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1 Introduction

The pronounced volatility of world equity markets is di�cult to reconcile with textbook

models in which the price of a stock is the rational expectation of future cash �ow funda-

mentals, discounted at a constant rate. These theories imply that stock markets should be

far more stable than observed, leading a vast literature to explain �excess� stock market

volatility with discount rate variation.1 But recent advancements in the �eld of behavioral

�nance point toward a di�erent explanation, namely that investors may exhibit systematic

expectational errors (�belief distortions�) that lead them to overreact to news relevant for

cash �ow growth. A standard result is that overreaction ampli�es market volatility, o�ering

an explanation for observed equity markets that does not rely on variable discount rates.

Documenting evidence of overreaction (or belief distortions more generally) requires both

a measure of what investors subjectively expect, and a benchmark for gauging any distor-

tion in subjective growth expectations. The traditional approach to this problem is to use

surveys of analysts or investors to measure subjective expectations, and to use in-sample

regressions of survey forecast errors on lagged forecast revisions to measure overreaction.

Despite valuable insights, the very simplicity and convenience of the traditional approach

necessarily leaves several pertinent questions unanswered.

For one, the precise news events to which investor beliefs purportedly overreact are left

unspeci�ed in the forecast-error-on-forecast-revision regression approach. This lack of speci-

�city opens the door to challenges from antipodal behavioral models proposing that investors

underreact to at least some forms of news, and/or that revisions in subjectively expected fu-

ture cash �ow growth respond to the stock market rather than drive it. If markets overreact

to news, which events have historically been responsible for such reactions and why?

The traditional approach is also ill-suited to the task of developing a deeper understanding

of the perceived sources of primitive economic risk that must jointly drive beliefs and markets.

This is relevant when considering evidence that price pressure from unexplained shifts in

demand���ows� in and out of the stock market evidently unrelated to cash �ow news�are

responsible for substantial stock market volatility. But if news about cash �ow growth is not

the main driver of stock market volatility, what are the perceived sources of economic risk

that are? Such questions are di�cult or impossible to answer without a structural model

that stipulates the types of shocks that investors may be contemplating.

Finally, contrary to the traditional approach, new measures of belief distortion generated

from dynamic, real-time machine learning algorithms �nd little evidence that survey forecast

1For textbook treatments of this issue, see Chapters 7 and 8 of Campbell, Lo and MacKinlay (1997), and
Chapter 20 of Cochrane (2005).
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errors are related to lagged forecast revisions. This raises immediate questions about the

traditional methodology, since it means that the standard regression approach to measuring

over- or underreaction may not always provide a reliable means of quantifying systematic

expectational error.

In this paper we study how the stock market reacts to news using a new methodology

developed here that (i) measures the stock market's response to speci�c news events, (ii)

estimates revisions in the representative investor's subjective expectations and perceived

sources of risk as a result of those events, and (iii) gauges the quantitative importance (if

any) of a range of belief distortions in driving the market's reactions to news. The approach,

which we refer to as �structural-AI synthesis� for brevity, combines insights from arti�cial

intelligence (AI) and mixed-frequency Bayesian econometrics to provide a benchmark for

measuring the nature and severity of investors' distorted beliefs. Its de�nitive feature is the

synthesis of algorithmic machine learning and a structural asset pricing model in the analysis

of data. A general premise of this synthesis is that a wide variety of observable data constitute

important signals of what real-world market participants actually believe and expect. These

include not only direct measures of subjective asset market expectations from surveys of

equity analysts and investors (as in the traditional approach), but also �uctuations in spot

prices, futures markets, and professional forecasts of the broader economy, both at high

frequency around news events and over longer periods of time. At its most general level,

the procedure is a methodology for using machine learning algorithms, survey forecasts,

and other forward-looking data produced from a complicated real-world setting to inform a

stylized belief formation framework that is an explicit approximation of reality.

This approach�as applied to the present investigation�has four central ingredients. First,

it considers high frequency market reactions to hundreds of speci�c news events spanning

macroeconomic data releases, corporate earnings announcements, and central bank commu-

nications from the Federal Reserve (the Fed). Second, we specify and estimate a structural

asset pricing model to empirically decompose the representative investor's high frequency

reactions to these events into perceived shocks driving primitive macroeconomic risks that

together span cash �ow and discount rate news. Third, investor beliefs in the structural

model are allowed to potentially depart from rationality in range of ways by magnitudes

that are freely estimated. The framework nests general forms of over- and underreaction

that arise from distortions in the perceived laws of motion driving the aggregate economy,

as well as speci�c belief formation frameworks such as inattention, which typically delivers

underreaction (Sims (2003), Gabaix (2019)), or diagnostic expectations (DE), which deliv-

ers overreaction (Bordalo, Gennaioli and Shleifer (2018), Bordalo, Gennaioli, LaPorta and
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Shleifer (2019), and Bordalo, Gennaioli, LaPorta and Shleifer (2022)), while retaining ra-

tional expectations (RE) as a special case. Fourth, we use the AI approach of Bianchi,

Ludvigson and Ma (2022a) (BLM1) to construct a real-time RE benchmark designed to

quantify subjective biases in human beliefs present in markets and surveys.

In the structural model studied here, multiple primitive macroeconomic risks are rele-

vant for the subjective growth expectations that underpin shareholder value. News causes

investors to revise their understanding of which primitive shocks moving the economy, recog-

nizing that the fundamentals they drive interact dynamically. In this context, any distortions

in perception about the laws of motion driving fundamentals operate, ipso facto, on a sys-

tem of macro dynamics rather than on a univariate earnings or payout process and translate

directly into distorted perceptions about the shocks. This implies that investors may misat-

tribute one primitive impulse to a mixture others, with consequences for asset prices.

The multivariate generalization also gives rise to a key distinction between the present

framework and typical univariate DE models where overreaction only ampli�es market

volatility (e.g., Bordalo et al. (2019), Bordalo et al. (2022)). Here, depending on the com-

position of perceived shocks that a news event elicits, DE-driven overreaction to each shock

individually can imply that the stock market as a whole underreacts to real-world events,

thereby dampening volatility. This happens because many real-world news events are as-

sociated with changes in more than one perceived shock with counteracting e�ects. As an

example, suppose that the same degree of diagnosticity is applied to all perceived shocks while

a news event elicits two that push the market in opposite directions (e.g., bad cash �ow news

paired with good discount rate news). Under these circumstances, diagnostic expectations

can dampen the market's response because the resulting shock-speci�c overreactions�even

if generated by a single, common DE parameter�can still be asymmetric across shocks that

di�er by their volatility and propagation properties. In general, non-standard predictions

arise whenever overreaction to a positive (negative) force for the market partially o�sets a

lesser relative overreaction to a predominating negative (positive) force.

We begin the presentation of our �ndings with results from a preliminary analysis demon-

strating the systematically superior forecasting performance of the machine algorithm com-

pared to investor, analyst, and professional forecaster surveys. This motivates our use of the

algorithm as a measure of non-distorted expectation formation. We then present our main

�ndings, which can be summarized as follows.

First, while the structural estimation treats as equally likely the opposing belief formation

frameworks of inattention (which would imply underreaction to news) and DE (which would

imply overreaction), our parameter estimates imply that the representative investor exhibits
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belief overreaction in a manner consistent with DE. The estimated baseline model with

DE-type overreaction �ts the post-war behavior of the stock market with little to no error.

Second, market reactions to big real-world news events sometimes exhibit overreaction as

well, creating �excess� volatility in response to such events. This additional volatility is driven

by the DE distortion and occurs when overreaction to each shock individually ampli�es the

e�ects of all shocks combined, in keeping with standard predictions of univariate DE models.

For these events, markets often overreact strongly to movements in payout-relevant factors,

intensifying the price response compared to the RE counterfactual. However, when several

counteracting shocks happen simultaneously, we often �nd that DE leads instead to market

underreaction, once the e�ects of overreaction to all shocks are netted out.

This brings us to our third result: The market's reaction to news is often characterized

by strong DE-driven overreaction to good (bad) news about transitory payout-relevant fac-

tors that partially o�sets a lesser relative overreaction to predominating bad (good) news

stemming from other factors, while under RE any o�setting force would be small or ab-

sent entirely. This result�which dampens the market reaction relative to the fully rational

response�is not attributable to inattention and occurs even though a single free parameter

controls the magnitude of the DE distorted reactions to all shocks. Our estimates indicate

that this type of asymmetric compositional e�ect describes stock market behavior in sev-

eral episodes of post-millennial history, most notably the global �nancial crisis, in which

behavioral overreaction was a force for stability rather than volatility.

Taken together, these �ndings imply that, when confronted with the sequence of esti-

mated shocks that actually occurred over the post-millennial period, an empirically grounded

rational expectations benchmark that allows discount rates to vary implies that the stock

market should be highly volatile�more so than in data�thereby creating a puzzle of �excess

stability� rather than excess volatility. Yet a model with DE-style belief overreaction can

perfectly explain the data, not because it creates more volatility but because it creates less.

Relation to the Literature A large and growing body of literature studies overreaction

in subjective expectations and its relation to stock market behavior (Barberis, Shleifer and

Vishny (1998), Chen, Da and Zhao (2013), Bordalo et al. (2018), Bordalo, Gennaioli, Ma

and Shleifer (2020), Bordalo et al. (2019), Nagel and Xu (2022), Bordalo et al. (2022), De

La O and Meyers (2021, 2023) Hillenbrand and McCarthy (2021).) At the same time, other

researchers have argued that at least some types of news are not tended to and thus met with

underreaction (e.g., Mankiw and Reis (2002), Woodford (2002), Sims (2003), Gabaix (2019),

Kohlhas and Walther (2021)). We extend these literatures by undertaking a structural

estimation to freely estimate the direction and severity of a range of biases (if any) in
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the stock market's reaction to hundreds of real-world news events, delineating the role of

perceptions about multiple fundamental macro shocks in driving these reactions.

Other studies hypothesize that any link between subjectively expected future cash �ow

growth and stock price variation occurs because the former responds to the latter rather

than drives it (Bastianello and Fontanier (2022), Chaudhry (2023), Jin and Li (2023)) or,

relatedly, that unexplained �ows in and out of the stock market�evidently disconnected from

genuine cash �ow news�are responsible for substantial stock market volatility (e.g., Gabaix

and Koijen (2021), Hartzmark and Solomon (2022)). These studies often link price move-

ments to innovations in instruments that would reasonably seem unrelated to any evident

news, without taking a stand on what may have caused the price movement or �ow to change

in the �rst place. We take the complimentary and converse approach of explicitly model-

ing equilibrium price movements and then studying reactions to speci�c events in which

relevant information not known previously to market participants was revealed. Since ac-

tual news causes adjustments in forward-looking asset prices only when investors' subjective

expectations are revised, such reactions should be highly informative about investor beliefs.

We follow the tradition of many papers in using equity analysts' survey forecasts of earn-

ings growth as one observable indicator of subjective cash �ow expectations in our analysis.

As emphasized by Adam and Nagel (2023), however, the extent to which equity analysts'

forecasts are representative of broader market expectations remains an open question. The

methodology adopted here takes a step toward addressing this limitation by employing a

structural estimation that substantially broadens the set of observable indicators relevant

for understanding investors' underlying beliefs.

The methodology of this paper builds o� of the structural mixed-frequency approach of

Bianchi, Ludvigson and Ma (2022b) (BLM2) for inferring what markets learn from news.

Viewed through the lens of a multivariate structural model, news is a multifaceted signal

about which primitive shocks are moving the economy. For example, a higher-than-expected

in�ation reading might cause investors to revise upward their perception of cost-push supply

shocks (directly a�ecting in�ation and thus real payout growth), of aggregate demand shocks

(indirectly a�ecting in�ation through GDP growth), and of mark-up/pricing power shocks

(which may merely correlate with in�ation but directly a�ect the earnings share of output and

ultimately payout growth). However, unlike the present study, BLM2 investigates market

reactions to news without addressing whether those reactions may be nonrational and if so

why, a gap this paper �lls.

Our approach, which integrates machine-learning insights from Bybee, Kelly, Manela and

Xiu (2021), Gu, Kelly and Xiu (2020), and Cong, Tang, Wang and Zhang (2021), follows the
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dynamic, real-time AI methodology of BLM1 for measuring systematic expectational errors.

A foundational principle of this methodology recognizes that market participants have access

to thousands of pieces of potentially relevant information in real time, the importance of

which may vary dramatically over the course of a sample, while the canonical standard

for rational expectation formation is predicated on the e�cient use of all of it. It is in

this real-world context that the dynamic machine algorithm of BLM1 is trained to measure

ex ante expectational errors embedded in human judgments by e�ciently coping with the

problems of over�tting and structural change in a procedure designed to be free from look-

ahead bias, i.e., without relying on in-sample estimation, data that would not have been

known in real time, or speci�cation choices that may improve �t but could only have been

implemented with hindsight. Adherence to these principles is important to avoid overstating

biases in real-world expectation formation implied by the structural model and is a central

motivating precept of the structural-AI synthesis.

The next section presents a simpli�ed framework to explain the key elements of our model

and structural-AI synthesis. There we clarify that our methodology produces results that

are conditional on a stylized structural model that we explicitly treat as an approximation

of a complex and unknown �true model,� by allowing for non-systematic speci�cation error

in a state-space estimation. We assume that machine forecasts are an unbiased signal of

the structural model's objective laws of motion, while investor forecasts may be biased due

to explicit distortions that we model (including systematic speci�cation error). All other

sources of noise, such as that due to small samples, (non-systematic) speci�cation error,

data revisions etc., are presumed to be common across investor and machine and thus net

out in the structural model description, though they are explicitly taken into account in the

state-space estimation. We then describe our machine learning algorithm in Section 3, the

full structural model in Section 4, and the estimation, data, and measurement for the full

structural model in Section 5. Section 6 presents our �ndings, while Section 7 concludes.

Throughout the paper we use lowercase letters to denote log variables, i.e., dt = ln(Dt), and

�∼� to denote features of the model under the subjective beliefs of the investor that may

depart from full rationality.

2 Simpli�ed Framework

This section contains two parts. The �rst part presents a simpli�ed structural model of

investor behavior and aggregate dynmamics. The second part provides key steps in the

structural-AI synthesis, as applied to the simpli�ed model. Because the same basic ideas
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apply to the full structural framework, we leave the details of the approach as applied to

that model to the Online Appendix.

Simpli�ed Model Let real stock market payout, Dt, be a time-varying share Kt of real

output Yt, i.e., Dt = KtYt. With arbitrary time-variation in Kt, the speci�cation Dt = KtYt

is a tautology. Empirically, however, log growth ∆dt is better described by the speci�cation

dt = kt + yt than by a univariate process for ∆dt, due to distinct trend/cycle components in

kt and yt.
2

Consider a theoretical setting in which a representative investor forms subjective beliefs

about log real stock market payouts, d, which follow the law of motion:

∆dt = ∆yt + kt − kt−1

kt = (1− ρk)k + ρkkt−1 + εk,t

∆yt = (1− ρ∆y)∆y + ρ∆y∆yt−1 + ε∆y,t.

Our approach explicitly treats the above �objective� law of motion is an approximate de-

scription of the true (unknown) data generating process, and takes this into account at the

estimation stage. Write the above as a system in deviations from steady-state using �hats,�

i.e., k̂t ≡ kt − k:


∆̂dt+1

k̂t+1

∆̂yt+1


︸ ︷︷ ︸

ŜM
t+1

=


0 ρk − 1 ρ∆y

0 ρk 0

0 0 ρ∆y


︸ ︷︷ ︸

TM(θM)


∆̂dt

k̂t

∆̂yt


︸ ︷︷ ︸

ŜM
t

+


1 1

1 0

0 1


︸ ︷︷ ︸

RM

 εk,t+1

ε∆y,t+1


︸ ︷︷ ︸

εMt+1

, (1)

or, letting θM ≡ (ρk, ρ∆y)
′, in matrix notation as

ŜM
t+1 = TM

(
θM
)
ŜM
t +RMεMt+1. (2)

2This is because kt is stationary while yt has a trend. The highest frequency variation in ∆dt is entirely
driven by a transitory component of kt, while its lowest frequency variation is entirely driven by trend growth
in yt. This is especially visible for earnings growth and the earnings share. In our estimation, we use data on
S&P 500 earnings, corporate sector payout, and S&P 500 dividend shares of GDP, each of which are treated
as noisy signals on Kt.
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We assume that both kt and ∆yt are stationary with 0 ≤ ρk, ρ∆y < 1. The system (1)

therefore implies that ∆̂dt+1 = (ρk − 1)k̂t + ρ∆y∆̂yt has both a negatively autocorrelated

component originating from the payout share kt, and a positively autocorrelated component

originating from output growth∆yt. It follows that a negative impulse to εk,t implies ∆̂dt+1 >

0, i.e., positive catch-up growth next period, while a positive impulse to εk,t implies ∆̂dt+1 <

0, i.e., negative fall-back growth next period.

We consider two types of distortion in investor beliefs about stock market fundamentals

SM
t . First, the perceived process for fundamentals growth may di�er from (2) and instead

evolve according to

ŜM
t+1 = TM

(
θ̃
M
)
ŜM
t +RM ε̃Mt+1. (3)

In (3), TM
(
θ̃
M
)
is the same as TM

(
θM
)
except the investor's subjective value θ̃

M
≡

(ρ̃k, ρ̃∆y)
′ of the persistence of fundamentals, θM , di�ers from its objective value, and the

perceived shock vector ε̃Mt could di�er from the objective innovation εMt . 3

Second, investor expectations may be subject to a time-varying distortion ηt, analogous

to univariate models with diagnostic expectations (Bordalo et al. (2018), Bordalo et al.

(2019), Bordalo et al. (2022)), here generalized to the multivariate system (3). As in those

models, investors are unaware that they have a distortion but behave as if their subjective

expectations Ẽt [·] were conditional on additional news contained here in the 3× 1 vector ηt:

Ẽt

[
ŜM
t+1

]
= TM

(
θ̃
M
)(

ŜM
t + ζηt

)
, (4)

where ηt ≡
(
η∆d,t, ηk,t, η∆y,t

)′
has an innovation equal to perceived cash-�ow news ε̃Mt . The

scalar parameter ζ controls the magnitude and nature of the distortion and nests di�erent

models. If ζ > 0, investor expectations overreact their perceived news as in models with

DE or earlier models of belief overreaction (e.g., Barberis et al. (1998)). If ζ < 0, investors

underreact to perceived news, as in models with inattention (Sims (2003), Gabaix (2019)).

In the remainder of this paper, we refer to ηt simply as the �DE distortion� for brevity, even

though strictly speaking the reference to diagnostic expectations only applies when ζ > 0.

The empirical relevance of either type of distortion�captured by the sign and magnitude of

ζ�will be subject to estimation in the full structural model.

Further generalizing univariate approaches to DE, we can allow excess optimism/pessimism

3We use the term �distortion� as short-hand for any reason that the perceived and objective laws of
motion may di�er, including �peso problems� in which investors fear a rare event that does not occur in the
particular sample period that generates raw inputs to a machine algorithm.
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to gradually revert over time with ηt following a VAR(1) (rather than AR(1)) process

ηt = ρηT̃
Mηt−1 + RM ε̃Mt , where T̃

M ≡ TM
(
θ̃
M
)
and 0 ≤ ρη < 1. Note that when ρη = 0,

η∆d = ε̃k,t + ε̃∆y,t.

Equation (3) implies that the investor may misperceive the law of motion for cash �ow

growth. It is important to clarify that this does not mean the investor misperceives ∆dt+1

itself, once observed. That is, investors do not su�er from delusions about the facts of cash

�ow growth once they learn those facts. What the distinction between (2) and (3) does imply

is that investors may disagree with a fully rational agent about how they got to those facts.

Suppose for this simpli�ed model that investors price in a constant risk-premium and

risk-free rate rf under their subjective beliefs. Let PD
t denote the stock price and apply a

Campbell and Shiller (1989) approximate present value identify based on a Taylor expansion

of rDt+1 ≡ ln(PD
t+1 +Dt+1)− ln(PD

t ) around a point PD
t /Dt = PD:

rDt+1 = κpd,0 + βpdt+1 − pdt +∆dt+1, (5)

where rDt is the stock market return, pdt ≡ pDt − dt, β ≡ PD
1+PD

, κpd,0 ≡ ln(1 + exp(pd)) −
β(pd), and pd = ln(PD). With the constant risk-premium and risk-free rate and imposing

limj→∞ βjpdt+j = 0, the price-payout ratio is

pdt = pd+ Ẽt

∑∞
h=0 β

h∆̂dt+1+h (6)

= pd+

(
ρ̃∆y

1− ρ̃∆yβ

)(
∆̂yt + ζη∆y,t

)
+

(
ρ̃k − 1

1− ρ̃kβ

)(
k̂t + ζηk,t

)
, (7)

where pd ≡
(
κpd,0 − rD +∆d

)
/ (1− β), with rD equal to the constant subjectively expected

return, and ∆d = ∆y equal to steady-state payout growth. The price-payout ratio observed

in the data thus re�ects the investor's perceived law of motion and the time-varying distortion

ηt. Combining (7) and (5) and noting that Ẽt

[
ηt+1

]
≡ 0 because the agent is unaware of

the distortion, we verify Ẽt

[
rDt+1

]
= rD.

Now consider a benchmark for objective beliefs based on a machine learning algorithm

that has access to large data sets and repeated projections of forecasts from high-dimensional

prediction models onto simpler, low-dimensional descriptions of the data. This machine is

by construction free from human cognitive biases and can generate unbiased signals of the

approximating objective law of motion (2) and the asset pricing dynamics (7). Taking
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expectations of (5) under these objective beliefs Et[·] yields

Et

[
rDt+1

]
= rD +

[
ρ∆y − ρ̃∆y

1− ρ̃∆yβ

]
∆̂yt +

[
βρ∆yρη − 1

1− ρ̃∆yβ

]
ρ̃∆yζη∆y,t

+

[
(ρk − ρ̃k) (1− β)

1− ρ̃kβ

]
k̂t +

[
βρkρη − 1

1− ρ̃kβ

]
(ρ̃k − 1) ζηk,t (8)

While the subjective expected return of the investor is always rD, the terms in square brack-

ets give the impact on future returns that the machine can anticipate given the investor's

systematic distortions. The special case of rational expectations occurs in this simpli�ed

model when (i) ζ = 0, and (ii) T̃M = TM , in which case objective expected returns in (8)

are always rD, and investors rationally price in a constant risk-free rate and risk premium.

More generally, the machine will �nd returns predictable if the investor displays system-

atic biases. To illustrate, consider the roles of di�erent economic shocks in shaping subjective

and objective expected returns. (The shocks themselves can be identi�ed using the empirical

methodology described below.) For ease of exposition in what follows, we set ρη = 0 in (4),

implying ηk,t = ε̃k,t, η∆y,t = ε̃∆y,t, and consider several shock and parameterization cases

below.

To start, suppose there is a one-unit negative impulse to ε̃k,t from steady state�i.e., a

negative shock the payout share�while ε̃∆y,t = 0. Case 1.1: let ζ > 0 as in models with DE,

while ρ̃k = ρk = 0. With ε̃k,t < 0 and ζ > 0, the model implies belief overreaction to the

decline in kt, which generates excessive optimism about catch-up growth:

(
Ẽt − Et

) [
∆̂dt+1

]
= −ζε̃k,t > 0.

This in�ates the price impact as investors behave as if they expect to rebound to a higher

level of kt. By contrast, under rational expectations the ex-dividend price would not respond

at all to the purely i.i.d. shock. The inevitable investor disappointment in future growth

causes a price reversal and lower future returns that the machine can predict, therefore (8)

shows that Et

[
rDt+1

]
= rD + ζε̃k,t < rD. Case 1.2: with ε̃k,t < 0 and ζ = 0 while ρ̃k > ρk,

there is no overreaction to the shock but the investor over-extrapolates today's lower payout

share to the future, generating excessive pessimism about catch-up growth:

(
Ẽt − Et

) [
∆̂dt+1

]
= (ρ̃k − ρk) ε̃k,t < 0.
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In this case prices fall too much, and the machine can anticipate that investors will be

positively surprised subsequently, leading to a price reversal and predictably higher future

returns: Et

[
rDt+1

]
= rD + [(ρk − ρ̃k) (1− β) /(1− ρ̃kβ)] ε̃k,t > rD.

We can also contemplate a one-unit negative impulse to ε̃∆y,t from steady state, while

ε̃k,t = 0. Case 2.1: with ε̃∆y,t < 0 and ζ > 0 while ρ̃∆y = ρ∆y > 0, the model im-

plies belief overreaction to the decline in today's growth, resulting in excessive pessimism

about subsequent growth:4
(
Ẽt − Et

) [
∆̂dt+1

]
= ρ̃∆yζε̃∆y,t < 0. Prices fall too much, and

the machine can predict the price reversal as (8) shows it would forecast higher future

returns. Case 2.2: if ζ = 0, while ρ̃∆y > ρ∆y, the investor over-extrapolates today's lower

growth to the future, which likewise generates excessive pessimism about subsequent growth:(
Ẽt − Et

) [
∆̂dt+1

]
=
(
ρ̃∆y − ρ∆y

)
ε̃∆y,t < 0. Once more the machine would forecast higher

future returns, as (8) shows.

We show below that most real-world news events elicit revisions in more than one per-

ceived shock. Using the cases just described, we observe that if a news or economic event

is associated with simultaneous negative impulses in ε̃k,t and ε̃∆y,t, computing its overall

market impact requires that the above e�ects be combined. This gives rise to an important

distinction with single-shock DE models that apply to a univariate earnings or payout pro-

cess such as Bordalo et al. (2019), Bordalo et al. (2022). In particular, depending on how the

composition of perceived shocks is revised in response to news, overreaction to each shock

individually, i.e., ζ > 0, can imply that the market as a whole underreacts to real-world

news. This happens because the relative overreaction across shocks is not the same, owing

to their distinct volatility and propagation properties. For example, consider the situation

where cases 1.1 and 2.1 apply simultaneously. In case 1.1 DE causes pDt to rise too much,

whereas there would be no price response to the purely i.i.d. impulse under RE. In case 2.1

DE causes prices to fall to much, whereas with ρ̃∆y > 0 there would be some decline under

RE, albeit smaller. All combined, with DE the upside overreaction in 1.1 can under some

parameter values partially o�set the downside overreaction in 2.1, dampening the overall

market response relative to RE. This empirically relevant example illustrates how asymmet-

ric compositional e�ects can imply that DE stabilizes the market during events or crises with

overreactions to multiple counteracting shocks.

Structural-AI Synthesis Conditional on the Simpli�ed Model How can we use these

theoretical insights in a realistic empirical setting with observable data? A challenge with

doing so is that the structural model is a stylized representation of reality subject to error,

4Here we need ρ̃∆y ̸= 0 because, as (4) shows, DE operates on news, which requires that the innovation
have some predictability for future growth.
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while the machine beliefs, survey forecasts, and other data are the product of much more

complicated real-world phenomena. To this address this challenge, we exploit a state-space

representation that treats the structural model as an explicit (reasonable) approximation,

and the machine beliefs, survey forecasts, and other data as noisy signals that map onto the

structural model equations.

To see how this works, consider the model solution for this simpli�ed framework, which

implies that the state vector St =
[
∆dt, kt,∆yt, pdt, pdt−1, r

D
t , ηt, S

∗
t

]′
evolves according to a

vector autoregression (VAR) state equation

St = C(Θ) + T (Θ)St−1 +R(Θ)QεMt ,

where S∗
t is discussed below, C, T , R are matrices comprised of the model's primitive pa-

rameters Θ =
(
ρk, ρ∆y, ρ̃k, ρ̃∆y, ζ, r

D, β, ρη, k,∆y
)′
, Q is a matrix of shock volatilites, and ηt

is the latent DE distortion to be estimated. The relation between the variables of the model

and data counterparts Xt can be written as a vector observation equation taking the form

Xt = D + ZSt + Uvt,

where D and Z are parameters, and vt is a vector of observation errors with standard

deviations in the matrix U . The observation errors vt are important for modeling noise due

to various sources (including as arises from the approximating structural model itself) and

are discussed below. By combing Xt = D + ZSt + Uvt with St = C + TSt−1 + RQεMt , the

model parameters and theoretical states St can be estimated using state-space methods.

Investor expectations in the model are conditioned on the state vector St. However,

some of its elements will be observable from historical data, and a subset of those are �noisy�

because they undergo subsequent revision, so their real-time values will be of lesser quality

than their �nal estimates. For example, asset price data pDt are not subject to revision, but dt

is real payout and must computed using data on in�ation that is subject to revision. To better

match the conditions of real-world decision making, we assume that investors operating

in real time have access only to a noisy measure of any indicators subject to subsequent

revision, and price assets on that basis. To illustrate the general approach, suppose for this

simpli�ed model we include data on kt, ∆yt, pdt, and returns rDt , and empirical forecasts of

∆dt and r
D
t from surveys and/or prediction markets that serve as noisy signals of investor

expectations. In this approach, the vector of econometric observables Xt must also include

machine forecasts to measure non-distorted beliefs, computed in a �rst-step as described

12



below. Let S∗
t =

[
∆d∗t , k

∗
t ,∆y

∗
t , pd

∗
t , pd

∗
t−1, r

D∗
t

]
denote elements of St observed in real time.

Let Ft[yt+h] generically denote a vector of observed subjective forecast measures made

at time t of variable y at time t + h measured from surveys, futures markets, etc., and let

EML
t [yt+h] denote an observed objective machine forecast produced in an outer estimation

(discussed below). Let matrices with a subscript, e.g., Zx, denote the parameter subvector

of Z that when multiplied by St or S
∗
t and added to Dx + Uxvx,t picks out the appropriate

model variable to map back into empirical observations on xt, e.g., ZkSt simply picks out

the element of St corresponding to kt, ZsMSt picks out the subvector [∆dt, kt,∆yt]
′, ZE(r),∆y

is the �rst term in brackets in (8) showing the e�ect of ∆yt on Et

[
rDt+1

]
, and so on. The

observation equation Xt = D + ZSt + Uvt takes the form



[∆dt, kt,∆yt]
′

pdt

rDt

Ft

[
∆̂dt+1

]
EML

t

[
∆̂dt+1

]
Ft

[
rDt+1

]
EML

t

[
rDt+1

]



=



0

0

0

0

0

rD

rD



+



ZsMSt

ZpdSt

ZrSt(
(ρ̃k − 1)Zk + ρ̃∆yZ∆y + ζZη

)
S∗
t(

(ρk − 1)Zk + ρ∆yZ∆y

)
S∗
t

0(
ZE(r),k + ZE(r),∆y + ζZE(r),η

)
S∗
t



+ Uvt. (9)

The above illustrates key steps in our structural-AI synthesis approach:

1. Historical data [∆dt, kt,∆yt]
′ are mapped onto the model's approximating objec-

tive laws of motion ZsMSt to obtain best-�tting descriptions of structural model data

dynamics. Observation errors in vt account for both estimaton and speci�cation error

arising from the assumption that the model is an approximation of the true (unknown)

data dynamics.

2. Real time data. Investors and machine base their expectations on data available in

real time, i.e., on S∗
t , as in real-world forecasting.

3. Multiple signals identify Ẽt[·]. Subjective beliefs are identi�ed from a range of

empirical indicators including �nancial market variables (e.g., rDt and pdt), survey

and futures markets forecasts in Ft[·], other forward-looking data, all treated as noisy

signals of the underlying subjective expectations process Ẽt[·] of the investor. This
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can be seen from mappings rDt , pdt, Ft

[
rDt+1

]
, and Ft [∆dt+1] above, all of which

inform estimates of the parameters driving perceived dynamics and the DE distor-

tion.5 For example, multiple subjective expectations measures Ft

[
∆̂dt+1

]
map into(

(ρ̃k − 1)Zk + ρ̃∆yZ∆y + ζZη

)
S∗
t , informing estimates of ρ̃k, ρ̃∆y, and ζ.

4. Machine forecasts identify Et[·]. Iterative machine forecasts EML [·] designed to

be free from look-ahead bias load on S∗
t but map into the objective law of motion

to identify a notion of real time rational expectations, e.g., EML
t

[
∆̂dt+1

]
is mapped

into Et[∆̂dt+1] =
(
(ρk − 1)Zk + ρ∆yZ∆yS

∗
t

)
. This ensures that estimates of Et[·] are

consistent with an expectations process that does not assume knowledge investors could

not possibly possess.

The above steps merit further discussion. The core of our structural-AI synthesis is a strategy

for using information from a high dimensional, nonparametric machine-based representation

of objective beliefs to identify systematic expectational errors as represented in stylized para-

metric frameworks of human behavior. There are three links in this chain: (i) the machine

representation of objective beliefs, (ii) the systematic expectational errors (if any) embedded

in market behavior, and (iii) the stylized parametric framework of human behavior. We

discuss each of them in turn focusing on their roles in providing a measure of objective

expectation formation, a measure of distorted beliefs, and a conceptual framework.

(i) As explained below, our machine benchmark EML
t [·] for objective expectation formation

Et [·] is not based on any parametric model, but instead on a (nonparametric) multi-layer

neural network estimated iteratively from a large sample of real-time data inputs. Two

aspects of this are central to our approach. First, the real-time nature of this process is

important. Estimates of non-distorted expectation formation that fail to account for the

conditions of real-world decision making are subject to over�tting and hindsight bias, often

overstating the very behavioral distortions we are interested in measuring (BLM1). Second,

it is well known that a multi-layer neural network can approximate virtually any unknown

function arbitrarily well given a large enough set of inputs.6 Moreover, even if the set of data

inputs is limited, a su�ciently high-dimensional function of those inputs typically generates

the most unbiased (albeit noisy) objective forecasts that can be made, greatly improving

prediction out-of-sample (Kelly and Xiu (2023)). These empirically optimal forecasts can

be mapped onto the appropriate equations of a low-dimensional structural model, provid-

5Short samples for survey expectations or other data are not technically a problem for this methodology
since missing values are �lled in with estimates using a �lter and structural model.

6See Hecht-Nielsen (1987) for the well-known Kolmogorov universal representation theorem that applies
to arbitrary continuous functions and Ismailov (2023) for the theorem extending to discontinuous functions.
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ing relatively unbiased signals of what could have been rationally expected in that context.

In this sense, known high-dimensional information-processing algorithms�using only data

that agents veri�ably could have possessed in real time�provide an appealing real-time RE

benchmark of objective beliefs.

(ii) The representative investor that drives markets may have distorted beliefs, as cap-

tured by parameters driving wedges with the RE benchmark. Forward-looking data from

multiple sources, including markets themselves, are used as signals of the representative

investor's beliefs. However, both machine and investors must cope with estimation, speci�-

cation, and data-revision errors, as well as with structural change in an evolving environment.

These aspects represent noise in the model estimation that is subsumed in the observations

errors of equations de�ning machine and investor beliefs.

(iii) The primary purpose of structural modeling is to provide a conceptual framework for

interpreting the data. Such frameworks are always approximations, but necessary to relate

output to existing theoretical literatures, while their parsimony makes narrative concepts

precise and facilitates understanding.

Putting this all together, investor beliefs in the model can be thought of as the sum of

the machine forecast, bias, and net noise. Conditional on a stylized parametric model, the

procedure uses surveys and other forward-looking data to inform subjective parameters and

distortions, machine forecasts inform objective parameters, and observation errors capture

noise.7

The �nal step in the empirical analysis is to measure market reactions to news, which

we do by employing the mixed-frequency �ltering algorithm developed in BLM2 to estimate

revisions in investor perceptions in tight windows surrounding news events. The nature and

severity of any behavioral biases in market reactions to news is estimated by comparing

jumps in investor beliefs with those informed by objective machine learning expectations.

This leads us to discuss machine beliefs, which are compiled from algorithmic output and

produced in a �rst-stage for use in Xt.

7In the �rst equations of (9) the structural model laws of motion are mapped back into full revised,
historical data. These equations could be dropped from the estimation, so that the machine forecasts are
the only signal on the parameters of the objective laws of motion. The cost of doing so is that these
mappings are likely to enhance the description of the model's historical relationships. Keeping them allows
the estimator to strike a balance between doing a good job of describing such dynamics (as in traditional
structural estimation), while at the same time mitigating concerns about over�tting and look-ahead bias
that can arise from a purely in-sample structural estimation.
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3 Machine Learning

The objective of dynamic machine learning in our context is to provide a benchmark for unbi-

ased, information-e�cient expectation formation under the conditions of real-world decision

making. Following BLM1, the algorithm has two important features. First, it must account

for the data-rich environment in which investors operate. Second, it must form forecasts in

an entirely ex ante way, i.e., without relying on ex post historical outcome data, in sample

estimation, or speci�cation choices that could only have been known or implemented with

hindsight. This section provides an abbreviated description of the machine estimation. We

refer the reader to BLM1 and the Online Appendix for further details.

We are interested in forming a machine expectation of a time series yj,t+h indexed by

j whose value in period h ≥ 1 the machine is asked to predict. The following machine

speci�cation is estimated over rolling samples:

yj,t+h = Ge
(
Xt,βj,h,t

)
+ ϵjt+h. (10)

where Xt is a large input dataset available in real time including an intercept, and Ge(·) is
a machine learning estimator that can be represented by a high dimensional set of �nite-

valued parameters βj,h,t.
8 With this estimator, we follow the six step algorithmic approach of

BLM1: 1. Sample partitioning,9 2. In-sample estimation, 3. Training and cross-validation,

4. Grid and sample partition re-optimization, 5. Out-of-sample prediction, 6. Roll forward

and repeat. Step 2 includes variable selection, shrinkage, and hyper-parameter tuning. The

end product of this procedure is a time-series of objective time t machine �beliefs� about

yj,t+h, denoted E(i)
t [yj,t+h].

Two points about the algorithm bear emphasizing. First, the machine expectations are

based on only that information at t that we can verify would have been available to investors

in real time. Second, human bias in this methodology is a genuine ex ante expectational

error, not an ex post forecast errors. In particular, bias in expectations is measured relative to

8We use the Long Short-Term Memory (LSTM) deep sequence recurrent neural network estimator with
N hidden layers hn

t ∈ RDhn

GLSTM (Xt, θjh) =

N∑
n=1

W (yhn)︸ ︷︷ ︸
1×Dhn

hn
t (Xt, θjh)︸ ︷︷ ︸
Dhn×1

+ by︸︷︷︸
1×1

.

9At time t, a prior training sample of size Ṫ is partitioned into two subsample windows: an �estimation�
subsample consisting of the �rst TE observations, and a hold-out �validation� sample of TV subsequent
observations so that Ṫ = TE + TV .

16



the machine forecast, not relative to the ex post outcome. We show below that the machine

achieves sizable reductions in the mean-square-forecast-errors relative to survey forecasts

over an extended evaluation period. Additional analysis of the machine forecasts can be

found in a companion paper.

4 Structural Model

We now apply the ideas presented for the simpli�ed model to the full structural model.

We work with a risk-adjusted log-linear approximation to the model, in which all random

variables are conditionally log-normally distributed.

Macro Dynamics As above, let aggregate stock market payout, Dt, be a time-varying

share Kt of real output Yt, i.e., Dt = KtYt. Macro dynamics are described by a series of

equations for the nominal short rate it, general price in�ation πt, output growth ∆yt, and the

log payout share of output kt ≡ dt − yt. For each of these, we specify �trend� or �long-run�

components denoted with �bars� that evolve according to

xt = (1− ϕx)xt−1 + ϕxxt + σx,ξtεx,t, ∀x = {i, π,∆y, k} , (11)

where εx,t ∼ N(0, 1) is an i.i.d. shock to the trend component of x with a time-varying

volatility σx,ξt discussed below, and ϕx is a parameter governing its persistence. We assume

that it, πt, ∆yt, and kt vary around these components as follows.

We assume that the nominal short rate is set by the central bank and follows the process

it − i = (1− ψi)
[
ψπ (πt − π) + ψ∆y

(
∆yt − g

)]
+ ψi

(
it−1 − i

)
+ σi,ξtεi,t, (12)

where εi,t ∼ N(0, 1) is an i.i.d. monetary policy shock, and i, π, and g are parameters. The

dynamics of in�ation and output growth follow similar primitive processes:

πt − π = βπ,π (πt−1 − π) + βπ,∆y

(
∆yt − g

)
+ βπ,i

(
it−1 − i

)
+ σπ,ξtεπ,t (13)

∆yt − g = β∆y,π (πt−1 − π) + β∆y,∆y

(
∆yt−1 − g

)
+ β∆y,i

(
it−1 − i

)
+ σ∆y,ξtε∆y,t, (14)

where βi,j are parameters and επ,t ∼ N(0, 1) and ε∆y,t ∼ N(0, 1) are i.i.d. shocks that

represents short-run variation in these variables. The log payout share, kt, is modeled as a
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primitive process following:

kt − k = ρk,k
(
kt−1 − k

)
+ βk,∆y

(
∆yt − g

)
+ σk,ξtεk,t, (15)

where εk,t ∼ N(0, 1) is an i.i.d. shock.10

We refer to i.i.d. innovations without the bars�which capture the more cyclical compo-

nents in the series�by their component names (e.g., εk,t is the �payout share shock�), and

those with the bars as the trend component shocks (e.g., εk,tis the �trend payout share

shock�). It should be kept in mind, however, that the �trend� components are latent random

variables that are hybrids of i.i.d. and persistent processes and are contemporaneously cor-

related with multiple economic variables in the simultaneous system above. We use these

hybrid speci�cations to introduce parsimoniously parameterized persistence in the variables

in a manner similar to a vector autoregression, but with fewer estimable parameters.

The shock volatilities in all of primitive processes above vary with the discrete valued

random variable ξt, which evolves according to a N -state Markov-switching process with

transition matrix H. Collect the parameters ψi, ϕπ, ... etc., of the above equations including

H into a vector θM . Equations (12)-(15), along with the expression for payout growth,

∆dt = ∆kt + ∆yt, represent a macro-dynamic system that can be expressed as a Markov-

switching vector autoregression (MS-VAR) law of motion (LOM) taking the form:

SM
t = CM

(
θM
)
+ TM(θM)SM

t−1 +RM(θM)QM
ξt
εMt , (16)

where SM
t ≡

[
∆yt,∆yt,∆dt, πt, πt, it, it, kt, kt

]′
, CM(· ), TM(· ), RM(· ) are matrices of primi-

tive parameters θM , εMt =
[
ε∆y,t, ε∆y,t, επ,t, επ,t, εi,tεi,t, εk,t, εk,t

]′
is a vector of primitive macro

shocks, and QM
ξt
(· ) is a diagonal matrix of shock volatilities that varies stochastically with

ξt. Due to the endogeneity of macro dynamics, RM(· ) has non-zero o� diagonal elements,

implying that multiple fundamental shocks a�ect a single state variable.

Perceived Macro Dynamics Investors have subjective beliefs θ̃
M
about the parameters

governing macro dynamics in (12)-(15) that could di�er from the objective θM . Let these

di�erences be captured by a wedge vector wθ: θ̃
M

= θM + wθ. We assume that investors

apply these perceived dynamics to a noisy measure of SM
t that they observe in real time,

denoted SM∗
t . The two are related by AoS

M∗
t = AoS

M
t + Qvεv,t, where εv,t ∼ N(0, 1) is an

10This speci�cation for macro dynamics is consistent with a triangular identi�cation strategy for monetary
policy shocks.
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i.i.d. �vintage� error attributable to data revisions.11 Elements of SM
t for which there is no

post-publication revision are assumed to have no such vintage errors. Investors take SM∗
t as

given and price assets accordingly.12 Taken together, these assumptions imply that investors'

perceived counterpart to (16) takes the form

SM∗
t = CM

(
θ̃
M
)
+ TM

(
θ̃
M
)
SM∗
t−1 +RM

(
θ̃
M
)
Q̃M

ξt
ε̃Mt (17)

SM∗
t ≡

[
∆y∗t ,∆y

∗
t ,∆d

∗
t , π

∗
t , π

∗
t , i

∗
t , i

∗
t , k

∗
t , k

∗
t

]′
(18)

ε̃Mt ≡
[
ε̃∆y,t, ε̃∆y,t, ε̃π,t, ε̃π,t, ε̃i,tε̃i,t, ε̃k,t, ε̃k,t

]′
, (19)

where ε̃Mt is a vector of perceived primitive macroeconomic shocks. The perceived volatilities

Q̃M
ξt

of these shocks vary with the same discrete valued random variable ξt but have a

perceived transition matrix H̃ that may di�er from H. In this model, the primitive shocks

perceived by the investor�all of which have some relevance for shareholder cash �ow growth�

are no longer a scalar but instead a vector ε̃Mt that can di�er from εMt . Moreover, as in the

simpli�ed model, R̃M is neither square nor diagonal, so distorted beliefs translate directly

into distorted perceptions about the shocks, leading investors to misattribute a change in

one primitive shock to a mixture of others.

Let T̃M ≡ TM
(
θ̃
M
)
and analogously for RM

(
θ̃
M
)
and CM

(
θ̃
M
)
. As in the simpli�ed

model, investors may exhibit a time-varying DE distortion ηt such that subjective expecta-

tions follow:

Ẽt

[
SM∗
t+h

]
= CM

h

(
θ̃
M
)
+
[
TM

(
θ̃
M
)]h

SM∗
t +

[
TM

(
θ̃
M
)]h

ζηt (20)

where CM
h

(
θ̃
M
)
≡ C̃M + T̃M C̃M +

[
T̃M
]2
C̃M + ... +

[
T̃M
]h−1

C̃M . The scalar parameter

ζ governs the strength of the over- or underreaction to all shocks, with ζ > 0, implying

overreaction, and ζ < 0 implying underreaction. As above, the distortion ηt follows a

VAR(1) process, with an innovation that is proportional to the vector of perceived news ε̃Mt :

ηt = ρηT̃
Mηt−1 + R̃MQ̃M

ξt
ε̃Mt , ρη ∈ [0, 1] . (21)

11The Ao matrix emphasizes that vintage errors can be on a linear combination of elements of SM∗
t and/or

that they apply only to speci�c elements.
12This treats SM∗

t as an unbiased signal of the underlying �true� state vector SM
t that is precise enough

to reasonably ignore any uncertainty about the signal when pricing assets.
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Thus, ηt is a vector with elements comprised of unique decaying sums of multiple past

perceived innovations
{
ε̃Mt , ε̃

M
t−1, ε̃

M
t−2, ...

}
.

Asset Pricing Dynamics The economy is populated by a continuum of identical investors

who earn all income from trade in a stock market and a one-period nominal risk-free bond

in zero net supply. Assets are priced by a representative investor who consumes per-capita

aggregate shareholder payout, Dt = KtYt.

The representative investor's intertemporal marginal rate of substitution in consumption

is the stochastic discount factor (SDF) with logarithm:

mt+1 = ln
(
βp

)
+ ϑpt − γra (∆dt+1) . (22)

where γra is a curvature parameter and where the time discount factor is subject to an

aggregate externality in the form of a patience shifter ϑpt that individual investors take as

given.13 A time-varying speci�cation for the subjective time-discount factor is essential for

ensuring that investors are willing to hold the nominal bond at the interest rate set by the

central bank's policy rule.

The �rst-order-condition for optimal holdings of the one-period nominal risk-free bond

with a face value equal to one nominal unit is

LP−1
t Qt = Ẽt

[
Mt+1Π

−1
t+1

]
, (23)

where Qt is the nominal bond price, Ẽt denotes the subjective expectations of the investor,

and Πt+1 = Pt+1/Pt is the gross rate of general price in�ation. We assume that investors

have a time-varying preference for nominal risk-free assets over equity, accounted for by the

term LPt > 1 in (23), implying that the bond price Qt is higher than it would be absent

these bene�ts, i.e., when LPt = 1. Taking logs of (23) and using the properties of conditional

log-normality delivers an expression for the real interest rate as perceived by the investor:

it − Ẽt [πt+1] = −Ẽt [mt+1]− .5Ṽt [mt+1 − πt+1]− lpt (24)

13This speci�cation for ϑpt is a generalization of those considered in previous work (e.g.,Ang and Piazzesi
(2003); Campbell and Cochrane (1999); Lettau and Wachter (2007)). Combining (24) and (22), we see that
ϑp,t is implicitly de�ned as

ϑp
t = −

[
it − Ẽt [πt+1]

]
+ Ẽt [γra∆dt+1]− .5Ṽt [−γra∆dp,t+1 − πt+1]− lpt − ln

(
βp

)
.
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where the nominal interest rate it = −ln (Qt), πt+1 ≡ ln (Πt+1) is net in�ation, Ṽ [·] is the
conditional variance under the subjective beliefs of the investor, and lpt ≡ ln (LPt) > 0.

Variation in lpt follows an AR(1) process

lpt − lp = ρlp
(
lpt−1 − lp

)
+ σlp,ξtεlp,t (25)

subject to an i.i.d. shock εlp,t ∼ N(0, 1). Since lpt is a component of preferences, distorted

perceptions play no role in (25).

Let PD
t denote total value of market equity. Using (5), pdt ≡ln

(
PD
t /Dt

)
obeys the

following approximate log Euler equation:

pdt = κpd,0 + Ẽt [mt+1 +∆dt+1 + βpdt+1] +

+.5Ṽt [mt+1 +∆dt+1 + βpdt+1] . (26)

Rewriting as a function of rDt+1 and subtracting o� (24), the log equity premium as perceived

by the investor is:

Ẽt

[
rDt+1

]
−
(
it − Ẽt [πt+1]

)
︸ ︷︷ ︸

subj. equity premium

=

 −.5Ṽt

[
rDt+1

]
− C̃OVt

[
mt+1, r

D
t+1

]
+.5Ṽt [πt+1]− C̃OVt [mt+1, πt+1]


︸ ︷︷ ︸

subj. risk premium

+ lpt︸︷︷︸,
liquidity Premium

(27)

where C̃OVt [·] is the conditional covariance under the subjective beliefs of the investor.

The subjective equity premium has two components. The component labeled �subj. risk

premium� is attributable to the agent's subjective perception of the quantity of risk, which

varies in the model with �uctuations in the stochastic volatilities of the macro shocks, driven

by ξt. The term labeled �liquidity premium� comes from the time-varying preference for

risk-free nominal debt over equity. We treat this component as a latent random variable to

be estimated that captures �uctuations in the pricing of risk due to factors not explicitly

modeled, such as time variation in sentiment or implied risk aversion (e.g., from leverage

constraints), �ights to quality, or changes in the perceived liquidity and safety attributes of

nominal risk-free assets (e.g., Krishnamurthy and Vissing-Jorgensen (2012)).

Equilibrium An equilibrium is de�ned as a set of prices (bond prices, stock prices), macro

quantities (interest rates, in�ation, output growth), laws of motion, and investor beliefs such
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that macro dynamics in (11)-(15) and thus (16) are satis�ed, asset pricing dynamics in

(22)-(26) are satis�ed, with investor beliefs characterized by (17), (20) and (21).

Model Solution We solve the system of structural model equations that must hold in

equilibrium, where agents form expectations taking into account the probability of regime

change ξt, using standard algorithms that preserve log-normality of the entire system. Details

are provided in the Online Appendix.

Let SA
t ≡

[
mt, pdt, lpt, Ẽt (mt+1) , Ẽt (pdt+1)

]
be a set of asset pricing state variables

describing the dynamics of (22)-(26), and let St ≡
[
SM
t , S

M∗
t , SA

t , ε̃
M
t , ηt

]′
. The solution to

the complete structural model can be expressed as a MS-VAR in St:

St = C̄
(
θξt , θ̃ξt

)
+ T̄

(
θξt , θ̃ξt

)
St−1 + R̄

(
θξt , θ̃ξt

)
Qξtεt, (28)

where C̄(· ), T̄ (· ), R̄(· ) are matrices of primitive parameters involving elements of θξt and

θ̃ξt , some of which vary with the Markov-switching variable ξt, and Qξt(· ) is a matrix of

shock volatilities that vary stochastically with ξt. The structural shocks are contained in

εt =
(
εMt , εlp,t, εv,t

)′
, which stacks the primitive macro shocks εMt , the liquidity premium

shock εlp,t (a feature of preferences), and the vintage errors εv,t.
14

5 Estimation and Mapping to Data

State-Space Estimation and Filter The system of estimable equations is placed in

state-space form by combining the state equation (28) with an observation equation taking

the form

Xt = Dξt,t + Zξt,tS
′
t + Utvt (29)

vt ∼ N (0, I) ,

where Xt denotes a vector of observable data and machine forecasts at time t, vt is a vector

of observation errors, Ut is a diagonal matrix with the standard deviations of vt on the main

diagonal, and Dξt,t, and Zξt,t are parameters that mapXt into corresponding theoretical

counterparts, which are functions of St. The parameters Zξt,t, Ut, and Dξt,t depend on t

14Neither ε̃Mt or ηt appear separately in εt because ε̃
M
t =

(
R̃M Q̃M

)−1 (
SM∗
t − C̃M − T̃MSM∗

t−1

)
is entirely

pinned down SM∗
t (and thus by εMt and εv,t), while ηt has an innovation that is proportional to ε̃Mt .
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independently of ξt because some series in Xt are not available at all frequencies and/or over

the full sample. As a result, the state-space estimation uses di�erent measurement equations

to include these series when the data are available, and exclude them when they are missing.

We estimate the state-space representation using Bayesian methods based on a modi�ed

version of Kim's (Kim (1994)) basic �lter and approximation to the likelihood for Markov-

switching state space models, specifying two volatility regimes (high/low). A random-walk

metropolis Hastings MCMC algorithm is used to characterize uncertainty. The model pa-

rameters can be estimated on mixed-frequency monthly, quarterly, and biannual data and,

following BLM2, used subsequently along with high-frequency forward-looking data to con-

duct an event study in tight windows around news events to characterize market reactions

to news. We outline this procedure below.

Priors A complete description of the priors is provided in the Online Appendix.15 Here we

discuss priors on parameters governing investor beliefs. For the wedge vector wθ ≡ θ̃
M
− θM ,

we use a prior that is Normal, centered on zero, with standard deviation ±5% deviation

from the objective parameter, i.e., θ̃ = θ(1 +wθ) where wθ ∼ N (0, .052). For the parameter

ζ governing the extent to which investors over- or underreact to perceived shocks, we use

a prior that is Normal, centered on zero, with informative but loose tightness set to unit

standard deviation to achieve modest shrinkage. Importantly, the priors for all of these

parameters are symmetric, i.e., centered on zero, and are therefore without bias regarding

the nature of the distortion. This is essential for our investigation because whether θ̃ ≷ θ

could have quite di�erent consequences for asset pricing dynamics. Likewise, ζ>0 would

imply that investors overreact to perceived shocks, while ζ<0 would imply underreaction.

In both cases, our estimation treats these polar parametric possibilities as equally likely

and accordingly ensures that that both their sign and magnitude are approached as open

empirical questions to be investigated.

Machine Expectations The structural-AI synthesis requires that machine forecasts of

di�erent variables be included in Xt.
16 As discussed above, machine forecasts are mapped

into theoretical counterparts that load on a subvector of St, denoted S
MF
t ≡

[
SM∗
t , SA

t , ε̃
M
t , ηt

]′
,

that excludes SM
t , thereby forcing the measure of non-distorted expectation formation to rely

solely on real-time data SM∗
t . But, unlike investor expectations, mappings for machine expec-

15Priors for most parameters are standard and speci�ed to be loosely informative except where stronger
restrictions are dictated by theory, e.g., risk aversion must be non-negative.

16We use machine forecasts of excess stock market returns, S&P 500 earnings growth, GDP growth, and
in�ation in our estimation�see below.
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tations re�ect the assumption that the machine has learned (from access to a large sample of

data) the objective laws of motion for macro dynamics and the implied asset pricing dynam-

ics (22)-(27). Thus machine forecasts of macro fundamentals are based on forward iterations

of:

SM∗
t = CM

(
θM
)
+ TM(θM)SM∗

t−1 +RM(θM)QM
ξt
εM∗
t , (30)

which twists estimates of θM in the objective LOM (16) toward values consistent with the

machine forecasts. The resulting estimator of θM therefore strikes a balance between pro-

viding a good description of historical data and ensuring that the parameters describing the

objective data evolution are free over�tting and look-ahead bias characteristic of a purely ex

post estimation.

Inferring Belief Reactions to News To infer how investor beliefs are a�ected by news,

we apply the high frequency �ltering algorithm developed in BLM2 for inferring jumps in

investor perceptions about the current economic state, in tight windows around news events.

To do this, we assume that investors can observe monthly values for SM∗
t and the volatility

regime ξt at the end of each month even though they price assets continuously. It follows

that news arriving within the month must lead to updated beliefs about the end-of-month

values of SM∗
t and ξt investors expect to prevail.

17 We refer to these intramonth updates in

beliefs as revisions in nowcasts, which are are equivalent to revisions in perceived shocks and

the objects the �ltering algorithm is designed to estimate. We discuss the procedure brie�y

below, leaving detailed coverage of the general approach to BLM2.

Data and Measurement The meta data-set used for this project consists of thousands of

economic time series at mixed sampling intervals and spans the period January 1961 through

December 2021. For the structural estimation, the observation vector often uses multiple

noisy signals of the objective underlying theoretical concept. The measurement equation

allows for observation errors in order to soak up variation in the signal that does not move

identically with the theoretical concept. In what follows, we provide a brief summary of the

data and how it is used. A complete description of the data, sources, and mapping to the

model is provided in the Online Appendix.

Data used in structural estimation We estimate the model structural parameters

on data at monthly or lower frequency sampling intervals (as available) from 2001:01-2021:12.

17Investors can observe the objective volatility regime sequence
{
ξt, ξt−1, ...

}
at the end of each t, but

their perceived volatilities Q̃M,ξtmay still di�er from the objective QM,ξt .
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Many series are used because they have obvious model counterparts, e.g., GDP growth, CPI

in�ation, the federal funds rate (FFR), stock market returns, the S&P 500 market capital-

ization. We use real-time versus historical versions of these, as appropriate for mappings

involving SM∗
t versus SM

t . The ratios of U.S. corporate sector payout-to-GDP, S&P 500

earnings-to-GDP and S&P 500 dividends-to-GDP are all used as noisy signals on the pay-

out share Kt. Investor expectations over multiple horizons are informed by (i) surveys of

expectations on future stock returns from UBS/Gallup, the Michigan Survey of Consumers

(SOC), the Conference Board (CB), the CFO Survey from the Richmond Federal Reserve

Bank, and the Consensus Forecasts of the S&P 500 index from Bloomberg (BBG), (ii) eq-

uity analysts' S&P 500 one-year-ahead earnings growth expectations from IBES and their

long-term-growth expectations using the LTG expectation variable (see below), (iii) dividend

growth expectations using S&P dividend futures data following the procedure of Gormsen

and Koijen (2020), (iv) expectations of future in�ation and GDP growth from the Survey of

Professional Forecasters (SPF), BBG, the Livingston (LIV) Survey (in�ation only), and the

Blue Chip (BC) Survey, (v) interest rate expectations using Federal Funds Futures (FFF),

Eurodollar (ED) futures, both at multiple contract horizons, and the Blue Chip (BC) survey

expectations of the FFR 12 months ahead.18 Data on the spread between the Baa corporate

bond return and the 20-year Treasury bond return (�Baa spread� hereafter) are used as a

noisy signal on the liquidity premium, lpt.

Data used for news events and high-frequency �ltering To estimate news-driven

revisions in perceptions of the economic state SM∗
t , we use pre- and post-news event obser-

vations on a subset of the above series available at high frequency. These include tick level

data on stock returns, the S&P 500 market capitalization, FFF and ED contract rates with

di�erent expiries, daily BBG survey expectations on multiple variables, and daily data on the

Baa spread.19 In our analysis, the pre-event value is always either 10 minutes before or the

day before the news event, depending on data availability (daily versus minutely/tick level),

and the post-event value is either 20 minutes after or the day after. Our sample of news

events contain (i) 1,482 macroeconomic data releases for GDP, the Consumer Price Index

(CPI), U.S. unemployment, and U.S. payroll data spanning the period 1980:01-2021:12, (ii)

16 corporate earnings announcement days spanning 1999:03-2020:05, and (iii) 219 Federal

Open Market Committee (FOMC) press releases from the Fed spanning 1994:02-2021:12.

18In principle, fed funds futures market rates may contain a risk premium that varies over time. If such
variation exists, it is absorbed in the estimation by the observation error for these equations (Piazzesi and
Swanson (2008)).

19For events that occur when the market is closed we use minutely data on the S&P 500 E-mini futures
market.
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The corporate earnings news events are from Baker, Bloom, Davis and Sammon (2019) who

conduct textual analyses of Wall Street Journal articles to identify days in which there were

large jumps in the aggregate stock market that could be attributed primarily to corporate

earnings news with high con�dence.20 We run the �lter to obtain estimates of St at high

and low frequency from 2008:01-2021:12.

Data inputs for machine learning algorithm The machine learning algorithm

used to produce dynamic machine expectations uses thousands of initial data inputs, many

of which are converted to di�usion index factors before being passed to the machine estimator

following BLM1. The initial data inputs include a real-time macro dataset on 92 indicators,

a panel dataset of 147 monthly �nancial indicators, and daily �up-to-the-forecast� �nancial

market information from �ve broad classes of �nancial assets: (i) commodities prices (ii)

corporate risk variables including credit spreads (iii) equities (iv) foreign exchange, and (v)

government securities. A number of other inputs are used, including consensus forecast

surprises, market jumps around past news events, and daily text-based factors estimated by

Latent Dirichlet Allocation (LDA) analysis from around one million articles published in the

Wall Street Journal between January 1984 to June 2022.21

6 Results

This section presents our estimation results. We begin with preliminary analysis of machine

forecasting performance as compared to surveys and other benchmarks.

Preliminary Analysis Table 1 summarizes the forecasting performance of the machine

relative to a survey or other benchmark for several di�erent variables. Relative forecasting

performance is reported as the ratio of the mean-square-forecast-error (MSE) of the ma-

chine, �MSEE� to that of the benchmark �MSEF�. The sample for these comparisons varies

depending on the availability of the survey data.

Panel (a) of Table 1 considers forecasts of the stock market. Surveys vary according to

whether they ask about returns or price growth. To compare survey with machine forecasts,

20Baker et al. (2019) (BBDS) examine next-day newspaper accounts of big daily moves (�jumps�) in the
stock market. Trained human readers classify the proximate cause of each jump into distinct categories and
code the con�dence with which the journalist advances an explanation for the jump. We are grateful to the
authors of Baker et al. (2019) for providing us with their data for these event days.

21The results here are based a randomly selected sub-sample of 200,000 articles over the same period. This
procedure follows Bybee et al. (2021), and estimates topic weights for individual articles to construct a time
series of news attention by topic.
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Table 1: Forecasting Performance: Machine v.s. Benchmarks

ML: yj,t+h = GjhM (Zt) + ϵjt+h

(a) Stock Returns
Horizon h quarters 4 4 4 4
Benchmark SOC Gallup/UBS CFO Livingston
MSEE/MSEF (LSTM) 0.830 0.723 0.808 0.774
OOS R2 0.170 0.277 0.193 0.226
Horizon h quarters 4 8 12
Benchmark Mean Mean Mean
MSEE/MSEF (LSTM) 0.786 0.656 0.608
OOS R2 0.214 0.344 0.392

(b) S&P 500 Earnings Growth
Horizon h quarters 4 8 12 LTG
Benchmark IBES IBES IBES IBES
MSEE/MSEF (LSTM) 0.534 0.507 0.450 0.846
OOS R2 0.466 0.493 0.550 0.154

(c) 1-year ahead In�ation and GDP Growth
In�ation GDP

Benchmark SPF SPF
MSEE/MSEF (LSTM) 0.771 0.876
OOS R2 0.229 0.124

MSEE and MSEF are the machine and benchmark mean-squared-forecast-errors, respectively. OOS R2 is
de�ned as 1-MSEE/MSEF. The out-of-sample evaluation period is 2005:Q1 to 2021:Q4 for stock excess
returns when the benchmark is the SOC and CFO survey, 2005:Q1 to 2007:Q3 when the benchmark is the
Gallup/UBS survey, and semi-annual over 2005Q1 to 2021Q4 for Q2 and Q4 of each calendar year when the
benchmark is the Livingston survey. For earnings growth, the out-of-sample evaluation period is 2005:Q1 to
2021:Q4, with h-quarter ahead forecasts constructed from the middle month of each quarter. For in�ation
and GDP growth the evaluation period is 1995:Q1 to 2021:Q4. Forecasts the historical mean (�Mean�) are
based on a �rst estimate of the mean from 1959:Q1 to 2004Q4 and then recursively updating the estimate,
adding one observation at a time, over period 2005Q1 to 2021Q4.

we compute machine forecasts for either the annual Center for Research in Securities Prices

value-weighted return series (CRSP-VW, includes dividends) or S&P 500 price index growth,

depending on which variable most closely aligns with the concept that survey respondents

are asked to predict (see the Online Appendix for discussion of survey-by-survey conceptual

alignment). Comparisons between machine and survey forecasts are made for four surveys of

the stock market: the University of Michigan's Survey of Consumers (SOC), the Gallup/UBS

poll of corporate executives, the CFO survey of corporate executives, and the Livingston

Survey of forecast professionals.22 We also compare the machine performance to a benchmark

22The SOC surveys are qualitative up/down forecasts that we convert to point forecasts using the method-
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based on a recursive estimate of the historical mean, given �ndings elsewhere that it is di�cult

for statistical models to beat such a measure when predicting excess stock market returns out-

of-sample (Goyal and Welch (2008)). Panel (a) shows that the machine algorithm produces

forecasts of excess returns that are consistently and substantially more accurate than all of

these benchmarks. The ratio of the machine MSE to survey MSE is 0.62, 0.71, 0.72, 0.78

compared to the Gallup/UBS, CB, SOC, and CFO surveys, respectively. This corresponds

to out-of-sample R2 statistics of 0.38, 0.29, 0.28, and 0.16, respectively, implying that the

machine forecasts are 38%, 29%, 28%, and 16% more accurate than the respective survey

forecasts. The machine is also substantially more accurate than the historical mean, with the

ratio of the machine MSE to historical mean MSE equal to 0.80, 0.81, and 0.81 for one-year,

two-year, and three-year excess return forecasts.

Table 1, panel (b), considers forecasts of earnings growth on the S&P 500. We compare

the machine expectations to the median IBES equity analyst forecasts of one-, two-, and

three-year-ahead earnings growth on the S&P 500, following the procedure of De La O and

Myers (2021) to convert �rm-level earnings per share forecasts to S&P 500 forecasts by

aggregating over the value-weighted �rm-level forecasts and converting to growth forecasts.

When using the IBES long-term growth forecasts (LTG), we follow Bordalo et al. (2019) in

aggregating the value-weighted �rm-level long-term growth forecasts of the median analyst

to obtain LTG at the S&P 500 level. We treat LTG as measuring annual �ve-year forward

growth expectations, i.e., annual earnings growth from four to �ve years ahead.23 The

machine substantially improves on the predictive accuracy of the IBES analysts, where the

ratio of the machine MSE to IBES MSE is 0.68, 0.55, and 0.54 for one-, two-, and three-

year-ahead earnings growth, respectively, implying the machine is 32%, 45%, and 46% more

accurate than the median analyst for these predictions. The machine is about 69% more

accurate than LTG when forecasting annual earnings growth �ve years forward.

Finally, Figure 1, panel (c) compares machine forecasts of in�ation and Gross Domestic

Product (GDP) growth with the median SPF forecast of these variables and shows that the

ratio of the machine MSE to MSE of the median SPF forecast is 0.77 for in�ation and 0.88

for GDP growth.

ology described in the Online Appendix. To obtain subjective expected excess returns, we subtract the one-
year Treasury bill rate measured at the beginning of the survey month from stock market return expectations
within each quarter.

23IBES states that �The long term growth rate represents an expected annual increase in operating earnings
over the company's next full business cycle. These forecasts refer to a period of between three and �ve years.�
Although there is ambiguity in the question framing, interpreting LTG as an expected annual n-year forward
growth rate (rather than the expected annualized n-year growth rate), is consistent with the reference to
the next full business cycle and moreover makes the stable median LTG forecast easier to reconcile with the
volatile median one-year growth forecast.
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Overall, these results are consistent with the premise that a relatively unbiased, information-

e�cient machine using only real-time information is able to detect patterns in widely available

data that notably improve predictive accuracy over human forecasts. This systematically su-

perior performance motivates our use of the machine benchmark for measuring non-distorted

expectation formation in the structural estimation.

Table 2: Parameters

Objective Perceived Objective Perceived
ψi 0.0100 0.0100 βπ,i 0.0025 0.0025
ψπ 0.0019 0.0019 βπ,π −0.0001 −0.0001
ψ∆y 0.0001 0.0001 βπ,∆y 0.0012 0.0012
ϕi 0.0484 0.0484 β∆y,i −0.0072 −0.0072
ϕπ 0.0016 0.0016 β∆y,π 0.0002 0.0002
ϕ∆y 0.0022 0.0022 β∆y,∆y 0.0001 0.0002
ϕk 0.0383 0.0382 βk,∆y −9.0540 −8.9530
γra 2.2975 � ρk,k 0.9929 1.0353
ζ 3.8720 � ρlp 0.9382 �

ρη 0.9977 �

Notes: Posterior mode values of the parameters. The estimation sample spans 1961:M1-2021:M12.

Parameter Estimates Table 2 reports the posterior mode values for model parameters.

Where applicable, separate values are reported for estimates of parameters governing the

objective macro LOM (�Actual�) and the perceived macro LOM (�Perceived�). We highlight

several results.

First, the scalar parameter ζ is estimated to be a positive value equal 3.87, implying a

DE distortion indicative of overreaction to each perceived macro innovation in ε̃Mt . Second,

for many parameters governing perceived macro dynamics, there is little deviation from the

corresponding objective parameter value. However, there are appreciable di�erences in a few.

We �nd ρ̃k,k > ρk,k, implying that today's payout share news is over-extrapolated to future

payout share movements. There are also di�erences in the perceived and actual values of

βk,∆y, which in both cases is negative. This implies that increases in trend growth ∆yt drive

down the payout share kt. Because kt a�ects kt and ultimately future kt through (11) and

(15), the estimates say that increases in ∆yt cause a long-lasting decline in kt. Yet because

0 > β̃k,∆y > βk,∆y, we �nd that investors underestimate the absolute impact of ∆yt on kt, so

that observed declines in kt originating from increases in ε∆y,t will be partly misattributed to

another perceived shock that moves kt in the same direction. We return to this below. At the
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same time, β∆y,∆y is positive but small, indicating that∆yt has only modest predictive power

for future output growth, consistent with the fact that economic growth less autocorrelated

than the other variables in our system. Putting this all together, this shows that increases

in ε∆y,t are tantamount to bad cash �ow news: the positive e�ects on economic growth are

outweighed by the persistent negative e�ects on growth in the payout share.24

Table 3: Asset Pricing Moments

Moments Model Data
Mean StD Mean StD

Log Stock Return 8.77 12.35 8.96 12.29
Log Excess Return 7.29 14.81 7.42 14.85
Real Interest Rate 1.48 2.92 1.54 2.53

Notes: Model moments based on modal parameter and latent state estimates. Annualized monthly statistics

(means multiplied by 12, standard deviations by
√
12) and reported in units of percent. The log return

(data) is the log di�erence in the S&P 500 market cap; excess returns subtract o� FFR. The real interest

rate is FFR minus the average one-year ahead forecasts of in�ation from the BC, SPF, SOC, and Livingston

surveys. The sample is 2001:M1 - 2019:M12.

Table 3 shows basic asset pricing moments for stock returns and the real interest rate

implied by these estimates. The model based moments for these series are based on the

modal parameter and latent state estimates and match their data counterparts closely.

Market Reactions to News: High-Frequency Structural Event Study To make

progress on how markets react to this news, we use the BLM2 �ltering algorithm to infer

revisions in investor perceptions about the economic state, at high frequency around news

events.

This procedure can be summarized as follows. Consider news events that occur within a

given month t of our sample. Let δh ∈ (0, 1) represent the number of time units that have

passed during month t up to and including some particular point t − 1 + δh. Let S
M∗(i)
t|t−1+δh

denote a �ltered estimate of investor beliefs at time t−1+δh about the time t economic state

they expect to prevail when it is observed at the end of the month, conditional on the volatil-

ity regime ξt = i. This is an estimate of the investor's nowcast of S
M∗(i)
t . Let the associated

�ltered volatility regime probabilities be denoted πi
t|t−1+δh

≡ Pr (ξt = i|Xt−1+δh , X
t−1), where

X t−1denotes the history {Xt−1, Xt−2, ...}. Finally, let δh assume distinct values δpre and δpost
that denote the times right before and right after the news event. Announcement-driven revi-

sions in SM∗(i) and in πi are computed using high-frequency, forward-looking data by taking

24This result echoes �ndings in Greenwald, Lettau and Ludvigson (2019), which shows that the U.S. stock
market grew far faster during decades with sluggish economic growth but rapid growth in the earnings share,
than in decades with rapid economic growth but a relatively stable earnings share.
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the di�erence between the estimated values for these variables pre- and post-news event.

These di�erences can be linked back to jumps in speci�c variables in Xt (e.g., the stock

market) using the mapping (29) and further decomposed into contributions coming from

revisions in perceived shocks and volatility regimes using (28). We refer to these as �shock

decompositions� and report them below. For recording the contribution of movements in

subjective return premia, we report the combined contributions of lpt and the volatility

regimes to �uctuations in Ẽt

[
rDt+1

]
−
(
it − Ẽt [πt+1]

)
in (27), labeled �equity premium� in

the �gures below.

For the macroeconomic data releases and Fed news events we have an exact time stamp

indicating when the information was released to the public. This allows us to construct

precise 30 minute windows for these events (δpre =10 minutes before to δpost =20 minutes

after). We then run the �lter at these times pre- and post-news using minutely or tick-level

�nancial market data. We also use daily data on the day before and the day after these

events for those series that are available daily but not at higher frequency. For the corporate

earnings news�where events span an entire day�we run the �lter using information on all

high-frequency series from the close of the market on the day before to the opening of the

market on the day after.

Our structural event study �ndings are divided by news category and displayed in a series

of bar charts. For each shock decomposition �gure, we report the market jump in the data

(as measured by the S&P 500) with a black dot and the jump implied by the estimated model

with a red triangle. Decompositions for the estimated baseline model (�Base�, shown in the

�rst bar from the left), always have black dots that lie on top of the red triangles because the

baseline model is able to match both the direction and magnitude of the actual market jump

with negligible error. We then compare these decompositions to two counterfactuals to reveal

how the market would have behaved in the absence of distortions: (i) rational expectations,

i.e., ζ = 0 and wθ = 0 ∀θ, �RE� in the �gures, and (ii) No DE, i.e., only ζ = 0. The news

event itself is described brie�y in the subpanel titles, e.g., �Cut w/ ref to slowdown� refers

to the Fed's decision to cut rates citing concerns about an economy-wide slowdown. As we

have over 1700 separate news events, for the purposes of the plots below we focus on the

news by category associated with the biggest stock market jumps in absolute value. (The

results for all events are summarized in a subsequent table.)

Figure 1 reports the results for Fed news events. Panel (a) depicts the market response

to the most quantitatively important Fed announcement in our sample, which occurred on

January 3, 2001 when the central bank announced it would decrease the target federal funds

rate by 50 basis points and the S&P 500 surged 4.2% in the 30 minute window surrounding the
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Figure 1: Biggest Market Events: FOMC
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Notes: The �gure reports shock decompositions of the pre-/post- FOMC announcement change in S&P 500
attributable to revisions in the perceived macro shocks and the subjective equity premium (the combined
e�ect of shocks to lpt and stochastic volatility). The speci�c FOMC events reported on are those coinciding
with the four largest jumps in the S&P 500 in the high-frequency event window. The modi�ers (+) or (-)
refer to the sign of the baseline response to a positive increment in the fundamental shock labeled in the
legend. The sample is 2001:M1-2021:M12.

news. What did markets take away from this announcement? The estimates for the baseline

model (left most bar) show that the biggest contributors to the jump were upward revisions in

the perceived shocks to the trend payout share and output growth, and a downward revision

in the subjective equity premium. The next two bars show that, under RE, the market

would have jumped up 3.5% rather than 4.2%, an overreaction driven almost entirely by the

DE distortion. (This can be observed by noting that the �No DE� counterfactual results in

virtually the same jump and decomposition as the RE counterfactual.) DE causes investors to

react with excessive optimism to the trend payout share and output growth shocks, in�ating

the price response. This same pattern leads to even greater overreaction for the FOMC event

depicted in panel (d), when the market jumped up by 2.10%, while it would have jumped

only .77% under RE. The �avor of these results are broadly consistent with ideas put forth

in recent work by Jin and Li (2023) who hypothesize that equity analysts overreact in their

long-term earnings growth forecasts because they wrongly infer stock price movements as

cash �ow driven when they are in fact discount rate driven. Unlike Jin and Li, in our
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analysis equity analyst forecasts are but one of several signals on investor beliefs, and price

movements are endogenous outcomes determined in equilibrium. However, the larger �nding

here that news is overreacted to because investors systematically overstate its implications

for payout-relevant factors (while understating in relative terms its implications for discount

rates) con�rms their basic hypothesis, and is supported by our estimation for other events.

Figure 2: Biggest Events: Macro News

(a): Apr/10/20
Core CPI, -0.2% surprise

Base RE No DE
-3

-2

-1

0

(b): Jun/17/10
Weak jobs, manu data

Base RE No DE
-1

0

1

2

Data Model

(c): Jul/02/20
Unemployment Rate, -1.2% surprise

Base RE No DE
-1

0

1

2

3

4

(d): Jan/16/08
Core CPI, -0.1% surprise

Base RE No DE
-6

-4

-2

0

2

4

Monetary Policy (-) Inflation (-) Output Growth (+) Payout Share (-) Equity Premium (-)

Trend Interest Rate (-) Trend Inflation (-) Trend Growth (-) Trend Payout Share (+)

Notes: See Figure 1. The �gure reports shock decompositions for the four biggest macro news events based
on absolute jumps in the S&P 500 in the high-frequency event window.

Figure 2 turns to market reactions to news about the macro economy. Panel (a) shows

that, on April 10, 2020, early in the Covid-19 outbreak, the market fell 2.8% in the 30 minutes

surrounding the Bureau of Labor Statistics (BLS) release of the CPI report, which came in

.2% below consensus forecasts.25 In this case the main driver of the 2.8% decline was an

outsize reaction to a higher perceived payout share shock (this time the cyclical component,

shown in purple). Yet because this shock plays virtually no role in the rational response,

25The BLS releases typically occur at 8:30 am. We use S&P E-mini futures data to gauge market reactions
to these events.
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under the RE counterfactual the market would have declined just 0.55%. The same pattern

but in the opposite direction plays out for the event in panel (b) surrounding the release

of several pieces of data showing surprising economic weakness, which the estimates imply

led to a downward revision in the perceived cyclical payout share shock, which contributed

positively to the 2% market jump, while under RE it would have increased 0.37%.

Figure 3: Responses to Payout Share Shocks
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Notes: This �gure plots estimated impulse responses at the posterior model parameter values, in deviations
from steady-state, to positive payout share shock (top panels) and a positive trend payout share shock
(bottom panels), respectively.

To understand this result, we must �rst explain why a positive increment to the payout

share shock causes a sharp decline in the stock market in the baseline case, but not under

RE. For this we refer to Figure 3, which plots estimated impulse responses, in deviations

from steady state, to 2 standard deviation increases in the payout share shock, εk,t, (top row)

and trend payout share shock, εk,t, (bottom row). From the top row, left panel, we see that

a positive payout share shock leads to a highly transitory increase in payout relative to GDP

that quickly mean reverts. Under both RE and in the baseline model, this mean reversion in

the payout share creates the expectation of negative fall-back growth in payout next period

(top row, middle panel), consistent with the common understanding that the payout share

is stationary. However, in the RE case, expected fall-back growth is just negative enough to

(almost) restore the kt to its steady state level within one period, so that expected growth

34



from period 1 onward is approximately zero.26 Because the shock is rationally perceived

to be a highly transitory deviation from the steady-state payout-output share, it has a

negligible e�ect on the level of the stock market (top row, right panel). By contrast, in the

baseline model with DE, the investor strongly overreacts to the increase in εk,t, giving rise

to excessive pessimism about fall-back growth next period. This e�ect (demonstrated above

in the simpli�ed model) is equivalent to temporarily believing that the level of the payout

share will revert to below steady state. This erroneous belief causes the market to crash

before recovering next period when actual growth is observed and investors learn that they

had been excessively pessimistic (top row, right panel).

These results can be contrasted with the responses to a trend payout share shock in the

bottom row of Figure 3. Unlike an increase in εk,t, an increase in εk,t has highly persistent

e�ects on kt, implying that mean reversion takes decades.27 When the shock hits, we get

a one-time jump up in expected payout growth for next period that falls back toward zero

in period 1. In the baseline model, however, overreaction to the initial good news from εk,t
is overreacted to, creating excessive optimism and in�ating the price response. The same

phenomenon leads to disappointment the following period when actual growth is observed

and investors learn that they had been excessively optimistic, causing a price reversal back

toward the RE response.28 Note that while expected growth overreacts to both εk,t and εk,t,

the estimated magnitudes di�er�overreaction to εk,t is greater� leading to commensurately

di�ering magnitudes of overreaction in the stock price response.

Panel (c) of Figure 2 shows how the speci�c news content of an event can deliver starkly

di�erent results depending on how the composition of perceived shocks is revised in response.

In reaction to the event depicted�the July 2, 2020 BLS release of the unemployment rate�the

stock market rose 1.97%, an increase that coincides with the baseline model response. Yet the

market's response this news would have been to jump 3.35% had expectations been formed

rationally, implying that distorted beliefs and DE in particular led the market to underreact

to the BLS announcement. This happens because, while the news causes investors to revise

down their perception of the equity premium, which pushes the market up, it also causes

a partially o�setting upward revision in the payout share shock, which pushes the market

down. As in panel (a), this contributes negatively to the market change because it causes

26It would be exactly zero if εk,t were exactly i.i.d, but since kt a�ects kt, which enters into (15), the shock
causes expected payout growth in period 1 to rise imperceptibly above zero before declining slowly back to
zero over time.

27Payout rises in period 1 because εk,t a�ects kt with lag�see (15).
28The baseline price remains slightly above the RE level for some time before �nally converging. This

happens because excessive optimism or pessimism generated by DE is modulated by the shock's perceived
persistence, which in this case is estimated to be high�see (21).
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excessive pessimism about expected fall-back growth next period. Under RE there is no

excessive pessimism to the payout share shock and thus no erroneous partially o�setting

contribution that dampens the market response, as shown in Figure 3. In addition, under

RE we see that a downward revision in the perceived shock to trend growth∆yt (yellow bar)

contributes positively to the market change because, as the parameter estimates in Table 2

indicate, this generates the expectation of higher future payout growth. By contrast, this

positive force for the market makes a smaller positive contribution to the market change in

the no DE case and only a very small positive contribution in the baseline model with DE. As

we explain below, the reason is that part of the negative impulse to ε∆̄y,t is misperceived as

a positive (cyclical) payout share shock, which has a less persistent e�ect on payout growth

than ε∆̄y,t thereby dampening its e�ect on the market, a misperception that is necessarily

ampli�ed by DE. This event shows how DE, especially when combined with distortions in

the perceived law of motion, can result in market underreaction to events because the degree

of overreaction to counteracting perceived shocks can be asymmetric across shocks.

It is important to emphasize that this underreaction is not due to inattention, since a

single parameter with an estimated value indicative of behavioral overreaction controls the

distorted reactions to all shocks. The event in panel (c) underscores the capacity of DE to

generate asymmetric compositional e�ects capable of either amplifying or dampening market

�uctuations.

Figure 4 shows shock decompositions for the stock market's reaction to news about

corporate earnings, measured from the market close the day before to the market open

the day after big corporate earnings news days. Consider January 20, 2009, a news day

in the wake of the �nancial crisis when the market declined 5.2% amid extensive reports

about unrealized losses in the portfolio of asset manager State Street and in the portfolios of

large banks�panel (b). The baseline model shows that the market declined largely because

investors again overreacted to an upwardly revised perceived payout share shock, which was

only partially o�set by a downward revision in the subjective equity premium. Under RE,

the market would have declined just 1%, largely because there is no overreaction in this

case to the payout share shock. However, there is an additional e�ect that also presents

itself in panel (c) of Figure 2: under RE, an upward revision in the perceived shock to trend

growth ∆yt (yellow bar) makes a large negative contribution to the market response that

is, although present, very small and thus barely visible in the plot for the baseline model.

To understand this result, recall that the estimates imply 0 > β̃k,∆y > βk,∆y, which means

that investors underestimate the negative impact of higher ∆yt on kt and, as a consequence,

perceived declines in kt originating from increases in ε∆y,t will be partly misattributed to
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Figure 4: Biggest Events: Earnings News
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Notes: See Figure 2. The �gure reports shock decompositions for the four biggest corporate earnings news
events based on absolute jumps in the S&P 500 in the high-frequency event window.

another shock.

To see which shocks this misattribution maps into, we report in Figure 5 estimated

impulse responses of all perceived shocks in ε̃Mt to a 2 standard deviation increase in the

actual trend growth shock ε∆y,t. Under RE, only the perceived trend growth shock responds

to an actual trend growth shock, as all perceptions are accurate. By contrast, in the baseline

model, an increase in ε∆y,t not only causes ε̃∆y,t to increase, it also causes ε̃k,t to decrease

strongly and persistently, and causes ε̃π,t to increase by a smaller absolute magnitude. The

confounding negative e�ect on ε̃k,t of a positive impulse to ε̃∆y,t creates the false expectation

of catch-up growth in payout next period, with pricing e�ects that are ampli�ed by DE (top

panel, Figure 3). The over-optimism about catch-up growth almost entirely counteracts the

negative e�ects on perceived future payouts originating from ε∆y,t. This explains why a

shock to trend growth (yellow bar) has a very small a�ect on stock prices in the baseline

model in Figure 4. Note that the overall e�ect of this misattribution is necessarily ampli�ed
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Figure 5: Responses of Perceived Shocks to Actual Trend Growth Shock
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Notes: This �gure plots estimated impulse responses at the posterior model parameter values, in deviations
from steady-state, of perceived shocks to an actual (positive) trend growth shock.

by DE, since diagnostic expectations operates on the shocks investors perceive rather than

those that actually occurred.

Table 4 summarizes the magnitude of over- or underreaction across all news event of

a given type in our sample. We compute the di�erence between the absolute value of the

pre-/post- news-event jump in the S&P 500 implied by the baseline model and the RE coun-

terfactual, then average these di�erences across all events in a given category and express it

as a fraction of the absolute jump in the market. Positive values for this di�erence indicate

overreaction on average, while negative values indicate underreaction.29 We repeat the com-

putation for news that generated the �Biggest� and �Smallest� absolute jumps in the S&P

500 during the news window. For Fed and macro news (where we have hundreds of events)

�Biggest� (�Smallest�) refers to the top (bottom) 10% of all events based on the absolute

change in the S&P 500. For the corporate earnings news events, where we have only 16

event-days, we de�ne �Biggest� (�Smallest) as the top (bottom) 3 events according to the

same criteria.

Table 4 shows that, averaged across all events, we �nd negative di�erentials in the cat-

egories of Fed and macro news, i.e., underreaction, a result driven by the smallest market

29We average across all events in which the baseline and non-distorted jumps are in the same direction.
Jumps in the opposite direction happen infrequently in our sample, but also can't be readily categorized as
either over- or underreaction, as opposed to simple �wrong� reaction.

38



Table 4: Average Jump Di�erentials

All Events Biggest Jumps Smallest Jumps
Macro News

−12.1% 24.5% −26.7%
CorporateEarnings News

14.2% 42.8% 5.3%
FOMC News

−13.2% 12.9% −18.1%

This table reports
(
|JBase| − |JRE |

)
/|JMarket| the average di�erence between the pre-/post- news event

jump (in absolute value) for the baseline model |JBase| and that for the counterfactual RE case |JRE |
divided by the absolute market jump |JMarket|. For macro and Fed news, "Biggest" ("Smallest") refers to

the top (bottom) 10% of all events based on the absolute change in the S&P 500 over the news window. For

earnings news "Biggest" ("Smallest") refers to the top (bottom) 3 events.

events. The biggest market events are characterized by overreaction in all news categories.

The largest of these is for earnings news, where the market overreacted by an average of 43%

of the total market change. To points are worth noting. First, the corporate earnings news

events are only large events, as BBDS focus on days with large stock market movements.

Second, many of the macroeconomic data and FOMC press releases convey little if any in-

formation that was not already anticipated. Naturally, these events reside in our �Smallest�

events category because they generate little to no reaction in the market and thus little to

no over- or underreaction in absolute terms, even though the latter can still be large as a

percentage of a tiny market change.

We can also use the structural model to categorize news events by whether the market

exhibited over- or underreaction. Table A.5 in Appendix D shows that market jumps in tight

windows around news events in a given month to which the stock market is categorized as

having overreacted are followed by lower subsequent returns, while those categorized as un-

derreactions are followed by higher future returns. This additional validation is encouraging,

given that we measure only a handful of events in any given month, whereas the market as

a whole is bu�eted by many types of other unmeasured news that would create noise.

Market Valuation: Historical Analysis We now turn to a longer term analysis to study

the model's predictions outside of tight windows around news events. Panel (a) of Figure 6

reports the log ratio of market equity to last month's output, pDt − yt−1, for both the data30

and the baseline model, where the latter is computed at the modal values of all parameters

30We use the interpolation method of (Stock and Watson (2010)) to obtain a monthly GDP series for
estimation.
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Figure 6: Counterfactual Simulations of S&P 500-GDP Ratio
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Notes: Panel (a) plots the log S&P500-to-lagged GDP ratio along with the the model-implied series based
on the modal parameter and latent state values. Panel (b) plots the data and the counterfactual RE series
in dashed blue. Panel (c) plots a historical decomposition of log S&P 500-lagged GDP ratio, normalized
to have a mean of zero over the sample period. Panel (d) plots the counterfactual historical decomposition
under RE of the same series. The sample spans 2001:M1 - 2021:M12

and latent states. (Because the model �ts the observed series e�ectively without error, two

lines lie on top of each other.) Panel (b) reports the data once more, along with our estimate

of the market evolution under a counterfactual simulation in which parameters consistent

with RE prevailed.31 The plots span 2001:01-2021:12. The bottom row of Figure 6 reports

historical decompositions of the variation in pDt −yt−1, for the baseline model in panel (c) and

for the RE counterfactual in panel (d). These report cumulative month-to-month changes

in pDt − yt−1 decomposed into cumulative fundamental shocks and premia.

While panel (a) says that the baseline model perfectly explains the market's �uctuations,

panel (b) tells us that the �t of the counterfactual RE case is far worse. Indeed RE implies

a counterfactually volatile stock market, demonstrating the extent to which distorted beliefs

31A counterfactual simulation feeds in the shocks implied by the baseline model estimates, and only
changes the parameter values, a procedure that isolates the strength of the mechanism in the baseline model
compared to some counterfactual mechanism. This di�ers from the implications of a counterfactual model,
in which the shocks would be re-estimated under an alternative set of parameters not chosen by the baseline
estimation. The latter may be of interest in some contexts, but it cannot isolate the strength of a baseline
model mechanism, since both the mechanism and the shocks change.
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with behavioral overreaction were a strong stabilizing force over the post-millennial period,

substantially cushioning declines during the global �nancial crisis, among other episodes.

The historical decompositions in the bottom row help to explain why. First consider

the sharp decline in the stock market in the �nancial crisis (around 2008 in the plot). This

episode is characterized by a sharp decline in the payout share shock εk,t, to which in the

baseline model the the investor strongly overreacts, leading to excessive optimism about

catch-up growth in payouts. That over-optimism makes a large positive contribution to the

market (purple bar), partially o�setting the predominating negative contributions due to

other shocks that were still overreacted to but to a lesser degree. The market declines more

under RE in this episode because there is no overreaction to the decline in εk,t and thus no

excessive optimism about catch-up growth.

Following the outbreak of the Covid-19 pandemic, panel (c) of Figure 6 shows that the

market declines mainly because the predominating negative forces for the market coming

from a lower perceived output growth and upward revisions in the subjective return pre-

mia more than o�set overreaction to better-than-expected trend payout news and a lower

trend interest rate, slightly dampening the market's decline relative to RE in panel (d). A

subsequent rebound occurs in both cases, but for di�erent reasons. Panel (d) shows that

lower values for the trend growth shock ε∆y,t (yellow bar) make a series of strong positive

contributions to expected future payouts and thus the market under RE that are missing

in panel (c) for the baseline model. This happens because, as discussed above, the investor

erroneously attributes part of the movement in ε∆y,t to an impulse in ε̃k,t, which counteracts

any in�uence on perceived future payouts originating from the objective impulse in ε∆y,t.

7 Conclusion

We measure the nature and severity of a variety of belief distortions in market reactions to

hundreds of economic news events. To do so, we use a new methodology developed here

that synthesizes estimation of a structural asset pricing model with algorithmic machine

learning to quantify bias. The structural model allows for beliefs that could either over- or

underreact to multiple perceived fundamental shocks (depending on parameter values), and

for the perceived law of motion driving macroeconomic dynamics to di�er from the actual

law of motion.

Our estimates imply that investors overreact to perceptions about multiple fundamental

shocks, as well as to numerous real-world news events. Yet we show that behavioral overre-

action can sometimes be a force for market stability in a multivariate setting. This happens
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because the sum total of di�erent individual overreactions to multiple simultaneous shocks

can dampen rather than amplify their combined market impact relative to a fully rational

counterfactual. We �nd this phenomenon playing out over the course of our sample around

many news events and during several major episodes of post-millennial stock market history,

substantially cushioning market declines during the global �nancial crisis. In other events,

our estimates imply that investors underreacted to speci�c shocks because they systemat-

ically misperceived the true origin of the impulse, a phenomenon necessarily ampli�ed by

diagnostic expectations.

A transformative idea of 20th century economic thought is that �nancial markets are

�excessively volatile� vis-a-vis predictions of canonical theory in which stock prices are the

rational expectation of future cash �ow fundamentals, discounted at a constant rate (Shiller

1981, 2000). We showed here that an arguably more plausible rational expectations bench-

mark that allows discount rates to vary implies highly volatile markets�more so than in the

data�creating a puzzle of excess stability rather than excess volatility. Yet we �nd that a

macro-dynamic model with belief overreaction in the spirit of diagnostic expectations can

perfectly explain the data, not because it creates more volatility but because it creates less.
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Online Appendix

A Data Used in Structural Estimation and Filtering Around News

Events

S&PMarket Cap, Indexes, S&P Futures, S&P Dividends, Stock Market Returns,

S&P Earnings, and Treasury Bill Data

For the structural estimation we use data on both stock market returns (price growth

plus a dividend yield) and on stock market price growth. Monthly data on stock returns

are obtained from the Center for Research in Security Prices (CRSP) downloaded from

WRDS https://wrds.wharton.upenn.edu/wrdsauth/members.cgi. We use the CRSP

value-weighted monthly return series VWRETD (includes dividends) and compute annu-

alized log returns lnCRSPD = 12ln(1 + VWRETD). For machine forecasts of returns

or price growth we take the di�erence between the price growth measure or return, e.g.,

ln(VWRETD), and the lagged log of the 3-month T-bill rate (3MTB). Since the 3MTB

is reported at an annual rate in percent, we compute the annualized (raw unit) log of fu-

ture returns less the current short rate, i.e., ln(VWREXt+12) ≡ 12ln(1 + VWRETDt+12)−
ln(1 + 3MTBt/100). The structural estimation uses monthly data (or higher frequency), so

we map the annualized monthly stock return onto the one-year return in the model. Both

series were downloaded from WRDS on February 12, 2023.

When evaluating the MSEs ratios of the machine relative to that of a benchmark survey,

we compute machine forecasts for either the annual CRSP return, or S&P 500 price growth

depending on which value most closely aligns with the concept that survey respondents are

asked to predict. See below. To measure one-year stock market price growth we obtain

a monthly series on the S&P 500 market capitalization, obtained as the end-of-month se-

ries from Ycharts.com available at https://ycharts.com/indicators/sp\_500\_market\

_cap. This series span the periods 1959:01 to 2021:12 and were downloaded on March 13,

2022. This series is used to measure the monthly stock price to output ratio for the struc-

tural estimation. Below we also use the one-year log cumulative growth rate of the S&P

500 index, log
(

PS&P
t+12

PS&P
t

)
. The monthly S&P index series spans the period 1957:03 to 2022:12

and was downloaded from WRDS on January 24, 2024 from the Annual Update data of

the Index File on the S&P 500. To measure the one-year log CRSP return, we compute∑12
j=1 ln(1 + VWRETD(t+ j))− ln(1 + 3MTB(t)/100.

We use S&P 500 earnings divided by GDP as a noisy signal on the payout share Kt in
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the structural estimation. To map into a monthly estimation, we ideally would use monthly

earnings data. Instead, we have quarterly S&P 500 earnings per share (EPS) data that

starts in 1988:Q2 from S&P Global https://www.spglobal.com/spdji/en/documents/

additional-material/sp-500-eps-est.xlsx. To extend our sample backward, we use

monthly EPS data on the S&P 500 from Robert Shiller's data depository at URL: http:

//www.econ.yale.edu/~shiller/data/ie_data.xls. These are monthly EPS data equal

to the sum over the trailing 12 months, computed from the S&P four-quarter trailing to-

tals. We use data for this series from 1959:01 to 1988:03. (There are no quarterly EPS

observations recorded publicly prior to 1988:03.) To obtain a single quarterly earnings series

extending backward to 1959:Q1, we employ a recursive process that combines these two se-

ries. Speci�cally, let time t be measured in months. Shiller's series provides a monthly series

of earnings over the past 12 months:

emt = et + et−1 + ...+ et−11

Starting from 1988:Q2, we also have a quarterly series of earnings over the quarter:

eqt = et + et−1 + et−2

if t = {3, 6, 9, 12}, eqt = 0 otherwise. Suppose that we are interested in earnings for 1988:Q1.

We have:

em1988:M12 = e1988:M12 + e1988:M11 + e1988:M10︸ ︷︷ ︸
eq1988:M12

+...+ e1988:M3 + e1988:M2 + e1988:M1︸ ︷︷ ︸
eq1988:M3

= eq1988:M12 + eq1988:M9 + eq1986:M6 + eq1988:M3

We can then compute implied earnings for 1988:Q1 as

eq1988:M3 = em1988:M12 − [eq1988:M12 + eq1988:M9 + eq1988:M6] .

We can then use the same formula recursively to obtain earnings before 1988, i.e., with

em1988:M9 = e1988:M9 + e1988:M8 + e1988:M7︸ ︷︷ ︸
eq1988:M9

+...+ e1987:M12 + e1987:M11 + e1987:M10︸ ︷︷ ︸
eq1987:M12

,
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which gives the implied earnings for 1987:Q4. We continue recursively, working backward to

the beginning of our sample in 1959:Q1. In the S&P Global dataset there is one observation

in 2008:Q4 with a negative EPS. Since we need to ultimately compute earnings growth rates,

we remove this single negative observation by replacing the 2008:Q4 EPS observation with

the Shiller 12-month trailing total EPS observation for 2008:Q4. To convert EPS to total

earnings, we next multiply the resulting quarterly EPS series by the quarterly S&P 500

divisor available at URL: https://ycharts.com/indicators/sp\_500\_divisor. Finally,

to obtain a monthly S&P 500 earnings series, we linearly interpolate the resulting quarterly

total earnings series. The �nal monthly total earnings series spans the period 1959:03 to

2021:12. The EPS data from S&P Global, Shiller, and the divisor data were downloaded on

March 13, 2022.

We obtain S&P 500 Dividend from Robert Shiller's online data depository at URL:

http://www.econ.yale.edu/~shiller/data.htm. The series is computed from the S&P

four-quarter trailing totals and linearly interpolated to monthly data sampling intervals for

the period 1959:01 to 2021:12 and was downloaded on February 15, 2022.

For the high-frequency �ltering, we use tick-by-tick data on S&P 500 index from tick-

data.com. The series was purchased and downloaded on July 2, 2022 from https://www.

tickdata.com/. We create the minutely data using the close price within each minute.

Within trading hours, we construct S&P 500 market capitalization by multiplying the

minutely S&P 500 index value by last month's S&P 500 Divisor. The S&P 500 Divisor

is available at the URL: https://ycharts.com/indicators/sp\_500\_divisor. We sup-

plement S&P 500 index using S&P 500 E-mini futures for events that occur in o�-market

hours. We use the current-quarter contract futures. We purchased the S&P 500 E-mini

futures from CME group at URL: urlhttps://datamine.cmegroup.com/. Our sample spans

January 2nd 1986 to June 30th, 2022. The S&P 500 futures data were downloaded on July

2, 2022.

Net Dividends Plus Net Repurchases (Equity Payout)

We use an eight quarter moving average of equity payout divided by GDP as a noisy signal

on Kt. Equity payout for the corporate sector is quarterly and measured as net dividends

minus net equity issuance is computed using �ow of funds data. Net dividends (�netdiv�)

is the series named for corporate business; net dividends paid (FA096121073.Q). Net repur-

chases are repurchases net of share issuance, so net repurchases is the negative of net equity

issuance. Net equity issuance (�netequi�) is the sum of Equity Issuance for Non-�nancial

corporate business; corporate equities; liability (Table F.103, series FA103164103) and Eq-
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uity Issuance for domestic �nancial sectors; corporate equities; liability (Table F.108, series

FA793164105). Since netdiv and netequi are annualized, the quarterly payout is computed

as payout=(netdiv-netequi)/4. The units are in millions of dollars. Source: Federal Reserve

Board. We map the quarterly observation into the model implications for the share kt in the

last month of each quarter. The quarterly data span the period 1951:Q4 to 2022:Q3.

Survey Data on Stock Market Expectations

We use the surveys listed below in our structural estimation. Following Nagel and XU

(2021), we use the mean values of the Gallup/UBS, CFO survey, and Livingston forecasts.

For the University of Michigan Survey of Consumers (SOC), which are qualitative up/down

forecasts, the structural estimation maps this onto model-implied investor expectations of

one-year-ahead stock returns using the method described in Section 17 below. For compari-

son purposes, we compute machine forecasts for either the annual CRSP return, or S&P 500

price growth depending on which variable most closely aligns with the concept that survey

respondents are asked to predict.

UBS/Gallup Survey Stock Return Forecasts The UBS/Gallup is a monthly survey

of one-year-ahead stock market return expectations, obtained from https://www.ubs.com/

global/en.html. We use the mean point forecast in our estimation and compare these to

machine forecasts of the annual CRSP return. Gallup conducted 1,000 interviews of investors

during the �rst two weeks of every month and results were reported on the last Monday of

the month. The UBS/Gallup survey respondents report only the return they expect on their

own portfolio. Following Nagel and Xu (2022) we assume this return includes dividends and

impute market return expectations by regressing expected market returns on own portfolio

expectations using the part of the sample where both are available and using the �tted value.

We take a stand on the information set of respondents when each forecast was made, and we

assume that respondents could have used all data released before they completed the survey.

Since interviews are in the �rst two weeks of a month (e.g., February), we conservatively set

the response deadline for the machine forecast to be the �rst day of the survey month (e.g.,

February 1), implying that we allow the machine to use information only up through the end

of the previous month (e.g., through January 31st). This ensures that the machine only sees

information that would have been available to all UBS/Gallup respondents for that survey

month (February). This approach is conservative in the sense that it handicaps the machine,

since all survey respondents who are being interviewed during the next month would have

access to more timely information than the machine. Since the survey asks about the "one-

year-ahead" we interpret the question to be asking about the forecast period spanning from
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the current survey month to the same month one year ahead. The data spans the periods

1998:01 to 2007:12. The data were downloaded on August 8th, 2022.

Michigan Survey of Consumers (SOC) The SOC contains approximately 50 core ques-

tions, and a minimum of 500 interviews are conducted by telephone over the course of the

entire month, each month. Table 20 of the Michigan Survey of Consumers (Soc) reports the

probability of an increase in stock market in next year. The survey question was "The next

question is about investing in the stock market. Please think about the type of mutual fund

known as a diversi�ed stock fund. This type of mutual fund holds stock in many di�erent

companies engaged in a wide variety of business activities. Suppose that tomorrow someone

were to invest one thousand dollars in such a mutual fund. Please think about how much

money this investment would be worth one year from now. What do you think the percent

chance that this one thousand dollar investment will increase in value in the year ahead, so

that it is worth more than one thousand dollars one year from now?"

When we use this survey forecast to compare to machine forecasts, we impute a point

forecast for stock market returns using the method described in Section A below. We compare

the imputed point forecast to machine forecasts of CRSP returns. When we use this survey

in the structural estimation, we map the survey answer on probability onto model-implied

investor expectations of one-year-ahead stock returns using the method described in Section

17 below.

For the SOC, interviews are conducted monthly typically over the course of an entire

month. (In rare cases, interviews may commence at the end of the previous month, as in

February 2018 when interviews began on January 31st 2018.) We take a stand on the infor-

mation set of respondents when each forecast was made, and we assume that respondents

could have used all data released before they completed the survey. Since interviews are al-

most always conducted over the course of an entire month (e.g., February), we conservatively

set the response deadline for the machine forecast to be the �rst day of the survey month

(e.g., February 1), implying that we allow the machine to use information only up through

the end of the previous month (e.g., through January 31st). This ensures that the machine

only sees information that would have been available to all respondents for that survey month

(February). This approach is conservative in the sense that it handicaps the machine, since

all survey respondents who are being interviewed during the next month would have access

to more timely information than the machine. Since the survey asks about the "year ahead"

we interpret the question to be asking about the forecast period spanning the period running

from the current survey month to the same month one year ahead. The data spans 2002:06

to 2021:12. The SOC responses were obtained from https://data.sca.isr.umich.edu/data-
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archive/mine.php and downloaded on August 13th, 2022.

The CFO Survey Stock Return Forecasts The CFO survey is a quarterly survey that

asks respondents about their expectations for the S&P 500 return over the next 12 months,

obtained from https://www.richmondfed.org/research/national_economy/cfo_survey.

We use the mean point forecast in our estimation and compare these to machine forecasts

of the annual CRSP return. The survey asks the respondent "over the next 12 months, I

expect the average annual S&P 500 return will be: ___". Following Nagel and XU (2021),

we assume the forecasted S&P 500 return includes dividends. The CFO survey panel in-

cludes �rms that range from small operations to Fortune 500 companies across all major

industries. Respondents include chief �nancial o�cers, owner-operators, vice presidents and

directors of �nance, and others with �nancial decision-making roles. The CFO panel has

1,600 members as of December 2022. As for the SOC, we take a stand on the information set

of respondents when each forecast was made, and we assume that respondents could have

used all data released before they completed the survey. Because the CFO survey releases

quarterly forecasts at the end of each quarter, we conservatively set the response deadline

for the machine forecast to be the �rst day of the last month of each quarter (e.g., March

1). The data spans the periods 2001Q4 to 2021Q1. The data were downloaded on August

8th, 2022.

Livingston Survey Stock Index Forecast We obtained the Livingston Survey S&P500

index forecast (SPIF) from the Federal Reserve Bank of Philadelphia, URL: https://www.

philadelphiafed.org/surveys-and-data/real-time-data-research/livingston-historical-data, and use the mean

values in our structural and forecasting models. We compare the one-year growth in these

forecasts to machine forecasts of S&P 500 price growth. Our sample spans 1947:06 to 2021:06.

The forecast series were downloaded on September 20, 2021.

The survey provides semi-annual forecasts on the level of the S&P 500 index. Participants

are asked to provide forecasts for the level of the S&P 500 index for the end of the current

survey month, 6 months ahead, and 12 months ahead. We use the mean of the respondents'

forecasts each period, where the sample is based on about 50 observations. Most of the survey

participants are professional forecasters with �formal and advanced training in economic

theory and forecasting and use econometric models to generate their forecasts.� Participants

receive questionnaires for the survey in May and November, after the Consumer Price Index

(CPI) data release for the previous month. All forecasts are typically submitted by the

end of the respective month of May and November. The results of the survey are released

near the end of the following month, on June and December of each calendar year. The
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exact release dates are available on the Philadelphia Fed website, at the header of each news

release. We take a stand on the information set of the respondents when each forecast was

made by assuming that respondents could have used all data released before they completed

the survey. Since all forecasts are typically submitted by the end of May and November

of each calendar year, we set the response deadline for the machine forecast to be the �rst

day of the last month of June and December, implying that we allow the machine to use

information only up through the end of the May and November.

We follow Nagel and Xu (2022) in constructing one-year stock price growth expectations

from the level forecasts. Starting from June 1992, we use the ratio between the 12-month

level forecast (SPIF_12Mt) and 0-month level nowcasts (SPIF_ZMt) of the S&P 500 index.

Before June 1992, the 0-month nowcast is not available. Therefore we use the annualized

ratio between the 12-month (spi12t) and 6-month (spi6t) level forecast of the S&P 500

index

F(Liv)
t

[
Pt+12

Pt

]
≈


F(Liv)
t [Pt+12]

F(Liv)
t [Pt]

= SPIF_12Mt
SPIF_ZMt

if t ≥ 1992M6(
F(Liv)
t [Pt+12]

F(Liv)
t [Pt+6]

)2
=
(
spi12t
spi6t

)2
if t < 1992M6

(A.1)

where Pt is the S&P 500 index and t indexes the survey's response deadline.

Bloomberg Consensus Survey Stock Index Forecasts As an additional signal of

investor expectations, we use the Bloomberg (BBG) Consensus Forecast of the stock market.

Survey respondents are asked to forecast the �end-of-year� closing value of the S&P 500 index

on the last trading day of the calendar year (id: SPXSFRCS). The forecast horizon therefore

changes depending on when in the year panelists are answering the survey. Surveys conducted

between January through November forecast the index for the end-of-current-year (EOCY).

Surveys held in December forecast the index for the end-of-next-year (EONY). For example:

On January 2021, the survey forecasts the S&P 500 index 11 months ahead for the end of

2021. On November 2021, the survey forecasts the S&P 500 index 1 month ahead for the

end of 2021. On December 2021, the survey forecasts the S&P 500 index 12 months ahead

for the end of 2022. The data span the period from 16-Apr-1999 to 15-Jun-2022 and were

downloaded from the Bloomberg terminal on July 8, 2022. The survey has been conducted

irregularly over time. It was conducted roughly once a week from 1999 to 2014, roughly two

to three times per month from 2014 to 2016, and once each month since 2017. We construct

a monthly dataset of these survey observations by taking the last observation for a month

as our monthly observation for the years 1999 to 2014.

We use these data to augment the estimation as an additional signal on stock market

return expectations. This requires a mapping into the monthly subjective return expectation
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counterpart from the model. Our procedure is to treat survey forecasts for month M =

1, 2, 3, ..., 12 as a signal on the 12-M month underlying expectations process for returns.

Thus, for surveys conducted in January of a given year, we take the BBG forecast in January

of the EOCY S&P 500 index value and divide it by the observed S&P 500 index value on

December 31 of the immediately previous year. This observation is mapped into the model

implications for 11-month-ahead subjective return expectations of investors. For surveys

conducted in February of a given year, we take the BBG forecast of the EOCY S&P index

value and divide it by the observed S&P value for January 31 of the current year and map

that into the model implications for 10 month ahead subjective return expectations. We

follow this procedure for all surveys conducted between January through November of each

year. For surveys conducted in December, the BBG forecasts are for the end of the next

year. Thus, for surveys conducted in December of a given year, we take the BBG forecast

for the EONY S&P 500 index value and divide it by the observed S&P 500 index value on

November 31 of the current year. This is mapped into the model implications for subjectively

expected 12 month ahead returns. In all cases if the observation needed for the S&P 500

index value used in the divisor fell on a day in which the market was closed, we instead use

the value for the index from the last trading day prior to this date.

Finally, we convert the end-of-year S&P 500 return forecasts to annualized units. For

example, for all forecasts conducted in May, we raise our gross return forecasts to the power

12/7; for all forecasts conducted in June, we raise gross return forecasts by 12/6, and so on.

For mapping to log returns, we instead multiply by 12/7, 12/6, and so on.

Converting Qualitative Forecasts to Point Forecasts (SOC) We use the SOC prob-

ability to impute a quantitative point forecast of stock returns using a linear regression of

CFO point forecasts for returns onto the SOC probablity of a price increase. The SOC

asks respondents about the percent chance that an investment will �increase in value in the

year ahead.� We interpret this as asking about the ex dividend value, i.e., about price price

growth. The CFO survey is conducted quarterly, where the survey quarters span 2001:Q4

to 2021:Q1. The SOC survey is conducted monthly, where survey months span 2002:06 to

2021:12. Since the CFO is a quarterly survey, the regression is estimated in real-time over

a quarterly overlapping sample. Since the CFO survey is conducted during the last month

of the quarter while the SOC is conducted monthly, we align the survey months between

CFO and SOC by regressing the quarterly CFO survey point forecast with the qualitative

SOC survey response during the last month of the quarter. Since the SOC survey question is

interpreted as asking about S&P 500 price growth while the CFO survey question asks about

stock returns including dividends, we follow Nagel and Xu (2022) in subtracting the current
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dividend yield of the CRSP value weighted index from the CFO variable before running the

regression. After estimating the regression, we then add back the dividend yield to the �tted

value to obtain an imputed SOC point forecast of stock returns including dividends.

Speci�cally, at time t, we assume that the CFO forecast of stock returns, FCFOt [rt,t+4],

minus the current dividend yield, Dt/Pt, is related to the contemporaneous SOC probability

of an increase in the stock market next year, P SOC
t,t+4, by:

FCFOt [rt,t+4]−Dt/Pt = β0 + β1P
SOC
t,t+4 + ϵt.

The �nal imputed SOC point forecast is constructed as FSOCt [rt,t+4] = β̂0 + β̂1P
SOC
t,t+4 +Dt/Pt.

We �rst estimate the coe�cients of the above regression over an initial overlapping sample of

2002:Q2 to 2004:Q4, where the quarterly observations from the CFO survey is regressed on

the SOC survey responses from the last month of each calendar quarter. Using the estimated

coe�cients and the SOC probability from 2005:03 gives us the point forecast of the one-year

stock return from 2005:Q1 to 2006:Q1. We then re-estimate this equation, recursively, adding

one quarterly observation to the end of the sample at a time, and storing the �tted values.

This results in a time series of SOC point forecasts FSOCt [rt,t+4] spanning 2005:Q1 to 2021:Q1.

Earnings Expectations

We obtained the monthly survey data for the median analyst earnings per share forecast

and actual earnings per share from the Institutional Brokers Estimate System (IBES) via

Wharton Research Data Services (WRDS). The data spans the period 1976:01 to 2021:12.

All data were downloaded in October 2022.

We build measures of aggregate S&P 500 earnings expectations growth using the con-

stituents of the S&P 500 at each point in time following De La O and Myers (2021). We

�rst construct expected earnings expectations for aggregate earnings h-months-ahead as

Ft[Et+h] = Ωt

 ∑
i∈xt+h

Ft [EPSi,t+h]Si,t

 /Divisort,
where F is the median analyst survey forecast, E is aggregate S&P 500 earnings, EPSi is

earning per share of �rm i among all S&P 500 �rms xt+h for which we have forecasts in

IBES for t+ h, Si is shares outstanding of �rm i, and Divisort is calculated as the S&P 500

market capitalization divided by the S&P 500 index. We obtain the number of outstanding

shares for all companies in the S&P500 from Compustat. (All data from Compustat were
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downloaded on November 17th, 2022.) IBES estimates are available for most but not all

S&P 500 companies. Following De La O and Myers (2021), we multiply this aggregate by

Ωt+h, a ratio of total S&P 500 market value to the market value of the forecasted companies

at t+h to account for the fact that IBES does not provide earnings forecasts for all �rms in

the S&P 500 in every period.

IBES database contains earning forecasts up to �ve annual �scal periods (FY1 to FY5)

and as a result, we interpolate across the di�erent horizons to obtain the expectation over

the next 12 months. This procedure has been used in the literature, including De La O

and Myers (2021). Speci�cally, if the �scal year of �rm XYZ ends nine months after the

survey date, we have a 9-month earning forecast Ft[Et+9] from FY1 and a 21-month forecast

Ft[Et+21] from FY2. We then obtain the 12-month ahead forecast by interpolating these two

forecasts as follows,

Ft[Et+12] =
9

12
Ft[Et+9] +

3

12
Ft[Et+21].

For the forecasting performance estimates, we use quarterly data. To convert the monthly

forecast to quarterly frequency, we use the forecast made in the middle month of each quar-

ter, and construct one-year earnings expectations from 1976Q1 to 2021Q4 and the earning

expectation growth is calculated as an approximation following following De La O and Myers

(2021):

Ft (∆et+12) ≈ ln (Ft[Et+12])− et

where et is log earnings for S&P 500 at time t calculated as et = ln (EPSt ·Divisort), where
EPSt is the earnings per share for the S&P 500 obtained from Shiller's data depository and

S&P Global, as described above.

We constructed long term expected earnings growth (LTG) for the S&P 500 following

Bordalo et al. (2019). Speci�cally, we obtained the median �rm-level LTG forecast from

IBES, and aggregate the value-weighted �rm-level forecasts,

LTGt =
S∑

i=1

LTGi,t
Pi,tQi,t∑S
i=1 Pi,tQi,t

where S is the number of �rms in the S&P 500 index, and where Pi,t and Qi,t are the stock

price and the number of shares outsanding of �rm i at time t, respectively. LTGi,t is the

median forecast of �rm i's long term expected earnings growth. The data spans the periods

from 1981:12 to 2021:12. All data were downloaded in February 2023.

To estimate any biases in IBES analyst forecasts, our dynamic machine algorithm takes

as an input a likely date corresponding to information analysts could have known at the
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time of their forecast. IBES does not provide an explicit deadline for their forecasts to be

returned. Therefore we instead use the �statistical period� day (the day when the set of

summary statistics was calculated) as a proxy for the deadline. We set the machine deadline

to be the day before this date. The statistical period date is typically between day 14 and day

20 of a given month, implying that the machine deadline varies from month to month. As the

machine learning algorithm uses mixed-frequency techniques adapted to quarterly sampling

intervals, while the IBES forecasts are monthly, we compare machine and IBES analyst

forecasts as of the middle month of each quarter, considering 12-month ahead forecasts from

that month.

Daily Earnings Nowcasts We obtain daily nowcasts of S&P 500 earnings per share

(EPS) from BBG. The survey respondents are equity strategists that are asked to provide

nowcasts of earnings per share (EPS) for the constituents of the S&P 500. For each S&P

500 constituent, BBG provides the mean nowcast across survey respondents as well as a

bottom-up aggregate nowcast of EPS for the S&P 500 by aggregating the EPS nowcasts

across the S&P 500 constituents. We construct a mean respondent nowcast for the level

of S&P 500 earnings by multiplying this aggregate with the S&P 500 index divisor. (The

index is the market capitalization of the 500 companies covered by the index divided by the

S&P 500 divisor, roughly the number of shares outsanding across all companies.) The S&P

500 divisor is available at the URL: https://ycharts.com/indicators/sp_500_divisor.

These nowcasts are available daily for the current standard �nancial quarter (Jan-Mar, Apr-

June, Jul-Sep, Oct-Dec). For example, the observation for July 10, 2024 (which falls under

the standard �nancial quarter of 2024:Q3) would contain nowcasts for 2024:Q3 EPS for the

S&P 500. Bloomberg does not require respondents to submit their nowcasts on a speci�c

timeline or frequency. Instead, respondents voluntarily decide how often to update their

nowcasts. To ensure that consensus nowcasts are not heavily in�uenced by outdated in-

formation, Bloomberg excludes stale nowcasts submitted before the most recent earnings

announcement date. The data was downloaded from the Bloomberg terminal on July 24,

2024, using the Earnings & Estimates (EE) function on the S&P 500 index (SPX Index).

The aggregated consensus nowcasts are available daily, except weekends and holidays, span-

ning the period from Jan 2, 2006 to July 24, 2024. The divisor series series span the period

1959:03 to 2021:12 and was downloaded on March 13, 2022.

Dividend Growth Expectations

We obtained the S&P dividend futures from Bloomberg terminal and obtained data on S&P

dividends from S&P (via Bloomberg terminal). The data spans the periods from 2015:01 to
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2021:12 and are expressed in annual units. The series were downloaded on April 18th, 2023.

We constructed estimates of S&P 500 dividend growth expectation following the procedure

of Gormsen and Koijen (2020) by �rst calculating the equity yields as

e
(n)
t =

1

n
ln

(
Dt

F
(n)
t

)

where Dt is the S&P dividend, F
(n)
t is the dividend futures with contact length of n years,

where t is measured in quarters. We then run a regression of realized dividend growth rates

on the S&P500 onto the 2-year equity yield

∆Dt,t+8 = βD
0 + βD

1 e
(2)
t + εt.

We use the parameter estimates from this quarterly regression to estimate expected two-year-

ahead dividend growth at daily frequency based on the �tted values and daily observations on

e
(2)
t . To do this, since we have quarterly observations on Dt, we use the 2019 year-end value

of dividends Dt for all days in 2020 as the numerator value for e
(2)
t . For the denominator,

since the futures contracts always mature in December, to have a 2-year price in, for example,

May 1 of 2020, we interpolate the futures price of the December contract of that year and

the following year as F INT,2
2020,May01 ≡ 19

24
F

(19)
2020,May01 +

5
24
F

(31)
2020,May01. Thus the daily observation

for the yield on May 1, 2020 is the 2019 year-end value for Dt divided by F INT,2
2020,May01.

Fed Funds Futures and Eurodollar Data

We use tick-by-tick data on Fed funds futures (FFF) and Eurodollar futures obtained from

the CME Group. Our sample spans January 3, 1995 to June 30, 2022. FFF contracts settle

based on the average federal funds rate that prevails over a given calendar month. Fed funds

futures are priced at 100 − f
(n)
t , where f

(n)
t is the time-t contracted federal funds futures

market rate that investors lock in. Contracts are monthly and expire at month-end, with

maturities ranging up to 60 months. For the buyer of the futures contract, the amount of(
f
(n)
t − rt+n

)
× $D, where rt+n is the ex post realized value of the federal funds rate for

month t + n calculated as the average of the daily Fed funds rates in month t + n, and $D

is a dollar �deposit�, represents the payo� of a zero-cost portfolio.

Eurodollar futures contracts are quarterly, expiring two business days before the third

Wednesday in the last month of the quarter. Eurodollar futures are similarly quoted, where

f
(q)
t is the average 3-month LIBOR in quarter q of contract expiry. Maturities range up to 40
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quarters. For both types of contracts, the implied contract rate is recovered by subtracting

100 from the price and multiplying by −1.

Both types of contracts are cleaned following the same procedure following communica-

tion with the CME Group. First, trades with zero volume, which indicate a canceled order,

are excluded. Floor trades, which do not require a volume on record, are included. Next,

trades with a recorded expiry (in YYMM format) of 9900 indicate bad data and are excluded

(Only 1390 trades, or less than 0.01% of the raw Fed funds data, have contract delivery dates

of 9900). For trades time stamped to the same second, we follow Bianchi, Kind and Kung

(2019) and keep the trade with the lowest sequence number, corresponding to the �rst trade

that second.

Fed funds futures data require additional cleaning. Trade prices were quoted in di�erent

units prior to August 2008. To standardize units across our sample, we start by noting that

Fed funds futures are priced to the average e�ective Fed funds rate realized in the contract

month. And in our sample, we expect a reasonable e�ective Fed funds rate to correspond to

prices in the 90 to 100 range. As such, we rescale prices to be less than 100 in the pre-August

2008 subsample.1 After rescaling, a small number of trades still appear to have prices that

are far away from the e�ective Fed funds rates at both trade day and contract expiry, along

with trades in the immediate transactions. The CME Group could not explain this data

issue, so following Bianchi et al. (2019) and others in the high frequency equity literature,

we apply an additional �lter to exclude trades with such non-sensible prices. Speci�cally, for

each maturity contract, we only keep trades where

|pt − pt(k, δ)| < 3σt(k, δ) + γ,

where pt denotes the trade price (where t corresponds to a second), and pt(k, δ) and σt(k, δ)

denote the average price and standard deviation, respectively, centered with k/2 observations

on each side of t excluding δk/2 trades with highest price and excluding δk/2 trades with

lowest price. Finally, γ is a positive constant to account for the cases where prices are

constant within the window. Our main speci�cation uses k = 30, δ = 0.05 and γ = 0.4, and

alternative parameters produce similar results.

1For trades with prices signi�cantly greater than 100, we repeatedly divide by 10 until prices are in the
range of 90 to 100. We exclude all trades otherwise.
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Historical Macro data (GDP and in�ation)

Real Gross Domestic Product is obtained from the US Bureau of Economic Analysis. It is

in billions of chained 2012 dollars, quarterly frequency, seasonally adjusted, and at annual

rate. The source is from Bureau of Economic Analysis (BEA code: A191RX). The sample

spans 1959:Q1 to 2021:Q4. The quarterly series was interpolated to monthly frequency using

the method in Stock and Watson (2010).The quarterly series was downloaded on June 15th,

2022. Monthly in�ation is measured as the log di�erence in the Consumer Price Index for

all urban consumers, all items, seasonally adjusted, 1982=100, from FRED (CPIAUCSL).

The sample spans 1959:01 to 2022:06. The monthly series was downloaded on August 17,

2022.

Real Time Macro Data (GDP and in�ation)

At each forecast date in the sample, we construct a dataset of macro variables that could have

been observed on or before the day of the survey deadline. We use the Philadelphia Fed's

Real-Time Data Set to obtain vintages of macro variables.2 These vintages capture changes

to historical data due to periodic revisions made by government statistical agencies. We use

the real time vintages of the same variables for GDP and in�ation used for the historical

data stipulated above. For real time GDP data we linearly interpolate the quarterly series

to monthly values. For a complete list of the the details on variables used in real time, see

the subsection below �Data Inputs for Machine Learning Algorithm.�

Baa Spread, 20-yr T-bond, Long-term US government securities

We obtained daily Moody's Baa Corporate Bond Yield from FRED (series ID: DBAA)

at URL: https://fred.stlouisfed.org/series/BAA, US Treasury securities at 20-year

constant maturity from FRED (series ID: DGS20) at URL: https://fred.stlouisfed.

org/series/DGS20, and long-term US government securities from FRED (series ID: LT-

GOVTBD) at URL: https://fred.stlouisfed.org/series/LTGOVTBD. The sample for

Baa spans the periods 1986:01 to 2021:06. To construct the long term bond yields, we

use LTGOVTBD before 2000 (1959:01 to 1999:12) and use DGS20 after 2000 (2000:01 to

2021:06). The Baa spread is the di�erence between the Moody's Corporate bond yield

and the 20-year US government yield. The excess bond premium is obtained at URL:

https://www.federalreserve.gov/econres/notes/feds-notes/ebp_csv.csv. All series

2The real-time data sets are available at https://www.philadelphiafed.org/research-and-data/real-time-
center/real-time-data/data-�les.
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were downloaded on Feb 21, 2022.

Bloomberg Consensus In�ation and GDP forecasts

We obtain the Bloomberg (BBG) US GDP (id: ECGDUS) and in�ation (id: ECPIUS)

consensus mean forecast from the Bloomberg Terminal available on a daily basis up to a few

days before the release of GDP and in�ation data. The Bloomberg (BBG) US consensus

forecasts are updated daily (except for weekends and holidays) and reports daily quarter-

over-quarter real GDP growth and CPI forecasts from 2003:Q1 to 2021Q2. These forecasts

provide more high-frequency information on the professional outlook for economic indicators.

Both forecast series were downloaded on October 21, 2021.

Livingston Survey In�ation Forecast

We obtained the Livingston Survey mean 1-year and 10-year CPI in�ation forecast from

the Federal Reserve Bank of Philadelphia, URL: https://www.philadelphiafed.org/surveys-and-data/

real-time-data-research/livingston-historical-data and use the median values in our structural and

forecasting models. Our sample spans 1947:06 to 2021:06. The forecast series were down-

loaded on September 20, 2021.

Bluechip In�ation and GDP Forecasts

We obtain Blue Chip expectation data from Blue Chip Financial Forecasts from Wolters

Kluwer. The surveys are conducted each month by sending out surveys to forecasters in

around 50 �nancial �rms such as Bank of America, Goldman Sachs & Co., Swiss Re, Loomis,

Sayles & Company, and J.P. Morgan Chase. The participants are surveyed around the 25th

of each month and the results published a few days later on the 1st of the following month.

The forecasters are asked to forecast the average of the level of U.S. interest rates over a

particular calendar quarter, e.g. the federal funds rate and the set of H.15 Constant Maturity

Treasuries (CMT) of the following maturities: 3-month, 6-month, 1-year, 2-year, 5-year and

10-year, and the quarter over quarter percentage changes in Real GDP, the GDP Price

Index and the Consumer Price Index, beginning with the current quarter and extending 4

to 5 quarters into the future.

In this study, we look at a subset of the forecasted variables. Speci�cally, we use the Blue

Chip micro data on individual forecasts of the quarter-over-quarter (Q/Q) percentage change

in the Real GDP, the GDP Price Index and the CPI, and convert to quarterly observations
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as explained below. In our estimation we use the median survey forecast from the micro

data.

1. CPI in�ation: We use quarter-over-quarter percentage change in the consumer price

index, which is de�ned as

�Forecasts for the quarter-over-quarter percentage change in the CPI (consumer prices

for all urban consumers). Seasonally adjusted, annual rate.�

Quarterly and annual CPI in�ation are constructed the same way as for PGDP in�a-

tion, except CPI replaces PGDP.

2. For real GDP growth, We use quarter-over-quarter percentage change in the Real GDP,

which is de�ned as

�Forecasts for the quarter-over-quarter percentage change in the level of chain-weighted

real GDP. Seasonally adjusted, annual rate. Prior to 1992, Q/Q % change (SAAR) in

real GNP.�

The surveys are conducted right before the publication of the newsletter. Each issue is always

dated the 1st of the month and the actual survey conducted over a two-day period almost

always between 24th and 28th of the month. The major exception is the January issue

when the survey is conducted a few days earlier to avoid con�ict with the Christmas holiday.

Therefore, we assume that the end of the last month (equivalently beginning of current

month) is when the forecast is made. For example, for the report in 2008 Feb, we assume that

the forecast is made on Feb 1, 2008. We obtained Blue Chip Financial Forecasts fromWolters

Kluver in several stages starting in 2017 and with the last update purchased in June of 2022

and received on June 22, 2022. URL:https://law-store.wolterskluwer.com/s/product/blue-

chip-�nancial-forecast-print/ 01tG000000LuDUCIA3.

Survey of Professional Forecasters (SPF)

The SPF is conducted each quarter by sending out surveys to professional forecasters, de�ned

as forecasters. The number of surveys sent varies over time, but recent waves sent around 50

surveys each quarter according to o�cials at the Federal Reserve Bank of Philadelphia. Only

forecasters with su�cient academic training and experience as macroeconomic forecasters are

eligible to participate. Over the course of our sample, the number of respondents ranges from

a minimum of 9, to a maximum of 83, and the mean number of respondents is 37. The surveys

are sent out at the end of the �rst month of each quarter, and they are collected in the second

or third week of the middle month of each quarter. Each survey asks respondents to provide
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nowcasts and quarterly forecasts from one to four quarters ahead for a variety of variables.

Speci�cally, we use the SPF micro data on individual forecasts of the price level, long-run

in�ation, and real GDP.3 Below we provide the exact de�nitions of these variables as well

as our method for constructing nowcasts and forecasts of quarterly and annual in�ation for

each respondent.4

We use the median values of the following variables in our structural estimation and

forecasting models:

1. Quarterly and annual in�ation (1968:Q4 - present): We use survey responses for the

level of the GDP price index (PGDP), de�ned as

"Forecasts for the quarterly and annual level of the chain-weighted GDP price index.

Seasonally adjusted, index, base year varies. 1992-1995, GDP implicit de�ator. Prior

to 1992, GNP implicit de�ator. Annual forecasts are for the annual average of the

quarterly levels."

Since advance BEA estimates of these variables for the current quarter are unavailable

at the time SPF respondents turn in their forecasts, four quarter-ahead in�ation and

GDP growth forecasts are constructed by dividing the forecasted level by the survey

respondent-type's nowcast. Let F(i)
t [Pt+h] be forecaster i's prediction of PGDP h quar-

ters ahead and N(i)
t [Pt] be forecaster i's nowcast of PGDP for the current quarter.

Annualized in�ation forecasts for forecaster i are

F(i)
t [πt+h,t] = (400/h)× ln

(
F(i)
t [Pt+h]

N(i)
t [Pt]

)
,

where h = 1 for quarterly in�ation and h = 4 for annual in�ation. Similarly, we

construct quarterly and annual nowcasts of in�ation as

N(i)
t [πt,t−h] = (400/h)× ln

(
N(i)

t [Pt]

Pt−h

)
,

where h = 1 for quarterly in�ation and h = 4 for annual in�ation, and where Pt−1 is the

BEA's advance estimate of PGDP in the previous quarter observed by the respondent

in time t, and Pt−4 is the BEA's most accurate estimate of PGDP four quarters back.

3Individual forecasts for all variables can be downloaded at https://www.philadelphiafed.org/research-
and-data/real-time-center/survey-of-professional-forecasters/historical-data/individual-forecasts.

4The SPF documentation �le can be found at https://www.philadelphiafed.org/-/media/research-and-
data/real-time-center/survey-of-professional-forecasters/spf-documentation.pdf?la=en.
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After computing in�ation for each survey respondent, we calculate the 5th through the

95th percentiles as well as the average, variance, and skewness of in�ation forecasts

across respondents.

2. Long-run in�ation (1991:Q4 - present): We use survey responses for 10-year-ahead CPI

in�ation (CPI10), which is de�ned as

"Forecasts for the annual average rate of headline CPI in�ation over the next 10 years.

Seasonally adjusted, annualized percentage points. The "next 10 years" includes the

year in which we conducted the survey and the following nine years. Conceptually,

the calculation of in�ation is one that runs from the fourth quarter of the year before

the survey to the fourth quarter of the year that is ten years beyond the survey year,

representing a total of 40 quarters or 10 years. The fourth-quarter level is the quarterly

average of the underlying monthly levels."

Only the median response is provided for CPI10, and it is already reported as an

in�ation rate, so we do not make any adjustments and cannot compute other moments

or percentiles.

3. Real GDP growth (1968:Q4 - present): We use the level of real GDP (RGDP), which

is de�ned as

"Forecasts for the quarterly and annual level of chain-weighted real GDP. Seasonally

adjusted, annual rate, base year varies. 1992-1995, �xed-weighted real GDP. Prior

to 1992, �xed-weighted real GNP. Annual forecasts are for the annual average of the

quarterly levels. Prior to 1981:Q3, RGDP is computed by using the formula NGDP /

PGDP * 100."

Source: Federal Reserve Bank of Philadelphia.All series were downloaded on September 17th,

2021.

Data used for News Events

Federal Reserve News Events

Federal Reserve news events are taken from Federal Open Market Committee news releases.

We compile dates and times of FOMC meetings from 1994 to 2004 from Gürkaynak, Sack

and Swanson (2005). The dates of the remaining FOMC meetings are collected from the

Federal Reserve Board website. The times of statement releases were coalesced in the fol-

lowing priority: the Federal Reserve Board calendar, the Federal Reserve Board minutes,
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Bloomberg's FOMC page, and the �rst news article to appear on Bloomberg. We only in-

clude scheduled meetings and unscheduled meetings where a statement was released. Our

�nal database covers the period 1994:02 - 2021:12 and consists of 219 Fed news events.

Macro News Events

Macroeconomic data releases are news events cover news about GDP, CPI, employment

data, and payroll data. To pin down the timing of when the macro news is released, we rely

on published tables of releases from the Bureau of Labor Statistics (BLS), obtained from

https://www.bls.gov/bls/archived_sched.htm. The published tables of releases for GDP are

from the Bureau of Economic Analysis (BEA), obtained from https://www.bea.gov/news/archive.

(A complete list of the release dates is available from the authors of each news release or

through the Money Market Service Survey.) For GDP, the advance releases typically occur

at 8:30AM EST on the last Thursday of the �rst month in the quarter following the quarter

to which the data pertain. The 2nd and 3rd releases typically occur at 8:30am EST on the

last Thursday of the second and third month in the quarter following the quarter to which

the data pertain, respectively. For example, the advance release of real GDP for 2021:Q2

occurred on Thursday July 29, 2021. The advance release for 2021:Q2 was later revised in

the second and third releases on Thursday August 26, 2021 and Thursday September 30,

2021, respectively. For core CPI, the releases occur monthly at 8:30AM EST around the

15th of each month following the month to which the data pertain. The releases typically

occur during the second week of the month, either on a Tuesday, Wednesday, or Thursday.

For example, the release of the core CPI of June 2021 occurred on Tuesday July 13th, 2021.

For employment data (including the unemployment rate and nonfarm payroll), the releases

typically occur at 8:30AM EST on the �rst Friday of the month following the month to

which the data pertain. For example, the release of the unemployment rate for June 2021

occurred on Friday July 2nd, 2021. Our �nal database covers the period 1980:01- 2021:12

and consists of a total of 1482 macro news events.

Corporate Earnings News Events

We obtained days of big stock return jumps primarily attributable to corporate earnings

news from Baker et al. (2019) (BBDS). In assigning days to categories of proximate causes

for jumps, BBDS focus on articles from the Wall Street Journal (WSJ). To isolate events with

stock market jumps that were attributable to corporate earnings news with high con�dence,

we choose events from BBDS that have (i) journalist con�dence at or above a con�dence

score of 2.5 and (ii) weights on corporate topic of at least 0.75. A con�dence score of
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2.5 is about halfway between the median and 75th percentile of con�dence scores given to

category classi�cations over the full sample of WSJ articles studied by BBDS. The data were

provided by the authors on March 12, 2023. Table A.1 shows the dates and daily change in

the S&P 500 stock market index for our database, which covers the period 1985:09-2020:09

and consists of a total of 16 corporate earnings news events.

Table A.1: List of Corporate News Events

Date Daily ∆
1999/03/23 -2.65%
2000/03/07 -2.67%
2000/10/19 3.49%
2001/04/05 4.39%
2002/01/29 -2.86%
2008/07/16 2.51%
2008/09/09 -3.36%
2008/09/15 -4.64%
2008/10/21 -3.06%
2008/10/22 -5.91%
2009/01/07 -3.00%
2009/01/20 -5.22%
2009/03/12 4.07%
2009/04/09 3.71%
2009/07/15 2.95%
2020/05/01 -2.80%

Data Inputs for Machine Learning Algorithm

Macro Data Surprises

These data are used as inputs into the machine learning forecasts. We obtain median fore-

casts for GDP growth (Q/Q percentage change), core CPI (Month/Month change), unem-

ployment rate (percentage point), and nonfarm payroll (month/month change) from the

Money Market Service Survey. The median market survey forecasts are compiled and pub-

lished by the Money Market Services (MMS) the Friday before each release. We apply the

approach used in Bauer and Swanson (2023) and de�ne macroeconomic data surprise as the

actual value of the data release minus the median expectation from MMS on the Friday

immediately prior to that data release. The GDP growth forecasts are available quarterly

20



from 1990Q1 to 2022Q1. The core CPI forecast is available monthly from July 1989 to April

2022. The median forecasts for the unemployment rate and nonfarm payrolls are available

monthly from Jan 1980 to May 2022, and Jan. 1985 to May 2022, respectively. All survey

forecasts were downloaded from Haver Analytics on December 17, 2022. To pin down the

timing of when the news was actually released we follow the published tables of releases from

the Bureau of Labor Statistics (BLS), discussed below.

FOMC Surprises

FOMC surprises are de�ned as the changes in the current-month, 1, 2, 6, 12, and 24 month-

ahead federal funds futures (FFF) contract rate and changes in the 1, 2, 4, and 8 quarter-

ahead Eurodollar (ED) futures contract rate, from 10 minutes before to 20 minutes after

each U.S. Federal Reserve Federal Open Market Committee (FOMC) announcement. The

data on FFF and ED were downloaded on June 3rd 2022. When benchmarking against a

survey, we use the last FOMC meeting before the survey deadline to compute surprises. For

surveys that do not have a clear deadline, we compute surprises using from the last FOMC

in the �rst month of the quarter. When benchmarking against moving average, we use the

last FOMC meeting before the end of the �rst month in each quarter to compute surprises.

Real-Time Macro Data

This section gives details on the real time macro data inputs used in the machine learning

forecasts. A subset of these series are used in the structural estimation. At each forecast

date in the sample, we construct a dataset of macro variables that could have been observed

on or before the day of the survey deadline. We use the Philadelphia Fed's Real-Time Data

Set to obtain vintages of macro variables.5 These vintages capture changes to historical

data due to periodic revisions made by government statistical agencies. The vintages for a

particular series can be available at the monthly and/or quarterly frequencies, and the series

have monthly and/or quarterly observations. In cases where a variable has both frequencies

available for its vintages and/or its observations, we choose one format of the variable. For

instance, nominal personal consumption expenditures on goods is quarterly data with both

monthly and quarterly vintages available; in this case, we use the version with monthly

vintages.

Table A.2 gives the complete list of real-time macro variables. Included in the table is the

�rst available vintages for each variable that has multiple vintages. We do not include the last

5The real-time data sets are available at https://www.philadelphiafed.org/research-and-data/real-time-
center/real-time-data/data-�les.
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vintage because most variables have vintages through the present.6 Table A.2 also lists the

transformation applied to each variable to make them stationary before generating factors.

Let Xit denote variable i at time t after the transformation, and let X
A
it be the untransformed

series. Let ∆ = (1 − L) with LXit = Xit−1. There are seven possible transformations with

the following codes:

1 Code lv: Xit = XA
it

2 Code ∆lv: Xit = XA
it −XA

it−1

3 Code ∆2lv: Xit = ∆2XA
it

4 Code ln: Xit = ln(XA
it )

5 Code ∆ln: Xit = ln(XA
it )− ln(XA

it−1)

6 Code ∆2ln: Xit = ∆2ln(XA
it )

7 Code ∆lv/lv: Xit = (XA
it −XA

it−1)/X
A
it−1

Table A.2: List of Macro Dataset Variables

No. Short Name Source Tran Description First Vintage

Group 1: Output and Income

1 IPMMVMD Philly Fed ∆ln Ind. production index - Manufacturing 1962:M11

2 IPTMVMD Philly Fed ∆ln Ind. production index - Total 1962:M11

3 CUMMVMD Philly Fed lv Capacity utilization - Manufacturing 1979:M8

4 CUTMVMD Philly Fed lv Capacity utilization - Total 1983:M7

5 NCPROFATMVQD Philly Fed ∆ln Nom. corp. pro�ts after tax without IVA/CCAdj 1965:Q4

6 NCPROFATWMVQD Philly Fed ∆ln Nom. corp. pro�ts after tax with IVA/CCAdj 1981:Q1

7 OPHMVQD Philly Fed ∆ln Output per hour - Business sector 1998:Q4

8 NDPIQVQD Philly Fed ∆ln Nom. disposable personal income 1965:Q4

9 NOUTPUTQVQD Philly Fed ∆ln Nom. GNP/GDP 1965:Q4

10 NPIQVQD Philly Fed ∆ln Nom. personal income 1965:Q4

11 NPSAVQVQD Philly Fed ∆lv Nom. personal saving 1965:Q4

12 OLIQVQD Philly Fed ∆ln Other labor income 1965:Q4

6For variables BASEBASAQVMD, NBRBASAQVMD, NBRECBASAQVMD, and TRBASAQVMD, the
last available vintage is 2013:Q2.
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Table A.2 (Cont'd)

No. Short Name Source Tran Description First Vintage

13 PINTIQVQD Philly Fed ∆ln Personal interest income 1965:Q4

14 PINTPAIDQVQD Philly Fed ∆ln Interest paid by consumers 1965:Q4

15 PROPIQVQD Philly Fed ∆ln Proprietors' income 1965:Q4

16 PTAXQVQD Philly Fed ∆ln Personal tax and nontax payments 1965:Q4

17 RATESAVQVQD Philly Fed ∆lv Personal saving rate 1965:Q4

18 RENTIQVQD Philly Fed ∆lv Rental income of persons 1965:Q4

19 ROUTPUTQVQD Philly Fed ∆ln Real GNP/GDP 1965:Q4

20 SSCONTRIBQVQD Philly Fed ∆ln Personal contributions for social insurance 1965:Q4

21 TRANPFQVQD Philly Fed ∆ln Personal transfer payments to foreigners 1965:Q4

22 TRANRQVQD Philly Fed ∆ln Transfer payments 1965:Q4

23 CUUR0000SA0E BLS ∆2ln Energy in U.S. city avg., all urban consumers, not

seasonally adj

Group 2: Employment

24 EMPLOYMVMD Philly Fed ∆ln Nonfarm payroll 1946:M12

25 HMVMD Philly Fed lv Aggregate weekly hours - Total 1971:M9

26 HGMVMD Philly Fed lv Agg. weekly hours - Goods-producing 1971:M9

27 HSMVMD Philly Fed lv Agg. weekly hours - Service-producing 1971:M9

28 LFCMVMD Philly Fed ∆ln Civilian labor force 1998:M11

29 LFPARTMVMD Philly Fed lv Civilian participation rate 1998:M11

30 POPMVMD Philly Fed ∆ln Civilian noninstitutional population 1998:M11

31 ULCMVQD Philly Fed ∆ln Unit labor costs - Business sector 1998:Q4

32 RUCQVMD Philly Fed ∆lv Unemployment rate 1965:Q4

33 WSDQVQD Philly Fed ∆ln Wage and salary disbursements 1965:Q4

Group 3: Orders, Investment, Housing

34 HSTARTSMVMD Philly Fed ∆ln Housing starts 1968:M2

35 RINVBFMVQD Philly Fed ∆ln Real gross private domestic inv. - Nonresidential 1965:Q4

36 RINVCHIMVQD Philly Fed ∆lv Real gross private domestic inv. - Change in pri-

vate inventories

1965:Q4
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Table A.2 (Cont'd)

No. Short Name Source Tran Description First Vintage

37 RINVRESIDMVQD Philly Fed ∆ln Real gross private domestic inv. - Residential 1965:Q4

38 CASESHILLER S&P ∆ln Case-Shiller US National Home Price index/CPI 1987:M1

Group 4: Consumption

39 NCONGMMVMD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009:M8

40 NCONHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. 2009:M8

41 NCONSHHMMVMD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009:M8

42 NCONSNPMMVMD Philly Fed ∆ln Nom. �nal cons. exp. of NPISH 2009:M8

43 RCONDMMVMD Philly Fed ∆ln Real personal cons. exp. - Durables 1998:M11

44 RCONGMMVMD Philly Fed ∆ln Real personal cons. exp. - Goods 2009:M8

45 RCONHHMMVMD Philly Fed ∆ln Real hh. cons. exp. 2009:M8

46 RCONMMVMD Philly Fed ∆ln Real personal cons. exp. - Total 1998:M11

47 RCONNDMVMD Philly Fed ∆ln Real personal cons. exp. - Nondurables 1998:M11

48 RCONSHHMMVMD Philly Fed ∆ln Real hh. cons. exp. - Services 2009:M8

49 RCONSMMVMD Philly Fed ∆ln Real personal cons. exp. - Services 1998:M11

50 RCONSNPMMVMD Philly Fed ∆ln Real �nal cons. exp. of NPISH 2009:M8

51 NCONGMVQD Philly Fed ∆ln Nom. personal cons. exp. - Goods 2009:Q3

52 NCONHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. 0209:Q3

53 NCONSHHMVQD Philly Fed ∆ln Nom. hh. cons. exp. - Services 2009:Q3

54 NCONSNPMVQD Philly Fed ∆ln Nom. �nal cons. exp. of NPISH 2009:Q3

55 RCONDMVQD Philly Fed ∆ln Real personal cons. exp. - Durable goods 1965:Q4

56 RCONGMVQD Philly Fed ∆ln Real personal cons. exp. - Goods 2009:Q3

57 RCONHHMVQD Philly Fed ∆ln Real hh. cons. exp. 2009:Q3

58 RCONMVQD Philly Fed ∆ln Real personal cons. exp. - Total 1965:Q4

59 RCONNDMVQD Philly Fed ∆ln Real pesonal cons. exp. - Nondurable goods 1965:Q4

60 RCONSHHMVQD Philly Fed ∆ln Real hh. cons. exp. - Services 2009:Q3

61 RCONSMVQD Philly Fed ∆ln Real personal cons. exp. - Services 1965:Q4

62 RCONSNPMVQD Philly Fed ∆ln Real �nal cons. exp. of NPISH 2009:Q3

63 NCONQVQD Philly Fed ∆ln Nom. personal cons. exp. 1965:Q4
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Table A.2 (Cont'd)

No. Short Name Source Tran Description First Vintage

Group 5: Prices

64 PCONGMMVMD Philly Fed ∆2ln Price index for personal cons. exp. - Goods 2009:M8

65 PCONHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. 2009:M8

66 PCONSHHMMVMD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009:M8

67 PCONSNPMMVMD Philly Fed ∆2ln Price index for �nal cons. exp. of NPISH 2009:M8

68 PCPIMVMD Philly Fed ∆2ln Consumer price index 1998:M11

69 PCPIXMVMD Philly Fed ∆2ln Core consumer price index 1998:M11

70 PPPIMVMD Philly Fed ∆2ln Producer price index 1998:M11

71 PPPIXMVMD Philly Fed ∆2ln Core producer price index 1998:M11

72 PCONGMVQD Philly Fed ∆2ln Price index for personal. cons. exp. - Goods 2009:Q3

73 PCONHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. 2009:Q3

74 PCONSHHMVQD Philly Fed ∆2ln Price index for hh. cons. exp. - Services 2009:Q3

75 PCONSNPMVQD Philly Fed ∆2ln Price index for �nal cons. exp. of NPISH 2009:Q3

76 PCONXMVQD Philly Fed ∆2ln Core price index for personal cons. exp. 1996:Q1

77 CPIQVMD Philly Fed ∆2ln Consumer price index 1994:Q3

78 PQVQD Philly Fed ∆2ln Price index for GNP/GDP 1965:Q4

79 PCONQVQD Philly Fed ∆2ln Price index for personal cons. exp. 1965:Q4

80 PIMPQVQD Philly Fed ∆2ln Price index for imports of goods and services 1965:Q4

Group 6: Trade and Government

81 REXMVQD Philly Fed ∆ln Real exports of goods and services 1965:Q4

82 RGMVQD Philly Fed ∆ln Real government cons. and gross inv. - Total 1965:Q4

83 RGFMVQD Philly Fed ∆ln Real government cons. and gross inv. - Federal 1965:Q4

84 RGSLMVQD Philly Fed ∆ln Real government cons. and gross. inv. - State and

local

1965:Q4

85 RIMPMVQD Philly Fed ∆ln Real imports of goods and services 1965:Q4

86 RNXMVQD Philly Fed ∆lv Real net exports of goods and services 1965:Q4

Group 7: Money and Credit

87 BASEBASAQVMD Philly Fed ∆2ln Monetary base 1980:Q2
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Table A.2 (Cont'd)

No. Short Name Source Tran Description First Vintage

88 M1QVMD Philly Fed ∆2ln M1 money stock 1965:Q4

89 M2QVMD Philly Fed ∆2ln M2 money stock 1971:Q2

90 NBRBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves 1967:Q3

91 NBRECBASAQVMD Philly Fed ∆lv/lv Nonborrowed reserves plus extended credit 1984:Q2

92 TRBASAQVMD Philly Fed ∆2ln Total reserves 1967:Q3

93 DIVQVQD Philly Fed ∆ln Dividends 1965:Q4

Daily Financial Data

Daily Data and construction of daily factors These data are used in the machine

learning forecasts. The daily �nancial series in this data set are from the daily �nancial

dataset used in Andreou, Ghysels and Kourtellos (2013). We create a smaller daily database

which is a subset of the large cross-section of 991 daily series in their dataset. Our dataset

covers �ve classes of �nancial assets: (i) the Commodities class; (ii) the Corporate Risk cat-

egory; (iii) the Equities class; (iv) the Foreign Exchange Rates class and (v) the Government

Securities.

The dataset includes up to 87 daily predictors in a daily frequency from 23-Oct-1959

to 24-Oct-2021 (14852 trading days) from the above �ve categories of �nancial assets. We

remove series with fewer than ten years of data and time periods with no variables observed,

which occurs for some series in the early part of the sample. For those years, we have

less than 87 series. There are 39 commodity variables which include commodity indices,

prices and futures, 16 corporate risk series, 9 equity series which include major US stock

market indices and the 500 Implied Volatility, 16 government securities which include the

federal funds rate, government treasury bills of securities from three months to ten years,

and 7 foreign exchange variables which include the individual foreign exchange rates of major

�ve US trading partners and two e�ective exchange rate. We choose these daily predictors

because they are proposed in the literature as good predictors of economic growth.

We construct daily �nancial factors in a quarterly frequency in two steps. First, we

use these daily �nancial time series to form factors at a daily frequency. The raw data

used to form factors are always transformed to achieve stationarity and standardized before

performing factor estimation (see generic description below). We re-estimate factors at each

date in the sample recursively over time using the entire history of data available in real time
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prior to each out-of-sample forecast.

In the second step, we convert these daily �nancial indicators to quarterly weighted

variables to form quarterly factors by selecting an optimal weighting scheme according to

the method described below (see the weighting scheme section).

The data series used in this dataset are listed below in Table A.3 by data source. The

tables also list the transformation applied to each variable to make them stationary before

generating factors. The transformations used to stationarize a time series are the same as

those explained in the section �Monthly �nancial factor data�.

Table A.3: List of Daily Financial Dataset Variables

No. Short Name Source Tran Description

Group 1: Commodities

1 GSIZSPT Data Stream ∆ln S&P GSCI Zinc Spot - PRICE INDEX

2 GSSBSPT Data Stream ∆ln S&P GSCI Sugar Spot - PRICE INDEX

3 GSSOSPT Data Stream ∆ln S&P GSCI Soybeans Spot - PRICE INDEX

4 GSSISPT Data Stream ∆ln S&P GSCI Silver Spot - PRICE INDEX

5 GSIKSPT Data Stream ∆ln S&P GSCI Nickel Spot - PRICE INDEX

6 GSLCSPT Data Stream ∆ln S&P GSCI Live Cattle Spot - PRICE INDEX

7 GSLHSPT Data Stream ∆ln S&P GSCI Lean Hogs Index Spot - PRICE INDEX

8 GSILSPT Data Stream ∆ln S&P GSCI Lead Spot - PRICE INDEX

9 GSGCSPT Data Stream ∆ln S&P GSCI Gold Spot - PRICE INDEX

10 GSCTSPT Data Stream ∆ln S&P GSCI Cotton Spot - PRICE INDEX

11 GSKCSPT Data Stream ∆ln S&P GSCI Co�ee Spot - PRICE INDEX

12 GSCCSPT Data Stream ∆ln S&P GSCI Cocoa Index Spot - PRICE INDEX

13 GSIASPT Data Stream ∆ln S&P GSCI Aluminum Spot - PRICE INDEX

14 SGWTSPT Data Stream ∆ln S&P GSCI All Wheat Spot - PRICE INDEX

15 EIAEBRT Data Stream ∆ln Europe Brent Spot FOB U$/BBL Daily

16 CRUDOIL Data Stream ∆ln Crude Oil-WTI Spot Cushing U$/BBL - MID PRICE

17 LTICASH Data Stream ∆ln LME-Tin 99.85% Cash U$/MT

18 CWFCS00 Data Stream ∆ln CBT-WHEAT COMPOSITE FUTURES CONT. - SETT.

PRICE
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Table A.3 (Cont'd)

No. Short Name Source Tran Description

19 CCFCS00 Data Stream ∆ln CBT-CORN COMP. CONTINUOUS - SETT. PRICE

20 CSYCS00 Data Stream ∆ln CBT-SOYBEANS COMP. CONT. - SETT. PRICE

21 NCTCS20 Data Stream ∆ln CSCE-COTTON #2 CONT.2ND FUT - SETT. PRICE

22 NSBCS00 Data Stream ∆ln CSCE-SUGAR #11 CONTINUOUS - SETT. PRICE

23 NKCCS00 Data Stream ∆ln CSCE-COFFEE C CONTINUOUS - SETT. PRICE

24 NCCCS00 Data Stream ∆ln CSCE-COCOA CONTINUOUS - SETT. PRICE

25 CZLCS00 Data Stream ∆ln ECBOT-SOYBEAN OIL CONTINUOUS - SETT. PRICE

26 COFC01 Data Stream ∆ln CBT-OATS COMP. TRc1 - SETT. PRICE

27 CLDCS00 Data Stream ∆ln CME-LIVE CATTLE COMP. CONTINUOUS - SETT.

PRICE

28 CLGC01 Data Stream ∆ln CME-LEAN HOGS COMP. TRc1 - SETT. PRICE

29 NGCCS00 Data Stream ∆ln CMX-GOLD 100 OZ CONTINUOUS - SETT. PRICE

30 LAH3MTH Data Stream ∆ln LME-Aluminium 99.7% 3 Months U$/MT

31 LED3MTH Data Stream ∆ln LME-Lead 3 Months U$/MT

32 LNI3MTH Data Stream ∆ln LME-Nickel 3 Months U$/MT

33 LTI3MTH Data Stream ∆ln LME-Tin 99.85% 3 Months U$/MT

34 PLNYD www.macrotrends.net ∆ln Platinum Cash Price (U$ per troy ounce)

35 XPDD www.macrotrends.net ∆ln Palladium (U$ per troy ounce)

36 CUS2D www.macrotrends.net ∆ln Corn Spot Price (U$/Bushel)

37 SoybOil www.macrotrends.net ∆ln Soybean Oil Price (U$/Pound)

38 OATSD www.macrotrends.net ∆ln Oat Spot Price (US$/Bushel)

39 WTIOilFut US EIA ∆ln Light Sweet Crude Oil Futures Price: 1St Expiring Contract

Settlement ($/Bbl)

Group 2: Equities

40 S&PCOMP Data Stream ∆ln S&P 500 COMPOSITE - PRICE INDEX

41 ISPCS00 Data Stream ∆ln CME-S&P 500 INDEX CONTINUOUS - SETT. PRICE

42 SP5EIND Data Stream ∆ln S&P500 ES INDUSTRIALS - PRICE INDEX

43 DJINDUS Data Stream ∆ln DOW JONES INDUSTRIALS - PRICE INDEX
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Table A.3 (Cont'd)

No. Short Name Source Tran Description

44 CYMCS00 Data Stream ∆ln CBT-MINI DOW JONES CONTINUOUS - SETT. PRICE

45 NASCOMP Data Stream ∆ln NASDAQ COMPOSITE - PRICE INDEX

46 NASA100 Data Stream ∆ln NASDAQ 100 - PRICE INDEX

47 CBOEVIX Data Stream lv CBOE SPX VOLATILITY VIX (NEW) - PRICE INDEX

48 S&P500toVIX Data Stream ∆ln S&P500/VIX

Group 3: Corporate Risk

49 LIBOR FRED ∆lv Overnight London Interbank O�ered Rate (%)

50 1MLIBOR FRED ∆lv 1-Month London Interbank O�ered Rate (%)

51 3MLIBOR FRED ∆lv 3-Month London Interbank O�ered Rate (%)

52 6MLIBOR FRED ∆lv 6-Month London Interbank O�ered Rate (%)

53 1YLIBOR FRED ∆lv One-Year London Interbank O�ered Rate (%)

54 1MEuro-FF FRED lv 1-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds

55 3MEuro-FF FRED lv 3-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds

56 6MEuro-FF FRED lv 6-Month Eurodollar Deposits (London Bid) (% P.A.) minus

Fed Funds

57 APFNF-

AANF

Data Stream lv 1-Month A2/P2/F2 Non�nancial Commercial Paper (NCP)

(% P. A.) minus 1-Month Aa NCP (% P.A.)

58 APFNF-AAF Data Stream lv 1-Month A2/P2/F2 NCP (% P.A.) minus 1-Month Aa Finan-

cial Commercial Paper (% P.A.)

59 TED Data Stream, FRED lv 3Month Tbill minus 3-Month London Interbank O�ered Rate

(%)

60 MAaa-10YTB Data Stream lv Moody Seasoned Aaa Corporate Bond Yield (% P.A.) minus

Y10-Tbond

61 MBaa-10YTB Data Stream lv Moody Seasoned Baa Corporate Bond Yield (% P.A.) minus

Y10-Tbond
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Table A.3 (Cont'd)

No. Short Name Source Tran Description

62 MLA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: A Rated: E�ective Yield (%)

minus Y10-Tbond

63 MLAA-10YTB Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aa Rated: E�ective Yield

(%) minus Y10-Tbond

64 MLAAA-

10YTB

Data Stream, FRED lv Merrill Lynch Corporate Bonds: Aaa Rated: E�ective Yield

(%) minus Y10-Tbond

Group 4: Treasuries

65 FRFEDFD Data Stream ∆lv US FED FUNDS EFF RATE (D) - MIDDLE RATE

66 FRTBS3M Data Stream ∆lv US T-BILL SEC MARKET 3 MONTH (D) - MIDDLE RATE

67 FRTBS6M Data Stream ∆lv US T-BILL SEC MARKET 6 MONTH (D) - MIDDLE RATE

68 FRTCM1Y Data Stream ∆lv US TREASURY CONST MAT 1 YEAR (D) - MIDDLE

RATE

69 FRTCM10 Data Stream ∆lv US TREASURY CONST MAT 10 YEAR (D) - MIDDLE

RATE

70 6MTB-FF Data Stream lv 6-month treasury bill market bid yield at constant maturity

(%) minus Fed Funds

71 1YTB-FF Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

Fed Funds

72 10YTB-FF Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus Fed Funds

73 6MTB-3MTB Data Stream lv 6-month treasury bill yield at constant maturity (% P.A.) mi-

nus 3M-Tbills

74 1YTB-3MTB Data Stream lv 1-year treasury bill yield at constant maturity (% P.A.) minus

3M-Tbills

75 10YTB-3MTB Data Stream lv 10-year treasury bond yield at constant maturity (% P.A.)

minus 3M-Tbills

76 BKEVEN05 FRB lv US In�ation compensation: continuously compounded zero-

coupon yield: 5-year (%)
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Table A.3 (Cont'd)

No. Short Name Source Tran Description

77 BKEVEN10 FRB lv US In�ation compensation: continuously compounded zero-

coupon yield: 10-year (%)

78 BKEVEN1F4 FRB lv BKEVEN1F4

79 BKEVEN1F9 FRB lv BKEVEN1F9

80 BKEVEN5F5 FRB lv US In�ation compensation: coupon equivalent forward rate:

5-10 years (%)

Group 5: Foreign Exchange (FX)

81 US_CWBN Data Stream ∆ln US NOMINAL DOLLAR BROAD INDEX - EXCHANGE IN-

DEX

82 US_CWMN Data Stream ∆ln US NOMINAL DOLLAR MAJOR CURR INDEX - EX-

CHANGE INDEX

83 US_CSFR2 Data Stream ∆ln CANADIAN $ TO US $ NOON NY - EXCHANGE RATE

84 EU_USFR2 Data Stream ∆ln EURO TO US$ NOON NY - EXCHANGE RATE

85 US_YFR2 Data Stream ∆ln JAPANESE YEN TO US $ NOON NY - EXCHANGE RATE

86 US_SFFR2 Data Stream ∆ln SWISS FRANC TO US $ NOON NY - EXCHANGE RATE

87 US_UKFR2 Data Stream ∆ln UK POUND TO US $ NOON NY - EXCHANGE RATE

LDA Data

These data are used as inputs into the machine learning forecasts. The database for our

Latent Dirichlet Allocation (LDA) analysis contains around one million articles published

in Wall Street Journal between January 1984 to June 2022. The current vintage of the

results reported here is based a randomly selected sub-sample of 200,000 articles over the

same period, one-�fth size of the entire database. The sample selection procedures follows

Bybee et al. (2021). First, we remove all articles prior to January 1984 and after June

2022 and exclude articles published in weekends. Second, we exclude articles with subject

tags associated with obviously non-economic content such as sports. Third, we exclude

articles with the certain headline patterns, such as those associated with data tables or

those corresponding to regular sports, leisure, or books columns. We �lter the articles using

the same list of exclusions provided by Bybee et al. (2021). Last, we exclude articles with
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less than 100 words.

Processing of texts The processing of the texts can be summarized in the following �ve

steps.

1. Tokenization: parse each article's text into a white-space-separated word list retaining

the article's word ordering.

2. We drop all non-alphabetical characters and set the remaining characters to lower-

case, remove words with less than 3 letters, and remove common stop words and

URL-based terms. We use a standard list of stop words from the Python library

gensim.parsing.preprocessing.

3. Lemmatization and Stemming: lemmatization returns the original form of a word

using external dictionary Textblob.Word in Python and based on the context of the

word. For instance, as a verb, �went� is converted to�go�. Stemming usually refers to a

heuristic process that remove the trailing letters at the end of the words, such as from

�assesses� to �assess', and �really� to �real�. We use the Python library Textblob.Word

to implement the lemmatization and SnowballStemmer for the stemming. The results

are not very sensitive to the particular Python packages being used.

4. From the �rst three steps, we obtain a list of uni-grams which are a list of singular

words. For example, "united" and "states" are uni-grams from "united states". From

the list of uni-grams, we generate a set of bi-grams as all pairs of (ordered) adjacent

uni-grams. For example, "united states" together is one bi-gram. We then exclude

uni-grams and bi-grams appearing in less than 0.1% of articles.

5. Last, we convert an article's word list into a vector of counts for each uni-gram and

bi-gram. For example, the vector of counts [5, 7, 2] corresponds to the number of times

the words [”federal”, ”reserve”, ”bank”] appear in the article.

The LDA Model The LDA model Blei, Ng and Jordan (2003) essentially achieves sub-

stantial dimension reduction of the word distribution of each article using the following

assumptions. We assume a factor structure on the vectors of word counts. Each factor is a

topic and each article is a parametric distribution of topics, speci�ed as follows,

V×1︷︸︸︷
wi︸︷︷︸

word dist of article i

∼ Mult


V×K︷︸︸︷
Φ′︸︷︷︸,

topic-word dist.

K×1︷︸︸︷
θi︸︷︷︸

topic dist.

, Ni︸︷︷︸
# of words

 (A.2)
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where Mult is the multinomial distribution. In the above equation, wi is a vector of word

counts of each unique term (uni-gram or bi-gram) in article i, whose size is equal to the

number of unique terms V . K is the number of factors in article i. In the estimation, we

assume K = 180 following Bybee et al. (2021). Φ is a matrix sized K × V , whose kth row

and vth column is equal to the probability of the unique term v showing up in topic k. θi

stores the weights of all k topics contained in article i, which sum up to one. Dimension

reduction is achieved as long as K << V (the number of topics are signi�cantly smaller

than the number of unique terms). More speci�cally, it reduces the dimension from T × V

to T ×K (the size of θ) + K × V (the size of Φ).

Real-time news factors. We also generate real-time news factors for each month t starting

from January 1991. In theory, we could train the LDA model using each real-time monthly

vintage but it is computationally challenging. Instead, we simplify the procedure by training

the LDA model using quarterly vintages t, t+3, t+6, etc, and use the LDA model parameters

estimated at t to �lter news paper articles within the quarter and generate news factors for

those months. More speci�cally, given every article's word distribution wi,t+s,for s = 0, 1, 2,

and the estimated real-time topic-word distribution parameters Φ̂t using articles till date t,

one can obtain the �ltered topic distribution of each article θ̂i,t+s, as follows,

V×1︷ ︸︸ ︷
wi,t+s︸ ︷︷ ︸

word dist of article i at time t+s

∼ Mult


V×K︷︸︸︷
Φ̂′︸︷︷︸,

topic-word dist.

K×1︷ ︸︸ ︷
θ̂i,t+s︸ ︷︷ ︸

topic dist.

, Ni,t+s︸ ︷︷ ︸
# of words

 . (A.3)

LDA Estimation We use the built-in LDA model estimation toolbox in the Python

library https://pypi.org/project/gensim/Gensim to implement the model estimation.

The model requires following initial inputs and parameters and it is estimated using Bayesian

methods.7

1. We create a document-term matrix W as a collection of wi for all articles i in the

sample. The number of rows in W is equal to the number of articles in our sample and

the number of columns in W is equal to the number of unique uni-gram and bi-grams

(after being �ltered) across all articles. The matrix W is used as an input for the LDA

model estimation. We then follow Bybee et al. (2021) and set the number of topics K

to be 180.8

2. In the Python library Gensim, the key parameters of the LDA estim are α and β.With

7In theory, maximum-likelihood estimation is possible but it is computationally challenging.
8The authors used Bayesian criteria to �nd 180 to be an optimal number of topics.
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a higher value of α, the documents are composed of more topics. With a higher values

of β, each topic contains more terms (uni- or bi-grams). In the implementations, we

do not impose any explicit restrictions on initial values of those parameters and set

them to be �auto�. These two parameters, alongside Φ′ and {θi}i, are estimated by the
toolbox from Python library https://pypi.org/project/gensim/Gensim.

Real-time LDA Factors With the estimated topic weights θi,t of each article i from the

LDA model, we fruther construct time series of the overall news attention to each topic, or a

news factor. The value of the topic k at time t is the average weights of topic k of all articles

published at t, speci�ed as follows,

Fk,t =

∑
i θ̂i,k,t

# of articles at t
(A.4)

for all topics k.

B Machine Learning

Machine Algorithm Details

The basic dynamic algorithm follows the six step approach of Bianchi et al. (2022a) of 1.

Sample partitioning, 2. In-sample estimation, 3. Training and cross-validation, 4. Grid

reoptimization, 5. Out-of-sample prediction, and 6. Roll forward and repeat. We refer the

interested reader to that paper for details and discuss details of the implementation here

only insofar as they di�er.

At time t, a prior training sample of size Ṫ is partitioned into two subsample windows:

an �estimation� subsample consisting of the �rst TE observations, and a hold-out �validation�

sample of TV subsequent observations so that Ṫ = TE +TV . The model to be estimated over

the estimation subsample is

yj,t+h = Ge
(
Xt,βj,h,t

)
+ ϵjt+h.

where yj,t+h is a time series indexed by j whose value in period h ≥ 1 the machine is

asked to predict at time t, Xt is a large input dataset of right-hand-side variables includ-

ing the intercept, and Ge(·) is a machine learning estimator that can be represented by a

(potentially) high dimensional set of �nite-valued parameters βe
j,h,t. We consider two estima-

tors for Ge(·): Elastic Net GEN(Xt,β
EN
j,h ), and Long Short-Term Memory (LSTM) network
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GLSTM(Xt,β
LSTM
j,h ). The e ∈ {EN,LSTM} superscripts on β indicate that the parameters

depend on the estimator being used (See the next section for a description of EN and LSTM).

Xt always denotes the most recent data that would have been in real time prior to the date

on which the forecast was submitted. To ensure that the e�ect of each variable in the input

vector is regularized fairly during the estimation, we standardize the elements of Xt such that

sample means are zero and sample standard deviations are unity.It should be noted that the

most recent observation on the left-hand-side is generally available in real time only with

a one-period lag, thus the forecasting estimations can only be run with data over a sample

that stops one period later than today in real time.

The parameters βe
j,h,t are estimated by minimizing the mean-square loss function with

L1 and L2 penalties

L(βe
j,h,t,XTE

,λe
t ) ≡

1

TE

TE∑
τ=1

(
yj,τ+h −Ge

(
Xt,β

e
j,h,t

))2
︸ ︷︷ ︸

Mean Square Error

+ λe1,t

K∑
k=1

∣∣βe
j,h,t,k

∣∣
︸ ︷︷ ︸

L1 Penalty

+ λe2,t

K∑
k=1

(βe
j,h,t,k)

2

︸ ︷︷ ︸
L2 Penalty

where XTE
= (yj,t−TE

, . . . , yj,t,X ′
t−TE

, . . . ,X ′
t )

′ is the vector containing all observations in an

estimation subsample of size TE. The estimated βe
j,h,t is a function of the data XTE

and a

non-negative regularization parameter vector λe
t =

(
λe1,t, λ

e
2,t,λ

LSTM
t

)′
where λLSTM

t is a set

of hyperparameters only relevant when using the LSTM estimator for Ge(·) (see below). For

the EN case there are only two hyperparameters, which determine the optimal shrinkage and

sparsity of the time t machine speci�cation. The regularization parameters λe
t are estimated

by minimizing the mean-square loss over pseudo-out-of-sample forecast errors generated from
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rolling regressions through the validation sample:

λ̂
e

t , T̂E , T̂V = argmin
λe
t ,TE ,TV

{
1

TV − h

TE+TV −h∑
τ=TE

(
yj,τ+h −GEN (Xτ , β̂

EN

j,h,τ (XTE
))
)2

+ λEN
1,t

K∑
k=1

βEN
j,h,t,k︸ ︷︷ ︸

L1 Penalty

+ λEN
2,t

K∑
k=1

(βEN
j,h,t,k)

2

︸ ︷︷ ︸
L2 Penalty

}

λ̂
e

t , T̂E , T̂V = argmin
λe
t ,TE ,TV

{
1

TV − h

TE+TV −h∑
τ=TE

(
yj,τ+h −GLSTM (Xτ , β̂

LSTM

j,h,τ (XTE
,λLSTM

t ))
)2

+ λLSTM
1,t

K∑
k=1

∣∣βLSTM
j,h,t,k

∣∣
︸ ︷︷ ︸

L1 Penalty

+ λLSTM
2,t

K∑
k=1

(βLSTM
j,h,t,k )2︸ ︷︷ ︸

L2 Penalty

}

where β̂
e

j,h,τ (·), e ∈ {EN,LSTM}, is the time τ estimate of βe
j,h given λe

t and data through

time τ in a sample of size TE. Denote the combined �nal estimator β̂
e

j,h,t(X T̂E
, λ̂

e

t ), where the

regularization parameter λ̂
e

t is estimated using cross-validation dynamically over time. Note

that the algorithm also asks the machine to dynamically choose both the optimal estimation

window T̂E and the optimal validation window T̂V by minimizing the pseudo-out-of-sample

MSE.

The estimation of β̂
e

j,h,t(X T̂E
, λ̂

e

t ) is repeated sequentially in rolling subsamples, with

parameters estimated from information known at time t. Note that the time t subscripts of

β̂
e

j,h,t and λ̂
e

t denote one in a sequence of time-invariant parameter estimates obtained from

rolling subsamples, rather than estimates that vary over time within a sample. Likewise, we

denote the time t machine belief about yj,t+h as Ee
t [yj,t+h], de�ned by

Ee
t [yj,t+h] ≡ Ge

(
Xt, β̂

e

j,h,t(X T̂E
, λ̂

e

t )
)

Finally, the machine MSE is computed by averaging across the sequence of squared forecast

errors in the true out-of-sample forecasts for periods t = (Ṫ + h), . . . , T where T is the last

period of our sample. We refer to this subperiod as the external forecast evaluation sample.

On rare occasions, one or more of the explanatory variables used in the machine forecast

speci�cation assumes a value that is order of magnitudes di�erent from its historical value.

This is usually indicative of a measurement problem in the raw data. We therefore program

the machine to detect in real-time whether its forecast is an extreme outlier, and in that

case to discard the forecast replacing it with the historical mean. Speci�cally, at each t, the
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machine forecast Ee
t [yj,t+h] is set to be the historical mean calculated up to time t whenever

the former is �ve or more standard deviations above its own rolling mean over the most

recent 20 quarters.

We include the contemporaneous survey forecasts Ft [yj,t+h] for the median respondent

only for in�ation and GDP forecasts, following BLM1. This procedure allows the machine

to capture intangible information due to judgement or private signals. Speci�cally, for these

forecasts of in�ation and GDP growth, we consider the following machine learning empirical

speci�cation for forecasting yj,t+h given information at time t, to be benchmarked against

the time t survey forecast of respondent-type X, where this type is the median here:

yj,t+h = Ge
jh (Zt) + γjhMFt [yj,t+h] + ϵjt+h, h ≥ 1 (A.5)

where γjhM is a parameter to be estimated, and where GjhM (Zt) represents a ML estimator as

function of big data. Note that the intercept αjh from BLM gets absorbed into the Ge
jh (Zt)

in LSTM via the outermost bias term. 2.

Elastic Net Estimator

We use the Elastic Net (EN) estimator, which combines Least Absolute Shrinkage and Se-

lection Operator (LASSO) and ridge type penalties. The model can be written as:

yj,t+h = X ′
tjβ

EN
j,h + ϵj,t+h

where Xt = (1,X1t,...,XKt)
′ include the independent variable observations (Ft [yj,t+h] ,Zjt)

into a vector with �1� and βEN
j,h =

(
αj,h, βj,hF, vec (Bj,hZ)

)′ ≡ (β0, β1, ...βK)
′ collects all the

coe�cients.

It is customary to standardize the elements of Xt such that sample means are zero and

sample standard deviations are unity. The coe�cient estimates are then put back in their

original scale by multiplying the slope coe�cients by their respective standard deviations,

and adding back the mean (scaled by slope coe�cient over standard deviation.) The EN

estimator incorporates both an L1 and L2 penalty:

β̂
EN

j,h = argmin
β0,β1,...,βK


1

TE

TE∑
τ=1

(
yj,τ+h −X ′

τβj,h

)2
+ λ1

K∑
k=1

∣∣βj,h,k

∣∣
︸ ︷︷ ︸

LASSO

+ λ2

K∑
k=1

(βj,h,k)
2

︸ ︷︷ ︸
ridge
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By minimizing the MSE over the training samples, we choose the optimal λ1 and λ2 values

simultaneously.

In the implementation, the EN estimator is sometimes used as an imput into the algo-

rithm using the LSTM estimator. Speci�cally, we ensure that the machine forecast can only

di�er from the relevant benchmark if it demonstrably improves the pseudo out-of-sample

prediction in the training samples prior to making a true out-of-sample forecast. Other-

wise, the machine is replaced by the benchmark calculated up to time t. In some cases the

benchmark is a survey forecast, in others it could be a historical mean value for the variable.

However, for the implementation using LSTM, we also use the EN forecast as a benchmark.

Long Short-Term Memory (LSTM) Network

An LSTM network is a type of Recurrent Neural Network (RNN), which are neural networks

used to learn about sequential data such as time series or natural language. In particular,

LSTM networks can learn long-term dependencies between across time periods by intro-

ducing hidden layers and memory cells to control the �ow of information over longer time

periods. The general case of the LSTM network with up to N hidden layers is de�ned as

GLSTM(Xt,β
LSTM
j,h )︸ ︷︷ ︸

1×1

= W (yhN )︸ ︷︷ ︸
1×D

hN

hNt︸︷︷︸
D

hN
×1

+ by︸︷︷︸
1×1

(Output layer)

hnt︸︷︷︸
Dhn×1

= ont︸︷︷︸
Dhn×1

⊙ tanh( cnt︸︷︷︸
Dhn×1

) (Hidden layer)

cnt︸︷︷︸
Dhn×1

= fn
t︸︷︷︸

Dhn×1

⊙ cnt−1︸︷︷︸
Dhn×1

+ int︸︷︷︸
Dhn×1

⊙ c̃nt︸︷︷︸
Dhn×1

(Final memory)

c̃nt︸︷︷︸
Dhn×1

= tanh(W (cnhn−1)︸ ︷︷ ︸
Dhn×Dhn−1

hn−1
t︸︷︷︸

Dhn−1×1

+W (cnhn)︸ ︷︷ ︸
Dhn×Dhn

hnt−1︸︷︷︸
Dhn×1

+ bcn︸︷︷︸
Dhn×1

) (New memory)

fn
t︸︷︷︸

Dhn×1

= σ(W (fnhn−1)︸ ︷︷ ︸
Dhn×Dhn−1

hn−1
t︸︷︷︸

Dhn−1×1

+W (fnhn)︸ ︷︷ ︸
Dhn×Dhn

hnt−1︸︷︷︸
Dhn×1

+ bfn︸︷︷︸
Dhn×1

) (Forget gate)

int︸︷︷︸
Dhn×1

= σ(W (inhn−1)︸ ︷︷ ︸
Dhn×Dhn−1

hn−1
t︸︷︷︸

Dhn−1×1

+W (inhn)︸ ︷︷ ︸
Dhn×Dhn

hnt−1︸︷︷︸
Dhn×1

+ bin︸︷︷︸
Dhn×1

) (Input gate)

ont︸︷︷︸
Dhn×1

= σ(W (onhn−1)︸ ︷︷ ︸
Dhn×Dhn−1

hn−1
t︸︷︷︸

Dhn−1×1

+W (onhn)︸ ︷︷ ︸
Dhn×Dhn

hnt−1︸︷︷︸
Dhn×1

+ bon︸︷︷︸
Dhn×1

) (Output gate)
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where n = 1, . . . , N indexes each hidden layer. hnt ∈ RDhn is the n-th hidden layer, where

Dhn is the number of neurons or nodes in the hidden layer. The 0-th layer is de�ned as the

input data: h0t ≡ Xt. The memory cell cnt allows the LSTM network to retain information

over longer time periods. The output gate ont controls the extent to which the memory cell

cnt maps to the hidden layer hnt . The forget gate f
n
t controls the �ow of information carried

over from the �nal memory in the previous timestep cnt−1. The input gate int controls the

�ow of information from the new memory cell c̃nt . The initial states for the hidden layers

(hn0 )
N
n=1 and memory cells (cn0 )

N
n=1 are set to zeros.

σ(·) and tanh(·) are activation functions that introduce non-linearities in the LSTM

network, applied elementwise. σ : R → R is the sigmoid function: σ(x) = (1 + e−x)−1.

tanh : R → R is the hyperbolic tangent function: tanh(x) = e2x−1
e2x+1

. The ⊙ operator refers to

elementwise multiplication.

βLSTM
j,h ≡ (((vec(W (gnhn−1))′, vec(W (gnhn))′, b′gn)g∈{c,f,i,o}, h

n
0
′, cn0

′)Nn=1, vec(W
(yhN ))′, by)

′ are

parameters to be estimated. We will refer to parameters indexed with W as weights ; param-

eters indexed with b are biases. We estimate the parameters βLSTM
j,h for the LSTM network

using Stochastic Gradient Decent (SGD), which is an iterative algorithm for minimizing the

loss function and proceeds as follows:

1. Initialization. Fix a random seed R and draw a starting value of the parameters β
(0)
j,h

randomly, where the superscript (0) in parentheses indexes the iteration for an estimate

of βLSTM
j,h .

(a) Initialize the input weights W (gnhn−1) ∈ RDhn×Dhn−1 for g ∈ {c, f, i, o} using the

Glorot initializer by drawing randomly from a uniform distribution with zero mean

and a variance that depends on the dimensions of the matrix:

W
(gnhn−1)
ij

iid∼ U

[
−
√

6

Dhn +Dhn−1

,

√
6

Dhn +Dhn−1

]

for each i = 1, . . . , Dhn and j = 1, . . . , Dhn−1 .

(b) Initialize the recurrent weights W (gnhn) ∈ RDhn×Dhn for g ∈ {c, f, i, o} using the

Orthogonal initializer by using the orthogonal matrix obtained from the QR de-

composition of a Dhn × Dhn matrix of random numbers drawn from a standard

normal distribution.

(c) Biases (bgn)g∈{c,f,i,o}, hidden layers hn0 , and memory cells cn0 are initialized with

zeros.

2. Repeat until the stopping condition is satis�ed (k = 1, 2, 3, . . . ):
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(a) Mini-Batch. Randomly draw a subset I(k) of size M from the estimation sample:

I(k) = [I
(k)
1 , . . . , I

(k)
M ]′ where I

(k)
j

iid∼ Uniform({1, . . . , TE})

The subset I(k) is called a �mini-batch� and contains the time indices of the ran-

donly sampled observations. The size of the mini-batch M is a hyper-parameter.

Smaller batch sizes M can have a regularizing e�ect by adding noise to the learn-

ing process.

(b) Dropout. Apply dropout to the mini-batch by multiplying (elementwise) each

layer hnt with a binary mask rnt such that

ĥnt = rnt ⊙ hnt where rni,t
iid∼ Bernoulli(1− p)

for each t ∈ I(k) and i = 1, . . . , Dhn . The probability of dropout p is a hyper-

parameter to be cross-validated. Dropout adds noise to the learning process by

randomly selecting which weight to update during each iteration. Intuitively,

dropout is similar to averaging the predictions of many smaller sub-networks.

(c) Stochastic Gradient. Average the gradient over observations in the mini-batch

∇L(β(k−1)
j,h ,XI(k) ,λ

LSTM) =
1

M

∑
t∈I(k)

∇L(β(k−1)
j,h ,Xt,λ

LSTM)

where ∇L(β(k−1)
j,h ,Xt,λ

LSTM) is the gradient of the loss function with respect to

the parameters β
(k−1)
j,h , evaluated at the time t observation Xt = (yj,t+h, X̂ ′

t )
′ after

applying dropout.

(d) Learning rate shrinkage. Update the parameters to β
(k)
j,h using the Adaptive Mo-

ment Estimation (Adam) algorithm. The method uses the �rst and second mo-

ments of the gradients to shrink the overall learning rate to zero as the gradient

approaches zero.

β
(k)
j,h = β

(k−1)
j,h − γ

m(k)

√
v(k) + ε

where m(k) and v(k) are weighted averages of �rst two moments of past gradients:

m(k) =
1

1− πk
1

(π1m
(k−1) + (1− π1)∇L(β(k−1)

j,h ,XI(k) ,λ
LSTM))
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v(k) =
1

1− πk
2

(π2v
(k−1) + (1− π2)∇L(β(k−1)

j,h ,XI(k) ,λ
LSTM)2)

πk denotes the k-the power of π ∈ (0, 1), and /,
√
·, and (·)2 are applied elemen-

twise. The default values of the hyper-parameters are m(0) = v(0) = 0 (initial

moment vectors), γ = 0.001 (initial learning rate), (π1, π2) = (0.9, 0.999) (decay

rates), and ε = 10−8 (prevent zero denominators).

(e) Stopping Critera. Stop iterating and return β
(k)
j,h if one of the following holds:

� Early stopping. At each iteration, use the updated β
(k)
j,h to calculate the loss

from the validation sample. Stop when the validation loss has not improved

for S steps, where S is a �patience� hyper-parameter. By updating the pa-

rameters for fewer iterations, early stopping shrinks the �nal parameters βj,h

towards the initial guess β
(0)
j,h, and at a lower computational cost than ℓ2

regularization.

� Maximum number of epochs. Stop if the number of iterations reaches the

maximum number of epochs E. An epoch happens when the full set of the

estimation sample has been used to update the parameters. If the estimation

sample has TE observations and each mini-batch has M observations, then

each epoch would contain ⌈TE/M⌉ iterations (after rounding up as needed).

So the maximum number of iterations is bounded by E × ⌈TE/M⌉.

3. Ensemble forecasts. Repeat steps 1. and 2. over di�erent random seeds R and save each

of the estimated parameters β̂
LSTM

j,h,TE
(XTE

,λLSTM, R). Then construct out-of-sample

forecasts using the top 10 out of 20 starting values with the best performance in the

validation sample. Ensemble can be considered as a regularization method because it

aims to guard against over�tting by shrinking the forecasts toward the average across

di�erent random seeds. The random seed a�ects the random draws of the parameter's

initial starting value β
(0)
j,h, the mini-batches I

(k), and the dropout mask r
(k)
t .

Hyperparameters Let λLSTM ≡ [λ1, λ2, γ, π1, π2, p,N, (Dhn)Nn=1,M,E, S]′ collect all the

hyper-parameters that control the LSTM network's complexity and prevent the model from

over�tting the data. The number of hidden layersN and the number of neuronsDh1 , . . . , DhN

in each hidden layer are hyper-parameters that characterize the network's architecture. To

choose the number of neurons in each layer, we apply a geometric pyramid rule where the

dimension of each additional hidden layer is half that of the previous hidden layer.

Table A.4 reports the hyper-parameters for the LSTM network and its estimation. Hyper-

parameters reported as a range or a set of values are cross-validated. The hyper-parameters
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Table A.4: Candidate hyper-parameters for the LSTM network

Hyper-parameter Description

[0.5ex] λ1 ∈ [10−6, 10−2] L1 penalty

λ2 ∈ [10−6, 10−2] L2 penalty

γ ∈ {0.01, 0.001} Initial learning rate

(π1, π2) = (0.9, 0.999) Gradient decay rates

p = 0.2 Probability of dropout

N = 1 Number of hidden layers

(Dhn)Nn=1 = (4, 8, 32) Number of neurons in each hidden layer

M = 4 Mini-batch size

E = 10, 000 Maximum number of epochs

S = 20 Patience for early stopping

R ∈ {1, 2, 3, . . . , 20} Random seeds

TE ∈ {6, 9, 12, 15} Window length of estimation sample

TV ∈ {3, 5, 7} Window length of validation sample

are estimated by minimizing the mean-square loss over pseudo out-of-sample forecast errors

generated from rolling regressions through the validation sample. The pseudo out-of-sample

forecasts are ensemble averages implied by parameters based on di�erent random seeds R.

Machine Variables to Be forecast

Returns and price growth When evaluating the MSE ratio of the machine relative to

that of a benchmark survey, we use the machine forecast for the return or price growth

measure that most closely corresponds to the concept that survey respondents are asked to

predict:

1. CFO survey asks respondents about their expectations for the S&P 500 return over

the next 12 months. Following Nagel and Xu (2022), we interpret the survey to be

asking about rdt,t+12, the one-year CRSP value-weighted return (including dividends)

from the current survey month to the same month one year ahead.

2. Gallup/UBS survey respondents report the return (including dividends) they expect on

their own portfolio one year ahead. We interpret the survey to be asking about rdt,t+12,

the one-year CRSP value-weighted return(including dividends) from the current survey

month to the same month one year ahead.

3. Livingston survey respondents provide 12-month ahead forecasts of the S&P 500 index.

We convert the level forecast to price growth forecast by taking the log di�erence
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between the 12-month ahead level forecast and the nowcast of the S&P 500 index for

the current survey month. Therefore, we interpret the survey to be asking about the

one-year price growth in the S&P 500 index.

4. Bloomberg Consensus Forecasts asks survey respondents about the end-of-year closing

value of the S&P 500 index. We interpret the survey to be asking about the h-month

price growth in the S&P 500 index. The horizon of the forecast changes depending on

when in the year the panelists are answering the survey.

5. Michigan Survey of Consumers (SOC) asks respondents about their perceived proba-

bility that an investment in a diversi�ed stock fund would increase in value in the year

ahead. We interpret the question to be asking about the one-year price growth in the

S&P 500 index.

6. Conference Board (CB) survey asks respondents about their categorical belief on

whether they expect stock prices to increase, decrease, or stay the same over the next

year. We interpret the question to be asking about the one-year price growth in the

S&P 500 index.

Earnings growth For earning growth forecasts, we use a quarterly S&P 500 total earnings

series that combines data from S&P Global, Shiller, and the S&P 500 divisor, as described

above. Since the machine learning algorithm has been adapted to a quarterly forecasting

frequency, we use the quarterly series before the monthly interpolation. The quarterly series

spans the period 1959:Q1 to 2021:Q4.

In�ation We construct forecasts of annual in�ation de�ned as

πt+4,t = ln

(
PGDPt+4

PGDPt

)

where PGDPt is the quarterly level of the chain-weighted GDP price index. Following

Coibion and Gorodnichenko (2015), we use the vintage of in�ation data that is available

four quarters after the period being forecast.

GDP growth We construct forecasts of annual real GDP growth de�ned as

yt+4,t = ln

(
RGDPt+4

RGDPt

)
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where RGDPt is the quarterly level of chain-weighted real GDP. Following Coibion and

Gorodnichenko (2015), we use the vintage of in�ation data that is available four quarters

after the period being forecast.

Machine Input Data: Predictor Variables

The vector Zjt ≡
(
yj,t, Ĝ

′
t,W

′
jt

)′
is an r = 1+rG+rW vector which collects the data at time

t with Zjt ≡
(
yj,t, ..., yj,t−py , Ĝ

′
t, ..., Ĝ

′
t−pG

,W′
jt, ...,W

′
jt−pW

)′
a vector of contemporaneous

and lagged values of Zjt, where py, pG, pW denote the total number of lags of yj,t, Ĝ
′
t, W

′
jt,

respectively. The predictors below are listed as elements of yj,t, Ĝ
′
jt, or W

′
jt for variables.

Stock return and price growth predictor variables and speci�cations For yj equal

to CRSP value-weighted returns or S&P 500 price index growth, we �rst predict the one-year

log stock return or price growth that is expected to occur h quarters into the future from

time t + h − 4 to t + h, i.e., Et[rt+h−4,t+h]. For horizons longer than one year, since the

h-quarter long horizon return is the sum of one-year returns between time t to t+h, we �rst

forecast the forward one-year returns separately and then add the components together to

get machine forecasts of h-quarter long horizon returns. The forecasting model considers the

following variables:

In W′
jt:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92

real-time macro series; includes both monthly and quarterly series, with monthly series

converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a �nancial data set DF with 147 monthly

�nancial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily �nancial dataset DD of

87 daily �nancial indicators. The raw daily series are �rst converted to daily factors

GD,t (w) and the daily factors are aggregated up to quarterly observations GQ
D,t (w)

using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

yj,t+h on GD,t (w).

4. LDA topics Fk,t−j, for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at

time t is the average weights of topic k of all articles published at t.
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5. Macro data surprises from the money market survey. The macro news include, GDP

growth (Q/Q percentage change), core CPI (Month/Month change), unemployment

rate (percentage point), and nonfarm payroll (month/month change). We include �rst

release, second release, and �nal release for GDP growth. This constitutes six macro

data surprises per quarter.

6. FOMC surprises are de�ned as the changes in the current-month, 1, 2, 6, 12, and 24

month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2,

4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to

20 minutes after each FOMC announcement. When benchmarking against a survey,

we use the last FOMC meeting before the survey deadline to compute surprises. For

surveys that do not have a clear deadline, we compute surprises using from the last

FOMC in the �rst month of the quarter. When benchmarking against moving average,

we use the last FOMC meeting before the end of the �rst month in each quarter to

compute surprises. This leaves 10 FOMC surprise variables per quarter.

7. Stock market jumps are accumulated 30-minute window negative and positive jumps

in the S&P 500 around news events over the previous quarter.

8. µ̄t−k for k = 0, 1, 2 is the historical mean of returns calculated up to time t. The initial

period is 1959Q1.

9. Long-term growth of earnings : 5-year growth of the SP500 earnings per share.

10. Short rates. When forecasting returns or price growth, the machine controls for the

current nominal short rate, ln(1 + 3MTBt/100), imposing a unit coe�cient. This is

equivalent to forecasting the future return minus the current short rate.

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment

and hours, consumer spending, housing starts, orders and un�lled orders, compensation

and labor costs, and capacity utilization measures. The dataset also includes commodity

and price indexes and a handful of bond and stock market indexes, and foreign exchange

measures. The �nancial dataset Df is an updated monthly version of the of 147 variables

comprised solely of �nancial market time series used in Ludvigson and Ng (2007). These

data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth

rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds

of di�erent ratings grades, yields on Treasuries and yield spreads, and a broad cross-section of
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industry, size, book-market, and momentum portfolio equity returns.9 The 87 daily �nancial

indicators in DD include daily time series on commodities spot prices and futures prices,

aggregate stock market indexes, volatility indexes, credit spreads and yield spreads, and

exchange rates.

Earning growth predictor variables and speci�cations For earning growth forecasts,

we �rst detrend the (log) earnings level in real time by, starting with an initial sample,

recursively running the following regression at each point in time t

log (earningst) = αt + βtt+ yt

For yt equal to the detrended (log) earning level, we construct a forecasted value for yt,

denoted ŷt|t−h, based on information known up to time t using the following variables:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92

real-time macro series; includes both monthly and quarterly series, with monthly series

converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a �nancial data set DF with 147 monthly

�nancial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily �nancial dataset DD of

87 daily �nancial indicators. The raw daily series are �rst converted to daily factors

GD,t (w) and the daily factors are aggregated up to quarterly observations GQ
D,t (w)

using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

yj,t on GD,t (w).

4. LDA factors Fk,t−j, for topic k = 1, 2, ...50 and j = 0, 1. The value of the topic k at

time t is the average weights of topic k of all articles published at t.

5. Macro data surprises from the money market survey. The macro news include, GDP

growth (Q/Q percentage change), core CPI (Month/Month change), unemployment

rate (percentage point), and nonfarm payroll (month/month change). We include �rst

release, second release, and �nal release for GDP growth. This constitutes six macro

data surprises per quarter.

9A detailed description of the series is given in the Data Appendix of the online supplementary �le at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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6. FOMC surprises are de�ned as the changes in the current-month, 1, 2, 6, 12, and 24

month-ahead federal funds futures (FFF) contract rate and the changes in the 1, 2,

4, and 8 quarter-ahead Eurodollar (ED) futures contracts, from 10 minutes before to

20 minutes after each FOMC announcement. When benchmarking against a survey,

we use the last FOMC meeting before the survey deadline to compute surprises. For

surveys that do not have a clear deadline, we compute surprises using from the last

FOMC in the �rst month of the quarter. When benchmarking against moving average,

we use the last FOMC meeting before the end of the �rst month in each quarter to

compute surprises. This leaves 10 FOMC surprise variables per quarter.

7. Stock market jumps are accumulated 30-minute window negative and positive jumps

in the S&P 500 around news events over the previous quarter.

After we obtain the machine forecast for the detrended level of earnings, y, we obtain the h-

horizon machine earnings growth forecast (from t−h to t denoted Et−h

[
∆ log

(
earningsMt

)]
)

by constructing

Et−h

[
∆ log

(
earningsMt

)]
≡ α̂t−h + β̂t−ht+ ŷMt|t−h − log (earningst−h)

where log (earningst−h) is the realized log earning level at time t−h, and ŷMt|t−h is the machine

forecast of the detrended log earnings based on information up to time t − h. To use this

approach to forecast the 20-quarter ahead annual forward earnings i.e., (from t − 4 to t on

basis of information at t− 20), we would construct

Et−20

[
log
(
earningsMt

)]
= α̂t−20 + β̂t−20t+ ŷMt|t−20.

To construct 20-quarter ahead annual earnings growth forecast we compute

Et−20

[
log
(
earningsMt−4

)]
= α̂t−20 + β̂t−20(t− 4) + ŷMt−4|t−20

to get the machine forecast of 20-quarter forward annual earnings log growth as

Et−20

[
log
(
earningsMt

)
− log

(
earningsMt−4

)]
= β̂t−204 + ŷMt|t−20 − ŷMt−4|t−20.

An alternative is to use the machine inputs to directly forecast 20-quarter forward annual

earnings log growth Et−20

[
log
(
earningsMt

)
− log

(
earningsMt−4

)]
.
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In�ation predictor variables For yj equal to in�ation, the forecasting model considers

the following variables.

In W′
jt:

1. F(i)
jt−k[yjt+h−k], lagged values of the ith type's forecast, where k = 1, 2

2. F(s ̸=i)
jt−1 [yjt+h−1], lagged values of other type's forecasts, s ̸= i

3. varN

(
F(·)
t−1[yjt+h−1]

)
, where varN (·) denotes the cross-sectional variance of lagged sur-

vey forecasts

4. skewN

(
F(·)
t−1[yjt+h−1]

)
, where skewN (·) denotes the cross-sectional skewness of lagged

survey forecasts

5. Trend in�ation measured as πt−1 =

ρπt−2 + (1− ρ)πt−1, ρ = 0.95 if t < 1991:Q4

CPI10t−1 if t ≥ 1991:Q4
,

where CPI10 is the median SPF forecast of annualized average in�ation over the current

and next nine years. Trend in�ation is intended to capture long-run trends. When long-

run forecasts of in�ation are not available, as is the case pre-1991:Q4, we us a moving

average of past in�ation.

6. ˙GDP t−1 = detrended gross domestic product, de�ned as the residual from a regression

of GDPt−1 on a constant and the four most recent values of GDP as of date t− 8. See

Hamilton (2018).

7. ˙EMP t−1 = detrended employment, de�ned as the residual from a regression ofEMPt−1

on a constant and the four most recent values of EMP as of date t− 8. See Hamilton

(2018).

8. N(i)
t [πt,t−h] = Nowcast as of time t of the ith percentile of in�ation over the period t−h

to t.

Lags of the dependent variable:

1. yt−1,t−h−1 one quarter lagged in�ation.

The factors in Ĝ′
jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92

real-time macro series; includes both monthly and quarterly series, with monthly series

converted to quarterly according to the method described in the data appendix.

48



2. GF,t−k, for k = 0, 1 are factors formed from a �nancial data set DF with 147 monthly

�nancial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily �nancial dataset DD of

87 daily �nancial indicators. The raw daily series are �rst converted to daily factors

GD,t (w) and the daily factors are aggregated up to quarterly observations GQ
D,t (w)

using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

yj,t+h on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment

and hours, consumer spending, housing starts, orders and un�lled orders, compensation

and labor costs, and capacity utilization measures. The dataset also includes commodity

and price indexes and a handful of bond and stock market indexes, and foreign exchange

measures. The �nancial dataset Df is an updated monthly version of the of 147 variables

comprised solely of �nancial market time series used in Ludvigson and Ng (2007). These

data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth

rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds

of di�erent ratings grades, yields on Treasuries and yield spreads, and a broad cross-section

of industry, size, book-market, and momentum portfolio equity returns.10 The 87 daily

�nancial indicators in DD include daily time series on commodities spot prices and futures

prices, aggregate stock market indexes, volatility indexes, credit spreads and yield spreads,

and exchange rates.

GDP growth predictor variables For yj equal to GDP growth, the forecasting model

considers the following variables.

In W′
jt:

1. F(i)
jt−k[yjt+h−k], lagged values of the ith type's forecast, where k = 1, 2

2. F(s ̸=i)
jt−1 [yjt+h−1], lagged values of other type's forecasts, s ̸= i

3. varN

(
F(·)
t−1[yjt+h−1]

)
, where varN (·) denotes the cross-sectional variance of lagged sur-

vey forecasts

4. skewN

(
F(·)
t−1[yjt+h−1]

)
, where skewN (·) denotes the cross-sectional skewness of lagged

survey forecasts

10A detailed description of the series is given in the Data Appendix of the online supplementary �le at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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5. N(i)
t [πt,t−h] = Nowcast as of time t of the ith percentile of in�ation over the period t−h

to t.

Lags of the dependent variable:

1. yt−1,t−h−1 one quarter lagged annual GDP growth.

The factors in Ĝ′
jt include factors formed from three large datasets separately:

1. GM,t−k, for k = 0, 1 are factors formed from a real-time macro dataset DM with 92

real-time macro series; includes both monthly and quarterly series, with monthly series

converted to quarterly according to the method described in the data appendix.

2. GF,t−k, for k = 0, 1 are factors formed from a �nancial data set DF with 147 monthly

�nancial series.

3. GQ
D,t−k, for k = 0 are quarterly factors formed from a daily �nancial dataset DD of

87 daily �nancial indicators. The raw daily series are �rst converted to daily factors

GD,t (w) and the daily factors are aggregated up to quarterly observations GQ
D,t (w)

using a weighted average of daily factors, with the weights w dependent on two free

parameters that are chosen to minimize the sum of squared residuals in a regression of

yj,t+h on GD,t (w).

The 92 macro series in DM are selected to represent broad categories of macroeconomic time

series. The majority of these are real activity measures: real output and income, employment

and hours, consumer spending, housing starts, orders and un�lled orders, compensation

and labor costs, and capacity utilization measures. The dataset also includes commodity

and price indexes and a handful of bond and stock market indexes, and foreign exchange

measures. The �nancial dataset Df is an updated monthly version of the of 147 variables

comprised solely of �nancial market time series used in Ludvigson and Ng (2007). These

data include valuation ratios such as the dividend-price ratio and earnings-price ratio, growth

rates of aggregate dividends and prices, default and term spreads, yields on corporate bonds

of di�erent ratings grades, yields on Treasuries and yield spreads, and a broad cross-section

of industry, size, book-market, and momentum portfolio equity returns.11 The 87 daily

�nancial indicators in DD include daily time series on commodities spot prices and futures

prices, aggregate stock market indexes, volatility indexes, credit spreads and yield spreads,

and exchange rates. Once converted into factors the total number of series used as inputs

into the machine learning speci�cations is given below.

11A detailed description of the series is given in the Data Appendix of the online supplementary �le at
www.sydneyludvigson.com/s/ucc_data_appendix.pdf
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Table A.5: Number of RHS Variables
Stock Return Earnings GDP In�ation

Macro Factors 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag)
Financial Factors 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag)
Daily Factors 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag) 10 (0-1 lag)
LDA Factors 50 50 0 0

FOMC Surprises 10 10 0 0
Macro Data Surprises 6 (0-1 lag) 6 (0-1 lag) 0 0

Other predictors 0 3 10 11
Total 132 135 60 61

This table shows the number of predictors using for each forecast

C Model Solution

We use the algorithm of Farmer, Waggoner and Zha (2011) to solve the system of structural

model equations that must hold in equilibrium, where agents form expectations taking into

account the probability of regime change ξt in the future. This solution is obtained in three

steps.

1. Solve for the true law of motion of SM
t in (16) such that (12)-(15) are satis�ed and for

the perceived law of motion of SM∗
t in (17) such that perceived versions of (12)-(15)

are satis�ed.

2. Solve for the law of motion for SA
t ≡

[
mt, pdt, lpt, Ẽt (mt+1) , Ẽt (pdt+1)

]
such that (22)-

(??) are satis�ed. The resulting solution takes the form:

SA
t = C̃A,ξt + T̃A,MS

M∗
t−1 + T̃A,AS

A
t−1 + R̃A,ηηt + R̃A,MQ̃M,ξt ε̃

M
t + R̃A,Aσlp,ξtεlp,t, (A.6)

where C̃A,ξt ,T̃A,M , etc., are matrices involving the perceived parameters θ̃
M

from (17).

Since (22)-(??) involve conditional subjective second moment terms Ṽt and C̃OVt that

are a�ected by ξt, we follow Bansal and Zhou (2002), Bianchi, Kung and Tirskikh

(2018), and BLM2 in using a �Risk Adjustment with Lognormal Approximation,� to

preserve log-normality of the entire system. This implies that C̃A,ξtdepends on ξt.

3. Let St ≡
[
SM
t , S

M∗
t , SA

t , ε̃
M
t , ηt

]′
and εMt =

[
ε∆y,t, εi,t, επ,t, εk,t, ε∆y,t, εi,t, επ,t, εk,t

]′
. The

third and �nal step is to combine the equations from steps 1 and 2 into a single system
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representing the complete structural model:

St = C̄
(
θξt , θ̃ξt

)
+ T̄

(
θξt , θ̃ξt

)
St−1 + R̄

(
θξt , θ̃ξt

)
Qξtεt, (A.7)

where C̄(· ), T̄ (· ), R̄(· ) are matrices of primitive parameters involving elements of θξt
and θ̃ξt , some of which vary with the Markov-switching variable ξt, and Qξt(· ) is a
matrix of shock volatilities that vary stochastically with ξt. The structural shocks

of the full model are contained in εt =
(
εMt , εlp,t, εv,t

)′
, which stacks the primitive

macro shocks εMt , the liquidity premium shock εlp,t (a feature of preferences), and

the vintage errors εv,t. Neither ε̃Mt or ηt appear separately in εt because ε̃Mt =(
R̃MQ̃M

)−1 (
SM∗
t − C̃M − T̃MSM∗

t−1

)
is entirely pinned down SM∗

t (and thus by εMt

and εv,t), while ηt has an innovation that is proportional to ε̃Mt .

Observation Equation

The mapping from the variables of the model to the observables in the data can be written

using matrix algebra to obtain the observation equation Xt = Dξt,t + Zξt,tS
′
t + Utvt, where

St ≡
[
SM
t , S

M∗
t , SA

t , ηt, ε̃
M
t

]′
, and where

SA
t ≡

[
mt, pdt, lpt, Ẽt (mt+1) , Ẽt (pdt+1)

]
SM
t ≡

[
∆yt,∆yt,∆dtπt, πt, it, it, kt, kt

]′
SM∗
t ≡

[
∆y∗t ,∆y

∗
t ,∆d

∗
t , π

∗
t , π

∗
t , i

∗
t , i

∗
t , k

∗
t , k

∗
t

]′
.

Annualizing the monthly growth rates to get annualized GDP growth we have ∆ln (GDPt) ≡
12∆ln (Yt) = 12∆yt. For quarterly GDP growth we interpolate to monthly frequency. For our

other quarterly variables we drop these from the observation vector in the months for which

they aren't available. Machine forecasts and investor forecasts load on di�erent subvectors of

St. Let the subjector relevant for the machine forecasts be denoted S
MF
t ≡

[
SM∗
t , SA

t , ηt, ε̃
M
t

]′
and the subvector relevant for the investor forecasts be SI

t =
[
SM∗
t , SA

t , ηt
]′
. Let matrices

with a subscript, e.g., Zx, denote the subvector of Z that when multiplied by the appropriate

subvector of St and added to Dx+Uxvx,t picks out the appropriate theoretical concept to map

into empirical observations on an element xt of Xt. For time t expected values in the model,

we construct formulas for computing e.g., the expected value of a variable xt over the next

h periods under the assumption that ξt = j, such that Ẽt (xt,t+h) = DI
ξt,xt,t+h

+ ZI
ξt,xt,t+h

SI
t ,
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where ZI
ξt,xt,t+h

are row vectors that load the subvector SI
t , and DI

ξt,xt,t+h
is a comformable

intercept that applies to investor forecasts. These formulas are mapped into survey forecasts

and machine forecasts for variables h periods ahead, respectively. We also construct formulas

for computing the expected value of a variable xt in h periods under the assumption that

ξt = j, denoted by mapping vectors taking the form ZI
ξt,xt+h

. Analogous mappings for the

machine expectation are denoted with �ML� superscripts, i.e.., ZMF
ξt,

, and load on SMF
t .

These loadings di�er because investor forecasts use their perceived law of motion for the

macro block, while machine forecasts use the true law of motion and in addition take into

account the AR(1) evolution of ηt that varies with perceived news ε̃Mt .

The observation equation when all variables in Xt are available takes the form:

53
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+ Utvt

The term GDPt refers to real gross domestic product, with GDP
∗
t the real-time version

available at time t. The term Inflationt in the above stands for 12-monoth ahead CPI

in�ation with Inflation∗
t the real-time version available at time t. f

(0)
t refers to the FFF

54



contract rate that expires in the current month. FFR is the annualized nominal federal

funds rate. F(s)
t,h refers to h-period ahead survey forecast at time t for survey s. For in�ation

and real GDP growth, surveys s include one-year ahead forecasts from Blue Chip (BC, 12

months ahead), Livingston (LIV, 2 biannual periods), Bloomberg (BBG, 12-months ahead),

and Survey of Professional Forecasters (SPF, 4 quarters ahead). For in�ation, we also include

10-year ahead forecast from LIV. F(BC)
t,h (FFR) refers to h-period ahead Blue Chip forecast

for Fed Funds Rate, with h = 12 months. Et,h(x) refers to h-period ahead machine forecasts

of variable x at time t. f
(n)
t refers to the time-t contracted federal funds futures market

rate, expiring in n months. Here we use n = {0, 6, 10, 20, 35} , where 0 refers the contract

that expires in the current month. ED
(n)
t refers to the time-t contracted Eurodollar rate,

expiring in n quarters. Here we use n = {1, 2, 4, 8} . Baat is the Baa spread described

above, where CBaa and B are scalar parameters. To allow for the fact that the true liquidity

premium is only a function of Baat, we add a constant CBaa to our model-implied lpt and

scale it by the parameter B to be estimated. The variable pgdpt,t−1 is the log of the SP500

capitalization-to-lagged nominal GDP (NGDP) ratio, i.e., ln (Pt/NGDPt−1); EGDPt,t−1 is

the level of the S&P 500 earnings-to-lagged NGDP ratio (nominal earnings divided by lagged

nominal GDP); POGDPt,t−1 is the eight quarter moving average of U.S. corporate sector

nominal payout relative to lagged NGDP; DGDPt,t−1 is the monthly S&P 500 nominal

dividend-to- lagged NGDP ratio. These variables are mapped into the model implications

for Kt, with EGDPt,t−1 ≈ K +K (kt − k +∆yt) and likewise for POGDPt,t−1, DGDPt,t−1,

where K is the steady state level of Kt = exp (kt). To obtain high-frequency information

on EGDPt,t−1, we use the BBG earnings nowcasts divided by one-month lagged real-time

GDP. For announcements that occur during the time frame for which these nowcasts are

available (Jan 2, 2006 to July 24, 2024), we use the pre- and post- announcement BBG

earnings nowcast-to-lagged GDP ratio. For announcements that pre-date this time frame,

we use the end-of-month earnings-lagged GDP ratio allowing for observation error as a noisy

proxy for these nowcasts. The variable rDt − it−1 is the CRSP-VW excess stock return

including dividend distributions. F(s)
t,h(∆lnP

D
t − it−1) refers to survey forecasts of S&P 500

price index growth in excess of the lagged short rate, which corresponds to the LIV and

BBG surveys point survey forecasts of the index. F(s)
t,h(r

D
t − it−1) refers to point survey

forecasts of returns, which corresponds Gallup/UBS and CFO. The LIV, Gallup/UBS, and

CFO surveys are mapped onto annual price growth or return expectations, as appropriate,

in the model. The BBG survey is mapped into multi-month returns, depending on the

month of the year (see data description above). For SOC, which is not a point forecast

but instead a subjective probability of an increase in stock market in next year, we map it

onto the investor expectation of one-year ahead returns, allowing for a freely estimated slope
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CSOCand intercept to account for the change in units to indicate that this is a measure that

moves with point forecasts while not being identical to them. Et,h

(
∆lnPD

t − it−1

)
refers

to machine forecasts of price growth in excess of the lagged short rate. Et,h

(
rDt − it−1

)
refers to machine forecasts of returns in excess of the lagged short rate. F

(n)
t (∆d) refers to

the expectations of future dividends constructed from dividend futures markets for n = 8

quarters ahead. F(IBES)
t,h (∆et) refers to IBES analysts forecasts of earnings for h = 4 quarters

ahead. Et,h(∆e) is the h-quarter ahead machine forecast for earnings growth from IBES with

h = 4, a noisy signal on rational expectations of ∆dt+h.Ft(LTG) refers to the LTG forecasts.

For the mapping to the structrual model, we treat LTG as measuring annual �ve-year forward

growth expectations, i.e., annual earnings growth from four to �ve years ahead. Machine

forecasts for the �ve-year forward earning growth are denoted Et(LTG).

Two points about the mapping bear noting. First, the observation equation often uses

multiple measures of observables on a single variable, e.g., investor expectations of in�ation

12 months ahead are measured by four di�erent surveys (BC, SPF, LIV, and BBG). Like-

wise, dividend futures and survey expectations F
(n)
t (∆d), F(IBES)

t,h (∆et), and Ft(LTG) are all

taken as noisy signals on the underlying investor expectations process for ∆d. In the �lter-

ing algorithm above, these provide four noisy signals on the same latent variable. Second,

a number of di�erent surveys are used to gauge expectations for multiple variables. These

surveys have di�erent deadlines for respondents to turn in their forecasts. Whether monthly

or quarterly, the di�erent surveys conduct interviews or have response deadlines that hap-

pen somewhere during the course of a speci�c month. We therefore conservatively set the

�response deadline� for the machine forecast to be the �rst day of every month, implying

that we allow the machine to use information only up through the end of the previous month

(e.g., through January 31st for an interview or response deadline in February). This ensures

that the machine only sees information that would have been available to survey respondents

in the months for which that survey is conducted. This approach is conservative in the sense

that it handicaps the machine, since all survey respondents who are being interviewed during

the next month would have access to more timely information than the machine.

D Additional Figures and Tables

Table A.5 reports the results of regressing excess returns on the S&P 500 on past news in

monthly data. Past news is measured as the high-frequency jump in the stock market due

to a news event. We �rst sort all news events by whether the market over- or underreacted

based on the structural model estimates. We then sum all the high-frequency jumps in

the market around news events in month t in a given reaction category. This aggregated
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Jumpst variable is our measure of past news. We regress future excess returns on Jumpst.

We �nd that news events characterized by overreaction predicts lower future excess returns,

while those characterized by underreaction predict higher future excess returns. The results

for events where the news was bad, as indicated by a downward jump in the market, are

marginally more signi�cant than those where the news was good and are reported separately.

Table A.5: Predicting Returns Using Reactions to News

rxt+h = α + βJJumpst,+ βrrxt + εt+h

h = 12 h = 24 h = 36 h = 60
Panel (a): Overreaction
All overreaction events

βJ −0.129∗ −0.175∗ −0.214∗ −0.229∗

(t-stats) (−1.75) (−1.81) (−1.92) (−1.77)
Bad market news

βJ −0.228∗ −0.237∗∗ −0.254∗∗ −0.231∗

(t-stats) (−1.84) (−2.08) (−2.02) (−1.93)
Panel (b): Underreaction
All underreaction events

βJ 0.105 0.193∗ 0.199∗ 0.230∗

(t-stats) (1.21) (1.71) (1.89) (1.72)
Bad market news

βJ 0.109∗ 0.215∗ 0.191∗∗ 0.159∗∗

(t-stats) (1.79) (1.94) (2.04) (1.98)

Notes: This table reports results of monthly regressions of the $h$-month ahead log S\&P 500 stock market
return (measured as the log di�erence in the S\&P 500 market cap) in excess of the 1-month Treasury bill
rate (�rxt+h�) on the sum of high-frequency changes in the S\&P 500 around all news events in month
$t$ in a speci�c reaction category (�Jumpst�). To obtain a reaction category, we �rst sort all news events
by whether the market over- or underreacted based on the structural model estimates. We then sum the
high-frequency jumps in the S\&P 500 around all news events in that reaction category for month t to obtain
Jumpst. The results for the subset of events in which Jumpst < 0 are reported under the panel labeled
�Bad market news". Newey-west t-statistics are reported in brackets. Bolded numbers indicate signi�cance
at 10%$ level. * = sig 10%, ** = sig 5%. The sample spans 1986:M2 - 2021:M12.
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Table A.6: Parameter Estimates

Regime 1 Regime 2
Actual Perceived Actual Perceived

σi 0.0015 0.0015 σi 0.0033 0.0033
σπ 0.0019 0.0019 σπ 0.0036 0.0036
σ∆y 0.0054 0.0054 σ∆y 0.0243 0.0244
σk 0.1446 0.1448 σk 0.3888 0.3891
σlp 0.0221 − σlp 0.0302 −
σ ı̄ 0.0047 0.0047 σ ı̄ 0.0193 0.0193
σ∆ȳ 0.0083 0.0083 σ∆ȳ 0.0498 0.0499
σπ̄ 0.0364 0.0365 σπ̄ 0.0724 0.0725
σk̄ 0.0430 0.0431 σk̄ 0.0981 0.0982

Notes: Posterior mode values of the parameters. The estimation sample spans 1961:M1-2021:M12.

Figure A.1: Largest Underreaction Events (%)
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Notes: The �gure reports shock decompositions of pre-/post- FOMC announcement changes in S&P 500
attributable to revisions in the perceived macro shocks and the subjective equity premium (the combined
e�ect of shocks to lpt and stochastic volatility). The speci�c FOMC events reported on are those for which
the absolute di�erence between the market's jump under the RE counterfactual and the baseline model as
a fraction of the market jump is largest. The modi�ers (+) or (-) refer to the sign of the baseline response
to a positive increment in the fundamental shock labeled in the legend. The sample is 2001:M1-2021:M12.
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