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1 Introduction

Imagine yourself as an economist designing contracts for a plantation in a developing country.

The workers are fruit pickers or tea pluckers, drawn from nearby villages so that many are friends

or family, or have a social connection. Upon observing the prevalent payment structure, which

consists of a fixed wage accompanied by a bonus tied to the quantity of individually harvested

output, you — a firm believer in economic incentives — may be tempted to further enhance the

incentive scheme. We don’t mean a reduction in the base wage and a larger slope on leaves plucked;

these may be restricted either because of limited liability or mandated minimum wage payments

(Jayaraman et al. 2016). You might try and resort to more intricate, inter-agent incentives, where

payoff to one worker is somehow related to the performance of her compatriots.

Examples of such inter-agent mechanisms are tournaments and joint liability mechanisms, and they

are often used. See Wantchekon (1994) and Bandiera, Barankay and Rasul (2005) for instances

of the former, and Besley and Coate (1995), Ghatak (1999) or Ghatak and Guinnane (1999) for

examples of the latter. Such contractual arrangements involve interactions across the payments to

the agents. Under a tournament, a worker is rewarded if she outperforms her colleague, creating

a competitive environment between them. On the other hand, joint liability mechanisms link

higher compensation to a worker with better performance by her compatriots, thereby establishing

a positive correlation across worker payments. Of course, one could envision other, less extreme,

variants of these mechanisms, with standard pay for performance suitably augmented by winners’

prizes or joint performance bonuses. Our focus is on interdependent preferences, and in this setting

we revisit the question of optimal contacts for teams, as in Lazear and Rosen (1981), Holmstrom

(1982), Green and Stokey (1983), Nalebuff and Stiglitz (1983) and Mookherjee (1984).

The prevailing body of research on contracts involving multiple agents assumes that agents are

motivated solely by their own material self-interest. Nevertheless, substantial empirical evidence

suggests that agents not only prioritize material rewards but are also affected, positively or nega-

tively, by the payoffs of their fellow agents. Sobel (2005) and Fehr and Gächter (2000) extensively

review the empirical literature on interdependent preferences. The importance of social preferences

in the workplace is specifically recognized in Bandiera et al. (2005), List (2009) and Luft (2016).

Such interdependence is particularly relevant in teams drawn from a particular geographical loca-

tion such as a village, where agents are more likely to know one another.

It is with this emphasis in mind that we introduce payoff-interdependence — altruistic or adver-

sarial — into an otherwise standard team agency problem. It should be obvious that in such

situations, individualized contractual arrangements are generally not optimal, even if agent signals

are independent. The goal of this paper is to take a first step towards a comprehensive character-

ization of optimal contracts with interdependent preferences, and explore the implications of such

interdependence for the principal’s expected return.

Both altruism and envy are possible. A wealth of evolutionary arguments suggests that either could
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emerge depending on the ambient environment, with independence perhaps being the exception

rather than the rule. See, for instance, Axelrod and Hamilton (1981), Kockesen et al. (1997),

Trivers (2006), Marsh (2016), and Robson (2017). Apart from evolutionary arguments, it is perhaps

intuitive that in settings where individuals know one another, preferences will naturally intertwine

owing to ties of family and kinship, and additionally for reasons of social and economic similarity,

friendship, shared experiences, and past interactions.

We study a principal who employs a number of risk-averse identical agents. Each of them chooses a

binary effort (work, shirk). Their preferences are interdependent, and the principal seeks to exploit

this fact. Our specification is extremely simple: we presume that each agent assigns symmetric

weight to the welfare of other agents. This weight can be positive or negative, and it is commonly

known to all parties. The principal’s objective is to efficiently encourage unobservable effort, by

offering a symmetric contract to all agents. The contract specifies a non-negative monetary transfer

to the agent, conditional on the vector of observed idiosyncratic signals, interpreted here as agent

outputs. We deliberately restrict the analysis by supposing that each agent’s signal is uninformative

about the efforts of others.1 For this reason, all cross-agent dependencies in payoffs will arise

solely from payoff externalities and are not influenced by the informational considerations that

have already been extensively studied in the literature. (Our analysis can be easily extended to

incorporate such informational considerations, at the cost of blunting our desired focus.)

Incentivizing agents with interdependent preferences requires us to accommodate a central idea

which can quickly turn quite complex. The offer of a contract not only affects an agent’s incentives

via her material payoff, but also has indirect repercussions — her actions may well affect the payoffs

of others. Designing an optimal contract necessitates that such payoff spillovers be taken fully into

account. A technical contribution of our exercise is the introduction and use of a statistic Ψ that

comfortably summarizes the total impact on an agent by incorporating direct and indirect payoff

externalities. We derive Ψ through an appropriately weighted sum of likelihood ratios of signals,

and use it to decouple agent behavior within a team, leading to a simpler analysis.

Specifically, the cost-effective payment scheme is tightly related to the shape of Ψ, increasing most

rapidly in the direction where that function exhibits the steepest incline. The function is also used

to indicate when payments are strictly positive (a limited liability constraint restricts payoffs to

be nonnegative). That happens when Ψ crosses a particular threshold that we characterize. Its

magnitude depends on whether or not the agent’s participation constraint is binding.

Of course, we do not wish to remain in the technical realm of simply linking optimal contracts to

a particular statistic. Rather, we would like to use that linking device to say something about the

qualitative features of optimal contracts. The key lessons are outlined below:

1. Optimal contracts can span an entire spectrum, broadly ranging from competitive to coop-

erative. Tournaments, in which agents are rewarded for outperforming their compatriots,

1Apart from this restriction, we allow for arbitrary signal distributions: continuous, discrete, or mixtures of both.
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exemplify the former. Joint liability, in which agents are equally rewarded for their own suc-

cesses and those of others, are characteristic of the latter. Proposition 1 links such contracts

to adversarial and altruistic preferences. In this sense, our approach offers a “simple unified

explanation” that accounts for a plethora of contract formats within the same model. At the

same time, the model eliminates certain contracts, a theme that we develop in the next point.

2. There is an asymmetry between the extent of competitiveness and the extent of cooperation

under optimal contractual solutions. This arises from the reinforcing nature of payoff inter-

dependence, and the asymmetry is more pronounced in larger teams. For instance, in an

example with 20 team members, a contract is highly cooperative when each agent assigns

weight close to α = 4% to the well-being of others. The resulting sensitivity of optimal pay-

ments to each compatriot’s output (relative to the sensitivity to one’s own output) is 14%.

But the flip value of α around −4% results in a sensitivity of less than 2.3% to the performance

of other agents. The asymmetry emerges starkly in the general model when passing to the

two limits with maximally altruistic and maximally adversarial attitudes;2 see Propositions

2 and 3. In the altruistic limit, every agent’s contract converges to a common, pure joint lia-

bility contract, where payment could depend on the vector of individual performances but is

exactly the same for every agent regardless of performance. In the corresponding adversarial

limit, there is convergence to a pure tournament with winner taking all, but only when there

are just two team members. With three or more agents, the limit contract pays an agent for

her own performance even when that performance is not ranked the best. The prediction that

cooperative rewards can more effectively motivate effort aligns with the patterns observed in

labor markets; see Che and Yoo (2001) and Luft (2016).3

3. Principals prefer interdependent preferences of either kind — altruistic or adversarial — to

independent preferences (Proposition 4). Specifically, when incentive constraints are strong

enough so as to render participation constraints irrelevant, a higher degree of preference inter-

dependence benefits the principal, irrespective of the sign of the interdependence coefficient.

That is, the principal’s expected payout to the agents as a function of α follows an inverted

U-shaped curve, peaking at independent preferences and monotonically decreasing with the

absolute value of the interdependence parameter. Intuitively, the principal capitalizes on ei-

ther form of interdependence by choosing either competitive or cooperative bonuses, which

reduce the overall transfer made to agents, thereby benefiting the principal.

4. In some instances, altruism towards compatriots can be detrimental to the material payoffs

of agents, and also to their overall welfare, though the latter could be a problematic concept

2These limits are defined by natural upper bounds on the degree of interdependence that prevent the interdepen-
dent utility system from becoming “explosive.” The limits exclude situations in which agents can become infinitely
happy (or unhappy) simply via the changing utilities of other agents. They remain fundamentally anchored by their
own material payoffs. For derivations of these bounds and studies of their implications in other contexts, see Pearce
(2008), Hori and Kanaya (1989), Bergstrom (1999) and Ray r○ Vohra (2020).

3For more in-depth discussion of the literature that documents these trends see Che and Yoo (2001). For the
literature in the field of managerial studies, see Luft (2016).
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when the degree of interdependence is changing (see Section 7.2). Let us normalize material

payoffs so that they are zero at zero consumption and zero effort. Then, of course, an

agent with independent preferences and a limited liability constraint at zero consumption

cannot be driven below zero payoff — she can always set effort equal to zero. However,

with interdependent preferences, agents could experience negative expected material payoffs

even with the limited liability in place. Altruistic agents may choose costly effort so as to

protect their partners. Adversarial agents might do the same to reduce the likelihood of

favorable outcomes for others. Thus, preference interdependence can be leveraged to relax

the limited liability constraint. With additively interdependent preferences, this also means

that an agent’s overall welfare might sink to negative levels in equilibrium.

5. Finally, there are other asymmetries across the altruistic and adversarial scenarios. These

pertain to questions that have to do with the unique implementation of high-effort outcomes.

Under natural distributional assumptions, competitive contracts are submodular for adver-

sarial agents, and these induce a unique Nash equilibrium. Implementation of the high-effort

equilibrium therefore comes with no strategic ambiguity. The same is not true when agents

are altruistic. Coupled with the use of joint liability contracts, this scenario generates su-

permodularity across efforts, raising the specter of multiple equilibria in the post-contract

game across agents.4 If the principal must achieve unique implementation, she needs to dial

back on team rewards, and only partially capitalize on available altruism, see Proposition 5.

This observation might rationalize the use of competitive mechanisms even when agents are

altruistic, especially in settings with a small number of agents. This consideration stands in

contrast to the “cooperative bias” exhibited in item 2, so that the earlier arguments in favor

of joint liability are attenuated when potentially bad equilibria need to be eliminated.

We conclude this Introduction by pointing out some limitations and possible extensions of our

exercise. First, our model is very stripped-down. An especially stark assumption concerns the

equality, both in magnitude and sign, of the interdependence parameter α across all agents. If we

drop these assumptions, the specific contractual forms will look quite complicated and depend in

a detailed way on the full vector of α’s. These will be driven not just by differences in the extent

of altruism, but also by the possibility that there may well be friends and enemies within the same

team. So the optimal contract will exhibit elements of competition and cooperation in complex

ways. Such constructions rely on fine details that are unlikely to be available to the principal, who

might have some overall idea of where her labor force is from (e.g., the same village), but not much

more than that. That raises the interesting question of designing robust mechanisms in this setting.

Second, both the intensity and sign of the parameter α may well depend on the past experiences

of team members, and the contractual settings they have been part of. But the dependence is

4On the use of contracts that secure unique implementation, see Genicot and Ray (2006), Segal (2003), Winter
(2004), Halac, Kremer and Winter (2020), Halac, Lipnowski and Rappoport (2021), and Halac, Kremer and Winter
(2023). For a specific instance of multiple equilibria in the joint liability setting, see Besley and Coate (1995).
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subtle. At first glance it seems natural that adversarial interdependence would arise as an reaction

by subjects to competitive environments, in which one person’s gains are another’s loss; see, e.g.,

Lanzetta and Englis (1989) and Zillman and Cantor (1977). But it is entirely unclear that cricketers

or tennis players or students graded on the curve are any more adversarial than anyone else. After

all, they do understand the rules of the game, and why their compatriots seek to outdo them.

Indeed, it is in “cooperative” joint liability settings, in which low payments might be blamed on

some shirkers within the team, that antagonism could more easily appear (see Ghatak and Guinnane

1999 for some empirical observations in the context of microfinance). It is even possible that an

overall drift towards adversarial attitudes might come to dominate the present, regardless of the

contractual environment of the past (see Kockesen et al. (1997)). There are potentially interesting

dynamics involved here, but these are beyond the scope of the current paper.

2 Related Literature

The early theoretical literature on team agency emphasized the role of informational externalities

among agents. Lazear and Rosen (1981), Holmstrom (1982), Green and Stokey (1983), Nalebuff

and Stiglitz (1983) and Mookherjee (1984) offer an explanation for why with common informational

shocks principals may resort to tournaments.5 The literature on joint liability (Stiglitz 1990, Ghatak

1999, or Ghatak and Guinnane 1999) shows how agent payoffs may co-move positively under optimal

contracting to monitoring advantages. Both literatures ignore the payoff externalities imposed on

others under optimal contracts via interdependent preferences. Our problem differs from these

papers as in our framework, the output of an agent contains no information about her partner’s

effort. This allows us to identify the novel effects of interdependent preferences in isolation from

the informational considerations that have already been studied extensively in the literature.

Our specific interest lies in the possible asymmetry across contracts with positive and negative co-

movement of rewards, when preferences are independent. In this sense, we are in line with Meyer

and Mookherjee (1987) and Che and Yoo (2001), who are interested in the use of “cooperative”

group-based rewards, as opposed to competitive tournament-like structures. Meyer and Mookherjee

(1987) warn against the use of tournaments when the principal is a social planner who cares for

equality ex post. They argue that such ex post judgements should precipitate a social preference

for positively correlated agent payoffs, thereby undermining the use of tournament-like contracts

and eroding agent incentives in the process. In their setting, agent incentives are always eroded by

positive payoff correlation, and so they conclude that “welfare-optimal compensation schemes in

general depend separately on an equity and an incentive component that tend to correlate agent

compensations in different directions.” In contrast, the model of Che and Yoo (2001) is set in a

dynamic context and the incentive effect of positive correlation is different there. A cooperative

5More recently, Segal (1999), Segal (2003), Winter (2004), Genicot and Ray (2006), Bernstein and Winter (2012),
Halac, Kremer and Winter (2020), Halac et al. (2021), Halac et al. (2023), and Camboni and Porcellacchia (2023)
revisit the contract design problem in similar settings, by considering unique Nash implementation.

6



reward structure encourages the peer monitoring of effort among team members and can be used

effectively as punishments in the event of shirking — it is far easier for a team member to shirk

and lower the reward of a compatriot in a cooperative setting, as opposed to working extremely

hard to achieve the same end in a competitive setting.6

The questions we ask are related, but our focus on interdependent preferences — positive or negative

— is entirely different. Our model is entirely static, so the forces that are basic to the Che-Yoo

argument are absent here. Indeed, the asymmetry we uncover relies on teams with at at least three

agents, whereas Che and Yoo (2001) considers a two-agent model throughout.7 And unlike Meyer

and Mookherjee (1987), our principal has no particular preference for ex post equality, which is of

course central to their exercise.

Finally, Vásquez and Weretka (2021) do study firms who hire workers with interdependent prefer-

ences, but they presume that all workers are paid an unconditional, uniform wage. Their goal is

to study the equilibrium size of the work force, and performance-based pay plays no role in this

exercise. In our paper, performance-based pay is the primary contractual structure from the start.

3 Model

3.1 Agent Payoffs and Outputs

There are n agents, each of whom make a binary effort choice e ∈ {`, h}, at a cost of 0 for e = ` and

c > 0 for e = h. For each effort level e ∈ {`, h}, a probability measure µe, identical for all agents,

determines output y. The two measures have common support Y . We assume that µ` is absolutely

continuous with respect to µh, so that the Radon–Nikodym derivative [dµ`/dµh](y), referred to

here as the likelihood ratio at y, is always well-defined. As is well known, this reduces to the ratio

of probabilities over y ∈ Y when Y is discrete, and to the ratio of densities for distributions on Y ,

when those densities exist. Without any essential loss of generality8 we assume that

dµ`

dµh
(y) is declining in y on Y. (1)

6As a countervailing force, Che and Yoo (2001) also incorporate an informational externality in the form of a
common shock to outputs, which tends to favor competitive contracts. Their study then highlights the optimality of
joint liability mechanisms when the discount factor is large relative to the size of the informational externality, and
the optimality of a tournament otherwise.

7Risk-aversion also plays an important role, without which our model predicts absurdly extreme contracts. See
Section 4.6 for more discussion.

8In fact, our approach allows for signals y to be abstract outcomes in some probability space. Define λi ≡
1 − dµ`

dµh (yi) as we do below; then these objects are increasing in “good performance” and optimal contracts can be

directly expressed as functions of λ = (λ1, ..., λn) rather than y. The optimal contracts for the original signals y can
then be backed out as m(λ(y)) where m(λ) is an optimal contract defined on realizations of λ.
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Outputs are taken to be independent across agents. Interdependent outputs are not hard to in-

corporate, but our focus is on interdependent preferences instead. Specifically, each agent has

symmetric interdependent preferences, with utility given by

Ui = [u(m)− c1hi ] + α
∑
j 6=i

Uj , for i = 1, . . . , n, (2)

where u(m) is a vNM felicity on money, 1hi is an indicator for high effort, α is a measure of altruism

or antipathy across agents, and {Uj} are the utilities of the other agents. The felicity function is

twice continuously differentiable, with u(0) = 0, u′(m) > 0, u′′(m) < 0, u′(0) =∞ and u′(∞) = 0.

The agent’s material payoff is u(m)− c1hi .

3.2 Reduced-Form Payoff Representation

A contract is offered. Then agents interact, each choosing effort independently. This interaction

across agents is not formally a game. It becomes one, once we reduce all utility interactions in (2)

to a collection of payoff functions that depend on agent actions. We follow Pearce (2008), Hori

and Kanaya (1989), Bergstrom (1999) and Ray r○ Vohra (2020) to obtain a “coherent” utility

representation of this interactive system (2) on the space of actions. The case studied in this paper

is particularly simple. For every i, Ui = [u(mi)− c1hi ] + α
∑

j 6=i Uj , so that

(1 + α)Ui = [u(mi)− c1hi ] + αS, (3)

where S ≡
∑

j Uj . Coherence asks that this sum be well-defined and move in the same way as the

sum of material payoffs, the necessary and sufficient condition for which is |α(n− 1)| < 1 (see the

references cited above). We can then add (3) over all i and divide by 1− α(n− 1) to obtain

S =

∑
j [u(mj)− c1hj ]

1− α(n− 1)
, (4)

and using (4) in (3) and transposing terms, we see that for every i,

Vi ≡ (1 + α)
1− α(n− 1)

1− α(n− 2)
Ui = [u(mi)− c1hi ] +

α

1− α(n− 2)

∑
j 6=i

[u(mj)− c1hj ], (5)

where Vi will denote payoff, renormalized by (1 + α)[1− α(n− 1)]/[1− α(n− 2)]. While material

payoffs affect this utility one for one, the combined weight of other individuals’ material payoff is

always less than one, given that |α(n− 1)| < 1.
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3.3 Contracts and Equilibirum

A principal hires all the n agents and offers i a limited liability contract mi(y) with mi(y) ≥ 0

for each y. Contracts are assumed to be symmetric across agents. Loosely speaking, each agent is

paid the same way with respect to own output, and with respect to the vector of outputs produced

by compatriots.9 Technically, we use a weaker form of symmetry. Fix the agent order 1, . . . , n. For

any y and agent i, a rotation y[i] arises from a permutation which sends agent 1 to position i, and

likewise shifts all other agents by the amount (i− 1)mod(n). Then there is a common function m

on Rn+ such that mi(y) = m(y[i]) for all i and y.

A symmetry assumption on contracts is easy enough to motivate on legal grounds of “equal treat-

ment,” or from the assumption that discriminatory payment schemes would lead to an unacceptable

loss of worker morale. But we note that the assumption is not without loss of generality. A principal

who is free to offer different contracts, even to identical agents, might benefit from that ability.

Throughout, we assume that the principal wants to implement high effort for all agents. We write

the principal’s problem as choosing a nonnegative function m, to be interpreted as described above,

so as to

minimize E(m|e = h), such that e = h is incentive-compatible. (6)

The interpretation of “incentive compatibility” that we adopt here presumes that all efforts and

all payments are revealed ex-post to every agent. Thus, when an agent contemplates a deviation,

she understands that all agents will know about the new effort choice and reward payments, and

experience their payoffs accordingly. Specifically, there are three sets of effects when i deviates from

e = h to e = `:

(i) i’s lower effort changes her own material payoffs.

(ii) i’s lower effort changes the material payoffs to other agents j 6= i, because their contractual

payment may well depend on i’s output.

(iii) Each of these material changes echo through the utility system in 2, leading to a final payoff

experience for i.

Other interpretations of incentive compatibility can also be studied (see Conclusions). That said,

we always maintain that efforts are not verifiable by the principal, so no contractual payment can

be conditioned on effort.

We make two remarks to end this Section. First, for most of the analysis that follows, we do not

explicitly include a participation constraint for the agents to join a team. The limited liability

constraint already serves to constrain payments on the downside, so that the problem at hand

is still well-defined and non-trivial. That being said, we will introduce a separate participation

9That is, there is a function m on Rn+, invariant to permutations of its last n−1 entries, such that mi(y) = m(y[i]),

where y[i] is any vector with y
[i]
1 = yi as its first entry and any permutation of y−i for its remaining entries.
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constraint in Section 6 and study its effects. Second, the notion of “implementing high effort” as

described in (6) means that we ask for some equilibrium to involve high effort for all. In contrast,

“robust implementation” would require every second stage equilibrium to exhibit high effort. We

return to this issue in Section 8.

4 Optimal Contracts

Recall that Y is the common support of outputs. Define Y ≡ Y n, where n is the number of agents.

We write dµej for µe(dyj), where dyj could denote counting measure or Lebesgue measure (or some

mix thereof) depending on the context. We set dµe ≡
∏
j dµ

ej
j to indicate integration with respect

to the joint probability of y when agents supply effort vector e, and set dµe
−i ≡

∏
j 6=i dµ

e
j .

Recall that we study symmetric contracts m, so that the monetary reward to i under y is given by

m(y[i]), using the notation already introduced.

4.1 The Incentive Constraint

Suppose that agent i’s compatriots all choose ej = h. Then by (5), if agent i chooses ei = h, her

(renormalized) payoff is

V h
i =

[∫
Y
u(m(y[i]))dµh − c

]
+

α

1− α(n− 2)

∑
j 6=i

[∫
Y
u(m(y[j])dµh − c

]
. (7)

In similar fashion, if our agent chooses e = `, her expected payoff V `
i is given by

V `
i =

[∫
Y
u(mi(y

[i]))dµ`idµ
h
−i

]
+

α

1− α(n− 2)

∑
j 6=i

[∫
Y
u(m(y[j]))dµ`idµ

h
−i − c

]
. (8)

Remembering that the principal wishes to implement e = h, the incentive constraint is given by

V h
i ≥ V `

i , or, using (7) and (8),∫
Y
u(m(y[i]))λ(yi)dµ

h +
α

1− α(n− 2)

∑
j 6=i

[∫
Y
u(m(y[j]))λ(yi)dµ

h

]
≥ c,

where λ(y) ≡ 1 − [dµ`/dµh](y) is well defined by the assumption of absolute continuity µ` � µh.

We now conduct a change of variables within the integrals in the summation above. First set

i = 1 and note that y[1] = y. Next, for each j 6= 1, we “rotate” the entries in y[j] so that [j] is

replaced by [1], with all other indices permuted accordingly, including the index i = 1 under the

second integral, which will run the entire gamut of values {2, . . . , n} as different values of j are

thus replaced. Because the contract is symmetric, that gives us an equivalent representation of the
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incentive constraint as ∫
Y
u(m(y))Ψ(y)dµh ≥ c, (9)

where we’ve defined

Ψ(y) ≡ λ(y1) +
α

1− α(n− 2)

∑
j 6=1

λ(yj). (10)

The function Ψ will play a central role in the design of optimal contracts with interdependent

preferences. For each y, Ψ(y) is an “incentive metric” that measures the extent to which the

provision of an additional util to an agent in event y encourages her effort (or discourages it if

negative), appropriately accounting for the utility spillovers from other agents. Because λ(y) is

one minus the likelihood ratio at y, it must be that
∫
λ(y)dµh(y) = 0, as can be verified by direct

integration. So, in particular, we take note of the fact that
∫
Y Ψ(y)dµh = 0.

4.2 The Principal’s Objective

The principal’s expected wage bill under a symmetric incentive-compatible contract m is given by∫
Y

n∑
j=1

m(y[j])dµh = n

∫
Y
m(y)dµh (11)

and she will seek to minimize this payout, subject to meeting the incentive constraint (9). The use

of the incentive metric Ψ in that constraint enables us to effectively reduce a team agency setting

with interdependent preferences to a single-agent problem.

4.3 Independent Preferences

As a warm-up, shut down utility interdependence by setting α = 0. Then Ψ(y) = λ(y1), and so (9)

reduces to ∫
Y
u(m(y))λ(y1)dµh =

∫
Y

[∫
Y n−1

u(m(y1,y−1))dµh
−1

]
λ(y1)dµh1 ≥ c,

and written in this way, it should be obvious that conditioning m on y−1 is absurd, given the strict

concavity of u. Calling the solution m(y1) by a slight abuse of notation, the incentive constraint is∫
Y
u(m(y1))λ(y1)dµh1 ≥ c, (12)

for agent 1, and likewise by symmetry (12) applies to any agent i, once we replace 1 by i. Because

the principal seeks to minimize
∫
Y m(y1)dµh1 , it must be the case that the “marginal product” of

money across any set of states with m(y1) > 0 must be constant, or more precisely:

If m(y1) > 0, then u′(m(y1))λ(y1) ≥ u′(m(y′1))λ(y′1) for all y′1 ∈ Y, (13)
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which means that u′(m(y1))λ(y1) = u′(m(y′1))λ(y′1) for any (y1, y
′
1) with m(y1) > 0 and m(y′1) > 0.

Under (1), the function λ(y) is increasing. Combining this observation with (13), we see that m(yi)

must be flat at 0 up to a threshold y∗ that satisfies λ(y∗) = 0, and thereafter increases with yi.

This standard solution extends nicely to the case of interdependent preferences.

4.4 Interdependent Preferences

We use shorthand Lagrangean methods which can be easily formalized, despite the possibility that

Y might be a continuum. For a reward function m, define the Lagrangean functional

L(m) ≡ −
∫
Y
m(y)dµh + νIC

[∫
Y
u(m(y))Ψ(y)dµh − c

]
, (14)

where νIC is a multiplier for the incentive compatibility constraint, and Ψ(y) is the incentive metric

defined in (10).10 The first order conditions are given by

−1 + νICu′(m(y))Ψ(y) ≤ 0, with equality if m(y) > 0.

But m(y) must be positive for some y otherwise no incentives can be provided. In particular, it

follows that νIC > 0, and so the first order condition above reduces to

u′(m(y))Ψ(y) is constant in y if Ψ(y) > 0, and m(y) = 0 otherwise. (15)

where we’ve used the end-point conditions u′(0) =∞ and u′(∞) = 0 for this characterization.

To uncover m, we only need to unpack the function Ψ as described in (10). If y1 alone changes so

that the likelihood of high effort by 1 increases, then dµ`1/dµ
h
1 falls, and therefore λ rises, increasing

Ψ and the reward to 1. Under the standard likelihood ratio property in (1), it follows that any

agent’s reward increases in her own output, provided that it is strictly positive to begin with. As for

the cross-effects, they depend on whether the agents are altruistic (α > 0) or adversarial (α < 0).

When α > 0, an increase in another agent j’s output will raise λ, and by extension — using (10)

— it will raise Ψ and therefore the reward to agent 1. This is in the spirit of joint liability. Exactly

the opposite happens when α < 0, which is in the spirit of a tournament. That establishes

Proposition 1. Assume the likelihood condition (1). Then the reward to an agent is strictly in-

creasing in own output at any point where Ψ(y) > 0. In addition, it must co-move positively with

partner output when α > 0 and negatively when α < 0. The former arrangement is cooperative; the

latter is competitive.

Given (15), the argument for Proposition 1 is simple. Equation (15) and the strict concavity of the

function u imply that an agent’s reward must positively co-move with the incentive metric Ψ.

10The non-negativity constraints on m(y) will be handled by our arguments.
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4.5 Competition and Cooperation

At any point y, the extent of competition (or cooperation) embodied in the contract is related to

the direction and sensitivity of the payment following an increase in compatriot output, relative to

that same change caused by the increase in own output. From a local perspective at y, if ∂m
∂yj

/ ∂m∂y1
is

positive, the contract is locally cooperative, and if that ratio is close to 1, it is a pure joint liability

mechanism. Similarly, when this ratio is negative, the contract is competitive, approaching a pure

tournament as the absolute value of that ratio approaches 1. The two extreme values span the

spectrum of contract types. With many agents the vector of local competitiveness of the contract

with the other agents is fully summarized by the normalized gradient ∇̄m ≡ ∇m
∂m/∂y1

.

Equation (15) connects the gradient of the contract to the incentive metric Ψ(y). The payment

zone within Y where payments are positive is demarcated by the Ψ|=0 manifold. Within this zone,

the isoquants for the payment m(y) and statistic Ψ(y) are perfectly aligned, and ∇m is collinear

with ∇Ψ:

∇m =

[
k

(|u′′(m(y))|[Ψ(y)]2

]
×∇Ψ, (16)

where k is constant within the payment zone. This unveils the key principle for contract design

with interdependent preferences: the payment should increase most rapidly in the direction where

the incentive metric exhibits the steepest slope. The degree of local competitiveness at y is entirely

determined by the factors that affect Ψ; specifically, the interdependence coefficient α and the

likelihood ratio function λ.

Figure 1. Isoquant maps of the Ψ metric and the coresponding gradient fields for different levels of
α. We consider three types of interdependencies, altruistic preferences α = 1

2 (left panel), independent
α = 0 (middle) and adversarial α = − 1

2 (right panel).

Figure 1 illustrates the discussion for two individuals and signal distributions µhi ((0, yi]) = yi (with

uniform density) and µ`i((0, yi]) = 2yi−(yi)
2 (with affine downward-sloping density) over the interval

Y = [0, 1]. Then λ(y) = −1 + 2y, is uniformly distributed under high effort and the gradient of the
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incentive metric is given by

∇Ψ(y) =

[
λ′(y1)

αλ′(y2)

]
= 2×

[
1

α

]
, (17)

which points northeast (southeast) when α is positive (negative). As a result, the normalized

payment gradient is constant everywhere and given by

∇̄m =

[
1

α

]
. (18)

For any α, the Ψ|=0 isoquant passes through (y∗, y∗) = (1
2 ,

1
2). For independent preferences, this line

is vertical; see middle panel. In this case, the normalized payment gradient ∇̄m points eastwards.

The payment to agent 1 does not depend on y2, and the associated contract is neither competitive

nor cooperative.

For positive interdependence, ∇̄m points northeast, and the payment to agent 1 increases in both

y1 and y2. So team rewards are naturally incorporated in the contract, though the payment

response to own output exceeds the response to partner output. When α < 0, the gradient points

southeast. The payment to 1 increases with y1 and decreases with y2. This scenario has the feel of

a competitive environment with a relative performance component. Figure 2 depicts the resulting

optimal contract for α = −1
2 , 0 and 1

2 and the isoelastic felicity function u(m) = m1−θ/(1−θ), with

θ = 1
2 .

Figure 2. Optimal contract in the example with the uniformly distributed likelihood ratio and
risk aversion θ = 1

2 . We consider three types of interdependencies α = 1
2 (left panel), independent

preferences α = 0 (middle panel) and α = − 1
2 (right panel) .

4.6 Concentration of Monetary Incentives

In addition to the competitiveness or cooperation outlined in the preceding section, contracts can

be distinguished by the extent to which they focus incentives on outputs associated with the highest

values of the incentive metric Ψ. Such concentration of incentives is primarily driven by the risk

attitudes of agents.
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For the Constant Relative Risk Aversion (CRRA) utility function u(m) = m1−θ/(1 − θ), the

payment is expressed as (max(Ψ/k, 0))1/θ. Within the payment zone, monetary compensation

follows a nearly linear trend with respect to Ψ when θ is approximately 1 (implying logarithmic

utility). Conversely, the contract exhibits high degree of convexity, and concentrates payments

predominantly on the event with the highest Ψ, for risk-tolerant individuals with θ close to zero.

Figure 3 depicts the contract for the previous example with θ = 1
10 , so that agents are highly

risk-tolerant. Payments are moderate for the majority of output realizations within the payment

zone, sharply increasing only in the vicinity of the realization that maximizes the incentive metric.

So an altruistic agent receives meaningful rewards only when both achieve peak performance, while

an adversarial agent is rewarded significantly only when she attains the highest output values while

the other agent’s performance is very poor.

This concentration of monetary incentives becomes extreme for risk-neutral agents. An optimal

contract (when one exists) requires payments to be made exclusively when Ψ attains a maximum,

and never otherwise.11 That is, for altruistic preferences, Ψ is maximized when — and only when —

Figure 3. Optimal contract in the example with uniformly distributed likelihood ratio and risk
aversion θ = 1

10 . We consider three types of interdependencies α = 1
2 (left panel), independent

preferences α = 0 (middle panel) and α = − 1
2 (right panel).

everyone produces the highest possible output. When that largest output has positive probability

mass, as it would if Y were a finite set, optimal contracts do exist,12 but display an extreme

form of joint liability wherein every team member must fully excel for any of them to receive any

compensation at all.

11This is easy enough to derive from the first order condition (15), but by way of a direct argument, suppose that
the assertion is false, so that the contract pays out over a set E of events of positive probability with Ψ not at its
maximum. Create a new contract which removes these payments and shifts their expectation (conditional on E, and
high effort) to a set E′ with larger values of Ψ. Then the new contract has the same expected payout, but slackens the
incentive compatibility constraint (9), because the likelihood ratio is more favorable at E′. That allows the principal
to lower expected payment and still guarantee agent compliance.

12Let ȳ ≡ {ȳ, ..., ȳ} where ȳ ≡ maxY . For α > 0, an optimal contract is given by m(ȳ) = c
(µ1(ȳ))nΨ(ȳ)

and

m(y) = 0 for y 6= ȳ. The contract is well defined when µ1(ȳ) 6= 0. Next define y = (ȳ, y, ..., y), where y ≡ minY . For

α < 0 an optimal contract exists when µ1(ȳ) 6= 0 and µ1(y) 6= 0. The contract is given by m(y) = c
(µ1(ȳ))µ1(y))n−1Ψ(y)

and m(y) = 0 for y 6= y. No optimal solution exists when, say, outputs have densities on some compact interval as
in our example. It should be pointed out that non-existence could occur even with strictly concave utility.
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With adversarial preferences (α < 0), Ψ attains its highest value when own output is maximal

while for all other agents, output is minimal. The contract becomes an extreme tournament where,

in order to be compensated, an agent must outperform every other agent by the largest possible

margin, maxY − minY . (Both extremal values of the support need to have positive probability

mass to guarantee existence.) It is hard to imagine that contracts that assume such extreme forms

are empirically relevant. Nevertheless, our discussion clarifies the role played by smoother payments

for risk averse agents; the payments offered outside of the Ψ-extreme events are a form of insurance

offered to agents by a risk neutral principal.

5 The Asymmetry of Altruistic and Adversarial Preferences

In the two-agent example introduced in Section 4.5, there is a symmetry across optimal contracts

for the cases of positive and negative interdependence. Specifically, with Y = [0, 1]2, the promised

payment for a given output realization y = (y1, y2) is identical to the payment at y′ = (y1, 1−y2) for

interdependence coefficient α′ = −α.13 Figure 2 shows that the contracts are “mirrored” relative

to each other along the hinge located at y1 = 1
2 . This symmetrical pattern is fundamentally broken

with three or more agents, as we shall now see.

Retain the parametric example of Section 4.5, but suppose n = 3. Now Y = [0, 1]3, with α restricted

to lie in (−1
2 ,

1
2) to preserve coherence. We compare scenarios with both positive and negative

interdependence coefficients, where the absolute value |α| is the same across the two scenarios.

With the affine likelihood function of our example, the payment isoquants are hyperplanes with

the gradient collinear to

∇Ψ = 2×

 1
α

1−α
α

1−α

 , (19)

and the Ψ|=0 isoquant intersects the midpoint realization (y∗, y∗, y∗) = (1
2 ,

1
2 ,

1
2).

When α = 1
3 , the relative responsiveness of the payment to the outputs of other agents is character-

ized by | ∂m∂yj /
∂m
∂yi
| = 1

2 . However, in the mirror-image case of adversarial preferences with α′ = −1
3 ,

this cross-person sensitivity diminishes to −1
4 . Loosely speaking, the principal exploits altruistic

motives to a greater degree than she does when preferences are adversarial. This disparity is mag-

nified in still larger teams. For any arbitrary value of n and a uniformly distributed likelihood

function λ linear in yi, the local competitiveness of the contracts can be expressed as:

∂m

∂yj
/
∂m

∂yi
=

α

1− α(n− 2)
.

13Note that Ψ(y1, y2) = Ψ′(y1, 1−y2) where Ψ′ is derived for −α. Therefore m(y1, y2) satisfies the IC constraint at
α if and only if so does the symmetric contract for −α. Moreover, under a uniform distribution, the contracts have
identical expected payment.
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In a team with twenty agents, with α ≈ 0.04, the principal links payment quite strongly to the per-

formance of each compatriot, resulting in ∂m
∂yj

/∂m∂yi ≈ 0.142. A similarly-sized adversarial coefficient

can only explain a relative responsiveness to others’ performance of around −0.023.

The structure of the contract undergoes a qualitative transformation when examining extreme

levels of interdependence. In the example with three agents and α ≈ 1
2 , the payment gradient

determined by the incentive metric becomes aligned with the vector (1, 1, 1), so that payment

reacts equally to the performance of each agent, including own performance. This is a “pure” joint

liability mechanism, in which the associated monetary transfer is entirely influenced by the average

performance of the agents. This pure joint liability mechanism is optimal, even though each agent

is far from being a symmetric utilitarian. They don’t need to be: the third-party feedback effects

sufficiently magnify their altruistic tendencies.

In sharp contrast, when agents display extreme adversarial preferences (α ≈ −1
2), third-party

interactions attenuate preference interdependence. The limit gradient of payment becomes aligned

with (1,−1
3 ,−

1
3), which is certainly not the mirror image of its altruistic limit counterpart. The

magnitude of payment responsiveness to the performance of others is of the order of 1 : 3, notably

smaller to the 1 : 1 response at the altruistic limit. An agent’s payment is now contingent on

surpassing a benchmark set at two-thirds of the average compatriot performance. So she could

potentially receive compensation even if her performance falls below that of the other two agents.

This qualitative difference between positive and negative inderdependence is general. It extends to

all environments with three or more agents and arbitrary distributions. In what follows, we vary α

towards both the altruistic or adversarial limit, subject to maintaining the coherence of preference

representations; that is, we retain the condition |α(n− 1)| < 1. For altruistic preferences, we have:

Proposition 2. In the altruistic limit where α ↑ 1/(n − 1), every agent’s contract converges to a

common contract that depends on the vector of individual performances but rewards every agent the

same amount. Specifically, in this limit, the payment to every agent is zero for any y such that∑
j λ(yj) ≤ 0, and otherwise, if

∑
j λ(yj) > 0, it is given by the common payment

m(y) = (u′)−1

(
k∑

j λ(yj)

)
(20)

to every agent when
∑

j λ(yj) > 0, where the constant k is chosen so that incentive constraint (9)

binds. Under the likelihood condition (1), payments increase in team performance in the sense that

they increase vector-wise in y, once positive.

The proof of Proposition 2 follows by passing to the limit in the formula (10) for Ψ. Doing so, we

see that

Ψ(y)→
∑
j

λ(yj) for every vector of outputs y, as α ↑ 1/(n− 1),

Using this observation in (15), we must conclude that every agent receives the same team in the
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altruistic limit, irrespective of their own production. Clearly, (20) follows from (15).

In the altruistic limit, agents not only get a symmetric contract modulo permutations of y, but

they literally get the same contract, entirely conditioned on team performance. In the particular

scenario with uniformly distributed λ the payment is conditioned on the team’s overall output,∑
j yj and becomes one of pure joint liability.14

The adversarial limit is attained as α ↓ −1/(n− 1). Using this in (10), we see that

Ψ(y)→ λ(yi)−
1

2n− 3

∑
j 6=i

λ(yj) for every vector of outputs y,

which yields the following observation:

Proposition 3. In the adversarial limit where α ↓ −1/(n−1), an agent i receives a positive reward

if and only if

λ(yi) >
1

2n− 3

∑
j 6=i

λ(yj), (21)

and in that case her reward is given by

m(y[i]) = (u′)−1

(
k′

λ(yi)− 1
2n−3

∑
j 6=i λ(yj)

)
, (22)

for some constant k′ chosen to make the incentive constraint (9) bind. Under the likelihood condition

(1), the payoff to an agent continues to increase in own performance and decrease in the performance

of others whenever it is strictly positive, as it will be whenever (22) holds.

If Proposition 3 were a perfect antithesis of Proposition 2, it would predict a pure tournament

in the adversarial limit, and indeed that is what we have in the two-agent case (inspect (21) for

n = 2). But with three or more agents, the tournament is never “pure”, in the sense that an

agent will still be rewarded for her own performance even when that performance is not ranked

the best. Indeed, she is paid even if her output is below the average output of her compatriots. If

we define “performance” by the value of λ(yi), we see that agent i gets a positive payment if and

only if her performance exceeds (n − 1)/(2n − 3) of the average performance of her compatriots.

(“Performance” in this sense reduces to output when λ is linear.) We’ve already seen that with

n = 3, an agent is paid a positive reward if her performance is better than two-thirds the average

performance of the others. As n grows large, she is paid if her performance is better than just

half the average performance of the others. This is a general form of the asymmetry between the

altruistic and adversarial limits when there are three or more agents.

14Equation (20) pins down how the common team reward varies over the domain Y. But it leaves the “scaling”
of those rewards indeterminate, and dependent on the value of k in equation (20). That value is determined by the
need to make the incentive constraint hold with equality.
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The literature recognizes that competitive structures are not extensively employed, whereas team-

based bonuses are more commonly favored. For instance, Lazear (1989) notes that despite the

theoretical support for rank-order tournaments as incentive systems, their use is infrequent. Taken

together, our discussion regarding local contract competitiveness for the two types of interdepen-

dencies as well as Propositions 2 and 3 shed some light on this phenomenon. Meyer and Mookherjee

(1987) and Che and Yoo (2001) provide complementary explanations in other settings; see our dis-

cussion in Section 2. At the same time, we will see that there is a different force in our setting that

pushes towards competition in smaller teams. We take up this observation in Section 8, where we

study robust implementation.

6 Participation Constraints

Our analysis can be easily extended to include participation constraints of the form[∫
Y
u(m(y[i]))dµh − c

]
+

α

1− α(n− 2)

∑
j 6=i

[∫
Y
u(m(y[j]))dµh − c

]
≥ v0

for every agent i, where v0 is a (renormalized) outside-option utility, common to every agent. By

the same “rotational” change of variables that we conducted to arrive at the incentive constraint

(9), we can easily restate this participation constraint as∫
Y
u(m(y))dµh ≥ v0[1− α(n− 2)]

1 + α
+ c ≡ w. (23)

How does this additional constraint affect Propositions 1–3? Recall the Lagrangean used in the

proof of Proposition 1 and modify it in the obvious way:

L(m) ≡ −
∫
Y
m(y)dµh + νIC

[∫
Y
u(m(y))Ψ(y)dµh − c

]
+ νP

[∫
Y
u(m(y))dµh − w

]
, (24)

where νIC and νP are multipliers attached to the incentive constraint (9) and the participation

constraint (23) respectively. The first order conditions for this problem are given by

−1 + νICu′(m(y))Ψ(y) + νPu′(m(y)) ≤ 0, with equality if m(y) > 0,

for each y. It can be seen that the incentive constraint continues to bind, so that νIC > 0.15 With

this in mind, define ν ≡ νP/νIC ≥ 0; then the first order condition above reduces to

u′(m(y))[Ψ(y) + ν] is constant in y if Ψ(y) > −ν, and m(y) = 0 otherwise, (25)

15Suppose on the contrary that νIC = 0, then, because the outside option v ≥ u(0) and c > 0, we have m(y) > 0 for
some subset of y-realizations. That implies νP > 0. But then m(y) equals a constant r∗ for all y, which reduces (9)
to
∫
Y

Ψ(y)dµh ≥ c/u′(r∗) > 0, a contradiction, because the left hand side of this inequality is zero as we discussed
in the text).
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where we’ve used u′(0) = ∞, just as we did earlier. Of course, the participation constraint may

or may not be binding, so that ν could be positive or zero depending on the parameters of the

problem. (In the latter case we’re back to the baseline without participation constraints.)

The optimal contract has a common property as we range over the realizations of different y-values.

In any situation with m(y) > 0, any change in y that raises Ψ(y) must create a larger reward for

our agent. This gives us an immediate analogue of Proposition 1:

Observation 1 (extension of Proposition 1). Assume the likelihood condition (1) and intro-

duce the participation constraint (23). Then Proposition 1 is qualitatively unchanged: at any y

with m(y) > 0, the reward to an agent must positively co-move with partner output when α > 0

and negatively co-move when α < 0. The former arrangement resembles joint liability; the lat-

ter, a tournament. Additionally, the local competitiveness of the contract in the payment zone,

∇̄m = ∇Ψ
∂Ψ/∂y1

, is unaffected by the outside option.

With a participation constraint, the boundary for the payment zone is attained on a lower isoquant,

Ψ|=−ν , instead of Ψ|=0. Consequently, the payment zone expands. As before, within this zone the

isoquants for contract m(y) are perfectly aligned with the corresponding curves for Ψ. Therefore,

the introduction of an outside option does not alter the presence of cooperation or competition

in the contract. It is possible, however, that payment levels adjust. In our example, the relevant

demarcation lines for the payment zone (corresponding to three values of α in Figure 1) all move

westward to a lower Ψ|=−v isoquant, and for any y the payment levels rise. In line with Observation

1, the local competitiveness of the contract remains unchanged in that example.

7 Payoffs Under Interdependent Preferences

7.1 Principal Payoffs

A managerial literature indicates that employers elicit preference interdependence among employ-

ees through various policies, which certainly suggests that a principal can benefit from tailoring

working conditions and contract pay to such interdependence.16 Hamilton et al. (2003) present

evidence suggesting that productivity is higher under team-based pay compared to individualized

performance-based bonuses alone. All that is certainly in line with our model, but we can ask the

stronger question: are interdependent preferences invariably advantageous to a principal?

If preferences are additive in the utilities of others, it seems intuitive that the principal would

weakly prefer some interdependence to none at all. The reason is that the principal can always

feasibly offer an individualized contract which would precipitate the same effort as in the case of

independent preferences. An optimal departure from such a contract to exploit any interdependence

16As highlighted by Berman et al. (2002), more than 85% of managers within the United States proactively cultivate
workplace friendships by arranging social gatherings for their staff. See also Cohen and Prusak (2002).
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Figure 4. Expected payout by the principal as a function of α in the example with the linear
likelihood ratio and θ = 1

2 .

cannot hurt the principal. In support of this intuition, Figure 4 uses our example with uniformly

distributed likelihood ratio to depict the expected payout by an optimizing principal as a function

of α. In both settings the expected payout by the principal decreases as the absolute value of α

increases, reaching its maximum at α = 0. In particular, expected payment is minimized at the

extremes. A principal would appear to thrive under both altruistic and antagonistic conditions in

her team.17

This is, of course, a stronger statement than our intuitive assertion, for it suggests a single local

and global peak in principal payouts at α = 0. For more intuition, observe that the willingness of

agents to work is influenced by two types of incentives. First, they are motivated by the felicity

from monetary rewards when they achieve success. Second, they are influenced by social incentives

that indirectly arise from internalizing the utility of others. With just two agents, the optimal

contract for agent 1 aims to strike a balance between the direct incentives for that agent and the

social effect on agent 2. The “social motivator” for agent 2 can be quantified as∫
Y
λ(y2)αu(m(y))dµh, (26)

where m is to be interpreted as the payment to player 1. This effectively incentivizes 2 only when

there is a positive correlation between 2’s social experience (αu(m(y))), and her own performance

(λ(y2)), so that 2 is materially and socially rewarded when she performs. The optimal design

ensures this correlation by aligning 1’s payment with 2’s performance (positively under altruism

and negatively under antipathy), ensuring that the social motivator (26) is always strictly positive.

Now, when this same contract is offered under a higher degree of interdependence α′, i.e. |α′| > |α|,
the incentive value of the social motivator increases. That amplification strengthens the incentives

for exerting effort through social interaction. The principal can exploit those heightened incentives,

positive or negative, thereby reducing her overall monetary payout. It turns out that this finding

17In the example, the effects of positive and negative interdependence are symmetric. They are the same whether
the agents like or dislike each other, provided that they experience these attitudes with the same intensity. The
principal equally prefers α = 1

2
and α = − 1

2
over α = 0, and is indifferent between the two non-zero levels. This

symmetry emphasizes our point, but is not general.
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is general, at least when participation constraints do not bind:

Proposition 4. Assume that the likelihood ratio condition (1) holds. Then the expected principal

payout that implements high effort is decreasing in α when α > 0 and increasing in α when α < 0,

reaching a maximum when α = 0.

Proof: Fix some contract m. For each index j, define a function σj by

σj(yj) ≡
∫
Yn−1

u(m(y))dµh
−j ,

which describes how the expected felicity of agent 1 moves as a function of yj for any given j 6= 1,

after integrating out over y−j .
18 We claim that if m is an optimal contract, then for every j 6= 1,∫

Y
λ(yj)σj(yj)dµ

h
j R 0 as α R 0. (27)

To establish (27), suppose first that α > 0. By Proposition 1, σj is nondecreasing for every j 6= 1.

Moreover, it is strictly increasing for every y = yj such that Ψ(yj ,y−j) > 0 under a positive

µh
−j measure of y−j realizations. (In those cases the payment to agent 1 will be sensitive to yj .)

Because these latter conditions always hold for a positive µh-measure of yj , we conclude that σj

is nondecreasing, and it is strictly increasing for a positive µh-measure of yj . Because likelihood

ratios integrate to 1, we know that
∫
Y λ(yj)dµ

h
j = 0. Combining this observation with that for σj ,

we conclude that condition (27) must hold for α > 0. A parallel argument applies when α < 0.

To complete the proof, recall from (9) and (10) that the incentive constraint is given by

∫
Y

λ(y1)u(m(y)) +
α

1− α(n− 2)

∑
j 6=1

λ(yj)u(m(y))

dµh ≥ c.

Because outputs are conditionally independent, we can use σj to rewrite this inequality as∫
Y
λ(y1)σ1(y1)dµh1 +

α

1− α(n− 2)

∑
j 6=1

∫
Y
λ(yj)σj(yj)dµ

h
j ≥ c. (28)

Now suppose that α ≥ 0, and increase its value to α′ ∈ (α, 1/(n− 1)). It is obvious that

α′

1− α′(n− 2)
>

α

1− α(n− 2)
.

Combining this information with (27), so that
∑

j 6=1

∫
Y λ(yj)σj(yj)dµ

h
j > 0, we must conclude that

if m is optimal under α, then∫
Y
λ(y1)σ1(y1)dµh1 +

α′

1− α′(n− 2)

∑
j 6=1

∫
Y
λ(yj)σj(yj)dµ

h
j > c, (29)

18Under an optimal symmetric contract, σj is the same over all j 6= 1, but we don’t use that information here.
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which means that the earlier contract is now “strictly feasible” under α′. Because the incentive

constraint is always binding at the optimum, this must mean that the principal can strictly gain

by adjusting the contract.

A parallel argument holds when α < 0. In this case, if α′ < α (with |α′|(n− 1) < 1), then

α′

1− α′(n− 2)
<

α

1− α(n− 2)
.

and observing that (27) holds with negative sign, (29) holds again, and the proof is complete. �

We must qualify this assertion. If there are binding participation constraints, Proposition 4 may

not hold when preferences are antagonistic. Recall the participation constraint (23), which states

that ∫
Y
u(m(y))dµh ≥ v0(1− α(n− 2))

1 + α
+ c ≡ w.

and note that if it is binding to begin with, then it fails to hold under the old optimal contract once

preferences become “more antagonistic,” even as the incentive constraint (9) slackens, as shown in

the proof of Proposition 4. Whether or not the principal benefits is then ambiguous. This is not

surprising, as workers are entering a more toxic environment and must be suitably compensated

for it, even as the principal casts about for new schemes that exploits that heightened toxicity.

There is no such tradeoff when altruism increases. The participation constraint must slacken, as

must the incentive constraint. The new incentive-compatible contract must then involve lower

expected payouts by the principal. In this sense, a principal might prefer agents linked by altruism,

at least when participation constraints are binding. This adds another layer of asymmetry across

the altruistic and adversarial scenarios, in addition to the limit arguments provided earlier.

7.2 Agent Payoffs

Our discussion also has implications for agent payoffs, though here we are on more delicate ground.

After all, by changing α, we are also changing the utility function, and must therefore be careful in

interpreting the resulting payoff changes. But we can entertain these thought experiments by asking

whether agents would prefer to form (otherwise identical) teams in groups of friends, strangers or

even enemies. Under this interpretation, there is no change in preferences as such, but only in the

set of team members that the agent is interacting with.

Consider adversarial preferences. We’ve already noted that the principal will welcome a still more

toxic environment when participation constraints are not binding, but might be stymied when they

are. That by itself suggests that in the absence of participation constraints, agents will be hurt by

their heightened antagonism. This is not surprising as the intrinsic environment has itself worsened,

but the principal will additionally exploit that worsened environment in a detrimental way for the
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Figure 5. Expected material payoff of an agent as a function of α in the example with the linear
likelihood ratio and θ = 1

10 .

agents. (When participation constraints bind, the principal will be forced to adjust the contracts

accordingly, and there will be no net effect.)

The case of altruistic preferences is more intriguing, and we restrict ourselves to an example.

Consider two altruistic agents with an isoelastic felicity function u = m1−θ/(1− θ) and a uniformly

distributed likelihood ratio. We examine the case of θ = 1
10 , so that agents have high risk tolerance.

As highlighted in Section 4.6, the optimal mechanism involves approximate joint liability, wherein

positive rewards are available only in the proximity of instances where both agents attain maximal

outputs. Consider an agent’s incentive constraint. If she shirks, she is very unlikely to produce

that maximal output. She will not only let herself down, but also her compatriot, whose payoff she

values. She is therefore less willing to shirk on this score as her altruism climbs.

Understanding this, the principal can lower the reward to joint success, as that will be enough to

satisfy the incentive constraint. In essence, both agents are motivated to work not for monetary

rewards but to ensure that their partners do not lose out on compensation despite putting in effort.

The equilibrium material payoff of an agent as a function of α is depicted in Figure 5. As the agent

becomes sufficiently altruistic (or adversarial), her expected material payoff becomes negative,

reflecting the argument above. They would have been better off in material terms had they not

cared for each other. (With higher risk aversion, these effects are attenuated as the principal needs

to offer insurance, resulting in a more evenly distributed material payoff across output realizations.)

8 Robustness Concerns

Recent contributions build on a relatively older literature in implementation theory (see, e.g., Ma,

Moore and Turnbull 1988, Mookherjee and Reichelstein 1992, Bergemann and Morris 2009) to argue

that under an optimal contract, there could be multiple equilibria among agents, with varying

payoff consequences for the principal; see Segal (1999, 2003), Genicot and Ray (2006), Winter

(2004), Halac, Kremer and Winter (2020, 2023), or Halac, Lipnowski and Rappoport (2021). A

central point in this literature is that coordination on an equilibrium that favors the principal is by
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no means guaranteed — especially if there is another equilibrium that favors the agents. We now

remark on a problem faced by a designer who fears the least-preferred equilibrium outcome. We

continue to assume that only symmetric contracts are offered,19 and we ignore the participation

constraint, though the latter can be tagged on in the same way as in Observation 1.

Our incentive constraint so far, given by (9), requires that an agent weakly prefers working to

shirking, assuming that all the other agents are working. However, that may not eliminate effort

profiles that involve shirking by two or more agents, and might constitute potentially undesirable

equilibria. To ensure robust implementation, we augment the principal’s problem by adding con-

straints that ensure effort from (say) agent 1, for any subgroup of compatriots that might choose to

shirk. As is standard in the literature on robust design, we consider only those equilibria satisfying

an “indifference refinement” condition, under which workers choose to exert effort when they are

indifferent between working and shirking.

8.1 Robustness Constraint

We proceed in parallel to our derivation of (9), again making use of the assumed symmetry of the

contract. We set n = 2 and relegate a description of the n ≥ 2 case to the Appendix. If agent 1

chooses e1 = h, her (renormalized) payoff when agent 2 is a shirker is

V h
1 =

∫
Y
u(m(y))[1− λ(y2)]dµh1dµ

h
2 − c+ α

∫
Y
u(m(y[2]))[1− λ(y2)]dµh1dµ

h
2

=

∫
Y
u(m(y))[1− λ(y2)]dµh1dµ

h
2 − c+ α

∫
Y
u(m(y))[1− λ(y1)]dµh1dµ

h
2 , (30)

where in going from the first line to the second we’ve made a change of variables within the second

integral, just as we did earlier. Likewise, if our agent chooses e = `, her expected payoff is given by

V `
1 =

∫
Y
u(m(y))[1− λ(y2)]dµ`1dµ

h
2 + α

∫
Y
u(m(y))[1− λ(y1)]dµ`2dµ

h
1 . (31)

Because the principal must implement e = h even when the agent’s partner is shirking, the resulting

robustness constraint is given by V h
1 ≥ V `

1 , or, using (30) and (31), by:∫
Y
u(m(y))[Ψ(y)−ΨS(y)]dµh ≥ c, (32)

where Ψ(y) ≡ λ(y1) + αλ(y2) just as before, and ΨS(y) ≡ (1 + α)λ(y1)λ(y2) is an additional term

that arises when the partner is believed to be shirking. The left hand side of the old incentive

constraint (9) measures the utility gain — not counting cost — of shifting from low to high effort

when the partner agent chooses high effort, whereas the the left hand side of the new robustness

19The assumption of symmetry is strong when studying robust implementation. Recent literature on robust incen-
tives for teams shows that asymmetric contracts that generate dominant strategy cascades might be cost effective.
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constraint (32) does the same when the partner chooses low effort. So the additional term

S(α) ≡
∫
Y
u(m(y))ΨS(y)dµh = (1 + α)

∫
Y
u(m(y))λ(y1)λ(y2)dµh (33)

is a measure of the supermodularity built into any contract m(y1, y2).20 The sign of this expression

determines whether the robustness constraint (32) must bind.

Specifically, suppose that S(α) ≤ 0. Then at an optimum, (9) always binds and (32) is slack. To

see this, consider the relaxed problem in which expected principal payoffs are minimized subject to

just (9). (This is just our problem from Section 4.4.) Because S(α) < 0, (32) must be slack at the

optimum of the relaxed problem.

Conversely, if S(α) > 0, (32) can never be slack at a robust optimum. For suppose it were slack;

then the optimum is again achieved under the relaxed problem described above, with only (9)

imposed. It is easy to see that (9) must then bind. But because S(α) > 0, (32) cannot then hold

at the optimum of the relaxed problem, a contradiction.

We return to these observations below.

8.2 Optimal Robust Contract

Cost-effective robust contracts must minimize the expression 2 ×
∫
Ym(y)dµh copied from (11),

subject to the incentive constraint (9) as well as the robustness constraint (32). As before, the

solution to this problem can also be obtained with the Lagrangean method, provided we allow for

both constraints. Write the Lagrangean as

L(m) ≡ −
∫
Y
m(y)dµh + [νIC + νS]

[∫
Y
u(m(y))Ψ(y)dµh − c

]
− νS

∫
Y
u(m(y))ΨS(y)dµh,

where νIC is the multiplier on the original incentive constraint (9), and νS is the multiplier on the

robustness constraint (32). Both are nonnegative. The first order conditions are given by

−1 + {[νIC + νS]Ψ(y)− νSΨS(y)}u′(m(y)) ≤ 0, with equality if m(y) > 0.

But m(y) must be positive for some y otherwise no incentives can be provided. So it must be that

νIC + νS > 0,21 and therefore the first order condition above reduces to

u′(m(y))[Ψ(y)− νΨS(y)] is constant in y if Ψ(y)− νΨS(y) > 0, and m(y) = 0 otherwise, (34)

20That is, let ∆(e2) represent the gain in expected utility for agent 1 when switching from shirking to working,
when agent 2 is expected to provide effort e2. Showing that S(α) = ∆(eh2 )−∆(e`2) is straightforward.

21Each multiplier is nonnegative, so if we presume that νIC + νS = 0, then νS = 0 as well, but that contradicts the
first order condition whenever m(y) > 0, as it must be for some y.

26



Figure 6. ν as a function of α in the example with uniformly distributed likelihood ratio and θ = 1
2 .

where we’ve used the assumed end-point conditions on u, and defined ν ≡ νS/(νIC + νS). Observe

that ν ∈ [0, 1]. The extreme values of the interval are attained in situations for which only one of

the two constraints is binding.

8.3 Robustness Under Adversarial and Altruistic Interdependence

As we’ve observed already, our baseline setting assures us that an agent is happy to exert effort

provided she believes that her compatriot is doing the same. But then there is the specter of a

bad equilibrium — a profile in which all agents shirk — emerging if the optimal contract generates

effort supermodularity. In that case, the principal would need to adjust the original contract to

achieve robust implementation.22

Figure 6 depicts the Lagrangian coefficient ν as a function of α in the example with uniformly

distributed likelihood ratio and CRRA utility with risk parameter θ = 1
2 . When α < 0, the

incentive constraint binds in this example, and the robustness constraint remains slack (i.e., ν = 0).

Conversely, for α > 0, the robustness constraint becomes binding; indeed, ν > 0 and monotonically

increases in α. That is, the optimal contract of Section 4.4 is robust to the additional constraint

when α < 0, but this is no longer true once α > 0.

This pattern — supermodularity when agents are altruistic and submodularity when agents are

adversarial — transcends the example of Figure 6, though not universally so. The next proposition

provides three sets of sufficient conditions. To state it, define f(z) ≡ u ◦ u′−1(1/z) for z > 0 and

f(0) ≡ 0 otherwise. Our assumptions on u ensure that f is strictly increasing in z. Later, we

interpret f(Ψ/k) as equilibrium utility in the baseline model.

Proposition 5. (a) There exists a threshold ε > 0 such that whenever |α| < ε:

(i) The optimal contract with adversarial agents automatically satisfies the constraint (39), and is

therefore robustly implementable with no change .

22That does not mean that the original incentive constraint is irrelevant — both (9) and (32) could well bite as
they do, for instance, in the example.
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(ii) The optimal contract for altruistic agents must be adjusted to meet the robustness constraint

(39), which is therefore always binding under robust implementation.

Statements (i) and (ii) also hold without the above restriction on α if

(b) The function f(z) is strictly convex.

(c) λ is uniformly distributed when an agent exerts effort.

While the proof is in the Appendix, some aspects of it serve to illuminate well the problem at hand;

we highlight those points here. Recall our solution to the baseline problem from (15):

u′(m(y))Ψ(y) = k for some k > 0 y if Ψ(y) > 0, and m(y) = 0 otherwise.

This solution reduces to m(y) = u
′−1
(

Ψ(y)
k

)
, and so the level of offered utility becomes

f

(
Ψ(y)

k

)
for all y. (35)

Using (35) in the expression (33) for supermodularity, we see that

S(α) = (1 + α)

∫
Y
f

(
Ψ(y)

k

)
λ(y1)λ(y2)dµh = (1 + α)

∫ 1

−∞

[∫ 1

−αλ2

f

(
λ1 + αλ2

k

)
λ1dγ

h(λ1)

]
︸ ︷︷ ︸

Weighting W (λ2)

λ2dγ
h(λ2),

where we’ve simplified notation by changing variables to the likelihood values λ1 = λ(y1) and

λ2 = λ(y2), noting that these ratios must have support contained in (−∞, 1], and writing γh for

the induced distribution of λ under high effort. Part (a) of the Proposition is proved by first

observing that S(0) = 0,23 and then showing that S′(0) > 0, so that for small positive α, S(α) > 0

and for small negative values of α, S′(α) < 0.

The marked term W (λ2) in the expression for S(α) can be viewed as a positive weighting function

for the integral of λ2, where we already know that the unweighted integral
∫
λ2dγ

h(λ2) equals

zero. An increasing weighting function therefore means that S(α) > 0, and a decreasing weighting

function means that S(α) < 0. These properties are exploited for the proof of part (b) of the

Proposition, using the assumption that realized utility f in (35) is strictly convex.

The convexity of f , particularly within the CRRA framework, is closely linked to the extent of

risk tolerance. In the CRRA class with risk-aversion parameter θ, it is easy to see that f(z) =

z(1−θ)/θ/(1−θ). For individuals exhibiting high risk tolerance; specifically, with θ < 1
2 , the function

f is indeed strictly convex.

Finally, part (c) is established by presuming that γh is uniform, and then integrating the integrals

defining S over the four subsets of the domain (λ1, λ2); see Figure 7. When α > 0, for instance, the

23S(0) =
∫ 1

−∞

[∫ 1

0
f
(
λ1
k

)
λ1dγ

h(λ1)
]
λ2dγ

h(λ2) =
[∫ 1

0
f
(
λ1
k

)
λ1dγ

h(λ1)
] [∫ 1

−∞ λ2dγ
h(λ2)

]
= 0.
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Figure 7. Partition of the domain (λ1, λ2) into four subsets. The blue line is the locus λ1 +αλ2 = 0,
which determines the boundary of the payment zone.

integral over domain D is zero and that over C is positive (Claim 1 in Appendix). Additionally,

the absolute value of the negative integral over A is dominated by the positive value of the integral

over B (Claim 2 in Appendix), thus ensuring that the integral over the entire domain is positive.

For details of the arguments for all three parts of the proof, see the Appendix.

How robust are these patterns described in Proposition 5? In the general model, different infor-

mation structures typically yield non-uniform distributions of λ over the support (−∞, 1]. Despite

this, the optimal contract (under altruism) engenders submodular incentives exclusively in region

A, while strictly supermodular incentives are observed in regions B and C. It is important to ac-

knowledge that certain distributions and utility functions exist where set B ∪C does not dominate

A and submodularity obtains under altruism.

As an example (see Appendix for details), consider a two-agent setting in which u(c) = c1−θ/(1−θ),
with θ = 9

10 , α = 1
2 , and the cost of effort e = 0.336. The output distributions concentrate the

entire probability mass on two possible output realizations, namely 0 and 1, making them binary.

Specifically, the probabilities for the zero output are µh({0}) = 4
5 , and µ`({0}) = 1. In this example,

the baseline optimal contract offered to altruistic agents generates effort submodularity, thereby

ensuring robust effort implementation under the baseline equilibrium. As suggested by part (b)

of the Proposition, a specific aspect of the example that contributes to this property is the high

degree of risk-aversion. The particular concentrations of the probability mass of λ in region A also

play a role, though the binary nature of the signal structure is irrelevant. Of course, an analogous

example can be constructed for adversarial agents, generating supermodularity and the consequent

non-robustness of the baseline optimal contract even though α < 0.

It should be noted that as agents exhibit decreasing levels of altruism, the probability mass allocated

to set A diminishes. Furthermore, as α approaches zero, for all realizations within the shrinking
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set A there exist a uniform upper bound on λ1 that converges to zero. It is therefore reasonable to

conjecture that for sufficiently small α, the perverse effects of integration over A will eventually be

overshadowed by those over the set B ∪C. Indeed, that is precisely what part (a) of Proposition 5

demonstrates.

This example notwithstanding, Proposition 5 is quite unequivocal for scenarios with risk-tolerant

agents, uniformly distributed λ, or when preference interdependence is quantitatively small.

8.4 The Structure of Robust Contracts With Altruism

In this section, we briefly examine the direction of the contract adjustments that ensures robust

implementation. Throughout, we will presume that the likelihood ratio moves smoothly with

output, so that λ is differentiable.

Drawing upon arguments analogous to those beginning with (34) and further elucidated in Sec-

tion 4.5, we see that the gradient of the optimal contract with respect to outputs aligns itself

perfectly with the augmented gradient ∇Ψ− ν∇ΨS. Given that the extent of competitiveness, as

locally expressed by ∂m
∂y2

/ ∂m∂y1
, is governed by the slope of this augmented gradient, any alteration

in its value relative to standard implementation is driven by the interplay of the supermodularity

gradient ∇ΨS and the multiplier ratio ν = νS/(νIC + νS).

In our example with a uniformly distributed likelihood ratio and interdependence characterized by

α = θ = 1
2 , the supermodularity term ΨS achieves extrema at the four corners of its domain. The

two maxima (with a value of 1 + α) are situated in the northeastern and southwestern corners,

while the minima (with a value of −(1 + α)) are positioned in the northwestern and southeastern

corners. Consequently, payments in states in which the outputs of the agents exhibit the greatest

misalignment yield the most potent submodular incentives. Along the vertical and horizontal lines

passing through the center of the domain, ΨS equals zero. It also exhibits symmetry around the

45◦ line.

In the left panel of Figure 8, we depict the gradient field of −νΨS, the configuration of which

seamlessly translates into the competitiveness of the contract. It is clear from the graph that for

any signal realizations falling below the diagonal line, the slope of the vector ∇Ψ−ν∇ΨS is strictly

smaller than that of ∇Ψ. In instances where agent 1 outperforms the other, i.e., y1 > y2, the robust

payment moves less positively with the success of the counterpart than it did before, rendering the

contract more competitive. Conversely, for all realizations above the diagonal (y1 < y2), the

augmented gradient becomes steeper, signifying a locally more cooperative contract.

The resulting adjustments in monetary payment for altruistic agents and the robust contract are

respectively depicted in the middle and right panels of Figure 8. The robustness constraint amplifies

monetary rewards for individual success while simultaneously providing a (small) consolation prize

for an agent whose output realizations significantly lag behind those of their partner. These dual
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Figure 8. Optimal robust contract in the example with the linear likelihood ratio, risk aversion θ = 1
2

and preference interdependence α = 1
2 . For such values, ν ≈ 0.414. The figure depicts the gradient

field of the the submodular component, −νΨS (left panel), the payment adjustment relative to the
standard contract (middle panel) and the optimal robust contract (right panel).

benefits come, however at the expense of reduced payment in the event when both agents succeed.

This pattern remains robust in all settings with two agents as long as λ is strictly increasing.

While the fact that the contract becomes more competitive in a certain region of the domain may

seem intuitive, it might be counterintuitive that, in the absence of a participation constraint, agent 1

receives positive compensation in the vicinity of the realization (y1, y2) = (0, 1). This happens even

though the negative likelihood of her output, λ(0) = −1, statistically suggests shirking. Of course,

because agents are altruistic, there is a positive payoff externality for the other agent, and the overall

“demotivation” effect of the payment is thereby made smaller, i.e., Ψ(0, 1) = λ(0) + αλ(1) = −1
2 .

Still, the value of the statistic in negative and the payment encourages shirking, assuming that the

other agent is working. The puzzle can be solved as follows. In this part of the domain, agents’

outputs are most misaligned, making these signal realizations particularily potent in providing

submodular incentives, i.e., ΨS(0, 1) = (1 + α)λ(0)λ(1) = −3
2 . Since, for the assumed parameter

values, the robustness constraint is binding (with a multiplier value of ν = 0.414), the overall

effect of the payment in the neighborhood of the extreme event (y1, y2) = (0, 1) is beneficial to the

principal, when both constraints are taken into account, i.e., Ψ(0, 1)−νΨS(0, 1) = −1
2+0.414×3

2 > 0.

Consequently, for sufficiently high α, the principal may find it optimal to offer a payment that

appears as a consolation prize.

8.5 The Cost of Robust Implementation

Does the achievement of robust implementation entail additional costs for the principal? In the

setting of Proposition 5, the answer is in the negative when agents are adversarial. The robustness

constraint remains non-binding for negative values of α. Therefore, robust implementation with

adversarial agents comes at no additional cost. However, in the case of altruistic agents, ν > 0, and

therefore the robustness implementation of high effort requires the principal to distort the original
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contracts. Consequently, robust implementation is indeed costly for the principal.

For instance, in the scenario featuring a uniformly distributed likelihood ratio, the expected pay-

ment curve ceases to be symmetric around α = 0. Figure 9 illustrates the principal’s payout as a

function of α. One lesson from this exercise, that extends to all environments covered by Propo-

Figure 9. Expected payout by the principal that implement efforts in the unique equilibrium, as a
function of α in the example with the linear likelihood ratio and θ = 1

2 .

sition 5, is that a principal seeking to robustly implement effort might be inclined to do so with

teams of adversaries rather than friends. It is to be noted that such an inclination runs counter to

the preference that we earlier described for friends, especially in larger teams. A final assessment

on a principal’s preferences for cooperative group contracts as opposed to competitive tournaments

must therefore rest on these conflicting considerations.

9 Future Directions

In this paper we characterized optimal contracts for teams with interdependent preferences. In

doing so we make several strong assumptions. For instance, we consider incentive compatibility

conditions assuming that efforts and payments are revealed ex-post to every agent. These conditions

are not the only ones that can be studied. A plausible alternative that one could consider is that

effort choices are not observed ex post, but all payments still are. The second is that neither the

effort choices nor the payments to other agents are observed. Our preferred interpretation that we

use in the paper is, therefore, not devoid of qualification.

Additionally, the model is static and in particular presumes an exogenous interdependence coeffi-

cient that remains unaffected by the choices made by agents or by the contracts offered to them.

However, it is important to acknowledge that this assumption may be considered restrictive in

certain environments. For example, if an agent deviates by choosing low effort, thereby jeopardiz-

ing the prospects of other agents, and if other agents come to know of this deviation, a presumed

altruistic value of α > 0 ex ante may not apply ex post.24 Likewise, it has been observed that

24Anger and a sense of betrayal then enter into the analysis — at least in an extended dynamic model. For related
discussions in a team setting, see Ray and Ueda (1996), Section 4.1., and in the specific context of microfinance,
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in certain competitive environments, initial strangers who interact over time tend to develop ad-

versarial attitudes, while cooperative environments foster friendship. This indicates that the type

of contract offered can significantly influence preference linkages among agents in the long term.

However, considering these phenomena involves endogenous preference interdependence, which falls

outside the scope of this paper. Understanding this aspect is crucial for comprehending optimal

design, but we defer it to future research.
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Appendix

Proof of Proposition 5. Part (a). Recall that

S(α) = (1 + α)

∫
Y
f

(
Ψ(y)

k

)
λ(y1)λ(y2)dµh = (1 + α)

∫ 1

−∞

[∫ 1

−αλ2

f

(
λ1 + αλ2

k

)
λ1dγ

h(λ1)

]
︸ ︷︷ ︸

Weighting W (λ2)

λ2dγ
h(λ2),

where we’ve simplified notation by changing variables to the likelihood values λ1 = λ(y1) and

λ2 = λ(y2), noting that these ratios must have support contained in (−∞, 1], and writing γh for

the induced distribution of λ under high effort.

Certainly, S(0) = 0 as argued in the main text. We claim that S′(0) > 0. Note that25

S′(α) =
S(α)

1 + α
+

1 + α

k

∫ 1

−∞

[∫ 1

−αλ2

f ′
(
λ1 + αλ2

k

)
λ1dγ

h(λ1)

]
λ2

2dγ
h(λ2)

− (1 + α)k′(α)

k2

∫ 1

−∞

[∫ 1

−αλ2

f ′
(
λ1 + αλ2

k

)
λ2

1dγ
h(λ1)

]
λ2dγ

h(λ2)

so that, evaluating this expression at α = 0 and noting that S(0) = 0, we have:

S′(0) =
1

k

∫ 1

−∞

[∫ 1

0
f ′
(
λ1

k

)
)λ1dγ

h(λ1)

]
λ2

2dγ
h(λ2)− k′(0)

k2

∫ 1

−∞

[∫ 1

0
f ′
(
λ1

k

)
λ2

1dγ
h(λ1)

]
λ2dγ

h(λ2)

=
1

k

[∫ 1

0
f ′
(
λ1

k

)
λ1dγ

h(λ1)

] [∫ 1

−∞
λ2

2dγ
h(λ2)

]
− k′(0)

k2

[∫ 1

0
f ′
(
λ1

k

)
λ2

1dγ
h(λ1)

] [∫ 1

−∞
λ2dγ

h(λ2)

]
> 0,

25In the expression that follows, the derivative with respect to α is registered in three locations. The first is at the
endpoint of one of the integrals, but this derivative is readily seen to be zero. The second is with respect to the α
inside the integral. The third, more implicit, is that k is itself a function of α. These second and third terms are seen
in the expression for the derivative.
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where we use the likelihood property that
∫ 1
−∞ λ2dγ

h(λ2) = 0.

Because S(0) = 0, the fact that S′(0) > 0 means that there is ε > 0 such that S(α) < 0 for α ∈ (ε, 0)

and S(α) > 0 for α ∈ (0, ε), which completes part (a) of the proof.

Part (b). For every λ2, consider the weighting function above, defined as:

W (λ2) ≡
∫ 1

−αλ2

f

(
λ1 + αλ2

k

)
︸ ︷︷ ︸

Weights for λ1

λ1dγ
h(λ1)

This weighting function itself has weights within it as indicated just above. For any given value of

λ2, it is obvious that the weights are first flat at 0 and then increasing in λ1, so using the fact that∫
λ1dγ

h(λ1) = 0, it should be clear that W (λ2) > 0 for every λ2.

Differentiation with respect to λ2 tells us that

W ′(λ2) ≡ α

k

∫ 1

−αλ2

f ′
(
λ1 + αλ2

k

)
λ1dγ

h(λ1), (36)

where we use the fact that f(0) = 0. Now, by assumption, f is strictly convex so f ′ is strictly

increasing in z, and therefore strictly increasing in λ1 (for given λ2) in (36) above. Using the fact

that
∫
λ1dγ

h(λ1) = 0, we must therefore conclude from (36) that W ′(λ2) > 0 for every λ2.

Now we return to the formula for S(α), knowing that the weighting function is strictly increasing.

Using again the fact that
∫
λ2dγ

h(λ2) = 0, we must conclude that for α > 0 we have S(α) > 0 and

for α < 0 we have S(α) < 0, as desired.

Part (c). Assume α > 0 (the arguments for negative α are symmetric). Under our assumptions for

this part and the fact that
∫
λdγh(λ) = 0, the support of λ can be normalized without further loss

of generality to [−1, 1]. Then dγh(λ) = 1
2 , and the domain of integration is Λ ≡ [−1, 1]× [−1, 1].

Let k be the normalizing constant in optimal contract under standard implementation.

4

1 + α
S(α) =

∫
Λ
f

(
λ1 + αλ2

k

)
λ1λ2dλ1dλ2 =

∫
Λ

[f

(
λ1 + αλ2

k

)
− f

(
λ1

k

)
]λ1λ2dλ1dλ2,

where in the second equality, we utilize the fact that
∫

[1,−1] f
(
λ1
k

)
λ2dλ2 = 0.

Partition Λ into four subsets A,B,C,D, depicted in Figure 7 in the main text.

Claim 1 : The integral over D is zero, and over C it is strictly positive.

On D, where λ1 + αλ2 < 0 and λ1 < 0, f
(
λ1+αλ2

k

)
= 0 and f

(
λ1
k

)
= 0, and so

∫
D[f

(
λ1+αλ2

k

)
−

f
(
λ1
k

)
]λ1λ2dλ1dλ2 = 0. Next consider C. On this set, λ1 > 0, leading to two possibilities. When

λ2 > 0, one has f
(
λ1+αλ2

k

)
− f

(
λ1
k

)
> 0 by monotonicity of f , while for λ2 < 0, one has
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f
(
λ1+αλ2

k

)
− f

(
λ1
k

)
< 0. In either case, [f

(
λ1+αλ2

k

)
− f

(
λ1
k

)
]λ2 > 0, and so the integral∫

C [f
(
λ1+αλ2

k

)
− f

(
λ1
k

)
]λ1λ2dλ1dλ2 is positive as well.

Claim 2 : The absolute value of the negative integral over A is dominated by the positive value of

the integral over B.

Observe that ωA(λ1) ≡
∫ 1
−λ1/α

[f
(
λ1+αλ2

k

)
− f

(
λ1
k

)
]λ2dλ2 defined on region A is increasing in λ1,

and that ∫
A

[f

(
λ1 + αλ2

k

)
− f

(
λ1

k

)
]λ1λ2dλ1dλ2 =

∫ 0

−α
ωA(λ1)λ1dλ1.

Because
∫ 0
−α[λ1 + α

2 ]dλ1 = 0 and ωA(λ1) is increasing, we have
∫ 0
−α ω

A(λ1)[λ1 + α
2 ]dλ1 ≥ 0, and so

∫ 0

−α
ωA(λ1)λ1dλ1 ≥ −

α

2

∫ 0

−α
.ωA(λ1)dλ1 (37)

Similarly, ωB(λ1) ≡
∫ 0
−λ1/α

[f
(
λ1+αλ2

k

)
− f

(
λ1
k

)
]λ2dλ2 defined on region B is increasing in λ1, and∫

B[f
(
λ1+αλ2

k

)
− f

(
λ1
k

)
]λ1λ2dλ1dλ2 =

∫ α
0 ωB(λ1)λ1dλ1. Because

∫ α
0 [λ1 − α

2 ]dλ1 = 0, it must be

that
∫ α

0 ωB(λ1)[λ1 − α
2 ]dλ1 ≥ 0, and so∫ α

0
ωB(λ1)λ1dλ1 ≥

α

2

∫ α

0
ωB(λ1)dλ1 (38)

Finally, observe that ωA(α + λ1) = ωB(λ1), so that
∫ 0
−α ω

A(λ1)dλ1 =
∫ α

0 ωB(λ1)dλ1. Combining

this information with (37) and (38),∫ 0

−α
ωA(λ1)λ1dλ1 +

∫ α

0
ωB(λ1)λ1dλ1 ≥ 0.

We can now combine Claims 1 and 2 to conclude that

S(α) =
1 + α

4

∫
A∪B∪C∪D

[f

(
λ1 + αλ2

k

)
− f

(
λ1

k

)
]λ1λ2dλ1dλ2 > 0.

Robust Implementation With n ≥ 3 Agents. If agent 1 chooses e1 = h, her (renormalized)

payoff with a set of shirkers S ⊆ {2, . . . , n} is

V h
1 =

[∫
Y
u(m(y))

∏
s∈S

[1− λ(ys)]dµ
h − c

]
+

α

1− α(n− 2)

∑
j 6=i

[∫
Y
u(m(y[j])

∏
s∈S

[1− λ(ys)]dµ
h − c|N − S|

]
.

where, as before, y[j] is the “rotated vector” with yj as its first entry. Likewise, if our agent chooses
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e = `, her expected payoff is given by

V `
1 =

[∫
Y
u(m(y))

∏
s∈S

[1− λ(ys)]dµ
`
1dµ

h
−1

]
+

α

1− α(n− 2)

∑
j 6=i

[∫
Y
u(m(y[j]))

∏
s∈S

[1− λ(ys)]dµ
`
1dµ

h
−1 − c|N − S|

]
.

Remembering that the principal wishes to implement e = h, the incentive constraint is given by

V h
i ≥ V `

i , or, using the two equations above:[∫
Y
u(m(y))λ(y1)

∏
s∈S

[1− λ(ys)]dµ
h

]
+

α

1− α(n− 2)

∑
j 6=i

[∫
Y
u(m(y[j]))λ(y1)

∏
s∈S

[1− λ(ys)]dµ
h

]
≥ c.

We now conduct a change of variables within the second integral, as we did before. For each

j 6= 1, we “rotate” the entries in y[j] so that j is replaced by 1, with all other indices rotated

accordingly, including the index i = 1. As before, this will cause the index 1 to range over all the

values {2, . . . , n} as different j’s are replaced, while the set S will be replaced by an appropriately

permuted set of indices; call it S[j]. Remembering that y[1] is just y, we obtain an equivalent

representation of the incentive constraint as∫
Y
u(m(y))Φ(y)dµh ≥ c, (39)

where in an analogous manner to Ψ in (10), we’ve defined

Φ(y) ≡ λ(y1)
∏
k∈S

[1− λ(ys)] +
α

1− α(n− 2)

∑
j 6=1

λ(yj)
∏
k∈S[j]

[1− λ(ys)]. (40)

Cost-effective robust contracts must therefore minimize the expression

n

∫
Y
m(y)dµh (41)

copied from (11), subject to the set of robust incentive constraints (39) as we range over all sets

S ⊆ {2, . . . , n}. Note that when S equals the empty set, we obtain the old incentive constraint (9).

Now there are more constraints in addition to (9), including a need to generate work incentives

even when everyone else is shirking, captured by S = {2, . . . , n}.

Details for the Example in Section 8.2. Note that under high effort, λ takes on two distinct

values: λ(0) = −1
4 and λ(1) = 1, with probabilities 4

5 and 1
5 respectively. That yields four potential

outcomes within the Λ-space of a two-agent team, as illustrated in Figure 10. Two of these outcomes

fall within set C, thus making positive contributions to the supermodularity function S(α), whereas

the outcome in set A decreases its value (there is one more in D with zero contribution). Table 1

presents the probabilities, payments, payoffs, and the resulting contributions to S(α) for each of

the four potential realizations. Although both outcomes in set C yield higher utility f
(
λ1+αλ2

k

)
compared to the one in set A, owing to the strict concavity of the realized utility in Ψ, their absolute

values centered around f
(
λ1
k

)
, are smaller. Integrating the term [f

(
λ1+αλ2

k

)
− f

(
λ1
k

)
]λ1λ2 over
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(λ1, λ2)-values (1, 1) (1,−1/4) (−1/4, 1) (−1/4,−1/4)
Probability 1/25 4/25 4/25 16/25
Ψ = λ1 + αλ2 3/2 7/8 1/4 −3/8

m = (min{Ψ, 0}/k)1/θ 1.569 0.862 0.214 0

f
(
λ1+αλ2

k

)
1.046 0.985 0.8572 0

f
(
λ1+αλ2

k

)
− f

(
λ1
k

)
0.046 - 0.015 0.8572 0

[f
(
λ1+αλ2

k

)
− f

(
λ1
k

)
]λ1λ2 0.05 0.004 -0.21 0

Table 1. Information for the Example in Section 8.2.
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Figure 10. The four possible realizations of (λ1, λ2).

the three relevant realizations results in the negative value S(α) = −0.03 when α = 0.5.
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