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ABSTRACT

Causal inference is of central interests in many empirical applications yet often challenging because 
of the presence of endogenous regressors. The classical approach to the problem requires using 
instrumental variables that must satisfy the stringent condition of exclusion restriction. At the 
forefront of recent research, instrument-free copula methods have been increasingly used to handle 
endogenous regressors. This article aims to provide a practical guide for how to handle endogeneity 
using copulas. The authors give an overview of copula endogeneity correction and its usage in 
marketing research, discuss recent advances that broaden the understanding, applicability, and 
robustness of copula correction, and examine implementation challenges of copula correction such 
as construction of copula control functions and handling of higher-order terms of endogenous 
regressors. To facilitate the appropriate usage of copula correction, the authors detail a process of 
checking data requirements and identification assumptions to determine when and how to use 
copula correction methods, and illustrate its usage using empirical examples.

Yi Qian
Sauder School of Business
University of British Columbia
2053 Main Mall
Vancouver, BC V6T 1Z2
and NBER
yi.qian@sauder.ubc.ca

Anthony Koschmann
Eastern Michigan University
121 Hill Hall
College of Business
Ypsilanti, MI 48178
akoschma@emich.edu

Hui Xie
Department of Biostatistics
School of Public Health
University of Illinois at Chicago
huixie@uic.edu



Many research questions in marketing, economics, and health sciences are interested in mat-

ters of causality rather than simply questions of association. Frequently, these questions are

tackled by using relevant data to estimate structural regression models representing causal re-

lationships. A pervasive issue in these empirical investigations is the presence of endogenous

regressors, which can arise when the regressors representing the causes (e.g., an economic

program to be evaluated, marketing mix variables, etc.) are not randomly assigned in the

data; the regressors thus correlate with unobservables (e.g., unobserved product character-

istics or common market shocks) in the structural error term (Villas-Boas and Winer 1999).

Estimation methods that ignore the presence of regressor-error dependence, such as the or-

dinary least squares (OLS) method, can lead to severe bias in the estimates of structural

model parameters (i.e., endogeneity bias).

Given the ubiquity of endogenous regressors and the importance of addressing endogene-

ity bias, a large body of literature is devoted to developing appropriate methods to solve or

mitigate the endogeneity issue. The instrumental variable (IV) method is the classical econo-

metric approach to correct for endogeneity bias (Wooldridge 2010). This method relies on the

existence of valid and strong IVs to satisfy the stringent requirement of exclusion restriction,

which makes IVs difficult to find and justify in practice (Ebbes et al. 2005; Ebbes, Wedel,

and Böckenholt 2009; Park and Gupta 2012). When there exists theory or knowledge about

the underlying mechanism of endogeneity, an alternative approach is to model the exact

process of yielding the observed values of the endogenous regressors, which is then estimated

jointly with the structural model of primary interest. For instance, in estimating a consumer

demand model, a supply-side model reflecting researchers’ beliefs about the managerial de-

cisions determining the supply-side marketing mix variables (such as price and promotions)

can be specified and jointly estimated with the demand model (e.g., Sudhir 2001; Yang,

Chen, and Allenby 2003; Manchanda, Rossi, and Chintagunta 2004; Luan and Sudhir 2010).

When the supply-side model is specified correctly, this approach can successfully correct for

endogeneity bias in parameter estimates of the demand model.
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Recently, there have been growing interests in developing endogeneity correction meth-

ods that require neither observed IVs nor knowledge to correctly specify an auxiliary supply

model. These instrument-free methods exploit higher moments (Lewbel 1997), heteroscedas-

tic error structures (Rigobon 2003), latent IVs (Ebbes et al. 2005), SORE model (Qian

and Xie 2023), and copulas1 (Park and Gupta 2012; Becker, Proksch, and Ringle 2021;

Christopoulos, McAdam, and Tzavalis 2021; Tran and Tsionas 2021; Eckert and Hohberger

2022; Haschka 2022; Yang, Qian, and Xie 2022) to control for endogeneity bias. Ebbes,

Wedel, and Böckenholt (2009), Park and Gupta (2012), Papies, Ebbes, and Heerde (2017),

and Rutz and Watson (2019) provide detailed comparisons of these IV-free methods with

alternative methods.

Copula correction methods provide substantial advantages for addressing the prevalent

and thorny issue of endogenous regressors. These methods directly address the regressor-

error dependence using copulas, a widely used multivariate dependence model applicable in

many practical applications (Joe 2015; Danaher 2007; Danaher and Smith 2011). Unlike

the traditional IV approach and other IV-free methods, the copula correction methods do

not require the endogenous regressor contain an (observed or latent) exogenous component

satisfying the stringent exclusion restriction condition that can be hard to justify in practical

applications. Thus, copula correction methods are feasible to use in many situations under

appropriate conditions. Although copula correction originally required sufficient nonnormal-

ity of endogenous regressors (Park and Gupta 2012), limiting its applicability, the recent

two-stage copula correction method by Yang, Qian, and Xie (2022) relaxes this condition

as long as one of the correlated exogenous regressors is nonnormally distributed, which is a

considerably weaker requirement and feasible in many applications.

Furthermore, one can implement copula correction by including copula control functions

derived from existing regressors as additional regressors in the structural regression model to

control for endogeneity. Thus, copula correction using the control function is straightforward

1“Copula” was introduced by Sklar (1959) from the Latin “to link”, as a function linking two variables. Copulas

encompass different forms, but we use ‘copulas’ here to speak synonymously with Gaussian copulas.
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to apply in a wide array of settings, including both linear and nonlinear models (e.g., discrete

choice models) and the challenging slope endogeneity problem.

Focusing on copula correction methods, the objectives of this article are: (a) to raise

awareness of the importance to address endogenous regressors in marketing studies; (b) to

provide practical guidance to empirical researchers employing copula endogeneity correction;

and (c) to demonstrate use of copula endogeneity correction in practical applications.

With these objectives in mind, this article makes the following contributions. One, we

provide a comprehensive overview of how the copula procedures have been used in marketing

research to correct for endogeneity. Over the past ten years, the copula approach has been

adopted in a range of substantive areas to establish causality. We review the substantive

areas for which copula methods are useful, wide variances among empirical researchers on

copula use and implementations, and recent advances in copula correction methodology. We

synthesize the literature to provide a theoretical and empirical foundation for appropriate

use of copula correction methods.

Two, building upon recent advances and our evaluations on variations of copula imple-

mentation, we provide an updated guidance on when and how to use copula correction,

accessible to academics and practitioners alike. Despite the advantages of copula correction

methods and growing popularity, the effectiveness of these methods depends on whether im-

portant data requirements are met and whether the analysis is implemented appropriately.

Indeed, recent research points to pitfalls resulting from misuse of copula methods. Further-

more, significant methodological advances have been made since the Park and Gupta’s 2012

study, such that clear guidelines regarding the use of expanded copula correction toolbox are

lacking. In this article, we create a ‘cookbook’ for how copulas should be applied based on

the latest research, in a flowchart with checkpoints and data requirements that characterize

the settings where copula correction methods are useful and where they may fail.

Three, we address the lack of clear guidelines regarding two implementation variations

that are less studied but have substantial effects on the performance of copula correction.
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The first issue regards estimation bias in models with an intercept, discovered by Becker,

Proksch, and Ringle (2021); we show that an alternative implementation of copula transfor-

mation with theoretical support solves this bias issue and informs better copula implementa-

tion. The second issue is the handling of moderated endogenous regressors (i.e., higher-order

effects like squared terms or interactions between two endogenous regressors). To the best

of our knowledge, no study has been conducted to compare different copula approaches, let

alone establishing an optimal approach to addressing endogenous higher-order regressors,

where a clear guideline is needed. By making an analogy to the control function using IVs

(Papies, Ebbes, and Heerde 2017), interactions between an endogenous and exogenous re-

gressor need no additional copula term: only the copula term for the main effect of the

endogenous regressor is needed. However, no theoretical optimality nor magnitude of empir-

ical difference for different copula approaches are found in the existing literature. This may

explain the variations in copula handling of higher-order endogenous regressors. Researchers

may deem including copula terms for higher-order endogenous regressors as having compara-

ble performance with little harm2; researchers may even believe including these copula terms

is a good practice to control for endogeneity of higher-order regressors, or at the request of

gatekeepers (e.g., journal reviewers). This study establishes not only the sufficiency but also

theoretical and empirical optimality of excluding copula higher-order correction terms from

endogeneity correction. We highlight large adverse effects - significant finite sample bias and

greatly inflated estimation variability - when such higher-order copula terms are included,

both in simulations and real-life data.

In the next section, we survey substantive marketing areas where copula correction has

been used, as well as important variations in the use and implementation of copula cor-

rection. Next, we present relevant methodological background: how the copula handles

endogeneity, how the copula is generated, how to generalize copula correction for correlated

2This may hold in control functions using IVs. Depending on the strength of IVs, the control functions for main

and higher-order endogenous terms may cause much less severe multicollinearity issues than the counterpart copula

control functions.
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exogenous regressors or close-to-normal endogenous regressors, and how copulas should be

used for moderated endogenous regressors. Then we discuss the boundary conditions and

data requirements for applying copula correction, presenting a flowchart of checkpoints eval-

uating these conditions. We provide two empirical examples to walk through this process

of applying copula correction. Finally, we close with conclusions and implications for both

academics and practitioners.

IMPACTS OF COPULA ENDOGENEITY CORRECTION

Largely due to the aforementioned advantages, copula correction has gained increasing

popularity in empirical research since Park and Gupta’s 2012 study for addressing endo-

geneity (Rutz and Watson 2019; Becker, Proksch, and Ringle 2021; Haschka 2022; Eckert

and Hohberger 2022). Table 1, and the pie chart in Figure W1 of Web Appendix A, break

down by substantive area copula correction publications that appeared in leading marketing

journals 3 from 2013 to 2022.

Table 1: Examples of Substantive Areas in Marketing with Applications of Copula
Endogeneity Correction.

Study Product Price Place Prom. SFa & Othera

CRM

Schwedel and Knox (2013) X

Burmester et al (2015) X

Datta, Foubert, and van Heerde (2015) X

Glady, Lemmens, and Croux (2015) X

Mathys, Burmester, and Clement (2016) X X

Datta, Ailawadi, and van Heerde (2017) X X X

Lenz, Wetzel, and Hammerschmidt (2017) X

Atefi et al (2018) X

Gielens et al (2018) X X

Gijsbrechts, Campo, and Vroegrijk (2018) X

Guitart, Gonzalez, and Stremersch (2018) X X

Lamey et al (2018) X X

continued . . .

3This list includes Journal of Marketing, Journal of Marketing Research, Marketing Science, Journal of Consumer

Research, Journal of the Academy of Marketing Science, Journal of Retailing, International Journal of Research in

Marketing, and Journal of Consumer Psychology.
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Study Product Price Place Prom SFa & Othera

CRM

Lim, Tuli, and Dekimpe (2018) X

Ter Braak and Deleersnyder (2018) X X X

Wetzel et al (2018) X

Zhao et al (2018) X

Carson and Ghosh (2019) X

Keller, Deleersnyder, and Gedenk (2019) X

Nath et al (2019) X

Schulz, Shehu, and Clement (2019) X

Vieira et al (2019) X X

Aydinli et al (2020) X X

Bombaij and Dekimpe (2020) X

Bornemann, Hattula, and Hattula (2020) X

Campo et al (2020) X X

De Jong, Zacharias, and Nijssen (2020) X

Garrido-Morgado et al (2020) X X

Guitart and Stremersch (2020) X X X

Guitart, Hervet, and Gelper (2020) X

Heitmann et al (2020)

Homburg, Vomberg, Muehlhaeuser (2020) X X X X

Liu et al (2020) X

Magnotta et al (2020) X

Shehu, Papies, and Neslin (2020) X

Van Ewijk et al (2020) X X

Vomberg, Homburg, and Gwinner (2020) X

Bachmann, Meierer, and Näf (2021) X

Cron et al (2021) X

Dhaoui and Webster (2021) X

Fossen and Bleier (2021) X

Hoskins et al (2021) X

Kidwell et al (2021) X

Lamey, Breugelmans, and ter Braak (2021) X

Sawant, Hada, and Blanchard (2021) X

Bhattacharaya, Morgan, and Rego (2022) X

Borah et al (2022) X X X

Cao (2022) X X

Cao et al (2022) X

Danaher (2022) X

Datta et al (2022) X X X

Gielens et al (2022) X X

Janani et al (2022) X

continued . . .
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Study Product Price Place Prom SFa & Othera

CRM

Krämer et al (2022) X X

Ludwig et al (2022) X

Maesen et al (2022) X X

Moon, Tuli, and Mukherjee (2022) X

Nahm et al (2022) X

Rajavi, Kushwaha, and Steenkamp (2022) X X X X

Scholdra et al (2022) X X X X

Umashankar, Kim, and Reutterer (2022) X

Van Ewijk, Gijsbrechts, Steenkamp (2022a) X X X X

Van Ewijk, Gijsbrechts, Steenkamp (2022b) X X X X

Widdecke et al (2022) X X

Zhang et al (2022) X

a: “SF” denotes Salesforce;“Other” includes word-of-mouth, warranty claims, and store visits, etc.
The detailed list of the publications appears in Web Appendix A.

A common use for copula correction stems from applications of the marketing mix (price,

product, place, and promotion) of goods and services. A primary reason for this is such re-

gressors are often correlated with the error term in a regression model because of uncaptured

managerial knowledge in decision-making (i.e., setting prices is often related to the cost of

production or anticipating consumer demand; advertising budgets are often set as a percent-

age of sales). For instance, Park and Gupta (2012) initially use copulas for prices, noting

“there are unmeasured product characteristics, or demand shocks, that influence not only

consumer decisions but also retailer pricing decisions” (p.582). Danaher (2023) uses copu-

las for price when looking at optimal advertising targeting of consumers. The concern for

pricing is that managers may set prices relative to the cost of production, as a percentage

of sales, or anticipating consumer demand. In their study of electronics and appliance sales,

Datta et al. (2022) use copulas for line length, price, and distribution; retailers may stock

more models of brands that sell better, which of course may get increased sales from greater

distribution reach. Besides line length, product features can encompass elements like R&D

spending, such as Walmart’s sustainability mandate for its suppliers (Gielens et al. 2018),

or even movies where the brand equity of actors may be endogenous due to the number of

movie appearances, award nominations, or award wins (Mathys, Burmester, and Clement
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2016). Advertising also commonly uses copulas, since managers often set advertising budgets

as a percentage of sales or relative to a competitor or industry benchmark. In modeling the

conversion of customers to contact an insurance agent, Guitart, Hervet, and Gelper (2020)

use copulas for the focal brand’s advertising, particularly in its relation to when and where

the brand’s primary competitor is advertising.

Another area using copula correction is salesforce and customer relationship manage-

ment (CRM) (Table 1). Endogeneity can arise in this area because allocating particular

sales personnel to particular clients, or incentivizing sales personnel may be correlated with

unobserved variables like the motivation and/or ability of the sales personnel or the value

of clients. Atefi et al. (2018) use copulas for salesforce training, and Burchett, Murtha, and

Kohli (2023) use copulas for salesperson’s interactions with secondary items (either other

people or objects like computers) when talking with customers. CRM endogeneity may oc-

cur in efforts to connect with customers, such as donation frequency and amounts (Schweidel

and Knox 2013), or communications with buyers (Ludwig et al. 2022).

Copula correction can also be found in areas other than traditional marketing mix and

sales efforts. A recurring explanation for the use of copula correction in the studies noted in

Table 1 is where reverse causality or common shocks could affect the endogenous variable.

In retail research, for instance, Gijsbrechts, Campo, and Vroegrijk (2018) examine household

grocery spending, in particular with using copulas for visiting hard discounters (i.e., stores

with very low prices), since this becomes habit reinforcing for consumers to then spend their

budget there. With social media, Fossen and Bleier (2021) use copulas to examine endogene-

ity when studying if online program engagement of television shows (word-of-mouth volume

and deviation) affects audience size. The testing is warranted since increasing audience size

may reversely cause an increase in word-of-mouth activities.

In these cases, copula correction provides a feasible approach to controlling for the thorny

regressor endogeneity issue and offers opportunities for optimal managerial decision makings,

as further illustrated in the following running example.
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Figure 1: Example 1: Impact of copula correction on price sensitivity estimation. OLS:
ordinary least squares; CC:copula correction.

Example 1: Price Sensitivity Estimation. Store managers and policy-makers are often

interested in learning price sensitivity for category demand growth. This example estimates

price sensitivity for the diapers’ category using store scanner purchase data from the IRI

Academic data set for the years 2002-2006 (261 weeks) for one focal store in the Buffalo, NY

market. In this instance, price was typically treated as endogenous because of unobserved

variables (e.g., product characteristics, retailer pricing decisions, number of shelf facings)

that, when omitted from a model, become part of the structural error. It is expected that

these unobserved characteristics induce positive correlation between price and the error term,

thereby causing the OLS estimate of price sensitivity biased toward zero (i.e., less negative).

As shown in a later section, the OLS price estimate in this data set is -1.367, which is

significantly less than the price estimate of -2.205 from copula endogeneity correction (Figure

1). Using the OLS price estimate, the manager will underestimate consumer price sensitivity

and mistakenly set the price too high, resulting in lost revenue and profit. The analysis in

the later section shows that using the OLS price estimate will yield 30% less profit compared

to using the copula corrected price sensitivity estimate (Figure 1).
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We will return and speak more to this later in Example 1, but it directly indicates

the impact of a “wrong” estimate: without correcting for endogeneity, OLS yields a price

elasticity of -1.367, but using a copula to correct for endogeneity shows a price elasticity of

-2.205, a 61% difference. Meta-analyses of studies that compare estimates after endogeneity

correction to uncorrected estimates also find similar differences. Bijmolt, Van Heerde, and

Pieters (2005) found price elasticity was -2.47 without endogeneity correction, but -3.74

when corrected. Sethuraman, Tellis, and Briesch (2011) found “Advertising elasticity is

lower when endogeneity in advertising is not incorporated in the model” (p.470). With

personal selling (i.e., salesforce), models that account for endogeneity have lower elasticity

(.282) than models without endogeneity correction (.373), a significant difference of .091 that

importantly represents an over-estimation of 32% (Albers, Mantrala, and Sridhar 2010). The

importance of endogeneity correction should be apparent: without its correction, managers

and academics are likely experiencing under-estimated effects of pricing and advertising and

over-estimated effects of salesforce.

VARIATIONS IN THE USE OF COPULA CORRECTION

Given the importance of endogeneity correction and the growing popularity of copula

correction, several questions arise for best practices. How should researchers utilize copula

endogeneity correction? Under what conditions can copula correction be used or not used?

Are there concerns when higher-order terms – like interactions and squared terms of en-

dogenous regressors – when using copula correction? Per Table 2, there exist appreciable

variations in the use of copula endogeneity corrections among researchers and practitioners.

These variations in copula correction methods and implementation can substantially af-

fect the performance of copula correction. Becker, Proksch, and Ringle (2021) discovered

substantial bias of Park & Gupta’s copula corrected parameter estimates if the structural

model contains the intercept, and cautioned the use of copula correction in such models

with small to moderate sample sizes. We study this issue and evaluate an alternative im-
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Table 2: Variations in Copula Endogeneity Correction Methods

Items Approach

Copula transformation of • Assigned a fixed value (Gui et al. 2023;

the largest value Becker, Proksch, and Ringle 2021)

• Assigned the same value as that of the second largest

value (Papies, Ebbes, and Heerde 2017)

• Assigned as Φ−1( n
n+1)

+ (Yang, Qian, and Xie 2022)

Endogenous regressors • Not allowed in Park and Gupta (2012); Eckert and Hohberger (2022)

with insufficient nonnormality Becker, Proksch, and Ringle (2021); Haschka (2022)

• Allowed in Yang, Qian, and Xie (2022)

Exogenous Regressors • Do not account for correlated exogenous regressors

Park and Gupta (2012); Eckert and Hohberger (2022)

Becker, Proksch, and Ringle (2021)

• Account for correlated exogenous regressors

Haschka (2022); Yang, Qian, and Xie (2022)

Higher-order Endogenous • Include corresponding copula correction terms (see Table 3)

regressors • Exclude corresponding copula correction terms (see Table 3)
+: A justification of this formula is provided in the note under Table 4.

plementation of copula transformation that has strong theoretical support and avoids such

bias. Recent research also shows that failure to account for exogenous regressors correlated

with endogenous regressors can adversely affect copula correction effectiveness in eliminating

endogeneity bias (Haschka 2022; Yang, Qian, and Xie 2022). Originally, copula correction

required sufficient nonnormality of endogenous regressors, but a recent two-stage copula

correction method relaxes this requirement, and can handle endogenous regressors that are

normally distributed or close-to-normal (Yang, Qian, and Xie 2022).

Another important and unaddressed issue arises regarding the best way to address en-

dogeneity bias for models containing higher-order terms of endogenous regressors (Table

3). Many applications in different fields are interested in estimating structural models with

higher-order terms of endogenous regressors. Polynomial regressions are employed to study

non-monotonic causal relationships, such as an inverted-U relationship, often to determine

optimal policy and managerial intervention (Aghion et al. 2005; Qian 2007). Interaction

terms are included in models to study relevant moderators of causal relationships.
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Table 3: Examples of Applications Involving Higher-order Endogenous Terms.

Study Higher-Order Endogenous Regressors CHI∗

Burmester et al. (2015) Ad Stock * Publicity Stock Yes

Blauw and Franses (2016) Mobile Phone Ownership2 Yes

Lenz, Wetzel, and Hammerschmidt (2017) Corporate Social Responsibility2 No

Lamey et al. (2018) Promotion Intensity * Store context No

Gielens et al. (2018) R& D * Retailer Power No

Yoon et al. (2018) Knowledge * Government Activity Yes

Atefi et al. (2018) Trained Percentage2 Yes

Trained Percentage *Performance Diversity

Guitart, Gonzalez, and Stremersch (2018) Advertising * Price No

Wetzel et al. (2018) Recruitment Spend * Brand Age No

Keller, Deleersnyder, and Gedenk (2019) Price Index * Price Premium No

Heitmann et al. (2020) Complexity *Segment Typicality No

Vomberg, Homburg, and Gwinner (2020) Failure Culture* Reacquisition Policies No

Guitart and Stremersch (2021) Ad Stock2, Price2, Informational2 Yes

Magnotta, Murtha, and Challagalla (2020) Salesperson Training*Salesperson Incentive No

Homburg, Vomberg, and Muehlhaeuser (2020) Direct Channel Usage*Formalization No

Liu et al. (2021) Price Discount2, order Coupon2 Yes

Krämer et al. (2022) Industrial Service Share2 Yes

CHI: copula correction terms for high-order terms of endogenous regressors included.

As shown in Table 3, there exists inconsistencies in the literature regarding how to handle

higher-order terms of endogenous regressors with the copula correction procedure. While

some studies did not include copula generated regressors for endogenous higher-order terms

(often without stating the reason), other applications argued for including these generated

regressors to control for endogeneity. For instance, Atefi et al. (2018) (p.730) note “we added

the squared term of the training percentage (TPS) to the regression model to determine

whether we could replicate the nonlinear pattern obtained in Panels A and B of Figure

1. Following the suggestions in the literature (Wooldridge 2010), we treated TPS as a

second endogenous variable and thus added a second Copula endogeneity-correction term

to the regression model”, while Yoon et al. (2018) (p.249) state, “The interaction terms of

knowledge with areas of government activities are also subject to endogeneity. Therefore,

we constructed additional variables [copula correction terms]”.

To illustrate the impact of variations in using copula correction, consider the following
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running example.

Example 2: Moderator of Price Sensitivity Of interest here is that price and a retail

store’s feature advertising likely work together to achieve interactive, synergistic effects on

sales. This can be tested by estimating the interaction term between price and feature

advertisement in a sales model, with feature advertisement as a potential moderator of

price. Blattberg and Neslin (1990) note that feature advertising “may interact with price

discounts. If the consumer is not informed that a price discount is offered, the price elasticity

is likely to be small” (p.347). This suggests a negative sign for the interaction term between

price and feature advertisement.
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Figure 2: Mean price sensitivity estimates per quartile of feature intensity.

Figure 2 presents the mean price sensitivity estimates per quartile of feature intensity for

the peanut butter category, predicted from a sales demand model with an interaction term

between price and feature, estimated using the IRI academic data for a store in New York

city. The black (white) bars are price sensitivity estimates estimated with (without) a copula

term for the interaction term. Including the copula term for the interaction term yields price

sensitivity estimates that are the same across different feature intensity (meaning lack of

interactive effect); excluding the copula term yields a greater magnitude of price sensitivity,
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and the price sensitivity estimates increase with greater feature advertisement. As shown

later, adding the copula term for the interaction term can induce bias and greatly increase

variability of parameter estimates.

METHODOLOGICAL BACKGROUND

In the section, we discuss the methodological aspects of the copula endogeneity correc-

tion. Our discussion aims to acquaint readers with the concepts and procedures of copula

correction, to address the inconsistencies in the use of copula correction, and to inform the

decision process guiding the proper use of copula correction.

Accounting for regressor-error dependence using copula

A primer on the copula joint estimation approach

We first review the copula endogeneity correction approach of Park and Gupta (2012),

to account for the dependence between endogenous regressors and the error term. Consider

the following linear structural model:

Yt = µ+ αPt + β′Wt + Et, (1)

where t = 1, · · · , T indexes time, market, or cross-sectional units; Yt is a scalar response

variable (e.g., log-transformed volume of diapers sold in week t in Example 1), Pt contains

the endogenous regressor (log-transformed price in Example 1), and Wt contains a vector of

exogenous control variables. The regression coefficient α is the structural model parameter

capturing the causal or independent effects of Pt.

A noted previously, the association between the endogenous regressor Pt and the struc-

tural error Et can lead to biased estimates of model parameters (i.e., endogeneity bias) when

using estimation methods (e.g., OLS) that ignore the regressor-error dependence. One ap-

proach to addressing this endogeneity bias is to directly model and incorporate the regressor-

error dependence into inference. Park and Gupta (2012) proposed a novel approach, hence-

forth denoted as P&G, positing a Gaussian copula (GC) to link the marginal distributions

of Pt and Et together to obtain the joint distribution of (Et, Pt). The GC model has desir-
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able properties, making it frequently used in management to robustly capture multivariate

dependence (Danaher 2007; Danaher and Smith 2011). In particular, the GC model with

nonparametric empirical marginals depends on the rank-order of raw data only, and is in-

variant to strictly monotonic transformations of variables in (Pt, Et).

Park and Gupta (2012) propose two estimation methods based on the GCmodel under the

assumption of a normal structural error, Et ∼ N(0, σ2). The first maximizes the likelihood

function derived from the joint distribution of (Et, Pt). See Park and Gupta (2012) and

recent extensions of the maximum likelihood estimation by Tran and Tsionas (2021) and

Haschka (2022) for more details. The second uses a generated regressor approach that is

straightforward to apply and has been used in the majority of applications using copula

correction (Becker, Proksch, and Ringle 2021; Eckert and Hohberger 2022; Yang, Qian, and

Xie 2022). Thus, our discussion hereafter focuses on the generated regressor approach that

estimates the following augmented regression model

Yt = µ+ αPt ++β′Wt + γP ∗
t + ϵt (2)

where P ∗
t = Φ−1(FP (Pt)); (3)

FP (·) denotes the marginal cumulative distribution function (CDF) of P ; Φ−1(·) denotes the

inverse CDF of the standard normal distribution; γ is the coefficient parameter for P ∗.

Under the GC model for (Pt, Et), the added term P ∗
t in Equation 2 captures the cor-

relation between the endogenous regressor P and the error term E, and consequently the

new error term ϵt in Equation 2 is independent of Pt given P ∗
t in the model. Based on this

result, the P&G procedure includes the copula term P ∗
t as an additional control variable in

the structural model to correct for the endogeneity of P . The computation of the generated

regressor P ∗
t = Φ−1(FP (Pt)) requires an estimate of FP (·), the unknown marginal CDF of the

endogenous regressor Pt. The popular approach is to estimate FP (·) with the empirical CDF,

F̂P (·), which assigns probability mass to the uniquely observed values of Pt in the sample

according to their sample frequencies. To account for the additional uncertainty introduced

during the estimation of FP (·), standard errors of the model estimates are obtained using
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bootstrap resampling (Park and Gupta 2012).

The P&G procedure can handle multiple endogenous regressors. For K continuous en-

dogenous regressors (P1, · · · , PK), the generated regressor approach estimates the following

augmented regression model:

Yt = µ+
K∑
k=1

Pt,kαk ++β′Wt +
K∑
k=1

P ∗
t,kγk + ϵt, (4)

where P ∗
t,k = Φ−1(F̂Pk

(Pt,k)); (5)

γk is the coefficient parameter for P ∗
k ;

∑K
k=1 P

∗
t,kγk is the linear combination of the K copula

terms {P ∗
t,k} used to control for the endogenous regressors and thus is denoted as the copula

control function (CCF).

Assumptions of the P&G procedure

For proper use of the P&G procedure, it is important to understand the assumptions

behind the method. The P&G procedure makes the following assumptions.

• Assumption 1. The structural error follows a normal distribution.

• Assumption 2. Pt and the structural error follow a Gaussian copula.

• Assumption 3. Full rank of all regressors and Cov(Wt, Et) = 0.

• Assumption 4. Pt is nonnormally-distributed.

• Assumption 5: The linear combination of P ∗
t,k,

∑K
k=1 P

∗
t,kγk, is uncorrelated with Wt.

Assumptions 1 and 2 are used in the conversion from the GC model for (P,E) to the

augmented regression models in Equations 2 and 4. However, the P&G procedure exhibits

reasonable robustness to nonnormal error distributions and alternative non-Gaussian copulas

(Park and Gupta 2012), but might not withstand gross departures from the two assump-

tions, such as highly skewed error distributions or arbitrary dependence structures (Becker,

Proksch, and Ringle 2021; Eckert and Hohberger 2022). Eckert and Hohberger (2022) also

show that the P&G method performs on par with or better than the alternative IV esti-

mation with a moderately skewed error distribution. If a highly skewed error distribution

is suspected, it is advisable to consider alternative model specifications (e.g., transforming

variables). As noted in Danaher and Smith (2011) and Eckert and Hohberger (2022), the GC
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model can capture dependence among variables in most applications. Specifically, the struc-

tural error can often be expressed as the summed term for the combined effect of unmeasured

confounders and a white noise term; in many settings the combined effect of unmeasured

confounders and the endogenous regressor jointly follow a GC model, leading to a GC model

for the endogenous regressor and the error term (i.e., Assumption 2).

Assumptions 3 to 5 are needed for ensuring the consistency of augmented OLS regres-

sion in Equations 2 and 4. Two important conditions are required for consistency of the

augmented OLS estimates: full column rank condition of the regressor matrix, and zero

correlation between regressors and the new error term ϵ (Wooldridge 2010). Assumption

3 is essential for all common econometric methods, such as OLS and IV regression. As-

sumption 4 is important and established in the literature: almost all the applications of

the P&G method checked for this condition. If P approaches the normal distribution and

consequently is close to a linear function of P ∗, the resulting collinearity between P and

P ∗ can lead to large standard errors; this renders the precise evaluation of the independent

effect of P impossible with a finite sample size (Park and Gupta 2012). In the extreme

case when P is normally distributed, the augmented OLS regression fails by violating the

full rank condition of the regressor matrix. In contrast, Assumption 5 was implicit until

recently4. When Assumption 5 is violated, the new error term ϵt in the augmented OLS

regression becomes correlated with the exogenous regressors Wt, which subsequently may

bias estimates of all model parameters. Thus, Assumptions 4 and 5 limit the applicability

of the P&G procedure. We describe in a later subsection a recent development that relaxes

Assumptions 4 and 5, the two-stage copula endogeneity correction method. Before then,

the next subsection discusses the algorithm to produce generated regressor P ∗, which can

substantially affect copula correction performance.

4As shown in Yang, Qian, and Xie (2022), this assumption is weaker than the assumption that exogenous and

endogenous regressors are uncorrelated as suggested in Haschka (2022).

18



Proper construction of nonparametric rank-based copula transformation

As noted above, almost all applications of copula endogeneity correction employ the

nonparametric rank-based copula transformation based on the empirical marginal distribu-

tions of regressors (Equation 5). Although convenient and immune to misspecifications of

these nuisance marginal distributions, the empirical copula transformation requires special

handling of mapping from ranks to latent copula data. To demonstrate how the empirical

rank-based copula transformation is constructed, consider the example of the selling price of

twenty goods from a small retailer, as shown in Table 4. The construction of the empirical

rank-based copula follows two steps, per Equation 5. First, the observations are ordered and

mapped to a ranked percentile according to the empirical cumulative distribution, F (·). For

example, the first observation (of twenty) is 1
20
, or 5% of the cumulative observations; the

second observation is 2
20
, or 10%, and so on. The second step computes the inverse normal

CDF of that ranked percentile as shown in the column “Price*”: an observation in the bot-

tom 5% (or fifth percentile) maps onto the far left end of a standard normal distribution, in

this case about -1.6449 standard deviations below 0.

One item from Table 4 is of particular importance: the last observation is technically

the 100th percentile, however, the inverse normal CDF of the 100th percentile is undefined.

This is because the probability (reflected as F ) must be between 0 and 1. The latent copula

data, Price*, for the 20th observation here reflects an adjustment, where F (·) becomes the

observation count divided by the observation count plus one (i.e., n
n+1

= 20
21
) for the reason

given in the note under Table 4. That is, we compute the copula transformation as

P ∗
t = Φ−1(FP (Pt)) =


Φ−1(Rank(Pt)/n) if Pt < max(P )

Φ−1(n/(n+ 1)) if Pt = max(P ).

(6)

Besides ensuring that the copula transformed values maintain the same rank order as the

original regressor values for any sample size5, the percentile adjustment for the maximum

5By contrast, in their example of 100 observations, Papies, Ebbes, and Heerde (2017) set the percentile for the

last observation to 0.99, which is the same as the second to last observation even though these two raw data points

do not have the same rank order.
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Table 4: Example Creation of the Rank-based Gaussian Copula

Obs Price F (Price) Price∗ Obs Price F (Price) Price∗

1 $14.00 0.05 -1.6449 11 $32.10 0.55 0.1257

2 $15.20 0.10 -1.2816 12 $33.00 0.60 0.2533

3 $16.30 0.15 -1.0364 13 $34.60 0.65 0.3853

4 $16.50 0.20 -1.0364 14 $34.90 0.70 0.3853

5 $21.00 0.25 -0.6745 15 $37.00 0.75 0.6745

6 $24.20 0.30 -0.5244 16 $42.00 0.80 0.8416

7 $27.00 0.35 -0.3853 17 $43.50 0.85 1.0364

8 $29.00 0.40 -0.2533 18 $44.10 0.90 1.2816

9 $29.50 0.45 -0.2533 19 $45.00 0.95 1.6449

10 $30.00 0.50 0.0000 20 $47.80 0.9524+ 1.6684

+: To avoid generating undefined latent copula data, the rank for the maximum value of Price is
changed from 1 to n/(n+1), which is 20/21=0.9524 for the sample size n = 20 here. A justification
of this formula is that the expected value of the maximum of a standard normal sample of size n
can be approximated by Φ−1( n−α

n+1−2α) with a recommended value for α as α = 0.375 (Royston

1982). The use of Φ−1( n
n+1) can be viewed as setting α = 0 in the formula, which is simpler to use

and leads to almost identical result as setting α = 0.375 for typical sample size (i.e., n >> α) seen
in practical studies. Φ−1(·) is the standard normal inverse cumulative distribution function.

value yields a theoretically valid maximum value of the underlying copula data, and stabilizes

the copula transformation without producing an extremely transformed value.

To demonstrate the importance of the empirical copula transformation, consider an alter-

native empirical copula construction as implemented in R package REndo (Gui et al. 2023),

which is considered in Becker, Proksch, and Ringle (2021) to set the percentile for the last

observation to a fixed value of 0.9999999:

P ∗
t,F ix = Φ−1(FP (Pt)) =


Φ−1(Rank(Pt)/n) if Pt < max(P )

Φ−1(0.9999999) = 5.1999 if Pt = max(P ),

(7)

where P ∗
Fix means a fixed percentile value is used for the largest rank. The fixed value is

chosen to be 0.9999999 (close to 1) in order to maintain the same rank order after copula

transformation unless sample size is extremely large (i.e, n >1,000,000). However, when

sample size is small or moderate, copula transformation of the maximum can differ substan-

tially from the theoretically predicted value; this becomes an outlier in the augmented OLS
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regression, which can adversely impact the performance of copula correction.

To assess the impact of empirical copula construction on the performance of copula cor-

rection, we compare the algorithm in Equation 6 with the algorithm in Equation 7 using

simulation studies6 in which parameter estimates are compared to the known true values.

Consistent with prior literature, the Monte Carlo study employed the same set up as de-

scribed in Becker, Proksch, and Ringle (2021) and in Web Appendix B. Data is simulated

from structural model Yt = µ + αPt + Et, with a Gaussian copula model between the error

term and the endogenous regressor Pt that follows a uniform distribution on (0,1). For each

simulated data, we apply both our algorithm in Equation 6 and the algorithm in Equation

7 to obtain P ∗. For both algorithms, P ∗
t is added as a generated regressor in the augmented

OLS regression to obtain the corrected estimate of α.
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Figure 3: Bias of the endogenous regressor.

Figure 3 shows the bias of α, evaluated as the difference between the mean parameter

estimate averaged over 1,000 simulated data sets and its true value, for different estimation

6The R codes for simulation studies and empirical examples are available at https://osf.io/by2ge/?view only=

27cc862a9c02446abbafd3a745722603.
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methods at sample sizes ranging from 100 to 60,000 (Figure 3 x-axis). OLS, as the curve

with circles in Figure 3, exhibits substantial bias (> 1.5) in the coefficient estimate α for

endogenous regressor P . Furthermore, this bias remains the same regardless of sample size.

Consistent with Becker, Proksch, and Ringle (2021), the P&G method using Equation 7

(the curve with cross marks in Figure 3) substantially reduces the bias in the OLS estimates,

but does not resolve the endogeneity in many situations: substantial bias remains after

copula correction in small to moderate sample sizes. The endogenous regressor’s coefficient

estimation bias only becomes negligible for sample sizes larger than 4,000. The finite sample

bias for P&G copula regression with intercept discovered in Becker, Proksch, and Ringle

(2021) is a significant problem that needs addressing, so as to ensure appropriate use of

copula correction. This is relevant because prior to Becker, Proksch, and Ringle (2021),

users of copula correction were unaware of such surprisingly severe bias concerns.

We shed light on this issue and reveal that more principled handling of nonparametric

rank-based copula transformation is crucial for the performance of copula correction. A

key finding of this study is that the substantial bias of the P&G copula correction method

for models with intercept7, discovered in Becker, Proksch, and Ringle (2021), is largely

solved by adjusting the largest rank using Equation 6 (the curve with squares in Figure

3). The algorithm in Equation 6 results in considerably improved performance of the P&G

copula correction method; the endogenous regressor’s coefficient estimate bias now becomes

negligible when sample size reaches 400 rather than 4,000. Furthermore, even sample sizes

as small as 100 exhibit a bias of about 0.15 for our algorithm, which is quite smaller than 1.0

using the algorithm in Equation 7. The theoretical reason is that constructing the empirical

copula using the fixed-value percentile for the largest rank can substantially distort the

distribution of generated regressor P ∗, resulting in suboptimal performance of the P&G

copula correction method and substantial finite sample bias. In conclusion, we recommend

7Interestingly, models without intercept are robust to the algorithms to handle largest ranked value when con-

structing empirical copula. Both algorithms (Equations 6 and 7) yield unbiased estimates for models without intercept

(results not shown here as regression models often include the intercept (Becker, Proksch, and Ringle 2021)).
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against assigning a fixed percentile value for the largest rank, instead favoring the algorithm

in Equation 6 to produce valid empirical copula construction regardless of sample size.

Handling endogenous regressors with insufficient nonnormality and correlated

exogenous regressors

The 2sCOPE procedure

Although Figure 3 showed that the algorithm in Equation 6 eliminates the majority of

bias in copula regression, noticeable bias remains for the P&G method when sample size

is small (e.g., n=100). This is not surprising because the copula correction method, like

instrumental variables and other IV-free methods, is a large sample procedure requiring

sufficient information for satisfactory performance. More importantly, regardless of the al-

gorithms used to construct empirical copula, the P&G method cannot solve the following

two problems that can limit its applicability.

First, as shown in Equation 5 and the paragraphs under Equation 5, the P&G method re-

quires sufficient nonnormality of the endogenous regressor P : a normally or close-to-normally

distributed endogenous regressor P can lead to model nonidentification or significant finite

sample bias (Becker, Proksch, and Ringle 2021; Eckert and Hohberger 2022). Second, As-

sumption 5 (uncorrelatedness between CCF and exogenous regressors) of the P&G method

may not hold when correlated exogenous regressors are included in the model. Importantly,

these two problems - bias due to insufficient regressor nonnormality and the correlation

between CCF and exogenous regressors - cannot be solved by employing the algorithm in

Equation 6 to construct the empirical copula.

To overcome these limitations of the P&G method, Yang, Qian, and Xie (2022) propose

a two-stage copula endogeneity correction (2sCOPE) method that does not require regressor

nonnormality or presume uncorrelatedness between endogenous and exogenous regressors;

the method leverages correlated exogenous regressors to sharpen structural model parameter

estimates. The 2sCOPE method includes the P&G method as a special case and reduces to
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the P&G method when no correlated exogenous regressors exist in the model.

For the augmented OLS regression in Equation 2, the generated regressor P ∗ does not use

exogenous regressors in W ; this can produce biased estimates when the generated regressor

P ∗ is correlated with the exogenous regressors W . The idea of 2sCOPE is to remove from

P ∗ the component that is correlated with the exogenous regressors, and use the remaining

cleaned part of P ∗ to control for endogeneity. Under the assumption of Gaussian copula for

the regressors (P,W ) and the error term E, we have:

P ∗
t = δ′W ∗

t + Vt. (8)

where δ contains coefficient parameters, W ∗
t is copula transformation of Wt, and Vt is the

component of P ∗
t that is unrelated to the exogenous regressors but is correlated with the

structure error term Et. With a normal error term Et, the two error terms Vt and Et follow a

bivariate normal distribution: the correlation coefficient captures the endogeneity of P . For

instance, both Et and Vt may contain an additive component corresponding to a common

omitted variable. The above model is then obtained when the omitted variable and regressors

follow a Gaussian copula model. One can then run the following two-stage augmented OLS

regression, denoted as 2sCOPE, to correct endogeneity:

1. Regress P ∗
t on W ∗

t as in Equation 8 and obtain the first-stage residual that removes from

P ∗ the component related to exogenous regressors: Vt = P ∗
t − δ̂′W ∗

t .

2. Include the first-stage residual Vt as an additional regressor in the structural model in

Equation 1 and perform the following augmented OLS regression:

Yt = µ+ αPt + β′Wt + γVt + ωt. (9)

By conditioning on the first-stage residual Vt (the component in P that causes endogeneity

but uncorrelated with exogenous regressors), the structural error Et becomes independent

of both Pt and Wt, thereby ensuring the consistency of standard estimation methods.

For K continuous endogenous regressors (P1, · · · , PK), 2sCOPE estimates the following
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augmented regression model:

Yt = µ+
K∑
k=1

Pt,kαk ++β′Wt +
K∑
k=1

Vt,kγk + ωt, (10)

where Vt,k = P ∗
t,k − δ̂′kW

∗
t ; (11)

thus,
∑K

k=1 Vt,kγk is the linear combination of the K residual terms {Vt,k} used to control for

the endogenous regressors (i.e., CCF).

This two-step procedure (2sCOPE) first regresses each P ∗
t,k on W ∗

t and then adds these

first-stage residual terms {Vt,k} to control for endogeneity. In this aspect,
∑K

k=1 Vt,kγk serves

as a control function to correct for endogeneity bias in a similar manner to the control func-

tion approach of Petrin and Train (2010). Unlike Petrin and Train (2010), 2sCOPE requires

no IVs that must satisfy the stringent condition of exclusion restriction, a much stronger

requirement than exogeneity. Furthermore, no arguments for the nature and direction of

correlation between W and P are needed: empirical association is sufficient when using

2sCOPE. These gains by 2sCOPE greatly increase the practicality of endogeneity correc-

tion.

The 2sCOPE method extends the P&G method in three important aspects. First, unlike

P&G, 2sCOPE adds the first-stage residual terms as the control function instead of P ∗. As

a result, the control function in 2sCOPE accounts for the correlated exogenous regressors.

Second, 2sCOPE does not require endogenous regressors to have a nonnormal distribution.

Even if the endogenous regressor is normally distributed, 2sCOPE can identify the model

as long as one of the correlated W is nonnormally distributed, which is feasible in many

empirical applications. Third, while exogenous regressors are not used for generating the

CCF in P&G, 2sCOPE can leverage these exogenous regressors to sharpen the structural

model estimates. If a powerful regressor is available and included in the model to generate

the CCF, 2sCOPE can eliminate the finite sample bias of the P&G method in small samples

(Yang, Qian, and Xie 2022). This demonstrates the power of leveraging relevant exogenous

regressors to increase the accuracy of the parameter estimates.

Assumptions of the 2sCOPE procedure
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The 2sCOPE method makes the following assumptions:

• Assumption 1. The structural error follows a normal distribution.

• Assumption 2. Pt, Wt and the structural error follow a Gaussian copula.

• Assumption 3. Full rank of all regressors and Cov(Wt, Et) = 0.

• Assumption 4. Either Pt or one correlated regressor in Wt is nonnormally-distributed.

As shown in Yang, Qian, and Xie (2022), 2sCOPE increases modeling robustness and reduces

dependence on model assumptions as compared with the P&G method. As a result, 2sCOPE

has increased robustness to small sample size, nonnormal error distributions, and violations

of Gaussian copula dependence. Assumption 3 is not specific to 2sCOPE, but a standard

assumption invoked in other commonly used econometric method, such as OLS, two-stage

least squares estimation using IVs, and the P&G method. Assumption 3 should be evaluated

when specifying the econometric model before deciding on particular estimation strategies.

Finally, Assumption 4 is less stringent than P&G’s Assumption 4 (nonnormal distribution

of P ), while 2sCOPE eliminates Assumption 5 in P&G.

Optimal Copula Estimation of Endogenous Moderating and Nonlinear Effects

Many practical applications in different fields are interested in estimating structural mod-

els with higher-order terms of endogenous regressors to gain deeper understanding of causal

mechanisms. However, considerable variability exists in how to handle these higher-order

endogenous regressors. In this section we consider the best approach to handling these

higher-order terms when using copula correction.

Theoretical results on optimality

Consider the following general structural model containing higher-order terms of endoge-

nous regressors:

Yt = µ+ α′
1Pt + α′

2f1(Pt) + α′
3f2(Pt,Wt) + β′Wt + Et, (12)

where Pt is a vector of K continuous and endogenous regressors (i.e., associated with the

error term Et), and Wt is a vector of exogenous regressors. The structural model in Equation
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12 expands the model in Equation 1 to include higher-order endogenous terms, namely f1(Pt)

and f2(Pt,Wt). Below are examples of these higher-order terms:

• Polynomial functions of a scalar Pt: α
′
2f1(Pt) = α2P

2
t

• Interaction of two endogenous regressors Pt = (P1t, P2t): α
′
2f1(Pt) = α2P1tP2t

• Interaction of endogenous and exogenous regressors: α′
3(Pt,Wt) = α3PtWt

These higher-order terms of endogenous regressors are added into the structural model to cap-

ture non-additive interactive effects and more complex nonlinear effects (such as an inverted-

U relationship captured by the squared term α2P
2
t in the above). For instance, our Example

2 is interested in estimating the synergistic interaction effect between price and feature ad-

vertisement. Because these higher-order terms of endogenous regressors are also endogenous

and correlated with the structural error, questions arise regarding the optimal approach to

handling these higher-order terms. Since both f1(Pt) and f2(Pt,Wt) are endogenous, it is

tempting to control their endogeneity by adding separate copula correction terms for them.

However, the point of not needing these copula correction terms for these higher-order terms

is clearly shown in the following augmented OLS regression, including only copula correction

terms for the first-order endogenous terms (i.e., main effect):

Yt = µ+ α′
1Pt + α′

2f1(Pt) + α′
3f2(Pt,Wt) + β′Wt + γ′Ct,main + ϵt, (13)

where Ct,main = (Ct,1, · · · , Ct,K) contains copula correction terms for main terms Pt only,

and Ct,k = Vt,k, k = 1, · · ·K, are the first-stage residual terms defined in Equation 11 when

2sCOPE is used, and reduce to P ∗
t,k, k = 1, . . . , K, in Equation 5 when P&G is used (e.g., no

correlated W in the model). Because the new error term ϵ is independent of P and W under

the GC model, ϵ is also independent of f1(P ) and f2(P,W ), both of which are deterministic

functions of P and W . Thus, once the copula correction terms for main effects Cmain are

included as control variables into the structural model of Equation 13, the new error term ϵ

is already independent of (and uncorrelated with) f1(P ) and f2(P,W ), so extra correction

terms for f1(P ) and f2(P,W ) are not needed. This simplicity of handling higher-order

endogenous regressors is a merit of the copula correction approach.
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Although it is unnecessary to add the copula correction terms for higher-order terms,

i.e., Cf1(Pt) and Cf2(Pt,Wt), a further question is what will happen if the additional copula

generated regressors for the higher-order terms is included. Will doing this lead to better or

worse performance of the copula correction?

The issue with adding unnecessary regressors Cf1(Pt) and Cf2(Pt,Wt) is the significant

collinearity between these higher-order copula terms and their co-varying constituents (P ,

f1(P ), f2(P,W ), and Cmain), making it harder to distinguish the independent effects of the

first-order and higher-order terms involving the endogenous regressors. As a result, this

substantially decreases precision of the regression coefficient estimates, and makes copula

correction methods perform worse than otherwise, shown formally by Theorem 1 in Web

Appendix C.

Empirical Assessment

In addition to the above theoretical results, we present empirical evidences using simu-

lated data to demonstrate (1) that there is no need to add correction terms for higher-order

terms of endogenous regressors to control for their endogeneity, and more importantly, (2)

harmful effects occur if correction terms for higher-order terms are added to control for their

endogeneity. These effects include potential finite sample bias and inflated variability of

structural model parameter estimates, as predicted by the theoretical results in the previous

section. The simulations further highlight the magnitude of such harmful effects.

Case I: Interaction of endogenous regressors Data were simulated from the following model

(subscript t omitted for simplicity):

Y = µ+ α1P1 + α2P2 + α3P1 ∗ P2 + E, (14)

where the endogenous regressors (P1, P2) and the error term E were generated from a Gaus-

sian copula (Web Appendix D). For each simulated data set, the following three estimation
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procedures were applied regressing Y on the following sets of regressors:

OLS: P1, P2

Copula-Main: P1, P2, CP1 , CP2

Copula-All: P1, P2, CP1 , CP2 , CP1∗P2

where CP1 = Φ−1(F̂P1(P1)), CP2 = Φ−1(F̂P2(P2)), and CP1∗P2 = Φ−1(F̂P1∗P2(P1 ∗ P2)) are

the copula correction terms; Copula-Main indicates including copula correction terms for

the main effect only, while Copula-All signifies including copula correction for all terms

involving endogenous regressors, including the interaction term.

Table 5: Results from Case I: Interaction of Endogenous Regressors.

N Method µ(= 0) α1(= 1) α2(= −1) α3(= 1) σ(= 1) D-error

500 OLS -7.624 2.281 -1.546 1.432 0.297

(0.290) (0.058) (0.312) (0.066) (0.019) —

Copula-Main -0.119 1.019 -1.104 1.024 0.99

(0.899) (0.179) (0.254) (0.047) (0.076) 0.0117

Copula-All 0.176 0.974 -0.702 0.923 1.051

(0.902) (0.178) (0.331) (0.077) (0.086) 0.0165

5,000 OLS -7.623 2.281 -1.549 1.432 0.298

(0.092) (0.018) (0.099) (0.021) (0.006) —

Copula-Main -0.012 1.002 -1.017 1.003 1.000

(0.291) (0.058) (0.080) (0.015) (0.024) 0.0011

Copula-All 0.202 0.968 -0.713 0.929 1.044

(0.318) (0.061) (0.240) (0.058) (0.041) 0.0031

Table presents the averages of the estimates and standard errors (in parenthesis) over the
repeated samples. Bold numbers highlight estimates with bias of at least 0.05. Underlined
numbers highlight where the standard errors of the Copula-All estimates are inflated by at least
50% compared with the corresponding ones from Copula-Main. Results for sample size=200 and
50,000 are in Table W1 in Web Appendix D.

Across simulations, sample sizes (N) of 200, 500, 5,000, and 50,000 are examined. For

each sample size N, we generate 5,000 data sets as replicates to systematically evaluate aver-

age performance (estimation bias and variability) for the three estimation methods. For each

parameter, Table 5 reports the average of the estimates and standard errors (in parenthesis)

computed across replicates for sample size=500 and 5,000. Results for sample size=200 and
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50,000 are reported in Table W1 (Web Appendix D). As expected, OLS estimates have signif-

icant bias for all model parameters at all sample sizes. For example, even for a large sample

size of N=5,000, the OLS regression (without any correction terms) yields large bias for the

regression parameter estimates (α̂1 : 2.281 [0.018]; α̂2 : −1.549 [0.099]; α̂3 : 1.432 [0.021])

and the error standard deviation (σ̂ : 0.298 [0.006]). Copula-Main corrects for the en-

dogenous bias (α̂1 : 1.002 [0.058]; α̂2 : −1.017 [0.080]; α̂3 : 1.003 [0.015]), demonstrating

that there is no need to additionally include the copula correction term, CP1∗P2 . Further-

more, Copula-Main performs substantially better in both estimation bias and variability

for all parameter estimates than Copula-All which includes CP1∗P2 . In fact, Copula-All

yields significantly biased parameter estimates, even at the large sample size of N=5,000

(α̂0 : 0.202 [0.318]; α̂2 : −0.713 [0.240]; α̂3 : 0.929 [0.058]); bias decreases as sample size

increases, but remains apparent even for a large sample size of 50,000 (Table W1 in Web

Appendix D).

We further compare the efficiency of Copula-All and Copula-Main using the D-error

measure (Arora and Huber 2001; Qian and Xie 2022). The D-error measure is defined as

|Σ|1/K where Σ is the variance-covariance matrix of the regression coefficient estimates, and

K is the number of explanatory variables in the structural regression model. A larger D-

error value means lower efficiency, with a ∆% increase in D-error corresponding to a ∆%

larger sample size required to achieve the same level of estimation precision. As shown in

Table 5, the D-error inflation for Copula-All is about 3-times at N=5,000. In this case,

Copula-All requires about 3-times the sample size in order to achieve approximately the

same accuracy for estimating α1, α2 and α3 jointly as Copula-Main. The variance inflation

for the Copula-All estimate of α3, the coefficient for the interaction term, is much larger

and equals (0.058
0.015

)2 ≈ 15 when N=5,000. This means 15-times the sample size is required for

Copula-All to achieve the same estimation accuracy of the interaction term as Copula-Main.

Case II and III We also consider the cases of an interaction between an endogenous

regressor and an exogenous regressor (Case II in Web Appendix E) and a square term of
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an endogenous regressor (Case III in Web Appendix F). The overall conclusion remains

the same as that from Case I, in that Copula-Main outperforms Copula-All for correcting

the endogeneity bias of OLS estimates. Compared with Copula-Main, Copula-All yields

substantially less estimate precision (up to 4-times larger standard errors) and significant

finite sample bias (up to 30% bias).
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Figure 4: Statistical Power to detect the squared term P 2 with the copula squared term
(Copula-All) and without the copula squared term (Copula-Main).

Such a large magnitude of variance inflation has important inferential consequences and

managerial implications. Figure 4 shows substantial loss of power of Copula-All to detect the

presence of the squared term (P 2) for sample size up to 5,000. For example, when sample size

is 1,000, the statistical power to detect the squared effect is about 8-fold for Copula-Main

(≈ 80% power) of that for Copula-All (≈ 10% power).

Mean-centering regressors Lastly, we examine whether mean-centering resolve the under-

performance of Copula-All. One may suspect that mean-centering might reduce the multi-

collinearity issue and improve the performance of Copula-All. However, as shown in Web

31



Appendix G, mean-centering regressors does not overturn the sub-optimal performance of

adding the unnecessary copula correction for higher-order terms, demonstrating again that

these unnecessary copula correction terms should be omitted from empirical models.

GUIDANCE FOR PRACTICAL USE

As described in the preceding sections, considerable advances have been made since Park

and Gupta’s 2012 study with more flexible and general copula correction methods becoming

available. We also show that variations in implementing copula correction have substantial

impacts on the effectiveness to correct endogeneity. Informed by these findings and advances,

this section describes a procedure guiding practical usage of copula correction methods.

Figure 5 presents a step-by-step flowchart for the steps and checkpoints in using copula

correction. When conditions are met, the P&G method can be followed, but more recent

research relaxes these conditions and presents the path to perform copula corrections when

these conditions are not met. Before entering the flowchart, one should ensure the struc-

tural model is appropriately specified and theoretically supported, with pertinent exogenous

control variables included in W and the regressor matrix being full rank. Revise model spec-

ifications (e.g., transform variables) if the error distribution is suspected to be highly skewed,

and assess the plausibility of GC dependence in the focal application. As shown in the prior

section, copula correction only needs to include CCFs corresponding to the first-order terms

Pmain of endogenous regressors, even when the structural model contains higher-order terms

of endogenous regressors. Thus, the flowchart in Figure 5 only needs to consider Pmain.

Furthermore, when the structural model includes an intercept, the copula transformation

should use the algorithm in Equation 6 to avoid the estimation bias discovered in Becker,

Proksch, and Ringle (2021).

Step 1. This step checks whether the endogenous regressor Pmain has sufficient sup-

port. The copula procedures can handle continuous and discrete endogenous regressors with

sufficient support (> 4 ordinal levels), but should not be applied for a binary endogenous
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regressor or nominal endogenous regressors whose levels have no natural ordering (Park and

Gupta 2012; Eckert and Hohberger 2022; Haschka 2022).

Figure 5: Flowchart for Copula Procedure.
Note: Pmain denotes the first-order terms of endogenous regressors. W denotes exogenous control variables.
a: For multiple endogenous regressors (Pmain,1, · · · , Pmain,K), a less stringent condition for using P&G is

no correlation between
∑K

k=1 P
∗
main,kγk (the linear combination of copula transformations of all the

first-order endogenous regressor terms) and each W . Use the stabilized copula transformation formula in
Equation 6 especially when the model includes the intercept.
b: W is sufficiently nonnormal when normality test p < 0.001 and is sufficiently relevant to Pmain when F

statistic > 10.

Step 2. This step checks whether Pmain is normally distributed or not. Previously, if

Pmain is normally distributed, Gaussian copulas could not be used (Park and Gupta 2012;

Becker, Proksch, and Ringle 2021; Eckert and Hohberger 2022; Haschka 2022) because the

model is unidentified. However, the 2sCOPE procedure shows even if Pmain is normally

distributed, it can still be a candidate for copula correction through the 2sCOPE procedure.

Yet, this route follows a different path, as seen in Figure 5 and discussed more below in

Step 3.b. The literature notes that more powerful tests for normality, such as the Shapiro-

Wilk test or Anderson-Darling test, might not fully rule out nonidentification, because these

tests can detect small departures from normality that are insufficient for copula correction

(Becker, Proksch, and Ringle 2021; Eckert and Hohberger 2022). The Kolmogorov-Smirnov
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(KS) test is relatively conservative among the most commonly used normality tests; a p-

value less than 0.05 from the KS normality test has been shown to perform well for ruling

out finite sample bias due to insufficient regressor nonnormality (Yang, Qian, and Xie 2022).

The KS test compares the focal empirical CDF distribution - a quantity linked to copula

transformation - with the reference CDF, and is an overall and comprehensive measure to

quantify nonnormality.

Step 3. This step marks one of the biggest shifts in copula usage since Park and Gupta

(2012), consisting of two disjoint steps (3.a and 3.b), depending on the outcome of Step 2.

3.a. If the endogenous regressor Pmain is found to have sufficient nonnormality in Step

2 above, Step 3 will check an additional condition to determine if the P&G method or the

2sCOPE method should be used. As noted in the preceding section, the P&G method re-

quires the condition of its control function (i.e.,
∑K

k=1 P
∗
main,kγk as the linear combination of

the copula transformations of endogenous regressors when Pmain contains K endogenous re-

gressors) be uncorrelated with exogenous regressors. The correlation between P&G’s control

function and each exogenous regressor can be checked using Fisher’s Z test for correlation.

When this condition is met, the P&G method is preferred to 2sCOPE because a simpler

and valid model outperforms a more general method. Otherwise, one should use 2sCOPE

to handle correlated exogenous regressors. Since Pmain already has sufficient nonnormality,

there is no need for correlated exogenous regressors to be nonnormally distributed.

3.b. If the endogenous regressor Pmain is found to have insufficient nonnormality in

Step 2, then one cannot use the P&G method, but can use 2sCOPE to leverage correlated

exogenous regressors to achieve model identification. In order to compensate for the lack of

nonnormality of endogenous regressor P , at least one exogenous regressor W needs to satisfy

the following two conditions: (1) sufficient nonnormality, and (2) sufficient association with

the endogenous regressor P . A conservative rule of thumb for such a W is the p-value from

the KS test on W being < 0.001 and a strong association with P (F statistic for the effect of

W ∗ on P ∗
main > 10 in the first-stage regression). When these conditions are met, even when
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Pmain is normally distributed, 2sCOPE is expected to yield estimates with negligible bias.

When these conditions are not met, Yang, Qian, and Xie (2022) suggest gauging potential

bias of 2sCOPE for data at hand via a bootstrap procedure described there, and using

2sCOPE only if the potential bias is small.

As seen above, only one of 3.a or 3.b is taken in Step 3. Importantly, if P already has

sufficient nonnormality that leads to 3.a, there is no need to do 3.b to check if any W has

sufficient nonnormality and is associated with P . These conditions are only checked if we

need to find a usefulW to compensate for the lack of nonnormality of P . In 3.b, 2sCOPE uses

W to tease out an exogenous and nonnormally distributed part of the endogenous regressor

for model identification. A good starting place to find such W is in the exogenous control

variables pre-existing in the OLS or IV regressions. Unlike IVs, these exogenous control

variables (e.g., exogenous demand shocks) do not need to satisfy the stringent exclusion

restriction condition. That is, these W s do not have to be excluded from the structural

model (e.g., Equation 1), and can affect the outcome directly and not through the endogenous

regressors. Such W s are more readily available than IVs, and because empirical association

between the candidate W and P is sufficient, researchers using copula correction do not need

to argue for the causal pathways between W and P like in the case of IVs.

Step 4— The final step is to apply the appropriate copula procedure by including in the

structural model the generated regressor, which is P ∗
main if the P&G method is used or the

residual term Vmain from the first-stage regression if 2sCOPE is used. If the generated regres-

sor (i.e., copula correction term) is not statistically significant, this suggests the endogenous

regressor Pmain is not sufficiently correlated with the error term, and endogeneity is unlikely.

Thus, non-significant generated regressors should be dropped and the model re-estimated.

Marketing studies have dropped copula correction terms at the p < .10 level (e.g., Datta

et al. 2022), suggesting even marginally significant copula correction terms are still worth

retaining. If none of the generated regressors is significant, then the model can be estimated

in a more traditional manner (i.e., OLS).
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COPULA IMPLEMENTATION EXAMPLES

In this section, we illustrate use of the flowchart to guide the implementation of copula

correction via two examples using weekly store sales data from the IRI Academic data set

(Bronnenberg, Kruger, and Mela 2008). To correct for price endogeneity, the first example

examines the main effect of price, while the second example examines higher-order moder-

ating effects captured by the interaction between price and store feature (i.e., weekly store

flyer promoting products).

Example 1: Main Effects Application of Copula Correction

Returning to our running Example 1, the outcome of interest is the weekly sale volume

in the diaper category for one focal store in the Buffalo, NY market in the years 2002-2006,

where volume is measured in diaper counts. Price is defined on an equitable volume across

UPCs, since pack sizes vary in diapers per pack. IRI additionally collected information on

whether UPCs were featured in the store’s weekly flyer that week. Category price and feature

are evaluated as market-share weighted averages of UPC-level price and feature, respectively.

In this instance, price was treated as endogenous because of unobserved variables (e.g.,

retailer pricing decisions, number of shelf facings) that, when omitted from a model, become

part of the structural error. For brevity, we use “Price” and “Volume” hereafter to refer

to the log-transformations of category price and sale volume, respectively. The expected

impacts of price and feature advertising appear in the following model:

Volumet = µ+ αPt + β′Wt + Et. (15)

In the model, Pt is the endogenous regressor as log-transformed price. Wt is a vector of

control variables including feature, week, and binary variables for quarters 2, 3, and 4.

We treat feature as exogenous because decisions to promote items in the store flyer are

made on quarterly basis and require weeks of implementation times, and thus are unlikely

to be correlated with weekly unobservables (Chintagunta 2002; Sriram, Balachander, and
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Figure 6: Distributions of Price and Feature in Example 1.

Kalwani 2007). The week variable is included as a control variable to account for a small

but significant trend in price increases over time. Before we present the results, below we

walk through the steps of flowchart in Figure 5.

Step 1 – is Pmain continuous (or >4 ordinal categories)? The endogenous regressor, Price,

is a continuous measure, ranging from $0.140 to $0.262 per diaper, with a mean of $0.221,

median of $0.224, and standard deviation of $0.018.

Step 2 – is Pmain normally distributed? Figure 6 shows somewhat skewness to the left for

the price variable. However, the skewness is not strong enough to reject the the KS test for

normality (D = 0.08, p = 0.06) at the 0.05 level of significance. Thus, we take a conservative

stance and conclude insufficient nonnormality of the price. This means that the endogenous

regressor may not have sufficient nonnormality needed for the P&G method to perform well

for data at hand. One solution is to leverage related exogenous regressors with sufficient

nonnormality via the 2sCOPE method as described next in Step 3.b.

Step 3.b – Is at least one W sufficiently nonnormal and correlated with Pmain? The

first-stage regression shows only one exogenous regressor is sufficiently correlated with the

price (F -stat > 10): feature (F = 16.8). The regressor, feature, is highly skewed (Figure 6)

and nonnormally distributed based on the KS test (D = 0.14, p < 0.0001).
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Step 4 – Perform 2sCOPE estimation. The above steps show that conditions have been

verified such that the 2sCOPE method can be used to handle the price endogeneity. The

standard errors are obtained using 500 bootstrap samples.

The estimation results appear in Table 6, which compares 2sCOPE to OLS and two-stage

least-squares (2SLS), an instrumental variable approach, where the diaper price of another

store in the same market was used as an IV. Prices are correlated for both stores, with

the belief that wholesale prices are similar for products sold by the two stores (relevance),

but uncaptured product characteristics (including retailer decisions like shelf facings and

shelf location) are unlikely related to wholesale prices (exclusion restriction). The 2sCOPE

estimation results in Table 6 show that the copula correction term Cprice (i.e., the first-stage

residual) is significant (Est. = .077, SD = .038, p < .05), indicating the presence of price

endogeneity, so we retain the CCF in the model to control for price endogeneity.

Table 6: Estimation Results for Example 1

Parameters OLS 2SLS 2sCOPE

Intercept 6.005 (0.205)∗ ∗ ∗ 4.371 (0.978)∗ ∗ ∗ 4.763 (0.695)∗ ∗ ∗
Price -1.367 (0.137)∗ ∗ ∗ -2.470 (0.661)∗ ∗ ∗ -2.205 (0.465)∗ ∗ ∗
Feature 0.298 (0.095)∗∗ 0.059 (0.178) 0.124 (0.134)

Week -0.002 (0.000)∗ ∗ ∗ -0.002 (0.000)∗ ∗ ∗ -0.002 (0.000)∗ ∗ ∗
Q2 -0.019 (0.031) -0.014 (0.035) -0.018 (0.033)

Q3 -0.018 (0.032) -0.034 (0.036) -0.029 (0.034)

Q4 -0.018 (0032) -0.061 (0.041) -0.044 (0.037)

Cprice 0.077 (0.038)∗∗
ρ 0.366 (0.162)∗∗
Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < .10, ** is p <

.05, *** is p < .01

The results show that while price has the smallest absolute effect in the OLS model (Est.

= -1.367, SE = .137, p < .01), the effect is greatest in the 2SLS model (Est. = -2.470, SE =

.661, p < .01); the 2sCOPE price estimate falls in between and is much closer to the 2SLS

price estimate (Est. = -2.205, SE = .465, p < .01). Compared to 2SLS using IV, the 2sCOPE

results are not unlike that of 2SLS, within one SD of the 2SLS price estimates. The 2SLS
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price estimate differs somewhat from the 2sCOPE price estimate by 12.0%. Although the

correlation in prices between the two stores is significant and passes the weak instruments

test (F = 13.89, p < .01), the correlation is not especially strong (r = 0.218). Thus, the

difference between 2sCOPE and 2SLS seen here could be because the other store’s price as an

IV is not particularly strong, and a strong IV is not always readily available. The 2sCOPE

shows that price is positively correlated with the error term (Est. = 0.366, SE = 0.162,

p <0.05, Table 6), indicating the presence of price endogeneity. This finding is consistent

with the result of the Wu-Hausman test (H = 3.56, p < .07) from 2SLS, which also suggests

endogeneity was likely present. Overall, the comparison with 2sCOPE shows that without

endogeneity correction, managers would severely under-estimate consumer price elasticity

based on the OLS findings for this store, by 38.0%.

Example 2: Copula estimation of endogenous interactions

While Example 1 detailed how to correct for price endogeneity, we now examine what

to do when an endogenous regressor has a higher-order effect, such as a squared term or

interaction (moderation) with another variable. For brevity, we speak to these higher-order

effects simply as interactions. The “METHODOLOGICAL BACKGROUND” section pro-

vides studies based on simulated data showing that including a copula for the interaction

term may induce bias and inflated estimation variability, and that the best course is to only

include copula correction terms for the main effects.

To show how copula correction is applied with interactions of endogenous regressors and

examine the adverse effects of including high-order copula correction terms in an empirical

application, we extend the sales response model in Equation 15 to include an interaction

term (Pt ∗ Ft) between price and feature as follows:

Volumet = µ+ α ∗ Pt + β′Wt + ϕPt ∗ Ft + Et, (16)

where Pt and Ft are category price and feature, respectively, and Wt includes Ft, week,

and binary variables for quarters 2, 3, and 4. We use the IRI academic data set for a new
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store and product category, a New York City store and its peanut butter sales for the years

2001-2003 (156 weeks), allowing for price and feature to work together as an interaction.

Such interactions are common to both academics and managers, as marketing efforts often

work together. Of interest here is that price and feature advertising likely work together

to achieve interactive, synergistic effects on sales. This can be tested by estimating the

interaction term between price and feature advertisement in the above sales model, with

feature advertisement as a potential moderator of price. Like Example 1, we follow the same

steps in Figure 5 to guide the selection of the appropriate copula method.
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Figure 7: Price Distribution in Example 2.

Step 1 – is Pmain continuous (or >4 ordinal categories)? Price is a continuous measure

here, ranging from $0.957 to $1.963 per pound, with a mean of $1.714, median of $1.798,

and standard deviation of $0.195.

Step 2 – is Pmain normally distributed? Unlike Example 1, the price variable in Example

2 is highly skewed (Figure 7) and rejects the KS test for normality (D = 0.18, p < 0.001) at

the 0.05 level of significance. The flowchart in Figure 5 show that what is needed is either

Pmain or one related W is nonnormally distributed. There is no need for both Pmain and W

to be nonnormally distributed. This means that when the endogenous regressor already has

sufficient nonnormality, we do not need to check any exogenous regressor W for sufficient

nonnormality and sufficient association with P , like what was needed in Figure 6 of Example
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1. To determine if we should use P&G or 2sCOPE, we next check the uncorrelatedness

between the linear combination of copula transformations of Pmain with each W . When

Pmain is a scalar, this condition reduces to check the uncorrelatedness between P ∗
main and

each W .

Step 3.a – is P ∗
main correlated with W? The copula transformation of endogenous regressor

price, P ∗, is correlated with the following exogenous regressors at the 0.10 level of significance:

week (r = .21, p < .05), feature (r = -.76, p < .01), Q3 (r = -.16, p < .06), and Q4 (r =

.16, p < .04). This indicates we should use 2sCOPE for endogeneity correction.

Step 4 – Perform 2sCOPE estimation. Until now, the steps had been met to indicate

price was a candidate to use the 2sCOPE method. Table 7 presents the 2sCOPE result that

includes the copula correction term (i.e., the first-stage residual) for price only. The results

show the price copula correction term (i.e., the first-stage residual) is significant (Est. =

.069, SE = .033, p < .05), indicating the presence of endogeneity. Like Example 1, we also

compare the results to OLS and 2SLS, as well as to when a copula correction term (the

first-stage residual) for the interaction term is also included (2sCOPE W/Int).

Table 7: Estimation Results for Example 2

Parameters OLS 2SLS 2sCOPE 2sCOPE W/Int

Intercept 6.038 (0.165)∗ ∗ ∗ 6.688 (0.356)∗ ∗ ∗ 6.544 (0.346)∗ ∗ ∗ 6.344 (0.394) ***

Price -0.453 (0.274)∗ ∗ ∗ -1.554 (0.606)∗ ∗ ∗ -1.314 (0.580)** -0.999 (0.665)

Feature 1.513 (0.234)∗∗ 0.646 (0.487) 0.837 (0.491)* 0.619 (0.568)

Price*Feature -2.125 (0.379)∗∗ -0.950 (0.694) -1.176 (0.671)* 0.148 (0.999)

Week 0.001 (0.000)∗ ∗ ∗ 0.001 (0.000)∗ ∗ ∗ 0.001 (0.000)*** 0.001 (0.000)***

Q2 -0.028 (0.034) -0.020 (0.036) -0.022 (0.034) -0.038 (0.041)

Q3 -0.083 (0.035) -0.099 (0.038) -0.096 (0.034)*** -0.089 (0.047)*

Q4 -0.090 (0.036) -0.081 (0.038) -0.080 (0.034)*** -0.066 (0.040)*

Cprice 0.069 (0.033)** 0.058 (0.038)

CPrice∗Feature -0.168 (0.088)

ρ1 0.185 (0.096)* 0.128 (0.101)

ρ2 -0.456 (0.218)**

Note: Table presents estimates and bootstrapped standard errors in the parentheses. * is p < .10, ** is p <

.05, *** is p < .01
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Similar to Example 1, price has the smallest absolute effect in the OLS model (Est. =

-.453, SE = .274, p < .10) and the greatest absolute effect in the 2SLS model (Est. =

-1.554, SE = .606, p < .05). The 2sCOPE estimate falls in between, closer to 2SLS in both

effect and SE (Est. = -1.314, SE = .580, p < .10). The closeness to 2SLS is more expected

here since the usage of another store’s price is a strong instrument (r = .90, p < .01), as

2SLS rejects the test for weak instrument (F = 21.567, p < .01); the Wu-Hausman test

also suggests endogeneity (W= 4.863, p < .03). Without correcting for endogeneity in this

example, managers would under-estimate the price elasticity by 65.5% in OLS.

Importantly, the 2sCOPE results point to a contrast with 2sCOPE when a copula cor-

rection term CPrice∗Feature is included for the interaction between price and feature. Here,

the price estimate is substantially smaller and becomes insignificant (Est. = -.999, SE =

.665, p > .10 under column “2sCOPE W/Int” in Table 7), which can lead the academic or

practitioner to incorrectly conclude price had no significant effect on sales. A more striking

difference regards the estimate of the interaction term Price*Feature. The Price*Feature

estimates from 2SLS and 2sCOPE (excluding the copula interaction term) are both negative

and close: the 2SLS Est. = -0.950 (SE = 0.694, p > .10) and 2sCOPE Est. = -1.176 (SE

= 0.671, p < .10). By contrast, 2sCOPE including the copula term for Price*Feature yields

an interaction estimate with the opposite sign and larger SE (Est. = 0.148, SE = 0.999, p

> 0.10). These results mark an important point: when adding copula correction terms, only

copula terms for the main effects should be included, and no copula terms for higher-order

terms should be included. Adding the unnecessary higher-order copula terms can lead to

substantially varied and biased estimates, including estimates with the opposite sign.

Managerial and Academic Implications

The two examples highlight both how copulas can correct for endogeneity to remove bias

in estimation, as well as how copulas should be correctly specified in models with interactions.

Example 1 showed that without the copula, the OLS estimate for price elasticity was severely
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under-estimated (Est. = -1.367) compared to both 2SLS (Est. = -2.470) and 2sCOPE (Est.

= -2.205). The result was price elasticity in OLS was 38% lower than 2sCOPE. We also

noted that the instrument was significant but not particularly strong, attributing to the

difference between 2SLS and 2sCOPE estimates.

Controlling for endogeneity in price elasticity estimates can have important managerial

implications. Price elasticity estimates are often a crucial piece of information for managers

to set the optimal pricing that maximizes profit. Let the profit function p(Price) = V ∗

(Price−Cost), where V is the sale volume and cost is the marginal cost. The maximum profit

is then the value of Price that satisfies the condition ∂ ln p(Price)
∂Price

= 0. Following the Amoroso-

Robinson relation, the profit-maximizing price is Priceoptim = α
1+α

Cost, where α is the price

elasticity. In Example 1, we find the optimal pricing is Priceols =
−1.367

−1.367+1
Cost = 3.72∗Cost

if the OLS price elasticity estimate is used, and Pricecop = −2.205
−2.205+1

Cost = 1.83 ∗ Cost if

the 2sCOPE price elasticity estimate is used. Because of the price endogeneity problem

associated with the scanner panel data, the biased OLS estimate underestimates the size of

price elasticity, meaning that OLS considers consumers less price sensitive than they actually

are. Thus, the manager will set the price more aggressively; in Example 1, using the OLS

price elasticity estimate means the manager will set price at approximately 100% higher than

the actual optimal price.

This considerable difference in optimal pricing based on the OLS and 2sCOPE price elas-

ticity estimates results in a substantial profit difference as well. It can be shown that the prof-

its achieved at the different prices has the following relationship: ln pcop
pols

= α ln[Pricecop/Priceols]+

ln[(Pricecop−Cost)/(Priceols−Cost)], where pcop and pols refer to the profit achieved when

using the 2sCOPE and OLS price elasticity estimates, respectively. From Example 1, the

calculation shows pcop
pols

= 1.46, which corresponds to a loss of 31% in profit when using the in-

correct OLS price elasticity estimate, compared to using the correct 2sCOPE price elasticity

estimate (Figure 1).

Example 2 presented the case of the interaction between an endogenous and exogenous
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regressor. Like Example 1, price elasticity in the absence of feature was substantially under-

estimated in OLS (Est. = -0.453) than 2SLS (Est. = -1.554) or 2sCOPE (-1.314). The OLS

price elasticity estimate was nearly a third that of 2sCOPE.

Furthermore, 2sCOPE including a copula term for the interaction term biased the price

elasticity estimate downwards (Est. = -0.999), about 30% lower as compared with the

estimate of -1.314 from 2sCOPE excluding the copula term for the interaction term. This bias

in the price elasticity estimate becomes even larger as feature intensity increases. Including

the copula term for the endogenous interaction term —Price*Feature— yields a severely

biased interaction effect estimate; while 2sCOPE without this unnecessary copula term had

a negative estimate of -1.176, 2sCOPE including this term (2sCOPE W/Int) produced a

positive estimate of 0.148 (Table 7). As shown in Figure 2, including the unnecessary copula

term for Price*Feature yields price sensitivity estimates that are the same across different

feature intensity (meaning lack of interactive effect); excluding the copula term yields much

greater magnitude of price sensitivity that increases with greater feature advertisement. Such

drastic differences in price elasticity estimates can have substantive managerial implications,

including the optimal price setting and profit maximization, as demonstrated in Example

1. Thus, when the endogenous regressor has a higher-order term (e.g., a squared term or

interaction), no copula for the interaction term should be included – only the copulas for the

main effects should be included to avoid biasing the estimates.

CONCLUSION

Estimation bias due to the presence of endogenous regressors is a prevalent and important

issue to address in business and many other fields. The instrument-free copula correction

approach has been increasingly used to address endogeneity bias given its practical advan-

tages and feasible implementation. Yet, like all other causal estimation procedures designed

for use with nonexperimental data, the validity of the copula correction requires correct im-

plementation of the method and demands boundary conditions and data requirements to be
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met in its empirical application.

This study contributes to the marketing research field in three areas. One, we provide a

review for how the copula procedure has been used in marketing to correct for endogeneity,

across substantive areas, and how it has been applied (and misapplied). Two, we build on

recent advances to provide an updated best practices “cookbook” for both managers and

academics to follow in implementing the copula procedure. Three, we speak to implemen-

tation variations (such as including an intercept and higher-order effects of moderation),

showing theoretically and with real-world data best practices for copula correction usage.

We demonstrate that existing variations in the implementation of copula correction have

substantial impacts on its performance. Our discussions on the methodological aspects of

the copula method informs optimal and theoretically sound implementation for copula cor-

rection. We present a theoretically sound way of constructing copula transformation that

avoids potential finite sample bias problem and substantially improves the performance of

copula correction. We show that excluding the copula terms for higher order endogenous

regressors is optimal and substantially outperforms including these copula terms. A theo-

retical proof shows that copula terms for higher-order effects are not only unnecessary, but

also substantially inflate estimation variability: the higher the correlations between the extra

higher-order copula term and other regressors, the greater the estimation variance inflation.

Our empirical evaluation shows consequential adverse effects of taking alternative subopti-

mal approaches: larger standard errors (by up to 5-times as shown in our simulation studies),

substantial estimation bias (about 30% of parameter values), and significant loss of statisti-

cal power to detect moderating and nonlinear effects (e.g., a reduction of power from 80%

to 10% in Figure 4). The empirical application of peanut butter sales further demonstrates

this adverse bias: omitting the higher-order copula term yields model estimates closest to

that of two-stage least squares using instrumental variables; including the copula interaction

term produces the opposite sign for the coefficient estimate of the endogenous interaction

term, and greater estimation variability.
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We also discuss the latest extensions that expand the applicability, flexibility and ro-

bustness of copula correction, highlighting endogeneity correction when the conditions and

requirements of the prior copula correction approach are not met by the data at hand. For

cases where the endogenous regressors have insufficient nonnormality, and the traditional

method (Park and Gupta 2012) fails to work, we describe how a two-stage copula correc-

tion (2sCOPE) can still work by leveraging related and nonnormally distributed exogenous

regressors. We demonstrate that applications of traditional methods need to check the uncor-

relatedness between the copula control functions and exogenous regressors; if this condition

fails, alternative copula correction methods need to be used.

We synthesize the above discussions into a flowchart with easy-to-follow checkpoints and

boundary conditions. This guide is practical for researchers - in both academia and industry

- to employ copula correction methods. In addition to making the copula code available, we

illustrate its usage in two empirical examples for two different product categories.

While this study was intended to integrate the latest research on copula usage, and

present a helpful guide for users to address endogeneity, future avenues of related research

remain. One research direction is to relax the assumption of the Gaussian copula correlation

structure. Excluding copula correction terms for higher-order endogenous regressors assumes

a Gaussian copula model for the first-order endogenous regressors only. This should be

robust to Gaussian copula correlation structure violations, at least relative to including

the copula terms for higher-order endogenous regressors. Nonetheless, exploring methods

to further relax the Gaussian copula correlation assumption will increase the robustness

of copula correction. Another area may be a Bayesian approach, which is frequently used

in marketing research. Extending copula correction to Bayesian inference can expand its

applicability.
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and Jan Wieseke (2022), “The role of salespeople in industrial servitization: how
to manage diminishing profit returns from salespeople?s increasing industrial service
shares,” International Journal of Research in Marketing, 39 (4), 1235–1252.

Lamey, Lien, Els Breugelmans, Maya Vuegen, and Anne ter Braak (2021), “Retail ser-
vice innovations and their impact on retailer shareholder value: Evidence from an event
study,” Journal of the Academy of Marketing Science, 49, 811–833.

6



Lamey, Lien, Barbara Deleersnyder, Jan-Benedict EM Steenkamp, and Marnik G Dekimpe
(2018), “New product success in the consumer packaged goods industry: A shopper
marketing approach,” International Journal of Research in Marketing, 35 (3), 432–452.

Lenz, Isabell, Hauke A Wetzel, and Maik Hammerschmidt (2017), “Can doing good lead
to doing poorly? Firm value implications of CSR in the face of CSI,” Journal of the
Academy of Marketing Science, 45, 677–697.

Lim, Leon Gim, Kapil R Tuli, and Marnik G Dekimpe (2018), “Investors’ evaluations
of price-increase preannouncements,” International Journal of Research in Marketing,
35 (3), 359–377.

Liu, Huan, Lara Lobschat, Peter C Verhoef, and Hong Zhao (2021), “The effect of perma-
nent product discounts and order coupons on purchase incidence, purchase quantity, and
spending,” Journal of Retailing, 97 (3), 377–393.

Ludwig, Stephan, Dennis Herhausen, Dhruv Grewal, Liliana Bove, Sabine Benoit,
Ko De Ruyter, and Peter Urwin (2022), “Communication in the gig economy: Buying
and selling in online freelance marketplaces,” Journal of Marketing, 86 (4), 141–161.

Maesen, Stijn and Lien Lamey (2023), “The impact of organic specialist store entry on
category performance at incumbent stores,” Journal of Marketing, 87 (1), 97–113.

Maesen, Stijn, Lien Lamey, Anne ter Braak, and Léon Jansen (2022), “Going healthy:
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WEB APPENDIX B: A SIMULATION STUDY FOR COPULA

CORRECTION IN MODELS WITH INTERCEPT

In this study, we use the following data generating process (DGP) that is the same as

specified in Equations 1-4 in Becker, Proksch, and Ringle (2021): E∗
t

P ∗
t

 = N


 0

0

 ,

 1 0.50

0.50 1


 (W1)

Et = Φ−1(Φ(E∗
t )) (W2)

Pt = Φ(P ∗
t ) (W3)

Yt = −1Pt + Et, (W4)

where Yt, Pt, and Et represent the dependent variable, endogenous regressor, and the error

term, respectively. The DGP specifies a linear model with the endogenous regressor P

following a uniform distribution, and a correlation coefficient of 0.50 between P ∗
t and the

error term Et. The simulation study varies sample size N from 100 to 60,000 (100, 200, 400,

600, 800, 1,000, 2,000, 4,000, 6,000, 8,000, 10,000, 20,000, 40,000, 60,000). For each sample

size, we generate 1,000 datasets from the above DGP.

For each generated data set, we apply OLS, the Park and Gupta (P&G) method using

the algorithm in Equation 7 to obtain generated regressor, and the P&G method using the

algorithm in Equation 6 to obtain the generated regressor in estimating the structural model.

While the intercept term µ = 0 in the DGP, the estimation does not assume this a-priori

but instead estimates the intercept parameter jointly with other model parameters. The

difference between the average of the estimates across 1,000 simulated datasets and its true

value is the bias of an estimator, which is plotted in Figure 3 for α.

10



WEB APPENDIX C: PROOF OF THEOREM 1

Theorem 1. Optimality of excluding higher-order copula terms. Let (θ̂Main
k ), k =

1, · · · , K, denote the structural model parameter estimates when only the copula terms for

the main endogenous effects are included to correct for endogeneity, and (θ̂All
k ), k = 1, · · · , K,

denote the corresponding estimates when copula terms for both the main effects and higher-

order endogenous regressors are included. This yields:

Var(θ̂All
k ) ≥ Var(θ̂Main

k ) for k = 1, · · · , K.

Thus, θ̂Main
k yields optimal copula estimation of structural model parameters with less vari-

ance and mean squared errors than θ̂All
k , for all k.

Proof: Consider the OLS regression of the model when only the copula main terms are

included to correct for endogeneity:

Y = Xθ + ϵ, V (ϵ) = σ2
cIn, (W5)

where X includes the intercept, the regressors in the structural model, and Cmain (the copula

generated regressors for the main effects); θ collects all the coefficients of these regressors.

Math symbols in bold represent matrices and vectors. The variance of the estimates using

copula terms for main effects only is:

V (θ̂Main) = σ2
c (X

′X)−1. (W6)

Then after introducing additional copula terms C for higher-order terms into the model in
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Equation (W5), we have:

Y = Xθ +Cϕ+ ϵ1, V (ϵ1) = σ′2
c In, (W7)

According to linear regression theory, the new estimates after entering the copula higher-

order terms C in the model become:

θ̂All = (X′X)−1X′(Y −Cϕ̂), ϕ̂ = (C′RC)−1C′RY, (W8)

V (θ̂All) = σ′2
c

[
(X′X)−1 +M(C′RC)−1M′], (W9)

where M = (X′X)−1X′C, R = In −P, and P = X(X′X)−1X′. Note that P is the projec-

tion matrix representing the orthogonal projection that maps the responses to the fitted

values, and R = In −P represents the orthogonal projection that maps the responses to the

residuals. Given that the newly added higher-order copula terms in C are highly correlated

with the higher-order terms in the structural model (as well as other copula terms already

included in the model), the extra variability in Y explained by adding C is small. Thus,

σ′2
c ≈ σ2

c and:

V (θ̂)All − V (θ̂)Main ≈ σ2
c

[
(X′X)−1 +M(C′RC)−1M′ − (X′X)−1

]
(W10)

= σ2
c

[
M(C′RC)−1M′]. (W11)

Since the matrix M(C′RC)−1M′ is positive semi-definite, all the diagonal elements are

greater than or equal to zero. For each of the K structural model parameters:

Var(θ̂All
k ) ≥ Var(θ̂Main

k ) for k = 1, · · · , K. (W12)

The magnitude of variance inflation is inversely related to C′RC, which represents the
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matrix of sum of squared residuals, obtained from regressing C on X. Thus, the higher the

correlation between the extra higher-order term C and existing regressors in X, the smaller

the sum of squares, which leads to greater variance inflation of Var(θ̂All
k ). Q.E.D.
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WEB APPENDIX D: A SIMULATION STUDY FOR MODELS WITH AN

INTERACTION TERM BETWEEN TWO ENDOGENOUS REGRESSORS

Data were simulated from the following structural regression model with an interaction

between two endogenous regressors, P1 and P2:

Y = α0 + α1P1 + α2P2 + α3P1 ∗ P2 + E
E∗

P ∗
1

P ∗
2


= N




0

0

0


,


1 ρE1 ρE2

ρE1 1 ρ12

ρE2 ρ12 1




E = H−1

E (Φ(E∗)) = Φ−1(Φ(E∗)), P1 = H−1
P1

(Φ(P ∗
1 )), P2 = H−1

P2
(Φ(P ∗

2 )).(W13)

In this simulation, we set HP1(·) as the CDF of the uniform distribution on [4, 6], HP2(·)

as the CDF of the truncated standard normal with a lower bound of 0, and parameters

α0 = 0, α1 = 1, α2 = −1, α3 = 1, ρE1 = ρE2 = 0.5, ρ12 = −0.5. The OLS version regresses

Y on P1, P2 and P1 ∗ P2 without any correction for the endogeneity of these regressors.

Copula-Main adds two copula correction terms, CP1 and CP2 , to control for the endogeneity

of these three regressors, where:

CP1 = Φ−1(ĤP1(P1)), CP2 = Φ−1(ĤP2(P2)). (W14)

In addition to CP1 and CP2 , Copula-All adds the copula correction term CP1∗P2 , where:

CP1∗P2 = Φ−1(ĤP1∗P2(P1 ∗ P2)) (W15)

and ĤP1 , ĤP2 and ĤP1∗P2 denote the empirical marginal distribution functions of P1, P2 and

P1 ∗ P2 in the observed sample, respectively.
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Bias and SEs of parameter estimates The simulation results appear in Table W1. As

expected, OLS regression yields significant bias for all model parameters at all sample sizes.

For example, even for a large sample size of N=5,000, the OLS regression without any cor-

rection terms yields large bias for the regression parameter estimates (α̂1 : 2.281 [0.018]; α̂2 :

−1.549 [0.099]; α̂3 : 1.432 [0.021]) and the error standard deviation (σ̂ : 0.298 [0.006]).

Copula-Main corrects for the endogenous bias (α̂1 : 1.002 [0.058]; α̂2 : −1.017 [0.080]; α̂3 :

1.003 [0.015]), demonstrating that there is no need to additionally include the copula correc-

tion term, CP1∗P2 . Furthermore, Copula-Main performs substantially better in both estima-

tion bias and variability for all parameter estimates than Copula-All which includes CP1∗P2 .

In fact, Copula-All yields significantly biased parameter estimates, even at the large sample

size of N=5,000 (α̂0 : 0.202 [0.318]; α̂2 : −0.713 [0.240]; α̂3 : 0.929 [0.058]); bias decreases

as sample size increases, but remains apparent even for a sample size as large as 50,000, as

including the copula term for the interaction P1 ∗ P2 causes significant estimation bias.

The same conclusion - that Copula-Main performs substantially better than Copula-All

in terms of both estimation bias and variability for all parameter estimates - applies to all

other sample sizes, except for the intercept parameter (α0) at small sample size N=200. The

exception likely results from both a small sample size and strong multicollinearity induced

by the interaction term; however, the bias in the intercept estimate bears less practical

implication, since the intercept parameter is often of less interest.

Copula-All also yields less precise estimates (larger standard errors) than Copula-Main;

underlined standard errors in Table W1 highlight much larger SE for Copula-All versus

Copula-Main. This imprecision includes an SE 3.00-times that for α2 and 3.86-times that

for α3 compared to Copula-Main at a sample size of 5,000.
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Overall Estimation Efficiency and Accuracy Regarding overall estimation efficiency, the

D-error ratios for Copula-All to Copula-Main increase as sample size increases, from 1.26-

times (N=200) to 1.41-times (N=500) to 2.82-times (N=5,000) to 4.64-times (N=50,000).

We also compute the ratio of mean squared error (MSE) of the structural estimate α̂k,

comparing Copula-All to Copula-Main (where MSE(α̂k) = Bias2(α̂k)+Var(α̂k), measuring

overall estimation accuracy). Notably, Copula-All increases MSEs for all model parameter

estimates, with the harmful effects being largest for the interaction parameter estimate α̂3,

whose MSE is more than 80-times that of Copula-Main when sample size N=50,000 (Figure

W2).
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Table W1: Results from Case I: Interaction of Endogenous Regressors.

N Method α0(= 0) α1(= 1) α2(= −1) α3(= 1) σ(= 1) D-error

200 OLS -7.627 2.282 -1.546 1.433 0.294

(0.464) (0.093) (0.501) (0.106) (0.031) —

Copula-Main -0.358 1.046 -1.187 1.043 0.963

(1.363) (0.271) (0.417) (0.079) (0.121) 0.0293

Copula-All -0.058 1.012 -0.794 0.930 1.028

(1.364) (0.270) (0.468) (0.107) (0.134) 0.0368

500 OLS -7.624 2.281 -1.546 1.432 0.297

(0.290) (0.058) (0.312) (0.066) (0.019) —

Copula-Main -0.119 1.019 -1.104 1.024 0.99

(0.899) (0.179) (0.254) (0.047) (0.076) 0.0117

Copula-All 0.176 0.974 -0.702 0.923 1.051

(0.902) (0.178) (0.331) (0.077) (0.086) 0.0165

5000 OLS -7.623 2.281 -1.549 1.432 0.298

(0.092) (0.018) (0.099) (0.021) (0.006) —

Copula-Main -0.012 1.002 -1.017 1.003 1.000

(0.291) (0.058) (0.080) (0.015) (0.024) 0.0011

Copula-All 0.202 0.968 -0.713 0.929 1.044

(0.318) (0.061) (0.240) (0.058) (0.041) 0.0031

50000 OLS -7.621 2.281 -1.551 1.433 0.298

(0.029) (0.006) (0.031) (0.007) (0.002) —

Copula-Main 0.001 1.000 -1.003 1.000 1.000

(0.092) (0.018) (0.025) (0.005) (0.008) 0.00011

Copula-All 0.064 0.990 -0.912 0.978 1.013

(0.133) (0.023) (0.158) (0.038) (0.023) 0.00051

See the same note under Table 5.
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Figure W2: Ratio of mean squared errors of structural model estimates, with using the
copula interaction term (Copula-All) to those without using the copula interaction term

(Copula-Main).
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WEB APPENDIX E: A SIMULATION STUDY FOR MODELS WITH AN

INTERACTION TERM BETWEEN AN ENDOGENOUS REGRESSOR AND

AN EXOGENOUS REGRESSOR

We simulated data from the following structural regression model with an interaction

term between an exogenous regressor X and an endogenous regressor P :

Y = α0 + β1X + α1P + α2X ∗ P + E P ∗

E∗

 = N


 0

0

 ,

 1 ρ

ρ 1




E = H−1
E (Φ(E∗)) = Φ−1(Φ(E∗)), P = H−1

P (Φ(P ∗)), (W16)

where HP (·) is the CDF of the truncated standard normal on [0,∞]. We simulated X from

a uniform distribution on [4, 6], and set α0 = 0, β1 = 1, α1 = −1, α2 = 1 and ρ = 0.5

with sample sizes of 200, 500, 5,000 and 50,000. For each sample size, we generated 5,000

repeated samples. For each generated sample, we then apply three estimation procedures:

OLS, Copula-Main and Copula-All. The OLS regresses Y on P , X and X ∗ P without any

correction for the endogeneity of P and X ∗ P . Copula-Main adds one copula correction

term, CP = Φ−1(ĤP (P )), to control for endogeneity of P and X ∗ P . In addition to CP ,

Copula-All adds the copula correction term CX∗P = Φ−1(ĤX∗P (X ∗P )). ĤP (·) and ĤX∗P (·)

denote the empirical marginal distribution functions of P and X ∗P in the observed sample,

respectively. Results over 5,000 simulated samples are summarized in Table W2.

19



Table W2: Results from Case II: Interaction between Endogenous and Exogenous
Regressors

N Method α0(= 0) β1(= 1) α1(= −1) α2(= 1) σ(= 1) D-error

200 OLS -0.650 1.003 -0.194 0.999 0.876

(0.913) (0.181) (0.929) (0.185) (0.044) —

Copula-Main -0.032 1.002 -0.976 0.999 1.008

(0.952) (0.178) (0.993) (0.182) (0.127) 0.0406

Copula-All 0.073 0.981 -0.789 0.962 1.02

(1.097) (0.210) (1.315) (0.250) (0.129) 0.0792

500 OLS -0.639 1.000 -0.199 1.000 0.876

(0.573) (0.114) (0.581) (0.115) (0.028) —

Copula-Main -0.002 1.000 -1.003 1.000 1.006

(0.594) (0.111) (0.620) (0.113) (0.082) 0.0156

Copula-All 0.103 0.978 -0.799 0.961 1.013

(0.747) (0.148) (1.015) (0.190) (0.082) 0.0375

5000 OLS -0.643 1.001 -0.198 0.999 0.877

(0.186) (0.037) (0.185) (0.037) (0.009) —-

Copula-Main -0.003 1.001 -1.000 1.000 1.001

(0.192) (0.036) (0.195) (0.036) (0.025) 0.0016

Copula-All 0.075 0.983 -0.836 0.969 1.003

(0.361) (0.077) (0.654) (0.121) (0.028) 0.0064

50000 OLS -0.637 1.000 -0.202 1.000 0.877

(0.056) (0.011) (0.056) (0.011) (0.003) —

Copula-Main 0.000 1.000 -1.000 1.000 1.000

(0.059) (0.011) (0.060) (0.011) (0.008) 0.0002

Copula-All 0.028 0.994 -0.942 0.989 1.000

(0.169) (0.037) (0.329) (0.061) (0.010) 0.0009

See the same note under Table 5.
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WEB APPENDIX F: A SIMULATION STUDY FOR MODELS WITH A

SQUARED TERM OF AN ENDOGENOUS REGRESSOR

Data were simulated from the following model (subscript t omitted for simplicity):

Y = α0 + α1P + α2P
2 + E, E∗

P ∗

 = N


 0

0

 ,

 1 ρ

ρ 1




E = H−1
E (Φ(E∗)) = Φ−1(Φ(E∗)), P = H−1

P (Φ(P ∗)), (W17)

where HP (·) is the CDF for the marginal distribution of P , α0 = 0, α1 = −1, α2 = 1

and ρ = 0.7. We set HP (·) as the CDF of the truncated standard normal distribution on

[−0.5, 0.5]. For each simulated data set, the following three estimation procedures were

applied using OLS regression of Y on the following sets of regressors:

OLS: P, P 2

Copula-Main: P, P 2, CP

Copula-All: P, P 2, CP , CP 2

where CP = Φ−1(ĤP (P )) and CP 2 = Φ−1(ĤP 2(P 2)) are the copula correction terms for

endogenous regressors P and P 2, respectively; ĤP and ĤP 2 denote the empirical marginal

distribution functions of P and P 2 in the generated sample, respectively. Copula-Main

indicates including copula correction terms for the main effect only, while Copula-All signifies

including copula correction for all terms involving endogenous regressor P (i.e., higher-order

terms).

21



Across simulations, sample sizes (N) of 200, 500, 5,000 and 50,000 are examined. For each

sample size N, we generate 5,000 data sets as replicates to systematically evaluate average

performance (estimation bias and variability) of different estimation methods. Averages and

standard deviations (SD) of parameter estimates over these 5,000 data sets are computed for

each method. The difference between the average of the estimates and its true value is the

bias of one estimator; the SD of the parameter estimates over these 5,000 repeated samples

is the standard error (SE) of the parameter estimate, capturing estimation variability.

Table W3 presents the simulation results. For each parameter, we report the average

of the estimates and SE in the parenthesis computed using 5,000 generated data sets. As

expected, OLS yields significant estimation bias at all values of N. For example, when N=200,

the OLS regression yields large bias in the parameter estimates (α̂1 : 1.413 [0.188]) and the

error standard deviation (σ̂ : 0.726 [0.037]) in the structural regression model. Copula-Main

corrects for the endogenous bias (α̂1 : −0.964 [1.049]; σ̂ : 1.013 [0.202]), demonstrating that

there is no need to additionally include CP 2 . Meanwhile, Copula-All yields substantial bias

for the coefficient parameter of P 2 (α̂2 : 0.771 [2.214]) because adding unnecessary generated

regressor CP 2 leads to the finite sample bias problem. In contrast, Copula-Main eliminates

the majority of the bias and performs much better in this small sample size with only small

bias and the SE reduced by approximately 70% (α̂2 : 0.922 [0.797]). In a large sample size

(n=5,000), the finite sample bias in Copula-All is reduced. Yet, Copula-All continues to

yield less precise estimates (i.e. larger standard errors) than Copula-Main.
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Table W3: Results from Case III: Endogenous Squared Terms.

N Method α0(= 0) α1(= −1) α2(= 1) σ(= 1) D-error

200 OLS 0.000 1.413 0.986 0.726

(0.078) (0.188) (0.742) (0.037) —

Copula-Main -0.001 -0.964 0.922 1.013

(0.099) (1.049) (0.797) (0.202) 0.835

Copula-All 0.009 -0.957 0.771 1.020

(0.190) (1.057) (2.214) (0.203) 2.338

500 OLS 0.001 1.410 0.982 0.728

(0.048) (0.118) (0.472) (0.024) —

Copula-Main 0.001 -0.978 0.951 1.005

(0.057) (0.640) (0.483) (0.126) 0.309

Copula-All 0.004 -0.974 0.889 1.008

(0.120) (0.641) (1.393) (0.126) 0.891

5000 OLS 0.000 1.413 1.003 0.728

(0.015) (0.036) (0.146) (0.007) —

Copula-Main 0.000 -1.000 0.994 1.001

(0.019) (0.192) (0.157) (0.038) 0.030

Copula-All 0.000 -1.000 0.997 1.001

(0.037) (0.192) (0.427) (0.038) 0.082

50000 OLS 0.000 1.415 1.001 0.728

(0.005) (0.012) (0.047) (0.002) —

Copula-Main 0.000 -1.004 1.000 1.001

(0.006) (0.060) (0.050) (0.012) 0.003

Copula-All 0.000 -1.004 0.999 1.001

(0.012) (0.060) (0.137) (0.012) 0.008

Table presents the averages of the estimates and standard errors in the parenthesis over the
repeated samples. Bold numbers highlight the estimates with bias of at least 0.05. Underlined
numbers highlight the cases where the standard errors of the estimates from Copula-All are
inflated by at least 50% compared with the corresponding ones from Copula-Main.
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We also compute the ratio of mean squared error (MSE) of the structural estimate α̂k,

comparing Copula-All to Copula-Main (where MSE(α̂k) = Bias2(α̂k)+Var(α̂k), measuring

overall estimation accuracy). Notably, Copula-All increases MSEs for all model parameter

estimates, with the harmful effects being greatest for the squared term estimate α̂2, whose

MSE is more than 6-times that of Copula-Main for all sample sizes (Figure W3).
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Figure W3: Ratio of mean squared errors of structural model estimates, with using the
copula square term (Copula-All) to those without using the copula square term

(Copula-Main).
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WEB APPENDIX G: MEAN-CENTERING REGRESSORS

This section examines whether mean-centering helps improve the performance of Copula-

All. A common practice for researchers in economics, management, and other fields is to

mean-center the regressors before estimating models with higher-order terms. One argument

for this practice is that by mean-centering the regressors, the correlation - and resulting

collinearity problem - between the linear and higher-order terms (e.g., quadratic terms or

interaction terms) is reduced (Aiken and West 1991; Kopalle and Lehmann 2006). How-

ever, Echambadi and Hess (2007) showed that mean-centering regressors does not alleviate

collinearity problems in moderated regression models. Namely, none of the parameter esti-

mates and sampling accuracy of main effects, simple effects, interactions, or R2 is changed

by mean-centering. By main effect and simple effect, we refer to the regression coefficient

for a first-order term with and without mean-centering, representing the effect of a regressor

when its moderators are set at their mean values and at zero (or absence of the attributed

quantified by these moderators), respectively.

To illustrate this point, consider the following structural regression model with an inter-

action term:

Y = α0 + α1P1 + α2P2 + α3P1 ∗ P2 + E

For the purposes of ease in interpretation or reducing the correlation between the linear and

interaction terms, mean-centering regressors is often employed, which leads to the following

equivalent model with parameter transformation:

Y = αc
0 + αc

1(P1 − P̄1) + αc
2(P2 − P̄2) + αc

3(P1 − P̄1) ∗ (P2 − P̄2) + E, (W18)
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where the parameters for the models before and after mean-centering have the following

one-to-one relationship:

αc
0 = α0 + α1P̄1 + α2P̄2 + α3P̄1P̄2

αc
1 = α1 + α3P̄2

αc
2 = α2 + α3P̄1

αc
3 = α3. (W19)

As shown above, the regression coefficient αc
1 for the centered linear term P1 − P̄1 repre-

sents the effect of P1 when P2 is equal to its mean value P̄2. Thus, αc
1 represents the main

effect: the effect of P1 when the other variables are at their mean values. In contrast, the

coefficient using uncentered data, α1, represents the simple effect: the effect of P1 when the

other variables are at zero (or absence of the attribute quantified by these other variables).

The differences in estimates and standard errors between α1 and αc
1 are due to the two coef-

ficients having different substantive meanings, and both effects can be of substantive interest

(Echambadi and Hess 2007). Quadratic terms can be considered a special case of the above

model because a quadratic term can be considered as the interaction term of a regressor with

itself. The relationship between parameters for models with quadratic terms before and af-

ter mean-centering can be derived similarly. Echambadi and Hess (2007) showed that the

relationships in Equation W19 also holds for the OLS estimates of these model parameters.

However, our setting differs from the case of moderated regression models considered

in Echambadi and Hess (2007), since we consider the more general case of endogeneity bias

correction of structural regression models with endogenous higher-order regressors. Although
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the relationships in Equation W19 hold exactly for OLS estimates (Echambadi and Hess

2007) for all data sets, such relationships only hold approximately for copula corrected

estimates because copula generated regressors involve probability integral transformations.

Specifically, we use the same data generating process for Cases I, II and III to generate data.

When estimating models, we first mean-center all the first-order terms of the regressors, and

then construct the higher-order terms using these mean-centered first-order terms. Copula

correction terms are then constructed using these new regressors based on centered versions of

the first-order terms of regressors. Because these copula correction terms involve probability

integral transformation, the estimates and sampling accuracy of main effects, simple effects

and interactions can change after mean centering, which differs from the case of Echambadi

and Hess (2007) in which all regressors are exogenous.

For the models giving results in Tables W1, W2, and W3, we apply the OLS (without

any correction), Copula-Main, and Copula-All to estimate the corresponding mean-centered

structural regression models, with results summarized in Tables W4, W5, and W6, respec-

tively. The true values for the parameters in the models after mean-centering are also listed

in Tables W4 to W6. The mean values of the regressors (P̄1, P̄2) used to compute these

true parameter values are: ϕ(a)−ϕ(b)
Φ(b)−Φ(a)

, where ϕ(·) denotes the density function of the standard

normal; when the marginal distribution of the regressor is the truncated standard normal

on [a, b], and a+b
2

when it is the uniform distribution on [a, b].

Because copula correction terms for higher-order terms are not invariant to mean-centering,

the ratios of the D-error for Copula-All to that of Copula-Main using mean-centered data

will not be the same as those in Tables W1, W2, and W3, using uncentered data. Still,

the same conclusion of inflated variability of estimates for Copula-All is apparent, and the
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D-error measure ratios are all above 2. This finding is consistent with that of Echambadi

and Hess (2007) in that mean-centering regressors does not alleviate collinearity problems

in moderated regression models. Furthermore, mean-centering seemingly shifts the vari-

ance inflation from the regression coefficient estimates of first-order terms to those of the

higher-order terms, and may hurt the estimation of the higher-order terms in some cases.

It is important to note, however, that this does not imply that mean-centering affects

the estimation of the same first-order effects. As explained above, the regression coefficients

for a first-order term (with and without mean-centering) represent different effects of one

regressor evaluated at different values of its moderator: these regression coefficients represent

the main effects when mean-centering regressors and the simple effects when using uncentered

data. As such, regression coefficients for a first-order term with and without mean-centering

are not directly comparable, although both main and simple effects can be of substantive

interest (Echambadi and Hess 2007). When using the parameter estimates based on the

centered data to compute the simple effects, we again find finite sample bias and inflated

standard errors for the estimates of simple effects (results not shown here), as occurred

when using uncentered data. In sum, we conclude that mean-centering does not overturn

the under-performance of Copula-All relative to Copula-Main.
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Table W4: Results from Case I: Interaction of Endogenous Regressors With
Mean-Centering

N Method αc
0(= 8.192) αc

1(= 1.798) αc
2(= 4) αc

3(= 1) σ(= 1) D-error

200 OLS 8.259 3.425 5.619 1.432 0.294

(0.208) (0.071) (0.084) (0.105) (0.031) —

Copula-Main 8.172 1.897 4.072 1.041 0.967

(0.208) (0.279) (0.257) (0.080) (0.124) 0.0316

Copula-All 8.180 1.896 4.069 1.101 0.972

(0.215) (0.279) (0.266) (0.281) (0.124) 0.0734

500 OLS 8.262 3.425 5.615 1.431 0.297

(0.134) (0.045) (0.051) (0.065) (0.02) —

Copula- M 8.184 1.838 4.018 1.025 0.990

(0.133) (0.179) (0.166) (0.047) (0.077) 0.0123

Copula-All 8.189 1.838 4.020 1.057 0.992

(0.137) (0.178) (0.174) (0.173) (0.078) 0.0293

5000 OLS 8.263 3.424 5.612 1.433 0.298

(0.042) (0.014) (0.017) (0.021) (0.006) —

Copula-Main 8.191 1.803 3.999 1.003 1.000

(0.042) (0.057) (0.051) (0.015) (0.024) 0.0011

Copula-All 8.192 1.803 3.999 1.009 1.000

(0.043) (0.057) (0.054) (0.052) (0.024) 0.0028

50000 OLS 8.263 3.424 5.613 1.433 0.298

(0.013) (0.004) (0.005) (0.007) (0.002) —

Copula-Main 8.192 1.799 3.999 1.000 1.000

(0.013) (0.018) (0.017) (0.005) (0.008) 0.0001

Copula-All 8.192 1.799 3.999 1.002 1.000

(0.014) (0.018) (0.017) (0.017) (0.008) 0.0003

See the same note under Table W3.
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Table W5: Results from Case II: Interaction between Endogenous and Exogenous
Regressors With Mean-centering.

N Method αc
0(= 8.192) βc

1(= 1.798) αc
1(= 4) αc

2(= 1) σ(= 1) D-error

200 OLS 8.190 1.800 4.801 0.999 0.874

(0.225) (0.114 ) (0.115) (0.187) (0.044) —

Copula-Main 8.183 1.800 4.010 1.000 1.009

(0.225) (0.114) (0.418) (0.185) (0.128) 0.0426

Copula-All 8.182 1.800 4.004 0.999 1.051

(0.226) (0.118) 0.(426) (0.895) (0.143) 0.1243

500 OLS 8.191 1.797 4.801 1.000 0.875

(0.143) (0.075) (0.072) (0.116) (0.028) —

Copula-Main 8.188 1.797 4.003 1.000 1.004

(0.143) (0.074) (0.259) (0.113) (0.081) 0.0167

Copula-All 8.188 1.797 4.001 1.005 1.022

(0.143) (0.076) (0.262) (0.558) (0.084) 0.0489

5000 OLS 8.191 1.798 4.799 1.001 0.876

(0.045) (0.023) (0.023) (0.036) (0.009) —

Copula-Main 8.191 1.797 3.998 1.001 1.001

(0.045) (0.023) (0.082) (0.036) (0.026) 0.0016

Copula-All 8.191 1.798 3.998 1.000 1.003

(0.045) (0.023) (0.082) (0.170) (0.026) 0.0046

50000 OLS 8.192 1.798 4.799 1.000 0.877

(0.015) (0.007) (0.007) (0.011) (0.003) —

Copula-Main 8.191 1.798 4.000 1.000 1.000

(0.015) (0.007) (0.025) (0.011) (0.008) 0.00015

Copula-All 8.191 1.798 4.000 1.000 1.000

(0.015) (0.008) (0.025) (0.053) (0.008) 0.00045

See the same note under Table W3.
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Table W6: Results from Case III: Endogenous Squared Terms With Mean-Centering

N Method αc
0(= 0) αc

1(= −1) αc
2(= 1) σ(= 1) D-error

200 OLS 0.000 1.414 0.993 0.727

(0.080) (0.188) (0.737) (0.037) —

Copula-Main -0.001 -0.967 0.912 1.007

(0.085) (1.008) (0.785) (0.193) 0.790

Copula-All 0.000 -0.959 0.857 1.022

(0.196) (1.019) (2.353) (0.194) 2.396

500 OLS 0.000 1.414 0.995 0.729

(0.049) (0.117) (0.458) (0.024) —

Copula-Main 0.000 -0.993 0.949 1.005

(0.052) (0.628) (0.495) (0.125) 0.311

Copula-All 0.001 -0.999 0.936 1.011

(0.116) (0.631) (1.380) (0.125) 0.871

5000 OLS -0.001 1.413 1.002 0.728

(0.016) (0.038) (0.151) (0.007) —

Copula-Main -0.001 -0.993 0.995 0.999

(0.017) (0.201) (0.159) (0.040) 0.031

Copula-All -0.002 -0.993 1.008 0.999

(0.036) (0.202) (0.417) (0.040) 0.085

50000 OLS -0.001 1.415 1.000 0.728

(0.005) (0.013) (0.045) (0.002) —

Copula-Main 0.000 -1.003 1.000 1.001

(0.005) (0.062) (0.048) (0.012) 0.003

Copula-All 0.000 -1.003 0.998 1.001

(0.012) (0.062) (0.137) (0.012) 0.009

See the same note under Table W3.
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