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1 Introduction

Over the last three decades, researchers have developed a computational literature on dy-

namic oligopoly models with endogenously heterogeneous firms. These models have allowed

researchers to study the evolution of industries in a variety of institutional settings. This

has, in turn, yielded important insights into important industrial organization and policy

questions. For example, these models have been used to theoretically analyze the evolution

of market structure (Pakes and McGuire, 1994), the long-run impact of horizontal mergers

(Gowrisankaran, 1999), and the role of learning-by-doing and forgetting and advertising in

industry dynamics (Besanko et al., 2010; Doraszelski and Markovich, 2007). This literature

has also been used as a framework for empirical work in which the dynamic parameters of

a specific model are estimated and policy counterfactuals are then carried out. These ap-

proaches have been used to study the dynamics of the hospital (Gowrisankaran and Town,

1997), aircraft (Benkard, 2004), cement (Ryan, 2012), and concrete (Collard-Wexler, 2013)

industries, among others.

The canonical model that underlies this literature was developed by Pakes and McGuire

(1994) and Ericson and Pakes (1995). In Pakes and McGuire, incumbent firms make qual-

ity investments and exit decisions, while potential entrants choose whether to enter. The

investment model specifies that each firm invests in order to raise the quality of its product,

where the return to the investment is stochastic. The quality of a product can only go up

one level in each period. Because of the model’s complexity, researchers have typically solved

the Markov perfect equilibrium for particular parameters via computation rather than by

characterizing the solution analytically.

This paper provides a computable framework to study capacity dynamics in oligopoly

models that can also be used in empirical work. In particular, we develop a model with

privately observed shocks to the cost of investment. Our model departs from much of the ex-

isting literature in the way that cost shocks enter payoffs. In our model, shocks affect payoffs

multiplicatively in a function that is increasing in the amount of investment that the firm

chooses. Thus, our private information shocks affect the marginal costs of investment rather
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than the fixed costs. Our privately observed shocks can also be interpreted as idiosyncratic

components of the opportunity cost of capital.

Privately observed payoff shocks have played a key role in the literature in dynamic

oligopoly models in particular, and in estimable dynamic discrete choice models more gen-

erally. There are two reasons behind this. First, private information shocks are key to

establishing existence of pure strategy equilibrium (see Gowrisankaran, 1995; Doraszelski

and Satterthwaite, 2010). Second, they generate ex-ante stochasticity in outcomes such as

investment. This is useful for models to serve as a basis for empirical work, where one would

like to match data with randomness to the predictions of the model (see, for instance, Rust,

1987).

We characterize three types of models that differ from ours in the way they incorporate

randomness into the payoffs. First, Pakes and McGuire (1994) and closely related models,

allow for random investment outcomes. In these models, firms make a continuous investment

choice. More investment increases the probability of an upward move in the firm’s endogenous

state variable (e.g. capacity or quality) by one unit. Firms do not actively retire capacity

but instead an exogenous random process governs depreciation. This class of models has

been successfully implemented, for instance, to understand horizontal mergers and antitrust

policy (Gowrisankaran, 1999; Mermelstein et al., 2020) and to explain empirical facts such

as the substantial and persistent firm sizes differences that are observed in most industries

(see Besanko and Doraszelski, 2004).

However, this approach to modeling oligopoly capacity dynamics will miss some key

features of capacity dynamics. In general, firms often do not change their physical capital,

implying that there is large mass point at zero investment. When firms do make changes

in capital stock, small negative and positive adjustments are common. However, conditional

on making a positive investment, it is also common for those investments to be very large

relative to the initial capital stock. For instance, Cooper and Haltiwanger (2006) show that

the pattern of firm investment for manufacturing firms has a considerable mass at zero and

often includes large and heterogeneous changes in capacity levels.

The second class of models involves investment fixed cost shocks with shocks to the fixed
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costs of investment and/or disinvestment (Ryan, 2012). This class of models allows firms to

choose their optimal level of capacity, possibly by retiring capital. In this class, conditional on

a choice of positive or negative investment, the level of investment is deterministic. Firms may

choose arbitrarily small amounts of investment in order to benefit from favorable investment

draws. A deterministic level of investment may also not fit observed data very well.

A third class of models allows for multinomial cost shocks. In this class, firms choose from

a discrete set of capacity levels, and researchers model the underlying investment decision

akin to a probit or multinomial logit setup. They assume that the capacity-level specific

shocks are independent across capacity choices. For instance, in their empirical study of

the nuclear power plant industry, Rust and Rothwell (1995) model the capacity decision of

nuclear power plants with an i.i.d. logit shock to each choice of capacity utilization. This

approach requires that the number of shocks increases with a finer grid, implying that the grid

approximation will have a big impact on the outcomes. It also has the undesirable property

that the shock to a large positive investment is independent of a shock to a medium-large

positive investment. This type of model also requires the evaluation of multidimensional

integrals which tend to be computationally challenging except for the case i.i.d logit errors.

Collard-Wexler (2013) models concrete plants in a similar fashion, but considers only three

size classes of plant capacity (small, medium, and large). Considering only a small set of

choices mitigates the above problem, but at the cost of less good approximations of the true

choice set.

Given the issues with these three types of random shocks, researchers more recently have

adopted a modeling approach with an additive shock to the marginal cost of investment,

in which the cost of investment is monotonic in the level of the shocks. Kalouptsidi (2018)

models a shipyard’s decision of how many ships to produce. In addition to a deterministic

cost that is linear-quadratic in the number of ships, she models a private cost shock that is

proportional to the number of units added. Caoui (2023) studies the transition to digital

movie distribution and exhibitions. He models a movie theatre’s per-screen adoption cost as

the sum of a common price across theaters and a privately observed theater-specific shock.

Gowrisankaran et al. (2024) model a utility’s investment in generation capacity for different
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fuel types. Their cost of capacity investment involves a fixed cost, linear and quadratic terms,

and private idiosyncratic shocks to the marginal costs of adding or retiring capacity.

This paper studies computation of the models used in these three applications. In par-

ticular, we consider computational dynamic oligopoly models where the principal strategic

variable of interest is a discrete investment decision. The model allows for a large and discrete

number of potential investment levels that can also approximate a continuous distribution.

Our investment process specifies that firms can adjust their capacity as much as desired in

a given period by paying the required cost of investment. We model private information

shocks to the marginal cost of investment. The shocks are additive to the marginal cost

of investment so that the cost of investment is monotone in the level of the shocks. The

shocks generate ex-ante stochasticity in the investment outcomes, and ensure existence of

equilibrium. Given this model, we develop a simple and efficient computational algorithm to

compute exact best responses and equilibria without the need for numerical or Monte Carlo

integration methods.

We believe that our paper has two main contributions. First, we characterize the op-

timal investment policy in models with private information shocks to the marginal cost of

investment. We do so without imposing restrictions on the deterministic payoff and transi-

tion function. This builds on Kalouptsidi (2018), which relies on convex choice-specific value

functions and restrictions on the state transition functions to ensure that the value func-

tion is concave in the investment choice, and on Caoui (2023), which imposes a “decreasing

difference” restriction on the choice-specific value functions. Allowing for the flexibility of

the functional form is important because these assumptions may not necessarily hold in the

context of dynamic oligopoly models, where choice-specific value functions may not follow

concavity properties.

Second, we show how to compute equilibria of these dynamic oligopoly models without

relying on simulation draws. The monotonicity of payoffs in the private information cost

shocks implies that investment levels are monotone in the shock, conditional on the state.

This monotonicity property then allows us to solve for the cutoff values of these shocks that

result across different optimizing levels of investment. Using monotonicity, we further develop
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a simple algorithm to identify which investment levels are chosen with positive probability

and the optimal cutoffs between different investment levels for any state and firm. These

cutoffs fully characterize the optimal choice probabilities given beliefs. The probability of

choosing any action is then a continuous function of the future value from each action. Given

continuity, existence of equilibrium follows from application of a fixed point theorem. These

functions can then be used to solve for a Markov perfect equilibrium of the capacity game in

pure investment strategies.

In contrast, we show that an approach where we take a finite number of simulation draws

of the private information shock would result in a model that may not have a pure strategy

equilibrium. We illustrate this point with simple counterexamples where equilibria do not

exist and where increasing the number of simulation draws to any finite level does not solve

this problem.

We believe that our general investment framework may be helpful in examining indus-

tries where capacity or capital is the main source of heterogeneity. Investment models with

quadratic adjustment costs or capital specificity which allow for asymmetric investment be-

havior have been well-developed in macroeconomics (e.g. Cooper and Haltiwanger, 2006).

However, a central hurdle in using this type of model for dynamic oligopoly models is compu-

tational complexity.1 A common way of computing equilibria of these models would be via

simulation, as is typically done in the macroeconomics literature (see, for example, Cooper

and Haltiwanger, 2006; Khan and Thomas, 2008). The approach we develop in this paper

allows for the computation of these models, whereas a method that simulated the private

information shock may not yield an equilibrium.

The remainder of this paper is divided as follows. Section 2 describes our model. Section 3

discusses computation of equilibria. Section 4 discusses applications from the literature.

Section 5 concludes.

1Our model of investment allows for both quadratic adjustment costs and capital specificity.
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2 A Dynamic Framework of Capacity Choice

2.1 Model

We consider capacity investment in a dynamic oligopoly framework with discrete time, t =

1, 2, . . . ,∞. Firms discount future payoffs with a discount factor β < 1. The industry consists

of up to N firms at any time t. We denote the set of firms by N = {1, ..., N}, with a typical

firm being i ∈ N . Firms choose from a finite set of capacity levels. Our model is quite

general in that capacity in our framework can represent any factor that affects demand. We

now describe the states, actions, payoffs, and equilibrium concept, in turn.

Publicly observed states. At time t, there is an L-dimensional vector of publicly

observed state variables st ∈ S ⊆ <L, The state includes the capacity level of each firm and

potentially other firm-specific characteristics. It also includes common characteristics such

as aggregate demand or aggregate productivity. We let sti denote the portion of st that is

affected by the actions of firm i. Similarly, we let st0 denote the portion that is unaffected by

the actions of any firm, i.e., s0 evolves exogenously.

Privately observed cost shocks. At time t, each firm i privately observes a real-

valued cost shock εti ∈ <. The shock is not observed by other firms until the end of period

t. The shocks εti are i.i.d. and drawn from the strictly monotone and continuous distribution

function F . Independence of εti from the state variables is important, as it allows to integrate

over these shocks conditional on the current state.2 The strict monotonicity assumption

is equivalent to full support on <. Continuity of F allows us to ensure existence of pure

strategy equilibria.3 The strict monotonicity and continuity assumptions together ensure

that multiple investment outcomes are chosen with positive probability ex ante. Finally, we

assume that E [εti|εti ≥ ε] < ∞ for all ε, which ensures that the expected value conditional

on any action is finite.

Actions. After observing the publicly observable state st and its own private cost shock

εti, each firm simultaneously chooses next period’s capacity. We denote a firm’s action by

2Rust (1987) provides a discussion of the independence assumption in dynamic discrete choice models.
3See the discussion in Gowrisankaran (1995) or Doraszelski and Satterthwaite (2010)
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ati. We assume that ati is chosen from the action set A = (α1, . . . , αK); i.e. A consists of

K unique real numbers. We use o(·) to denote the cardinality of sets, so o(A) = K. For

ease of later analysis and without loss of generality, we impose an increasing order on A:

let α1 < alpha2 < . . . < αK . Similarly, we impose an increasing order on the elements of

any subset of A. We let an action profile at denote the vector of joint actions in period t,

at = (at1, . . . , a
t
N) ∈ A = ×Ni=1Ai. The cardinality of the action space A is given by KN .

State transitions. We describe the state transition matrix with a probability density

function g : A × S × S −→ [0, 1] where a typical element g (st+1|at, st) is the probability

that state st+1 is reached when the current action profile and state are given by (at, st).

We require
∑

s′∈S g (s′|a, s) = 1 for all (a, s) ∈ A × S. Our framework thus encompasses

stochastic depreciation and random investment outcomes as in Pakes and McGuire (1994),

as well as a stochastic process for aggregate demand. In addition to encompassing the Pakes

and McGuire (1994) framework, our framework allows for firm i’s observable state variable

sti to evolve deterministically. In this case, since each firm chooses its next period’s capacity

level, we can write st+1
i = ati.

Period payoffs. Firm i receives its period payoff at the end of the period, after all

actions are observed. We assume that we can additively separate the period payoffs into a

deterministic term that does not depend on the private cost shock and a term that becomes

stochastic because it is multiplicative in the cost shock. Specifically, we define period payoffs

for firm i as a real-valued function defined on S × Ai and given by:

πi
(
ati, s

t)− ci(ati, st
)
× εti, (1)

where ci(·) is strictly increasing in its first argument ati, i.e., the firm’s stochastic cost of

capacity is increasing in the level of capacity chosen. The deterministic term πi(·) depends on

the capacity choice for next period ati and the current state of the industry st. Conceptually,

it includes the profits from selling the product and the deterministic part of investment costs.

We assume that both πi and ci are bounded: |πi (·) |, |ci (·) | <∞ for all i.

The discounted sum of future payoffs. Similarly to the period payoffs, the dis-

counted sum of future payoffs consists of the deterministic components and the random cost
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component. For firm i, the discounted sum is given by:

E
∞∑
τ=t

βτ [πi (a
τ
i , s

τ )− ci(aτi , sτ )× ετi ] . (2)

The expectation E is over the realization of ετi as well as own and rival firms’ future states

and state-contingent actions.

2.2 Markov perfect equilibrium

To analyze equilibrium behavior, we follow Maskin and Tirole (1988) and consider pure

Markovian Strategies ai(s
t, εti). A strategy for firm i is a function of the firm specific in-

vestment cost shock and the publicly observable state variables. The assumption that the

profitability shock is independently distributed allows us to write the probability of observing

action profile at as Pr(at|st) = Pr(at1|st) · · · Pr(atN |st). The Markovian assumption allows

us to abstract from calendar time and subsequently we omit the time superscript. It also

allows us to define beliefs about each firm’s probability of choosing an action at each publicly

observable state—ω(a, s).

Value function. We can define a Bellman equation for firm i given any set of beliefs for

the probabilities of actions, ω. Focusing on the ex ante value function, i.e. before the private

shock εi is realized, we obtain:

Vi(s|ω) =
K∑
k=1

∑
a∈A s.t. ai=αk

ω(a, s)
{ [
πi(α

k, s)− ci(αk, s)× E(εi|ai = αk, s)
]

(3)

+ β
∑
s′∈S

Vi(s
′|ω)g(s′|a, s)

}
.

Here, E denotes the expectation operator with respect to the firm’s investment cost shock.

The finiteness of the action and state space guarantees the existence of the value function

Vi(s|ωi) in equation (3).

Choice-specific values. To further exposit the optimal choices of investment necessary

to characterize and compute the equilibrium of our model, we follow Hotz and Miller (1993)

and define the choice-specific value :

vki (s|ωi) = πi(α
k, s) + β

∑
a−i∈A−i

∑
s′∈S

g(s′|s, k, a−i)Vi(s′|ωi), (4)
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as firm i’s value net of the random component of cost ci(ai, s) × εi when it chooses action

a(s, i) = k. It is then optimal to choose action a(s, i) = k under beliefs ωi whenever

vki (s|ωi)− ci(αk, s)× εi ≥ v`i (s|ωi)− ci(α`, s)× εi,∀` 6= k. (5)

This characterizes the optimal decision rule up to a set of measure zero. For this zero measure

set we assume, without loss of generality, that whenever equation (5) holds with equality,

the firm chooses the higher action. The optimal policy ai(εi, s) then satisfies:

ai(εi, s) = argmax
αk∈A

{
vki (s|ωi)− ci(αk, s)× (εi)

}
. (6)

The probability that firm i chooses action ai = αk in state s thus given by

pki (s) = ψki (s|ωi)

= Pr

 vki (s|ωi)− ci(αk, s)× εi ≥
v`i (s|ωi)− ci(α`, s)× εi,∀` 6= k

 .

This relationship holds for all firms i ∈ N and states s, and every action a. Without loss

of generality, we set the lowest capacity choice ai = α1 to be the reference action whose

probability p0i (s) is given by 1 −∑K
k=2 p

k
i (s). This results in a system of L · N × (K − 1)

equations, which we can write compactly in vector notation as

p = ψ (ω) . (7)

where p denotes the L · N × (K − 1)-dimensional vector of choice probabilities and ω the

L ·N × (K − 1)-dimensional vector of beliefs.

A Markov perfect equilibrium (MPE) is a set of strategies and beliefs regarding the

probabilities of actions for each publicly observable state,

(a, ω) = (a1, ..., aN ;ω1, ..., ωN),

that satisfies the following conditions. First, each firm’s strategy ai(s, εi) is Markovian and a

best response to a−i given beliefs ωi. Second, beliefs about each firm’s probability of choosing

an action at each publicly observable state—ωi(a, s)—are consistent with strategies a.
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In a MPE, it must hold that beliefs ω have to correspond to choice probabilities p so that

equation (7) becomes

p = ψ (p) (8)

It follows that any p satisfying (8) constitutes an equilibrium. Note that ψ(·) is a mapping

from a L · N × (K − 1)-dimensional unit simplex into itself. Since ψ(·) is continuous in

p, Brouwer’s fixed point theorem applies and (7) it has a solution in p. Note further that

when payoffs are symmetric, a symmetric MPE exists. This is because we can use the same

argument, but restricting to symmetric strategies in the presence of symmetric payoffs.

3 Computation of equilibrium

3.1 Simulation-based computation and nonexistence of equilibria

In order to compute a dynamic equilibrium of the model, one can use the method of successive

approximations. This method is closely adapted from Pakes and McGuire (1994) and related

studies. The idea is to repeatedly compute the mapping ψ until a fixed point is reached.

Specifically, one can start with beliefs of rivals’ choice probabilities, ωi and the corre-

sponding ex-ante value function, Vi(s|ωi), and beliefs of rivals’ choice probabilities, ωi. The

algorithm updates these matrices as follows. For each state (s, i) at each iteration, it first

computes a choice-specific value function, vki (s|ωi), for k = 1, . . . , K, by applying (4) using

the previous iteration of the ex-ante value function and beliefs. Using the choice-specific

values, it then solves for firm i’s optimal policies conditional on εi, ai(εi, s), using (6). The

algorithm then integrates over εi to solve for the ex-ante value function Vi(s|ωi), as in (3) and

uses the new Vi(s|ωi) to update transition probability beliefs ωi. It performs this calculation

for all states, iterating on these two steps until a convergence criterion—based on distance

between subsequent iterations being close to 0—is satisfied.

The one central complication with this algorithm is the necessity of integrating over the

ε draws to calculate the ex-ante value function. A standard approach would be to calculate

this integral by simulation. With the standard approach, one would simulate over a finite
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number of draws for ε. The problem with the standard approach is that a pure strategy

equilibrium for the model with a finite number of draws may not exist even when one exists

for the limiting model.

To understand the lack of existence, recall that existence of equilibrium in our model relies

on the continuity of the mapping ψ(.). Yet, for the model approximated via simulation, the

probability of any action will be discontinuous in valuations because it is the sum of the

probabilities over a finite number of draws, each of which has one associated optimal action.

We show this by two examples that add private information to textbook games.

Matching pennies. Consider the following (static) matching pennies game, a classic exam-

ple of a game where no pure strategy Nash equilibrium exists. We can formulate matching

pennies as a special case of our model, where there is only one state, so capacity si = 1 for

both players, and players simultaneously choose whether to increase capacity to 2. The deter-

ministic component of firm 1’s payoff for action a1 = α1 is −0.75 when both choose the same

action, and 1.25 otherwise. The deterministic component of firm 2’s payoff is 1 when both

choose the same action, and −1 otherwise. Our model solves the non-existence by adding a

private information shock to the payoff when choosing action ai = α2.4 For simplicity, we con-

sider uniformly distributed shocks with εi ∼ U(−0.5, 0.5). The modified game is given below.

Player 2

a2 = α1 a2 = α2

Player 1
a1 = α1 (−.75, 1) (1.25,−1− ε2)
a1 = α2 (1− ε1,−1) (−1− ε1, 1− ε2)

Let pi be Player i’s probability of choosing action ai = 1. Player 1 chooses action a1 = 1

if an only if ε1 > 4p2 − 2.25. Player 2 chooses action a1 = 1 if an only if ε2 > 2 − 4p2. The

modified game has a unique pure strategy equilibrium. Player 1 plays action 2, if and only

if ε1 > −1/68. Similarly, Player 2 plays action 2 if and only if ε2 > −1/17. First suppose

4This matching pennies model corresponds to a capacity adjustment model where there is a stochastic

cost when the firm needs to adjust capacity to 2.
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one tried to solve for an equilibrium by simulation. Consider an approximation model with

two draws for each player with realizations {−0.3, 0.3}. A pure strategy equilibrium exists,

because each player would play each action with probability one half, choosing action 1, when

drawing εi = −0.3 and action 2 otherwise.

Now suppose that the draws are {−0.2, 0.2}. We considered the cases where one or both

players choose the same action across the two draws, i.e., pi ∈ {0, 1}, for some i. We verified

that none of these cases forms an equilibrium. It must then be that in any equilibrium,

pi ∈ (0, 1) for i = 1, 2. By the nature of the private information shock, it further follows that,

in a pure strategy equilibrium, Player 2 again chooses action 1, when drawing εi = −0.2 and

action 2 otherwise. This implies that p2 = 0.5. Because Player 1 chooses action a1 = 1 if and

only if her draw was larger than 4p2 − 2.25 = 0.25, she would never choose action 1, which

implies that she chooses the same action a1 = 2 for both realizations, which we know cannot

be an equilibrium. Therefore, no pure strategy equilibrium exists in this case. A successive

approximation algorithm would cycle forever. This shows that a pure strategy equilibrium

does not exist for some values of the draws for the approximated model with discretized

shocks.

Duopoly exit. Consider a simple game where firms only consider whether to stay in the

market or exit. This corresponds to variant of our capacity game with a discount factor of

0, possible actions being a capacity of either α1 = 0 or α2 = 1, and period payoffs that

are affected immediately by the exit choices. If one firm remains active, the firm earns a

deterministic component of profits equal to π̄(1), if two firms remain active, they each earn

duopoly profits π̄(2). Firms that have exited earn profits of zero. Assume that π̄(2) <

0 < π̄(1), so that, with a private information shock, there is no pure strategy symmetric

equilibrium, but two asymmetric pure strategy equilibria (0,1) and (1,0). We now add an

i.i.d. cost shock ε drawn from distribution function F to be paid if a firm remains active (i.e.

c(αk) = αk, for k ∈ {1, 2}). Existence of pure strategy equilibrium can easily be established

for this model. A symmetric pure strategy equilibrium corresponds to the choice probability
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g of a firm remaining active, defined by the solution to the equation

g = F (gπ̄(2) + (1− g)π̄(1)) .

Since, in our model, F is strictly increasing with positive support over the entire real line, at

least one such equilibrium is guaranteed to exist. Now a simulation approach could not would

not use the above equation, but instead would draw shocks from the discretely approximated

distribution F . Suppose that one chooses two values ε1 and ε2, each drawn with probability

1/2. Without loss of generality, assume that ε1 < ε2. A pure strategy for each firm would

be to always exit (implying choice g = 0), remain active whenever the cost shock is low

(g = 1/2), or always remain active (g = 1).

Symmetric equilibria only exist for some sets of values of the private information draws.

For instance no symmetric equilibrium exists for the four following sets of values:

{ε1 < π̄(2) < ε2 < (1/2)(π̄(1) + π̄(2))},
{π̄(2) < ε1, ε2 < (1/2)(π̄(1) + π̄(2))},
{(1/2)(π̄(1) + π̄(2)) < ε1, ε2 < π̄(1)},
{(1/2)(π̄(1) + π̄(2)) < ε1 < π̄(1) < ε2}

Consider for instance the first set of values. Whenever the other firm remains active with

probability 0 or 1/2 it is optimal to always remain active, i.e. g = 1. However, the best

response to the rival remaining active with probability 1 is to remain active whenever the

cost shock realization is low. This shows that a pure strategy symmetric equilibrium does

not exist for some values of the draws for the approximated model with discretized shocks.

3.2 Efficient computation

Our innovation is the development of an algorithm that allows us to find the exact probabil-

ities of choosing each capacity level αk conditional on choice-specific values for a state (s, i).

Our algorithm does not use simulation and is quick to compute, thereby making it suitable

to use nested within the dynamic game solution.
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This subsection considers the computation of the probability of form i and each action

given the state s. To ease notation, in this subsection, we use a(ε), c(αk), and vk to refer to

ai(ε|s), ci(αk, s), and vki (s|ωi) respectively. We start with the following lemma:

Lemma 1. The action function a(ε) is weakly decreasing in ε.

Proof This proof follows from Topkis Theorem5 but we prove it directly. Consider two

actions k and j, with k > j;

j strictly preferred to k

⇐⇒ vj − c(αj)× ε > vk − c(αk)× ε (9)

⇐⇒ ε >
vk − vj

c(αk)− c(αj) ,

where the third line uses the fact that c(·) is increasing, implying that c(αk) − c(alphaj) is

positive. From (9), for any two actions, the higher action will only be chosen with lower ε,

implying that a is weakly decreasing in ε.

Using Lemma 1, we define the ε cutoff between any two choices.

Definition For 1 ≤ j < k ≤ K, let the “ε cutoff ” be

ε(j, k) =
vk − vj

c(αk)− c(αj) .

This definition and Lemma 1 lead directly to another (small but important) result:

Lemma 2. For 1 ≤ j < k ≤ K, the firm strictly prefers action j to k ⇐⇒ ε > ε(j, k).

Proof This result follows directly from the proof of Lemma 1.

Sometimes—but not always—one can directly use the ε cutoffs to define the probabilities

of each action. Before turning to the general results, we illustrate this with an example. We

consider the case of three possible actions, K = 3, and linear capacity costs, c(αk) = k. The

5See for instance Theorem 1 in Amir (2005).
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payoff from an action is therefore vk − a × ε. Let the smallest action k = 1 yield a choice-

specific value of v1 = 0 and the largest action k = 3 yield a choice-specific value of v3 = 2.

In Figure 1, we consider the case where the middle action k = 2 comes with a choice-specific

value of v2 = 1.5. Here, “ε cutoffs” are ε(1, 2) = 1.5 and ε(2, 3) = 0.5, respectively. The

“ε cutoffs” determine the slopes of the dark blue lines, which are by construction parallel

to the corresponding black lines that connect the choice-specific values. Lemma 2 implies

that a(ε) = 1 whenever ε > 1.5. Further, a(ε) = 2 when 0.5 < ε < 1.5, and a(ε) = 3

when ε < 0.5. Consequently, all three actions are chosen with positive probability.6 Action

ai = 1 with probability 1− F (1.5), ai = 2 with probability F (1.5)− F (.5), and ai = 3 with

probability F (.5). We will now see that the key is that the cutoffs are declining in the action:

ε(1, 2) = 1.5 > ε(2, 3) = 0.5, which corresponds to the conditional choice value function

being discrete concave.

Figure 1: All actions chosen with positive probability
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In Figure 2, we alter the choice-specific value of the second action k = 2 to v2 = .5. In

this case, v2 lies below any convex combination of v1 and v3, which we show with the dashed

line. Not coincidentally, the cutoffs have flipped order, with ε(1, 2) = 0.5 and ε(2, 3) = 1.5.

Also not coincidentally, using Lemma 2, one can verify that a(ε) = 1 when ε > 2, a(ε) = 3

6Note that in Section 2.2 we adopted the convention that at the cutoff the firm chooses the larger action.
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when ε < 2. Consequently, a(ε) = 2 is never optimal.

Figure 2: Only two actions chosen with positive probability
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Overall then, Lemma 2 and Figures 1 and 2 imply that the presence of decreasing dif-

ferences in choice-specific values guarantees the monotonicity of equilibrium strategies, but

does not guarantee the concavity of the choice-specific value functions. Consequently, it does

not imply that each action is played with positive probability in equilibrium.

Focusing specifically on Figure 2, actions are chosen with positive probability when the ε

cutoffs with respect to them are never reversed in order, or equivalently, when their choice-

specific values lie above any convex combination of choice-specific values for choices above

and below them. We formalize:

Proposition 1. Let C(A) ⊆ A be the set of actions that are chosen with positive probability.

The following three statements are equivalent:

(i) Action k satisfies k ∈ C(A)

(ii) @j, l ∈ A such that j < k < l and ε(k, l) ≥ ε(j, k)

(iii) ∀j, l ∈ A such that j < k < l and vk > λvj + (1− λ)vl where λ = c(αk)−c(αj)
c(αl)−c(αj)

.

Proof We consider first the equivalence of the first two statements. We show (the contra-

positive of) the first statement implying the second one, that if ∃j, l ∈ C(A) s.t. j < k <
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l and ε(k, l) ≥ ε(j, k) then k /∈ C(A). If such j, l exist, then for any ε > ε(j, k), the firm will

not pick k since it prefers j to k by Lemma 2. Any ε < ε(j, k) also satisfies ε ≤ ε(k, l), so

the firm will also not pick k in this case since it prefers l to k. Thus, the firm picks k, if at

all, at ε(j, k) which has probability 0.

Now, we show that the second statement implies the first. Suppose ∀j, l ∈ A with

j < k < l, ε(k, l) < ε(j, k). Let εL(k) = max{−∞,maxl>k{ε(k, l)}} and let εU(k) =

min{∞,minj<k{ε(j, k)}}. Now consider ε ∈ [εL(k), εU(k)]. For any such ε, k is preferred to

j, ∀j < k and k is preferred to l, ∀l > k, and thus the firm chooses k. Moreover, this interval

is non-empty by assumption. Thus, k is chosen with positive measure or probability.

Finally, we show that the second and third statements are equivalent.

ε(k, l) < ε(j, k), ∀j < k < l

⇐⇒ vl − vk
c(αl)− c(αk) >

vk − vj
c(αk)− c(αj) , ∀j < k < l

⇐⇒ vk > λvj + (1− λ)vl, ∀j < k < l.

Proposition 1 shows that each action is chosen with positive probability if and only if it

is in a discrete analog of the concave hull with respect to other actions, where concavity is

defined only over the discrete actions and using the measure λ. The proposition also implic-

itly provides an algorithm for evaluating which actions are chosen with positive probability.

Moreover, this algorithm can be used to compute the region where ε is chosen: evaluating

(εL(k), εU(k)), if this forms an interval with positive mass, k ∈ C(A), and is chosen over this

interval.

While this algorithm would correctly compute the probabilities of each action, we show

that it is not the most efficient. In particular, it requires computing ε(j, k) for each 1 ≤ j <

k ≤ K, of which there are K(K − 1)/2. Thus, the number of calculations grows with the

square of K. However, we develop a computational algorithm that requires only a number

of calculations that grows linearly with K. Our algorithm works by iteratively constructing

the set of actions chosen with positive probability (those in C(A)) and then comparing each

element against its neighbor in the set that ultimately becomes C(A). Recall that speed of

computation here is crucial since this computation process must be repeated for each industry
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state at each stage of the model. We offer the following:

Proposition 2. Consider the following iterative algorithm:

1. Initialize Ĉ = A and k = 2.

• At each step, the algorithm considers a Ĉ and k.

• Ĉ is the candidate C(A), while k and its neighbors are the elements being consid-

ered for exclusion from the discrete concave hull.

2. If ε(Ĉk−1, Ĉk) > ε(Ĉk, Ĉk+1), then:

• If k = o(Ĉ)− 1, exit the algorithm with Ĉ.

• Otherwise, go back to the beginning of Step 2 of the algorithm with Ĉ and k + 1.

3. If ε(Ĉk−1, Ĉk) ≤ ε(Ĉk, Ĉk+1), then:

• Drop Ĉk so that Ĉ = (Ĉ1, . . . , Ĉk−1, Ĉk+1, . . . , Ĉo(Ĉ)).

• If o(Ĉ) = 2, exit the algorithm with Ĉ.

• Otherwise, go back to (the beginning of) Step 2 of the algorithm, using the following

values:

– If k > 2, use Ĉ and k − 1.

– If k = 2, use the new Ĉ and k.

Then, the output of this algorithm satisfies C(A) = Ĉ.

Proof First, we show (the contrapositive of) the property that any element k ∈ Ĉ satisfies

k ∈ C(A). If an element k /∈ C(A), then it was removed at some stage of the algorithm

because of ε cutoffs that are in the wrong order against two neighbors at the time. But,

Proposition 1 shows that each element k ∈ Ĉ satisfies the ε cutoffs being in the right order

against all other choices. Hence, k /∈ Ĉ.
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To prove that any element k ∈ C(A) satisfies k ∈ Ĉ, we first show the following claim:

ε(C(A)k, C(A)k+1) < ε(C(A)k−1, C(A)k) for k = 2, . . . , o(C(A)) − 1.7 Suppose, by contra-

diction, that ∃k such that ε(C(A)k, C(A)k+1) ≥ ε(C(A)k−1, C(A)k). Then, by construction,

the algorithm compares each k against its neighbors in C(A) at some point in the algorithm.

Thus, at this point, C(A)k would have been dropped from the algorithm.

We next show a second claim: for any k /∈ C(A), ∃j, l ∈ C(A) such that ε(j, k) ≤ ε(k, l).

Suppose, again by contradiction, that ∃k /∈ C such that ε(j, k) > ε(k, l),∀j, l ∈ C(A). Then,

consider

ε ∈ ( max
l∈C(A),l>k

{ε(k, l)}, min
j∈C(A),j<k

{ε(j, k)}).

By the contradictory assumption, this interval has positive mass. Moreover, for any ε in this

interval, k is preferred to all j < k if j ∈ C(A) and to all l > k if l ∈ C(A). This implies

that within this interval, either k or some other k′ /∈ C(A) are chosen throughout. This then

contradicts the fact that elements k /∈ C(A) are chosen with zero probability.

Using these two claims, by contradiction, consider now the possibility that for some C(A)k,

C(A)k /∈ Ĉ. By the second claim, ∃j′, l′ ∈ C(A) such that ε(C(A)k, l
′) ≤ ε(j′, C(A)k). By

the first part of the proposition, j′, l′ ∈ C(A). Denote these elements C(A)j and C(A)l

respectively. Now, by the first claim,

ε(C(A)l−1, C(A)l) < · · · < ε(C(A)k+1, C(A)k)

< ε(C(A)k−1, C(A)k) < · · · < ε(C(A)j, C(A)j+1).

Moreover, note that ε(C(A)k−1, C(A)k) ≤ ε(C(A)j, C(A)k) ≤ ε(C(A)j, C(A)j+1). If not,

suppose ε(C(A)j, C(A)k) < ε(C(A)k−1, C(A)k). Then, for ε in a neighborhood immediately

to the right of ε(C(A)j, C(A)k), C(A)j is preferred to C(A)k. But, at this point, C(A)k

is preferred to C(A)k−1, which is preferred to C(A)k−2 etc. and is ultimately preferred to

C(A)j, by the first claim. Thus, this yields a contradiction. Similarly, if ε(C(A)j, C(A)k) >

ε(C(A)j, C(A)j+1) there would be an equivalent contradiction. By an analogous argument,

ε(C(A)l−1, C(A)l) ≤ ε(C(A)k, C(A)l) ≤ ε(C(A)k, C(A)k+1). Thus, ε(C(A)k, C(A)l) <

ε(C(A)j, C(A)k) which contradicts the initial assumption. Thus, C(A) = Ĉ.

7We use C(A)k to denote the kth element of C(A).
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To see that each interior C(A)k is preferred exactly when ε ∈ [ε(C(A)k, C(A)k+1),

ε(C(A)k−1, C(A)k)], note that it cannot be preferred outside this region, because the neigh-

boring elements in C(A) are preferred to it. Moreover, no element in C(A) is preferred to

it in this region, and no element outside C(A) is ever chosen. An analogous argument holds

for C(A)1 = a1 and C(A)o(C(A)) = aK .

Proposition 2 defines the ranges of ε for which each action is chosen, while simultaneously

creating the set C(A). Combining these insights, we offer:

Corollary 1. A given action 1 < k < K is weakly preferred over all other actions ⇐⇒ ε ∈
[ε(C(A)k, C(A)k+1), ε(C(A)k−1, C(A)k)], with action 1 preferred for ε ∈ [ε(C(A)1, C(A)2),∞)

and action K preferred for ε ∈ (−∞, ε(C(A)o(C(A))−1, C(A)o(C(A)))].

As we discussed above, a principle value of Proposition 2 is that it shows that the compu-

tation time for optimal strategies for our algorithm is linear in the cardinality of the action

set:

Corollary 2. Using the algorithm defined by Proposition 2, the number of ε cutoffs that are

computed is at least K − 1 and at most 2K − 3.

Proof At each iteration of the algorithm, either k increases by 1 or an element is removed

and the right-most element stays the same. The worst case for computation is that k goes

from 2 to K and then all interior K − 2 elements are dropped. This worst case requires the

computation of 2K − 3 cutoff values. The best case, which drops no elements, requires the

computation of K − 1 cutoff values.

The limitation in cardinality is key in making our algorithm feasible to compute. Recall

that the cardinality is important because the algorithm outlined in Proposition 2 will be

performed many times at every state when solving for the MPE with a dynamic oligopoly.

4 Applications From the Literature

Many papers in the dynamic oligopoly literature build on the Pakes and McGuire (1994)

(and Ericson and Pakes, 1995) model. However, there are important differences between
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this model and ours. We thus first discuss how our results relate to Pakes and McGuire

(1994) and why the differences imply that our method may not simplify the computation of

the original model. We then turn to three recent dynamic empirical industrial organization

papers inspired by Pakes and McGuire (1994), but where firms have private information

shocks and can adjust capacity through making one of a large set of potential decisions. We

show the mapping between our model and each of these papers, which also demonstrates

that our results may be useful in these settings.

4.1 Quality ladder model in Pakes and McGuire (1994)

Pakes and McGuire (1994) model a differentiated product quality ladder game with entry

and exit. The publicly observable state vector st indicates the quality level of each firm

relative to the outside option. Each period, firms invest a continuous amount ai ≥ 0 with

the goal of increasing product quality sti by 1. The probability that a firm’s product quality

increases by 1 is increasing in the investment amount. Each period, following the investment

phase, firms simultaneously set prices and earn profits. The price-setting decisions are the

same as in a static game and hence firms earn Bertrand differentiated-products profits, based

on these strategies.

Our model relates to this game, but does not fit exactly into their framework, for a couple

of reasons. First, our actions ati are discrete while the action set in Pakes and McGuire is

continuous. Focusing on the investment decision, we can approximate their game as a version

of our game with a large number of discrete investment choices. The period return becomes

π̄i(st)− atic, (10)

where the actions span a wide range of positive levels.

Second, in Pakes and McGuire, there is no privately observed cost shock. This is true

even in the discretized version in (10). We can see this by noting that (10) would be similar

to of our period profits shown in (1) if we added the final term with ε. Pakes and McGuire

do not need this term for a pure strategy Markov perfect equilibrium, because they obtain

stochasticity (and hence continuity in values) from the random realization of investment,
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rather from random investment cost. Therefore, in Pakes and McGuire, quality investments

are deterministic conditional on observable state variables while investment outcomes are

not. Without the private information shock, applying our method would not reduce com-

putational time. Thus, to the extent that researchers use the exact Pakes and McGuire

specification without a private information shock, there is no need to apply our technique.

Indeed, computation of Pakes and McGuire involves a different exact solution for the level

of investment at each state (Pakes et al., 1992).

Third, Pakes and McGuire (1994) model permanent entry and exit. Our model can be

modified to incorporate permanent entry and exit. In this case, we can consider a firm at

the lowest capacity level to be one that has exited. An active firm that chooses to exit would

expect to receive no future payoffs upon exit, except for a one time scrap value. An exited

firm could then be replaced by a future entrant that starts at the lowest capacity level.8

Many empirical papers have built on Pakes and McGuire (1994) to model capacity and

other similar attributes. In these contexts, firms make infrequent but large jumps rather than

changing the attribute by small amounts each period. The presence of infrequent but large

jumps fits naturally with a model where there are private information shocks to the costs of

investment, in which case our method may be useful. We now turn to empirical papers that

compute this type of model.

4.2 Shipbuilding subsidies in Kalouptsidi (2018)

Kalouptsidi studies the market for ship building in a dynamic oligopoly model. Each period

in the Kalouptsidi model, each shipyard i decides on ati, which indicates how many ships

to build. The shipyard’s state, sti, includes its backlog of orders and characteristics. The

shipyard can sell its ships at a price, V E, which reflects the demand for new ships by ship

owners, who are ship buyers. This price depends only on the exogenous portion of the state,

st0, so they write V E(st0). Production cost has a deterministic component that is a function

8A complication of having permanent entry and exit is that there are a potentially infinite number of

players, though Pakes and McGuire (1994) cap the number of active players at any period. This requires

notational changes but does not fundamentally change the nature of the game.
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of the amount produced and the shipyard’s backlog, c̄(ati, s
t
i, s

t
0).

9 Production cost also has a

stochastic normally-distributed component with standard deviation σt. The period payoff is

thus given by:

V E(st0)× ati − c̄(ati, sti, st0)︸ ︷︷ ︸
πi(ati,st)

− atiσ
t
i︸︷︷︸

ci(ati,st)

× εti, (11)

where we have indicated the mapping to our notation with under braces.

Translating to our framework, the first two terms make up the deterministic component

πi (a
t
i, s

t) and the third term the random component ci (a
t
i, s

t) × εti. Kalouptsidi (2018, p.

1123) shows that convexity of the cost function c̄(ati, s
t
i, s

t
0) is sufficient for all investment

levels being chosen with positive probability. The probability of a given investment level

is given by the mass of εti falling between two neighboring difference in conditional choice

values, corresponding to our cutoffs.

Thus, the Kalouptsidi (2018) result, applied to our context, essentially boils down to an

assumption that every choice—in terms of the number of ships to build—lies in the discrete

concave hull of choice-specific value functions at each state. Our results complements this

paper by showing how to compute optimal policies for general payoff functions which do not

necessarily induce discrete concave choice-specific values.

4.3 Digital movie adoption in Caoui (2023)

Caoui studies adoption of digital movie screens, also in a dynamic oligopoly setting. In Caoui,

a movie theater’s action ati represents the number of digital movie screens it adopts. The

industry state st0 includes the mean price of installing digital screens, pt, and the aggregate

share of digital screens, ht, while sti is the number of screens the theater has previously

adopted. There is also a normally distributed shock to the price of installing a digital movie

screen, εti. Mean profits are a function of these states, π̄(sti, h
t).

9Kalouptsidi (2018) refers to this term as c, but we use c̄ because we use c for the random component of

the state. Similarly, we adjust the notation of other papers below.
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The period payoff is given by:

π̄i(s
t
i, h

t)− ati × pt︸ ︷︷ ︸
πi(ati,st)

− ati︸︷︷︸
ci(ati,st)

× εti. (12)

Once again, we can divide profits into the deterministic component and a stochastic compo-

nent that multiplies the unobservable term.

Caoui (2023, p. 610) assumes that the period payoff function satisfies “decreasing differ-

ences” in (ati, ε
t
i) to ensure that the optimal investment choice ati is monotone in εti. This as-

sumption is similar to the choice-specific value function being discrete concave across options.

In general, the choice-specific value function need not be discrete concave and consequently,

not all actions are chosen with positive probability. Our algorithm in Proposition 2 allows

the researcher to find the set of actions chosen with positive probability.

4.4 Energy transitions in Gowrisankaran et al. (2024)

Gowrisankaran et al. model a regulated monopoly utility faced with an energy transition.

Each three-year period, the utility first decides how much coal capacity to retire and then how

much combined-cycle natural gas (CCNG) capacity to add. The exogenous state variable s0

is the market price for natural gas. The firm’s own state s1 is formed from its current coal

and CCNG capacities. The mean cost of retiring coal capacity is quadratic in the amount of

capacity retired, while the mean cost of adding CCNG capacity is quadratic in the amount

of capacity added. In both cases, there are also linear i.i.d. marginal cost shocks in c1. For

either generation source, we can write the action at1 as the next period’s capacity level of

that source. The cost function for retiring coal capacity can then be written as:

π̄1(s
t
1, s

t
0)− δ01{at1 6= 0} − at1

(
δ1 + at1δ2

)
)︸ ︷︷ ︸

π1(at1,st)

− at1σ︸︷︷︸
c1(at1,st)

× εt1. (13)

Equation (13) considers a single investment decision, but in Gowrisankaran et al., the

regulated monopoly makes two investment/retirement decisions each period. Because the

two decisions are made in sequence, we can treat them as being made in separate periods
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within the context of our model. The paper models 10 discrete levels of coal retirement and

CCNG investment, and found that increasing the number of levels resulted in very similar

structural parameter estimates.

Gowrisankaran et al. (2024) use the methods developed in this paper. In particular, they

estimate the model with a full solution nested fixed point generalized method of moments

(GMM) approach. For each candidate parameter value, they solve for the distribution of

retirement/investment outcomes using the algorithm in Proposition 2. They then match

moments of the state-contingent investment outcomes to the data. Their moments include

the probabilities of retirement and investment, the retirement/investment amounts and their

squares conditional on non-zero levels, and the standard deviations of these amounts. In

Gowrisankaran et al. (2024), the choice-specific value function was not discrete concave at

the estimated parameters and hence only a subset of retirement/investment levels were chosen

with positive probability.

Gowrisankaran et al. (2024) is the special (monopoly) case of an oligopoly framework

where each firm is faced with stochastic costs. In the more general case with N firms, the

publicly observable state vector st consists of N + 1 elements, denoting the demand state

st0, and firms’ capacities (st1, s
t
2, ..., s

t
N). Each period, firms engage in Bertrand or Cournot

competition given their capacity levels, and earn profits, π̄(st) based on these decisions.

Firms face a deterministic linear quadratic asymmetric mean investment cost function. The

stochastic part of the investment cost is proportional to investment, ati − sti. To model the

specificity of capital, both the deterministic and stochastic parts are asymmetric around 0.

Choosing the lowest level of capacity ati = 0 corresponds to exit, in which case the firm would

receive a scrap value. A firm that is already at capacity sti = 0 would need to pay an entry

cost to build capacity.

Firm i’s period payoff becomes:

π̄i(s
t) − 1{ati > sti}

(
δ1 + δ2(a

t
i − sti) + δ3(a

t
i − sti)2 + 1{sti = 0}χ

)
− 1{ati < sti}

(
δ4 + δ5(a

t
i − sti) + δ6(a

t
i − sti)2 − 1{ati = 0}φ

)
−

[
1{ati < sti}(ati − sti)σ1 + 1{ati > sti}(ati − sti)σ2

]
× εti. (14)
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In equation (14), the first two lines make up the deterministic component of period payoff

πi (a
t
i, s

t). The first line indicates profits from the product market minus the deterministic cost

of positive investment, and the second line is the deterministic part of negative investment.

The parameters χ and φ denote entry cost and scrap values respectively. The third line

contains the random component of investment cost ci (a
t
i, s

t) × εti. Different parameters σ1

and σ2 allow for asymmetry in the cost of positive and negative investment also in the random

component.

This oligopoly model is similar to the Ryan (2012) and Fowlie et al. (2016) model of the

cement industry. However, these papers model unobservables to the fixed cost of investment

rather than linear shocks that are proportional to the quantity of investment. Thus, in these

papers, the sign of investment in any period—negative, positive, or zero—is stochastic, but

the level of investment conditional on the sign, the level of investment is deterministic.

5 Conclusion

This paper develops new methods to compute a class of dynamic oligopoly models. We

consider models where firms can invest to build or retire capacity or other attributes with

many fixed values, that can approximate a continuous distribution. In our model, firms can

adjust their capacity as much as they want in any period. The desired investment quantities

are limited by quadratic costs of investment and capital specificity. Firms bear a private

information component to the cost of investment. The private information component is a

shock to the marginal cost of investment, so it is proportional to the amount invested.

We characterize the optimal investment policy for this type of model. Specifically, we

show that the optimal policy is a set of investment options that are chosen with positive

probability for some value of the private information shock. These actions are chosen with

positive probability if and only if they are in the discrete analog of the concave hull of the

choice specific value function relative to other actions. We develop a computationally efficient

method to calculate the probability of choosing each action. Our method requires fewer than

2K iterations on a comparison process per state and firm, where K is the number of actions,
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i.e. potential investment levels.

In contrast to our method, we show that equilibrium may not exist for approximate models

that simulate the private information shocks and use the simulation draws to compute the

probability of different investment levels. We provide a simple example of a 2×2 game where

equilibrium does not exist with a finite number of simulation draws.

Our methods may be useful in analyzing dynamic oligopoly models with investment in

fixed attributes such as capacity. They may allow researchers to extend investment models

used in industrial organization to incorporate private information shocks on the marginal

cost of investment and with fewer assumptions that are currently made. They may also

allow researchers the ability to extend macroeconomic models of investment to oligopoly

settings.
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