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1 Introduction

The effect of a change in short rates on long rates is central to the monetary transmis-

sion mechanism. It determines how monetary policy affects mortgage rates, corporate

borrowing rates, and other determinants of aggregate demand. Long rates reflect the

expected path of short rates plus term premia. There is accumulating empirical ev-

idence that contractionary monetary policy raises long rates by more than can be

accounted for by the change in the expected path of short rates.1 This implies that

contractionary monetary policy operates in part by raising term premia.

This evidence poses a challenge to existing models of monetary transmission and

the term structure. Representative agent models typically imply that monetary policy

shocks have negligible effects on the price and quantity of interest rate and inflation

risks. Market segmentation opens the door for transitory shocks to have more substan-

tial effects on term premia if they have relatively large effects on the subset of agents

pricing long-term bonds. However, existing models of this kind, most notably those

in the preferred habitat tradition, counterfactually imply that a monetary tightening

lowers term premia, as the associated rise in long yields causes habitat investors to

borrow less long-term and thus exposes arbitrageurs to less risk.

In this paper, we propose a model which rationalizes the effects of monetary policy

shocks on the term structure of interest rates. We build on the preferred habitat

tradition by studying an environment in which habitat investors and arbitrageurs trade

bonds of various maturities. We integrate this with the intermediary asset pricing

tradition by studying an environment in which arbitrageur wealth is an endogenous

state variable governing the price of risk. When arbitrageurs’ portfolio features positive

duration, an unexpected rise in the short rate lowers their wealth and raises term

premia. Quantitatively, a calibration matching the portfolio duration of arbitrageurs

in the data rationalizes the responses of the yield curve to monetary shocks. The

endogenous price of risk further implies state-dependent effects of conventional and

unconventional policies; generates endogenous price volatility which accounts for a

sizable fraction of the unconditional slope of the yield curve; and helps to explain

trends in term premia in recent years owing to trends in the natural rate.

Our model integrates elements of the preferred habitat and intermediary asset pric-

1See, e.g., Cochrane and Piazzesi (2002), Gertler and Karadi (2015), Gilchrist, Lopez-Salido, and
Zakrajsek (2015), Hanson and Stein (2015), Abrahams, Adrian, Crump, Moench, and Yu (2016), and
Hanson, Lucca, and Wright (2021).
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ing traditions. As in existing preferred habitat models, habitat investors elastically de-

mand bonds of each maturity. This class of investors captures the government issuing

debt securities net of central bank purchases, households borrowing in mortgages, and

other investors who do not actively trade across maturities to maximize risk-adjusted

returns. Overlapping generations of arbitrageurs, capturing financial institutions such

as broker/dealers and hedge funds, trade across maturities to maximize risk-adjusted

returns. Time is continuous and there are two driving forces: the short rate and the

level of habitat demand across maturities. Unlike existing preferred habitat models,

arbitrageurs have CRRA (rather than CARA) preferences, and are characterized by

perpetual youth (rather than living only instantaneously). The wealth of arbitrageurs

is thus an endogenous state variable relevant for risk pricing, as in the intermediary

asset pricing tradition.

We first study a simplified version of this environment which allows us to analyt-

ically characterize our main results. In the simplified environment, time is discrete

and only one- and two-period bonds are traded. If arbitrageurs die after one period

and thus their endowment is exogenous, we recover the existing result from preferred

habitat models that an unexpected rise in the short rate lowers the term premium

on two-period bonds: the associated increase in the two-period yield causes habitat

investors to borrow less at this maturity and thus means arbitrageurs are exposed to

less interest rate risk. When arbitrageurs live for more than one period, the revaluation

of arbitrageurs’ wealth also determines the response of the term premium to a short

rate shock. In particular, if arbitrageurs’ portfolio features positive duration — in this

simple setting, if they are long two-period bonds — an unexpected rise in the short rate

lowers their wealth. If this force is sufficiently strong relative to the demand elasticity

of habitat investors, the term premium rises.

We then numerically quantify these mechanisms in the full, continuous-time model.

When arbitrageur wealth is endogenous in the ways described above, bond prices no

longer take an exponentially affine structure, and the model does not admit a closed

form solution. We can nonetheless describe the equilibrium in terms of a system of four

partial differential equations: equilibrium in the bond market implied by arbitrageurs’

optimization and market clearing; the endogenous evolution of arbitrageur wealth; and

the exogenous evolutions of the short rate and habitat demand. We solve this system

numerically using the Feynman-Kac formula and Monte Carlo simulation. We expect

our code can be useful to other researchers who wish to study the yield curve in an
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environment with heterogeneous agents and an endogenous price of risk.

We confront the model with estimates of the yield curve responses to monetary

policy shocks. In the data, we isolate monetary policy shocks from other shocks by

using the high-frequency response of futures prices around FOMC announcements as

an instrumental variable. Our baseline estimates imply that a policy-induced rise in

the one-year real yield by 1pp raises the 20-year real forward rate by 0.39pp; more

generally, the shock raises long-dated real forward rates by statistically and economi-

cally significant amounts. This finding is robust to a variety of specifications, including

alternative measures of monetary policy shocks and samples which exclude the worst

months of the financial crisis. It implies that a monetary tightening raises term premia

(and an easing lowers term premia), as any reasonable estimate of nominal rigidity re-

quires that the expected real interest rate must be essentially unchanged several years

after a monetary shock. Our primary quantitative question of interest is whether our

model can account for this evidence.

We discipline the model to match novel evidence on the duration of arbitrageurs.

Following much of the literature, we associate these arbitrageurs with broker/dealers

and hedge funds which trade actively across financial instruments with differing matu-

rities. We employ two complementary approaches to measure their aggregate duration.

The first combines evidence on the average duration of individual assets such as Trea-

suries, mortgage-backed securities, and corporate equities with the portfolio holdings

of broker/dealers and hedge funds in these asset classes. The second estimates the

response of primary dealers’ equity prices in tight windows around FOMC announce-

ments. Both approaches imply that these arbitrageurs have an aggregate duration

between roughly 10 and 30. We further validate these measures by documenting that

in times when arbitrageur duration is estimated to be high, the effects of monetary

shocks on long-dated forwards are amplified.

Calibrated to match this evidence on arbitrageur duration, our model can account

for much of the responses of long-dated real forward rates to monetary shocks in the

data. In particular, in our baseline calibration with arbitrageur duration at the mid-

point of our estimated range in the data, a monetary tightening which raises the one-

year real yield by 1pp raises the 20-year real forward rate by 0.17pp, as compared to

0.39pp in the data. At the lower end of our estimated range of arbitrageur duration,

the response of the 20-year real forward rate remains around 0.10pp. When habitat

demand is less elastic, the model can account for even more of the observed response
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in the data. The overreaction of forward rates vis-à-vis the expectations hypothesis

is reversed in a counterfactual economy with exogenous arbitrageur wealth, consistent

with our analytical results. We further find that the effects of monetary shocks are

state-dependent as in the data: in periods when arbitrageurs’ duration is high, the

effects on forward rates are amplified.

The endogenous price of risk via arbitrageur wealth has several additional impli-

cations beyond the response to monetary shocks. First, it implies state-dependent

effects of other shocks. For instance, we simulate the Federal Reserve’s March 18,

2009 announcement that it would purchase long-term Treasuries and increase the size

of its agency debt and mortgage-backed security purchases. We find that real yields

and forward rates above 10 years maturity would have fallen by roughly 20-30% less

if arbitrageur wealth was initially at its average level instead of depressed by a third.

Second, the model clarifies that fluctuations in arbitrageur wealth account for roughly

a third of the average slope of the yield curve, because they generate endogenous and

stochastic volatility in bond prices. Finally, the revaluation of arbitrageur wealth can

help account for trends in term premia in recent years via trends in the natural rate

of interest. A fall in the natural rate recapitalizes arbitrageurs with positive duration

much like a monetary easing. Quantitatively, the model implies that a roughly 2pp

cumulative decline in the steady-state short rate from 2004 to 2016 accounts for 30%

of the decline in the 5-year forward, 5-year term premium over this same period.

In the post-pandemic period, yield curve models indicate that long yields have

risen in part because of a higher real term premium. At the same time, U.S. monetary

policy has tightened and there is evidence of an increase in the U.S. natural rate. Our

framework provides a way to relate these developments, though we leave a quantitative

exploration of the recent increase in the term premium to future work.

Related literature Our paper builds on preferred habitat models of the term struc-

ture of interest rates. The preferred habitat view was proposed by Culbertson (1957)

and Modigliani and Sutch (1966) and formalized by the seminal work of Vayanos and

Vila (2021). A growing theoretical literature has used this framework to study the im-

plications for corporate finance (Greenwood, Hanson, and Stein (2010)), government

debt policy (Guibaud, Nosbusch, and Vayanos (2013)), exchange rates (Gourinchas,

Ray, and Vayanos (2022) and Greenwood, Hanson, Stein, and Sunderam (2023)), and

the real economy (Ray (2021) and Droste, Gorodnichenko, and Ray (2023)). An enor-
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mous empirical literature has drawn on this framework to inform analyses of unconven-

tional monetary policies. In the existing framework, the effects of the key driving force

(the short rate) are counterfactual. We enrich this framework to match evidence on

the response to such shocks by allowing the wealth of arbitrageurs to be an endogenous

state variable relevant for risk pricing.

In doing so, our paper builds on the literature linking changes in intermediary

net worth with asset prices. This is at the core of the intermediary asset pricing

tradition in finance (He and Krishnamurthy (2013) and Brunnermeier and Sannikov

(2014)) as well as the financial accelerator tradition in macroeconomics (Bernanke,

Gertler, and Gilchrist (1999)). Our contribution is to embed this insight into a leading

model of the term structure of interest rates.2 The recent analyses of Haddad and Sraer

(2020), He, Nagel, and Song (2022), and Schneider (2023) similarly apply insights from

intermediary asset pricing models to the term structure, though their focus differs from

ours on monetary transmission.

Our emphasis on the wealth revaluation channel in accounting for the term premium

effects of monetary shocks contrasts with alternative explanations focused instead on

habitat demand or changing policy rules.3 Hanson (2014), Hanson and Stein (2015),

and Hanson et al. (2021) propose models in which habitat investors have upward-

sloping demand for long-term bonds in response to short rate shocks, perhaps due to

mortgage refinancing, “reaching for yield”, or duration matching of life insurance com-

panies and pension funds.4 Bianchi, Lettau, and Ludvigson (2021), Bauer, Pflueger,

and Sunderam (2023), and Bianchi, Ludvigson, and Ma (2024) propose models in

which investors learn about changing policy rules and thus macroeconomic comove-

ments around monetary announcements. Our model is complementary with these

mechanisms, and indeed our quantitative results require that they also exist to fully

account for the yield curve responses to monetary shocks. Our mechanism is nonethe-

less distinct — for instance, it predicts that the effects of monetary shocks on term

premia vary with arbitrageurs’ duration, which we find indeed is the case in the data.

Our paper is finally part of a broader agenda studying links between macroeconomic

2In their empirical analysis of government bond supply and excess returns, Greenwood and
Vayanos (2014) anticipate that if arbitrageurs’ coefficient of absolute risk aversion is a declining func-
tion of their wealth, changes in their wealth will have effects on term premia. Our paper formalizes
this idea and traces out its theoretical and quantitative implications.

3There is an additional mechanism which may be complementary to these, namely that in the
presence of a lower bound on the nominal interest rate, a monetary easing lowers the amount of future
interest rate risk and thus term premia, and vice-versa for a tightening. See, for instance, King (2019).

4See also Malkhozov, Mueller, Vedolin, and Venter (2016) and Domanski, Shin, and Sushko (2017).
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shocks, the wealth distribution, and the price of risk in heterogeneous agent models.

Alvarez, Atkeson, and Kehoe (2002, 2009) study monetary economies with segmented

financial markets in which monetary shocks change the price of risk. Kekre and Lenel

(2022) build on these insights in a conventional New Keynesian model enriched with

agents having heterogeneous risk-bearing capacity. They find that a monetary easing

lowers the risk premium on capital by redistributing wealth to agents who wish to

invest more of their marginal wealth in capital. The present paper shows that a similar

mechanism is at work for the term premium in a preferred habitat environment.5 While

we do not extend the model to feature a New Keynesian production block, we expect

that the effects of policy shocks on the term premium would imply that monetary policy

is more potent in affecting the real economy to the extent that aggregate demand is

rising in the amount habitat investors borrow long-term.6

Outline In section 2 we outline the model environment. In section 3 we characterize

our main results analytically in a simple version of this environment. In section 4

we estimate the effects of policy shocks on the yield curve and measure arbitrageurs’

duration in the data. In section 5 we calibrate the full model and assess its ability to

rationalize the data. Finally, in section 6 we conclude.

2 Model

In this section we outline our model of the term structure of interest rates. The model

integrates features of the preferred habitat and intermediary asset pricing traditions.

Timing and assets Time t is continuous. At time t there is a continuum of zero

coupon bonds with maturities τ ∈ (0,∞). A bond trading at t with maturity τ pays

5We conjecture that introducing heterogeneity in risk aversion into representative agent models in
which aggregate comovements deliver a positive term premium, as in Piazzesi and Schneider (2007),
Rudebusch and Swanson (2012), and Campbell, Pflueger, and Viceira (2020), would lead to similar
results. With a positive price on term risk, relatively risk tolerant agents would endogenously be more
exposed to it, implying a redistribution of wealth which affects the price of risk on impact of policy
shocks. One important difference in the preferred habitat environment is that it does not rely on
aggregate comovements generating a positive term premium, and thus implies that this mechanism
remains operative even if, as in recent years, aggregate comovements may have flipped signs.

6See Caballero and Simsek (2020) for recent work linking risk premia, aggregate demand, and
output in the New Keynesian environment. See Caramp and Silva (2023) for recent work linking term
premia and aggregate demand in such an environment in particular.
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one unit of the numeraire at t + τ and its price is P
(τ)
t . The instantaneous return on

holding such a bond is dP
(τ)
t /P

(τ)
t . The yield of the bond is given by

y
(τ)
t = −

log
(
P

(τ)
t

)
τ

and the short rate rt is the limit of the yield as τ goes to zero.

Decision problems There are two types of agents: habitat investors and arbi-

trageurs. The former captures investors such as the government issuing debt securities

net of central bank purchases and households borrowing in long-term mortgages, while

the latter captures financial institutions such as broker/dealers and hedge funds which

trade across maturities to maximize risk-adjusted returns.

In aggregate habitat investors hold positions

Z
(τ)
t = −α(τ) log

(
P

(τ)
t

)
− θt(τ) (1)

at each maturity τ ∈ (0,∞), where a positive position implies that these investors are

saving in this security. The parameter α(τ) controls the elasticity of demand to price.

θt(τ) controls the level of habitat demand and is given by

θt(τ) = θ0(τ) + θ1(τ)βt, (2)

where βt is a demand factor, the parameter θ1(τ) controls the loading of demand on

that factor, and the parameter θ0(τ) controls the time-invariant level of demand.

Arbitrageurs trade at all maturities as well as at the short rate rt with the central

bank.7 Arbitrageurs are born and die at rate ξ, discount the future at rate ρ, and

have separable CRRA preferences over consumption upon death with risk aversion

7The statement that arbitrageurs trade at the short rate rt with the central bank encodes our
assumption that the short rate is exogenous, as in existing preferred habitat models. In other words,
the key assumption is that the central bank adjusts its borrowing/lending at the short rate to clear
the market at that rate, so we do not specify the market clearing condition at that rate. In continuous
time, this amounts to a discontinuity in habitat demand (1) at τ = 0 to implement a given short rate
by market clearing. In the discrete time model studied in the next section, this is reflected in the fact
that we do not specify habitat demand for one-period bonds, since the assumption is that the central
bank trades to implement the given short rate.
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γ.8,9 Here we depart from typical preferred habitat models which assume arbitrageurs

are alive instantaneously and have CARA preferences over consumption upon death.

Using lower case to denote the endowment and choices of an individual arbitrageur with

wealth wt, this arbitrageur chooses its sequence of financial portfolios to maximize

vt(wt) = max
{{x(τ)

t+s}}
Et

∫ ∞

0

exp(−(ξ + ρ)s)(ξ + ρ)

(
w1−γ

t+s − 1

1− γ

)
ds (3)

subject to the budget constraint

dwt = wtrtdt+

∫ ∞

0

x
(τ)
t

(
dP

(τ)
t

P
(τ)
t

− rtdt

)
dτ, (4)

where x
(τ)
t denotes its position in bonds with maturity τ .10 Using upper case to denote

aggregates across arbitrageurs, aggregate arbitrageur wealth thus follows

dWt = Wtrtdt+

∫ ∞

0

X
(τ)
t

(
dP

(τ)
t

P
(τ)
t

− rtdt

)
dτ + ξ

(
W̄ −Wt

)
dt, (5)

where W̄ is the exogenous endowment of newborn arbitrageurs. When ξ → ∞, this

converges to the constant endowment process in Vayanos and Vila (2021). For finite ξ,

Wt will be an endogenous state variable of the model as in intermediary asset pricing

models such as He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014)

and financial accelerator models such as Bernanke et al. (1999).

Driving forces There are two driving forces in this economy: the short rate set by

the central bank rt, and the demand factor βt. These follow the exogenous processes

drt = κr(r̄ − rt)dt+ σrdBr,t, (6)

8Consumption only upon death ensures that, for arbitrary γ, arbitrageurs choose portfolio shares
across assets which are independent of their level of wealth, allowing us to obtain aggregation to a
representative arbitrageur. In the usual way, specializing to the case of γ = 1 (log preferences) would
allow us to obtain aggregation despite consumption throughout life, as arbitrageurs would optimally
consume at a constant rate out of wealth given their unitary elasticity of substitution.

9The death rate ξ acts like a discount rate in arbitrageurs’ decision problem. We nonetheless
account for a distinct discount rate ρ because this will control the strength of the intertemporal
hedging motive in portfolio choice when γ ̸= 1, as clarified in section 5.

10To simplify expressions for the equilibrium value function which follows, we include the multi-
plicative scalar ξ+ρ in the definition of the value function. This is of course without loss of generality.
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dβt = −κββtdt+ σβdBβ,t, (7)

where the Brownian motions dBr,t and dBβ,t are independent and κr, κβ > 0. We

assume independent shocks and a single-factor demand structure since our calibration

will, for simplicity, focus on this case. We expect our main insights would generalize

to correlated shocks and multiple demand factors and leave this for future work.

Market clearing and equilibrium Bond markets must clear according to

Z
(τ)
t +X

(τ)
t = 0 (8)

for each maturity τ ∈ (0,∞) at each point in time t. The definition of an equilibrium

is standard.

Interpretation We interpret the model in real terms. We do this for two reasons.

First, focusing on real bonds allows us to study our mechanism focused on interest

rate risk in a more parsimonious setting which can abstract away from inflation risk.11

Second, focusing on the real term structure allows us to uncover the effects of monetary

shocks on term premia purged from any effects on long-run inflation. In particular,

monetary policy shocks may contain news about the long-run inflation target, which in

turn will affect long-dated nominal forwards (Gurkaynak, Sack, and Swanson (2005b)).

Long-dated real forwards are immune from this issue, and moreover monetary neutral-

ity in the long run implies that expected real interest rates in the distant future should

be unaffected by monetary shocks. In both model and data, this allows a tight analy-

sis of the effects of a monetary shock on term premia by studying the response of real

forwards on impact of the shock, following Hanson and Stein (2015).

There is a related nuance in how we think of monetary shocks in the model. We

view these as inducing a change in the real short rate with some particular speed of

mean reversion (and in our quantitative comparison of model impulse responses versus

data, the mean reversion will indeed differ from “typical” fluctuations in the real short

rate controlled by κr). Embedding our model in a fuller New Keynesian framework, the

path of the real short rate in response to a monetary shock would reflect the persistence

of the underlying shock, the rigidity in prices, and the feedback to the real economy.

11With that said, our analysis would extend to a setting with inflation risk: a change in arbitrageurs’
wealth would affect their willingness to be exposed to this risk and thus the inflation risk premium.

9



Our analysis would extend naturally to such an environment conditional on the induced

path of the real short rate.

3 Analytical insights

We now study a simplified version of the model which allows us to analytically char-

acterize our main results. When arbitrageur wealth is endogenous and their portfolio

features positive duration, an unexpected rise in the short rate lowers their wealth and

raises term premia.

3.1 Simplified environment

In this section we assume time is discrete and only two bonds are traded: maturities

one and two periods. We further assume log preferences (γ = 1). This environment

captures the essential forces at play in our full model with much simpler mathematics.

We now spell out the details. Arbitrageurs trade in one-period bonds at price

exp(−rt) set by the central bank and in two-period bonds at price Pt, where we now

dispense with the notation for maturity τ since it is unambiguous. Habitat investors

hold a position

Zt = −α logPt − θt

in two-period bonds, as in (1). An arbitrageur with wealth wt chooses its position in

two-period bonds xt to maximize

max
{xt+s}

Et

∞∑
s=1

exp(−(ξ + ρ)s)(ξ + ρ) logwt+s

subject to the evolution of wealth

wt+1 = wt exp(rt) + xt

(
exp(−rt+1)

Pt

− exp(rt)

)
,

the discrete time counterparts to (3)-(4) with γ = 1. Note that the one-period return

on a two-period bond is exp(−rt+1)/Pt because the two-period bond at t becomes a

one-period bond at t+ 1, with price exp(−rt+1). Aggregate arbitrageur wealth follows

Wt+1 = exp(−ξ)

[
Wt exp(rt) +Xt

(
exp(−rt+1)

Pt

− exp(rt)

)]
+ (1− exp(−ξ))W̄ ,
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the discrete time counterpart to (5). The short rate and habitat demand follow the

AR(1) processes

rt+1 − r̄ = (1− κr) (rt − r̄) + σrϵr,t+1, (9)

θt+1 − θ̄ = (1− κθ)
(
θt − θ̄

)
+ σθϵθ,t+1, (10)

where ϵr,t+1 and ϵθ,t+1 are independent standard Normal innovations. κr ∈ (0, 1) and

κθ ∈ (0, 1) can be interpreted as the degree of mean reversion in these driving forces, as

in (6) and (7). We dispense with βt in this section because it is isomorphic to θt since

there is only one long-term bond. Finally, as in (8), bond market clearing requires

Xt + Zt = 0.

3.2 Equilibrium

Following standard arguments, each arbitrageur’s value function is characterized by

vt(wt) = logwt + log νt,

where νt is common to arbitrageurs and invariant to their individual level of wealth.

Arbitrageurs’ optimality condition with respect to xt implies

Et

(
exp(rt) +

xt

wt

(
exp(−rt+1)

Pt

− exp(rt)

))−1 [
exp(−rt+1)

Pt

− exp(rt)

]
= 0, (11)

clarifying that their portfolio share xt

wt
is also invariant to wealth. Defining the log

one-period holding return on a two-period bond

r
(2)
t+1 ≡ −rt+1 − logPt (12)

and making use of
xt

wt

=
Xt

Wt

(13)

by aggregation, a second-order Taylor approximation of (11) around r
(2)
t+1 = rt implies

Etr
(2)
t+1 − rt +

1

2
σ2
r ≈ Xt

Wt

σ2
r . (14)
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This has an intuitive interpretation. Arbitrageurs require non-zero expected excess

returns to compensate them for bearing interest rate risk on two-period bonds. In

particular, when Xt > 0, arbitrageurs are long two-period bonds and thus expected

excess returns on two-period bonds must be positive; the opposite is true ifXt < 0. The

higher is arbitrageur wealth Wt, the smaller (in absolute value) expected excess returns

must be, because two-period bonds are a smaller share of their wealth and arbitrageurs

have CRRA preferences. In the limit Wt → ∞, arbitrageurs are effectively risk neutral

and thus the (local) expectations hypothesis holds.12 The relevance ofWt in risk pricing

is the key distinction between the present model and existing preferred habitat models.

The above condition is the only approximation we use in the rest of this section;

all other conditions hold exactly. Combining the above condition with market clearing

in two-periods bonds and habitat investors’ demand yields

Etr
(2)
t+1 − rt +

1

2
σ2
r =

1

Wt

(α logPt + θt)σ
2
r . (15)

Combining the evolution of aggregate arbitrageur wealth with market clearing in two-

period bonds and habitat investors’ demand yields

Wt+1 = exp(−ξ)
[
Wt exp(rt) + (α logPt + θt) (exp(r

(2)
t+1)− exp(rt))

]
+ (1− exp(−ξ))W̄ . (16)

The dynamical system (9)-(10), (12), and (15)-(16) is thus five equations in five un-

knowns rt+1, θt+1, r
(2)
t+1, Pt, and Wt+1, given rt, θt, and Wt. The rest of this section

proceeds through our two main results studying a short rate shock ϵr,t.

3.3 Effects of short rate shock

We characterize the effects of the shock around the stochastic steady-state, denoted

without time subscripts, for expositional simplicity.

Our first result describes the impact effect of the shock on arbitrageur wealth Wt:
13

12The standard Jensen’s inequality term 1
2σ

2
r implies that the expectations hypothesis does not

hold. See Piazzesi (2010) for further discussion of this point.
13The proofs of this result and the next one are in appendix A.
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Proposition 1. The response of arbitrageur wealth to a short rate shock is

d logWt = − exp(−ξ)ωσrdϵr,t,

where ω is the duration of arbitrageurs’ wealth and satisfies

ω ∝ X

W
.

Intuitively, consider an unexpected rise in the short rate. When arbitrageurs’ ag-

gregate wealth is endogenous (finite ξ), their wealth will be revalued downwards if

and only if their portfolio has positive duration at the stochastic steady-state, which

amounts in this environment to a positive position in two-period bonds X. When

arbitrageurs’ aggregate wealth is exogenous (ξ → ∞), this mechanism is shut down.

Our second result describes the impact effect of the shock on the one-period ahead

forward rate

ft ≡ − logPt − rt. (17)

We focus on this anticipating our empirical work studying the impact effect on forward

rates, though it is straightforward to characterize the full impulse response of the

forward rate or transformations such as bond yields. We obtain:

Proposition 2. The response of the one-period ahead forward rate to a short rate

shock is

dft =

[
1− κr − 1

W
ασ2

r

1 + 1
W
ασ2

r

+
1
W
Xσ2

r

1 + 1
W
ασ2

r

exp(−ξ)ω

]
σrdϵr,t.

Thus, if ξ → ∞ (exogenous arbitrageur wealth), there is underreaction of the forward

rate relative to the expected short rate

|dft| < (1− κr)σr|dϵr,t| = |dEtrt+1|

if ασ2
r > 0. If ξ is finite (endogenous arbitrageur wealth), there is overreaction of the

forward rate relative to the expected short rate

|dft| > (1− κr)σr|dϵr,t| = |dEtrt+1|

if exp(−ξ)|ω| is sufficiently high relative to α, given σr > 0.

Thus, when ξ → ∞, we recover the effects of short rate shocks in existing preferred
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habitat models.14 Intuitively, consider an unexpected rise in the short rate. Holding

fixed habitat investor borrowing, this raises the two-period bond yield. If habitat

investors are price elastic (α > 0), this causes them to borrow less in two-period

bonds. If arbitrageurs face price risk in these bonds (σr > 0), this lowers the term

premium, reflected in underreaction of the forward rate. To summarize: a rise in the

short rate lowers the term premium because arbitrageurs must bear less risk.

When arbitrageurs’ wealth is a relevant state variable for risk pricing (finite ξ), we

can reverse the effects of a short rate shock on the term premium. In particular, if

arbitrageurs have positive duration ω ∝ X
W
, we know from (15) that the steady-state

term premium is positive. A fall in their wealth raises their price of bearing interest

rate risk. If this force is sufficiently strong relative to the decrease in the quantity of

risk they bear — controlled by α, as described in the prior paragraph — the term

premium will rise. This is reflected in overreaction of the forward rate.15

4 Empirical analysis

Motived by these results, we now estimate the effects of monetary shocks on the yield

curve and measure arbitrageurs’ duration. Our core question of interest in the balance

of the paper will be whether a calibration of the full model matching arbitrageurs’

duration can account for the effects of monetary shocks along the yield curve.

4.1 Effects of monetary shocks on yield curve

We first study the response of the yield curve to announcements of the Federal Open

Market Committee (FOMC).

4.1.1 Approach

Given the one-year yield y
(1)
t measured at the end of day t as well as one-year real for-

ward rates {f (τ−1,τ)
t } paying τ ∈ {2, . . . , 20} years from t, we estimate the effect of the

daily change in y
(1)
t on the daily change in {f (τ−1,τ)

t }, instrumenting the former with

14See for instance Proposition 2 in Vayanos and Vila (2021).
15Proposition 2 also implies that if ω < 0 but is sufficiently large in absolute value, there will still

be overreaction of the forward rate. This is because the steady-state term premium is negative, and
a rise in the short rate will revalue wealth in favor of arbitrageurs. This will make the term premium
less negative, and thus cause overreaction of the forward rate. Of course, the more empirically relevant
case features ω > 0 and a positive term premium in steady-state, which is why we focus on it.
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the change in Fed funds futures in a 30-minute window around the FOMC announce-

ment. By focusing on variation induced by the high-frequency change in Fed funds

futures, we address the point made by Nakamura and Steinsson (2018) that even on

days with FOMC announcements, there is news orthogonal to monetary policy which

simultaneously affects yields and other outcome variables. By nonetheless summarizing

our results in terms of the effect of a daily change in the one-year yield on outcome

variables, we provide estimates which are easy to interpret and compare to the model.16

A long-standing challenge in the identification of monetary policy shocks is that,

even using intraday data, it may be difficult to decouple them from “information

shocks”: information about the state of the economy revealed at the time of FOMC

announcements which is distinct from a shock to the Federal Reserve’s monetary policy

rule. To mitigate the concern that our results may be caused by such shocks, we follow

Jarocinski and Karadi (2020) in focusing on FOMC announcement days in which the

high-frequency change in the S&P 500 and one-year bond yield have opposite signs.

Intuitively, if an increase in the one-year bond yield is due to good news about the

state of the economy, it is more likely to be reflected in an increase in the S&P 500.

Instead, if an increase in the one-year bond yield is due to a monetary policy shock,

it is more likely to be reflected in a fall in the S&P 500 (due to the higher discount

rate and, consistent with Kekre and Lenel (2022) as well as the present paper, a higher

price of risk). We discuss the robustness to using all FOMC announcement days, as

well as a number of other robustness exercises, later in this section.

4.1.2 Data

For high-frequency measures of monetary policy surprises and changes in the S&P

500, we use the data constructed by Jarocinski and Karadi (2020). They measure the

monetary surprise using the three-month ahead Fed funds futures contract. As they

argue, this horizon combines information about near term policy shocks and forward

guidance, useful during times when the zero lower bound was binding.

For data on the yield curve, we use Gurkaynak, Sack, and Wright (2008)’s inter-

polated yield curve on each day to compute yields and forwards at all maturities and

16An alternative approach sometimes considered in the literature is simply an OLS regression of
daily changes in long-dated forwards on daily changes in short-dated yields, an indicator for FOMC
announcement days, and their interaction. The last coefficient is informative of the incremental effects
of monetary shocks. In appendix C.7, we use our model to illustrate why this approach is difficult to
interpret and why using direct measures of monetary shocks from high-frequency data is preferable.
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horizons at a daily frequency. We use in particular the updated data maintained by the

Federal Reserve. For ease of exposition, we express the effects on all outcome variables

relative to a 1pp change in the one-year yield. As previously noted, we focus on the

real yield curve since our model is silent about inflation. For completeness, we present

empirical estimates using the nominal yield curve in appendix B.2.

We use the January 2004 through December 2016 period for our analysis. While

TIPS have been traded since the late 1990s, two- and three-year maturities were only

included in Gurkaynak, Sack, and Wright (2006)’s interpolated real yield curve since

2004. We thus begin our sample at this point. We end our sample in 2016 as this is

the last year in Jarocinski and Karadi (2020)’s sample.

In robustness exercises described further below, we also use the classification of

FOMC announcements of Cieslak and Schrimpf (2019) and the alternative measures of

monetary policy surprises constructed by Bauer and Swanson (2023), Nakamura and

Steinsson (2018), and Swanson (2021).

4.1.3 Results

Figure 1 plots the baseline estimates and associated 90% confidence intervals. We find

that long-dated forward rates respond economically and statistically significantly to a

monetary tightening: a monetary-induced increase in the one-year yield by 1pp causes

a 0.39pp increase in the one-year forward rate paying 20 years in the future.17 The

point estimates imply a U -shaped pattern in maturity of the forward rate which is

consistent with two effects which move in opposite directions as maturity rises. First,

given nominal rigidity, a persistent rise in the nominal interest rate will induce an

immediate rise in the real interest rate which dissipates over time. This mechanism is

consistent with the fall in the estimated coefficients through 10 years maturity. Second,

to the extent a monetary tightening raises term premia, this will be reflected in a rise in

forward rates (overreaction of the forward rate, following section 3). This mechanism

is consistent with the rise in the estimated coefficients from 10 to 20 years maturity,

since longer maturity bonds are exposed to more risk.18

17Appendix B.1 visually depicts the relationship between the change in the real forward rate and
the change in the one-year yield induced by the high-frequency monetary surprise, and makes clear
that the positive relationship for long-dated forwards is not driven by any one observation.

18We note that the response of the yield curve at maturities as high as 20 years is not based on any
extrapolation. Appendix B.3 depicts the time to maturity of all TIPS outstanding over our sample
period. As is evident, throughout our sample period there has been at least one outstanding issue
with 20 years or more to maturity, and on average almost four such issues at each point in time.
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Figure 1: ∆f
(τ−1,τ)
t on ∆y

(1)
t , instrumented by high-frequency surprise

Notes: at each integer between 2 and 20 on the x-axis, we plot coefficients and 90% confidence interval

using ∆f
(τ−1,τ)
t as the outcome variable. Confidence interval based on robust standard errors.

This evidence bridges distinct findings in the literature. Hanson and Stein (2015)

estimate that in two-day windows around FOMC announcements, a 1pp increase in the

two-year nominal yield is associated with a 0.30pp increase in the 20-year instantaneous

real forward, statistically significantly different from zero at all conventional levels

(their Table 1). Since estimates of nominal rigidity cannot account for changes in real

interest rates this far in the future, they conclude that a monetary tightening raises

term premia. Nakamura and Steinsson (2018) argue that using two- or even one-day

changes in yields as a measure of monetary policy surprises is misleading, because

even on FOMC announcement days most of the variation in yields is induced by non-

monetary shocks. We follow Nakamura and Steinsson (2018) in using intraday measures

of monetary policy surprises. We find that even using this approach, a monetary

tightening economically and statistically significantly raises long-dated forward rates,

consistent with the findings of Hanson and Stein (2015).19

Guimaraes, Pinter, and Wijnandts (2023) find that the strong response of long-dated real forwards
to a monetary tightening is concentrated in times with higher liquidity, as measured using the yield
curve noise series of Hu, Pan, and Wang (2013). This further suggests that our results on the response
of long-dated real forwards are not driven by relative illiquidity in this market.

19Our results may also help make sense of the point estimate in Beechey and Wright (2009) that
the five-year ahead, five-year real forward falls upon a tightening (their Table 4). We find that the
10-year forward exhibits the smallest increase upon a tightening, but longer-dated forwards rise more.
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Table 1 demonstrates that our results are robust to a number of alternative samples.

The first row summarizes the baseline estimates of a monetary tightening on the 5-,

10-, 15-, and 20-year forwards (the same as the relevant points in Figure 1). The

next three rows consider all FOMC announcements rather than only those in which

the one-year yield and S&P 500 move in opposite directions; drop all announcements

between July 2008 and June 2009 to eliminate the most acute phase of the financial

crisis; and finally drop all announcements involving any news about asset purchases

or non-standard credit operations, as classified by Cieslak and Schrimpf (2019). In all

cases, the response of the 20-year forward is economically significant, ranging between

0.27pp and 0.50pp for a 1pp increase in the one-year yield. And in two of these three

specifications, the effect is statistically significantly different from zero at a 90% level.

Table 1 also demonstrates that our results are robust to a variety of alternative

measures for monetary surprises as an instrument. We use the Fed funds and forward

guidance factors estimated by Swanson (2021); the principal component of the change

in the first four Eurodollar contracts estimated by Bauer and Swanson (2023);20 and the

policy news shock estimated by Nakamura and Steinsson (2018). We also use the last

measure together with a sample restriction that excludes all announcements between

July 2008 and June 2009, corresponding most closely to the benchmark specification

in Nakamura and Steinsson (2018). In all cases, the response of the 20-year forward is

again economically significant, ranging between 0.23pp and 0.41pp for a 1pp increase

in the one-year yield. And in all but the last specification, the effect is statistically

significantly different from zero at a 90% level.

4.2 Duration of arbitrageurs

We next study the duration of arbitrageurs. Following the literature, our preferred

definition of arbitrageurs is broker/dealers and hedge funds, who trade actively across

maturities to maximize risk-adjusted returns as in our model. By market clearing,

this implies that households, other financial institutions such as pension funds and life

insurance companies, non-financial companies, the government (including the Federal

20Bauer and Swanson (2023) note that this surprise measure, like others in the literature, is pre-
dictable with macroeconomic and financial variables known prior to the announcement. As they argue,
orthogonalizing the surprise measure is not needed (and leads to a loss of efficiency) when studying
the high-frequency effects of monetary policy as we do here. When we orthogonalize our baseline
Jarocinski and Karadi (2020) surprise or the Bauer and Swanson (2023) surprise, we still find that a
1pp increase in the one-year yield around FOMC announcements leads to a 0.32pp and 0.22pp increase
in the 20-year forward rate, respectively. The standard errors become 0.18pp and 0.12pp, respectively.
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Specification ∆f
(4,5)
t ∆f

(9,10)
t ∆f

(14,15)
t ∆f

(19,20)
t

Baseline 0.40 0.11 0.25 0.39
(0.10) (0.14) (0.15) (0.14)

All FOMC announcements 0.38 0.11 0.13 0.27
(0.10) (0.11) (0.15) (0.13)

Excl. 7/08-6/09 0.46 -0.26 0.21 0.50
(0.22) (0.30) (0.21) (0.29)

Excl. announcements with LSAP news 0.28 -0.12 0.07 0.30
(0.12) (0.17) (0.14) (0.19)

Swanson (2021) Fed funds IV 0.31 0.15 0.30 0.41
(0.13) (0.13) (0.16) (0.17)

Swanson (2021) forward guidance IV 1.05 0.44 0.25 0.23
(0.23) (0.13) (0.13) (0.12)

Bauer and Swanson (2023) IV 0.64 0.27 0.17 0.23
(0.14) (0.11) (0.14) (0.13)

Nakamura and Steinsson (2018) IV 0.64 0.27 0.35 0.40
(0.15) (0.13) (0.11) (0.13)

NS (2018) IV, excl. 7/08-6/09 0.72 -0.07 0.13 0.29
(0.32) (0.26) (0.19) (0.26)

Table 1: ∆f
(τ−1,τ)
t on ∆y

(1)
t , instrumented by high-frequency surprise

Notes: robust standard errors provided in parenthesis.

Reserve), and the rest of the world are modeled as habitat investors.

4.2.1 Balance sheets and asset class duration

Our first approach is to combine data on the balance sheets of broker/dealers and

hedge funds with estimates of duration by asset class.21 The advantage of this ap-

proach is that it allows us to characterize the aggregate duration of this broad group

of institutions. The disadvantage is that it assumes that these institutions hold a rep-

resentative portfolio within each asset class, and it cannot account for the effect of

derivative positions on these institutions’ true interest rate exposure.

We use four data sources. We obtain the aggregate balance sheet of broker/dealers

from the Financial Accounts, which includes the broker/dealer subsidiaries of commer-

cial banks. We obtain the aggregate balance sheet of hedge funds filing Form PF to

21The approach of combining risk exposures by asset class with positions by asset class follows
Begenau, Piazzesi, and Schneider (2015) and Greenwald, Leombroni, Lustig, and Van Nieuwerburgh
(2023). We study the duration of broker/dealers and hedge funds, whereas these papers study the
duration of commercial banks and households, respectively.
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the Securities and Exchange Commission (SEC), summarized in the Enhanced Finan-

cial Accounts.22 This data is provided since the fourth quarter of 2012 and provides

substantially more information about portfolio holdings and leverage in the hedge fund

sector than previously available sources such as BarclayHedge and Lipper TASS. We

obtain the effective duration of the U.S. Treasury, U.S. mortgage-backed security, and

U.S. corporate bond indices computed by Bloomberg.23 These duration measures ac-

count for the optionality embedded in the latter two classes of securities, such as the

ability to prepay. Finally, we obtain valuation ratios on the S&P 500 available from

Robert Shiller’s website to compute the duration of equities.

Given this data, we proceed in three steps. Each quarter, we first compute the

net positions of each set of financial institutions in each asset class. The sum of these

positions is wealth.24 The first three columns of Table 2 summarize their individual and

aggregate balance sheets in the fourth quarter of 2012. As is evident, these institutions

hold a levered position in cash, Treasuries, corporate and foreign bonds, other debt

securities (primarily agency/GSE-backed securities), and corporate equities, financed

by repurchase agreements and other short-term loans (primarily secured borrowing of

hedge funds from prime brokerages).

We next combine this data with estimates of duration by asset class. The last

column of Table 2 summarizes this in the fourth quarter of 2012. We assume that

Treasuries, corporate and foreign bonds, and other debt securities have the effective

duration of the Bloomberg Treasury, corporate bond, and mortgage-backed security

indices, respectively. We assume that cash, deposits, and money market fund shares

have an average duration of one quarter, repo and other short-term loans have an

average duration of one month, and loans have a duration of five years. We use the

price-dividend ratio on the S&P 500 together with the Gordon growth formula to

compute the duration of equities, following the approach of Greenwald et al. (2023)

and further described in appendix B.4.

We finally compute wealth-weighted aggregate duration using the last two columns

22Hedge funds must file Form PF if they are registered or are required to register with the SEC,
manage private funds, and have at least $150 million in such assets under management. Importantly,
this includes hedge funds both domiciled in the U.S. and abroad (such as the Cayman Islands).

23These were previously the Barclays indices, and prior to that the Lehman Brothers indices. These
are among the most widely used bond indices in the literature.

24In the Financial Accounts (for broker/dealers), wealth is total financial assets less liabilities,
less FDI and miscellaneous assets less liabilities. Since the latter largely correspond to transactions
with holding and parent companies, this means we measure wealth at the level of the broker/dealer
subsidiary itself. In the Form PF filings (for hedge funds), wealth is net asset value.
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Balance sheet ($bn)
Broker/
dealers

Hedge
funds

Sum
Duration
(years)

Cash, deposits, MMFs 128 553 681 0.25
Repo and other short-term loans∗ -448 -1,231 -1,679 0.083
Treasuries 185 654 839 5.4
Corporate and foreign bonds 40 994 1,034 7.2
Other debt securities† 302 61 363 3.2
Loans‡ -35 133 99 5
Corporate equities 127 1,148 1,275 46.5
Wealth§ 299 2,313 2,612 27.9
Only fixed income 172 1,164 1,336 10.1

Table 2: duration of arbitrageurs in Q4 2012

Notes: see text for data sources and definitions of wealth-weighted duration.
∗ Includes cash and margin accounts of households at broker/dealers, clearing funds and receiv-
ables/payables among broker/dealers (including securities lending), and hedge fund loan liabilities
(largely secured borrowing from prime brokerages).
† Includes open market paper, municipal securities, and agency/GSE-backed securities.
‡ Includes broker/dealer loans to non-financial corporates, depository institution loans to bro-
ker/dealers not elsewhere counted, and loan assets of hedge funds.
§ For broker/dealers, equals financial assets less liabilities, less FDI and miscellaneous line items
(largely transactions with holding companies and parents). For hedge funds, equals net asset value
less miscellaneous line items.

of Table 2. In the fourth quarter of 2012, this implies arbitrageurs’ duration is 27.9.

Since the duration of equities plays an important role in driving this number up, we

also consider the possibility that equity and fixed income arbitrageurs are segmented,

in which case we eliminate equities from our calculation and focus on fixed income

duration alone. This implies arbitrageurs’ duration is 10.1. Repeating this process

for each quarter through 2016 (given our maintained sample period of interest) and

averaging over time, arbitrageurs’ duration is between 9.5 (fixed income alone) and

30.9 (also including equities). One way to make sense of these estimates is that the

duration of ultimate investments of these arbitrageurs is around 5 to 10 years, and

their leverage in these investments is around 2 to 3.25,26

25This interpretation also helps makes sense of the high duration of equities, which are themselves
levered claims on long duration assets.

26Drechsler, Savov, and Schabl (2021) provide evidence that commercial banks are not much ex-
posed to interest rate risk because deposits, which constitute an important component of their liabili-
ties, pay sticky interest rates, like long duration assets. We note that for the broker/dealers and hedge
funds which are our focus, this is less relevant because deposits are not an aggregate source of funding
(in fact, these sectors are net long cash, deposits, and money market fund shares, as demonstrated in

21



4.2.2 High-frequency response of dealer equity prices

Our second approach is to measure the high-frequency response of primary dealers’

stock prices around FOMC announcements, paralleling our analysis of the yield curve.

The advantage of this approach is that it captures the realized exposure to a macroe-

conomic risk factor without the assumptions required in the prior subsection. The

disadvantage is that it is restricted to publicly traded primary dealers, as hedge funds

are not publicly traded, and may reflect the economic exposure of other parts of dealers’

holding companies rather than the dealer subsidiary itself.27

To construct the high-frequency response of dealers’ stock prices, we use the list of

primary dealers provided by the Federal Reserve and intraday quotes using TAQ.28 For

each publicly traded and active dealer around an FOMC announcement, we measure

the closest prices of transactions 10 minutes prior to the FOMC announcement and

20 minutes after the FOMC announcement.29 We then aggregate the change in dealer

prices in this 30-minute window, weighting by dealers’ market capitalizations at the

end of the previous trading day from CRSP.

We find that a surprise monetary tightening generates an economically and statis-

tically significant fall in dealer equity prices in this 30-minute window. In our baseline

specification reported in the first row of Table 3, a 1pp increase in the one-year yield

induced by a monetary tightening causes a 9.8pp decline in dealer equity prices.30,31

The fall in dealer equity prices is in fact 3.6pp more than the fall in the broader S&P

500, though we only mention this for additional context; the absolute change in dealer

wealth, not the relative change, is relevant for our model. The remaining rows of Table

3 demonstrate that across the same alternative samples and measures of monetary sur-

Table 2). Instead, these sectors are financed using repo and other short-term loans.
27As noted by He, Kelly, and Manela (2017), the last point may not be a concern if internal capital

markets are frictionless, in which case it is more relevant to measure the holding companies’ exposure.
28The list of dealers for which we have stock market data is provided in appendix B.5. While we

focus on data between 2004 and 2016 to be consistent with our analysis of the TIPS yield curve, we
find that all of our results regarding the high-frequency response of dealers’ stock prices are robust to
beginning the sample in 1993, when the TAQ data becomes available.

29For FOMC announcements occurring outside NYSE trading hours, we use the preceding closing
price and following opening price, following Gorodnichenko and Weber (2016).

30The change in the one-year yield is still the one-day change, as throughout this section.
31Appendix B.6 depicts this relationship. The appendix further demonstrates that it is important

to focus on the response of dealer equities in the 30-minute window around FOMC announcements to
have enough power to detect these effects. While the one-day response of dealer prices is comparable
to that obtained in the 30-minute window, it is not statistically significantly different from zero. This
was not the case for our estimated effects on the yield curve. This makes sense because equity prices
are more volatile than forward rates and thus the signal to noise ratio is lower.
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Specification
30-minute change in
dealer equity prices

Baseline -9.8
(3.2)

All FOMC announcements -1.4
(4.5)

Excl. 7/08-6/09 -19.4
(11.2)

Excl. announcements with LSAP news -12.4
(5.8)

Swanson (2021) Fed funds IV -10.0
(3.6)

Swanson (2021) forward guidance IV -11.4
(5.0)

Bauer and Swanson (2023) IV -7.7
(3.2)

Nakamura and Steinsson (2018) IV -12.2
(4.0)

NS (2018) IV, excl. 7/08-6/09 -24.2
(10.0)

Table 3: change in dealer prices on ∆y
(1)
t , instrumented by high-frequency surprise

Notes: robust standard errors provided in parenthesis.

prises as in Table 1, dealer equity prices fall by 1.4pp− 24.2pp in response to a 1pp rise

in the one-year yield. In all but the second specification, the response is statistically

significantly different from zero at a 90% level.

Our earlier estimates of duration imply that a 1pp permanent rise in the real short

rate would lower arbitrageurs’ wealth by 9.5−30.9pp. This is larger than but consistent

with our estimates of the high-frequency response of dealers’ stock prices to a monetary

shock, keeping in mind that a monetary tightening implies only a transitory increase

in the real short rate, and the response of equity prices to a monetary shock should

therefore be lower than our previous duration estimates.

4.3 Relating yield curve responses and arbitrageur duration

Before turning to the quantitative model, we relate the evidence from the prior two

subsections: we ask whether, in the data, the effects of monetary shocks on the yield

curve depend on the duration of arbitrageurs. This speaks to a distinctive prediction
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of our theory vis-à-vis other explanations focused on habitat demand or changing

macroeconomic comovements. In addition to a direct test of the mechanism, this

evidence is useful to further evaluate our quantitative model in the next section.32

A challenge is that the hedge fund data used in the prior subsection is not available

prior to 2012, the period over which we observe most of the variation in monetary

shocks. We nonetheless consider three alternative proxies for arbitrageur duration

available over the entire sample period. In each case, focusing on the 20-year forward

rate for parsimony, we regress the one-day change in the forward rate on the one-day

change in the one-year yield, the proxy for arbitrageur duration measured prior to the

monetary surprise, and their interaction. We use as instruments the monetary surprise

and its interaction with the proxy for arbitrageur duration. Appendix B.7 plots the

three proxies and demonstrates that they track each other quite well.

We first use estimates of the term premium itself as a proxy for arbitrageur du-

ration. As implied by (14) and its analog in the full model, the risk premium on

long-term bonds will be higher when arbitrageurs have higher duration and thus bear

more interest rate risk. We use estimates of the 5-year forward, 5-year real term pre-

mium provided by the Federal Reserve using the methodology of D’Amico, Kim, and

Wei (2018).33 The first column of Table 4 implies that in the baseline specification,

a 1pp higher term premium would raise the response of the 20-year forward rate to

a 100bp increase in the one-year yield by 50bp. Across specifications, it would raise

the response by 8 − 111bp. This is economically meaningful, given that the standard

deviation of the estimated term premium is 0.4pp over the sample period.

We next use a measure of arbitrageur duration for broker/dealers alone. We con-

struct a higher frequency analog of the broker/dealer duration measure from section

4.2.1 using the primary dealer statistics collected and published weekly by the Federal

Reserve Bank of New York. In particular, we multiply primary dealers’ net position in

Treasury securities, agency/GSE-backed securities and non-agency mortgage-backed

32In appendix B.9 we provide a complementary test of the mechanism: we directly regress the
change in forward rates on dealers’ high-frequency change in equity prices, instrumenting the latter
with the monetary surprise. Mechanically, the coefficients are those from section 4.1 divided by those
from section 4.2.2, so long-dated forwards indeed rise by more when dealers’ stock prices fall by more.
Less obviously, we find that the results at the 20-year maturity are statistically significantly different
from zero in our baseline specification and four of the alternative specifications.

33Similar results are obtained using their estimates of the 10-year real term premium, but with
larger standard errors. This is to be expected, since the 5-year forward, 5-year term premium is more
variable than the 10-year term premium (the latter being the average of the 5-year term premium and
the 5-year forward, 5-year term premium).
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Proxy for arb duration

Specification
5-yr fwd,
5-yr TP

Log
dealer
dur.

−Dealer
income
gap

Baseline 0.50 0.34 2.0
(0.25) (0.15) (1.7)

All FOMC announcements 0.11 0.20 1.4
(0.43) (0.21) (1.7)

Excl. 7/08-6/09 1.08 1.08 6.5
(0.63) (0.66) (5.7)

Excl. announcements with LSAP news 0.43 0.52 1.6
(0.38) (0.38) (1.6)

Swanson (2021) Fed funds IV 0.70 0.14 2.1
(0.42) (0.23) (2.7)

Swanson (2021) forward guidance IV 0.08 0.05 1.4
(0.20) (0.18) (1.7)

Bauer and Swanson (2023) IV 0.65 0.20 2.1
(0.73) (0.19) (2.2)

Nakamura and Steinsson (2018) IV 0.56 0.10 16.2
(0.55) (0.19) (10.2)

NS (2018) IV, excl. 7/08-6/09 1.11 0.64 14.2
(0.70) (0.90) (9.5)

Table 4: ∆f
(20)
t on ∆y

(1)
t , duration of arbitrageurs, and interaction, instrumented by

high-frequency surprise

Notes: each cell reports the estimated coefficient on the interaction term. Robust standard errors
provided in parenthesis.

securities, and corporate bonds with the respective duration measures in these as-

set classes from Bloomberg, compute its logarithm, and subtract the cumulative ex-

dividend log return on publicly traded primary dealers since the beginning of the sample

period (a measure of their log market value of equity).34,35 The second column of Table

4 implies that in the baseline specification, a 1pp year increase in dealer duration would

raise the response of the 20-year forward rate to a 100bp increase in the one-year yield

by 0.34bp. Across specifications, it would raise the response by 0.05 − 1.08bp. This is

34We cumulate daily returns to obtain an equity index representative of all dealers, not just the
publicly traded ones. Thus, while the level of this series is not interpretable, its changes are.

35Du, Hebert, and Li (2022) document that dealers’ switched from a net short to net long position
in Treasuries in the global financial crisis. However, because they have had consistently long positions
in agency/GSE-backed securities, non-agency mortgage-backed securities, and corporate bonds, we
do not find a sign switch in overall duration around the crisis.
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also meaningful, given that the standard deviation of this measure of dealer duration

is 50pp over the sample period.

We finally use a measure of interest rate sensitivity more broadly studied in the

literature, the income gap (see, for instance, Gomez, Landier, Sraer, and Thesmar

(2021) and Haddad and Sraer (2020)). The income gap is constructed at the holding

company level from schedule HC-H of form FR Y9-C reported to the Federal Reserve,

which directly asks about banks’ sensitivity to interest rates. The income gap for

a dealer is the dollar amount of assets that mature or reprice within one year less

the dollar amount of liabilities that mature or reprice within one year, relative to total

assets. It is thus negatively related to duration. The aggregate dealer income gap is the

asset-weighted average across dealers. The last column of Table 4 implies that in the

baseline specification, a 1pp lower income gap would raise the response of the 20-year

forward rate to a 100bp increase in the one-year yield by 2.0bp. Across specifications,

it would raise the response by 1.4 − 16.2bp. This is again meaningful, given that the

standard deviation of the aggregate income gap is 8pp over our sample period.

In appendix B.8 we instead use the high-frequency change in primary dealers’ equity

prices on the left-hand side of these regressions. An additional virtue of the income gap

data in particular is that it is available at the individual dealer level. We show that

among dealers, those with a lower income gap (higher duration) experience a larger

fall in their stock prices upon a monetary tightening.36

5 Quantitative analysis

We now assess the ability of our full model to rationalize the effects of monetary

policy on the yield curve. Calibrated to match the evidence on arbitrageur duration,

it can account for much of the responses of long-dated real forward rates in the data.

We quantify the additional implications of our model for state-dependence in policy

transmission, the volatility and slope of the yield curve, and trends in term premia

accompanying trends in the natural rate.

36Haddad and Sraer (2020) document an interesting puzzle in the relationship between commercial
bank equity prices, bond returns, and income gaps without conditioning on monetary shocks: they
show that when the aggregate income gap of commercial banks is low, bank stock prices do not have
a more positive relationship with excess long-term bond returns. We demonstrate in appendix B.8
that, when focusing on dealers, this puzzle also disappears.
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5.1 Equilibrium and solution

We first summarize the equilibrium conditions of the full model environment described

in section 2 and the computational algorithm we use to solve it.

Equilibrium As derived formally in appendix C.1, arbitrageurs’ first-order condi-

tions for the problem (3)-(4) imply that

Et

(
dP

(τ)
t

P
(τ)
t

)
− rtdt =

γ

Wt

∫ ∞

0

X
(s)
t Covt

(
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(τ)
t
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(τ)
t

,
dP

(s)
t

P
(s)
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ds− (1− γ)Covt

(
dP

(τ)
t

P
(τ)
t

,
dνt
νt

)
, (18)

where νt defines the marginal value of wealth in the value function

vt(wt) =
(νtwt)

1−γ − 1

1− γ

solving (3). Generalizing (14) in the simple model, (18) says that arbitrageurs require

non-zero expected excess returns on a bond of maturity τ to compensate them for

bearing price risk on that bond. Their exposure to a bond with maturity τ depends

in part on the covariance of returns on that bond with all other bonds of maturity

s ∈ (0,∞) and the arbitrageurs’ position in those bonds {X(s)
t }∞s=0. Away from log

preferences (γ ̸= 1), arbitrageurs’ required risk compensation also reflects a standard

intertemporal hedging motive: they require a lower expected excess return on a bond if

it pays well when the (instantaneous change in the) marginal value of wealth (1−γ)dνt

is positive. When arbitrageurs’ discount rate ρ → ∞, appendix C.1 proves that the

marginal value of wealth νt → 1, so that the intertemporal hedging motive vanishes.

We focus on this case for simplicity. This allows us to continue focusing on endogenous

wealth Wt in risk pricing as the only departure from existing preferred habitat models.

Substituting habitat demand (1) and market clearing (8) into (18) in the ρ → ∞
limit in which the intertemporal hedging motive drops out, we obtain

Et

(
dP

(τ)
t

P
(τ)
t

)
− rtdt =
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Substituting habitat demand and market clearing in arbitrageurs’ aggregate evolution

of wealth (5), we obtain

dWt = Wtrtdt+

∫ ∞

0

(
α(τ) log

(
P

(τ)
t

)
+ θ0(τ) + θ1(τ)βt

)[dP (τ)
t

P
(τ)
t

− rtdt

]
dτ

+ ξ(W̄ −Wt)dt. (20)

These equilibrium conditions parallel (15) and (16) in the simple model. Together with

the driving forces (6)-(7), this characterizes the equilibrium.

Solution In a large class of term structure models, including existing models in the

preferred habitat tradition, bond prices are exponentially affine in the model’s state

variables. The dependence of the price of risk on arbitrageurs’ wealth in our setting

implies that bond prices are no longer exponentially affine in this way.

We therefore characterize bond prices as a general function of the three state vari-

ables rt, βt and Wt

P
(τ)
t ≡ P (τ)(rt, βt,Wt). (21)

Writing the evolution of wealth as

dWt = ω(rt, βt,Wt)dt+ ηr(rt, βt,Wt)dBr, t + ηβ(rt, βt,Wt)dBβ, t (22)

for some functions ω, ηr, and ηβ, we can use (6), (7), and (22) together with Ito’s

Lemma to write (19) as a partial differential equation (PDE) relating partial derivatives

of {P (τ)}∞τ=0 and the state variables rt, βt, and Wt. Given conjectures for the functions

ω, ηr, and ηβ, the Feynman-Kac formula implies a solution P (τ) which we numerically

solve using Monte Carlo simulation. We then use (20) to characterize the implied

evolution of Wt and iterate over our guesses for the functions ω, ηr, and ηβ until (22)

is consistent with (20). Further details on the algorithm are in appendix C.2.
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5.2 Calibration

We assume an exponential form for the price elasticity, intercept, and slope of habitat

demand by maturity:

α(τ) = α exp−τ ,

θ0(τ) = θ0 exp
−τ ,

θ1(τ) = θ1 exp
−τ ,

for τ ≤ 30, and α(τ) = θ0(τ) = θ1(τ) = 0 for τ > 30.37 When comparing the model

to the data we focus on the term structure through 20 years, since TIPS are relatively

illiquid with maturity greater than this. Since only the product θ1σβ matters for the

equilibrium dynamics, we normalize θ1 = 1. Since {W̄ , θ0, σβ, α} can each be scaled

without changing the state-contingent path of prices or returns, we normalize θ0 = 1.

The calibration of remaining moments is summarized in Table 5. We calibrate the

model to match three sets of moments: unconditional moments of the yield curve, the

evidence on arbitrageur duration assembled in section 4, and the yield curve responses

to quantitative easing studied widely in the literature. We reiterate that our calibration

focuses on the real yield curve, since our model is silent about inflation.

We first set a subset of parameters to match unconditional moments of the yield

curve.38 We set the average level of the short rate r̄ to match the average one-year

yield of 0.06%. We set arbitrageur risk aversion γ to match the yield curve slope

y
(20)
t − y

(1)
t . We set the volatility σr and mean reversion κr of short rate shocks to

match the monthly volatility of the 20-year yield in levels and changes. Finally, we

set the volatility σβ of demand shocks to match the relationship between the slope of

the yield curve and excess returns on 10-year bonds over the next year, denoted β
(10)
FB

with reference to Fama and Bliss (1987).39 We later discuss why this classic evidence

37We could also allow for trade in assets with even greater maturity than 30 years, capturing
equity claims. Increasing the maximal duration of traded assets does not meaningfully affect our
results, conditional on calibrating parameters to match our targeted moments.

38All moments in the data are computed over the same January 2004 through December 2016
period studied in section 4. In the usual way, all parameters jointly determine the moments we target.
For each parameter, we describe the moment we primarily target by varying that parameter.

39Formally, in both data and model we estimate the specification

r
(10)
t+1 − y

(1)
t = α

(10)
FB + β

(10)
FB

(
f
(9,10)
t − y

(1)
t

)
+ ϵ

(10)
FB,t+1.

For this moment alone, we report the estimated coefficient in the model estimated on very long samples
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Description Value Moment Target Model

Unconditional moments of yield curve

r̄ mean short rate -0.0004 y
(1)
t 0.06% 0.06%

γ arb. risk aversion 2 y
(20)
t − y

(1)
t 1.54% 1.53%

σr std. dev. short rate 0.007 σ(y
(20)
t ) 0.74% 0.74%

κr mean rev. short rate 0.03 σ(∆y
(20)
t ) 0.56% 0.57%

σβ std. dev. demand 0.45 β
(10)
FB 0.68 0.69

Duration of arbitrageurs

W̄ arb. endowment 0.002 duration 20 20

κβ mean rev. demand 0.08 σ(log(duration)) 0.5 0.5

Yield curve responses to QE announcement on March 18, 2009

α habitat price elast. 5 df
(9,10)
t -0.46% -0.53%

ξ persistence arb. wealth 0.05 df
(19,20)
t -0.25% -0.25%

Table 5: baseline calibration

Notes: ∆ denotes annual change, σ denotes monthly standard deviation, d denotes instantaneous
change, and moments without these symbols are simple time-series averages. Model moments are
computed by averaging over 3,000 samples of 13 years worth of data, themselves simulated after a
burn-in period of 1,200 months.

on return predictability is informative about the magnitude of demand shocks.

We next set parameters to match the novel evidence on arbitrageur duration as-

sembled in section 4. Arbitrageurs’ duration in the model is

(duration)t ≡
∫∞
0

τX
(τ)
t dτ

Wt

. (23)

Arbitrageurs’ initial wealth W̄ affects their average level of wealth and thus the denom-

inator of (23). We set it to match the midpoint of the range of duration estimated in

section 4.2.1, 20. We later explore the sensitivity of our findings to this targeted value.

(of over 3,000 years), rather than over samples of 13 years as in the data. This is because the persistence
of the short rate implies that the coefficient would be substantially biased in shorter samples, following
Stambaugh (1999). We have verified that adding an additional, highly transitory source of fluctuations
to the short rate would eliminate this bias. Our calibrated model is consistent with the interpretation
that we are missing such a transitory source of fluctuations in the short rate: the model-generated
volatility in the one-year yield is 0.90%, as opposed to 1.66% in the data. We do not include this as
an additional driving force to simplify the computation. Since we discipline the current parameters
to match second moments in longer yields, adding a transitory source of fluctuations in the short rate
should not change the current parameters and thus our results of interest.

30



The mean reversion κβ of demand shocks affects the volatility of arbitrageurs’ assets

and thus the volatility in the numerator of (23). We set it to match the volatility of

log duration of publicly traded primary dealers discussed in section 4.3.

We lastly set parameters to match evidence on the yield curve responses to quan-

titative easing (QE) which have been widely studied in the literature. QE is a habitat

demand shock in our model since the Federal Reserve is included in the set of habitat

investors. The yield curve responses to QE discipline both habitat investors’ price elas-

ticities, controlled by α, as well as the speed of mean reversion in arbitrageur wealth,

controlled by ξ. The intuition for why QE disciplines α can be understood using the

simple model of section 3, in which case the response of the two-period bond price to

a demand shock is
d logPt

dθt
= − 1

α + Wt

σ2
r

. (24)

The denominator is the price elasticity of the aggregate demand for two-period bonds;

in the usual way, the more elastic it is, the smaller will be the equilibrium price response.

Conditional on the price elasticity of arbitrageurs Wt

σ2
r
implied by the other calibration

targets above, the equilibrium price response thus disciplines the price elasticity of

habitat investors α. The intuition for why QE disciplines ξ reflects the fact that —

as we later demonstrate — QE revalues wealth and thus arbitrageurs’ risk bearing

capacity like a monetary shock. Since ξ governs the speed with which arbitrageurs’

wealth returns to its long-run average, it governs the persistence of term premium

responses and thus the shape of the yield curve responses on impact of QE.

We discipline both parameters using the forward rate responses to the March 18,

2009 announcement that the Federal Reserve would begin purchasing Treasuries and

expand its purchases of agency/GSE-backed securities and mortgage-backed securities.

Appendix C.6 motivates why we focus on this announcement and describes how we

translate the announcement into model scale. We simulate it starting from arbitrageur

wealth one third below its average value, consistent with the decline in total wealth

among broker/dealers and hedge funds between the fourth quarter of 2007 and first

quarter of 2009 (also detailed in appendix C.6). We calibrate α and ξ to match the

10- and 20-year forward rate responses to the announcement, respectively. We target

the response of long-dated forward rates rather than yields to minimize the role of

forward guidance which may have accompanied the announcement. Since some of the

announced asset purchases may have been anticipated, this will imply a value for α

in particular which is an upper bound, working against our ability to account for the
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term premium effects of monetary shocks as demonstrated in our analytical results.

Later in this section, we assess the sensitivity of our results to a lower value of α.

5.3 Effects of monetary shock

We now turn to the model’s key impulse response: the effects of a monetary shock.

5.3.1 Impulses responses to monetary shock

Figure 2 depicts the impulse responses to a contractionary monetary shock, scaled to

generate a 100bp rise in the one-year real yield on impact. As discussed in section 2,

we allow a monetary-induced shock to the real short rate to have a different speed of

mean reversion κm than “typical” short rate shocks κr arising from underlying shocks

to preferences or productivity. We set κm = 0.25 so that the response of the two-

year forward rate exactly matches that in the data; thus, monetary-induced short rate

shocks are less persistent than typical short rate shocks, which we view as sensible.40

The first row of Figure 2 depicts the short rate, the one-year real yield, and ar-

bitrageur wealth. The second row depicts the 20-year real forward rate, the spread

between the 20-year real forward rate and one-year yield, and expected excess returns

on the 20-year bond financed by the one-year bond over a one year holding period. The

impulse responses are contrasted against those in a counterfactual economy in which

ξ → ∞ and thus arbitrageurs’ endowment is constant.41

The 20-year real forward rate rises in response to the shock, in contrast to the

counterfactual model in which arbitrageurs’ endowment is constant. The difference in

these responses is driven by the downward revaluation of arbitrageurs’ wealth, which

raises their price of bearing risk and raises term premia. Since term premia have risen,

future excess returns on the 20-year bond are high — persistently so, reflecting the

pattern of arbitrageurs’ wealth.42 The opposite is true in the counterfactual model.

40Appendix C.5 provides the impulse responses to a typical short rate shock.
41In this counterfactual economy, we leave all parameters unchanged except γ, which we recalibrate

to match the same level of the yield spread as the baseline calibration (and the data). This ensures
that our comparison of risk premium responses across these models does not mechanically reflect
differences in the level of the risk premium itself.

42Notably, since the fall in the short rate is not permanent, the forward spread falls as the yield
curve flattens. This implies that, at least around impact of the shock, there is a negative relationship
between the slope of the yield curve and subsequent excess returns on long-term bonds. The same
is true for typical short rate shocks simulated in appendix C.5. By contrast, habitat demand shocks
imply a positive relationship between the slope of the yield curve and subsequent excess returns on
long-term bonds. This is why the classic evidence on return predictability of Fama and Bliss (1987)
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Figure 2: impulse responses to monetary shock

Notes: monetary shock is a one-time innovation to short rate with mean reversion κm = 0.25 as
described in main text. Figure depicts responses to infinitesimal shock, scaled to generate 100bp fall
in one-year yield on impact, and x-axis denotes number of months since the shock. Responses are
averaged (relative to no shock) starting at 100 points drawn from the ergodic distribution of the state
space, itself approximated as a simulation over 46,800 months after a burn-in period of 1,200 months.

All of these results are consistent with the analytical results in section 3.

Figure 3 depicts the impact effect of the monetary shock on the forward rate across

maturities and compares it to the estimates from Figure 1. The model generates

responses within the empirical confidence intervals at all maturities. The model does

not generate a U -shaped response of forward rates as in our baseline specification in

the data; the increase in term premia by maturity is indeed present (evident from the

widening gap between the responses of the forward rate and expected spot rate), but

in the model it is outweighed by the decline in the expected spot rate by maturity.43,44

and Campbell and Shiller (1991) can be used to identify the volatility of demand shocks in Table 5.
43Using that the spread between the forward rate and expected short rate equals the cumulative

expected return to a sequence of carry strategies, appendix C.3 demonstrates that it is the persistence
of the rise in expected carry trade returns which explains why term premia rise with maturity.

44Appendix C.4 demonstrates that if the monetary shock has a less persistent effect on the real
short rate (higher κm), the model generates a U -shaped response of forward rates.

33



5 10 15 20

0.0

0.2

0.4

0.6

0.8

Δf (𝜏 − 1,𝜏)/Δy(1)

Data

Model

𝜉 → ∞

ΔEtyt + 𝜏 − 1
(1) /Δyt

(1)

Figure 3: f
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t on y

(1)
t given monetary shock: model vs. data

Notes: empirical estimates correspond to those in Figure 1. Model responses simulated as described
in Figure 2.

Nonetheless, the model still accounts for a significant share of the 20-year real forward

rate in the data. This contrasts with the counterfactual economy with ξ → ∞, in

which case the responses of the forward rate lie everywhere below the response of the

expected spot rate. We emphasize that the response of long-dated forward rates was

not targeted in the calibration. We conclude that the model can successfully account

for much of the response of the yield curve to monetary shocks in the data, and that

an endogenous price of risk through arbitrageur wealth is essential to this result.

5.3.2 Sensitivity to duration and demand elasticity

The empirical evidence uncovered a range of plausible values for arbitrageur duration,

and could support lower values of habitat demand elasticities α(τ). Here we explore

the sensitivity of our findings to these key parameters.

We first consider a lower value for arbitrageur duration. We raise W̄ so that arbi-

trageurs’ duration of wealth is 10, at the lower end of the range estimated in section

4.2.1.45 The resulting responses of forward rates around a monetary shock are summa-

rized by the dashed line in Figure 4. Relative to the baseline calibration, the response

45As in footnote 41, we recalibrate γ to target the same yield spread as our baseline calibration,
and keep all other parameters fixed at their baseline values.
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Notes: responses simulated as described in Figure 2.

of the 20-year forward rate to a 100bp increase in the one-year yield is dampened, but

remains 9bp. We conclude that even at the lower end of our estimates for arbitrageur

duration, the wealth revaluation channel can account for a meaningful share of the

overreaction of forward rates to monetary shocks observed in the data.

We next consider lower values for the elasticities of habitat demand α(τ).46 In

particular, we assume habitat demand is completely inelastic by setting α = 0.47 The

resulting responses of forward rates around a monetary shock are summarized by the

dotted line in Figure 4. Relative to the baseline calibration, the response of the 20-year

forward rate to a 100bp increase in the one-year yield rises to 23bp. Consistent with our

analytical results, a lower elasticity of habitat demand dampens the response of the

quantity of risk borne by arbitrageurs, amplifying the response of the term premium.

5.3.3 State-dependence

We finally demonstrate that the model generates state-dependent effects of monetary

shocks as in the data. The first row of Table 6 reports the 90% confidence intervals

46An upward sloping demand of habitat investors for long-term bonds upon a monetary shock, as
would be implied by the models in Hanson (2014), Hanson and Stein (2015), and Hanson et al. (2021),
is effectively like negative values of α(τ) (at least for high τ) conditional on a monetary shock.

47Again, we recalibrate γ to match the same yield spread and leave all other parameters unchanged.
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Proxy for arb duration

5-yr fwd,
5-yr TP

Log
dealer
dur.

−Dealer
income
gap

Data [0.09,0.91] [0.09,0.59] [-0.8,4.8]
Model 0.19 0.16 0.4

Table 6: ∆f
(20)
t on ∆y

(1)
t , duration of arbitrageurs, and interaction given monetary

shock: model vs. data

Notes: empirical estimates correspond to 90% confidence interval from baseline estimates in Table 4.
Model moments computed using monetary shocks simulated as in Figure 2.

under the baseline specification for the coefficients on the interaction terms between

the change in the one-year yield and the three proxies for arbitrageurs’ duration (the

real term premium, dealers’ duration, and dealers’ income gap) estimated in section

4.3. The second row reports the coefficients on the interaction terms in analogous

regressions on model-generated data.48

Higher arbitrageur duration implies a larger response of long-horizon forward rates

to a monetary tightening because it implies a larger revaluation of arbitrageur wealth.

Quantitatively, the model-implied interaction coefficients are towards the lower ends

of the confidence intervals in the data, suggesting that, if anything, the baseline cali-

bration understates the effects of changes in arbitrageur wealth on the term premium.

5.4 Implications beyond monetary shocks

The prior subsection demonstrated that the revaluation of arbitrageur wealth can ac-

count for much of the term premium responses to monetary shocks. We now trace out

the broader implications of fluctuations in arbitrageur wealth for state-dependence, the

slope of the yield curve, and trends in term premia from a declining natural rate.

5.4.1 State-dependent effects of QE

Just as the model implies that the effects of monetary policy along the term structure

depend on the level of arbitrageur wealth and thus duration, it implies that the effects

48In the model, the 5-year forward, 5-year term premium is given by f
(5,10)
t − 1

5

∫ 10

5
Etrt+s, arbi-

trageur duration is
∫∞
0

τX
(τ)
t dτ/Wt, and arbitrageurs’ income gap is (Wt −

∫∞
1

X
(τ)
t dτ)/At, where

total assets are At ≡
∫
τ :=X

(τ)
t >0

X
(τ)
t dτ + 1

{
Wt −

∫
τ
X

(τ)
t dτ > 0

}(
Wt −

∫
τ
X

(τ)
t dτ

)
.
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Figure 5: simulation of QE announcement at alternative levels of W0

Notes: baseline simulation assumes Wt at time of announcement is one third less than its average
value. Alternative simulation assumes Wt is equal to its average value. In both cases rt = r̄ and βt = 0
(their average values) at time of announcement. See appendix C.6 for further details on simulation.

of other shocks similarly depend on arbitrageur wealth. Here we focus on our QE

experiment used to calibrate the model.

As previously noted, we simulate the March 18, 2009 announcement in the model

assuming that arbitrageur wealth is initially one third less than its average value,

corresponding to the decline in broker/dealer and hedge fund wealth between the fourth

quarter of 2007 and first quarter of 2009. Figure 5 compares the yield curve responses

of this announcement in the model to an alternative scenario in which arbitrageur

wealth is initially at its average value.49

The model implies that the 10- and 20-year real yields and forward rates would

have fallen by 20-30% less had broker/dealers and hedge funds not been so poorly

capitalized at the time of the announcement. There are two reasons for the amplified

yield curve responses when arbitrageurs have lower wealth. First, as is evident from

49The announcement is simulated as an unexpected shock to the path of habitat demand as depicted
in the first panel. Appendix C.5 provides the impulse responses to a typical habitat demand shock.
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the price effects of QE in the simple model characterized in (24), arbitrageurs have

more inelastic demand for longer-term bonds when they have lower wealth, implying

larger price responses to changes in the supply they must absorb.50 Second, a lower

level of arbitrageur wealth, all else equal, implies that they have higher duration. A

given increase in bond prices thus generates a larger percentage increase in their wealth,

lowering their price of bearing risk and raising bond prices further.51

5.4.2 Volatility and slope of yield curve

The analysis so far has focused on the role of fluctuations in arbitrageur wealth in

shaping the conditional response to monetary and demand shocks. In this subsection

we quantify the role of endogenous wealth in the unconditional properties of the term

structure more broadly.

Table 7 demonstrates how yield volatilities and the slope of the yield curve change

when ξ → ∞ and thus arbitrageurs’ initial wealth is constant.52 As is evident from the

first row, yield volatility falls when arbitrageurs’ initial wealth is constant, although the

effect is very small. The second row demonstrates that there is a more pronounced effect

on stochastic volatility: while the model with endogenous wealth features stochastic

volatility because short rate and demand shocks have state-dependent effects on yields

as arbitrageur wealth varies, the model with exogenous wealth features constant volatil-

ities. Since bond price volatility in the baseline model is high precisely in times with

low wealth and thus high marginal utility for arbitrageurs, the final row demonstrates

that it accounts for nearly one third of the unconditional slope of the yield curve. Taken

together, we conclude that the endogeneity of arbitrageurs’ wealth plays an important

role in shaping the unconditional properties of the term structure.

50This result is similar to Proposition 4 in Vayanos and Vila (2021) that changes in supply affect
yields only when arbitrageurs are risk averse, and Proposition 4 in Greenwood and Vayanos (2014)
that changes in supply have larger effects on expected returns when arbitrageurs are more risk averse.
What is novel here is that arbitrageurs’ risk-bearing capacity is endogenous to their level of wealth.

51The endogeneity of arbitrageurs’ wealth also means that their wealth eventually falls relative to
its initial value, both because QE reduces the volume of arbitrageurs’ carry trade and its price impact
reduces their excess return in doing so. For a similar reason, wealth falls faster when W0 = 0.6W than
when W0 = W , since the decline in risk premia and thus carry profits is amplified in the first case.

52In the latter calibration, we also set W̄ equal to the average value of wealth in the baseline
calibration, so that the only difference between the two is in the endogenous volatility of wealth. This
contrasts with the ξ → ∞ calibration depicted in Figure 3, in which (as described in footnote 41)
we recalibrate γ (equivalently, W̄ , since only the ratio γ/W̄ matters for risk pricing with exogenous
wealth) to match the same yield spread and thus average term premium as the baseline model.
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Moment Model ξ → ∞
σ(y

(20)
t ) 0.74% 0.73%

σ(σt−1(y
(20)
t )) 0.23% 0.00%

y
(20)
t − y

(1)
t 1.53% 1.00%

Table 7: unconditional moments of long yields

Notes: σ denotes monthly standard deviation and last row is simple time-series average. Model
moments computed as in Table 5.

5.4.3 Trends in natural rate

While our analysis has focused on the effects of a monetary-induced shock to the short

rate, similar mechanisms operate in response to more persistent changes in the short

rate. We conclude by quantifying the relationship implied by our model between trends

in the natural rate and trends in term premia in recent years.

We can interpret the secular decline in the natural rate in recent years as a sequence

of negative shocks to rt together with a decline in the steady-state r̄.53 Figure 6

considers the following scenario: suppose each month between 2004 and 2016 (our

sample period used throughout the paper), there was a negative shock dBr,t and equal

unanticipated reduction in r̄ so that rt cumulatively fell by 2.2pp. This is the fall in the

natural rate from 2004 to 2016 based on the estimates from the Laubach and Williams

(2003) model reported by the Federal Reserve Bank of New York. Figure 6 depicts

the model’s implications for arbitrageurs’ wealth and the 5-year forward, 5-year real

term premium referenced earlier (similar results are obtained for the 5-year or 10-year

real term premia). The model implies a cumulative increase in arbitrageurs’ wealth

of roughly 20pp and decline in the term premium of roughly 30bp. The latter can be

compared to the 1pp decline in this real term premium over the same period estimated

using the methodology of D’Amico et al. (2018) by the Federal Reserve. Following

Bauer and Rudebusch (2020), the latter estimate may be overstated because it does

not account for a time-varying natural rate. In this case our model accounts for an

even larger fraction of the true decline in the real term premium.

Relative to the existing literature, our model thus offers a complementary but

53In the long-run, a decline in r by ∆ raises all bond prices. We thus assume that there is also a
permanent shock to θ0(τ) of −α(τ)τ∆ such that the ergodic distribution of habitat borrowing in (1)
is unchanged in the long run, as well as a permanent shock to ξ of −∆ and W̄ of ∆/(ξ−∆) such that
the ergodic distribution of arbitrageur wealth in (5) is unchanged in the long run. This allows us to
focus on the transitional dynamics induced by a decline in the natural rate alone.
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Figure 6: sequence of negative shocks dBr,t from 2004 to 2016

Notes: each month, dBr,t = −0.022/156, so that over the 13 year period rt falls by 2.2pp. State
variables at start of simulation are initialized to their average values in initial equilibrium.

distinct explanation of declining term premia in recent years. Campbell et al. (2020)

and Gourio and Ngo (2020) argue that changes in macroeconomic comovements can

explain why term premia have fallen in recent years. In particular, these authors argue

that because long-term bond prices no longer fall as much (and in fact rise) in bad times,

the quantity of risk in long-term bonds has fallen. Our model suggests a complementary

explanation focused on the price of risk instead: the decline in the natural rate in recent

years has led to a sustained increase in long bond prices, recapitalizing arbitrageurs

with positive duration and lowering their price of bearing risk.

6 Conclusion

In this paper, we propose a model which rationalizes the effects of monetary policy

shocks on the term structure of interest rates. As in the preferred habitat tradition,

habitat investors and arbitrageurs trade bonds of various maturities; as in the inter-

mediary asset pricing tradition, arbitrageur wealth is an endogenous state variable

relevant for equilibrium risk pricing. When arbitrageurs’ portfolio features positive du-

ration, an unexpected rise in the short rate lowers their wealth and raises term premia.

A calibration matching the duration of broker/dealers and hedge funds in the data

rationalizes the identified effects of policy shocks along the yield curve. The revalua-

tion of arbitrageur wealth has additional implications for the state-dependent effects

of policy, endogenous price volatility and the average slope of the term structure, and

trends in term premia accompanying trends in the natural rate.
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Our analysis has stopped short of tracing out the consequences of changes in term

premia for the real economy so as to focus on the novel mechanisms in financial markets

relative to existing term structure models. Embedding our model in a New Keynesian

production economy, we expect that the effects of policy on the price of risk will amplify

the real effects of monetary policy, to the extent that aggregate demand is rising in the

amount habitat investors borrow long-term. This seems natural if we interpret long-

term borrowers as mortgagors or non-financial corporates whose marginal propensity

to consume or invest is higher than the owners of financial firms. We view this as

among the most interesting applications of our framework in future work.
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