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1 Introduction

Rational expectations may be a useful modeling strategy in tranquil times like the Great

Moderation. This strategy is less appealing, however, when people are confronted with

novel events, such as the Great Recession or the COVID-19 pandemic. This fact was

self evident to the founders of rational expectations. For example, referring to the

model in his seminal paper on asset prices, Robert E. Lucas, Jr. writes:

....The model described above “assumes” that agents know a great deal

about the structure of the economy, and perform some non-routine com-

putations. It is in order to ask, then: will an economy with agents armed

with “sensible” rules-of-thumb, revising these rules from time to time so

as to claim observed rents, tend as time passes to behave as described...”

Lucas (1978, p. 1437)

This paper analyzes the evolution of economic aggregates after a novel event. We

assume that people must learn about their environment by forming beliefs about future

economic outcomes and update those beliefs as the data come in.

There is a voluminous literature that addresses the question of whether economies in

which people are learning about their environment converge to a rational expectations

equilibrium (REE).1 In contrast, much less attention has been paid to the question of

how long it takes to converge to an REE.2

The answer to this question is critical to assessing the usefulness of rational ex-

pectations for understanding the effects of shockson the economy and the efficacy of

policies to deal with the repercussions of those shocks. As Vives (1993, p. 329) writes,

in a changing world, for all practical purposes, “‘slow’ convergence may mean no con-

vergence.” This paper investigates what features of an economy determine whether

learning is fast or slow. Critically, in all of the models we consider, people’s beliefs

about model outcomes are central determinants of equilibrium outcomes.3

1See, for example, Bray and Savin (1986), Marcet and Sargent (1989b), and Evans and Honkapohja
(2001).

2Some exceptions include Vives (1993), Marcet and Sargent (1995), Ferrero (2007), and Chien et
al. (2021).

3There is a large literature that explores the speed with which people learn the parameters of
exogenous stochastic processes. For example, Erceg and Levin (2003), Gust et al. (2018) and Farmer
et al. (2021) describe an empirically relevant set of time series representations with hard-to-learn low
frequency components.
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Our central finding is that when beliefs are partially self-fulfilling, learning equilibria

converge slowly to rational expectations. Indeed, learning can be extraordinarily slow,

with progress being measured in millennia. Under these circumstances, policy analyses

based on rational expectations can be very misleading.

We begin by considering a model developed by Bray and Savin (1986) that is a

workhorse in the learning literature. An important virtue of the model is that it is a

very simple setup in which people’s beliefs determine market outcomes. The reduced

form of the model encompasses cases in which beliefs are partially self-fulfilling and

cases in which beliefs are self-defeating. A particular parameter, which we denote by

b, controls how beliefs about market outcomes affect actual market outcomes. When

0 < b < 1, beliefs are partially self fulfilling. The Lucas (1973) supply model, in which

a higher expected price level leads to a higher actual price level, falls into this case.

When b < 0, beliefs are self defeating. Muth (1961)’s version of the classic Cobweb

model, in which a higher expected price level leads to a lower actual price level, falls

into this case.

In the REE of the Bray and Savin (1986) model, people’s beliefs about economic

aggregates are constants, independent of past data. Bray and Savin (1986) show that

when people behave like Bayesians, their beliefs converge almost surely to rational

expectations. In contrast, we focus on the rate at which beliefs converge under both

Bayesian and classical (least squares) learning. In both cases, beliefs are a stochastic

process that depends on past data. Building on Ljung (1977), Marcet and Sargent

(1989c) and Evans and Honkapohja (2001) show that in a class of learning models, the

eigenvalues of a particular ordinary differential equation (ODE) determine whether or

not the system converges asymptotically. We show how those eigenvalues can also be

used to characterize the amount of time it takes for learning to converge.

Marcet and Sargent (1995) characterize the rate of convergence in beliefs in terms

of convergence in distribution. Because existing results related to convergence in dis-

tribution do not apply for values of b ≥ 1/2, Marcet and Sargent (1995) make particular

assumptions which motivate a numerical method to characterize the rate of conver-

gence in distribution for b > 1/2.4 In the Bray and Savin (1986) model, we analytically

characterize the rate of convergence of the mean belief and its variance for all b < 1.

We then make additional distributional assumptions that allow us to provide an ana-

lytical characterization of the rate of convergence in distribution for 1/2 ≤ b < 1. Our

4This numerical approach is also taken in Ferrero (2007).
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results allow us to make several observations about the approach in Marcet and Sargent

(1995).

We use simulation methods to show that our analytic results regarding the asymp-

totic rate of convergence of mean beliefs serves as a good guide to actual, small t rates of

convergence. Our asymptotic results and small sample simulations show that for mod-

erately high values of b, it takes an extraordinarily large number of periods to close

two-thirds of the expected gap between the initial priors and the rational expectations

belief.

The intuition behind the possibility of slow convergence is as follows. When people’s

expectations of a variable are largely self-fulfilling, they are slow to adjust their priors,

and it takes a long time for them to converge to rational expectations. In contrast,

when people’s expectations lead to outcomes different from their beliefs, they are quick

to change those beliefs, and convergence is fast. For convenience, we refer to this

intuition as the learning principle.

The possibility of slow convergence is not just a theoretical curiosum. The binding

zero lower bound (ZLB) during the Great Recession was a novel event that few people

understood when it first occurred. We argue that when the ZLB is binding, learning

is particularly slow. We also argue that the implications of slow learning for policy

are substantial: The predicted effects of monetary and fiscal policies are very different

under rational expectations than under slow learning. We make these arguments using

a simple version of the New Keynesian (NK) model that was widely used to understand

the Great Recession and the effect of the binding ZLB.5

We begin by considering learning equilibria in the ZLB in the absence of government

interventions. Our key result is that convergence is very slow. Indeed, in the benchmark

parameterization of the model the ZLB would almost certainly be over long before

learning has come close to converging. The reason for slow convergence is that in the

ZLB, the expectations of households and firms tend to be self-fulfilling. To understand

why, suppose that firms and households expect lower inflation in the future. Because

of price-setting adjustment costs, firms are incentivized to cut prices today. In the

ZLB, low inflation expectations mean households believe the real interest rate is high.

Consequently, households reduce their demand for consumption, which leads to a fall

in the marginal cost of production. Hence, the actions of both households and firms

5Much of the work in the initial aftermath of that event combined rational expectations with the
NK model. See, for example, Eggertsson and Woodford (2004), Christiano et al. (2011) and Del Negro
et al. (2023).
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lead to lower current inflation. With learning, low current inflation shifts expected

inflation down in the next period. The previous mechanism repeats itself in the next

period so that actual inflation in the next period is also low. We conclude that, in the

ZLB, deflation expectations are partially self fulfilling, and the NK model behaves like

a high b economy.

In the NK model, when people have rational expectations, a shock that triggers

a binding ZLB leads to a sharp decline in inflation and output (see Eggertsson and

Woodford (2004)). The large effects arise because the shock triggers high expected

deflation and real interest rates. In contrast, under learning the same shock leads only

to a moderate and gradual decline in inflation because, with learning, expectations

are partially backward-looking. So, if people begin the episode not expecting a large

deflation, then the actual decline in inflation will be relatively moderate.

Next, we consider the effects of fiscal policy in the ZLB. We find that the efficacy

of fiscal policy is much smaller under learning than under rational expectations. Under

rational expectations, the multiplier is very large in the ZLB because an increase in

government purchases causes a rise in expected inflation (see Christiano et al. (2011)).

Because the nominal interest rate is fixed, this rise generates a fall in the real interest

rate, a rise in consumption, and a multiplier substantially larger than unity. Under

learning, expected inflation is partially backward-looking and does not move much after

an increase in government purchases. So, the real interest does not fall by very much,

and consumption rises by only a small amount. As a result, the key driver of the large

REE multiplier is effectively eliminated, and the multiplier is close to unity.

Next, we turn to the efficacy of monetary policy in the wake of a shock to the

discount rate, under learning. We begin by considering the effects of a simple form of

forward guidance: The monetary authority commits to keeping the nominal interest

rate at zero for one period after the shock that makes the ZLB binding returns to

its steady-state level. Interestingly, the number of REEs proliferates under forward

guidance. However, we show that only one equilibrium is stable under learning. Con-

sistent with the existing literature (for example, Del Negro et al. (2023) and Woodford

(2012)), we find that forward guidance is powerful under rational expectations. As

is well-known, the power of forward guidance under rational expectations reflects its

strong effect on expected inflation. Under learning, the effects of forward guidance have

very little influence on expected inflation because expectations are partially backward-

looking. It follows that under learning, forward guidance is not very powerful. So,
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as with fiscal policy, a rational expectations-based analysis of monetary policy can be

very misleading.

In our analysis, people fully integrate the fact that they are learning when they solve

their problems. For convenience, we refer to this approach as internalized learning.

We formulate households’ and firms’ problems in recursive form. Given the recursive

structure of learning, this approach seems natural: People start a period with an

initial set of beliefs, then see data and update their beliefs using Bayes’ rule. In our

environment, aggregate prices adjust in a given period to clear markets. In our learning

equilibrium, however, we do not require that planned future individual decisions are

market clearing or that the sum of expected future individual decisions coincides with

the corresponding expected aggregate outcomes. People’s value functions incorporate

their understanding that they will continue learning and adapting their behavior as

new data arrive.

As it turns out, implementing internalized learning in the nonlinear solution of the

model is computationally very challenging. In a learning equilibrium, the parameters

that characterize beliefs are also state variables and this greatly exacerbates the curse

of dimensionality.6 See Appendix C for details.

Next, we study the asymptotic properties of the model by linearizing its solution.

We establish three sets of results. First, we identify the analog of b in the linearized

solution, which determines the asymptotic rate of convergence of the NK model. It is

the largest real part of the eigenvalues of the matrix that maps beliefs about the state

of the economy into their realized values. Since this property is not specific to the NK

model, the result allows an analyst working with a linear solution to a dynamic model

that has a similar form to quickly determine whether learning is slow or fast. Second,

we show that the linearized solution to the NK is a good approximation to the nonlinear

solution in a nontrivial neighborhood about the point at which the approximation is

taken. Third, we show that the asymptotic rate of convergence in mean beliefs is a

good guide to the small t rate of convergence.

In contrast to internalized learning, much of the learning literature works with a

version of Kreps (1998)’s Anticipated Utility approach. In this approach, people update

their beliefs every period as new data come in. But, when they make their decisions,

people proceed as though their beliefs will never be revised again. This approach has

been criticized for its internal inconsistency (see Cogley and Sargent (2008) and Adam

6We solve our model using a compiled programming language (c++) and we make use of more
than 300 processors.
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and Marcet (2011)).

We simulate our model under both internalized learning and anticipated utility. We

find that the results under both approaches are qualitatively similar. However, for some

experiments there are important quantitative differences between the two approaches

due to the more prominent role played by uncertainty under internalized learning.

These results are consistent with those obtained by Cogley and Sargent (2008), who

studied a stochastic endowment economy with a storage technology.

The remainder of this paper is organized as follows. Section 3 analyzes learning in

the Bray and Savin (1986) environment. Section 4 discusses our approach to learning

in the NK model. Section 5 characterizes the set of minimal state variable REE while

the representative household’s discount rate is low. Section 6 analyzes the local and

global learnability of those equilibria. In Section 7, we analyze the speed of convergence

of the learning equilibrium in the NK model after a drop in the discount rate. In that

section, we also compare the internalized learning and anticipated utility approaches

to learning. Section 8 assesses the sensitivity of the efficacy of fiscal policy and forward

guidance to learning. Section 9 extends our analytic results about rates of convergence

reported in section 9 to the vector case that encompasses the NK model. Section 10

contains concluding remarks.

2 Related Literature

Our paper relates to a number of literatures. The first is the literature that studies the

properties of recursive stochastic estimators in learning models. As noted above, Ljung

(1977) establishes that a recursive estimator, θ̂t, converges almost surely to a limiting

value, θ, if a particular ordinary differential equation, ODE, which is determined by

the underlying system, has eigenvalues with real parts that are less than unity. Marcet

and Sargent (1989c; 1989a), Woodford (1990), Evans and Honkapohja (2000; 2001), and

others build on Ljung (1977) to study the conditions under which learning equilibria

converge to rational expectations.

Marcet and Sargent (1995) study the rate at which learning equilibria converge

to rational expectations using results from Benveniste et al. (1990), who show that

if the real parts of the eigenvalues of the ODE identified by Ljung (1977) are less

than 1/2, then t1/2
(
θ̂t − θ

)
has an asymptotic Normal distribution with finite, non-

zero variance. However, eigenvalues with real parts greater than 1/2 can easily arise in
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practice. We show that the NK model analyzed below has this property in the ZLB. In

addition, Marcet and Sargent (1995) use numerical simulations to study versions of the

Cagan (1956) model of hyperinflation. In some of those simulations, eigenvalues are

substantially larger than 1/2. Under particular assumptions, we extend the results in

Benveniste et al. (1990) for the Bray and Savin (1986) model to the case of 1/2 ≤ b < 1.

Ferrero (2007) discusses learning in the context of a linear NK model in which the

ZLB on interest rates is not binding. He uses the simulation methods proposed by

Marcet and Sargent (1995) to study convergence rates of learning equilibria. Ferrero

(2007) adopts the so-called Euler-equation approach to learning as opposed to our

approach; see Evans (2021) for a definition of the Euler-equation approach to learning.7

Another difference with Ferrero (2007) is that we compare rates of convergence in a

nonlinear NK model when the ZLB on interest rates is and is not binding. Ferrero

(2007) only considers the latter case.

Cogley and Sargent (2008), Adam and Marcet (2011), and Adam et al. (2017)

develop the internalized learning approach in the context of endowment economies.

Adam and Merkel (2019) use this approach to analyze a real business cycle model in

which peoples’ beliefs do not nest an REE. In contrast, we study an NK model in

which peoples’ beliefs do nest an REE and we characterize rates of convergence to that

equilibrium.

Preston (2005) and Eusepi et al. (2022) study the effects of monetary policies in

linearized NK models under learning, both in and out of the ZLB. They use the an-

ticipated utility approach to modeling how people make decisions. In contrast, we

work with a nonlinear model and adopt the internalized learning approach to decision

making. Additionally, we characterize how quickly, under learning, monetary and fiscal

policies have effects similar to those obtained under rational expectations.

A different literature investigates prices’ information content for fundamentals ob-

served with noise. In this context, Vives (1993) asks a question similar to ours: How

quickly do people’s beliefs converge? Specifically, he studies a model in which people

use price signals and other noisy observations to learn about an object (a cost parame-

ter) whose value is independent of beliefs. In our model, the values of the objects that

people are learning about–for example, aggregate output and inflation–depend on their

beliefs.

Our paper is also related to a recent game-theoretic grounded literature that ana-

7Our approach is an example of what Evans (2021) calls the agent-based approach to learning.
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lyzes the implications of bounded rationality for the effectiveness of fiscal and monetary

policy. Farhi and Werning (2019) use k -level thinking models to study how deviations

from rational expectations affect the effectiveness of forward guidance. Garćıa-Schmidt

and Woodford (2019) study forward guidance and interest rate pegs using reflective

expectations. Iovino and Sergeyev (2023) apply k-level thinking and reflective expec-

tations to analyze the effects of quantitative easing. Angeletos and Lian (2017) develop

the idea that a lack of common knowledge can attenuate general-equilibrium effects and

damp the effects of government spending. Angeletos and Lian (2017; 2018) analyze the

consequences of bounded rationality for the size of fiscal multipliers.

Farhi and Werning (2019), Farhi et al. (2020) and Woodford and Xie (2019; 2022)

use different models of bounded rationality to study the size of the government-spending

multiplier. Vimercati et al. (2021) assess the implications of bounded rationality for the

effectiveness of tax and government spending policy at the ZLB. They do so through

the lens of a standard NK model in which people are dynamic k-level thinkers.

In all of the papers just cited, individuals have a limited ability to understand the

general equilibrium consequences of monetary and fiscal policies. Like learning, this

type of deviation from rational expectations can limit the power of forward guidance.

Our paper studies a form of deviation from rational expectations different from those

cited in the previous two paragraphs. Moreover, in contrast to our analysis, these

papers do not analyze rates of convergence to rational expectations.

3 Simple Example

We consider a workhorse model used in the learning literature; see, for example, Bray

and Savin (1986) and Evans and Honkapohja (2001). We use this model to exposit our

basic intuition about the factors determining how fast learning models converge. That

intuition is summarized by what we refer to as the learning principle. First, when peo-

ple’s expectations are partially self-fulfilling then convergence to REE is slow. Second,

when people’s expectations lead to outcomes that are different from their expecta-

tions, then convergence is quick. We exposit this principle using different measures of

convergence.

Suppose a variable, xt, for t = 1, 2, . . . , is determined as follows:

xt = a+ bEt−1xt + εt. (1)
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Here, εt has mean zero, variance σ2 < ∞, and is not correlated over time. The

operator, Et−1, denotes the cross-sectional average of expectations based on the history

of observations on xt up to period t−1. Evans and Honkapohja (2001) show that when

b > 0, equation (1) is the reduced form of the Lucas (1973) supply model. When b < 0,

equation (1) is the reduced form of the Cobweb model analyzed in Muth (1961).

We consider two specifications of Et−1 corresponding to whether people have ra-

tional expectations or use past data to learn about the data-generating process for xt.

When b 6= 0, the way people form their beliefs affects the law of motion for xt.

In the REE, Et−1 corresponds to the mathematical expectation, Et−1, and xt is

given by

xt = µ+ εt, µ =
a

1− b
. (2)

That is, in the REE xt ∼ N (a/ (1− b) , σ2).

3.1 Beliefs about the Mean of xt

As in Bray and Savin (1986) and Evans and Honkapohja (2001), people assume that xt

is Normally distributed with mean µ and variance σ2, but they do not know the value

of µ.8 For ease of exposition, we assume people know the value of σ2. The analysis

below is unchanged if we assume that people must also learn the value of σ2 so long

as they have Normal-inverse-gamma priors about µ and σ2, which would result in the

same equations for µt.

Another approach to learning used in the related literature is constant gain learning.

In the model considered here, constant gain learning is not an optimal approach to

learning from the perspective of households and firms. As a result, it does not fit into a

framework of internalized learning. See Appendix B for further discussion of constant

gain learning and for a characterization of the rate of convergence of beliefs to REE.

We assume that before observing xt, people’s prior belief about µ is given by the

Normal distribution

N
(
µt−1, σ

2/λt−1

)
. (3)

Here, λt−1 characterizes the precision of the prior about µ.9 After seeing xt people’s

8Recall, we have not assumed that εt actually has a Normal distribution. People in the model
assume Normality of the likelihood when they derive Bayes’ rule.

9We can interpret µ0 as the average of person-specific priors, but, we require that all people have
the same value for λ0 .
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posterior belief about µt is N (µt, σ
2/λt), where

µt = µt−1 +
1

λt−1 + 1
(xt − µt−1) , (4)

λt = λt−1 + 1 = λ0 + t, (5)

for t = 1, 2, ... , where 1/ (λ0 + t) is the optimal weight on new information.10 The

parameter, λ0, is finite and non-negative. If λ0 = 0 then µt in equation (4) corresponds

to the time t least-squares estimator of µ.

Substituting from equation (1), and rearranging, we obtain

µt =
a+ εt + (b+ λt−1)µt−1

λt−1 + 1
. (6)

After repeated substitution, we obtain a decomposition of µt in terms of the shocks

and µ0. Let

zt =
t∏

j=1

(1− bj) , (7)

where

bj ≡
1− b
λ0 + j

. (8)

The following Lemma summarizes the time-series representation of µt that we work

with:

Lemma 1. The variable, µt, in equation (6), has the following representation:

µt =
a

1− b
+

t∑
j=1

{
zt
zj

εj
λ0 + j

}
+ zt

(
µ0 −

a

1− b

)
, (9)

where zt is defined in equation (7).

For the proof, see Appendix A.

3.2 Characterizing Rates of Convergence

Bray and Savin (1986) prove that if b < 1, then µt → a/ (1− b) almost surely. In

contrast, we are interested in the rate at which µt converges. To this end, we focus on

10This result about posteriors is well known; see, for example, Hamilton (2020).
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the mean of the posterior distributions of µt. The parameter b is the critical determinant

of the rate of convergence.

3.2.1 Rate of Convergence of Mean of µt

We now consider the rate of convergence of Eµt, where E is the unconditional mathe-

matical expectation. According to Lemma 1,

zt = E

(
µt − a

1−b

µ0 − a
1−b

)
, (10)

for each t ≥ 1. We can interpret 1−zt as the fraction of the initial gap, µ0−a/ (1− b) ,
closed by period t.

From equations (7) and (8), we see that zt depends only on λ0 and b. The smaller

the precision, λ0, the larger the gain at all dates (see equations (4) and (5)). This gain

effect implies that the less precise people’s initial priors are, the more weight they give

to the data and, in our simple model, the more quickly their views converge.

We now analyze numerically how the speed of convergence of Eµt depends on b.

Our metric is the amount of time it takes to close two-thirds of the initial gap. That

is, we calculate T, the value of t such that zT ≈ 1/3. In the following calculations, we

set λ0 = 1.11 When b = 0, 0.5, 0.75, 0.85, and .95, then T = 3, 11, 113, 2201, and 5.2

billion, respectively. Note how the speed of convergence decreases nonlinearly with b.

When b = 0, people’s beliefs converge very quickly. In contrast, when b is large and

positive, for example, 0.95, beliefs essentially take forever to converge.

Suppose 0 < b < 1. Then, learning injects a positive feedback loop into the data.

For higher b, a large value of µt−1 implies a large value of xt (see equation (1)). That, in

turn implies a higher value of µt (see equation (4)). The higher is b the more powerful is

the feedback loop. This positive feedback loop explains why the higher value of b leads

to a slower speed of convergence.12 As we discuss below, this intuition also applies for

b < 0. That is, for all b satisfying b < 1, convergence is faster for smaller values of b.

To establish the rate of convergence of Eµt, we need to define what it means for

two sequences– xt and at, both of which converge to zero–to have the same rate of

convergence. Loosely, two sequences have the same rate of convergence when their

11Note that the value of a is irrelevant for zt.
12If b is too large, then the feedback loop is too strong, so that the process would not converge.

That is the reason why we focus on b < 1 in these simulations.
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ratio does not diverge or converge to zero. This condition is satisfied when (i) the ratio

converges to a finite, non-zero constant or (ii) the ratio oscillates in a bounded set.

Case (i) is relevant to our analysis of the Bray and Savin (1986) model. As it turns

out, case (ii) is relevant to our analysis of the NK model. Our definition accommodates

both cases.

Definition 1. Consider two series, xt and at > 0 that converge to zero–that is,

limt→∞ xt = limt→∞ at = 0. We say that xt and at converge at the same rate if

(a) there exists an A < ∞ such that |xt| /at ≤ A for all t, and (b) there exists an

ε > 0 such that for any T ≥ 1 we have supt≥T |xt| /at > ε. If conditions (a) and (b) are

satisfied we write xt ' at.

Conditions (a) and (b) correspond to the requirements that |xt| /at does not diverge

and does not converge to zero, respectively.

The following proposition establishes the rate at which zt converges to zero:

Proposition 1. For any b < 1 and any 0 ≤ λ0 < ∞, if 1−b
λ0+t

6= 1 for all t, then

zt ' tb−1.

For the proof, see Appendix A. The requirement that 1−b
λ0+t
6= 1 for all t is necessary

because if 1−b
λ0+t∗

= 1 for some t∗, then zt = 0 for all t ≥ t∗ (see equation (7)). The

assumption that (1− b) / (λ0 + t) 6= 1 only rules out isolated values of b and λ0.

The analog to the ODE considered in Ljung (1977) that is associated with equation

(4) is given by µ̇ (τ) = x (τ)−µ (τ) , where x (τ) = bµ (τ) and τ denotes notional time.

The eigenvalue of the mapping from µ (τ) to x (τ) is b. The solution to the ODE is

µ (τ) = e(b−1)τµ (0) . Consistent with Ljung (1977), whether µ (τ) converges to zero

is determined by the value of b. Proposition 1 shows that b also determines the rate

of convergence, in actual time, of Eµt. Note that the rate of convergence in actual

time is a power function of t, where the power is determined by b. This is notable

because convergence in notional time is geometric, which is always faster than power

convergence.

Proposition 1 says that for large enough t, |µt − a/ (1− b)|, is approximately κtb−1

for some finite constant, κ 6= 0. So, we can compute how many periods, Tt, it takes to

close two-thirds of an initial gap, κtb−1, in period t. It is easily verified that:

Tt =
[
3

1
1−b − 1

]
t. (11)
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Note that Tt only depends on b, and not on other objects like λ0. We also compute

the time required, T, to close the initial gap in period 0, obtained by simulating the

actual zt’s. When b = 0, 0.5, 0.75, 0.85, and 0.95 then T1 (T ) = 2 (3), 8 (11), 80 (113),

1516 (2201), and 3.5 billion (5.2 billion). It is striking how well T1 tracks T . We

infer that the asymptotic result in Proposition 1 is informative about the behavior of

µt − a/ (1− b), even for small values of t.

We redo these calculations for the case of λ0 = 0–that is, the case of least-squares

learning. For b = 0, 0.5, 0.75, 0.85, and 0.95, we obtain T1 (T ) = 2 (1), 8 (3), 80 (36),

1516 (745), and 3.5 billion (1.9 billion). When λ0 = 10, we obtain T1 (T ) = 2 (21),

8 (83), 80 (831), 1516 (15, 804), and 3.5 billion (36.5 billion). The results for all three

values of λ0 are qualitatively similar. For small values of b, convergence is relatively

fast, and for large values of b, the time required to converge explodes.

The following corollary follows immediately from Lemma 1 and Proposition 1.

Corollary 1. For any b < 1 and any 0 ≤ λ0 < ∞: (i) if µ0 6= a/ (1− b) and
1−b
λ0+t

6= 1 for all t, then E (µt − a/ (1− b)) ' tb−1; and (ii) if µ0 = a/ (1− b) then

E (µt − a/ (1− b)) = 0.

Corollary 1 establishes the rate of convergence of Eµt.

3.2.2 Rate of Convergence of Variance of µt

We now consider the rate at of convergence of the variance of µt, var (µt).

Proposition 2. Suppose 1−b
λ0+t
6= 1 for all t. For any 0 ≤ λ0 <∞: (i) var (µt) ' t−1 if

b < 1/2; (ii) var (µt) ' [t/ log (t)]−1 if b = 1/2; and (iii) var (µt) ' t2(b−1) if 1/2 < b < 1.

For the proof, see Appendix A. It is worth emphasizing that result (i) in Proposition

2 follows immediately from results in Benveniste et al. (1990), but results (ii) and (iii)

are new to the literature.

Proposition 2 implies that limt→∞ var (µt) = 0 for b < 1. The proposition also

implies that var (µt) converges to zero (weakly) more slowly the larger is b. This result

is consistent with our positive feedback loop intuition. When b < 1/2, the rate of

convergence is not a function of b. When b = 1/2 the rate of convergence drops: see

(i) versus (ii). When 1/2 ≤ b < 1, the rate of convergence is strictly decreasing in b.13

13To see that the rate of convergence for b = 1/2 is faster than it is for 1/2 < b < 1, let yt = t/ log (t)
and vt = t/tε for ε > 0. The series, vt, converges more slowly than yt in the sense that limt→∞ vt/yt =
0. This limiting result is easily verified using a version of L’Hôpital’s rule. Given our definition of yt
and vt, vt/yt = log (t) /tε →lim t→∞

(
1
t

)
/
(
εtε−1

)
→lim t→∞ 1/ (εtε) = 0.
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Notably, for 1/2 ≤ b < 1, Proposition 2 implies that Eµt and
√

var (µt) converge at the

same rate.

3.2.3 Rate of Convergence of Distribution of µt

We now consider measuring the rate of convergence of µt by its rate of convergence

in distribution. We consider the strengths and weaknesses of this measure of rate of

convergence relative to the rate of convergence of Eµt.

Consider the random variable,

yt (δ, γ) ≡ ω (t, δ, γ)

(
µt −

a

1− b

)
, (12)

where w (t, δ, γ) = ω (t, δ, γ) = tδ/ [log (t)]γ. To simplify the analysis we make the

following assumption:

Assumption 1. εt has a Normal distribution with mean 0 and variance, 0 < σ2 <∞,

and is uncorrelated over time.

Under Assumption 1, yt (δ, γ) is Normally distributed for each t, γ, δ. The variable,

yt (δ, γ), converges in distribution if and only if, γ and δ are chosen so that the following

two conditions are satisfied:

lim
t→∞

Eyt (δ, γ) finite, (13)

lim
t→∞

var (yt (δ, γ)) positive and finite. (14)

If conditions (13) and (14) are satisfied for some γ and δ, then the limiting distribu-

tion is Normal.14 Moreover such values of (δ, γ) are unique.15 These values of (δ, γ)

characterize the rate of convergence in distribution.

We define root-t convergence as follows:

Definition 2. The random variable, µt, exhibits root-t convergence if yt (1/2, 0): (i)

converges to a Normal distribution with a mean of zero and (ii) satisfies condition (14).

14Let V∞ = limt→∞ Vt, where Vt = var (yt (δ, γ)) . Similarly, define Mt,M∞, where Mt = Eyt (δ, γ).
Let F (y;M,V ) = prob (s ≤ y;M,V ) denote the Normal cdf with mean and variance M and V,
respectively. We know that F is continuous in M and V , for a given y, meaning limt→∞ F (y;Vt,Mt) =
F (y;V∞,M∞). This equality holds for all −∞ < y < ∞, so that the cdf of y for as t → ∞ is
F (y;V∞,M∞).

15This result follows by a simple proof-by-contradiction argument.
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The following Proposition follows immediately from Propositions 1 and 2 and char-

acterizes the asymptotic distribution of µt, as a function of b:

Proposition 3. Suppose that 0 ≤ λ0 <∞ and Assumption 1 holds.

(i) For b < 1/2, µt exhibits root-t convergence (Definition 2).

(ii) For b = 1/2, there is no δ for which yt (δ, 0) converges in distribution, but

yt (1/2, 1/2) does converge in distribution, and the mean of that distribution is zero.

(iii) For 1/2 < b < 1, µt does not exhibit root-t convergence, but yt (1− b, 0) does

converge in distribution. If 1−b
λ0+t
6= 1 for all t, then the mean of that distribution is not

zero. Otherwise, the mean of that distribution is zero.

Proof. Corollary 1 and Proposition 2 establish that for any b < 1 there exist δ and γ

so that conditions (13) and (14) are satisfied.

Result (i) is included only for completeness, because Benveniste et al. (1990) derive

it using a Central Limit Theorem without the assumption of Normality. We are able to

derive results (ii) and (iii) because of our Normality assumption, Assumption 1. When

b ≥ 1/2 we cannot use a Central Limit Theorem argument like the one in Benveniste et

al. (1990), even with our Normality assumption.16

Using simulation methods, Marcet and Sargent (1995) characterize the rate of con-

vergence of µt in terms of convergence in distribution. While useful, Proposition 3

indicates some limitations of this measure of convergence. First, when b < 1/2, the rate

at which Eµt converges is a function of b, yet δ is constant (see (i)). So, the rate of

convergence in distribution, δ, does not capture the fact that the rate of convergence

of Eµt accelerates as b falls below 1/2. Second, when b = 1/2, there is no value δ for

which tδ (µt − a/ (1− b)) converges to a non-degenerate distribution as t → ∞ (see

(ii)). Third, when 1/2 < b < 1, Eµt converges at the same rate as its standard devia-

tion, implying that the mean of the asymptotic distribution, limt→∞Et
1−b (µt − a

1−b

)
,

is not zero (see (iii)). So, the asymptotic distribution may be misleading for small

values of t because it is not centered on the point, a/ (1− b), to which µt converges

almost surely.

16Notably, the Lyapunov condition, which is a sufficient condition for the Lindeberg-Feller Central
Limit Theorem, fails. For an example that is similar to ours in that there is a Normal asymptotic
limiting distribution that is derived without reference to the Central Limit Theorem, see Davidson
(1994, Example 23.14, page 375).
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4 Learning in the New Keynesian Model

In this section, we describe a simple NK model. As in Eggertsson and Woodford (2003),

we allow for a shock to the household’s discount rate that can cause the ZLB on the

interest rate to be binding. To study the properties of the model under learning, it is

convenient to express people’s problems in recursive form.

In the current period, households discount next period’s utility by 1/ (1 + r). In

steady state, r = rss > 0. We assume that initially, the economy is in the unique

non-stochastic rational expectations steady state in which the nominal interest rate is

positive. Then, unexpectedly, r = r` < rss. People correctly understand that next

period’s discount rate, r′, is drawn from a two-state Markov chain, r′ ∈ [r`, rss] , with

an absorbing state:

Pr [r′ = r`|r = r`] = p, Pr [r′ = rss|r′ = r`] = 1− p, (15)

Pr [r′ = r`|r = rss] = 0.

Once r = rss, the economy returns to the initial rational expectations steady state.

There is another rational expectations steady state in which there is deflation and the

nominal interest rate is unity (see Benhabib et al. (2001)). We abstract from that

steady state equilibrium because it is not stable under learning. Moreover, focusing on

one steady state greatly simplifies our analysis.

4.1 Fiscal and Monetary Policy

Monetary policy is given by

R = max {1, 1 + rss + α (π − 1)} , (16)

where α/ (1 + rss) > 1 and the max operator reflects the ZLB constraint. Later, we

discuss other variations on monetary policy including forward guidance.

We consider two specifications for G. In the baseline specification, G = Gss, its

nonstochastic steady-state value. We also consider a policy where G = G` > Gss while

r = r`. The government finances its expenditures with lump-sum taxes, G + νwN,

where νwN represents a subsidy paid to intermediate goods firms.
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4.2 Private Agents’ Problems

Below, we define the household and firm problems.

4.2.1 The Household’s Problem When r = r`

The household enters a period with a stock of bonds, bh = Bh,t−1/Pt−1. Here, Bh,t−1

denotes the beginning-of-period t payoff on nominal bonds acquired in the previous

period, when the price of consumption goods was Pt−1. At the beginning of a pe-

riod, before markets open, the household also knows the value the vector, Θ, which

summarizes its beliefs about the distribution of a vector, x:

x=

[
C

π

]
.

Here, C and π denote the current period’s aggregate consumption and aggregate infla-

tion. The variable, π, corresponds to Pt/Pt−1, where Pt and Pt−1 denote the current

and previous period’s aggregate price level, respectively.

In a standard recursive equilibrium, people know current-period market prices and

profits when they make their current decisions. Typically, when markets open in these

models, people can deduce the prices and profits from a small set of variables. In our

context, these variables are the two components of x. In this spirit, we assume that

people observe x when markets open, and they make their current consumption, saving,

and labor decisions. In making those decisions, households internalize the effect of x

on their beliefs about the distribution x′–that is, the value of x in the next period.

Those beliefs, Θ′, are given by

Θ′ = L (Θ, x) . (17)

The form of L depends on the model of learning being analyzed. The household is

internally rational in the sense of Adam and Marcet (2011). Specifically, when making

decisions, it takes into account uncertainty about the distribution of x and the fact

that beliefs about that distribution will evolve as new data arrive (see Section 4.3.2).

Let Ch, Nh, b
′
h denote the representative household’s consumption, hours worked
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and end-of-period bond holdings. The household solves

maxCh,Nh,b′h

{
log (Ch)−

χ

2
(Nh)

2 (18)

+
1

1 + r`
[(1− p)Vh,ss (b′h) + pEΘ′Vh (b′h,Θ

′, x′)]

}
subject to

Ch +
b′h

R (x)
≤ bh
π (x)

+ w (x)Nh + T (x) . (19)

Here, T (x) denotes profits net of lump-sum taxes, w (x) denotes the real wage, R (x)

denotes the nominal rate of interest, and π (x) denotes the inflation rate.17 In equation

(18), Vh,ss (b′h) denotes the value function of the household conditional on r′ = rss and

Vh (b′h,Θ
′, x′) denotes the value conditional on r′ = r`. The expectation operator, EΘ′ , is

evaluated using the marginal data density for x′ implied by Θ′ = L (Θ, x) and r′ = r`.

Using the first order optimality condition for Nh and equation (19), we reduce the

household problem to finding an optimal decision rule, b′h (bh,Θ, x), for bond holdings.

The function, Vh,ss (bh), satisfies the following fixed point:

Vh,ss (bh) = max
Ch,Nh,b

′
h

{
log (Ch)−

χ

2
(Nh)

2 +
1

1 + rss
Vh,ss (b′h)

}
, (20)

subject to

Ch +
b′h
Rss

≤ bh
πss

+ wssNh + Tss,

where Tss denotes steady-state profits net of taxes in steady state, wss denotes the

steady-state real wage, Rss denotes the steady-state nominal interest rate, and πss

denotes the steady-state inflation rate.

The function, Vh, in equation (18) has the fixed point property:

Vh (bh,Θ, x) = max
Ch,Nh,b

′
h

{
log (Ch)−

χ

2
(Nh)

2

+
1

1 + r`
[(1− p)Vh,ss (b′h) + pEΘ′Vh (b′h,Θ

′, x′)]

}
, (21)

where the maximization is subject to equation (19) and the law of motion for Θ in

17We constrain the choice of b′h to a compact set
[
b, b
]
, which we discuss in Appendix C.
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equation (17).

4.2.2 The Firm’s Problem When r = r`

A final homogeneous good, Y, is produced by competitive and identical firms using the

technology

Y =

(∫ 1

0

Y
ε−1
ε

f df

) ε
ε−1

, (22)

where ε > 1. The representative firm chooses inputs, Yf , to maximize profits Y P −∫ 1

0
YfPfdf , subject to (22). The firm’s first order condition for the f th input is

Yf =

(
Pf
P

)−ε
Y. (23)

The f th intermediate good is produced by a monopolist with production technology

Yf = Nf , where Nf is labor hired by firm f . Let pf denote the f th firm’s price in the

previous period, scaled by that period’s aggregate price index–that is, Pf,t−1/Pt−1.

Also, let p′f denote the firm’s current choice of price scaled by the current aggregate

price index. In our scaled notation,

p′f
pf
π =

Pf,t
Pf,t−1

. (24)

Firms value a unit of real profits by the marginal utility of consumption, 1/C.

Prices are sticky as in Rotemberg (1982). When r = r` the current-period problem of

firm f is to set its price p′f so that

p′f (pf ,Θ, x) = argmaxp′f
1

C (x)

{(
p′f − (1− ν)w (x)

) (
p′f
)−ε

Y (x)

−φ
2

(
p′f
pf
π (x)− 1

)2

(C (x) +G (r`))

}
+

1

1 + r`

[
(1− p)Vf,ss

(
p′f
)

+ pEΘ′Vf
(
p′f ,Θ

′, x′
)]
. (25)

Here, Vf,ss
(
p′f
)

denotes the value of the firm’s problem conditional on r′ = rss and

Vf,ss
(
p′f ,Θ

′, x′
)

denotes its value conditional on r′ = r`.
18 Firms and households have

18We constrain the choice of log
(
p′f

)
to a compact set

[
p, p
]
. See Appendix C for a discussion.
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the same information sets and update priors in the same way. Thus, the expectations

operator is the same as the one in the household’s problem. In equation (25), we

follow the literature by scaling price adjustment costs by real GDP.19 Also, ν is a tax

subsidy on employment designed to eliminate the effect of monopoly distortions in

steady state.20

The function, Vf,ss (pf ) , has the fixed-point property

Vf,ss (pf ) = max
p′f

{
1

Css

((
p′f − (1− ν)wss

) (
p′f
)−ε

Y (x)
)

− 1

Css

φ

2

(
p′f
pf
πss − 1

)2

(Css +Gss) +
1

1 + rss
Vf.ss

(
p′f
)}

. (26)

The function, Vf , in equation (25) has the fixed point property

Vf (pf ,Θ, x) = max
p′f

{
1

C (x)

(
p′f − s

) (
p′f
)−ε

Y (x)

− 1

C (x)

φ

2

(
p′f
pf
π (x)− 1

)2

(C (x) +G (r`))

+
1

1 + r`

[
(1− p)Vf,ss

(
p′f
)

+ pEΘ′Vf
(
p′f ,Θ

′, x′
)]}

. (27)

The maximization takes into account the law of motion of Θ, L, in equation (17).

4.2.3 The Mapping from x to Aggregate Variables

For individual households’ and firms’ problems to be well defined, they must know

the values of seven aggregate variables,
[
C π R Y N w T

]
. We assume that

each agent knows the model’s static equilibrium conditions so they can deduce those

variables from x =
[
C π

]
. We denote this mapping by F (x). Households derive R

from π using equation (16). The mappings from x and r to Y , N , and w are given by

Y = (C +G (r))

(
1 +

φ

2
(π − 1)2

)
, N = Y, w = χNC.

The first two equalities correspond to goods market clearing and the aggregate produc-

tion function. The third equality corresponds to the belief that the labor supply curve

19See, for example, Kaplan and Violante (2018, page 711).
20That is, (1− ν) ε/ (ε− 1) = 1.

21



of the individual household holds as an aggregate condition. These equalities hold in

every period of our learning equilibria (described in the next sub-section).

Aggregate firm profits net of taxes implied by x and r are

T = (1− w)Y − φ

2
(π − 1)2 (C +G (r))−G (r) .

4.3 Equilibrium and Beliefs

The equilibrium for our model is a learning equilibrium for the duration of time that

r = r`, followed by a jump to the positive interest rate, steady state REE. The learning

equilibrium is a sequence of period equilibria.

4.3.1 Equilibrium Definitions

We now define a temporary equilibrium.

Definition 3. Given Θ and r`, a period equilibrium is a set of values of x and Θ′ =

L (Θ, x) such that

(i) households and firms solve their optimization problems, defined in equations

(18) and (25), respectively

(ii) labor, goods and bond markets clear

(iii) p′f = 1, Ch = C, Nh = N

Because firms are identical, in a learning equilibrium, no firm will ever inherit a

pf 6= 1. Then, equation (24) and the first part of condition (iii) imply that people’s

views about inflation, π, are correct. The second and third parts of condition (iii)

imply that people’s views about C and N are correct.

The only new conditions in Definition 3 relative to those imposed by F (x) are that

bond markets clear (b′h = 0) and firms choose p′f = 1. These two conditions determine

the two elements of x.

Two comments about the period equilibrium are worth emphasizing. First, peo-

ple have perfect foresight regarding current aggregate variables. Second, in general,

they do not have perfect foresight about future aggregates. It follows that the period

equilibrium under learning is, in general, different from what it would be if people had

rational expectations.

We now define a learning equilibrium.
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Definition 4. A learning equilibrium is :

(i) a sequence of period equilibria in which beliefs are updated according to equation

(17) when r = r`,

(ii) a steady state REE with R > 1, when r = rss.

In a learning equilibrium, the value of Θ in the first period when r = r` is exoge-

nous. We assume that in the case of an unprecedented event, people’s priors about the

economic variables, x, are very diffuse. Below, we describe how our parameterization

of the initial Θ captures this property.

4.3.2 Beliefs and Equilibrium

We now describe in detail how households’ and firms’ common beliefs evolve, starting

in the first period that r = r`. People assume that each of the two elements of log (x)

is drawn from a Normal distribution:

log (x) =

[
log (C)

log (π)

]
=

[
µC

µπ

]
+

[
εC

επ

]
, (28)

EεC = Eεπ = 0, Eε2
C = σ2

C and Eε2
π = σ2

π. These distributions are independent across

time and the elements of log (x). People are uncertain about the values of µi, σ
2
i for

i ∈ {C, π}. Their prior about µi conditional on σ2
i is Normal, parameterized with a

mean, mi, and variance, σ2
i /λi, where λi characterizes the precision of the prior about

µi. The marginal density of their prior for σ2
i is proportional to an inverse-gamma

distribution, with shape and scale parameters, αi and (ψ2
i (αi + 1/2)), respectively. The

prior for σ2
i is not exactly an inverse-gamma distribution because we truncate the

support of σ2
i so that E [C] and E [π] have finite values. We find it convenient to

express the scale parameter in this way because ψi is a consistent estimator for σi. The

joint density of µi, σ
2
i is proportional to the Normal inverse-gamma distribution. We

collect the parameters of the priors in the vector Θ:

Θ =
(
mC mπ 1/λC 1/λπ ψC ψπ 1/αC 1/απ

)
. (29)

The posterior distribution is also proportional to the Normal inverse-gamma distribu-

tion, and the function, L, in equation (17) can be constructed using standard updating

formulas, which are detailed in Appendix C.
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4.3.3 Anticipated Utility

Virtually all of the related literature works with a version of Kreps’ Anticipated Utility

approach to how people integrate learning into their decisions. While this approach

has computational advantages, it has been criticized for being internally inconsistent

(see Cogley and Sargent (2008) and Adam and Marcet (2011)). We assess the ro-

bustness of our results to using the anticipated utility approach. In our context, that

approach assumes that when households and firms make their state-x contingent deci-

sions, they assume that in the current and all future periods, log (x) will be drawn from

a Normal distribution with mean and variance fixed at the values of mi and ψ2
i from

the beginning-of-period Θ. We make two changes to the household and firm decision

problems to implement this assumption. First, we set Θ′ = Θ in their next-period

value functions. Second, in evaluating the expectation operator, EΘ′ , that appears in

the household and firm problems, we use the log Normal density for x with mean and

variance fixed at the values of mi and ψ2
i from Θ. Importantly, at the beginning of the

next period, firms and households set Θ′ = L (Θ, x).

In sum, anticipated utility differs from internalized learning in two ways. First, in

making their state-x contingent decisions, people ignore the fact that after they see

current x, they will update their views, using Θ′ = L (Θ, x). Second, they ignore their

uncertainty about the mean and variance of the distribution of log (x).

5 Multiple Rational Expectations Equilibria

In this section, we describe the equilibria in our model when agents have rational

expectations.

An equilibrium is a set of values for output, employment, inflation, and consump-

tion, Y`, N`, π`, C`, respectively, when r = r`. We assume that the economy reverts

to the unique rational equilibrium steady state, Yss, Nss, πss, Css, with Rss > 1 when

r = rss.
21

The four equilibrium conditions associated with the four unknowns, π`, C`, R`, N`,

21Throughout the paper, we only consider equilibria in which quantities and prices are constant for
a given value of r. For example, we do not consider sunspot equilibria.
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are

1 =
1

1 + r`

[
p

1

π`
+ (1− p) C`

Css

]
, (30)

(π` − 1)π` (C` +G`) =
ε− 1

φ
(χN`C` − 1)N` (31)

+
1

1 + r`
p (π` − 1)π` (C` +G`) ,

N` = (C` +G`)

(
1 +

φ

2
(π` − 1)2

)
, and (32)

R` = max {1, 1 + rss + α (π` − 1)} . (33)

In equations (30) and (31) we have taken into account that πss = 1. In addition, we

verify and use the fact that R` = 1. Equation (30) can be expressed as one equation

in the unknown, π`, after using equations (30) and (32), to express C` and N` as

functions of π`. We compute Css using the steady state of the model. Then, we can

find a candidate equilibrium by finding a value of π` that sets a function, f (π`) = 0.

To verify that a candidate value of π` is an equilibrium, we must verify that the implied

aggregate quantities and firm values are non-negative.

Our baseline parameters are:

p = 0.80, r` = −0.0015, Gss = G (rss) = 0.20, β = 0.995,

ε = 4, φ = 110, χ = 1.25, α = 1.5

In the R > 1 steady-state REE, Css = 0.8,πss = 1, Nss = 1. In the alternative

specification of government purchases,

G` = G (r`) = 1.05×G (rss) , (34)

while r = r`.

Figure (1) displays the function f (π`) for a range of values of π` in the baseline

(solid blue line) and alternative (dashed blue line) cases. In each case, there are two

values of π` for which f (π`) = 0. Table 1 reports the values of C`, w`, N`, R` and π`

at these zeros of f . Each crossing corresponds to an interior equilibrium in which the

ZLB binds. The values of the variables corresponding to the equilibria in Figure (1)

are reported in Table 1.
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Figure 1: f (π) Corresponding to the Target-Inflation Steady-State Equilibrium
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G = 1.05 × Gss

Note: The function, f, is defined in the text. The dashed line is discussed in Section 8.1 below.
The range of π` in the figure includes the two values of π` that correspond to an equilibrium.
Source: Authors’ calculations.

The economy’s response to a drop in r is the result of two countervailing forces.

First, the drop in r leads to an increase in desired savings. In the first best equi-

librium, the real interest rate would drop enough to undo the increased desire to save

completely, allowing market clearing in the bond and goods market without any change

in consumption and employment. When monetary policy is operated by a Taylor rule,

and prices are sticky, then we know that policy goes only part-way towards achieving

the first best equilibrium. The real interest rate falls, but not by enough so that market

clearing must be accomplished in part by a drop in output and income, which reduces

the desire to save, as long as the low-r spell is expected to be short enough (that is, p

is small enough).22 If the required fall in the nominal interest rate is sufficiently large,

then the ZLB on the nominal interest rate binds. When the ZLB binds, a form of

deflation spiral is triggered. The fall in output leads to a drop in marginal cost that

reduces actual and expected deflation. The latter raises the real interest rate, amplify-

ing the desire to save, leading to an additional drop in actual and expected inflation.

An important countervailing force limits the extent of this spiral. As output drops,

consumption smoothing leads people to save less. The lower is p, the shorter is the

expected duration of the ZLB and the stronger is the consumption smoothing motive.

Three observations about the ZLB follow. First, the logic of the deflation spiral

provides intuition into why the fall in output can be very large when the ZLB is binding.

22Further discussion of this point appears below.
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Table 1: Equilibrium Values While rt = r`, Returning to Target-Inflation Steady State

Bad ZLB Good ZLB
Label A B

400(π` − 1) -35.78 -6.60
400(R` − 1) 0 0

C` 0.48 0.74
N ` 0.98 0.95
w` 0.59 0.88

(a) G` = Gss

Bad ZLB Good ZLB
Label A B

400(π` − 1) -36.99 -3.00
400(R` − 1) 0 0

C` 0.47 0.77
N ` 1.00 0.98
w` 0.58 0.95

∆C+∆G
∆G

-0.17 3.95

(b) G = 1.05×Gss
Note: This table reports {π`, R`, C`, N`, w`} for two equilibria indicated by A and B when G = Gss
(2a) and when G = 1.05Gss (2b). Each equilibrium returns to the target-inflation steady state as soon
as r = rss. The government purchases multiplier reported in the last line of panel is the change in
GDP per unit increase in G within each of the type A and B equilibria. Source: Authors’ calculations.

The larger the expected deflation in an REE, the larger is the drop in output. Second,

the interplay between the deflationary spiral and consumption smoothing provides

intuition for why there can be multiple REEs in the ZLB. Third, if p is sufficiently

large, the consumption smoothing motive is very weak. When the deflationary spiral

is too dominant, an REE does not exist.23

Turning to the fiscal multiplier, we calculate the effect of an increase in G comparing

A to A′ and B to B′–that is, comparing two Bad-ZLB equilibria and two Good-ZLB

equilibria (see Figure 1). Table 1 shows that the multiplier is very large in the latter

case and very small in the former. Consistent with this observation, expected deflation

is much larger at A′ than at B′.

In sum, this section highlights the central role that expected deflation plays in

determining the properties of an REE in the ZLB. We expect that because expectations

are backward looking, the properties of the learning equilibrium will be very different

23See Werning (2012), who also discusses the possibility of nonexistence of equilibrium in the ZLB.
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from those of the REE.

6 Equilibrium Selection

In this section, we consider whether the multiplicity of REEs can be resolved by learn-

ability. We analyze the learnability of an REE by considering a small perturbation in

the REE beliefs. We consider these perturbations by analyzing learning equilibria with

initial values of Θ that are not REE beliefs, but are close to the REE values. We say

that an REE is learnable if learning equilibria that begin with beliefs in a neighborhood

of the REE beliefs converge to the REE. In this section, we conduct the analysis nu-

merically and consider initial values for Θ that have mC and mπ equal to log (C`) and

log (π`), respectively, where C` and π` are the REE values of C and π. Importantly,

the variance of the priors is greater than zero. If learning equilibria starting with these

values of Θ converge to the associated REE, then we say that the REE is learnable.

We have also considered learning equilibria that begin with a vector Θ in which mC

and mπ are near, but not equal to, the associated REE values. In these cases, we find

similar results and our conclusions about learnability are unchanged.

Other initial values of Θ are of particular interest. For example, beliefs with mC and

mπ equal to log (Css) and log (πss), respectively, are natural candidates in the initial

values of Θ. If an REE is learnable and learning equilibria beginning with these initial

values of Θ also converge to that REE, then we say that the REE is quasi-globally

learnable. In a model with multiple REEs (like the NK model), any particular REE

cannot be globally learnable. This result obtains because if beliefs are consistent with

another REE, then beliefs will not diverge from that equilibrium.

We initially consider the learnability of the Bad-ZLB equilibrium by examining a

learning equilibrium with mi set to the Bad-ZLB equilibrium values. Figure 2a suggests

that the learning equilibrium deviates from the Bad-ZLB equilibrium. The red dot

shows where that equilibrium is after 10,000 periods and indicates that it is headed

toward the Good-ZLB equilibrium. In Section 9, we use linearization methods to prove

that at the assumed parameter values, the learning equilibrium cannot converge to the

Bad-ZLB equilibrium.24 We conclude that the Bad-ZLB equilibrium is not learnable.

24Our proof is by contradiction. We linearize our learning model around the Bad-ZLB equilibrium.
Suppose the Bad-ZLB equilibrium is stable. Then, the learning equilibrium would eventually (as
long as r = r`) arrive in an arbitrary small interval, U , about the Bad-ZLB equilibrium, where our
linearized system is arbitrarily accurate. We show that that model satisfies the conditions of Theorem
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Figure 2: Equilibrium Selection in the ZLB, by Learning

(a) Non-learnability of Bad-ZLB Equilibrium
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(b) Learnability of Good-ZLB Equilibrium
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(c) Learnability of Good ZLB Equilibrium

0 4 8 12 16 20

6

4

2

0

2

El
og

(
)×

40
0

t=10,000 (red dot)

t=100,000 (blue square)

Aggregate Inflation Expectations
REE
Learning

0 4 8 12 16 20

8

6

4

2

0

El
og

(C
/C

ss
)×

10
0

Aggregate Consumption Expectations

Note: In the panels (a) and (b), mi is initially set to the associated REE value. In panel (c) mi is
initially set to the steady state REE value. In all sub-figures, ψi = 0.02, λi = 1, αi = 2. Source:
Authors’ calculations.

Figure 2b shows that the learning equilibrium is converging to the Good-ZLB equi-

librium. In Section 9, we use linearization methods to prove that at the assumed

7.2 in Evans and Honkapohja (2001) for beliefs to leave U . This outcome contradicts the hypothesis
that the Bad-ZLB equilibrium is stable.
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parameter values, the learning equilibrium will converge to the Good-ZLB equilibrium

if beliefs start in a neighborhood of that REE. Figure 2c shows that the learning equi-

librium converges to the Good-ZLB equilibrium when the beliefs are initially centered

on the steady-state REE. Taken together, these results indicate that the Good-ZLB is

quasi-globally learnable.

7 Speed of Convergence

In this section, we consider how quickly the learning equilibrium converges to the

unique learnable REE. In the first subsection, we consider our results for the baseline

parameterization of the model. In the second subsection, we consider the effect of the

ZLB on the interest rate on the speed of learning.

7.1 Baseline Results

We now consider the effects of a drop in r in our learning model. Our basic assumption

is that when people are confronted with an unprecedented observation, here modeled

as a drop in r, they become very uncertain about how market-determined variables will

evolve. We set the initial value of Θ to the following vector:(
mC mπ 1/λC 1/λπ ψC ψπ 1/αC 1/απ

)′
=
(

log (Css) , log (πss) , 1, 1, 0.02, 0.02, 1/2, 1/2
)′
.

Figure 3 displays the marginal density of logC and log π associated with anticipated

utility (that is, the Normal distribution evaluated at the prior estimates of the means

and variances) and with internalized learning (that is, the marginal data density as-

sociated with the Normal-inverse-gamma prior on the parameters of the Normal dis-

tribution). Note the fatter tails on the density function associated with internalized

learning. The tails are fatter for consumption than inflation because we set a higher

upper bound on σC (0.05) than on σπ (0.025). The bounds on the standard deviations

correspond to typical period-by-period shock sizes equal to about 6 percent for aggre-

gate consumption and about 10 percentage points for annualized aggregate inflation.
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Figure 3: Data Density Under Two Models of the Interaction of Beliefs and Decisions
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Note: The dashed line corresponds to Normal density functions with meansmi and standard deviations
ψi. The solid line corresponds to the marginal data density of log (x) at time one, using Θ before it
is updated by the time one value of x is realized. Source: Authors’ calculations.

The thin and thick solid lines in Figure 4 display the evolution of inflation, consump-

tion, and the real interest rate after the drop in r under REE and learning, respectively.

First, consider Figure 4a, which reports results for the REE and internalized learning.

Two key features are worth noting. First, in the REE, there is a very large drop in

inflation and consumption, and the real interest rate rises sharply. The fall in inflation

and consumption and the rise in the real rate are much smaller under learning. Second,

the learning economy converges very slowly to the REE. As shown in Figure 2c, after

people initially change their views somewhat quickly, the rate at which they change

their views slows dramatically. For example, the dot labeled T = 10, 000 displays peo-

ple’s views about the variables after 10,000 quarters. Given our value, p = 0.8, r is only

expected to be low for about five quarters. Whether convergence to the REE happens

after 20 quarters or 10,000 quarters is irrelevant. The crucial point is that in a typical

ZLB episode, people’s beliefs are very far from rational expectations.

Now consider Figure 4b. This figure compares the evolution of the learning equilib-

rium under anticipated utility (dashed line) and internalized learning (solid line). The

key takeaway is that we obtain the same slow-learning result qualitatively regardless of

which approach we take to learning. However, consumption and inflation fall somewhat

more under internalized learning.
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Figure 4: Simulations of Benchmark Model

(a) Speed of Convergence in the Benchmark Model
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(b) Comparison, Speed of Convergence Under Anticipated Utility and Benchmark
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7.2 The Role of the ZLB in the Baseline Results

Figure 5 reports a simulation of our benchmark model in which the ZLB on the interest

rate is ignored. For convenience, we reproduce the results from Figure 5 in which the

ZLB is binding. The key result is that the learning economy converges very quickly

when the ZLB is not binding. The reason is that the Taylor rule weakens the connection

between expected and realized inflation. To understand why, suppose people’s prior

is that inflation will be high in the next period, causing firms to want to raise prices

in the current period. When the Taylor principle is operative, the central bank takes

actions in the current period that make actual inflation lower. Because expectations

are less self fulfilling, the learning principle implies that people will quickly adjust their

beliefs. The speed with which they do so depends very much on the value of α, a point

that we return to in Section 9.
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Figure 5: Benchmark Simulations with and without Binding ZLB
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8 Learning and Government Policy

In this section, we analyze the sensitivity of monetary and fiscal policy analysis in the

ZLB to deviations from rational expectations. We juxtapose that sensitivity to the

lack of sensitivity when the ZLB is not binding.

8.1 Government Purchases Multiplier

We begin by analyzing the effect of learning on the government purchases multiplier

when the ZLB binds. We compute the multiplier by considering the effect on GDP,

C+G, of a 5 percent rise in government purchases relative to its steady-state level–that

is, G (r`) = 1.05 × G (rss). We denote the difference in consumption and government

purchases across the two equilibria by ∆C and ∆G = 0.05×G (rss). Since the Bad-ZLB

equilibrium is not stable under learning, we focus on ∆C across Good-ZLB equilibria.

We define the multiplier as
∆C +∆G

∆G
. (35)

In the REE, the multiplier in the ZLB is equal to 3.95 (see Figure 6b). The multiplier

is large when the ZLB is binding because the rise in G generates an increase in expected

inflation (see the left panel in Figure 6b). Because R is fixed, this rise generates a fall

in the real interest rate and a rise in C (see the middle panel). So, in this case, the

multiplier is bigger than one.

33



Figure 6: Equilibria with and without Jump in G

(a) Increase in Government Purchases During ZLB
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(b) Government Purchases Multiplier in ZLB
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Notes: The solid lines in Figure 6a reproduce the results based on G = Gss in Figure 4a. The dashed
lines report the simulation of the model when G = 1.05 × Gss. Figure 6b displays the government
purchases multiplier under internalized learning and in the REE. That figure reports results for the
case in which the ZLB is imposed and not imposed (‘no ZLB’).

Under learning, expected inflation is backward-looking and does not move much

with a rise in G (compare the thick dashed and thick solid lines in the left panel of

Figure 6a). Hence, the real interest rate does not fall very much and the response in

consumption is small (middle panel).

Figure 6b displays the value of the multiplier over time in the REE and under

learning in the ZLB. Consistent with the results above, the multiplier in the learning

case is small compared with what it is in the REE. Significantly, there is very little

convergence of the learning multiplier to its REE value over the 20 quarters displayed.

We now turn to the case when the ZLB is not binding. The REE multiplier, in this

case, is much smaller, 0.80, than when the ZLB is binding (see Figure 6b). When the
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ZLB is not binding, the rise in inflation causes the monetary authority to raise the real

interest rate, which leads to a fall in C. That rise is why the REE multiplier is less than

unity outside the ZLB. Figure 6b displays the government purchases multiplier in the

learning equilibrium when the ZLB is ignored. Note that the value of the multiplier

is very similar to its value in the REE. This result is not surprising in light of our

demonstration that when the ZLB is not binding, the learning equilibrium converges

quite quickly to the REE.

8.2 Forward Guidance

In this subsection, we consider the sensitivity of the effects of forward guidance to

learning. Under such a policy, the monetary authority commits to keeping the nominal

interest rate at the ZLB for J periods after the discount rate has returned to its steady-

state level. To make our point as simply as possible, we consider the case J = 1. In the

first subsection we show that the number of REE proliferates under forward guidance.

Only one of those equilibria is stable under learning. Second, we analyze the effect of

forward guidance.

8.2.1 Rational Expectations Equilibria

We construct the REEs with forward guidance by working backward in three steps.

First, we compute the unique non-stochastic steady state with R > 1. Second, we

compute the continuation equilibrium in the period, I, in which r switches from r` to

rss, where I ∈ [2, 3, ...]. Third, we compute the equilibrium allocations in the periods

before I, denote by I−1.

In period I, R = 1 even though r = rss. People know that the economy will

transition to steady state in period I + 1. The equilibrium conditions in period I are

equations (30) through (32) adjusted for forward guidance:

1 =
1

1 + rss

CI
πssCss

(36)

(πI − 1) πI (CI +Gss)−
ε− 1

φ
(χNICI − 1)NI = 0 (37)

NI = (CI +Gss)

(
1 +

φ

2
(πI − 1)2

)
. (38)
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Equations (36) and (38) define functions mapping πI to CI and NI . These functions

allow us to express the left-hand side of equation (37) as a function of πI . We denote

this function by fI (πI) . A candidate continuation equilibrium in period I is a value of

πI such that fI (πI) = 0 along with the associated values of CI , NI , wI and the present

value of the intermediate good firm in period I. For a candidate equilibrium to be an

equilibrium, the four variables must be non-negative. Figure 7 displays the fI function

for a range of values of πI . We find two continuation equilibria corresponding to the

two zeros of fI displayed in the figure (see points A and B).25

Figure 7: Equilibria in Period of Switch from r = r` to r = rss Under One-Period
Forward Guidance
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Notes: Graph of the function, fI (πI) , discussed after equation (38). The two crossings with the zero
line correspond to equilibria in period I, the date when r switches from r = r` to r = rss. Monetary
policy in period I corresponds to one-period forward guidance–that is, the interest rate is held at
zero in period I and then reverts to Rss. The red star indicates the level of inflation in period I in
the absence of forward guidance.

We now compute the equilibrium allocations in the periods before I−1 conditional on

the continuation equilibrium starting in period I. The period I−1 equilibrium conditions

are the appropriate analog of equations (30) through (32):

1 =
1

1 + r`

[
p
C`
π`C`

+ (1− p) C`
πICI

]
(39)

25From equation (36) we see that CI does not vary with πI . It follows that fI is quadratic function
of πI , so that the two solutions displayed in Figure 7 are the only zeros of fI .
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(π` − 1)π` (C` +G`)−
ε− 1

φ
(χN`C` − 1)N` (40)

− 1

1 + r`

[
p (π` − 1)π`

(
C` +G`

)
+ (1− p) (πI − 1) πI

C`
CI

(CI +Gss)

]
= 0

N` =
(
C` +G`

)(
1 +

φ

2
(π` − 1)2

)
(41)

Here, we impose the condition that R` = 1. In effect, we assume that the ZLB is

binding in periods I−1, and the Taylor rule holds. In all of the examples that we have

studied, this assumption is satisfied.

We now compute the equilibrium allocations in the periods before I, which we

denote by I−1. Given CI and πI , equations (39) through (41) define a mapping from

π` to C` and N`. Now, we can express the left-hand side of equation (40) as a function

of π`. We denote this function by fI−1 (π`; πI , CI). There are two functions, fI−1 ,

conditional on the πI , CI associated with the period I continuation equilibria, A and

B.

Figure 8 displays both fI−1 functions for a range of values of π`; see the dotted and

dot-dashed lines. We chose the range of π` so that the graph only displays zeros of

fI−1 that correspond to equilibria. We find two equilibria corresponding to the fI−1

associated with A (see D and E in Figure 8) and one associated with B (see C in Figure

8). So there are three REEs with forward guidance. The two REEs without forward

guidance can be seen in the solid line in Figure 8 (this curve is taken from Figure 1).
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Figure 8: REE Equilibria at the ZLB with and without Forward Guidance
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Notes: The solid line reproduces the solid line in Figure 1 and corresponds to the case of no forward guidance. The
dashed and dot-dashed lines correspond to the case of forward guidance. The dashed line corresponds to the case in
which the economy goes to point B in the period of the switch in r to rss (that is, period I). It crosses the zero line
more than once, but the other crossing involves very high inflation and is not an equilibrium because the present value
of intermediate goods monopolists is negative. The dot-dashed line corresponds to the case in which the economy goes
to point A in period I (see Figure 7).

8.2.2 Learning Equilibria

In the period of forward guidance, r = rss, R = 1. In all periods when r = r` (that

is, I−1), people understand that the economy reverts to an REE when r = rss. As

discussed, there are two REEs starting in period I, the first date when r = rss (see

points A and B in Figure 24).

We are interested in three questions. First, do any of the learning equilibria converge

to a particular REE in I−1? Second, if any do converge, how quickly do they do

so? Third, are the effects of forward guidance different under learning and rational

expectations?

Consider the first question. Two of the three REEs in I−1 are not learnable. These

are the equilibria associated with points A and C in Figure 8. In contrast, the equilib-

rium represented by B is learnable. Thus, learnability selects a unique REE.

We now consider a learning equilibrium using the same initial values for Θ as in

Section 7.1. Interestingly, forward guidance has no measurable effect on the learning

equilibrium. The two learning equilibria are indistinguishable in Figure 9. It follows

that the learning equilibrium converges slowly and that there is no forward guidance

puzzle under learning.26 Promises about interest rates in the future do not have implau-

26For a discussion of the forward guidance puzzle, see Del Negro et al. (2023).
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sibly large effects on current economic outcomes. Indeed, under internalized learning,

these effects are virtually zero.27

Figure 9: Forward Guidance Under Learning and REE
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The power of forward guidance under REE reflects its strong effect on expected

inflation. Under learning, the effects of forward guidance have very little influence on

expected inflation expectations, because expectations are backward-looking.

9 The Analog of b in the NK Model

In analyzing our nonlinear model. we used the ‘learning principal’ that emerged from

the Bray and Savin model: The larger the parameter, b, that controls how self-fulfilling

expectations are, the longer it takes to converge. In this section, we accomplish two

tasks. First, we demonstrate that the analog of b in the linearized solution of our NK

model is the largest real part of the eigenvalues of the matrix that maps beliefs about

x =
[

C π
]

into the realized values of x. Specifically, we develop the analog of

Proposition 1 for the NK model, which characterizes the asymptotic rate of convergence

of the learning equilibrium as a function of b. Second, we argue that the asymptotic

rate of convergence is a good guide to the small t rate of convergence.

We base our analysis below on linearized versions of the policy functions defined in

equations (18) and (25). Here, we find it convenient to use time notation rather than

recursive notation. The details of our linearization appear in Appendix D. Recall that

the household problem can be reduced to finding an optimal decision rule for bond

27Under anticipated utility (not displayed) forward guidance has a slight effect, but not large enough
to be economically meaningful.
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holdings, b′ (bh,Θ, x), denoted here by bh,t. Log-linearizing this decision rule, we obtain

b̂h,t = γb,bb̂h,t−1 + γb,ππ̂t + γb,CĈt + γb,µπm̂π,t + γb,µCm̂C,t. (42)

With one exception, the hat notation, q̂t, denotes log (qt/q) where q denotes the REE

value of qt about which the linearization is done. The exception is household bond

holdings, bh,t, in which case b̂h,t denotes bh,t− bh. Also, µ̂t = [m̂π,t, m̂C,t] represents the

log deviation of people’s time t posterior of Etxt+1 and the REE value of Ext+1. We use

the posterior means (Etxt+1) rather than the prior means (Et−1xt+1) because, with Θ

and x, households and firms can compute Θ′. Variance of beliefs do not appear because

of the certainty equivalence implied by the linearization. The parameters in equation

(42) are functions of model parameters and the point about which the linearization is

done. These points correspond to different REEs when r = r`. Similarly, the linearized

price decision rule, p′f (pf ,Θ, x), of the firm (denoted by p̂f,t) is

p̂f,t = γp,pp̂f,t−1 + γp,ππ̂t + γp,CĈt + γp,µπm̂π,t + γp,µCm̂C,t. (43)

The time t realized value of x̂t enters the decision rules, equations (42) and (43),

by two channels. The first channel reflects that people use x̂t to determine the period

t values of the exogenous variables in their period t budget constraint. The second

channel reflects that µ̂t depends on x̂t, µ̂t−1, and the gain in the Bayesian updating

equation.

In each period we compute a linearized period equilibrium (see Definition 3), so

that (i) b̂h,t−1 = p̂f,t−1 = 0 and (ii) x̂t is determined by the requirements, b̂h,t = 0 and

p̂f,t = 0:

0 = γb,ππ̂t + γb,CĈt + γb,µπm̂π,t + γb,µCm̂C,t

0 = γp,ππ̂t + γp,CĈt + γp,µπm̂π,t + γp,µCm̂C,t.

Assuming the relevant matrix inverse exists, x̂t is given by

x̂t = Bµ̂t, (44)
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where28

B = −

[
γb,π γb,C

γp,π γp,C

]−1 [
γb,µπ γb,µC
γp,µπ γp,µC

]
.

The law of motion of µ̂t is a stacked version of the updating expressions in equation

(4). For simplicity, we impose the same gain, γt = 1/ (λ0 + t) , on the two equations.

Here, λ0 denotes the initial precision of beliefs about the mean of inflation and con-

sumption. Combining the vector Bayesian updating expression with equation (44) we

obtain:

µ̂t = (I −Bt) µ̂t−1, (45)

whereBt = γt
[
I −B (1− γt) (I − γtB)−1] is the analog of bt in equation (8).29 A differ-

ence is that (1− γt) (I − γtB)−1 does not appear in bt, reflecting the timing differences

between the two models. These timing differences are negligible for our purpose; if

we replaced (1− γt) (I − γtB)−1 by I, then the asymptotic convergence result stated

below would be unchanged.

The mapping from beliefs about x̂t–that is, µ̂t−1–to realized values of x̂t is obtained

by multiplying equation (45) by B and using equation (44):

x̂t = B (I −Bt) µ̂t−1. (46)

The period equilibrium of the linearized model corresponds to the values of x̂t, µ̂t, γt

which solve equations (45) and (46).

For t large enough, equation (46) is approximately x̂t = Bµ̂t−1. In a slight abuse

of notation, we let b denote the largest real part of the eigenvalues of B. The central

result of this subsection is that b characterizes the asymptotic speed at which the

learning equilibrium converges to the stable REE. Therefore, it plays the same role as

the parameter, b, in the Bray and Savin (1986) model.

Our analysis of the speed of convergence of µ̂t holds for any finite-dimensional µ̂t.

We extend Definition 1 to the vector case of x̂t as follows:30

28In the examples that we have considered, we have not encountered an exception to the invertibility
assumption.

29According to the Bayesian updating equations, µ̂t = µ̂t−1 +γt (x̂t − µ̂t−1) . Substituting out for x̂t
using equation (44), we obtain µ̂t = µ̂t−1 + γt (Bµ̂t − µ̂t−1). Equation (45) follows after rearranging.

30See Definition 1 for ‘'′.
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Definition 5. The vector series, x̂t, and the scalar series, at > 0, converge to zero at

the same rate if (i) for all j either (a) x̂j,t ' at or (b) limt→∞ |x̂j,t| /at = 0, and (ii) for

at least one j, condition (a) holds.

Our definition requires that all elements of x̂t converge to zero at least as fast as at

and that at least one element converges to zero at the same rate as at.

In what follows, it is useful to denote the eigenvalue-eigenvector decomposition of B

as B = QΛQ−1, where Λ is a diagonal matrix with the eigenvalues of B in the diagonal

elements.31 In the NK model, one cannot rule out the possibility that the eigenvalues,

Λj, of B are complex. Let Λj = Λr,j + iΛc,j, where Λr,j and Λc,j denote the real and

complex parts of Λj, respectively. Let rj,t denote the modulus of the jth eigenvalue of

I −Bt, and let j∗ denote a value of j for which Λr,j attains its maximal value, b. Also,

define µ̃t = Q−1µ̂t, where µ̂0 is given. The following proposition establishes the rate of

convergence of µ̂t.

Proposition 4. Suppose that (i) B has an eigenvalue-eigenvector decomposition with

Λr,j < 1 for all j, (ii) µ̃j∗,0 6= 0, and (iii) rj∗,t 6= 0 for each t. Then, µ̂t ' tb−1.

See Appendix A for a proof.

Some comments about Proposition 4 are in order. First, violations of (ii) or (iii)

are isolated special cases. Condition (ii) rules out the case in which the initial priors

are orthogonal to the left eigenvector associated with the eigenvalue, Λj∗ . In that

case, Λj∗ plays no role in the system’s dynamics. Condition (iii) is analogous to the

requirement in Proposition 1 that γt (1− b) 6= 1. Second, our proposition is consistent

with the result of Evans and Honkapohja (2001, Theorem 1) that limt→∞ µ̂t = 0. The

novelty of Proposition 4 is that it establishes the rate at which µ̂t converges to zero.

Third, as in our analysis of the Bray and Savin (1986) model, the rate of convergence

of learning in the NK model is decreasing in b. Fourth, the fact that b plays a similar

role in the Bray and Savin (1986) and NK models can be seen by noting that pre-

multiplication of equation (45) by Q−1 diagonalizes the system into a set of first-order

scalar difference equations in µ̃j,t that are independent across j. Each of these equations

resembles equation (6) in Bray and Savin (1986). So the representation of µ̃j,t has the

form given in equations (7) and (9) (though µ̃j,t is potentially complex valued), and its

behavior is determined by the jth eigenvalue of B. Since µ̂t = Qµ̃t and the columns

31A sufficient condition for this decomposition to exist is that the eigenvalues of B are distinct. This
condition is satisfied in all the examples that we consider.
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of Q are linearly independent, it follows that the largest real part of the eigenvalues of

B determines the rate of convergence of at least one element of µ̂t. Fifth, when the

eigenvalues of B are complex, µ̂t can exhibit sinusoidal fluctuations. That is why our

definition of the rate of convergence (Definition 1) needs to accommodate the possibility

that the µ̂t/t
b−1 oscillates in a bounded set.32

Table 2 displays the eigenvalues of B corresponding to the Good-ZLB and Bad-ZLB

equilibria for the benchmark parameter values. The maximal eigenvalue (‘Eigenvalue

1’), b, associated with the Good-ZLB and Bad-ZLB equilibria are 0.92 and 1.26, respec-

tively. Consistent with the claim in Section 6, the Bad-ZLB equilibrium is not locally

learnable because b > 1. The Good-ZLB equilibrium is locally learnable because, in

that case, b < 1.

Table 2 displays the eigenvalues of B corresponding to the Good- and Bad-ZLB

equilibria for the benchmark parameter values. The maximal eigenvalue (‘Eigenvalue

1’), b, associated with the Good-ZLB and Bad-ZLB equilibria are 0.92 and 1.26, respec-

tively. Consistent with the claim in Section 6, the Bad-ZLB equilibrium is not locally

learnable because b > 1. The Good-ZLB equilibrium is locally learnable because, in

that case, b < 1.

Asymptotic convergence to the Good-ZLB REE is slow because b is large. According

to Proposition 4 |µ̂j∗,t| is approximately κtb−1 for some κ 6= 0 and t sufficiently large.

The amount of time it takes to close two-thirds of a gap, µ̂t, for t sufficiently large, is

given by Tt in equation (11). Table 2 reports values of T1 for different variants of the

model. In the benchmark model, when b = 0.92, then T1 = 920, 482. This large value

of T1 is qualitatively consistent with the basic prediction of the nonlinear solution to

the model–namely, that the rate of convergence is quite slow (see Figure 4a). Similarly,

the small value of T1 reported in the table for the case in which the ZLB is not binding

and α = 1.5 is qualitatively consistent with the finding for the nonlinear solution to the

model (see Figure 5). In this sense, the asymptotic result in Proposition 4 is a useful

guide about the rate of convergence, even for small t.

A different way to assess the usefulness of the asymptotics is to calculate the actual

amount of time, T, required to close two-thirds of the initial gap between priors and

steady state according to the linearized solution to the model.33 To this end, we

32A discussion about the possibility of oscillations follows the proof of Proposition 4 in Appendix
A.

33The initial gap in log xi, i = 1, 2, corresponds to the log-deviation of xi in the initial steady state
and the REE while r = r`.
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simulate the linearized solution to the model when the ZLB is binding and when we

ignore the ZLB. In the latter case, we consider α = 1.5 and 3. The results are reported

in Table 4a. We find that, for the benchmark model, when the ZLB is binding, T =

944, 710. In sharp contrast, when the ZLB is not binding and α = 1.5 and 3, we find

that T = 3 and 1 periods, respectively. These results about the importance of the

ZLB and the value of α in determining the speed of convergence are qualitatively the

same as our results using T1. Thus, the rule of thumb, equation (11), suggested by

Proposition 4 is informative about actual rates of convergence in the linearized solution

to the model.

Table 2: Eigenvalues of B

Eigenvalue 1 Eigenvalue 2 T1 T

Good ZLB 0.92 -0.48 920,482 944,710
Bad ZLB 1.26 -1.21 NA NA

No ZLB, α = 1.5 0.054+0.44i 0.054-0.44i 2 3
No ZLB, α = 3 -0.135+0.84i -0.135-0.84i 2 1

Note: The matrix, B, is defined in equation (44). The scalar, b, discussed in the text is the largest real part of the
eigenvalues of B. The reported values of T are based on simulations of the linearized solution to the model. For the
definitions of T and T1 see the text.

10 Conclusion

In this paper, we consider the speed with which people learn about their environment

after an unusual event. We do so in a non-linear NK model with internally rational

households and firms that are learning about how the economy will evolve after the

event. To characterize the speed of convergence of people’s beliefs, we analytically

extend results in the literature to encompass circumstances when learning is very slow.

We argue that the slow convergence result arises naturally in the NK model when the

ZLB is binding. Under these circumstances, analyses of fiscal and monetary policies

under rational expectations can be very misleading. Since inflation declined by a mod-

est amount during the Great Recession, learning moves the model toward the data

relative to rational expectations. In this sense, learning provides a possible resolution

to the ‘missing deflation puzzle’ (see Del Negro et al. (2023)). It would be interesting

to pursue this possibility in an empirically plausible version of the NK model of the

sort considered by Christiano et al. (2016) or Del Negro et al. (2023).
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Finally, we note that there are other circumstances in which slow learning could

arise. For example, plausible parameterizations of Cagan (1956)’s model of money de-

mand under hyperinflation map into high b economies. Results in Marcet and Sargent

(1995, Table 6.3) imply that estimates of the elasticity of money demand in hyperin-

flations (see, for example, Christiano (1987) and Taylor (1991)) map into high values

of b. More generally, the learning principle suggests that any model with strong strate-

gic complementarities could exhibit slow convergence to rational expectations under

learning.
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politique, 2021, 132 (3-4), 583–608.

and Seppo Honkapohja, “Convergence for difference equations with vanishing
time-dependence, with applications to adaptive learning,” Economic Theory, 2000,
15, 717–725.

Evans, George W. and Seppo Honkapohja, Learning and Expectations in Macroe-
conomics, Princeton University Press, 2001.

Farhi, E, M Petri, and I Werning, “The fiscal multiplier puzzle: Liquidity traps,
bounded rationality, and incomplete markets,” Technical Report, mimeo 2020.

Farhi, Emmanuel and Iván Werning, “Monetary policy, bounded rationality, and
incomplete markets,” American Economic Review, 2019, 109 (11), 3887–3928.

Farmer, Leland, Emi Nakamura, and Jón Steinsson, “Learning about the long
run,” Technical Report, National Bureau of Economic Research 2021.

Ferrero, Giuseppe, “Monetary policy, learning and the speed of convergence,” Jour-
nal of Economic Dynamics and Control, 2007, 31 (9), 3006–3041.
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A Proofs of Lemmas and Propositions

A.1 Proof of Lemma 1

Lemma 1 follows from the following Proposition.

Proposition 5. Suppose bt 6= 1 for all t, then µt can be written as

µt =
a

1− b
+

t∑
j=1

{
zt
zj
bj

εj
1− b

}
+ zt

(
µ0 −

a

1− b

)

and has mean
a

1− b
+ zt

(
µ0 −

a

1− b

)
and variance

t∑
j=1

{(
zt
zj

)2

b2
j

σ2
ε

(1− b)2

}
.

Proof. Note that(
µt −

a

1− b

)
=bt

εt
1− b

+ (1− bt)
(
µt−1 −

a

1− b

)
=bt

εt
1− b

+ (1− bt) bt−1
εt−1

1− b
+ (1− bt) (1− bt−1)

(
µt−2 −

a

1− b

)
=bt

εt
1− b

+ (1− bt) bt−1
εt−1

1− b
+ (1− bt) (1− bt−1) bt−2

εt−2

1− b

+ (1− bt) (1− bt−1) (1− bt−2)

(
µt−3 −

a

1− b

)
=bt

εt
1− b

+
t−1∑
j=1

{[
j∏

k=1

(1− bt−k+1)

]
bt−j

εt−j
1− b

}
+ zt

(
µ0 −

a

1− b

)

=
t∑

j=1

{
zt
zj
bj

εj
1− b

}
+ zt

(
µ0 −

a

1− b

)
.

The results of the proposition follow immediately from the properties of εt.

A.2 Proof of Proposition 1

We first state a number of lemmas that will be useful in the proof.
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Lemma 2. For any b < 1 and any 0 ≤ λ0, there exists a t∗ so that 0 < bt < 1 for all

t ≥ t∗.

Proof. Let t∗ = max {1, d2− b− λ0e} where dxe is the smallest integer larger than x.

The result follows immediately.

Lemma 3. Define Hλ0,T =
∑T

t=1
1

λ0+t
. Suppose 0 ≤ λ0 <∞, then

lim
T→∞

{Hλ0,T − log (λ0 + T )} = cλ0 ,

where cλ0 is a finite constant.

Proof. Note that Hλ0,T > 0 and

Hλ0,T ≤
1

λ0 + 1
+

∫ λ0+T

λ0+1

1

t
dt =

1

λ0 + 1
+ log (λ0 + T )− log (λ0 + 1) .

Define the sequence yλ0,T = log (λ0 + 1) + Hλ0,T − log (λ0 + T ) . The above inequality

and the convexity of t−1 imply 0 < yλ0,T ≤ 1
λ0+1

for all T ≥ 1. Also,

yλ0,T+1 − yλ0,T =
1

λ0 + T + 1
+ log (λ0 + T )− log (λ0 + T + 1) < 0

Thus, yλ0,T is a monotone, decreasing series. The result of the lemman follows by the

monotone convergence theorem.

Lemma 4. Define Hλ0,T =
∑T

t=1
1

λ0+t
. Suppose 0 ≤ λ0 <∞, then there exist positive,

finite constants cλ0 and cλ0, and a finite constant cλ0 so that

cλ0
T

< log (T + λ0) + cλ0 −Hλ0,T <
cλ0
T
.

Proof. Using cλ0 from Lemma 3, noting that t−1 is convex, and following the geometric

logic in Young (1991) “Euler’s Constant” The Mathematical Gazette, Vol. 75, No. 472

(Jun., 1991) we have

1

2 (λ0 + T )
< log (λ0 + T ) + cλ0 −Hλ0,T <

1

λ0 + T
.

The result of the lemma follows immediately.

We are now in a position to prove Proposition 1.
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Proof. Consider 0 < b < 1. Note that 0 < bj < 1 for all j. Define yt = log
(

(λ0 + t)1−b zt

)
.

Note that,

yt+h − yt = (1− b) log

(
1 +

h

λ0 + t

)
+

h∑
k=1

log (1− bt+k)

= (1− b)

(
log

(
1 +

h

λ0 + t

)
−

h∑
k=1

1

λ0 + t+ k

)
+Rt,t+h

where Rt,t+h is the remainder term from Taylor’s Theorem in the representation of

log (·). By Lemma 3, log (λ0 + t)−
∑t

k=1
1

λ0+t
is a Cauchy sequence. So, for any ε > 0

there exists a t1 so that if t ≥ t1then for any h ≥ 0∣∣∣∣∣log

(
1 +

h

λ0 + t

)
−

h∑
k=1

1

λ0 + t+ k

∣∣∣∣∣ < ε

4− 4b
.

From Taylor’s Theorem, |Rh,t+h| ≤
∑h

k=1K
(

1
λ0+t+k

)2

for some 0 < K <∞. Because∑∞
t=1 t

−2 converges, for any ε > 0 there exists a t2 so that if t ≥ t2 then for any h ≥0

|Rh,t+h| < ε/4. It follows that if t ≥ max {t1, t2}, then |yt+h − yt| < ε/2. As a result,

if t ≥ max {t1, t2} for any j, k > 0, |yt+j − yt+k| < ε. That is yt is a Cauchy sequence.

The conclusion of the proposition follows for 0 < b < 1 is then immediate.

Now consider b ≤ 0. By Lemma 2 there exists a t∗ so that for all t ≥ t∗ we have

0 < bt < 1. Define the sequence y∗t = (1− b) log (λ0 + t) +
∑t

j=t∗ log (1− bj) . Using

the same argument as in the case when 0 < b < 1, we have that y∗t is Cauchy, so it

converges to a finite constant. For t ≥ t∗, we have

t1−bzt =

(
t

λ+ t

)1−b

exp (y∗t )

[
t∗−1∏
j=1

(1− bj)

]
.

The conclusion of the proposition for b ≤ 0 follows by noting that we have ruled out

the possibility that
∏t∗−1

j=1 (1− bj) = 0 through our assumption that bt 6= 1 for all t.

A.3 Proof of Proposition 2

The proof of the proposition will utilize the following lemma.

Lemma 5. For any b < 1 and any λ0 ≥ 0, if 1−b
λ0+t
6= 1 then limt→∞ t

1−b |zt| = k where

52



k is a strictly positive, finite constant. Additionally, there exist strictly positive, finite

constants k1 and k2 so that

k exp

(
− k1

λ0 + t

)
<

|zt|
(λ0 + t)b−1

< k exp

(
k2

λ0 + t

)
.

Proof. Our proof of proposition 1 shows that limt→∞ t
1−b |zt| = k for some strictly

positive, finite constant, k.

Now we will find k1 and k2. First consider the case when 0 < b < 1. Noting that

0 < bt < 1 for all t, the series representation of log yields

(1− b) log (λ0 + t) +
t∑

j=1

log (1− bj) = (1− b) [log (λ0 + t)−Hλ0,t]−
∞∑
m=2

t∑
j=1

1

m

(
1− b
λ0 + j

)m
log (k) = −

∞∑
m=1

cλ0,b,m

where cλ0,b,1 = (1− b) cλ0 , cλ0 is from Lemma 3, and cλ0,b,m =
∑∞

j=1
1
m

(
1−b
λ0+j

)m
for
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m > 1. Then,

(1− b) log (λ0 + t) +
t∑

j=1

log (1− bj)− log (k)

= (1− b) [log (λ0 + t)−Hλ0,t]−
∞∑
m=2

t∑
j=1

1

m

(
1− b
λ0 + j

)m
+
∞∑
m=1

cλ0,b,m

< − (1− b) cλ0 +
1− b
λ0 + t

cλ0 −
∞∑
m=2

t∑
j=1

1

m

(
1− b
λ0 + j

)m
+
∞∑
m=1

cλ0,b,m

<
1− b
λ0 + t

cλ0 +
∞∑
m=2

∞∑
j=t+1

1

m

(
1− b
λ0 + j

)m
<

1− b
λ0 + t

cλ0 + (1− b)
∞∑
m=1

1

m

(
1− b
λ0 + t

)m
<

1− b
λ0 + t

cλ0 +
(1− b)2

λ0 + t

∞∑
m=1

1

m

(
1− b
λ0 + t

)m−1

<
1− b
λ0 + t

cλ0 +
(1− b)2

λ0 + t

[
1 +

∞∑
m=1

1

m

(
1− b
λ0 + t

)m]

<
1− b
λ0 + t

cλ0 +
(1− b)2

λ0 + t

[
1− log

(
1− 1− b

λ0 + t

)]

<
(1− b) cλ0 + (1− b)2

[
1− log

(
1− 1−b

λ0+1

)]
λ0 + t

.

The equality follows from the series representation of log (k). The first inequality

follows from Lemma 4 for some positive, finite cλ0 . The second inequality follows from

the definitions of cλ0,b,m. The third inequality follow from the fact that for m > 1,

∞∑
j=t+1

(
1

λ0 + j

)m
dj <

∫ ∞
t

(
1

λ0 + j

)m
dj =

∫ ∞
λ0+t

j−mdj =
1

m− 1
(λ0 + t)1−m .

The fourth inequality is algebraic, and the fifth follows from the fact that (m+ 1)−1 <

m−1. The sixth inequality follows from the series representation of log. The final
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inequality follows from the fact that log
(

1− 1−b
λ0+t

)
is increasing in t. Similarly,

(1− b) log (λ0 + t) +
t∑

j=1

log (1− bj)− log (k)

= (1− b) [log (λ0 + t)−Hλ0,t]−
∞∑
m=2

t∑
j=1

1

m

(
1− b
λ0 + j

)m
+
∞∑
m=1

cλ0,b,m

> − (1− b) cλ0 −
1− b
λ0 + t

cλ0 −
∞∑
m=2

t∑
j=1

1

m

(
1− b
λ0 + j

)m
+
∞∑
m=1

cλ0,b,m

> − 1− b
λ0 + t

cλ0 +
∞∑
m=2

∞∑
j=t+1

1

m

(
1− b
λ0 + j

)m
> − 1− b

λ0 + t
cλ0 ,

which establishes the result of the Proposition for 0 < b < 1.

We now address the case when b ≤ 0. By Lemma 2 there exists a t∗ so that for all

t ≥ t∗ we have 0 < bt < 1 and all t < t∗ we have bt > 1. Also, note that

log
(

(λ0 + t)1−b |zt|
)

= (1− b) log (λ0 + t) +
t∗−1∑
j=1

log (|1− bj|) +
t∑

j=t∗

log (1− bj)

log (|k|) =
t∗−1∑
j=1

log (|1− bj|)−
∞∑
m=1

c∗λ0,b,m

where c∗λ0,b,1 = (1− b) cλ∗0 , c∗λ0 is from Lemma 3 with λ∗0 = λ0 + t∗ − 1, and c∗λ0,b,m =∑∞
j=t∗

1
m

(
1−b
λ0+j

)m
for m > 1. As above, for t ≥ t∗

log
(

(λ0 + t)1−b |zt|
)
− log (|k|)

< − (1− b) cλ∗0 +
1− b
λ0 + t

c∗λ0 −
∞∑
m=2

t∑
j=t∗

1

m

(
1− b
λ0 + j

)m
+
∞∑
m=1

c∗λ0,b,m

<
(1− b) c∗λ0 + (1− b)2

[
1− log

(
1− 1−b

λ0+t∗

)]
λ0 + t
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and

log
(

(λ0 + t)1−b |zt|
)
− log (|k|)

> − (1− b) cλ∗0 +
1− b
λ0 + t

c∗λ0 −
∞∑
m=2

t∑
j=t∗

1

m

(
1− b
λ0 + j

)m
+
∞∑
m=1

c∗λ0,b,m

>
1− b
λ0 + t

c∗λ0 .

Because t∗ is finite, the result of the proposition follows immediately.

We are now in a position to prove Proposition 2.

Proof. By Proposition 5, the variance of µt is given by

t∑
j=1

{(
zt
zj

)2

b2
j

σ2
ε

(1− b)2

}
=

t∑
j=1

{(
zt
zj

)2
σ2
ε

(λ0 + j)2

}
.

The conclusion of the Proposition when b < 1/2 follows from Theorem 3 (page 110) of

Benveniste, et al. (1990).

Consider 1/2 < b < 1. Define

x̃t = t2(1−b)
t∑

j=1

{(
zt
zj

)2
σ2
ε

(λ0 + j)2

}
.

The strategy of the proof will be to show that x̃t is a Cauchy sequency and thus

converges in R. Note that

|x̃t+h − x̃t| =

∣∣∣∣∣(t+ h)2−2b
t+h∑
j=1

{(
zt+h
zj

)2
σ2
ε

(λ0 + j)2

}
− t2−2b

t∑
j=1

{(
zt
zj

)2
σ2
ε

(λ0 + j)2

}∣∣∣∣∣
≤ (t+ h)2−2b

t+h∑
j=t+1

{(
zt+h
zj

)2
σ2
ε

(λ0 + j)2

}
(47)

+

∣∣∣∣∣
(
t+ h

t

)2−2b h∏
j=1

(1− bt+h)2 − 1

∣∣∣∣∣ t2−2b

t∑
j=1

{(
zt
zj

)2
σ2
ε

(λ0 + j)2

}
.
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Consider the first term in equation (47). From Lemma 5,

(t+ h)2−2b
t+h∑
j=t+1

{(
zt+h
zj

)2
σ2
ε

(λ0 + j)2

}

< (t+ h)2−2b
t+h∑
j=t+1

{
(t+ h)2b−2

j2b−2
exp

(
k̃2

λ0 + t+ h

)
σ2
ε

(λ0 + j)2

}

< exp

(
k̃2

λ0 + 1

)
σ2
ε

∞∑
j=t+1

{
1

j2b

}

where 0 < k̃2 < ∞ is the constant from Lemma 5. Because
∑∞

j=1 j
−2b converges to a

finite constant, for any ε > 0, there exists a t1 so that if t ≥ t1

(t+ h)2−2b
t+h∑
j=t+1

{(
zt+h
zj

)2
σ2
ε

(λ0 + j)2

}
<
ε

4
.

Now consider the second term in equation (47). Our previous resoning immediately

delivers that∣∣∣∣∣
(
t+ h

t

)2−2b h∏
j=1

(1− bt+h)2 − 1

∣∣∣∣∣t2−2b

t∑
j=1

{(
zt
zj

)2
σ2
ε

(λ0 + j)2

}

<

∣∣∣∣∣
(
t+ h

t

)2−2b h∏
j=1

(1− bt+h)2 − 1

∣∣∣∣∣ ζ̃
for some ζ̃ > 0. Note that

(
t+ h

t

)2−2b h∏
j=1

(1− bt+h)2 =

(
(t+ h)1−b zt+h

t1−bzt

)2

We know that t1−b |zt| converges to some finite, nonzero constant, which means
(
t1−b |zt|

)2

converges. So, for any ε > 0, there exists a t2 so that for t ≥ t2∣∣∣∣∣∣
(

(t+ h)1−b zt+h
t1−bzt

)2

− 1

∣∣∣∣∣∣ < ε

4ζ̃
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for all h. Then for any ε, there exists a tε = max {t1, t2} so that for all h

|x̃tε+h − x̃tε| <
ε

2
.

Then for any j,m ≥ 0, |x̃tε+j − x̃tε+m| < ε. That is, x̃t is a Cauchy sequence, and thus

converges.

Consider b = 1/2. Define

x̆t ≡
t

log (t)

t∑
j=1

{(
zt
zj

)2
σ2
ε

(λ0 + j)2

}
.

The strategy of the proof will be to show characterize an interval with endpoints that

are a function of t in which x̆t lies, and then to show that the end points have the same,

finite limit. These facts, together, imply that x̆t converges. By Lemma 5 there exists

a positive, finite constant k̆2 so that

x̆t <
t

log (t)

t∑
j=1

{
t−1

j−1
exp

(
k̆2

λ0 + t

)
σ2
ε

(λ0 + j)2

}
< exp

(
k̆2

λ0 + t

)
σ2
ε

(
1 +

c0

log (t)

)

where c0 is a finite constant. Here, the first inequality follows from Lemma 5 and the

final inequality follows from Lemma 4. Also, by Lemma 5

x̆t >
t

log (t)

t∑
j=1

{
t−1

j−1

σ2
ε

(λ0 + j)2

}
> σ2

ε

(
log (t+ λ0)− ω

log (t)

)
.

Here, ω is a finite constant, the existence of which follows from from Lemma 4. To-

gether, these inequalities imply that limt→∞ x̆t = σ2
ε .

A.4 Proof of Proposition (4) and related results

Throughout, we assume that B has an eigenvalue-eigenvector decomposition meaning

that B = QΛQ−1 where the columns of Q are linearly independent eigenvectors of B

and Λ is a diagonal matrix with eigenvalue Λj,r + Λj,ci in the jth diagonal element. To

prove the proposition, we will need some Lemmas and notation.

Lemma 6. Ωt = B
(
I − 1

λ0+t
B
)−1 (

1− 1
λ0+t

)
has an eigenvalue-eigenvector decompo-

sition so that Ωt = QΛtQ
−1 where Q is the same matrix as in the eigenvector-eigenvalue
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decomposition of B.

Proof. From the definition of Ωt

ΩtQ = B

(
I − 1

λ0 + t
B

)−1(
1− 1

λ0 + t

)
Q

= QΛQ−1

(
QQ−1 − 1

ν0 + t
QΛQ−1

)−1(
1− 1

ν0 + t

)
Q

= QΛQ−1Q

(
I − 1

ν0 + t
Λ

)−1

Q−1

(
1− 1

ν0 + t

)
Q

= QΛt

where Λt = Λ
(
I − 1

ν0+t
Λ
)−1 (

1− 1
ν0+t

)
is a diagonal matrix.

Lemma 6 says that the columns of Q are eigenvectors of Ωt, though Ωt has different

eigenvalues than B. Denote the jth diagonal element of Λt by Λj,r,t + Λj,c,ti. The

following Lemma follows from tedious algebra.

Lemma 7. Suppose Λj,r,t, Λj,r, Λj,c,t, and Λj,c are as defined above and that for all

j either
1−Λr,j
λ0+t

6= 1 or Λc,j,t 6= 0 for all t. Then limt→∞ Λj,r,t = Λj,r, limt→∞ Λj,c,t =

Λj,cand there exists a finite, positive constant K so that |Λj,r,t − Λj,r| < K (λ0 + t)−1

and |Λj,c,t − Λj,c| < K (λ0 + t)−1 .

It will be useful to define µ̃t ≡ Q−1µt , which is given by

µ̃t =

(
I − 1

λ0 + t
(I − Λt)

)
µ̃t−1 =

(
t∏

k=1

(
I − 1

λ0 + k
(I − Λk)

))
µ̃0. (48)

The modulus of the jth diagonal element of
(
I − 1

λ0+t
(I − Λt)

)
is

rj,t =

([
1− 1

λ0 + t
(1− Λj,r,t)

]2

+

(
1

λ0 + t
Λj,c,t

)2
)1/2

(49)

We will use the following Lemma.

Lemma 8. Suppose rj,t 6= 0 for all t and Λj,r < 1 , then

t1−Λj,r

t∏
k=1

rj,k → κj > 0
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where rj,k is given by equation (49).

Proof. For a given j, define

yj,t ≡ (λ0 + t)1−Λj,r

t∏
k=1

rj,k

ỹj,t ≡ log (yj,t) .

Note that

ỹj,t+h − ỹj,t = (1− Λj,r) log

(
1 +

h

λ0 + t

)
+

1

2

h∑
k=1

log

(
1 + 2

1

λ0 + t+ k
(Λj,r,t+k − 1)

+

[
1

λ0 + t+ k
(Λj,r,t+k − 1)

]2

+

(
1

λ0 + t+ k
Λj,c,t+k

)2
)

= (1− Λj,r)

(
log

(
1 +

h

λ0 + t

)
−

h∑
k=1

1

λ0 + t+ k

)
+Rt,t+h

+
h∑
k=1

(
1

λ0 + t+ k
(Λj,r,t+k − Λj,r)

+
1

2

[
1

λ0 + t+ k
(Λj,r,t+k − 1)

]2

+
1

2

(
1

λ0 + t+ k
Λj,c,t+k

)2
)

where Rt,t+h is the remainder term from Taylor’s theorem. For any ε, there exists a t1

(which does not depend on h) so that if t ≥ t1 then for any k ≥ 0 by Lemmas 3 and 7

we have ∣∣∣∣∣log

(
1 +

k

ν0 + t

)
−

k∑
n=1

1

ν0 + t+ n

∣∣∣∣∣ < ε

6 |1− Λj,r|

|Λj,r,t+k − Λj,r| <
K

λ0 + t+ k

(Λj,r,t+k − 1)2 < (1− Λj,r)
2 + ε

Λ2
j,c,t+k < Λ2

j,c + ε.
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for some finite, positive K. Then

|ỹt+h − ỹt| ≤
ε

6
+

h∑
k=1

(
1

ν0 + t+ k

)2(
K +

1

2

(
(Λj,r − 1)2 + ε

)
+

1

2

(
Λ2
j,c + ε

))
+ |Rt,t+h|

Because
∑∞

t=1 t
−2 converges, for any ε there exists a t2 (which does not depend on h)

so that if t ≥ t2 ≥ t1 then

∞∑
k=1

(
1

ν0 + t+ k

)2(
K +

1

2

(
(Λj,r − 1)2 + ε

)
+

1

2

(
Λ2
j,c + ε

))
<
ε

6
.

Now, consider

|Rt,t+h| =
h∑
k=0

1

(1 + xk)
2

1

4

[
2

1

λ0 + t+ k
(Λj,r,t+k − 1)

+

(
1

λ0 + t+ k
(Λj,r,t+k − 1)

)2

+

(
1

λ0 + t+ k
Λj,c,t+k

)2
]2

for

xk ∈

[
0, 2

1

λ0 + t+ k
(Λj,r,t+k − 1) +

(
1

λ0 + t+ k
(Λj,r,t+k − 1)

)2

+

(
1

λ0 + t+ k
Λj,c,t+k

)2
]
.

For any h, if t ≥ t2

|Rt,t+h| <
h∑
k=0

(
1

λ0 + t+ k

)2
1(

1− 2 1
λ0+t2

(Λj,r − 1− ε)
)2

1

4

×
[
2K + 2 (1− Λj,r + ε) +

[
(Λj,r − 1)2 + ε

]
+
(
Λ2
j,c + ε

)]2
.

Because
∑

t t
−2 converges to a finite constant, for any ε, there exists a t3 ≥ t2 (which

does not depend on h) so that if t ≥ t3 then

|Rt,t+h| <
ε

6
.
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Combining results, for any ε > 0, there exists a t3 so that if t ≥ t3, then for any h

|ỹt+h − ỹt| <
ε

2
.

Then forr any n,m ≥ 0

|ỹt3+m − ỹt3+n| < ε

meaning that ỹt is a Cauchy sequence, and thus converges to a finite constant. It

follows immediately that yt converges to a finite, non-zero constant.

We are now in a position to prove the proposition.

Proof. Note that

t1−bµt = t1−bQµ̃t = Q

(
t1−b

(
t∏

k=1

(
I − 1

λ0 + k
(I − Λk)

))
µ̃0

)
.

The jth element of t1−b
(∏t

k=1

(
I − 1

λ0+k
(I − Λk)

))
µ̃0 is given by

t1−b

(
t∏

k=1

rj,k

)
exp

(
i

t∑
k=1

ϕj,k

)
µ̃j,0

If Λj,r = b, then by Lemma 8 limt→∞ t
1−b (∏t

k=1 rj,k
)

= κj for some finite, positive κj.

If Λj,r < b then limt→∞ t
1−b (∏t

k=1 rj,k
)

= 0. The conclusion of the proposition follow

by noting that µ̃j∗,0 6= 0 by assumption, that exp (φi) is bounded for all φ, and that

the columns of Q are linearly independent.

A comment related to the possibility of sinusoidal fluctuations in t1−bµ̃j∗,t is in

order. From the definition of ϕj∗,k and the power series representation of sin−1

sin (ϕj∗,k) =

Λj∗,k,c
λ0+k

rj,k

sin−1 (x) =
∞∑
n=0

(2n)!

(2nn!)2

x2n+1

2n+ 1
.

By Lemma 7, for large enough k all of the terms in the power series representation

of sin (ϕj∗,k) are of the same sign. It follows that for large enough t it must be that
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∑t
k=1 ϕj∗,k is either strictly increasing or strictly decreasing in t and that

|ϕj∗,t| >
|Λj∗,t,c|
λ0+k

rj∗,t
.

By Lemma 7 and because limt→∞ rj∗,t = 1, if |Λj∗,c| 6= 0 we have limt→∞
∑t

k=1 |ϕj∗,k| =
∞. This result, along with the observation that limt→∞ ϕj∗,t = 0, implies sinusoidal

fluctuations in t1−bµ̃j∗,t.

B Constant gain learning

Another, widely-used way to model learning based on past data is to have people

update beliefs using a constant gain. When people update their beliefs using constant-

gain learning, equation (4) becomes

µt = µt−1 + γ (xt − µt−1) ,

for 0 < γb < 1. Rearranging, we obtain the analog of equation (9)

µt −
a

1− b
=

t−1∑
j=0

(1− γb)j
(
εt−j
1− b

)
γb + (1− γb)t

(
µ0 −

a

1− b

)
(50)

where γb = (1− b) γ. As long as |1 − γb| < 1 the impact of µ0 on µt goes to zero

eventually. As in the case of Bayesian learning, the rate of convergence is decreasing in

b. So, the positive feedback loop discussed in the previous section continues to operate.

Rewriting equation (50)

E
µt − a

1−b

µ0 − a
1−b

= (1− γb)t .

Here, convergence occurs at a geometric rate, λt, 0 ≤ λ < 1. In contrast, convergence

under Bayesian learning proceeds at a power rate, t−δ, δ > 0 ( Proposition 1). Power

convergence is well known to be slower than geometric convergence for any δ > 0 and

λ < 1.

Nevertheless, convergence can be very slow under constant gain learning. For ex-

ample, when γ = 0.5 and b = 0, 0.5, 0.75, 0.85, .95. Again, let T satisfy (1− γb)T ' 1/3.

Then T = 2 (3), 4 (11), 9 (113), 15 (2201), and 44 (5.2 billion), respectively. Numbers in
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parentheses reproduce the results under Bayesian learning when λ0 = 1. The variable,

T, is increasing at an increasing rate as b gets larger. While learning under constant

gain learning can be very slow for large b, it is much faster than when the gain is

decreasing.

C Solution algorithm for non-linear NK model

In this Appendix we detail our solution strategy for the non-linear NK model we con-

sider in our paper. We exploit the model’s structure to simplify its solution. In partic-

ular, because the steady state is an absorbing state for the REE and learning equilibria

that we consider, we can solve the steady state decision rules without reference to the

period when r = r`. With this solution in had, we then turn to the period when r = r`,

which is where we consider learning.

Our main model code is implemented in c++, with reliance on the Eigen, boost,

and nlopt libraries. Our computations were conducted using nearly 400 processors

with heavy reliance on MPI. Our computations took roughly two weeks to complete.

Details related to our model code are available in the README file associated with

the replication materials. This Appendix outlines the strategy used to solve the model

that is implemented in that code.

C.1 Steady state

In the steady state, there is no uncertainty. However, households still face a bond-

holding choice and firms still face a relative-price choice. In an REE, households will

choose to hold zero bonds and firms will choose to set their price to the aggregate price

level.

C.1.1 Household problem

In the steady state, the household value function is given by

Vh,ss (bh) = max
Ch,Nh,b

′
h

{
log (Ch)−

χ

2
(Nh)

2 + βVh,ss (b′h)
}

subject to

Ch +
b′h
Rss

≤ bh
πss

+ wssNh + Tss.
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Here, bh and b′h are household h’s real bond holdings chosen in the previous and current

period, respectively. The variables Ch and Nh are household h’s consumption and labor

supply. The aggregate variable Rss, πss, wss, and Tss are the gross nominal interest

rate, the gross inflation rate, the real wage, and taxes net of transfers and profits.

The values of these aggregate variables are known to the household. We constrain

households so that b′h ∈
[
b, b
]
. Implicitly, we have functions Ch,ss (bh), Nh,ss (bh), and

b′h,ss (bh). Assuming the constraint on b′h is not binding, household maximization implies

1

Ch,ss (bh)
= βRss

1

Ch,ss (b′h (bh)) πss
(51)

χCh,ss (bh)Nh,ss (bh) = wss (52)

Ch,ss (bh) +
b′h,ss (bh)

Rss

=
bh
πss

+ wssNh,ss (bh) + Tss (53)

We define a grid over
[
b, b
]

and approximate the functions Ch,ss (bh), Nh,ss (bh), and

b′h,ss (bh) on that grid in the following way.34

(i) We conjecture a value for b′h,ss (bh) at each grid point. Call the conjectured value

b′ih,ss (bh).

(ii) Note that equations (52) and (53) can be written as

χCh,ss (bh)

(
Ch,ss (bh) +

b′ih,ss (bh)

Rss

− bh
πss
− Tss

)
= w2

ss.

The left-hand-side is increasing in Ch,ss (bh) ≥ 0. For every bh, we solve for the

value of Ch,ss (bh) that makes this hold with equality. We call this the conjectured

value for Ch,ss (bh) and denote it by Ci
h,ss (bh). Note that with Ci

h,ss (bh), we can

back out N i
h,ss (bh) from equation (52).

(iii) For each grid point, bh, find b′h that solves the following version of equation (51)

ChβRss
1

Ci
h,ss (b′h)

− 1 = 0

34In our implementation, we set −b = b = 1, which is equal to steady state output. We use a
symmetric grid with 25 points that includes zero and places more points near zero than at more
extreme values because bh = b′h = 0 in both REE and in learning equilibria.
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where Ch ≥ 0 solves

χCh

(
Ch +

b′h
Rss

− bh
πss
− Tss

)
= w2

ss.

We use linear interpolation to compute Ci
h,ss (b′h) for values of b′h that fall between

grid points. If the procedure would set b′h > b or b′h < b, we set b′hto the respective

endpoint of the grid. We record the value of b′h in by updating the conjectured

rule for b′h,ss (bh) using b′i+1
h,ss (bh) = b′h.

(iv) Having computed b′i+1
h,ss (bh) for every grid point, we check to see if

∣∣b′i+1
h,ss (bh)− b′ih,ss (bh)

∣∣ < ε

at every grid point for some small ε. If yes, we say that we have solved the

household problem in steady state. If no, we set b′ih,ss (bh) = b′i+1
h,ss (bh) and repeat

steps (ii), (iii), and (iv).

Because βRss
πss

= 1, it is not surprising that we find that b′h,ss (bh) = bh.

C.1.2 Firm problem

In the steady state, the firm value function is given by

Vf,ss (pf ) = max
p′f

{
1

Css

(
p′f − (1− ν)wss

) (
p′f
)−ε

Yss

− 1

Css

φ

2

(
p′f
pf
πss − 1

)2

(Css +Gss)

+βVf,ss
(
p′f
)}
.

Here, pf and p′f are the ratio of firm f ’s price to the aggregate price level in the previous

and current period, respectively. The aggregate values πss, wss, Css, Gss, and Yss are

known to the firm. We constrain firms so that log
(
p′f
)
∈
[
p, p
]
. Implicitly, we have

a function p′f,ss (pf ). Assuming the constraint on p′f is not binding, firm maximization
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implies

φ

(
p′f (pf )

pf
πss − 1

)
1

pf
πss (Css +Gss) =

(ε− 1)

(
wss

p′f (pf )
− 1

)(
p′f (pf )

)−ε
Yss

+ βφ

(
p′f
(
p′f (pf )

)
p′f (pf )

πss − 1

)
p′f
(
p′f (pf )

)(
p′f (pf )

)2 πss (Css +Gss) (54)

We define a grid over
[
p, p
]

and approximate the function p′f,ss (pf ) on that grid in the

following way.35

(i) We conjecture a value for p′f,ss (pf ) at each grid point. Call the conjectured value

p′if,ss (pf ).

(ii) For each grid point, pf , find p′f that solves the following version of equation (54)

φ

(
p′f
pf
πss − 1

)
1

pf
πss (Css +Gss) =

(ε− 1)

(
wss
p′f
− 1

)(
p′f
)−ε

Yss

+ βφ

(
p′if,ss

(
p′f
)

p′f
πss − 1

)
p′if,ss

(
p′f
)(

p′f
)2 πss (Css +Gss)

We use linear interpolation over log
(
p′f
)

to compute p′if,ss
(
p′f
)
for values of log

(
p′f
)

that fall between grid points. If the procedure would set log
(
p′f
)
> p or log

(
p′f
)
<

p, we set p′f to the respective endpoint of the grid. We record the value of p′f in

by updating the conjectured rule for p′f,ss (pf ) using p′i+1
f,ss (pf ) = p′f .

(iii) Having computed p′i+1
f,ss (pf ) for every grid point, we check to see if

∣∣p′i+1
f,ss (pf )− p′if,ss (pf )

∣∣ < ε

at every grid point for some small ε. If yes, we say that we have solved the firm

35In our implementation, we set −p = p = 1. We use a symmetric grid with 25 points that includes

zero that places more points near zero than at more extreme values because log (pf ) = log
(
p′f

)
= 0

in both REE and in learning equilibria.
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problem in steady state. If no, we set p′if,ss (pf ) = p′i+1
f,ss (pf ) and repeat steps (ii)

and (iii).

C.2 Solution when r = r`

To address the case when r = r`, we assume that we have the steady state decision

rules in hand and that households and firms know these decision rules with certainty.

C.2.1 Beliefs

Before presenting the household and firm problems, some comments about beliefs are

in order when r = r`. To simplify the model, we assume households and firms have the

same beliefs (though they do not know that they have the same beliefs). Households

and firms believe that so long as r = r` the log of aggregate consumption, log (C),

and the log of aggregate inflation, log (π), have uncorrelated Normal distributions with

unknown means and variances. That is

log (π) ∼ N
(
µπ, σ

2
π

)
log (C) ∼ N

(
µC , σ

2
C

)
.

We assume that households and firms have beliefs about the means and variances of

the distributions for log (C) and log (π) that are characterized by density functions

that are proportional to Normal-inverse-gamma distributions. These beliefs are not

exactly Normal-inverse-gamma distributions because the households and firms embed

in their beliefs an upper bound on the variances. This upper bound is important

because if variances were unbounded, E [π] = E [C] = ∞, which would challenge the

applicability of an expected utility framework. The distributions characterizing beliefs

are independent across C and π. That is, for i ∈ {π,C}, µi ∈ (−∞,∞) and σ2
i ∈ [0, σ2

i ]

we have

Pr
(
σ2
i |αi, βi

)
=

β
αi
i

Γ(αi)

(
1
σ2
i

)αi+1

exp
(
− βi
σ2
i

)
Γ(αi,βi/σ2

i )
Γ(αi)

,

Pr
(
µi|σ2

i ,mi, λi
)

=

√
λi√

2πσ2
i

exp

(
− λi

2σ2
i

(µi −mi)
2

)
.
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Here, Γ (·) is the gamma function and Γ (·, ·) is the incomplete gamma function. Note

that Γ (·) = Γ (·, 0). Again, the advantage of truncating the support of σ2
i is that

E [π] <∞ if σ2
π <∞ and E [C] <∞ if σ2

C <∞.

Even though we truncate the distributions for σ2
i , we maintain conjugacy between

prior and posterior beliefs as well as the usual recursive updating equations because the

likelihoods associated with observations of π and C are not truncated. Beliefs about

log (i) are parameterized by four values, αi, βi, mi, and λi. So, we have 8 total values

for both π and C. The standard recursive updating formulas for these variables are

λ′i = λi + 1

m′i =
λmi + log (i)

λ+ 1

α′i = αi + 1/2

β′i = βi +
λi (log (i)−mi)

2

2 (λi + 1)
.

Here, a prime indicates the value taken after having observed log (i).

We need to include variables in Θ that will fully capture the values αi, βi, mi, and

λi for i ∈ {π,C}. First, we keep 1
t`

in Θ, which is the inverse of the number of periods

that r has been equal to r`. We keep the inverse because it is bounded between zero

and one, which will be useful. From this value, we can trivially back out λi and αi,

given their values in the first period when r = r`. We set the initial value of λi = 1

and the initial value of αi = 2. We keep mC and mπ in Θ. And we also keep

ψ′i =

√
ψ2
i

2α′i
2α′i + 1

+
λi

λi + 1

1

2α′i + 1
(log (i)−mi)

2.

Note that by setting βi = (ψi)
2 α′i it is clear that we recover the exactly recursive

structure of βi (given above). An advantage of using ψi in Θ rather than βi is that

ψi is a consistent estimator for the standard deviation, whereas βi generally grows

without bound (except when the standard deviation is zero). Keeping the values of Θ

within bounded grids will be important for the purposes of approximation. In total,

Θ =
[

1
τ`
,mπ,mC , ψπ, ψC

]
has five elements and we have a mapping from Θ to αi, βi, mi,

and λi for i ∈ {π,C}. We also have a law of motion for Θ so that Θ′ = L (Θ, [π,C]) .

An advantage of the Normal-inverse-gamma setup detailed above is that we can have

analytic expressions for the distribution for the variables log (π) and log (C) conditional
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on Θ. In particular

Pr (log (i) |Θ) =
Pr (log (i) |µi, σ2

i ,Θ) Pr (µi, σ
2
i |Θ)

Pr (µi, σ2
i | log (i) ,Θ)

=

1√
2πσ2

i

exp
(
− 1

2σ2
i

(log (i)−mi)
2
)

√
λ′i√

2πσ2
i

exp
(
− λ′1

2σ2
i

(µi −m′i)
2
)

(β′i)
α′
i

Γ(α′i)

(
1
σ2
i

)α′i+1

exp
(
− β′i
σ2
i

)
×
√
λi√

2πσ2
i

exp

(
− λi

2σ2
i

(µi −mi)
2

)
× βαii

Γ (αi)

(
1

σ2
i

)αi+1

exp

(
− βi
σ2
i

)
κ′i
κi

where

κi =
Γ (αi, βi/σ

2)

Γ (αi)
.

Then

Pr (log (i) |Θ) =

(
λiαi

βi (λi + 1)

)1/2
Γ (αi + 1/2)

Γ (αi)
√

2παi

×

1 +
1

2αi

(log (i)−mi)
2(

λiαi
βi(λi+1)

)−1


−α0−1/2

κ′i
κi
. (55)

Notice that κ′i depends on the point of evaluation for log (i). Evidently, if we ignored

the ratio κ′i/κi, which would be correct in the case when σ̄2
i = ∞, the pdf for log (i)

is a t distribution with location parameter mi, scale parameter
(

λiαi
βi(λi+1)

)−1/2

, and 2αi

degrees of freedom. If σ2
i is large, κ′i/κi 6= 1 but is close to unity. For finite σ̄2

i , the

ratio κ′i/κi serves to thin the tails of the distribution of log (i) by down-weighting the

probability of extreme values for log (i).36 Because the density function of the t dis-

tribution is readily available and reliably computed in statistical software and because

κi and κ′i are easily computed using readily available implementations of the gamma

and incomplete gamma functions, we can use equation (55) for quadrature weighting.

We use Gauss-Hermite quadrature with seven nodes when computing approximations

to integrals based on equation (55).

36We set σ̄2
i equal to the squared maximum value on the grid for ψi (described below).
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C.2.2 Household problem

When r = r`, the household value function is given by

Vh (bh,Θ, x) = max
Ch,Nh,b

′
h

{
log (Ch)−

χ

2
(Nh)

2

+
1

1 + r`
[pEΘ′Vh (b′h,Θ

′, x′) + (1− p)Vh,ss (b′h)]

}
subject to

Ch +
b′h
R
≤ bh

π
+ wNh + T.

Here, x = [π,C]′, Vh,ss (·) is the steady state value function for the household, which

is defined above, and EΘ′ denotes expectations of the household computed conditional

on Θ′. Given x and Θ, we have Θ′ = L (Θ, x). So, the expectation of the household is

taken with respect to x′, which is believed to be iid. We assume that households know

the monetary and fiscal policy rules. We also assume that they correctly think that Y =

(C +G)
(
1 + φ

2
(π − 1)2), N = Y , and w = χCY . Given x, with these assumptions

R, π, w, and T can be computed. The steady state values of aggregate variables are

known to the household. We constrain households so that b′h ∈
[
b, b
]
. The household

optimization problem gives us implicit functions for Ch (bh,Θ, x), Nh (bh,Θ, x), and

b′h (bh,Θ, x). Considering interior solutions for b′h, we have

1

Ch (bh,Θ, x)
=

1

1 + r`
R

[
pEΘ′

{
1

π′C ′h (b′h,Θ
′, x′)

}
+ (1− p) 1

πssCh,ss (b′h)

]
(56)

w = χCh (bh,Θ, x)Nh (bh,Θ, x) (57)

Ch (bh,Θ, x) =
bh
π

+ wNh (bh,Θ, x) + T − b′h (bh,Θ, x)

R
. (58)

Instead of approximating Ch (bh,Θ, x), Nh (bh,Θ, x), and b′h (bh,Θ, x) directly, we ap-

proximate

vh (bh,Θ) = EΘ

{
1

πCh (bh,Θ, x)

}
.

We take this approach because we can eliminate x as a state variable in the approx-

imation. We define grids on the elements of Θ and use the grid defined for bh in the
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steady state. We then approximate vh (bh,Θ) in the following way.37

(i) We conjecture a value for vh (bh,Θ) at each grid point in the cross product of the

grids over the elements of bh and Θ.38 Call the conjectured value vih (bh,Θ).

(ii) For a given grid point we use quadrature to get a value for EΘ

{
(πCh)

−1} .To

solve for the expectation of interest, we need to solve for Ch given many different

values for x. Conditional on a value for x, equations (57) and (58) can be written

as

χCh

(
Ch +

b′h
R
− bh
π
− T

)
= w2

The left-hand-side is increasing in Ch ≥ 0. For a given b′h, we solve for the value

of Ch that makes this hold with equality. We then search for the value of b′h that

makes the following version of equation (56) hold with equality:

1

Ch
=

1

1 + r`
R

[
pvih (b′h,Θ

′) + (1− p) 1

πssCh,ss (b′h)

]
.

We use linear interpolation to compute vih (b′h,Θ
′) for values of b′h and Θ′ that fall

between grid points. If the procedure would set b′h > b or b′h < b, we set b′hto the

respective endpoint of the grid for bh. We record the associated value of Ch and

use it in the quadrature to compute vi+1
h (bh,Θ) = EΘ

{
(πCh)

−1}.

(iii) Having computed vi+1
h (bh,Θ) for every grid point, we check to see if

∣∣vih (bh,Θ)− vi+1
h (bh,Θ)

∣∣ < ε

at every grid point for some small ε. If yes, we say that we have solved the

household problem when r = r`. If no, we set vih (bh,Θ) = vi+1
h (bh,Θ), repeat

steps (ii) and (iii).

The grid that we use on 1
t`

is special. In particular, we let that grid be
[
0, 1

99
, 1

98
, . . . , 1

]
.

The first element of the grid corresponds to the case when infinite time has past.

37The grids for mi contain 12 points that are are not evenly spaced. They include each REE point
as well as the target-inflation steady state. The remaning points are bunched relatively close to the
REE points. The grid for ψC contains 11 points that are evenly spaced from 0 to 0.1. The grid for ψπ
contains 11 points that are evenly spaced from 0 to 0.05. Note that inflation is expressed in quarterly
terms, so a change of 0.05 would be 20 percent if annualized.

38There are 435, 600 = 12 × 12 × 11 × 11 × 25 points in the cross product of the grids for mi, ψi,
and bh. The grid for t−1` is handled in a way discussed below.
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In this case households think that they would update their beliefs so that Θ′ = Θ

because mi and ψi are consistent estimators for the means and variances. In our

numerical computations, we utilize this fact to first approximate vh in this case. We

then approximate vh in the case where t` = 99. When t` = 99, we need to interpolate

between the solution to the case when t` = ∞ and the conjectured value of vih (bh,Θ)

when t` = 99 to evaluate vih (b′h,Θ
′). That is, when t` = 99 we have to find a fixed

point of this interpolation, which is computationally intense. To do the interpolation,

we linearly interpolate between t−1
` = 1/99 and t−1

` = 0. When t` = 98, having

approximated vh (bh,Θ) for t` = 99 means that can evaluate vh (b′h,Θ
′) exactly at

t′` = 99 without reference to vih (bh,Θ). We approximate for vh (bh,Θ) when t` = 98

and work work back in this way to t` = 1. This strategy fits this into the structure of

steps 1-3 because we know that the value of vh (bh,Θ) will not depend on its value at

any any t` that is smaller than implied by Θ. So, we have a block dependent structure

to vh (bh,Θ) . Additionally, we know that t` will only take integer values.

C.2.3 Firm problem

When r = r`, the firm value function is given by

Vf (pf ,Θ, x) = max
p′f

{
1

C

((
p′f − (1− ν)w

) (
p′f
)−ε

Y − φ

2

(
p′f
pf
π − 1

)2

(C +G)

)
+

1

1 + r`

[
pEΘ′Vf

(
p′f ,Θ

′, x′
)

+ (1− p)Vf,ss
(
p′f
)]

Here, x = [π,C]′, Vf,ss (·) is the steady state value function for the firm, which is defined

above, and E denotes expectations of the firm. Given x and Θ, we have Θ′ = L (Θ, x).

So, the expectation of the firm is taken with respect to x′, which is believed to be iid.

We assume that firms know the monetary and fiscal policy rules. We also assume that

they correctly think that Y = (C +G)
(
1 + φ

2
(π − 1)2), N = Y , and w = χCY . Given

x, with these assumptions π, w, G, and Y can be computed. The steady state values of

aggregate variables are known to the firm. We constrain firms so that log
(
p′f
)
∈
[
p, p
]
.

Implicitly, from firm optimization we have a function p′f (pf ,Θ, x). Considering interior

73



solutions for p′f , firm maximization implies

φ

(
p′f (pf ,Θ, x)

pf
π − 1

)
1

pf
π (C +G) =

(ε− 1)

(
w

p′f (pf ,Θ, x)
− 1

)(
p′f (pf ,Θ, x)

)−ε
Y

+
1

1 + r`
pEΘ′

C

C ′
φ

(
p′f
(
p′f (pf ,Θ, x) ,Θ′, x′

)
p′f (pf ,Θ, x)

π′ − 1

)
p′f
(
p′f (pf ,Θ, x) ,Θ′, x′

)(
p′f (pf ,Θ, x)

)2 π′ (C ′ +G′)

+
1

1 + r`

C

Css
(1− p)φ

(
p′f,ss

(
p′f (pf ,Θ, x)

)
p′f (pf ,Θ, x)

πss − 1

)
p′f,ss

(
p′f (pf ,Θ, x)

)(
p′f (pf ,Θ, x)

)2 πss (Css +Gss) .

(59)

Instead of approximating p′f (pf ,Θ, x) directly, we approximate

vf (pf ,Θ) = EΘ

{
1

C
φ

(
p′f
pf
π − 1

)
p′f
pf
π (C +G)

}
.

We take this approach because we can eliminate x as a state variable in the approxima-

tion. We use the same grids on the elements of Θ that we use for the household problem

and the grid defined for log (pf ) in the steady state and we approximate vf (pf ,Θ) in

the following way.

(i) We conjecture a value for vf (pf ,Θ) at each grid point in the cross product of the

grids over the elements of pf and Θ. Call the conjectured value vif (pf ,Θ).

(ii) For a given grid point we use quadrature to get a value for

E
{

1

C
φ

(
p′f
pf
π − 1

)
p′f
pf
π (C +G)

}
.

To solve for the expectation of interest, we need to solve for p′f given many

different values for x. Conditional on a value for x, we find a value of p′f that
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solves the following version of equation (59)

φ

(
p′f
pf
π − 1

)
1

pf
π (C +G) =

(ε− 1)

(
w

p′f
− 1

)(
p′f
)−ε

Y

+
1

1 + r`
pvif

(
p′f ,Θ

′) C
p′f

+
1

1 + r`

C

Css
(1− p)φ

(
p′f,ss

(
p′f
)

p′f
πss − 1

)
p′f,ss

(
p′f
)(

p′f
)2 πss (Css +Gss) .

We use linear interpolation over log
(
p′f
)

to compute vif
(
p′f ,Θ

′) for values of

log
(
p′f
)

and Θ′ that fall between grid points. If the procedure would set log
(
p′f
)
>

p or log
(
p′f
)
< p, we set p′f to the respective endpoint of the grid for pf . We record

the value of p′f in and the associated aggregate variables so that the quadrature

procedure can approximate

vi+1
f (pf ,Θ) = EΘ

{
1

C
φ

(
p′f
pf
π − 1

)
p′f
pf
π (C +G)

}
.

(iii) Having computed vi+1
f (pf ,Θ) for every grid point, we check to see if

∣∣vif (pf ,Θ)− vi+1
f (pf ,Θ)

∣∣ < ε

at every grid point for some small ε. If yes, we say that we have solved the

household problem when r = r`. If no, we set vif (pf ,Θ) = vi+1
f (pf ,Θ), repeat

steps (ii) and (iii).

Our use of the same grids as in the household problem allows us to exploit the same

block dependent structure in t−1
` .

C.3 Learning equilibria

Here we detail how we construct learning equilibria, given the solutions to the household

an firm problems—vh and vf .

(i) Set r = r` and assume a value for Θt for t = 1.
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(ii) Conjecture a value for πt.

(a) Find the value of Ct that would make the following equation hold

1

Ct
=

1

1 + r`
Rt

[
pvh (0, f (Θt, [πt, Ct])) + (1− p) 1

πssCh,ss (0)

]
.

Note that with π1 and C1 the values of all other aggregate variables can be

computed.

(b) Check to see if the following equation holds

φ (πt − 1) πt (Ct +Gt) =

(ε− 1) (wt − 1) +
1

1 + r`
pvf (1, f (Θt, [πt, Ct]))Ct

+
1

1 + r`

Ct
Css

(1− p)φ (πss − 1)πss (Css +Gss) .

If yes, we have a period equilibrium for period t and we record πt and Ct. If

no, conjecture a different value for πt.

(iii) Set Θt+1 = L (Θt, [πt, Ct]) and repeat step (ii).

When we consider “anticipated utility,” we define Θ̃t to be Θt, but with 1
t`

= 0. We

then perform step 2 with Θ̃t instead of Θt. However, in step 3 we continue to use Θt.

The switch between Θ̃t and Θt highlights the way in which “anticipated utility” is not

internally rational.

D Linearized NK Model

Here we describe our strategy for linearizing the NK model around an REE. We find

it convenient to use t notation, rather than recursive notation.

D.1 Household problem

The household have a flow budget constraint

Ch,t +
bh,t
Rt

=
bh,t−1

πt
+ wtNh,t + τt
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and optimality conditions given by

1

Ch,t

1

Rt

= βtEh,t
1

Ch,t+1πt+1

χNh,tCh,t = wt.

Here, Eh,t is EΘ′ in our recursive notation. We assume that βt takes two values: β̃ = 1
1+r`

and β, with β̃ > β. The high value happens at period 1 and goes back to the low value

with probability 1− p. The low value is the absorbing state.

Let’s first consider the absorbing state. Log-linearize (except for bh,t, which is

linearized) the equilibrium conditions around the zero inflation steady state (note that

the aggregate variables take their steady state value and the households know this, so

their log-deviation is zero).

CĈh,t + βb̂h,t = b̂h,t−1 + N̂h,t

Ĉh,t = Eh,t
[
Ĉh,t+1

]
0 = N̂h,t + Ĉh,t

Evidently,

Ĉh,t =
1

C + 1
b̂h,t−1 −

β

C + 1
b̂h,t

Ĉh,t = Eh,t
[
Ĉh,t+1

]
β

C + 1
b̂h,t+1 =

1 + β

C + 1
b̂h,t −

1

C + 1
b̂h,t−1

meaning

1

C + 1
b̂h,t−1 −

β + 1

C + 1
b̂h,t = − β

C + 1
Eh,t

[
b̂h,t+1

]
We consider solutions of the form

b̂h,t = ωb,bb̂h,t−1
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where ωb,b satisfies

1

C + 1
− β + 1

C + 1
ωb,b +

β

C + 1
ω2
b,b = 0.

The solutions to this equation are

ωb,b =

β+1
C+1
±
√

β+1
C+1

2 − 4 1
C+1

β
C+1

2 β
C+1

We focus on ωb,b = 1 because that is the value that corresponds to the solution of the

nonlinear model. So,

b̂h,t−1 =
1

1− β
(C + 1) Ĉh,t

b̂h,t = b̂h,t−1.

Let’s next consider the case where βt = β̃. Let x̃ be the RE aggregate quantity while

βt = β̃ and ˆ̃xt be the (log-)linearized quantity around x̃. We have

C̃ ̂̃Ch,t + b̂h,t =
b̂h,t−1

π̃
+ w̃Ñ ̂̃wt + w̃Ñ ̂̃Nh,t + τ̃ ̂̃τ t

− 1

C̃R̃

̂̃Ch,t = −β̃
[
p

C̃π̃
Eh,t

(̂̃Ch,t+1 + ̂̃πt+1

)
+

(1− p)
Cπ

1− β
C + 1

b̂h,t

]
̂̃wt = ̂̃Nh,t + ̂̃Ch,t

Note that we have imposed Rt = 1 while βt = β̃, which is true in the REE. In this

sense, the system is local. We assume that households know that

Nt = (Ct +G)

(
1 +

Φ

2
(πt − 1)2

)
wt = χNtCt

τt = (1− wt)Yt −
Φ

2
(πt − 1)2 (Ct +G)−G.
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These relations are true in the period equilibrium, and are log-linearized to be

̂̃N t =

(
1 +

Φ

2
(π̃ − 1)2

)
C̃

Ñ

̂̃Ct + Φ

(
C̃ + G̃

Ñ

)
(π̃ − 1) π̃ ˆ̃πt

̂̃wt = ̂̃N t + ̂̃Ct

τ̃ ̂̃τ t = (1− w̃) Ỹ ˆ̃Yt − w̃Ỹ ˆ̃wt −
Φ

2
(π̃ − 1)2 C̃ ˆ̃Ct

− Φ (π̃ − 1) π̃
(
C̃ + G̃

)
ˆ̃πt.

The household optimality conditions and aggregate relations that are known to the

household can be written as a single equation of the form =

−κb,t−1b̂h,t−1 + κb,tb̂h,t − κC,t ̂̃Ct − κπ,t ˆ̃πt

=κb,t+1Eh,t
(
b̂h,t+1

)
− κµC ,tmC,t − κµπ ,tmπ,t

where

κb,t−1 =
1

π̃

κb,t =1 + β̃R̃

(
p

π̃2
+ C̃

(
C̃ + w̃Ñ

) 1− p
Cπ

1− β
C + 1

)
κC,t =2w̃Ñ

((
1 +

Φ

2
(π̃ − 1)2

)
C̃

Ñ
+ 1

)

− (2w̃ − 1)

(
1 +

Φ

2
(π̃ − 1)2

)
C̃

−
(
w̃Ỹ +

Φ

2
(π̃ − 1)2 C̃

)
κπ,t =0

κb,t+1 =β̃R̃
p

π̃

κµC ,t =β̃R̃
p

π̃
κC,t

κµπ ,t =β̃R̃
(
C̃ + w̃Ñ

) p
π̃

Here, mπ,t ism′π in our recursive notation andmC,t ism′C in our recursive notation. Note

that the time subscripts on the κ’s is to denote if the coefficient multiplies, for example,

bt or bt−1. The time subscript does not indicate time-variation in the coefficient.
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We consider solutions to this equation of the form

b̂h,t = γb,bb̂h,t−1 + γb,π ˆ̃πt + γb,C
ˆ̃Ct + γb,µπmπ,t + γb,µCmC,t.

Note that this is a linear approximation to b′h (bh,Θ). Our approximation does not

include ψπ or ψC because of the certainty equivalence of the linearized model.

Using the linear decision rule for b̂h,t, γb,b is determined by

−κb,t−1 + κb,tγb,b = κb,t+1γ
2
b,b

which is given by

γb,b =
κb,t ±

√
κ2
b,t − 4κb,t−1κb,t+1

2κb,t+1

Both of the solutions for γb,b are larger than unity. However, the smaller value is closer

to the solution of the nonlinear model at the REE, so we focus on that value. We

determine the other four values of γb,i using the following equations.

κb,tγb,π − κπ,t = κb,t+1γb,bγb,π

κb,tγb,C − κC,t = κb,t+1γb,bγb,C

κb,tγb,µπ = κb,t+1γb,bγb,µπ + κb,t+1 (γb,µπ + γb,π)− κµπ ,t
κb,tγb,µC = κb,t+1γb,bγb,µC + κb,t+1 (γb,µC + γb,C)− κµC ,t.

The first two equations imply

γb,π =
κπ,t

κb,t − κb,t+1γb,b

γb,C =
κC,t

κb,t − κb,t+1γb,b
.

Then the third and fourth equations imply

γb,µπ =
κµπ ,t − κb,t+1γb,π

κb,t+1 (γb,b + 1)− κb,t

γb,µC =
κµC ,t − κb,t+1γb,C

κb,t+1 (γb,b + 1)− κb,t

This gives a solution to the household problem.
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D.2 Household problem ignoring the ZLB

We wanted to know what would happen if we ignored the ZLB. In that case, the

nominal interest rate is set so that

R̃t =
1

β
+ α (π̃t − 1)⇒ ̂̃Rt = α

π̃

R̃
̂̃πt

Then κπ,t becomes

κπ,t =
(
C̃ + w̃Ñ

)
R̃−1απ̃

and the rest of the analysis in the previous sub-section goes through.

D.3 Firm problem

The firm’s optimality condition is

(pf,t − wt) (pf,t)
−ε Yt +

Φ

ε− 1

(
pf,t
pf,t−1

πt − 1

)
pf,t
pf,t−1

πt (Ct +Gt)

= βtEf,t
Ct
Ct+1

Φ

ε− 1

(
pf,t+1

pf,t
πt+1 − 1

)
pf,t+1

pf,t
πt+1 (Ct+1 +Gt+1)

We log-linearize this condition for the case when βt = β and firms know the steady

state values of the variables to get

p̂f,t +
Φ

ε− 1
(p̂f,t − p̂f,t−1) = β

Φ

ε− 1
(p̂f,t+1 − p̂f,t)

We assume a solution of the form

p̂f,t = ωp,pp̂t−1

so that

0 = β
Φ

ε− 1
ω2
p,p −

(
1 + (1 + β)

Φ

ε− 1

)
ωp,p +

Φ

ε− 1

which has solutions

ωp,p =

(
1 + (1 + β) Φ

ε−1

)
±
√(

1 + (1 + β) Φ
ε−1

)2 − 4β
(

Φ
ε−1

)2

2β Φ
ε−1

.
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Only one of these solutions is less than 1 in absolute value and we use that solution

because it resembles our non-linear solution.

Now we will consider the case when βt = β̃. In this case,

(p̃f,t − w̃t) (p̃f,t)
−ε Ỹt +

Φ

ε− 1

(
p̃f,t
p̃f,t−1

π̃t − 1

)
p̃f,t
p̃f,t−1

π̃t

(
C̃t + G̃t

)
=

pβ̃Ef,t
C̃t

C̃t+1

Φ

ε− 1

(
p̃f,t+1

p̃f,t
π̃t+1 − 1

)
p̃f,t+1

p̃f,t
π̃t+1

(
C̃t+1 + G̃t+1

)
+ (1− p) β̃Ef,t

C̃t
Ct+1

Φ

ε− 1

(
pf,t+1

p̃f,t
πt+1 − 1

)
pf,t+1

p̃f,t
πt+1 (Ct+1 +Gt+1)

We log-linearize this to be

Ỹ (1 + ε (w̃ − 1)) ˆ̃pf,t + (1− w̃) Ỹ ˆ̃Yt − w̃Ỹ ˆ̃wt

+
Φ

ε− 1
π̃
(
C̃ + G̃

)
(2π̃ − 1)

(
ˆ̃pf,t − ˆ̃pf,t−1 + ˆ̃πt

)
+

Φ

ε− 1
(π̃ − 1) π̃

(
C̃ ˆ̃Ct + G̃ ˆ̃Gt

)
=

pβ̃
Φ

ε− 1
(π̃ − 1) π̃

(
C̃ + G̃

)(
ˆ̃Ct − Ef,t ˆ̃Ct+1

)
+

pβ̃
Φ

ε− 1
π̃
(
C̃ + G̃

)
(2π̃ − 1)

(
Ef,t ˆ̃pf,t+1 − ˆ̃pf,t + ˆ̃πt+1

)
+pβ̃

Φ

ε− 1
(π̃ − 1) π̃

(
C̃Ef,t ˆ̃Ct+1 + G̃Ef,t ˆ̃Gt+1

)
+

(1− p) β̃ C̃
C

Φ

ε− 1
(C +G)

(
Ef,tp̂f,t+1 − ˆ̃pf,t + π̂t+1

)
Using

̂̃Y t = ̂̃N t =

(
1 +

Φ

2
(π̃ − 1)2

)
C̃

Ñ

̂̃Ct + Φ

(
C̃ + G̃

Ñ

)
(π̃ − 1) π̃ ˆ̃πt

̂̃wt = ̂̃N t + ̂̃Ct

we can write the firm’s optimality condition as

ζpf ,t
ˆ̃pf,t + ζπ,t ˆ̃πt − ζpf ,t−1

ˆ̃pf,t−1 =

ζC,t
ˆ̃Ct − ζµC ,tmC,t + ζpf ,t+1Ef,t ˆ̃pf,t+1 + ζµπ ,tmπ,t
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wherex

ζpf ,t =Ỹ (1 + ε (w̃ − 1)) +
Φ

ε− 1
π̃
(
C̃ + G̃

)
(2π̃ − 1)

+ pβ̃
Φ

ε− 1
π̃
(
C̃ + G̃

)
(2π̃ − 1)

+ (1− p) β̃ C̃
C

Φ

ε− 1
π (C +G) (1− ωpp)

ζpf ,t−1 =
Φ

ε− 1
π̃
(
C̃ + G̃

)
(2π̃ − 1)

ζpf ,t+1 =pβ̃
Φ

ε− 1
π̃
(
C̃ + G̃

)
(2π̃ − 1)

ζπ,t =
Φ

ε− 1

(
C̃ + G̃

)
(2π̃ − 1) π̃ + (1− 2w̃) Φ

(
C̃ + G̃

)
(π̃ − 1) π̃

ζC,t =− (1− 2w̃)

(
1 +

Φ

2
(π̃ − 1)2

)
C̃ + w̃Ỹ

− Φ

ε− 1
(π̃ − 1) π̃C̃ + pβ̃

Φ

ε− 1
(π̃ − 1) π̃

(
C̃ + G̃

)
ζµC ,t =pβ̃

Φ

ε− 1
(π̃ − 1) π̃G̃

ζµπ ,t =pβ̃
Φ

ε− 1
π̃
(
C̃ + G̃

)
(2π̃ − 1) .

As in the household problem, the time subscripts on the ζ’s is to denote if the coefficient

multiplies, for example, pf,t or pf,t−1. The time subscript does not indicate time-

variation in the coefficient. For similar reasons to the solution to the household problem,

we consider solutions to this equation of the form

ˆ̃pf,t = γp,p ˆ̃pf,t−1 + γp,π ˆ̃πt + γp,C
ˆ̃Ct + γp,µπmπ,t + γp,µCmC,t.

Note that γp,p is determined by

ζpf ,t+1γ
2
p,p − ζpf ,tγp,p + ζpf ,t−1 = 0

So,

γp,p =
ζpf ,t ±

√
ζ2
pf ,t
− 4ζpf ,t+1ζpf ,t−1

2ζpf ,t+1

.

The smaller root (which is stable) is a better approximation like the nonlinear model.
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We then have that

ζpf ,tγp,π + ζπ,t = ζpf ,t+1γp,pγp,π

ζpf ,tγp,C − ζC,t = ζpf ,t+1γp,pγp,C

ζpf ,tγp,µπ − ζµπ ,t = ζpf ,t+1γp,pγp,µπ + ζpf ,t+1 (γp,π + γp,µπ)

ζpf ,tγp,µC + ζµC ,t = ζpf ,t+1γp,pγp,µC + ζpf ,t+1 (γp,C + γp,µC )

So,

γp,π = − ζπ,t
ζpf ,t − ζpf ,t+1γp,p

γp,C =
ζC,t

ζpf ,t − ζpf ,t+1γp,p

γp,µπ =
ζµπ ,t + ζpf ,t+1γp,π

ζpf ,t − ζpf ,t+1γp,p − ζpf ,t+1

γp,µC =
−ζµC ,t + ζpf ,t+1γp,C

ζpf ,t − ζpf ,t+1γp,p − ζpf ,t+1

.

Because Rt does not enter the firm optimality condition, ignoring the ZLB has no effect

on the linearization of the firm problem.
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D.4 Slow convergence in the linearized solution

Figure 10: Slow convergence of beliefs is similar in linearized and non-linear solutions

(a) Linearized solution
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(b) Non-linear solution
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Note: In the sub-figures (a) and (b)mi is initially set to the steady state REE value. In all
sub-figures, ψi = 0.02, λi = 1, αi = 2. Source: Authors’ calculations.
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