1),

with §(@*) = a and T (@*,p) = 1/(p + 6), and no smooth pasting conditions apply.
Proof. See Appendix A 4. O

Note that ®~ < @* < @ and @ = @* for the match duration, so there are no endogenous job
separations absent productivity fluctuations. From this, we see that lack of commitment and wage
rigidity by themselves do not generate inefficient job separations. Absent productivity fluctuations,
agents’ behavior is bilaterally efficient, in that it maximizes the joint match surplus.

In addition to the static forces outlined above, two dynamic considerations guide workers” and

tirms’ choices: the option value effect and the anticipatory effect.

Dynamic Consideration I: The Option Value Effect. To understand the option value due to
productivity fluctuations, we temporarily abstract from the drift in worker productivity.

Proposition 4. If 4 = 0and a = 1/2, then, to a first-order approximation of flow payoffs around the
entry wage, w* = log ((1+ pU)/2) and job-separation thresholds satisfy w* = &* & h(g, ) for some
function h(p, ®) with ¢ := \/2(p + 6) /o and @ := (1 — pU) /(1 + pU). The following properties apply:

11Figure I1 in Online Appendix 1.1 plots workers” and firms’ values as functions of .
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1. h(e,®) is decreasing in ¢ and increasing in P.
2. limy 0 h(¢, @) = 3P and limy .o h(¢p, P) = .
3. ¢h(¢,®) is increasing in ¢.

The equilibrium surplus share is n(©®*) = « = 1/2 and the expected discounted match duration,

1=2 (e<ph(<v/<1>) + e*(Ph(qo,@)) -

, (21)

is increasing in ¢ and O and satisfies T}, (%, p) = 0.
Proof. See Appendix A 4. O

Proposition 4 demonstrates that idiosyncratic volatility, by itself, does not affect the split of the
match surplus between the worker and the firm. Such an economy is symmetric around the entry
wage, which implies T/ (@*,p) = 0 and #(@*) = «. Thus, a larger @* reduces the match duration
by increasing the likelihood of a layoff but increases the match duration by reducing the likelihood
of a quit. Weighing both forces, 7 (-, p) is maximized at &* = (1 + pU)/2 and #(%*) = 1/2.

This result provides a tight characterization of the worker’s and the firm’s optimal policy
functions, which yield the continuation region of the match (@ ~, @) being symmetrically centered
around the optimal entry wage @*. Second, the width of the continuation region is increasing in
volatility c and decreasing in pU (Part 1). The width of the inaction region increases with o due
to the option value effect: Though the worker’s productivity might fall below the wage, the firm
is willing to wait before firing the worker because productivity may increase in the future. The
width of the inaction region decreases with pU, a higher value of which decreases match surplus
and makes it more costly to wait.

The option value effect naturally arises in models of inaction. However, our model features a
departure from canonical models of inaction (e.g., Barro, 1972; Bernanke, 1983). In those models,
the width of the continuation region typically grows unboundedly with the volatility ¢. Instead, in
our model, the width of the continuation region has an upper bound (Part 2). To see the intuition
behind this result, consider the problem of a firm that finds itself in a match with negative flow
profits—the worker case is exactly analogous. The marginal benefit from remaining in a currently
unprofitable match is that, with some probability in the future, productivity increases enough to

make the match profitable by rendering the wage-to-productivity ratio less than unity. At the same
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time, inaction on the part of the firm is risky: Productivity may increase by a large enough amount
for the worker to choose to quit. Given the two job-separation thresholds, as the volatility goes to
infinity, the probability of remaining in the profitable part of the inaction region approaches zero.
Thus, the two-sided lack of commitment imposes an upper bound on the option value associated
with remaining in a match.

The inefficiency due to the lack of commitment also manifests itself in the expected duration of
the match in (21). Since the separation thresholds, indexed by (¢, ®), remain bounded as ¢ — oo,

the expected match duration decreases as the volatility of productivity shocks increases (Part 3).

Dynamic Consideration II: The Anticipatory Effect. To understand the anticipatory effect due to
the productivity drift, we temporarily abstract from volatility in worker productivity (i.e., o = 0)
and focus on the case with weakly positive drift (i.e., 4 > 0), with other cases being analogous.

Proposition 5. If o = 0and 4 > 0, then the quit threshold is ®~ = log (pU) and

wr=w"+T

~<0¢+(1

where T(-), defined in equation (A.32) of Appendix A.4, is increasing in its first arqgument and decreasing in

its second argument. Moreover:

1. As§ 0, then (T(), T(@",p), n(@*)) — (log (“Ug0) , 715 o).

2. Asq — oo, then (T(:), T(*,p), n(@*)) — (T'™*, 0, y'mit) , where T'™* and y'™* satisfy

R Flimit (17@(1,‘3&) limit
o+ (1—a)pl € —1- ol (1 - eflimit_i)
pﬁ - le'mit ’
. 1—un < ) limit
limit __
U =+ Tlimlt limit _|_ (1 llmit) ’ (22)
Proof. See Appendix A.4. O

When productivity grows at a constant rate, the job-separation threshold @~ equals the static
opportunity cost of employment since workers benefit from remaining matched up to that point
and workers have no incentive to delay separation beyond that point. The fact that @~ is insensitive
to the drift differs from the canonical result in Sheshinski and Weiss (1977) who studied the problem

of a firm setting prices subject to menu costs with positive trend inflation. Their main result is that,
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in order to economize on menu costs associated with price changes, firms both decrease the lower
threshold of the inaction region for real prices and increase the nominal reset price in response
to higher trend inflation. Here, the quit threshold @~ is independent of the drift due to limited
commitment—the firm has no control over worker quits. From Proposition 5, the entry wage @* is
increasing in both the weighted sum of opportunity costs (« + (1 — &)pU) and the drift (§). We refer
to the latter as the anticipatory effect: Workers anticipate higher future productivity and modify
their search strategy accordingly. The following two cases illustrate this point by exploring two
limiting behaviors of the anticipatory effect.

As 4 — 0 (Part 1), the equilibrium entry wage @™ is the same as in the case without drift; thus,
n(@W*) = w. As the drift increases, workers optimally search for a job with a higher entry wage.
Therefore, the average wage in the economy increases above the weighted sum of opportunity
costs; recall that @~ remains fixed. This results from the worker internalizing the trade-off whereby
a higher wage implies (i) a reduced job-finding rate and (ii) a lower frequency of inefficient job
separations and, thus, a longer expected match duration. As 4 — oo (Part 2), the entry wage w*
becomes unresponsive to the drift because the job-finding rate becomes so small that it dominates
the trade-off. Thus, the effect of the drift on the entry wage is bounded, in contrast to the reset
price in Sheshinski and Weiss (1977). Finally, as seen in (22), the anticipatory effect gives workers a
higher surplus share when 4 — co compared to § — 0.

Workers’ lack of commitment gives them the option to quit, which implies the invariance of @™
to 4 and a decreased value of searching for a job. To see this, suppose a worker commits to some
W~ as 0 — 0. Then, the worker chooses a single instrument, namely the entry wage w* to balance
two objectives. On one hand, the worker chooses w* to steer the rate of inefficient separations,
which occur at a tenure of (w* — @~ )/4, as captured by the surplus channel. On the other hand,
the worker chooses w* close to the weighted sum of opportunity costs, as captured by the share
channel. Since these objectives are conflicting, lack of commitment distorts both the expected match

duration and job-finding rates in equilibrium.

2.5 Discussion of Model Assumptions

For expositional clarity, we imposed certain assumptions that are not essential for our theory of
labor markets with inefficient turnover: (i) homotheticity of the home production technology and
vacancy costs; (ii) no on-the-job search; and (iii) time dependence of wage setting.

Regarding (i), shocks to worker productivity Z; affect agents” choices through the relative flow
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value of employment (W;/Z;), home production (BZ;), and vacancy costs (KZ;). In order to focus
on the novel first margin, we abstract from the other two by assuming that home production and
vacancy costs are homothetic in worker productivity. This assumption implies that all workers
face the same job-finding rate and entry wage per efficiency unit and also rules out any efficient
endogenous job separations. As a result, it allows us to focus on our economic mechanisms within—
rather than between—worker types. It is straight-forward to relax these homotheticity assumptions
in numerical simulations.

Regarding (ii), workers can reset their wages by undergoing a costly unemployment spell,
similar to models with costly on-the-job search. Even allowing for on-the-job search, inefficient
separations into unemployment would occur for analogous reasons. Qualitatively, on-the-job
search would widen the inaction region since now employment yields an option value of receiving
outside employment offers. However, a fully specified model of on-the-job search under wage
rigidity would need to take a stance on the wage renegotiation protocol. Blanco and Drenik (2023)
take a step in this direction.

Finally, regarding (iii), time-dependent wage setting a la Calvo (1983) is common in macroe-
conomic modeling (e.g., Erceg et al., 2000) . Wages have been empirically documented to be reset
at certain intervals (Taylor, 1979), synchronized within firms (Grigsby et al., 2021), and subject to
staggered institutional contracts (Adamopoulou et al., 2022). While necessarily parsimonious, the
current model of wage setting is motivated by these empirical regularities. Our assumptions allow
for sharp analytical results, the essence of which we expect to carry over to alternative models of
state-dependent wage setting that require numerical solution methods (cf. Alvarez et al., 2016a,b;

Auclert et al., 2023).12

3 Aggregate Shocks in Labor Markets with Inefficient Turnover

How does inefficient turnover affect the transmission of aggregate shocks in the labor market? To
answer this question, we extend our model to encompass shocks to aggregate productivity and

monetary policy.

12E.¢, Alvarez et al. (2016a) conclude that “for small aggregate shocks the [multiproduct pricing] models behave
similarly irrespective of the nature of the sticky price friction” (p. 2850).
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3.1 An Economy with Aggregate Shocks

To characterize the labor market response to a broad set of aggregate shocks, we modify the baseline
model by introducing shocks to economy-wide TFPR, defined as TFPR; := A;P;, where A; denotes
aggregate productivity and P; denotes the aggregate price level. We assume that the logarithm of

TFPR follows a Brownian motion with drift x and volatility {:
dlog TFPR; = x dt +  dW]'F,

where WY is a Wiener process. Studying shocks to TFPR has two benefits. On one hand, it allows
us to study shocks to aggregate productivity, which are the predominant source of exogenous
fluctuations studied in the quantitative macro-labor literature (Shimer, 2005a; Hall, 2005). On
the other hand, it allows us to study shocks to the aggregate price level, which is endogenously
determined in a monetary economy. We provide two alternative microfoundations for the aggregate
price level when monetary policy is conducted either via money supply (Online Appendix II.1)
or an interest rate-based Taylor rule (Online Appendix I.2). In both models, monetary policy
moves the aggregate price level P; and thus TFPR;.!> We assume that the vacancy posting cost
KZ; and the value of home production BZ; are linear in TFPR. This assumption arises naturally
when the TFPR shock is due to price movements as long as KZ; and BZ; are denominated in real
terms. Under the interpretation of the TFPR shock being driven by productivity, this assumption
can be justified by appealing to recruiting expenses incurred in the process of workers operating a
recruiting technology (cf. Shimer, 2010).

The introduction of aggregate shocks requires minor adjustments to our framework. Aggregate
shocks do not change the analysis, beyond altering the stochastic process for productivity and
introducing dynamics in the aggregate state. Given fluctuations in TFPR, the relevant state variable
becomes the real wage-to-productivity ratio W := w — z — log TFPR, which equals the worker’s nomi-
nal wage w minus worker productivity z 4+ log TFPR. All policies (@™, @*, @~ ) are then expressed in
TFPR-adjusted terms. In addition, it will be useful to keep track of the negative of the cumulative

shocks to z + log TFPR since the beginning of a spell of employment or unemployment, denoted

13By studying the labor market effects of monetary policy through the aggregate price level, we abstract from other
important monetary policy channels (e.g., Hall, 2017; Kehoe ef al., 2019). Our goal is to highlight how monetary policy
“greases the wheels of the labor market” (Tobin, 1972) by redistributing surplus between workers and firms.
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Az := W — @*, which evolves as
dAz = — (y + x) dt + cdW? + 2 dWIE.

Let Gj,(Az) and ¢"(Az) denote the cumulative distribution function (CDF) and probability
density function (PDF), respectively, of cumulative worker productivity shocks within a spell in
steady state. This distribution’s support is given by [-A~,A"], where A~ := ®* — @~ and AT :=
@t — @*. For any k € IN, we define this distribution’s k" moment as E,(AzF) := [, Az"dG,(Az).

Our model implies a set of observable steady-state statistics. First, agents transition from
employment to unemployment at rate s, from unemployment to employment at rate f(#(@*)), and
total employment is £. Second, the model implies a distribution of log nominal wage changes
between consecutive job spells Aw and distributions of employment durations T and unem-
ployment durations *.!* We use subscript D to denote moments of these distributions observed
in the microdata—e.g., Ep|[-] and Varp|-] denote the mean and the variance of this distribution,
respectively. These moments will be useful to define sufficient statistics for the effects of aggregate

shocks on labor market outcomes.

3.2 Sufficient Statistics for Aggregate Employment and Real Wages

Starting from the steady state without aggregate shocks, we consider a small, unanticipated shock
¢ > 0to TFPR at time ¢ = 0, so that log(TFPRy) = limo log(TFPR;) + {. We are interested in the

economy’s CIR of aggregate employment and TFPR-adjusted wages to such an aggregate shock.'

An Illustration. Figure 2 shows the evolution of key variables after an unanticipated one-off
increase in TFPR—i.e., the price level or productivity. The distribution of real wage-to-productivity
ratios @ shifts to the left (Panel A), resulting in lower TFPR-adjusted wages per capita w; :=
fol 1[E;t = h]w;; di (Panel B), movements in the job-separation rate s; (Panel C), the shares of quits
and layoffs (Panel D), the job-finding rate f; (Panel E), and aggregate employment &; (Panel F).
While employed workers” wages are rigid, we allow for two polar cases guiding the wages of

new matches, which are commonly considered a key determinant of the job-finding rate (Pissarides,

14While worker wages and productivities do not have a stationary distribution in levels, the distribution of wage
changes across jobs is stationary. Although not necessary for our purposes, the former could be rendered stationary by
assuming, for example, that workers permanently leave the labor force at a constant hazard rate.

15By the certainty equivalence principle, the IRF following an aggregate shock from the steady state with steady-state
policies is equivalent to the solution based on a first-order perturbation of the model with business cycle fluctuations.
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FIGURE 2. IMPULSE RESPONSE FUNCTIONS OF LABOR MARKET VARIABLES
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Notes: Panel A shows the distribution of real wage-to-productivity ratios @ := w;; — z;; — log TFPR; in steady state
and after a TFPR shock of size {. Panels B-F show the IRFs of the average log TFPR-adjusted per-capita wage w;, the
job-separation rate s;, the shares of quits and layoffs, the job-finding rate f;, and aggregate employment &;, respectively.

Source: Model simulations.

2009). In the first case of flexible entry wages, we assume that unemployed workers adjust their
search behavior to the new TFPR level, so @* remains at its steady-state level. Consequently, firms’
TFPR-adjusted value of hiring is unaffected, so job-filling and job-finding rates remain unchanged
(dashed line in Panel E). The only effect of the TFPR shock is to shift @ in the inaction region, which
affects the time path of endogenous job separations in the form of quits and layoffs (Panel D). Thus,
employment dynamics under flexible entry wages are driven only by job-separation rates.

In the second case of sticky entry wages, we assume that unemployed workers are unaware of
the shock realization at t = 0 and learn about it only after becoming employed. Given this lack of
information, unemployed workers do not adjust their search behavior to the higher TFPR and keep
searching for jobs that pay the old steady-state nominal wage-to-productivity ratio, which is @* —

in real terms. Once they find a job, workers’ search strategies incorporate their knowledge about the
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shock and search for jobs that pay the steady-state real wage @*. Since firms know about the shock
realization, the job-finding rate is affected by the free-entry condition. Consequently, temporarily
lower entry wages induce firms to post more vacancies and the job-finding rate increases (solid
line in Panel E). In summary, employment dynamics under sticky entry wages are driven by both
job-separation and job-finding rates.

The case of sticky entry wages is motivated by the empirical evidence that new-hire wages
evolve similarly to incumbent workers within a firm at business cycle frequencies (Grigsby et al.,
2021) and that wages for new hires rarely change between successive vacancies at the same job

(Hazell and Taska, 2022). Microfounding this assumption is beyond the scope of this paper.'

Impulse Responses. Our goal is to characterize the effects of a TFPR shock on aggregate employ-
ment €. To this end, we define IRF,({, t) := x; — x;; as the value of variable x at time  relative to
its steady-state value x, following an unanticipated one-off TFPR shock { at time 0. Following

Alvarez et al. (2016a), we define the CIR of variable x to a TFPR shock { as

CIRL({) = /O T IRE(C ) dt,

which is simply the area under the IRF for all t > 0. The CIR summarizes in a single scalar the
full path—i.e., the on-impact response and dynamics—of the labor market response to the TFPR
shock. Therefore, the CIR can be interpreted as a TFPR multiplier. To illustrate the logic behind the
CIR, suppose that there are no nominal rigidities so that the nominal wages of both newly hired
and incumbent workers respond one-for-one to the shock. In this case, IRF,({,t) = 0 for all t and
thus CIR,({) = 0 for x € {&, w}, which reflects the fact that given our assumptions there are no
consequences of TFPR shocks. With nominal rigidities, a TFPR shock affects both employment and
wages, the magnitude of which is given by the CIR.

Next, we relate the economy’s CIR to conventional labor market microdata. A key insight is
that the CIR can be characterized only in terms of cross-sectional steady-state moments. Intuitively,
changes in a worker’s idiosyncratic productivity and changes in TFPR symmetrically affect the

log-real-wage-to-productivity ratio W;;/ (Z; TFPR;), so the response of a match to idiosyncratic

16Since the steady-state entry wage is constrained efficient, any perturbation around that level has a second-order
welfare effect on workers. Thus, the assumption of sticky entry wages could be replaced by any first-order cost of entry
wage adjustments arising from imperfect knowledge about aggregate shocks, as in models of sticky information (Alvarez
et al., 2021), rational inattention (Mac¢kowiak and Wiederholt, 2009), and level-k thinking (Farhi and Werning, 2019). For
notable models of rigid entry wages, see Fukui (2020) and Menzio (2022).
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worker productivity changes in steady state can inform the aggregate effects of shocks to TFPR.
For ease of exposition, we assume y + x = 0 for the remainder of the main text. However, all
results and their proofs in Appendix B refer to the general case with y + x ; 0. At the end of this

section, we discuss the differences with the general case.

CIR of Employment with Flexible Entry Wages. To facilitate the exposition, we first present the

case with flexible entry wages. Proposition 6 characterizes the CIR up to a first order.!”

Proposition 6. Up to first order, the CIR of employment under flexible entry wages is

CIR Ejy[Az

Fell)_ _1-g, h[z ] +0o(2) (23)
4 o
1 1 1 Aw?
B e X ———— X ZEp |Aw——r—s| +0(0). o4
f((@*)) Varp[aw] ~ 3P { w]ED [szﬂ o(¢) (24)
avg. unemployment duration inverse dispersion asymmetries

Proof. See Appendix B.1. -

Let us begin by inspecting the result in equation (23) of Proposition 6, which expresses the CIR
in terms of model objects. To build intuition, we consider two cases in which aggregate employment
has a zero response to a TFPR shock. In the first case, all job separations are exogenous, so the
IRF of the job-separation rate identically equals zero. In the second case, all job separations are
endogenous but the mass of workers quitting exactly equals the mass of workers saved from layoffs
along the entire IRF. In both cases, equation (23) features E;[Az] = 0. As a third case, consider
an economy with Ej[Az] < 0. Such an economy features a larger share of layoffs than quits, so a
shock-induced reduction in TFPR-adjusted wages reduces the separation rate and increases total
employment. Finally, the CIR is scaled by the steady-state unemployment rate, 1 — &, which is
informative of the steady-state job-finding rate f(f(*)) and thus the speed of (re-)matching.

Next, we inspect the result in equation (24), which expresses the CIR in terms of a sufficient
statistic that depends only on the observed distributions of wage changes across jobs and unemploy-
ment duration. This sufficient statistic is composed of three terms: (i) the average unemployment
duration; (ii) the inverse of the dispersion of wage changes; and (iii) a measure of the asymmetries
of the wage change distribution. Note that these moments summarize the entire distribution of
workers over the inaction band, not just the mass of workers at the separation thresholds. Each

of the three terms in the CIR plays an intuitive role. First, the steady-state unemployment rate

Thatis, CIRy() = CIR;(0) + (CIRy)'(0)Z + 0(Z?), where CIR,(0) = 0.
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scales the aggregate employment response. Second, a larger dispersion of wage changes indicates a
wider inaction region or matches that are more resilient to shocks, which is inversely related to the
share of endogenous separations and responsiveness of aggregate employment to a given impulse.
Third, the measure of asymmetries reflects the relative distances of the separation thresholds @~
and @ from the entry wage @* and thus the relative incidence of quits versus layoffs. For example,
consider a distribution of nominal wage changes that is positively skewed—i.e., featuring a large
mass of workers who experience small wage cuts due to a relatively high layoff risk. In this
example, a positive shock to TFPR reduces the relative cost of wages, leading firms to reduce layoffs
and thereby increasing aggregate employment.

Proposition 6 also shed new light on the conventional wisdom whereby fluctuations in the
job separation rate are not the primary driver of aggregate employment dynamics (e.g., Shimer,
2005b). In the context of a TFPR shock, equation (23) points to conditions under which aggregate
employment fluctuations due to endogenous job separations are either small or large.'® Moreover,
it allows us to verify those conditions in the data. Given the conventional wisdom, one might be
tempted to conclude that sticky wages cannot lead to significant inefficiencies at the micro and
macro level. However, equation (23) shows that the CIR of aggregate employment can be small
despite the presence of inefficient separations at the micro level. Thus, time-series data on aggregate
job separations cannot be used to assess the incidence of inefficient turnover. Instead, in order to

do so, labor market microdata is needed.

CIR of Employment with Sticky Entry Wages. Having characterized the aggregate employment

response under flexible entry wages, Proposition 7 describes the case of sticky entry wages.

Proposition 7. Up to first order, the CIR of employment under sticky entry wages is

CRe@) _ o [Eda 1 [1-a| g Ta@.p)]  Ta@,0)
¢ =08 T | [(1—«@*)) ”r(w*,m] L(w*,mH“@
job-finding effect ol
effect
(25)
_ 2] L @) | Ta@hp)  Ta@,0)
=0 [P - s e * R~ Aol 0 @

18For example, all else equal, the rate of inefficient job separations is more responsive to TFPR shocks for larger TFPR
trends x. Alternatively, following a sequence of negative productivity shocks, an inflationary shock reduces the incidence
of inefficient job separations due to firings (see Blanco et al., 2022b, for empirical evidence consistent with this theoretical
result).
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Proof. See Appendix B.2. O

Focusing first on equation (25) of Proposition 7, the first term in brackets reflects the same forces
at play in the CIR under flexible entry wages. The remaining terms in brackets capture two new
mechanisms at play when entry wages are sticky. First, the job-finding effect captures the fact that
lower TFPR-adjusted entry wages increase the firm'’s surplus share (i.e., #'(@*) /(1 — n(@*))) but
also could affect the expected match duration (i.e., 7} (@*,p)/ T (%%, p)) and the match surplus,
both of which shape firms” incentives to post vacancies. Second, the new hires” separation effect
captures the fact that lower TFPR-adjusted entry wages directly affect the separation rate of initially
unemployed workers (i.e., 7/ (®*,0)/ T (@*,0)).

Next, we move to equation (26), which comes from combining (25) with the optimality condition
for @* in (17). This step’s goal is to take advantage of the fact that workers internalize the effect of
entry wages on net job creation. To shed light on the two key elasticities appearing in equation
(26), we first show that 7 (@*,p) /T (@*,p) — T} (@*,0) /T (@*,0) ~ 0. While this property trivially
holds when p | 0, the following lemma shows that the elasticity of the expected match duration to
the entry wage is independent of the discount factor p up to second order.

Lemma 2. Up to a second-order approximation of the match duration T (W, p) around © = ©* and for all

p, we have T/ (0*,p)/T (@*,p) = (AT —A7)/(ATA™).
Proof. See Appendix B.3. O

Lemma 2 shows that the elasticity of match duration is a function of the quit and layoff
thresholds expressed in terms of cumulative shocks to worker productivity, A~ and AT. Thus,
the key sufficient statistic for the effect of lower entry wages on job creation in equation (26)
is ' (@*)/n(@*). From this, one may be inclined to conclude that the prevalence of inefficient
separations cannot be an important determinant of aggregate job creation. However, we find that
this is not generally the case. The following result shows this by characterizing the elasticity of the
worker’s share to changes in the entry wage.

Proposition 8. The rent-sharing elasticity n’(W*) /n(@w*) satisfies the following properties:

1. If A~,A" — oo, then

(27)
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2. If A= = A" and A" is small enough, then

- . (28)

Proof. See Appendix B.4. O

Proposition 8 characterizes the rent-sharing elasticity #'(@*)/#(@*) under two polar cases,
namely as the inaction region grows infinitely wide (Part 1) and for a symmetric and narrow
enough inaction region (Part 2). The two results are best explained with the aid of Figure 3, which
we construct in two steps. First, we set 6 = 0 and calibrate the model to match the U.S. economy’s
job-finding rate f and separation rate 5 with a replacement ratio B of 0.29. We purposely choose
so that AT = A~ and thus 7 (@*,p) = 0. Second, for different levels of the exogenous separation
rate 6, we find the productivity volatility ¢ as a function of § that keeps the total separation rate
constant. The objective of this exercise is to vary the fraction of endogenous job separations s /s
from 0 to 100 percent while keeping the opportunity cost pU and the total separation rate fixed by
construction. Panel A of the figure shows combinations of § and ¢ that constitute the “iso-separation
rate curve” defined by s(, o) = 5, while Panel B plots the rent-sharing elasticity #'(®*) /5 (@%*) as a

function of the share of endogenous job separations s /s.

FIGURE 3. ISO-SEPARATION RATE CURVE AND THE ELASTICITY OF RENT SHARING

- A. Iso-separation rate curve, s(0,6) =5 . B. Rent-sharing elasticity, '(@*) /1 (@*)
(=]
; 5 30} — actual elasticity
;: 15 ;(5] | * approximation: Vs /(2a0)
o1 15}
S
4 101
. 05
z l
& 0 1 2 3 0 0.2 0.4 0.6 0.8 1
Exogenous separations rate, § x 100 gend /g

Notes: Panel A shows the iso-separation rate curve defined by s(d,0) = 5. Panel B shows the rent-sharing elasticity
as a function of the share of endogenous separations (black solid line) and compares it to an approximation of the
rent-sharing elasticity given by Vsend (2a0) based on equation (28). Note that the productivity volatility ¢ is a
function of & derived from the iso-separation rate curve. The parameter values for § = 0 are (v + x, 0, 0,4,K, 6, B) =
(0,0.0235,0.0048,0.452,1.87,0,0.29). The steady-state targets for this calibration are (f(6(®*)),s) = (0.55,0.034) with
AT = A™. Source: Model simulations.

Consider the limiting case as 6 — 5 (i.e., s /s — 0), so that all separations are exogenous, as
in Part 1 of Proposition 8. Then, a marginal increase in the entry wage increases workers’ surplus

share according to equation (27), reflecting the well-known result that, absent inefficient turnover,
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the rent-sharing elasticity is inversely proportional to the flow surplus 1 — pU (Shimer, 2005a). As
the share of inefficient separations (i.e., s /s) increases in Panel B of Figure 3, the rent-sharing
elasticity (black solid line) decreases due to a novel mechanism in our framework with sticky entry
wages. A higher entry wage increases the layoff probability and decreases the quit probability. By
construction, the expected duration of the match does not change, so match surplus is constant.
As workers make optimal quit decisions, a marginally lower quit probability leaves their value
unchanged due to an envelope condition (i.e., W (% ~) = 0). But a marginal increase in the layoff
probability reduces the worker’s value, since the firm makes layoff decisions. Therefore, the rent-
sharing elasticity decreases in the share of endogenous job separations, which the following section

shows how to measure using conventional labor market microdata.

Model Extension: Staggered Wage Renegotiations. In Online Appendix II.3, we extend our
model to feature staggered wage renegotiations, which we assume to follow a Nash bargaining
protocol with worker weight a and to occur at rate 6" > 0 a la Calvo (1983). This allows us to
convexify between models of rigid and flexible wages. Under this generalization, we derive all

main results, including the CIR of aggregate employment.'

4 Mapping the Model to Labor Market Microdata

A key feature of the previous section’s sufficient statistics is that they can be expressed in terms of
measurable labor market moments. In this section, we show how to connect our model to the data
in two steps. First, we use labor market microdata on wage changes between jobs to recover the
unobserved distribution of cumulative productivity changes. Second, we link the distribution of
cumulative productivity changes to the prevalence of inefficient job separations. For simplicity, we
focus on the case with v + x = 0. Appendix C presents the general case.

Intuitively, how are observed wage changes between jobs informative about the prevalence
of inefficient job separations? Figure 4 illustrates their distribution, I (Aw) (Panel A), and that of
cumulative productivity shocks in employment, ¢ (Az) (Panel B), for each of two extreme cases.

In the first case, when most job separations are endogenous (solid blue line), then most separated
workers experienced cumulative productivity shocks in employment of either —A~ or A™. As a

result, the distribution of wage changes of laid-off workers is concentrated around —A~, while

19 As an additional extension of interest, we can model worker- and firm-specific costs of unilateral separations, which
allows us to convexify between models of full and no commitment. Results are available upon request.
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FIGURE 4. DISTRIBUTIONS OF WAGE CHANGES AND CUMULATIVE SHOCKS

A. Wage changes between jobs, Aw  B. Cumulative productivity shocks in employment, Az
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Notes: The figure plots the distribution of wage changes between jobs I”(Aw) and the distribution of cumula-
tive productivity shocks in employment ¢"(Az) for two calibrations. In the first calibration, we set (A=, AT,y +
X, 0,6, f(6(@*))) = (0.05,0.05,0,0.02,0,0.5) so that s /s ~~ 1 (blue solid line). In the second calibration, we set
(A=, AT, v+ x,0,6, f(6(@*))) = (0.2,0.2,0,0.1,0.04,0.5) so that s /s ~ 0 (red dashed line). Source: Model simulations.

that of workers who quit is concentrated around A*. This results in a bimodal distribution of
wage changes between jobs, with dispersion around the two modes caused by productivity shocks
during unemployment.

In the second case, when most job separations are exogenous (dashed red line), then most
separated workers experienced cumulative productivity shocks in employment close to zero—i.e.,
away from the two endogenous separation thresholds. With a constant job-finding probability
during unemployment, the distribution of wage changes between jobs mimics the distribution of
cumulative productivity shocks in employment, which is symmetric and single peaked at zero.

More generally, we provide equilibrium conditions characterizing the steady-state distributions
of cumulative productivity shocks ¢"(Az) and g#(Az) in Appendix C.1. The following result shows
how to recover the distribution of cumulative productivity shocks in employment, ¢"(Az).

Proposition 9. Given the volatility of workers” productivity shocks,

2 Epl(Aw)?

=0/ 29
Ep[t" + T¢] @9)
the distribution of workers” cumulative productivity shocks can be expressed as
A 2(Az—y)_ —h, o 2(Az A
§'(82) = 5 [ [ R g ay+ - 2ELA] 60

32



where
_ o2 dI¥(—Az)
2f(6(w+))  dz

—h

G (Az)

—[1—-L¥(—Az)] (31)

is the distribution of Az conditional on a job separation, and L* (Aw) is the CDF corresponding to the PDF

of wage changes between jobs, I (Aw).
Proof. See Appendix C.2. O

Equation (29) of Proposition 9 states that the volatility of productivity ¢ equals the dispersion
of wage changes between jobs, Ep[(Aw)?], divided by the average time between two consecutive
jobs’ starting times, Ep [t + 7%]. Next, in order to recover the distribution of Az conditional on a
job separation, we exploit h-to-u and u-to-h worker flows. Consider a worker who at time £ starts
a job with wage wy,, at time to + 7" separates, and at time ¢y + 7" + 7" finds a new job with wage

Wiy+om47¢. This worker’s wage change between jobs is given by

AW = Wiy v — Wy, (32)
= (Wiyrmpre — Ztgrrmpre) — (Wi — Zty) + Ztgrrmpre — 2y, (33)
—_———
= 0* = w* = Az after h-u-h transition
Ak Ak
=W — W + Zt +m — Zt + Zt Mt = Zt, qm. (34)
A , 0 0 0 0

=0 Az|h-u transition starting from z;;  Az|u-h transition starting from Ztg i

Equation (32) gives the definition of Aw. Next, equation (33) adds and subtracts z; | 1, — Z¢,
before grouping terms into the wage-to-productivity ratio in the old job, the wage-to-productivity
ratio in the new job, and the cumulative productivity shocks between the starting dates of the
two jobs. Then, equation (34) adds and subtracts z,..» before applying the definition of @* and
that of Az. In summary, the wage change across jobs equals the sum of three random variables:
(i) the difference of entry wage-to-productivity ratios across jobs, which is identically zero; (ii) Az
conditional on a job separation starting from z;; and (iii) Az conditional on finding a new job, which
is independent of productivity z; for t € (to + ", to + " + ). Exploiting this independence, we
can use data on Aw to infer the distribution of the second term, which is given by (31). Finally,
the distribution of cumulative productivity shocks in (30) can be derived from (31) by exploiting
ergodicity—i.e., the cross-sectional distribution of cumulative shocks can be deduced from the

distribution of shocks experienced during completed job spells.
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Proposition 10. The share of inefficient job separations is given by

Send _ % [limAzi—A7 (gh>/(AZ) - limAzTA+ (gh)/(AZ)] (35)
S S

Proof. The proof follows from the conditions in Appendix C.1. ]

Equation (35) in Proposition 10 expresses the share of inefficient job separations, s°*¥ /s, in terms

of the distribution of cumulative productivity shocks, ¢" (Az), recovered in Proposition 9 above.

Discussion of Assumptions. We conclude with a discussion of some assumptions underlying
the mapping between key model objects and the data, which could be relaxed: (i) the threshold
nature of policies; (ii) the absence of other sources of wage changes; (iii) specifics of the productivity
process; and (iv) the absence of alternative sources of heterogeneity.

Regarding (i), that the job-separation rate is § for Az; € (—A~,A") and oo for Az; € {—A~, AT}
is not crucial and can be replaced with a general job-separation hazard, as in Alvarez et al. (2021).

Regarding (ii), we have ignored other sources of wage changes, such as those due to job-to-job
moves. This assumption could be relaxed following the methodology in Baley and Blanco (2022).

Regarding (iii), our assumption of a particular stochastic process for Az; can be empirically
tested and generalized, as in Baley and Blanco (2021). For example, it would be straightforward
to let the parameters of the productivity process depend on a worker’s employment state. What
is critical is that the data contain enough information to recover productivity changes during
unemployment. In our model, lack of selection in job finding and the inferred productivity process
in employment together yield this result.

Finally, regarding (iv), we abstract from firm and match productivity shocks. This simplification
is motivated by empirical evidence suggesting that worker heterogeneity explains the largest share
of wage dynamics (Guiso et al., 2005; Friedrich et al., 2024; Engbom et al., 2023). Additionally, a
benefit of focusing on worker heterogeneity is that it allows our model to parsimoniously speak
to both worker quits and firm layoffs—both of which are empirically salient (Elsby et al., 2010).
Conversely, a model with only firm- or match-specific heterogeneity would predict no worker quits
because workers’” flow value of employment and flow value of nonemployment would both be
constant within a wage segment, even in the presence of staggered renegotiations. Adding other
sources of heterogeneity would require different data (e.g., linked employer-employee records),

different model ingredients (e.g., a multi-worker firm wage-setting protocol), and a different
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identification strategy (e.g., exploiting synchrony in coworker outcomes). Future work could

calibrate richer models with multiple dimensions of empirically disciplined heterogeneity.

5 Conclusion

There is mounting empirical evidence that not all job separations can be rationalized using bilat-
erally efficient models. To understand the sources and consequences of inefficient turnover, we
develop a theory of labor markets with four features: search frictions, productivity fluctuations,
wage rigidity due to staggered renegotiations, and two-sided lack of commitment to remaining in a
match. A defining feature of our theory is the distinction between quits and layoffs as two separate
equilibrium outcomes following a voluntary-involuntary interpretation. Inefficient turnover man-
ifests itself not only in job separations but also in job creation and wage determination. We first
characterize the unique BRE of this model. We then derive sufficient statistics for the labor market
response to aggregate shocks based on conventional labor market microdata on wage changes
between jobs.

While the parsimony of this framework is useful in delineating several novel theoretical insights,
an empirically grounded quantification may require several extensions. Adding nonhomotheticities
(e.g., in home production), alternative sources of heterogeneity (e.g., match productivity shocks),
and additional quit motives (e.g., on-the-job search) could yield efficient endogenous separations.
Blanco and Drenik (2023) take a step in this direction. Furthermore, adding asymmetric renegotia-
tion costs would add a state-dependent motive for wage adjustments and allow the model to match
asymmetries in the empirical distribution of wage changes (e.g., Blanco et al., 2022a). We expect
that many of our insights will carry over to such richer environments. Incorporating these and
other features into a unified framework with empirical discipline will allow future work to assess
the implications of inefficient turnover in the labor market for issues including monetary policy
(e.g., state dependent employment effects), fiscal policy (e.g., UI), and labor market regulations

(e.g., severance pay).
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A Proofs for Section 2: A Model of Labor Markets with Inefficient

Turnover

Notation. We use the following mathematical notation throughout the Appendix and Online

Appendix.

1. H'(R): Sobolev space; i.e., H'(R) C L?>(R) and its weak derivatives up to order [ have a finite

L? norm.

2. Characteristic operator A: Given a function f : R — R and a diffusion process {x;}, the

E[f (Xq, [x0=x]—f (x)]
E[ty|xo=x] :

characteristic operator of X is given by Af = limy |,

3. Letu,v : R = R, (1,v) = [ u(x)v(x)dx denotes the inner product in the Hilbert space
L?(R) with the Lebesgue measure, and ||u|| = ([ u(x)? dx)l/2 .

4. a(u,v) is a bilinear continuous form. We say a(u,v) is coercive if a(u, u) > a||u||?.

5. We use a A b to denote the minimum between a and b. We also use the notation [x]* =

max{0,x}.

Some Useful and Known Results. Our mathematical arguments will make extensive use of the
following useful and known results.

Proposition A.1. Let A be the characteristic operator of { X} with X; € R". Let f : R" — R be a twice
differentiable function with compact (i.e., bounded and closed in R) support, support(f) = {x: f(x) # 0}.

If T is a stopping time with Ex[T] < oo, then

Exlf(xc)] = )+ s | [ AFC) at]. (A1)

Moreover, if T is the first exit time of a bounded set, then (A.1) holds for any twice differentiable function.

Proof. This is Dynkin’s formula, the proof of which can be found in Gksendal (2007). ]

Proposition A.2. Let x; be a strong Markov process, T be a stopping time measurable with the filtration

generated by x;, and T° an exponential random variable independent of T. Then

5

TAT s
E /0 e P f(x;) dt 4 e PTAT >g(xTATo-) X=X

=F {/o e~ f(x) 4 5g(x)] dt + e PF)Tg(xr) | xg = } '

Al



Proposition A.3. Let V be a Hilbert space and H a closed convex set. Assume that a(u,v) with u,v € V is
a coercive bilinear continuous form. Then, there exists a unique solution to a(u,v —u) > (f,v —u),Vov €

H,u € H, where f belongs to the dual of V.
Proof. See Lions and Stampacchia (1967). O

Proposition A.4. Let (V,(-,-)) be a Hilbert space and V. C V a closed convex cone satisfying V, =
{x € V such that (x,y) > 0Vy € V. }. We say that x > y according to the vector ordering > if and only
ifx—y e Vyiwithx,y € V. Let T : V — V be an increasing map from V into itself. Suppose that there
existsax,x € Vwithx <%, x < T(x), T(x) <X. Then, the subset of fixed points x* of T satisfying

x < x* <X is nonempty and has a larger and smallest element.
Proof. See the proof of Proposition 2 of Chapter 15 on page 539 of Aubin (2007). O

We will use Propositions A.3 and A.4 in the proof of Proposition 1. Proposition A.3 is used
to show the existence of the best response function and its associated value function for each
agent. Notice that we are solving the differential equations associated with the HJB equations
using a quasi-variational approach—i.e., we are after the weak solution of the differential equation.
Proposition A.4 is our main tool to show the existence of the nontrivial Nash Equilibrium. Notice
that while we impose monotonicity from the order generated with the positive cone, we do not
impose that the set V is a complete lattice. Thus, we are not invoking an order-theoretical approach
to showing the existence of a fixed point. The reason is that the completeness property (i.e., all
subsets of V have both a supremum and an infimum) is hard to satisfy in the space of functions.
The best example of V and V. are L?(IR)—integrable functions using the Lebesgue measure—and

the nonnegative function subset of this Hilbert space.

A.1 Proofof Lemmal
The equilibrium conditions are:

o2 92y
abgi z) + 288 (2 z) +m£xf(9(z;w))[h(22w) —u(z)], (A2)

0 = min {Ke* — q(8(z;w))j(z;w),0(z;w)},

pu(z) = Be* + v

max {ew + ’yah(zw) +5 ki Ig(;zw) + 0 [u(z) — h(z;w)], P“(Z)} Vz € Zf*(w),
ph(z;w) =

pu(z) Vz € (Z7*(w))e,

A2



max {ez — e 4 2 | 2 I s, 0} vz € ZM*(w),
pj(zw) =
0 vz € (2M)(w)°,
ZI*(w) = int{z € R: j(z;w) > 0ore* —e¥ > 0}, (A.3)
, ou(z) = o?d%u(z)
hx _ . . w o __ -
Z"(w) = int {z €R:h(z;w) > u(z)or0 < e’ —pu(z) + v % T a2 }, (A4)
j(5w) € CY (2" (w)) NC(R), h(;w) € C(2*(w)) NC(R). (A.5)

The equilibrium conditions in the normalized state space @ are:

oU = B+ max f(8(0))W (@), (A.6)

W (@) = "

0 Vi € (27%)¢

R max{0,1 —e?® — 'Aya]a(g) + %Za;];g]) - 5f(ZTJ)} Vi € Zh*

Pl (@) = )

0 Vi € (Z2h)e

2h = int{w € R: W(@) > 0or (e* —pU) >0}, (A7)

Zi=int{® € R: J(®) >00r (1—e”) >0}, (A8)

fec(Z2")YnC(R), We CYZ*)NC(R), (A.9)

where® =w—z,p=p—7—0%/2and § = v + 72
Lemma 1. Assume that values (u(z),h(z;w), j(z;w),0(z; w)) and policies (w*(z), Z7* (w), 2" (w)) are
a recursive equilibrium—i.e., they satisfy conditions (A.2)—(A.5)—, then

u(z) j(zzw) h(z;w)—u(z)

ez ' ez e?

(U, J(w —z), W(w — 2),8(w — z), ®*) = ( ,0(z;w), w* (z) — z) :

~

satisfy (A.6)~(A.9) with continuation sets 2" and Z* given by (A.7)~(A.8). Moreover, if (U, J(@), W(®), O (d))
and policies (*, Z7*, Z"*) satisfy (A.6)-(A.9), then

(u(z),j(zw), h(z;w),0(z;w), w* (z)) = (Ue*, J(w — 2)e*, (W(w — z) + U)e?, §(w — z), D" + z)

satisfy (A.2)~(A.5) with continuation sets Z"* (w) and Zi*(w) given by (A.3)~(A.4).
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Proof. We use a guess-and-verify strategy for each equilibrium condition.

A.2 Proof of Proposition 1

Proposition 1. Let W(w), J (), 8(t) be bounded functions with compact support. Then, there exists a

unique solution to

W(w@) >0, (A.10)

J(w) >0, (A.11)

ifwe (ZMH = () =0, (A.12)
if e (2 = W) =0, (A.13)

0 = max{—pf(®), AJ(®) + 1 — €}, Voo € 2", ] € C'(Z") NC(R) (A.15)
(

Zh=int{® € R: W(®) > 0or (¥ — pU) > 0}, (A.16)
Zli=int{w e R: J(d) >00r (1—€”) >0}, (A.17)
L (D) o2 %v(D)

Before going to the proof, observe that conditions (A.10)—(A.11) are implied by conditions
(A.12)-(A.15) and, therefore, they are redundant. Nevertheless, they will help with the proof of
existence.

The proof uses results from a branch of mathematics that most economists may not be familiar
with. For this reason, before presenting the proof, we provide some intuition about the steps we
show below. In a nutshell, there are two steps in the proof. First, we need to show that, for a given
value of unemployment U, there is a unique nontrivial Nash equilibrium of the game played by
the matched worker-firm pair. To understand the intuition behind this step, define @ (¢ ~; pU)
as the best response function of the firm in terms of its layoff threshold, and @~ (@*; pU) as the
best response function of the worker in terms of her quit threshold. It is easy to show that optimal

policies are given by wage-to-productivity thresholds. @ (@%~; pU) is the solution to the differential
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equation

oz

(p+0)](@) =1—e" =4]' (@) + = ["(@),  Vwe (@,

with border conditions J() = J(@~) = J/(¥*) = 0. Notice that the smooth pasting condition

J'() = 0 determines @*. In the same way, @~ (@ ™; pU) is the solution to the differential equation

2
(p+ 6W(@) = e — pll — AW/ (D) + %W”(w), Vo € (o, ")

with border conditions W(@t) = W(#~) = W/ (%) = 0, where W (&~ ) = 0 determines @~ . Let

W (@; pU) and J(; pU) be the values associated with the nontrivial equilibrium policies.

Second, we need to find the equilibrium value of unemployment. This value satisfies
P(pU) = B + max = J(w; pU) = W(aw; pU).

Panel A of Figure A1 shows the composition of Q() := @ (&~ (@; pU)) and Figure Al-Panel B
shows IP(pU). As we can see in the figure, the composition of the best response functions satisfies
two properties: (i) monotonicity (i.e., Q' (@) > 0) and (ii) concavity (i.e., Q" (@) < 0). Intuitively,
the monotonicity property arises from the fact that if one agent prefers to stay in the match for
longer, then the incentives for the other agent to stay in the match are larger; thus, the other agent
also prefers to stay longer. Concavity arises from the fact that there is a decreasing value of delaying
the separation. As the figure clearly shows, a unique nontrivial Nash Equilibrium exists under
these two properties. Equipped with the values from the nontrivial Nash Equilibrium as a function
of U, we can then characterize the decision problem of the unemployed worker. The mapping
IP(pU) satisfies three properties: (i) P(B) > B with IP(1) = B, (ii) it is continuous and (iii) it is
decreasing. Intuitively, if the flow value of unemployment is equal to B, then the surplus of the
match is positive, and the unemployed worker obtains a positive continuation value from searching
for a job. If, instead, the flow value of unemployment equals the value of (normalized) output,
then the surplus is zero, and the unemployed worker does not benefit from finding a job. Also,
the larger the unemployment value, the lower the value of the match, and, therefore, the value
of searching for a job. As the figure clearly shows, a unique equilibrium exists under these three
properties of P(pU).

Proof. We divide the proof into four steps. Step 1 shows the existence of a nontrivial Nash

equilibrium for a given U. In this step, we show the existence of a solution to conditions (A.10) to
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FIGURE A1l. INTUITION

A- Best response function B- Unemployment flow value
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Notes: The figure illustrates the properties of the policy and value functions. Panel A shows the composition of
Q(@) := @t (@ (@;pU)) and the 45 degree line. The nontrivial Nash Equilibrium is given by the intersection between
these two lines. Panel B shows the composition of the individual best response functions and the fixed point in the
equilibrium P (pU).

(A.17). To simplify the exposure, we divide step 1 into three propositions. Proposition A.5 shows
the equivalence between the equilibrium conditions and the quasi-variational inequalities (i.e., a
generalization of variational inequalities to the case when the feasible set is a function of the state
variables), which is required to apply known fixed-point theorems. Proposition A.6 shows the
existence and uniqueness of the agents’ best responses. Proposition A.7 shows the existence of
equilibrium by invoking Proposition A.4 (Birkhoff-Tartar’s fixed-point theorem). Observe that we
restrict the functions W () and f(@) to have bounded support. This restriction is without loss of
generality since it is a result of Proposition 2—i.e., the match’s continuation region is bounded.

Step 2 shows the uniqueness of the solution to conditions (A.10) to (A.17). We divide this proof
into two propositions. Proposition A.8 shows that the operator defined in step 1 is strong order
concave. Using concavity and techniques in the spirit of Marinacci and Montrucchio (2019) applied
to our own problem, we show uniqueness in Proposition A.9.

Step 3 shows that value functions are continuous and decreasing. We divide this step into two
propositions. First, we show in Proposition A.10 that the value associated with the worker’s “best
response” is continuous and decreasing in U. Proposition A.11 shows these properties for the

nontrivial Nash equilibrium. Finally, step 4 proves the uniqueness of the equilibrium by showing
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the existence of the unique fixed point in the unemployed worker’s value U.

Step 1. We begin by defining a continuous bilinear form in a more general space of functions.
The objective here is to find the weak solution of the nontrivial Nash equilibrium. Since the bilinear
form uses the first derivative, we work in H} (R)—i.e., the Sobolev space of order 1 with bounded

support. Let V := H}(RR) be a Hilbert space and define the bilinear continuous forma : V x V — R

2 dopd d
a(or,02) = i o+ @/IR o 02(®) 4 + (5 + ) /Rz;l(w)vz(w)dw.

Notice that a(vy, v) is a bilinear form since it satisfies two properties for all v1, v2, v3 € H(l) (R): (i)
a(vy +v3,0p) = a(vy,v2) + a(vs, vz) and a(vy, v2 + v3) = a(vy,v2) + a(vy,v3); and (ii) a(v1a, v7) =
aa(v1,v2) and a(v1,v20) = aa(vy,v2) with & € R. To show these properties notice that the
derivative and the integral of functions are linear operators. Thus,

2 rd d d
a(vy +vs,02) = %/}R(”Ei;””dg dww/]R (vldigv‘g)vz(w)dz@—&—(ﬁ—i—é)/]R(vl(sz)+vg(w))vz(zb)dzb

2 do; d dos d d
:0'( vy doy | vz doy A)_‘_?( 1

o o dv3
2 \Jr do do R di do R dd

vy (D) dzi)—l—/]R % vz(Zb)dw)

++0) ([ @@t [ oswt@)ua(@)ta ) = ator,02) + a(os, o)

2
a(via,vp) = % /]R d(g;l) CCIIZ; do + '?/R d(g;l)vz(zb) dw + (p+9) /]R(owl(w))vz(w)dw = aa(vy,vp).

The proof for a(vy, v2 + v3) = a(vy,v2) +a(vy,v3) and a(vy, voa) = wa(vy, v2) are similar. To show
it is continuous, we need to show that a(v1,v2) = a||v1||||v2||, « € R. Itis easy to verify that the
bilinear form is continuous using the inner product of the Soloveb space, the Cauchy-Schwarz
inequality, and compact support.

Now, we define the boundary conditions imposed by the other agent. Define K (f) and K/(W)

as

KM"(J) =
Kj(W) =

From now on, we look for solutions satisfying the variational approach within these sets.

Proposition A.5. Assume W(w) € C'(Z2/) NC(R) and J(#) € C'(2") N C(R) bounded with compact
support, where ZM and 2 are constructed with W and | following (A.16) and (A.17). Then, W (@) and
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S

J(

) solve

W e K'(J), | e KI(W)

a(f,o—7) 2/ (1—e®) (v—J)dd, Vove K (W) (A.18)
R

a(W,v — W) > / (e? —pU) (v—W)dw, VoveK'(]). (A.19)
R

iff. W() and (@) solve (A.10), (A.11), (A.12), (A.13), (A.14), and (A.15).

Before going to the proof, it is worth making some remarks. First, conditions (A.18) and
(A.19) provide a weak solution to the differential equations and not a classical solution. For the
same reason, we did not define the sets K"(]) and K/(W) in terms of conditions holding almost

everywhere. We come back to this issue below.

Proof of Step 1—Proposition A.5. We verify conditions (A.10), (A.11), (A.12), (A.13), (A.14), and
(A.15) focusing on the firm (the worker’s conditions are verified following similar steps). It
is easy to show the converse.

Conditions (A.10) and (A.11) are satisfied. Since | € K/(W), we have J(#) > 0.

Conditions (A.12) and (A.13) are satisfied. Define Z" with W. Then, (2")¢ = cl{# € R :
W(w) < 0and (e? — pU) < 0}. Since W(#) > 0, we have (2")¢ = cl{w € R: W(®) = 0 and @ <
log(pU)}. Since | € KI(W), if & € (2")¢, then f(@) = 0.

Conditions (A.14) and (A.15) are satisfied. Take any v € K/(W). Then, if & € (Z")¢, we have
J(@) = v(@) = 0. Therefore, we have that, for every v, | € K/(W),
a(f,o—J) > / (1-e?)(v-]) =
R
o df(@) d(v(@) — J(@)) . df(@) N VR
T e e e [ S e - f@aes (+o) [ @)@ - j@) o+

2 A"(f) o( —Az'(\) Aw R )
07/2% d{i(w)d(( leb]( ))der?/g,, dj( )(U(w)—](zb))dzb+(p+5)/ ;

/?1(1—610) (0(@) ~ J(@) o+ [ (1-¢®) (0(@) ~ (@) d =

a? df (@) d(o(®
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Using integration by parts, we obtain

o> [ P(®)

deaesn 2 Jzw AW

o [ df(@) d(v(@

)_
2 Ja do dw

(o(®) — J(@)) dab.

In (1), there could be two cases for the first term. The first case is a finite limit of integration (i.e.,
Z"is bounded). In this case, we use the continuity of the functions and the fact that if & — 02"
(2" is open), then @ — (Z")¢ and, therefore, [(#) = v(#) = 0. The second case is an infinite limit
of integration. In this case, the assumption of bounded support implies J(#%) = 0 for sufficiently
large or small @, thus J'(#) = 0. In conclusion, [, (Af(@) + (1 —€?)) (v(®) — (b)) db < 0.

Before continuing, we remark that the previous equality holds for all v(#) € K/(W). Let O be
an open ball in 2" that covers an arbitrary point @ € Z". Then, we can find a family of smooth
functions indexed by n with o4 (n) € [0,1], s.t. 0p(n) = 0 outside zZh op(n) — 1in O, and
05 (1) — 0 outside O. Since J(#) + 0p(n) > 0, J(#) + 0p(n) € KI(W) and

/(Af<w>+(1—e‘®>)0w(n)dw+/A (AJ(@) + (1 = e®)) 0a(n) d < 0.
O Zh/0

Taking the limit 1 — oo, we have that [, (Af(®) + (1 —e?)) d& < 0. Since O is arbitrary, Af (@) +
1—e® < 0ae. in 2" Since () € C'(2"), then Af(@) + 1 — e? < 0 for all @ whenever the second
derivative is defined. To obtain the other inequality, consider f(@)(1 — 04(1)) + 00y (1) € KI(W)

and we have

- [ (AT@) + (1= ) F@hoatmd — [ (Af(@) + (1) (@)oa(n) did <0

~—

Taking the limit n — oo, we have that [, (Af(®) + (1 —e?)) (—J(@)) d@ < 0 almost everywhere.
€

Since f(@) € C'(Z"), we have that for all @

Since (@) > 0 and (AJ(@) + (1 —¢®)) < 0, we have that (Af(®) + (1 —e®)) (—f(@)) > 0.
Thus, (Af(@) +1—¢®) (—](#)) = 0 or written more compactly 0 = max{—J (@), AJ (@) + 1 —
e®}, Vb € 2", with J(@) € C'(Z2") N C(R). O

Proposition A.6. Define the value functions that are obtained from the best responses as BR" : H'(R) —
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H'(R) and BR/ : HY(R) — H}(R) such that

BRM(J) = {W € H'(R) : a(W, 0 — W) > (e® — pU,v — W), Vv € K'(]), W € K'(])},
>(1—e%v—]), Voe K(W), | € KI(W)}.

Then, BR"(f) and BRI (W) exist and are unique.

Proof of Step 1—Proposition A.6. Here, we show that the value functions that are obtained from the
best responses are well-defined. For this, we need to verify the conditions in Proposition A.3.
Basically, we need to show that K/(W) is closed and convex, and that a(-, -) is coercive.

KI (W) is closed and convex. First, we show that K/(W) is closed. Take a sequence " € K/(W)

s.t. J" converges to some J*. Since [ € KI(W),
J{ (@) > 0,if W(@) = 0 and @ < log(pU), then (@) =0
for all n and all @. Taking the limit in the real numbers,

J*(@) > 0,if W(d) = 0and @ < log(pU), then [*(@) =0

where we use the fixed domain in the second limit. Thus, K/ (W) is closed.

To show that K/ (W) is convex, take J1, J2 € K/(W), then

0 0,

I
S
I

JH @) > 0, if W() <log(pU), then J'(w)

and © <
J2 () > 0,if W(@) = 0 and @ < log(pU), then J*(@) =0,

all @. Taking the convex combination with A € [0, 1]
AP 4 (1= A)J?>0,if W() = 0and & > 0, then AJ1 4 (1—A)J* =0.

Thus, K/ (W) is convex.

a(u, v) is coercive. Operating over the bilinear operator

o? [ do(®)do(d) ,. . [do(@) , .. .. . N2 n
a(v,v)-i L db do do + § - dd v(w)dw+(p+5)/}Rv(w) dw

A10



Il
NS
N
N
Q.
Q-‘ —
SN
N——
I
Q.
S
+
>
=
<
o
3
3
+
e
+
=
RN
=
<
©
o
<

N
>0 -0
> (p+) / (@0 = (p-+9)lJo|]
R

Step (1) integrates fIR dw Lo(h) db = %v(z@)Z‘o_ooo and uses compact support. Step (2) uses the
nonnegativity of the squared derivative term.
With the properties verified, we can apply Proposition A.3. Thus, the best response exists, and

it is unique. O

Proposition A.7. Define Q(W) = (BR" o BRI)(W), then there exists a fixed point Q(W*) = W* and
J* = BRI(W*). The set of fixed points is bounded above and below by

W,

e}
IN
=
IA
=
IN

(a)
IN
[~
IN
~—>
P
IN
\\4)\

where
a(;’v_W) > (ew_pa ﬂ) Voe Ksmull W c Ksmull
a(j,v—j) > (1 _eZTJ j) Voe Ksmull,] c Ksmull
a(W,0— W) > (2 — pU, W), Vv € K8, W € K,
a(f,v—f) > (1—e® f) Vo e K, ]E Kb,
with

S
~—
O
——

Kl = {o e Vo) > 0&if @ ¢ (log(pU),0) = o(

K" = {v e V:ov(w) >0},

with a maximum and minimum element.

Proof of Step 1—Proposition A.7. The first step consists in showing that the function Q(W) is mono-
tonically increasing—i.e., if Wy > Ws, then Q(W;) > Q(W,). To show this result, first, we need to
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prove that K/ (W) is increasing—i.e., if W; > Ws, then K/(W,) C KI(W;). Take f, € K/(W5), then

S

fo >0, &if Wy(d) = 0and & < log(pU) = () = 0.
Since W () > 0, we have
J220, & fa(d) = 0V € {d: Wy() < 0& b < log(pUl)}.

Now, we show that {@ : Wy (@) < 0 & @ < log(pU)} C {d : Wa(d) < 0 & @ < log(pU)}. Take
® € {: Wi(d) < 0& D < log(pU)}. Then, Wy (@) < 0 and, since W (#) > Wa(@), we have
that Wy (@) < 0. Since {@ : Wi (@) < 0& @ < log(pU)} C {@ : Wo (@) < 0 & b < log(pU)}, the

previous condition holds for the larger set, so it will also hold for the smaller set
fo >0, & Jo(d) = 0,V € {&: Wy (@) < 0& o < log(pUl)}.

Thus, J, € K/(W;) and K/ (W,) C K/ (W).

Now, let W; > W,. We need to show that f; = BR/(W;) > BR/(W,) = J,. Since K/(W) is
increasing—i.e., K'(W,) C KiI(W;)—Ji, J € KI(W) and the envelope max{ i, /»} € K/(W;). Now,
we show that min{J;, o} € K/ Wz). Since f1, J» > 0, we have that min{;, [} > 0. Moreover, take
aws.t. Wy () < 0and @& < log(pU), then 0 = J, = min{f, f;}. Thus, min{f;, ,} € K/(W,). In
conclusion, we can use max{ i, [} as a test function for K/(W;) and min{Jj, .} as a test function

for KI(W,):

min{J, o} = Jo — max{J, — J1,0} for test function for K/ (W)

max{fi, o} = i + max{f, — fi,0} for test function for K/ (W)
Using the quasi-variational inequality

a(fo, —max{f, — J;,0}) > (1 — e?, — max{J> — f1,0})
a(fl,max{fQ - fl,O}) > (1- e?, max{fz - fl,O}).

Thus, since a(-, -) is a bilinear form

_a(fZImaX{fZ - flIO}) Z _(l - ew;max{fz - f1/0}>
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a(fi, max{f, — J1,0}) > (1 — ®, max{f, — f1,0}).

Summing these two equalities, we obtain

a(fi, max{f, — J1,0}) — a(Jo, max{f> — f1,0}) > 0

or equivalently,

a(fo,max{f, — J1,0}) —a(f;, max{J> — f;,0}) <0

Next, we show that the previous inequality implies a(max{f, — fi,0}, max{f, — J1,0}) < 0. Define
theset X = {x: [ > J;}. Then,

a(fo,max{f, — J1,0}) — a(J, max{f> — J1,0})
_ di(@)d(h—J1) . dfi(@)d(fa—f1) .
_2(/X 20 Q2 dw—/x 1S dw+/]R/X0dx>
d . . d .
"+’Y</X ]2( )(] fl)d@—/x h( )(]2 fl)d@Jr/]R/Xde>
+ (0 +9) (/ fz(fz—fl)dﬁJ—/xf1(f2—f1)dw+/]R/XOduﬁ>

:/< ]2—]1 > dz@+’?/xd(f2(<;3®_m(f2_fl)dw+(p+5) </X(]A2—]A1)2dw)

= a(max{f> - h,O},maX{fz — J1,0}).

Since a(-,-) is a coercive bilinear form, 0 > a(max{f, — f;,0},max{f, — f;,0}) > K||max{J, —
J1,0}||%. Thus, J; > J> a.e.,, and by continuity J; > J, for all @. Applying similar arguments to
BR"(J), we have that W; > W, implies Q(W;) > Q(W>), so by Proposition A.4 (Birkhoff-Tartar’s
fixed-point theorem), there exists a fixed point. Moreover, the set of fixed points has a maximum
and a minimum—i.e., {W € H}(R) : W = Q(W)} has a W™i" and W™ s.t. Wmin < i < Jymax
forall W* € {W € H)(R) : W = Q(W)}.

Observe that since the flow payoff function and the coefficient of the characteristic operator are
infinitely differentiable and the continuation set is bounded, by Theorems 3 and 6 of Chapter 6 of
Evans (2022), we have that W, | are infinite differentiable in the continuation set of the game and
differentiable in the continuation set of the other agent.

To find the upper and lower bound, observe that we can write the nontrivial Nash equilib-

rium policies as [*(w) = MaX(7jc i<} B [ OT] e~ 01 — ) dt |y = zb} Since c0 > T >

Al3



. 20
Tlog(pu0y)/~ We have

0= max E

{TjET:TjST(IOg@U,O)) }

[~

< max E
{PeT i<t}

< max E
{t/eT}

O]

Step 2. This step proves the uniqueness of the fixed point. The first proposition shows
that Q : Hi}(R) — H}(R) is concave. Since the Q operator is only defined for nonnegative
functions, we assume that the domain is restricted to nonnegative functions without loss of
generality. Since the game’s continuation region is bounded, flow payoffs are bounded. Therefore,
the equilibrium value functions are also bounded. Thus, without loss of generality, we restrict
the Q : A — A operator in A = {v € H}(R) : (@) € [0,7], Vi}. Observe that A is order
convex—i.e., ifa,b € Awitha < ¢ < b, then ¢ € A. Define the operator « : A x A — A, where
a(W, W) = (@)W () + (1 — a(d))W" (), with a(d) € [0,1].

Proposition A.8. Q : A — A is strongly order concave—i.e., Q(a(W', W")) > a(Q(W’), Q(W")) for
all W' < W".

Proof of Step 2—Proposition A.8. Take W < W”. The proof has three arguments. First, we show that
K/ (a(W',W")) = KI(W"). With this result, we show that the BR/ (a(W’, W")) > a(BRI(W'), BRI(W")).
Finally, we show that Q(a(W’, W")) > a(Q(W’), Q(W")).

To see that K/ (a(W’, W")) = K/(W"'), observe that since a(W’, W") < W” and K/(-) is increas-
ing, we have K/ (a(W',W")) c KI(W"). Now, we show that K/(W") c K/(a(W', W")). For any
J e KI(W"),

S

J>0, &if W(@) =0and @ < log(pU) = f(®) = 0.

If W (@) = 0, then W”() > W/(@) = 0, which is then also true for any convex combination.

T og(ptro = InE{t = 0: b1 & (10g(pUL,0))}.
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a

>0, and (a(W,W")=0A® <log(pll)) = f(@) = 0.

In conclusion, | € K/(a(W’, W")) and KI(W") C K/(a(W',W")). Therefore, KI(a(W',W")) =
KI(W"™).
Since the constraint set—i.e., W and any test function v in K/(-)—is the same for a(W’, W) and

W,

BRI (a(W',W")) = BRI(W"),
= a(BR/(W"), BRI(W")),
> a(BR/(W'), BRI(W")),

where the last inequality uses monotonicity of BR/(W). A similar property holds for BR"(f). In
conclusion, BR/(W) and BR" () are increasing and strongly order concave. Using this result, for

W' < W'

Q(a(W',W")) = BR"(BR/ (a (W', W")))

> BR" (a( ), BRI(W")))

BRI(W'
>@) & (BR"(BR/ (W'

a(Q(W), Q(W")).

)), BR"(BR/(W")))

Step (1) uses the monotonicity of BR"(f) and the strong order concavity of BR/(W). Step (2) uses
the strong order concavity of BR"(J). O

Proposition A.9. Q : A — A has a unique fixed point.

Proof of Step 2—Proposition A.9. We have shown that Q(W) is monotone and order concave defined
in an order convex set. Now, we prove the result by contradiction. Let W be the minimum fixed
point and let W* be another fixed point with W* > W (here, > stand for W* (&) > W (@) for @& and
with stricly inequality for some @). Then, we can write W = a*(0, W*) for some a*(@) function,

where zero is the lower bound in the domain. Importantly, it is easy to see that a* (@) € [0, 1] for all
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€ (log(pU,0)) and open interval for some @. Thus,

W =1 QW) =@ Q(a* (0, ")) = a*(Q(0), Q(W*)) =¥ a*(Q(0), W*) > a*(0,W*) =© W

Step (1) uses the fact that W is a fixed point and step (2) uses the fact that W = a* (0, W*) Step (3)
uses the strong order concavity of Q. Step (4) uses the fact that W* is a fixed point. Step (5) uses
that Q(0) > 0 for all @ € (log(pU),0). Since it cannot be that W > W, we have a contradiction. [

Step 3. Let W*(; pU) and J*(; pU) be the value functions from the unique nontrivial Nash
equilibrium. We now show that they are continuous and decreasing in U.

Proposition A.10. Fix J. Let W(; pU) = BR"(J; pU) be the solution of
a(W,o—W) > (1—pUl,v—W), Yo € K'(J), W € K"(})

Then, W (t; pU) is continuous and decreasing in pU.

Proof of Step 3—Proposition A.10. First, we prove continuity. Take U; and U, and define W; =
BR"(J; pUy) and W, = BR"(J; pU,). Then,

(Wl,v—Wl) (1—pU1,U—W1) (AZO)
a(Wa, v —Wa) > (1—plp, 0 — Wh). (A.21)

Let W5 be the test function for (A.20) and let W; be the test function for (A.21). Summing both

equations
a(Wl,Wz—Wl) —|—(1(W2,W1 Wz) (1—pU1,W2—W1) (1—ﬁaz,W1 —Wz)

or equivalently

Q(Wl Wz,Wz—W1) (ﬁ(uZ—a1),W2—W1).

Multiplying by -1 on both sides and under the observation that (3(U, — Uy), Wo — Wy) = p(U, —
,)(1, W, — Wl), we obtain

H(WZ — Wl, W2 — W1> S ﬁ(al — az)(l, Wz — W])
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Given that the operator is coercive and that

1/2
(1= ) = [ (W(spt) — Weas ) do < ([ (Weoipte) Wi i) o )

IN

we have
BlWy — Wi ||> < a(Wy — Wi, Wy — Wy) < p(Uy — Up) (1, Wa — W) < p|Uy — U |||[W, — Wi ||

for some B > 0. Thus, ||W, — W;|| < %\l:h — U,|. With this inequality, we can verify the continuity
of W(w; pU). Let € > 0 and choose |U; — U] < eg. Then, ||[W, — Wi|| < e. Thus, W(a@; pU) is
continuous.

Now, we prove that W(t@; pU) is decreasing in the second argument. Let U; > U, and define
Wy = BR"(f; pU;) and W, = BR"(f; pU,). Observe that Wi, W, € K'(). Thus, min{Wl,Wz} and
max{W;, W,} € K"(J). Therefore, we can use min{W;, W,} = W; — max{W; — W,,0} as a test
function with U; and max{Wl, Wz} =W, + max{W1 — Wy, 0} as a test function with U. Therefore,

—a(Wl,max{Wl — WZ,O}) > —(1- pl:ll,max{Wl — WZ,O}),

a(Wa, max{W; — W,,0}) > (1 — pU,, max{W; — W»,0}).
Adding both inequalities, we obtain
Q(Wz — W1,max{W1 — Wz,O}) Z ﬁ (Hl — Hz) (1,max{W1 — Wz,O})

Multiplying by -1 and under the observation that a(W! — W2, max{W' — W?,0}) = a(max{W' —
W2,0}, max{W! — W2,0}) > B|| max{W! — W2,0}||? for some B > 0, we have

Hmax{W1 — Wz,O}Hz S (Hz - EI1) (1,max{W1 — Wz, 0})

=

Since U; > U,, we have that U, — U; < 0. Assume, by contradiction, that W, > W,, then
(1, max{W; — W»,0}) > 0. Operating,

0 < || max{W; — Wa,0}|1* < = ((, — Uy) (1, max{W; — W»,0}) < 0.

=

Thus, we have a contradiction. In conclusion, W(@; pU) is decreasing in the second argument.
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Observe that [(#) = BR/(W) is independent of pU. O

Proposition A.11. Let W*(w; pU) be the nontrivial Nash Equilibrium, then it is continuous and decreasing

in the second argument.

Proof of Step 3—Proposition A.11. First, we show that the value function in the nontrivial Nash
equilibrium is decreasing in U. If U; > U,, we have, by the previous step, that Q(W, pU;) <
Q(W, pll,). Define recursively Q"(W, pU;) = Q o Q"' (W, pU; ). By monotonicity, Q"(W, pU;) <
Q"(W, pU,) holds for all n. By Theorem 18 of Marinacci and Montrucchio (2019), Q"(W, pU;) —
W (w; U, ) and Q"(W, pU,) — W*(w; pll). Thus, W*(d; pU; ) < W*(@; pU,). In conclusion, the
nontrivial Nash equilibrium is decreasing in U.

Now, we show continuity. Take U,, 1 U* (resp. U, | U*). Then, it is easy to see that W*(w; pU")

is monotonic, and by completeness, it is easy to see that W* (v; pU") is a convergent series. Thus,

W*(; pU) is continuous in the second element. O

Step 4. We now show the existence of the unique fixed point in pU. Using the free entry

condition, we can define the value of the unemployed worker as

AA 1 Py A A
pP(pU) =B +max Kl/a](w Ll)

SW(w; pU).

We now show two propositions: (i) we show relevant properties of P(oU), (ii) we use these
properties to show the existence of a unique fixed point P(pU*) = pU*.

Proposition A.12. The following properties hold for P(pU):
P(pU) exists and is unique.
P(pU) is continuous.
e P:[B,P] — [B,P] and it is decreasing.
Proof of Step 4—Proposition A.12. From Proposition 2, 2" N Z/ is bounded, so

1 N lma g \ 1 o ntans .
—J(w; pU) = W (; pU0) = v; o) = W (; pU
max ———J(@; pU) "« W(w; pU) wed{zmzh}Kl/wl(wP )= W (@; p0).

Since J(-; pU) and W(-; pU) are continuous and the optimization is over a compact support, by the

extreme value theorem there exists a maximum, which is unique.
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Since f(@; pU) and W (w; pU) are continuous in both arguments, by the maximum theorem, the
maximal value is continuous.

Let @*(pU) be the solution to the optimization problem. Then, if I < U’,

7 (@ (pU0); pU) = W@ (pU0); pU) = 2 (@ (pU'); pU0) = W (@ (pU), o)
1"A*A" AT\ =2 14 A~k (AT A1
> I@ (e, pU') < Wi ('), pU')

Step (1) uses the optimality of @*(pU) and step (2) uses the fact that [ and W are decreasing in the
second argument. Thus, P(pU) is decreasing. By Proposition 2, we have that P =: P(B) > B. Since
P(pU) > B (J(-) and W(-) are nonnegative), we have that P : [B, P] — [B, P). O

Proposition A.13. P(pU) has a unique fixed point.

Proof of Step 4—Proposition A.13. The existence of the fixed point follows directly from Brouwer’s
fixed point theorem. To show uniqueness, observe that if there were two fixed points U; < U,
by definition, we would have that P(pU;) = pU; < pU, = P(pU,) and P(pU) would be strictly
increasing. By Step 4 of Proposition A.12, this is a contradiction. O

A.3 Proof of Proposition 2

Proof. We prove each equilibrium property separately.

1. Using the recursive definition of the value function, we have

*

where " is the nontrivial Nash equilibrium of the game between the firm and the worker.

Summing up the previous two equations, we have

A A

S() := W() + J(@) = Eg

Now, we show that 1 > pU > B by contradiction. Assume that pUI < B < 1. Using the free

entry condition and worker optimality, we have that (@) > 0 and W (@) > 0 for all @; thus, the
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product is also nonnegative at @* and

So, we have that pUU = B < 1. Then, we have that maxy f((@))W (@) = 0 and, therefore,
F(8())W () = 0 Vib. By weakly dominated strategies, we have that (log(pU),0) = (log(B),0) C
Zin 2" Thus, for any @ € (log(B),0), we have that (J(@), W(@)) > (0,0) and using the free
entry condition f(8(@))W(@) > 0. Thus, a contradiction. Assume instead that pU > 1. Then,
T (*,p) = 0 for all @ since S() is nonnegative and 0 = S(@) > (f(@), W(@)) > 0 Vb and
maxy, f(8(@))W () = 0 with the free entry condition. With these argument, we have that pU

B + maxy f(§(@))W (@) = B < 1, and we have the contradiction.

2. To show this, we first show that (@) > 0 for all & € (log(pU),0). Let

T o) = inf{t : @4 & (log(pU),0)}.

By optimality of the firm,

m*

. T . . mm{'(10g (#01),0 m*} . A
J(®) = Eq / e PH(1—e®)dt| > Ey / e PH(1—e®)dt| > 0.
0 0

Thus, there is an open set around the optimally chosen starting wage @ that lies entirely within the
continuation region s.t. [(@) > 0, §(@) > 0, and J(#) — KO(#)* = 0. Therefore,

~>

arg max {f(0(@))W(@)} = arg max { ( (]?) ) B W(w)} = arg max {]A(w)lww(w)a} '
Since W() = 5(@0)S(#) and J(@) = (1 —5(@))S(@) and () = (1 — pU) T (@, p),

arg max {fB(@)W(d)} = arg max {f(zi))l_“W(zb)“} = argn&z}ax{(l - U(zb))l_“ﬂ(zb)“T(w,ﬁ)} :

Taking first-order conditions, 1’ (0*) <ﬁ — 1_117—(2} *)> = — 7%5((;?:’5)) . We now show the following
claim: There exists a unique solution to
max W (@)*J (). (A.22)

w

We divide this proof into 4 steps.
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e The following result holds:

argmax W(0)* (@)™ = arg  max alog (W(®)) + (1 —a)log (J(@)).
) we[w,w]
As we show below, for 02 > 0 we have —co < @~ < log(pU) < 0 < & < co. Now, we show
that there exists a @ € (@, @") such that W(#) > 0 and J(#) > 0 by constradiction. Assume the
opposite inequalities hold. Then, since the values satisfy W(#) > 0 and f(@) > 0, it must be the

case that W(@) = f(@) = 0. Replacing these equalities into the definition of the values, we obtain

(0 +0)W(b) =e® —pU, (o+0)J(d) =1—¢?, (A.23)

which results in a contradiction since the values that satisfy (A.23) are positive for any @ &<
(log(pU),0). Thus, we can restrict the domain of @ to [, @] in problem (A.22).

e Problem (A.22) attains a maximum. This result follows from the Weierstrass Theorem since
the set [@0~, @] is compact and the objective function is the composition and sum of two continuous
value functions.

e The functions [(&) and W () have unique global maxima @*/ < @*". We will show that
@*/ = argmaxy, [ () is unique. The proof for W(@) is similar. Assume, by contradiction, that there
exist at least two global maxima at W < W (from the argument above, we conclude that these
maxima cannot occur at the boundary of the game’s continuation set). Without loss of generality,
assume they are consecutive. The HJB equation within the game’s continuation set is given by

P+ (@) =1—e® 4] () + %zf”(sz) Since the function is smooth, at the two optima, we have

(p+8) (@) +e® —1=—

. A k] 2 A .
(0+0)] @)+ —1= T (@),

with J(@) < J(@*) for all @ € (@*,@%**/). There are two cases to consider. First, [(@) = J(@*)
for all @ € (@*,®**7). Here, we have a contradiction since [() is constant in the interval, thus
J'(@) = J""(®) = 0 forall @ € (®*,®**) and (0 + &) (™) +¢e® —1 =0, Vb € (@*,w**/), which
is not constant. Next, assume that the function is not constant. Then, since f(z@) is continuous
and the set [@*/, ®**/] is compact, the function has a minimum at some @™"/ < ©**/ satisfying

f(@min/) < f(@**) and @™ —1 < @7 — 1. By definition of minimum, J(%™"/) > 0. Therefore,
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combining the previous inequalities, we have

o2 11 (pmin £/ _~min Hminj ~ B0 onskok ey ] o? Py
5 /(@ 1) = (p+8)J(@™") + ™™ —1 < (p+6) (@) + — 1= (@").

0<
Since the function is concave near a maximum, we have a contradiction. We can follow similar

steps to rule multiple local maxima. Finally, it is easy to show that @*/ < @w*".

e There exists a unique arg max,c 4+ 4 & l0g (W(@)) + (1 — a)log (F(@)). We first show that
W (®) is strictly log-concave Vi € (~,@%*"). The proof that shows that f(@) is log-concave is
w

W) _ W ()
WG) = limg | - A@) Recall that (6 +

PYW () = e? — pU — 4W' (0) + & W (). Taking the limit @ | @~ and using the border conditions

W(w~) = W/ (@~) = 0, we have that 0 < pU —e? = %W”( ). Therefore, limy, - [{/VV/,/(( )) = o0

It is easy to check that W) has a vertical asymptote when @ | @~ and, therefore, it must be

W ()

decreasing near @~ from the right. Let @ be a wage-to-productivity ratio close to @~ such that

similar. Applying L’Hopital’s rule, we have that limg, -

W' (@) () . A (7 . . axh W () s
W) 0 and ( (( ))> < 0. Since W(w) has a single maximum @*", e is positive for all
w

W € [, @) and W) — 0 when evaluated at ® = @*". Now, we show that W{@) jq decreasing

W(d)
for all & € [@, @*"). Using the worker’s HJB equation and the corresponding smooth-pasting and

value-matching conditions, we have

W) = 2 /w [(6+PW(x) — (¢* — pU1)] dx + 22 W(@).

Dividing both sides by W(w),

V(@) _ 2 J§ [ +pW) = (e —pl)] dr 29

~

Taking the derivative w.r.t. @, we obtain

N / . N N N 2
W@\ 27, (e —pU)] 29W' () (W (@)
(W(Z@)> —[(p+5)— 7 :|—|— —<A )

Define the following function (p(

%S
@
I

N P (e —pt)] 29, . o2
o-2) = % [¢+0) - B+ oo - 0) g0 - )
Given this, the goal is to show ¢/ (0 — @) < 0. Lett = & — @, then ¢/ (t) = 5 [(,ﬁ +9) — (e;i:rfb?)} +
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FIGURE A2. PHASE LINE FOR ¢(t)

Hi(¢)
limy—so0 $(£) > 0
> ¢
g(p(t) — ¢(t)2. Next, we define F(t) = {(p +0) — %} . Thus, we have that the derivative

of the log of the worker’s value function sat1sf1es the Ricatti equation ¢'(t) = F(t) + i—ﬁ(,b(t) —¢(t)?,
with initial condition ¢(0) > 0, ¢’(0) < 0. Define T = @*" — @, then ¢(T) = 0 (which follows from
@*" being an interior maximum). Now, we show that ¢ (t) < 0 for all t € (0, T). Assume that this
is not the case and there exists a t* € (0,T) s.t. ¢'(t*) > 0. Without loss of generality, let * be
inside the first interval s.t. ¢’ (t) > 0. Then, if we plot H;(¢) := F(t) + i—jgb(t) — ¢(t)?, there exists a
(t*,¢*) > (0,0) s.t. Hi(¢*) > 0. From Figure A2, since ¢'(0) < 0 with ¢(0) arbitrary large, we can
see that lim;_,« ¢(t) > ¢* > 0 and, therefore, ¢(T) > 0, which contradicts the terminal condition
¢(T) = 0. Thus, ¢'(t) < 0 forall t € (0, T) and log(W(@)) is a concave function V& € (@, w*").
Since log (W()) and log (f()) are strictly concave Vi € [@*/, ®*"] and the sum of strictly
concave functions is strictly concave, arg maxy g+ g+ & 10g (W(@)) + (1 — ) log (J(@)) exists

and is unique.
3. This step follows directly from workers” and firms” optimality conditions.

4. To show that Z" and Z/ are connected, assume they are not. Without loss of generality,
assume that 2" = {@ : @ > @} U (a,b) witha < b < w~. Then, since @~ < pU, it must
be the case that for all @ € (a,b) , we have (e? — pU) < 0 for all & € (a,b), and W(d) =
Ey [ forzhﬁzj e~ 0+t (g — p1T) dt} < Oforall @ € (a,b) due to continuity of Brownian motions.
Since W(ZD) > 0, we have a contradiction. A similar argument holds for the firm’s continuation set.

We prove that —co < @~ by contradiction. Assume that —co = @, then

A

T(—oo,w+)AT6 .
W(@,@") :=E / e P (&% — pU) dt|wo = 0| .
0
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Then, since pU < e?", it is easy to show

5

T(_oo,w+)/\’l’ R R .
/ e Pt (e — pU) dt|g =
0

<E [/ o~ (pFo)t (eu% _ ﬁl:[) dt|wy = w}
0

_ e? _ ou

PO+ —0%/2 p+6

_oev ol

T p+d p—y—02/2496

A

W(w, o) = E

Thus, there exists a small enough @ s.t. W(w, ®") < 0, a contradiction. A similar argument holds
for the firm’s separation threshold. The smooth pasting conditions are necessary and sufficient for

optimality (see Brekke and @ksendal, 1990).

A.4 Proof of Propositions 3, 4, and 5

Define Z = (0, @"). From Proposition 1, when 4 > 0 or ¢ > 0, we can work with the HJB

conditions

(p+ WD) = e — ol — FW' (@) + %W”(w) Vi € 2 (A.24)
2
(p+0)](@) =1—e® — 4f/ (@) + ‘% (@) Ve 2 (A.25)

pU = B+ K= "J(@*) = W(*)
dlog J(@*) dlog W(@*)
I-0)—4% = ap

with the value-matching conditions W(#~) = J(@~) = W(#") = J(*) = 0 and smooth-pasting
conditions W/ (~) = /(@) = 0.

Proof of Proposition 3. If 4 = o = 0, conditions (A.24) and (A.25) imply W (@) = e";;,za and f(®) =
1—e®

&)

. The variation inequalities imply

(0 + )W () = max{0,e? — pU}, Vb € R,

(0 +0)J () = max{0,1 —e?}, Vi€ R.
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Thus, W(#~) = J(@*) =0, @+ = 0and @~ = log (pU). Since

o (p+0)"1 ifwed, bt
T(,p) = _
0 otherwise,

and T (@*,p) = 0, we have that the worker s share of the surplus (@%*) = a. O

Proof of Proposition 4. Let us guess and verify the following solution @* = log (1+pll) and W~ =

v* —hand @ = @* + h for a given h. Using a Taylor approximation of the flow profits around @*

Ol m o (14 (@ — @) — pll = 2Pu & (d — %),
A 1—pU .
-6 w1 (14 (@ 07)) =~ L0 — ¥ (- )
We can write the optimality conditions as

. 1—pU . 2
(p+O)W(w) = 2‘) et (- A*)+‘%w/’(w), Vb € (w* — h,w" + h)

R 1-pU . 2.
(p+0)](@) = —L= — e (i —a*)+ L"), Ve (w —hw +h)

with the border conditions W(&* — h) = J(&* — h) = W(&* + h) = J(&* +h) = 0 and W’ (0"

a s _ﬂ
h) = J'(®&* +h) = 0. Now, we show that we can transform J(x) = M A similar

e*

argument applies to the value function of the worker. Making the following transformation

x+o LpUl

J(x) = w and using (A.25)
A o
(0 +0))(x) = —x+ LT'(2)
Thus,
o? o2
(P +aW() =x+ TW' (), (p+0)](x) = —x+ TI"(x) Vre (-hh
pa

Defining ® = —2— = ng > 0, it is easy to show that W(h) = J(h) = W(—h) = J(—h) = —%

and W/(—h) = J'(h) = 0. Thus, W(x) = J(—x). Given that this problem is symmetric, we verify
the guess of symmetry of the Ss bands and %W/ (0) = —% '(—0). The latter property implies that

w* satisfies the proposed Nash bargaining solution.
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Now, we show that h = w(¢)® with ¢ = /2(p + J)/0. Note that W(x) = J(—x). Thus, we

can only focus on W(x) using the smooth pasting condition evaluated at —h. The solution to this

X
p+o

W(h) = W(—=h) = _p%& and W/(—h) = 0, where ¢ = /2(p + J) /0. Writing the value-matching

system of differential equations is given by W(x) = Ae?* + Be™%* 4 with border conditions

conditions

h P h
Aefl 4 Be— 9" —— o Ae 9 4 Be?t — = _
e T s T Thro T T T Thre

Solving for A and B,

1 e P (—®+h)+e?" (h+ D) B 1 e (—D+h)+e ¥ (h+ D)

_p" +6 e2¢h _ p—2¢h ¢ = p" +6 e2¢oh _ p—2¢h
Therefore,
1L e (@) + e (4 ®) 1 (PR e (D) X
W(x) = _ﬁ +4 20h _ o—2¢h e + p+0 29h _ o—2¢h € + p+0
Taking the derivative, evaluating in x = —h and imposing W’(—h) = 0, we obtain
1 1
—P(e 2 4 200 _2) = E(ez"’h —e72eh) %Zgoh (ezﬁ"h e 20 4 2) . (A.26)

It would be useful to express equation (A.26) using sinh(x) = “=*— and cosh(x) = “¢~. Using

the hyperbolic functions,
—P2¢ (cosh(2¢ph) — 1) = 2sinh(2¢h) — @2h (cosh(2¢ph) +1).
Next, we change variables with 4 = 2¢h and define q as the implicit solution of

—2®¢ (cosh(g) — 1) 4+ x (cosh(gq) + 1) = 2sinh(qg).

Thus, h = ”’(227?;@. Let b = 20¢ > 0, then we can express the function x(-) as the solution of
b = —2sinh(g(b)—a(b)(cosh(g(b)) ) Njptice that if we define f(q) = — 2l alcoshla) 1) he gollowing

(cosh(q(b))—1)
properties about f(g) hold:

(cosh(gq)—1)

1. lim; o f(q) = 0 and lim; . f(q) = co.

2. f(q) is increasing and convex, with lim, o f'(g) = 1/3 and lim; , f'(q) = 1.
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dlog(£(q))
3. SEU@) > q.

Given these properties, we can write h(¢, ®) = [729%) 4nd show the following properties of

2¢
h(g, ®)

1. h(¢, ) is increasing in ®: Since f~!(-) is increasing, we have the result.

2. h(¢p, ®) is decreasing in ¢: Taking the derivative of h(¢p, ) = %ﬁ;’@) with respect to ¢ and

operating
(e, ®) _ df'(q) 20 f1(2¢®) _ f'(29@) | dfM(9) 200
op dg | e 29 297 2¢? dg | e [ (20P)
_ ['(2¢®) | _dlog(q) 200 | _
2¢2 dlog(f(q)) ly—2p0 f ' (2¢®) '

3. limy o h(@, ®) = 3P and limy o h( ¢, P) = P: Applying L'Hopital’s rule and using proper-

ties of the derivative of the inverse,

-1
lim h(p, ®) = lim [~ 29®) = lim ;QD =

Pp—0 @—>00 2q0 P—r0 f/(ZgOCI))
. . 1 e®) . 1
limh(p,®) =lim=——"—2 =lim—F—O =3P
910 (9. ) plo 2¢ 90 f'(2¢®)

4. h(p, @) = w(2¢P)d: Define w(z) = @, then it is easy to see that (¢, ®) = w(2pP)P.
Moreover, from property 2 and 3, w(z) is decreasing with lim, |y w(z) = 3 and lim, . w(z) =
1. Moreover, it is easy to show with similar arguments that w(2¢®)® is increasing in ® and

w(2¢P) ¢ is increasing in ¢.

Ak A

Now, we can compute #(@*) and 7 (#*,p). Note that we can define T(x) = T (x + @*,p),
which solves (p + )T (x) =1+ %ZT”(x), with T(£h(¢@,®)) = 0. The solution to this differential

PV gx

equation is given by T(x) = W. Thus, T'(0) = 0 and 5 (®*) = . Finally, using the property
that sech(x) = %=, we have T (%, p) = l_s“h("gi’f‘/’q’)‘b)‘ —

Proof of Proposition 5. Now, we take the limit ¢ | 0. The equilibrium conditions in this case are

(0 +OW() =e? — pU — W' (@) Ve Zinz"
0+ 0) () =1—e? — 4]/ (0) Vo e Z2inzh
Y
dlog J(@*) . dlog W (@*)
I-0=4% = a



with the value matching and smooth pasting conditions W (&™) = J(~) = W(*) = J(@T) =0
and W/ (@~) = J'(*) = 0. Without idiosyncratic shocks and > 0 the upper Ss band is not active.
Thus, we discard the optimality condition for @™ . In this case, the stopping time is a deterministic

function; hence, it is easier to work with the sequential formulation.

T
W(d) = rnTax/ e~ (010)s (o275 _ 51T) ds (A.27)
0
. T@@) o
J() = / e~ 0F0)s (1 — ¢®=17%) ds, (A.28)
0

In equation (A.28), T(®) is the optimal policy of the worker. Taking the first order conditions with
respect to T(), e?~1T(®) = pU. Solving this equation, T (@) = %A(ﬁu). Thus, if @ we
),

= 0%,
have that %~ = ®* — 4T(#*) satisfies @~ = log(pU). Taking the derivatives of W(%) and J(

and using the envelope condition for W’(®), we have

R T(w) . L
W' () = / e~ (PH0)s (¢0=1%) s, (A.29)
0
R T(w) . o . . o
J'(®) = — / e~ (PF0)s (g0=7%) dg 4 o~ (PHOIT(@) (1 - eW*VTW)) T (D). (A.30)
0 ylm

From equations (A.29) and (A.30), we get the Nash bargaining solution

[_ foT* e—(p+0)s (ew*_@s) ds + e~ (0+O)T* (1-p0)

fOT* o~ (p+0)s (ew*f§s> ds =

N i e=(0+0)s (¢ =15 — pUT) ds

=(1—«a)

A31
S e=(p+0)s (1 — e =15) ds (A-31)

Define Q(a, T*) := % Operating,

N o T o A ST (1 — AT
zx/ e~ +0)s (1 —ev ’75) ds=(1—ua) / e (p+0)s (ew s —ﬁll) ds [1— ;* - L pU)
0 Jo '?fo e—(pto)s (ew*—'ys) ds
AN A . . e (=) PTOT (1 — p) { o~ QP06 TF) }
_ ) _ _
(+(1—a)pl) Qp+6,T) =" Q(p+5+79,T) 5 1 puew*Q(ﬁJr(SJr'?,T*)
Define T = 4T* and Q(a, T*) := 1—6;”* = ryflg(%l T). Then, the policy (T*,%*) solves @ ~T =

pU and

A X U= S (81
(a+(1—a)pﬁ)§’10(p+5,f“):ew*'?’lﬂ(er(s—i—l,T)—(l me 7 (1=pd) ll—pu (5
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Therefore, the optimal stopping is given by

Dc—i—(l—tx)ﬁl:[ TQ(%AJrl,T) (1*“)(1*f5A [17¥Q<¥’T” |:1 Q(#,T) (A.32)
Q

el <# +1, T)

Now, we show the properties satisfied by T (M, LT‘S, M) Let us define the

ol 3 ol
function
1 e—(+ba e—ba b+11—e b
fla,b.c) = 1—eba b+1_Cb1—e*b” [ b e“—eb”]

Observe that with this function:

oc—l—(lpgluc)ﬁﬁ iy (T <a+(1

The following properties are easy to show:

1. f(a,b,c) is increasing in a.

2. Ifa,c > 0,b — oo, then f(a,b,c) — e : To see this property, taking the limit

) 1— 87(1+b)a b efba b+11— efba
lim e’ —cb -
a>0,b—300,coch 1—e b b+4+1 1—eba b et —eba
1— ef(ler)a b e—ba b+1 1—¢0ba
=¢’ lim ——+— lim ——— lm c¢cb—+ |1— lim ol lim ——— | =¢é%
a>0b—00 1—e P 450bs0b+1 4>0bs00 1—eba booo b a>0b—co e —e—ba
T/\—/_,
=1 =1 =0 = — e

3. Ifa,c >0and b — O then f(a,b,c) — eote(izaty) : To see this property, taking the limit

a

1— e Utb)a e~ ba b+11—etn
i e” —cb 1-—
a>0,0—0 1—eba pb+1 1—eba b et —e—ba
1 1_e—bﬂ ea—l—C<1 m)
=e'(1—e ) 1 —— —c 1 1-— li =
SR LS B TR S g T L g 2
[ —
=1/a =1/a =a

e“flfc(lfﬁ)
a

4. ¢" > f(a,b,c) > where the upper bound is reached when b — oo and the lower

bound when b | 0.
-~y
5. Duration of the match: It is easy to show that 7 (@, p) = 1=¢ 5 =
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6. The worker’s share is given by

N - <1+L*3>T(-> R
; 1) T (O T po g
7T () +Hog(pU) T e~ P+t qp — U —(p+o)t dt _0 gy pHot+T
0 1Y —e 7

(1—p0) [ e~ (0+o) dt 1—pU

n(@*) =

With these properties, we can characterize the equilibrium policies:

= (a+(1-)pU p+5 (1—a)(1-pU) Y . _ - . .
1. T( I 500 >1s increasing in the first argument.

2. If 4 — 0, then 2% — oo and lim 5..4)/40 T(-) = log (M) The expected discounted
T (@

duration in the hmlt is equal to hmyﬁo 0) = 3 + s—5. The worker’s share in the limit is

equal to
Ty 1= ()10 4515 "
el(1=e iz rrea v e N VA N C L R
Ak 1—e 7 N N ou N
(@) = pee U= ——xplU = ———=—pU =«
1-pU 1-pU 1-poU

3. If 4 — oo, then 212 % _ 0, which provides the same T(-) as p + 5 — 0. As we have shown

before, under th1s limit, T(-) converges to the implicit solution given by

N I(- (1—a)(1-pU) T()
lx)pu €T()—1— pH 4 (1_eT<')fl)
() '

Given the convergence, we now show the limit for #(@*) since clearly 7 (@*,p) — 0. Let us

depart from equation (A.31)

a fOT TP () ds —(1-u) [* foT* e (PH0)s (07 =75) ds e~ 0+ %]
fOT* 67(P+0) (ew —Fs _ p ) ) ds fOT* e*(p‘F&)S (1 — ezi;*f»?s) s

Taking the limitas p +4J — 0

T a1 [ 0y qr - (Lm0 =p0) Jo (e —pl) dt
zx/o (1—¢™)dt = (1 a)/o (e —pU) dt — p fo ot

Operating and using the occupancy measure
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It is easy to check that

A
A

sy L= E[?] —p 511) — Ele?
a+ (1 —wa)pl + 3T E[ed] (1—-pU) =E[e”].
From (A.33), since p + 6 — 0, we have that (") = %. Combining these steps yields

the desired result.

B Proofs for Section 3: Aggregate Shocks in Labor Markets with Ineffi-

cient Turnover

B.1 Proof of Proposition 6: CIR of Employment with Flexible Entry Wage

We divide the proof of Proposition 6 into three propositions. Let ¢"(Az) and g"(Az) be the dis-
tributions of Az for employed and unemployed workers, respectively. The support of g (Az) is
[-A~,AT], where A~ := @* — @~ and A" := @ — @*. Denote by E;[-] and E, -] the expectation
operators under g (Az) and ¢*(Az), respectively.

Proposition B.1. Given steady-state policies (=, @w*, @) and distributions (g"(Az), g"(Az)), the CIR
is given by

mglh(Az)gh(Az +{)dAz + / me ,(Az,0)8" (Az + ) dAz,

—oQ

(o]

CIR¢(C) = /

— 00

where the value functions mg j,(Az) and mg ,,(Az, () are defined as:

m

T
me n(Dz) = E / (1— &) dt+ me.u(0,0)
0

Azy = Az] , (B.1)

ll(

™(C
mea(82,8) =B | [ (~Ea)dt b mey(~0) Bz = bz (5.2)

0:/ me 5 (Az)g" (Az) dAz+/ mg ,(Az,0)8" (Az) dAz.

with T ({) being distributed according to a Poisson process with arrival rate f(8(@* — 0)).

Proof. We define the cumulative impulse response of aggregate employment to an aggregate TFPR

Bl



shock as
CIRg (¢ / / Az, t) — g"(A z)) dAzdt.

Note that & = [*_¢"(Az,{,t) dAz is a function of { since aggregate shocks affect net flows into
employment. The proof proceeds in three steps. Step 1 rewrites the CIR as the integral over time
of two value functions, one for employed and unemployed workers, up to a finite time 7. Step
2 expresses the CIR as 7 — co. Step 3 uses the equivalence of the combined Dirichlet-Poisson
problem (i.e., the mapping between the sequential problem and the corresponding HJB equations
and boundary conditions).

Step 1. Here, we follow a recursive representation for the CIR. The CIR satisfies

[ee]

CIR:(Z) = / tim [me,(Az, T)g" (Az +0) + me(Az, T)g" (82 + 7)| daz,

—0o T—00

where we defined

T )
meg p(Dzo, T) 1= /0 [/ [(1 — &) &' (Az, t| Az, ) + (—Sss)g”(Az,t|Azo,h)} dAz dt} ,

—o0

T 0
mg ,(Azo, ¢, T) := /0 [/ [(1 — &) &4 (Az, 0, t|Azo, u) + (—Es)8" (Az, C,t|Azo,u)} dAz dt] .

—0o0

Proof of Step 1. Following Baley and Blanco (2022), it can be shown that

CIR¢(Z / / Az, t) — g (A z)) dAzdt

= / lim mg ;(Az, T)g "(Az+7)dAz + / 71im me (82,0, T)g" (Az+ () dAz (B.3)
0o T —o0 —o0 | —00
where we define
mg p(Azo, T) = / {/ 1 —&s) 8 Az t|Azg, h) + (—Sss)g”(Az,ﬂAzO,h)] dAz dt}

meg, M(AZOrgr —/ |:/ ESS AZ §It|AZOI ) (_gss)gu(AZ,g,”AZO, M):| dAde:| .

Step 2. The CIR satisfies

[ee] [ee]

mes(82)g" (02 +8)dbz+ [ me,(82,0)g" (8 + ) daz

—00

CIRg(0) = /

—00

and the value functions mg j,(Azg) and mg ,,(Azo, {) satisfy the following HJB and border conditions:

dmg (Az) 2 d®mg j,(Az)

0=1-&s—(v+x) dAz 2 dAzZ2

+0(meu(0,0) — me y(Az)), (B4)
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dme . (Az, ) (772 d*me (A2, 0)

0=—&s—(r+x) + fO(@* =) (mep(—C) — me,u(Az,0)) (B.5)

dAz 2 dAz2
0 = mg,(0,0) —mg ,(Az), forall Az ¢ (—A~,A") (B.6)
. dmeg ,(Az,0) _dmg,(Az,0)
_ , _ : B.7
0 Azhﬂnloo dAz Al:linoo dAz ( )
0= / mg,h(Az)gh(Az) dAz + / mg ,(Az,0)g" (Az) dAz. (B.8)

Proof of Step 2. We divide this proof into steps a—c.

. We show that imy_, mg ,(Az, T) = mg ;(Az) and limy_,e g, (Az,, T) = mg ,(Az, {): This
property holds due to the convergence of the distribution of Az over time to its ergodic distribu-

tion for any initial condition (Stokey, 1989).

. To show that 0 = [ mg;(Az, T)g"(Az)dAz + [% me,(Az,0,T)g"(Az) dAz and that 0 =
JA mep(Az)gh(Az) dAz + [2, me ,(Az,0)8"(Az) dAz, see Baley and Blanco (2022).

. We show that the CIR satisfies (B.3) with mg (Azg) and mg ,(Azo, () satisfying (B.4)—(B.8):
Writing the HJB for mg ;,(Azo, T) and mg ,,(Azo, {, T), we have that

1 _ dm(g/h(AZ, 7-) _ dm(g/h(AZ, T) 0'72 dzmg,h(AZ, T)
0=1-bs— =537 — ~ O t0—gs; 2 dAZ
+ (S(mg,u (O/ 0/ T) - mg,h(AZ, 7-))/
B dme (82,0, T) dme ,(Az,,T)  o?d?me ,(Az,L,T)
0=—&s - a7 (V044 27 daz

+ f(O(@* =) (mey (=, T) = meu(Az,C,T))
0=mg,(0,0,T) —mey(Az,T), forall Az ¢ (—A~,AT)
dme ,(Az,,T) dme ,(Az,,T)

= I = i
0 Azlﬁn;loo dAz Azlinoo dAz

At At
0— / me n(Dz, T)g" (Az) dAz + / me o(Az,0,T)g" (Az) dAz.
A e

The border condition for m¢ ,(Az, g, T) is implied from the fact that the job-finding rate f(§(@*))
is independent of Az, so the function mg¢ ,(Az, {, T) is constant in the entire domain. Taking the
limit 7 — oo and using point-wise convergence of mg ,(Azg, T ) and mg ,,(Azo,{, T ), we have

the result.

Step 3. The solutions of the differential equations (B.4)—(B.7) satisfy (B.1) and (B.2).

Proof of Step 3. This is just an application of Qksendal (2007), Chapter 9.
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Before starting the next step of the proof, we summarize the conditions that characterize the
distributions of Az.
Steady-State Cross-Sectional Distribution Az. Below we describe the Kolmogorov Forward

Equations (KFE) for ¢"(Az) and g"(Az).

2

58" (Az) = (v+x) (8" (Az) + %(gh)”(AZ) VAz € (=A7,A7)/{0} (B.9)

2
FO(@%))g" (Bz) = (v +x)(g") (Az) + %(g”)”(AZ) VAz € (—e0,00)/{0} (B.10)
¢"(Az) =0, forall Az ¢ (—A~,A") (B.11)
AZli_)]f]f_1oog“(Az) = AlZiLnoo ¢"(Az) = 0. (B.12)

o AT

= “(Az z "(Az z )
1_/_Oog(A)dA +/_Ag(A)dA, (B.13)
2

fO@")(1—&) =+ % [Azljg (8" (Az) - Alzigg (&M (az2)], (B.14)

g"(82),8"(8z) € C, g"(Bz) € C*((—o0,0)/{0}), "(Az) € C*((~A7,A%)/{0})

Proposition B.2. Assume flexible entry wages. Up to first order, the CIR of employment is given by:

(v + X)Ey[a] + Ej[Az]
o2

CIRg(7)

. —(1—E&s)

+0(Q).

Proof. The proof proceeds in three steps. Step 1 computes the value function for an unemployed
worker mg ,(Az) (When entry wages are flexible, the job-finding rate and this value function are
independent of the shock {, so we omit this argument). Step 2 computes the value for the employed
worker at Az = 0—i.e., mg ;(0). Step 3 characterizes the CIR as a function of steady-state aggregate
variables and moments.

Step 1. The CIR is given by

CIRe(§) = [ mea(2)g (82 +) dnz + (—f(e‘fw n mg,h<o>) (1),

with

A 2 g2 A .
0=1— & (y+ ) Trenlds) | o el Z)+5(—f( Eos

dAz 2 dAZ2 ES) +mgy(0) — mg,h(AZ)) ,
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SSS
fO(@*))

0= /_0:0 mg,h(Az)gh(Az) dAz + (—

0=—

+mg p(0) — mg y(Az), forall Az ¢ (—A~,AT)

gSS

W + m‘glh (0)> (1 — 855). (B15)

Proof of Step 1. To show this result, note that the solution to (B.5) and (B.7) is m¢ ,(Az) =
meg ,,(0), for all Az. Thus,

A &
0= —Es+ f(0(@*))(meg(0) = meg,u(0)) <= meu(0) = ——="—+mg;(0). (B.16)
f(0(@%))
Replacing (B.16) into the CIR, we have the result.
Step 2. We show that g ,(0) = = — (1 — &) Ey[a), where Ey[a] is the cross-sectional

F(6(%))
expected age of the match or the worker’s tenure at the current match.

Proof of Step 2. Observe that m¢ ,(Az) satisfies the following recursive representation

Tﬂ’l
mep(Az) = E / (1—&)dt+ (—Agsf + Mg/h(0)> Azg = Az . (B.17)
0 f(0(@*))
Define the following auxiliary function
Tm m 5
Y(Az|lg) = E / e?(1— &) dt +e7 <—Asf + mg,h(0)> Azg = Az| . (B.18)
0 f6@@*))

and note that ¥ (Az|0) = mg¢ j,(Az). The auxiliary function ¥(Az|¢) satisfies the following HJB and

border conditions:

2 32
— ¥ (Az|p) + 6 (‘I’(Az|(p) - (_f(éf;f;*)) + mg,h(O))> =(1-&s)—(v+x) B‘Ifgijq)) n %8 ‘E;(AA;IKP) (B.19)

+n15,h(0)) forall Az ¢ (—A~,AT).

(-c:SS
Flazg) = (_f(é(w*))

Taking the derivative with respect to ¢ in (B.19), we have that

0= 9™ —w(ailg) = ~(7-+

oY (Az|e)
CL)

%Y (Az, ¢) ajéﬁ"I’(AzW)
dAzdg 2 0Az2d¢ '

= OforallAz ¢ (—A,A™).

Using the Schwarz theorem to exchange partial derivatives, evaluating at ¢ = 0, and using
¥ (Az|0) = mg,(Az), we obtain

58‘?(Az|0) 9 (8‘F(AZ|O)) o2 92 (8‘F(Az|0)>

3¢ _m8,11(AZ) =-(r+X) 3 EP) 2 9AZ2 A

e (B.20)
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I¥(-A~[0)  a¥(At|0)
30 R e (B.21)

Equations (B.20) and (B.21) correspond to the HJB and border conditions of the function a‘F%A(PZ‘O) =

E { fOTm me p(Azt) dt‘Azo = Az} . Evaluating %;\0) at Az = 0, using the occupancy measure and

result (B.15), we write the previous equation as:

o = Az)g"(Az)dA
a‘I’a(SJO) =E /o me p(Dzt) dt‘Azo =0| = IED[T'"]LOO e ;S)Sg (Az) daz

where Ep[7"] is the mean duration of completed employment spells (the subscript highlights that

the moment can be easily computed from the data). From (B.18), we also have that

m

9% (0[0)
d¢

/OT (1= &) ds + " <—f(9f)) +mg,h(0)>

= Ep [t"] [(1 - 555)1Egs[f] + <—f(9fw)) + mg,h(()))] , (B.23)

= E

AZO = 0]

Combining (B.22) and (B.23), and solving for m¢ ;,(0) we obtain mg ;(0) = m — (1= &ss)Ey]a].

Step 3. Up to a first-order approximation, the CIR is given by:

Ey[a] + E,[Az]
02

CIRg(7) = —(1—655)(7“() g+0().

Proof of Step 3. To help the reader, we summarize below the conditions used in this step of the proof.

[ee]

CIRg(0) = /

—0o0

e (82)" (82 + ) ddz + - fne) (-8 B2

gSS
f(6(@))
with

dmg,,(Az) o d*mg(Az)
dAz 2 dAz?
me ,(0) = mg (Az) forall Az ¢ (—A~,AT)

5m€,h(AZ) =1- SSS - ('}’ + X) + (571’15,1,(0), (B25)

0= /oo me y(Az)g" (Az) dAz + mg , (0)(1 — Ess). (B.26)
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1. Zeroth Order: If { = 0, condition (B.26) implies

[ee]

CIRs(0) — /

—o0

e (82)g"(87) bz + ( - Fmes(0)) (1) = 0.

gSS
FO(@*))

2. First Order: Taking the derivative of (B.24) we obtain CIR;({) = [ me;,(Az)(g") (Az +

dAz, which evaluated at { = 0 becomes CIR} (0) = f+_ me p(Az M (Az) dAz. Usin
£ A , 8 g

(1420 (8" (A2)+ % ()" (A2)

condition (B.9) to replace é = (A7)

into equation (B.25), we obtain

hy/ a2 (o 2
(r+x)(8") ;i(zi; 78" (Az)m&h(AZ) =1—Es— (v +x)m,(Az) + %mg,h(AZ)

(7 +x)8'(Az) + 5 8" (Az)

- 3(A2)

Mg,u (0)

Multiplying both sides by ¢ (Az)Az and integrating between —A~ and A¥,

o2

2

A+
Ti= [ 82 [ (82)g"(82) + e (82) (g")'(82)] doz

0= (1-Cs)Ep[az] = (v +X)T1 + 5 To+mgu(0)T3 (B.27)

AT
To= [ oz (a2 (82) — me, (82)(5")" (82) ] dde

A+
fe [ e (g en) + S 82)) daz

—A—

Next, we operate on the terms T7, Tz, and T3. The term Tj is equal to

T [ [ (828 (92) + ey (82) (£ (0] sz (B.28)

= ms,u(o)(l —&ss)-
The term T satisfies

AT
To= [ 82 [ (8" (02) — me (82)(g") (82)] ddz (829)

At AT
N +2/ me p(Az)g' (Az) dAz.

= —mg ,(0) Az(g") (Az)

Finally, the term T3 is equal to
A* o2
y /A Az ((’y+x)(gh)/(Az) + z(gh)”(Az)> dAz (B30)
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=—(7+x)&s+ 022 [Az(gh)’(Az)

At
A_}

Combining results (B.27), (B.28), (B.29), (B.30) and those in Step 2, we obtain

o2

0= (1 — gss)]Eh[AZ] - (ry—’_X)Tl T 2

T, + me .y (0) T3

= (1 By 2] — (e a(0) 407 [ mes(82) 5 (82)

which implies LA;, me n(Az)(g") (Az) dAz = — (1 — &) B TEAZ]]

[

O]

Proposition B.3. If (v + x) = 0, up to first order, the CIR¢ () can be expressed in terms of data moments

as follows:
CRg(@) _ 1 1 1 Aw?
¢ f(0(w+)) Varp[Aw] 3IED [AwED [Aw?] +0(0).

avg. udur.  dispersion asymmetries
Proof. The goal is to express the sufficient statistics of the CIR, [E;[a] and E;[Az], in terms of
moments of the distribution of Aw and (7%, ™). We focus in the case of (7 + x) # 0 and then we
use the assumption (y + x) = 0. Let ¥ = x/Ep [x] denote random variable x relative to its mean in
the data.
Proposition I11.3 expresses moments of the wage distribution as a linear combination of moments
of the distribution of productivity changes among completed employment and unemployment

spells:

Ep [Aw] = — [, [Az] + Ej, [Az]]
Ep [Aw?] = [Ey [Az%] + 2, [Az] Ey [Az] + By, [AZ7] ]

Ep [Aw®] = — [E, [AZ’] + 3E), [Az] B, [AZ%] 4 3E), [Az%] By [Az] + B [AZ°]],

where [E;,[] and [E,[-] denote the expectation operators under the distributions §"(Az) and §*(Az),
respectively. Using results from the same Proposition, we can express the moments of productivity
changes for completed unemployment spells in terms of model parameters:

N i)

£

6(—L3+L2— L7+ £7°)
3 ’

, E, {Azz] = , E, [Azs] =

1
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where

(v + 20 + 1/ (7 + 0 + 202 (0(*))
—(v+x)+ \/(7 + X)? 4 202 (B(0*))

From these two sets of equations, we solve for the moments of productivity changes for completed

employment spells and obtain

) (£ -£2)\ 6
Ej, [AZ%] = —Ep [Aw®] — 3Ep [Aw?] S| T e [Aw] .

Assuming (v + x) = 0, to obtain [E;[Az], we evaluate (IIL.7) at m = 1, use the fact that £, = 1,
Ep [Aw?]

Ep [Aw] = 0 and HE:EZ[[T;] = &, and substitute o2 from Lemma C.1: [, [Az] = ~3Ep ] Finally,
replace this expression into (23):
CIRe(D) a4 Ty
IRe(C) Ey, [Az] 3Ep[Auw?]
T— —<1_ESS)T — (1_535)W
]ED[T]
1 Ep [Aw?] 1 1 1 Aw?
= A 5 = ~ 5 *]E'D AW*Z .
fO(@*)) 3Ep [Aw?]®  f(6(2%)) Varp [Aw?] 3 Ep [Aw?]
O
B.2 Proof of Proposition 7: CIR of Employment with Sticky Entry Wage
Proposition 7. Assume sticky entry wages. Up to first order, the CIR of employment is given by:
CIR:(C) _ (4 _ g,y [ Eslal T EalAz]] 1 (@) | Ta(@,p) _ Tq(@",0)
g B o? fO@)) +s Ly(@*) = T(@p)  T(@*0)
(B.31)

Proof. We divide the proof in two steps. Step 1 characterizes mg ,(Az, (). Steps 2 uses the equi-

librium conditions to show (B.31). The starting point is the CIR for employment, which is given
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by

CIR¢(C) = / me 1 (Az)g" (Az + ) dAz -l-/ me ,(8z,0)g" (Az + ) dAz, (B.32)

with

B dmey(Az) o2 d*mg (Az) _
0=1-C&s— Y dAz ? dAz2 + 5(7)15,” (O/ 0) - mE,h(AZ))r forall Az € (_A /(B—IBB)

o dmgu(Az,Q) | 0*d*me(Az,0) Al o
0= &y —yEa CEL)  TEMEMEEL) | f(0(0" — ) (mea(~0) — mea(d2,0)  (B3Y
0 =mg,(0,0) —mg (Az), forall Az ¢ (—A~,AT) (B.35)

L dmeg,(Az,0) .. dmgy(Az, Q)
0= AZILH—IOO dAz - Alzlinoo dAz (B36)
0= / me 1,(Az)g" (Az) dAz -l-/ me ,(Az)g" (Az) dAz (B.37)

The key differences between the CIR with flexible wages and the CIR with sticky wages are
found in the HJB equation at the moment of the shock. With sticky entry wages, the job-finding
probability is given by f(8(@%* — {)), since now the TFPR-adjusted entry wage is lower. As a
consequence, we need to evaluate mg j,(Az) at Az = —( because conditional on finding a job, the
TFPR-adjusted entry wage is lower. Observe that following the first job separation, the aggregate
TEPR shock is fully absorbed (see the term m¢ ,,(0,0) in equation (B.33)).

Step 1. The value function mg¢ ,(Az, () is independent of Az and satisfies mg ,(Az,{) =
— ey T men(=0).

Proof of Step 1. We guess and verify that mg , (Az, {) = mg ,,(0,{) for all Az. From the equilibrium
conditions (B.34) and (B.36),

0= &+ f(O(@" = 1)) (mep(—0) — me,u(0,)).

Thus, mg,,(0,0) = me,u(Az,{) = —m + me p(=0).

Step 2. Up to a first-order approximation, the CIR is given by:

CIRg(§) = —(1 - &) BT BlBE] O B) (0]

T'(@*,p) T'(2*,0)
o2 fO@*) +s \ n(@*) v*,

: o(2%).
)~ T ) O
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Proof of Step 2. From Step 1, we have that

CIR(0) = [ me(82)(") (82) ddz + ( T mg,hm)) (1-)

Since [% mg;(Az)(g") (Az) dAz satisfies the same system of functional equations as the CIR with

flexible entry wages characterized in Appendix B.1,

~ Ey[a] + By [A
/ mg,h(Az)(gh)’(AZ) dAz = _( gss)/y h[ ]0_2 h[ Z] (B38)
Observe that we can write
mep(Az) = E / (1—E&s)dt+mg, (Az,0)|Azg = Az|,
0
(1 — &) T (@* + Az,0) _ s + mg ,(0).
-\ Yy Eh
) F(B(@"))

Taking the derivative with respect to Az, evaluating it at Az = 0, and using s = 1/7 (@*,0) from

the Renewal Principle, we have that

mgh(o) (1= &) Ty (w%,0)

I
=
>
\*
=)
~—
I
~~
oy}
W
\O
~

1-a

From the free entry condition f(A(@*)) = (@) g ,and the definition (1 — 5 (@*)) = f(@*)/S(®*),

we can compute the elasticity of the job finding rate with respect to the entry wage:

oy loa (f@0))E @) . o o 5
fabory (1) T Jimel@) _dmal_ @) 7))
F(60(@)) (L) w J@) e [aeg@) T T

K
Fina(lly, c)ombining this result with the fact that &, = %,s = %,U’ () (,7(7”;]*) - 1_1,7_(;2*)> =
T/ Z{A)*,ﬁ

T 5) and operating, we obtain

ssfw<9( ) _ 1 [_1—a @) +7'/(m*,p)H
_ 1 n' (@) T (@, p
 f(0(@%)) +5 [ﬂ(w*) * T(A*,p)]' (B.40)

B11



Combining results in equations (B.38), (B.39), and (B.40), we obtain the desired result:

[(v + X)En[a] + E;[Az]] 1-&  [n'@) T'@.p) T'(@0)

CIng(O) =—(1-Es) 2 f(é(zb*)) Fs | @) T (0%, ) T (@+,0)

B.3 Proof of Lemma 2

The following proposition provides a characterization of T} (®*,p) /T (¥*,p) stated in Lemma 2.

Proposition B.4. Up to a second-order approximation of T (W, p) around © = w*,

Proof. To show this property, it is useful to change the state variable in 7 (@, ) from @ to Az. Define

T (Az,p) := T (@* + Az, p). Then, applying Itd’s Lemma, we obtain

2
2
T(Az,0) =0V Az ¢ (—A,AT). (B.42)

6T (Az,0) =1—pT(Az,p) — (v + X)T3(Az,) + 2T (Az,0) ¥ Az € (—A~,A%), (BAL)

Let (v + x) # 0and AT # A™. In this case, we proceed with a second-order Taylor approximation
of T(Az,p) around Az = 0,

T(82,p) = T(0,0) + TL(0,p)Az + T3

12(0,0)A2% + O(AZY).
From the border conditions in (B.42), we obtain (we omit the term O(Az>) to save on notation)
. 1
T(0,0) + T3.(0,p)8" + 5 Tx(0,p)(A)* =0, (B.43)

T(0,0) + T, (~47) + 3T (0,0)(A = 0.

Taking the difference

TP +87) = =3Ta(0,0) (872 = (A)2) = TL(00) = —5Ta(0,0) (8% = 87)

Replacing this last equation into the H]B equation in (B.41) evaluated at Az = 0 and into (B.43), we
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obtain

14 (SHAA ) T (0, )

p+o
- 1. A B
T(0.0) = 2 TL(0) (677 - 57 (4 —a7)).
o . . 0 A F100) A T2 (00) _ Ta- (@) _
Combining these equations and solving for 77(0,0) and 7,.(0,p), we have Fop = Fop —
A

B.4 Proof of Proposition 8

We divide Proposition 8 into two propositions. Proposition B.5 “rescales the speed of time” to
provide a recursive representation of ().

Proposition B.5. Define
4 = inf{t >0:T; ¢ (@, %)}

where (&0, ®™") is a Nash equilibrium. Then, the worker’s share n(d) satisfies the following Bellman

equation

o 0 ert - p\l:[ 5 end
1@) =B | [ e 0) T d e I Az s = AT = 0

with

Proof. The H]B equations for the worker’s value and the surplus of the match are

2
b+ O)W () = e — pll — AW/ () + =W () Vo € (o,
p p 5
2
6+ 8)8(w) =1 — pll — 48" (@) + =" (@) Ve (@, d),
p p 5

respectively. Replacing the definition of the worker’s share 1(@) = W () /S (@) into the worker’s

value function, we obtain
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Using the HJB equation of the surplus to replace (9 + 6)S(@) on the left hand side,

2
(1= p)y (@) = & = pU + ' (@) (=78(@) + 28 (@) + 1" (@) 5 5(@) Vab € (@™, ).

T

(p+8)T (b,p) Vo€ (o ,aT).

Finally, recall the value-matching conditions W(®%~) = J(@~) = W(@*) = J(#T) = 0, and the

smooth pasting conditions W/(—A~) = J'(A*) = 0. The L’Hopital’s rule implies

N N
lim 7(®) = lim VY(w) = lim VY (@) =0
(ko (ko S(’(,'D) DD~ ]’(?f))

A A
lim #7(®) = lim I/Y(w) = lim VAV () =1,
DDt Wt S(Z,f)) Wit W/(ZTJ)

which are the boundary values for the worker’s share at the separation triggers.
Finally, the equivalence of the combined Dirichlet-Poisson problem (i.e., the mapping from
the corresponding HJB equations and boundary conditions of # () to the sequential formulation)

gives us the following Bellman equation

Tend

p@) =E| [ e 0+ T at e P Az = Ao = )
0

where T = inf{t > 0:T; ¢ (@, @)} and

dry = (p+ 0)(~4T (Tt p) + 0> T4 (Te, ) dt + /T (L1, ) (0 +6) AW

Proof of Proposition 8. Below, we prove each property.
L IfAT,A™ — oo, then T (@,p) = [;" e~ P dt = ﬁlﬁ. The optimality condition for @* implies

0 (% © B 1—uw _ .
0__W_]7(w)<17(z@*) 1—;7(w*)) = a=q(@).
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Therefore, by the definition of # (),

E [for’" o~ Pt dt‘d)o = Z@*} — pCIT(Z@,ﬁ)
(1—pU)T (@, )

m

— [a+ (1 —a)pl] T(®,p) =E / e P Qt |y =
0

Since T (W, p) is constant, the HJB equation of the worker’s share n(w) is given by

Taking the derivative of (B.44) with respect to @ yields

X . X e® N Lo
(0 +0)y' () = (p +5)1 0 1" () + ’7"'(@“)7 Vi € (—00,00).

This expression corresponds to the HJB of the function #’(@), which can be expressed as

E UOTW e PH dt |y = d)*}
1-pU

Combining all these results, we finally obtain

n' (@) _ n'(@*) (

 E[Jy et g = @ e (1 —a)pl) T(@,0) a4 (1—a)pll]
@) = a O T T -0 - T

Ify+x=0and AT = A~, then T/ (@%*,p) = 0and 17 (*) = « (see the proof of Proposition B.4,
item a). If (A" + A7) is small enough, then we can use a second-order approximation of # (@)
around @ = ®@* to characterize 5’ (@*) only using the border conditions. The approximation is

given by
A Ak Ak A Ak 1 Ak A Ak A Ak
n(@) = n(@") +5'(@")(@ — &%) + 55" (@") (@ — @")* + O((@ — ")*).

Evaluating this expression at @~ and @, and omitting any terms of the order O((® — @*)?3),

we obtain
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1
(@) + 1/ (@7) (@F = @) + " (@) (@ — @) = 1,

!/

respectively. The difference between both equations is given by #' (") = ﬁ. From the

(
proof of Proposition B.4 item b, we know that 7(0,0) = 1/s = 1/(6 + (¢/A*)?) = s =

(0/A™)2. Replacing this result in the previous equation, we obtain, 'Z],((g: )) = txras = iy
O

C Proofs for Section 4: Mapping the Model to Labor Market Microdata

C.1 Characterizing ¢" (Az) and ¢*(Az)

The equilibrium policies (@, @*, @") together with the stochastic process guiding Az and the
exogenous job separation rate determine the equilibrium distributions of cumulative productivity
shocks ¢(Az) and g*(Az). Due to the law of motion for Az being independent of the worker’s

employment state, the KFEs for employed and unemployed workers are

5(82) = (v + (") (02) + T (6 (82) ¥hz e (—A-, AN}, (1)
2
FOG@))s* (82) = (r+0)(8") (82) + S (5)"(82) ¥Az € R\(0)}, €

Since the entry state for a newly employed or unemployed worker is Az = 0, the KFEs (C.1)—-(C.2)
do not hold at this point, but ¢"(-) and ¢*(-) must be continuous there.

The boundary conditions impose a zero measure of workers at the borders of the support, so
that ¢"(—A7) = ¢"(AT) = lima, , o« §"“(Az) = lima, ,0 §*(Az) = 0. These distributions must

also be consistent with (i) a unit measure of workers and (ii) a flow balance equation for steady-state

employment:
) AT
1 :/ " (Az)dAz +/ ¢"(Az) dAz, (C.3)
Ak _ o . hy/ . hy/
FO@))(1-8) = b8+ Lzljnﬂg )/(42) — lim (8")'(82)] . (C4)
rtorh flows h-to-u flows

In equation (C.3), the unit measure of workers is composed of [*_¢"(Az)dAz = 1 — £ unem-

ployed and [ _AZ, ¢"(Az) dAz = € employed workers. In equation (C.4), the mass of u-toh flows is
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F(8(*))(1 — &), while the mass of h-to-u flows is 6 + ‘772 [lima,; s~ (8") (Az) — limpras () (Az)]—
i.e., the sum of exogenous and endogenous job separations.

To summarize, equations (C.1)—~(C.4), together with the continuity of ¢“(Az) and ¢"(Az) at
Az = 0, constitute the equilibrium conditions for the steady-state distributions of cumulative

productivity shocks.

C.2 Proof of Proposition 9

We divide the proof of Proposition 9 into three steps. Proposition C.1 recovers the parameters
of the stochastic process of the wage-to-revenue productivity ratio Az. Proposition C.2 recovers
the distribution of cumulative productivity shocks conditional on job transitions G (Az). Finally,
Proposition C.3 recovers the distribution of Az among employed workers G/ (Az).

Proposition C.1. Let T := 7" + t*. The drift (v + x) and volatility o of the stochastic process guiding
cumulative productivity shocks can be recovered from the data with

Ep[Aw] — , _ Ep[(Aw — (v +x)7)’]
Ep[t] ’ Ep|7]

YtX=
Proof. From the law of motion dz; = (v + x) dt + o AW and the fact that w;, — z;, = ®*, we have
Aw = =Nz = (y+ x)T+ o W2 (C.5)

Drift: Taking expectation on both sides conditional on a h-to-u-to-h transition, we have that
cE[W?2] = Ep[Aw] — (v + x)Ep[t]. Since W¥ is a martingale, by Doob’s Optional Stopping
Theorem (OST) W is also a martingale, and E[WZ] = E[Wj| = 0, thus yielding the desired result.

Idiosyncratic volatility: Let us define Y; = (Az; + (7 4 x)t)*. We apply Itd’s Lemma to Y; and

obtain
1
dY; = 2(Azi + (v + x)t) (dAzs + (7 + x) dt) + EZ(dAzt)Z =20 (Az¢ + (7 + x)t) dAWF + o> dt
Integrating the previous equation between 0 and 7 and using condition (C.5), we obtain
T
(Aw — (v + x)1)* = 2(7/ (Azi + (7 + x)t) AW? + 0?1
0

Since fot (Az; + (v + x)t) W7 is a martingale, by the OST, [ (Az; + (7 + x)t) dWV7 is a martingale
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and E[ [, (Az¢ + (77 + x)t) dW?F] = 0, thus yielding the desired result. O

Proposition C.2. The cumulative distribution of Az conditional on a job separation is given by

o2 dI*(-Az)  (v+%) [0(—Az) — [1 - LY(—Az)]. (C.6)

SH(Az) = _
R )

where L% (Aw) denotes the CDF corresponding to the marginal distribution I (Aw).
Proof. The objective in this proof is to use the nondifferentiability of the distribution of gs(Az) for

s = {h,u} at Az = 0 to express the distribution of Az conditional on a separation. Observe that

L(a) = Pr'" (Aw < a)
=) py"C" (—(AZ" 4+ AZ") < a)
=@ py& G (AZ 4+ Az > —a)

=01 - Pr(AZ" + Az" < —a)

1—/ G"(—a—y)g"(y) dy.

Step (1) uses the definition of Aw. Steps (2)—(4) use independence of G"(-) and g“(-). It can be

shown that
g"(pz) = Gy { eﬁZ(f(A(w L et e LY (Bw) =1 Ci(dw) — C(dw),  (C7)
ePr(f(O@)Az  if A7 € [0, 00)
where
=G /°° GM'(—Aw — u)eﬁl(f(é(w*)))“ du, GCy(Aw) / G (—Aw — )eﬁZ(f(é(w*)))” du.
0

Departing from L (Aw) = 1 — [*_G"(—Aw —y)§"(y) dy and doing the change of variable x =
—Aw —y,
LY(Aw) =1 —/ G"(x)g"(—Aw — x) dx.

Taking the derivative on both sides with respect to Aw, we obtain
“(Aw) / GH(x —Aw — x) dx.
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Reverting the change of variables and using the fact that " (—Aw — x) is nondifferentiable at 0, we

obtain

1°(Aw) = 1(f(6(@")))C1(Aw) + B2(f(B(@"))) Ca(Aw).

Thus,
I“(Aw) = B1(f(O(@™)))Cr(Aw) + B2 (f(B(@*))) Co(Aw). (C.8)

To obtain the last condition, observe that

[ole]

—Aw ~ A
— oo —Aw

Taking the derivative with respect to Aw and using the Leibniz rule, we obtain

Cl(bw) = ~GuG"(~Bw) — B1(f(B(2*)))C1(Bw), (C9)
Ci(bw) = GuG" (—bw) — P2 (f (B(@"))) Ca(Dw). (C.10)

Taking derivative of (C.8),
(1) (Aw) = Ba(f(B(@")))Ci(dw) + Ba(f(B(*)))Co(dw)

and using conditions (C.9) and (C.10),

(1) (Aw) = G"(~Aw)Gu[B2(f (B(@"))) — B1(f(B(")))]
— B1(f(6(2")))*Cr(Aw) — B2(f(6(")))*Ca(Aw). (C11)

Equations (C.7), (C.8), and (C.11) give a system of three functional equations with three unknowns:

1— LY(Aw) = Ci(Aw) + C(Aw),
I (Aw) = B1(f(B(2")))C1(Aw) + B2 (f (")) C2(Aw),
(1) (Aw) = G"(=Aw)Gu[B2(f (O(@"))) — B1(f(B(@")))]
= Bu(f(O(@")))*Cr(Aw) — Bo(f(O(@")))*Ca(Aw).
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Operating on the system of functional equations,

(1) (Aw) + [B2(f(6(@%))) + B1(F(O(@)] 1" (Aw) + B1(f(6(@"))) B2 f(B(@"))) [1 — L” (Aw)]

=G"(—Aw)Gu[B2(f(O(@"))) — B1(f(O(@")))],

with
G, = (B2 @) ! = u(FO ) )
ﬁﬂﬂmww»=5*7+xy_¢Wify+2ﬂﬂmwﬂ%
ﬂﬂﬂﬂww»:-%7+M+Wﬂvtfﬁ+zﬂﬂﬂwﬂ)

Then,

B(f(B(@) + BiFE@) (14

Gulb2(f(0(@") — pr (FO@ )] F(O(@"))
B O@))EO@))

Gulb2(f(@(@"))) — 1 (F(8()))]

Therefore, the differential equation is given by (C.6).
Ul

Proposition C.3. If (y + x) = 0, the distribution of cumulative productivity shocks g (Az) is given by

2(Az+ A7)
o? '

Az 7 — _
ymwﬁsv 2B W ) dy+ G(-a)

_A- o2

If (v + x) # O, the distribution of cumulative productivity shocks g" (Az) is given by

sE /AZ <1 B 62(7742-26) (yAz)) g_h(y> dy + Gh(—A_> |:1 B 872(”:;7() (AZ+A):|] ‘
_A-

h _
g'(az) = (v+x)

Proof. During employment, the distribution of cumulative productivity shocks satisfies the follow-
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ing KFE and the boundary conditions

5(82) = (v +2)(8")/(82) + T (")"(82) WAz € (~67,87)\ {0},

g'(-a7) =g"(8") =0,G"a%) =€,

¢"(Az) € C.

The distribution of cumulative productivity shocks conditional on a job separation satisfies

1 if Az € [Ay, )
G'az)={ L [%thm,N (g")(Az) +6 %2 )dx} if Az € [-A~,AY)
0 if Az € (—oo, —A7).

Combining these two conditions, we obtain

s€3"(8z) = (v +x)(8") (82) + (Tzz(gh)"@Z) VAz € (A7, A7)\ {0}

d(=A) =g ") =0G"a")=¢.

2(v+x)

Multiplying both sides of the first equation by e «2 A we get

)AZ Iy’
200 6, o2 d(e (g")(Az))
Ee 72 A .
see §'az) = 2 dAz
Integrating both sides from —A~ to Az, we obtain
+ 2 [ 2040 2rt)
3‘9 / TR ) de= T e A (g (A2) - Tim " (g (x)]
2 xl—A~
0% 2rin Az 20r4x) A

:76072 (&M (Az) —se™ A Gh(-a),

where the last equation uses the value of G"(Az) evaluated at Az = —A~. Solving for (¢")'(Az),

integrating from —A~ to Az and taking the limit as (y + x) | 0, we get

Az ”— ) ; B
¢"(Az) = s€ [/A_ Z(Aazy)gh(y) dy_l_Gh(_A_)Z(AU—IZ—A)

Cé



References for the Appendix

AUBIN, J.-P. (2007). Mathematical methods of game and economic theory. Courier Corporation.

BALEY, I. and BLANCO, A. (2022). The macroeconomics of partial irreversibility. Working Paper.

BREKKE, K. A. and OKSENDAL, B. (1990). The high contact principle as a sufficiency condition for
optimal stopping. Preprint Series: Pure Mathematics.

EVANS, L. C. (2022). Partial differential equations, vol. 19. American Mathematical Society.

LIONS, J. L. and STAMPACCHIA, G. (1967). Variational inequalities. Communications on Pure and
Applied Mathematics, 20 (3), 493-519.

MARINACCI, M. and MONTRUCCHIO, L. (2019). Unique tarski fixed points. Mathematics of Opera-
tions Research, 44 (4), 1174-1191.

JKSENDAL, B. K. (2007). Stochastic Differential Equations: An Introduction with Applications. Springer,
6th edn.

STOKEY, N. L. (1989). Recursive methods in economic dynamics. Harvard University Press.



	Introduction
	A Model of Labor Markets with Inefficient Turnover
	Environment
	Block-Recursive Equilibrium
	Equilibrium Characterization
	Understanding the Economic Mechanisms
	Discussion of Model Assumptions

	Aggregate Shocks in Labor Markets with Inefficient Turnover
	An Economy with Aggregate Shocks
	Sufficient Statistics for Aggregate Employment and Real Wages

	Mapping the Model to Labor Market Microdata
	Conclusion
	Proofs for Section 2: A Model of Labor Markets with Inefficient Turnover
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Propositions 3, 4, and 5

	Proofs for Section 3: Aggregate Shocks in Labor Markets with Inefficient Turnover
	Proof of Proposition 6: CIR of Employment with Flexible Entry Wage
	Proof of Proposition 7: CIR of Employment with Sticky Entry Wage
	Proof of Lemma 2
	Proof of Proposition 8

	Proofs for Section 4: Mapping the Model to Labor Market Microdata
	Characterizing g super h Delta z and g super u Delta z
	Proof of Proposition 9

	Additional Results for Section 2: A Model of Labor Markets with Inefficient Turnover
	Equilibrium Value Functions
	Sequential and Recursive Formulation of the Model
	Derivation of Recursive Equilibrium from Discrete Time

	Additional Results for Section 3: Aggregate Shocks in Labor Markets with Inefficient Turnover
	A Monetary Economy with Exogenous Money Supply 
	A Monetary Economy with a Taylor Rule and Interest Rate Shocks
	Model Extension: Staggered Wage Renegotiations

	Additional Results for Section 4: Mapping the Model to Labor Market Microdata
	Characterizing gh Delta z and gu Delta z
	Characterizing lw Delta w
	Characterizing Eh Delta zn




