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ABSTRACT

Recent research concludes that wage returns to cognitive skills have declined in the U.S. We 
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discard measurement error as a potential driver. Although often overlooked, grappling with 
changing pre-labor market skill distributions is necessary for capturing the evolution of labor 
market returns to cognitive skills. This may prove especially important in the future given 
continuing changes in skill development in recent youth cohorts.
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1 Introduction

Large pandemic-related declines in standardized test scores in the United States have drawn

new attention to the importance of tracking changes in the distribution of skills across cohorts

(NAEP 2023). However, this is not the first time skill distributions have changed across cohorts

in recent decades. Altonji et al. (2012) details the changing distribution of skills across two

earlier cohorts of youth in the U.S. represented in the 1979 National Longitudinal Survey of

Youth (NLSY–79) and its 1997 version (NLSY–97). Taking this trend as given, several studies

have concluded that the wage returns to cognitive skills declined for young workers in the U.S.

over the past 40 years (Castex et al. 2014; Deming 2017; Ashworth et al. 2021). Yet, the

accumulation of skills is at least partly an endogenous response to their labor market returns

(Card 1999), and labor market returns can be endogenous to the distribution of skills (Acemoglu

2002). Thus, it is important to simultaneously study the changing distributions of skills and the

evolution of their labor market returns across cohorts.

In this paper, we re-examine whether the labor market returns to cognitive skill have declined

across cohorts, emphasizing the relationship between these returns and the changing measured

distributions of skill. We use the measure of cognitive skill from Altonji et al. (2012), which is

derived from the reported scores on the Armed Forces Qualifying Test (AFQT) for the NLSY–79

and NLSY–97 samples. The AFQT scores across these two cohorts are not directly comparable,

so Altonji et al. (2012) concorded the scores across samples and adjusted them for the age of

the test takers. Because the resulting scores are not raw AFQT test scores, we refer to them as

“adjusted” AFQT scores, or AAFQT.

Our analysis focuses on the evolution of returns to cognitive skills within two groups. Specif-

ically, and because Blacks and Hispanics have experienced marked changes over time in access

to dimensions of the U.S. economy and constitute significantly smaller samples in the NLSY,

we study the samples of white non-Hispanic men and white non-Hispanic women.1 As in Al-

tonji et al. (2012), we document that both groups’ average AAFQT scores increased slightly

over time. However, our primary focus lies in the widening and left-skewing of the distribution

of scores across the cohorts. In particular, we document a thicker tail at the bottom of the

AAFQT distribution for men and women in the younger cohort (NLSY–97), accompanied by

1. For brevity, in the paper we often refer to these groups as “men” and “women.” Results for white Hispanics
and Blacks are available in Appendix F.
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a ”hollowing-out” in the low-to-middle of the AAFQT distribution. Importantly, our analysis

extends beyond the AAFQT, demonstrating similar patterns using data from two other longitu-

dinal surveys administered by the National Center for Education Statistics (NCES). This, along

with other indirect evidence presented, suggests that the evolving distribution of AAFQT scores

captures a complex shift in the cognitive skill distribution across cohorts.

After documenting the evolution of the cognitive skill distribution, the paper sheds light on

the economic forces driving it. To this end, we introduce a model of endogenous skill investments

and fixed costs consistent with the basic patterns of rising labor market returns and substantial

parental education expenditures that characterized the 1980s and early 1990s (when NLSY–97

parents were investing in children). Within this framework, we simulate cognitive skill distribu-

tions under different parameterizations of the labor market returns. The resulting distribution

under higher returns displays a higher average skill level, a hollowing out below the mean, and

a longer left tail. These patterns mimic those observed in reality.

We then delve into the implications of distributional changes in measured cognitive skills

on estimates of the returns to cognitive skills, re-considering the recent findings of their decline

in the U.S. using AAFQT scores across the NLSY cohorts. We estimate the univariate linear

(OLS) relationship between the log of wages and AAFQT scores. We show that the wage return

to AAFQT declined for white men, confirming previous studies (the result for white women is

less clear). To describe how a changing distribution of human capital can affect estimates of

the linear return to human capital, we describe and implement Yitzhaki (1996) decompositions

that trace out the relationship between the measured distribution of skill and the estimation

of the associated OLS wage returns. We do this for our simulated distributions of skill as a

demonstration.

We then return to the NLSY data to perform Yitzhaki decompositions of the relationship

between AAFQT scores and observed wages. Our findings demonstrate that the changing dis-

tribution of AAFQT across the NLSY cohorts, especially the increased left-skewness of the

distribution, is central to understanding changing estimated wage returns to cognitive skills.

Specifically, we show that the construction of the OLS estimate in the younger cohort (NLSY–

97) places much higher weight relative to the NLSY–79 on the wages of individuals with low

levels of cognitive skills. This empirical fact has a marked influence on changes in the estimated

wage returns across cohorts for men, but less on the estimate for women.
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To further explore the previous results, we conduct exercises generating novel counterfactual

estimated wage returns. We do this by maintaining the reported wages in each cohort in the

NLSY data but adjusting the underlying distributions of AAFQT scores to be the same across

cohorts. This is achieved by exploiting the structural weighting scheme inherent in the Yitzhaki

decomposition. The findings confirm the importance of accounting for the skill’s evolution: we

show that when the AAFQT distribution is fixed in each cohort to mirror that of the older

cohort (NLSY–79), the estimated counterfactual returns to cognitive skills for men actually

remain unchanged across the two cohorts. This starkly contrasts the falling returns generated

by the OLS estimates. For women, on the other hand, reweighting amplifies the estimated

(counterfactual) decline in the wage return relative to OLS, although the absolute magnitude of

the change for women is much less dramatic than for men.

The fact that changing estimated wage returns to cognitinstrumentale skill across the NLSY

cohorts is so intrinsically linked (especially for men) to the changing distribution of those skills

strongly suggests that more close attention needs to be paid to changes in the entire cognitive

skill distributions of recent cohorts of youth, and to the careful measurement of the estimated

returns to these skills as these cohorts enter adulthood and gain experience in the labor market.2

The paper is organized as follows. Section 2 describes our sources of information, while

Section 3 documents the distributional changes in cognitive skills. Section 4 introduces our

conceptual framework, which connects with the Yitzhaki decomposition described in Section 5.

Section 6 presents our main findings and Section 7 concludes.

2 Data and Related Research

2.1 NLSY and the Measure of Cognitive Skills

The National Longitudinal Surveys of Youth (NLSYs) have shaped our understanding of the

U.S. labor market over the past 40 years. A large body of research has examined the experiences

2. In addition to the well-known importance of cognitive skills in the labor market that is our focus, there is
increasing recognition of the importance of socio-emotional and social skills (e.g., Deming 2017; Edin et al. 2021).
That said, there has been much less consensus among economists and psychologists on how to measure those
skills. Partly as a result of this, consistent measures of these skills across cohorts and datasets are elusive. For
example, no common questions asked or tests taken in the two NLSY cohorts serve as consistent measures of
socio-emotional or social skills. While we conduct a detailed analysis on cognitive skills and their wage returns
in our analysis, it is worth keeping in mind that there is much we still do not know about the evolution of skills,
endogenous skill investment, and labor market returns.

4



of the NLSY–79, a nationally representative sample of the cohort of American youth aged 14–22

when first surveyed in 1979. A growing body of more recent research has focused on the NLSY–

97, a younger cohort aged 12 to 16 when first surveyed in 1997. The individuals in the NLSY–97

cohort are now old enough to draw comparisons between their labor market experiences in early

adulthood and those of the NLSY–79. Comparing experiences and outcomes across these two

cohorts is helping to explain and understand the evolution of the U.S. labor market. Plans are

underway for a new NLSY cohort3, which, if fielded as intended, will include a cohort of youth

markedly affected during early years of school by the Covid-19 pandemic. Measuring the skill

distributions of this new cohort and eventually studying their subsequent adult labor market

outcomes will be critical, including via cross-cohort comparisons. This is especially true given

early evidence from 13-year-olds that standardized test score declines and increased variance

already apparent in 2020 accelerated in 2023.4

As a measure of cognitive skills, researchers have utilized the AFQT scores of the NLSY

respondents (e.g., Neal et al. 1996; Heckman et al. 2006; Urzúa 2008). These scores are based

on specific sections of the Armed Services Vocational Aptitude Battery (ASVAB). Respondents

in both NLSY cohorts took versions of the ASVAB, although the raw scores are not directly

comparable across cohorts due to changes in test administration.5

As discussed above, Altonji et al. (2012) concord and adjust the AFQT scores across the two

cohorts, creating what we refer to as AAFQT scores. Based on a number of assumptions, they

conclude that the skill distribution widened between the NLSY–79 and NLSY–97, and that this

likely has important implications for wage inequality.6 When Altonji et al. wrote their paper,

the NLSY–97 cohort was too young to have realized wage outcomes, so conclusions about wage

inequality remained speculative. Thus, this paper aims to enhance the existing work in this

area.

3. https://www.bls.gov/nls/nlsy26.htm accessed February 28, 2024
4. https://www.nationsreportcard.gov/highlights/ltt/2023/ accessed February 28, 2024.
5. See Appendix B for more details about the ASVAB and the AFQT score.
6. There are two fundamental differences in the test format and administration across the two cohorts. First,

while the NLSY–79 respondents took a paper-based test, the NLSY–97 respondents took a computer-based test
designed using Item Response Theory (IRT), so not all respondents answered all questions. Second, the NLSY–79
respondents were ages 15–23 when they took the test, while the NLSY–97 respondents were 12–18.
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2.2 Existing Findings of Wage Returns to Cognitive Skills

Since Altonji et al. (2012), two other influential papers have used realized wages for both NLSY

cohorts to study how the early career wage returns to skills have changed across cohorts. Castex

et al. (2014) focus on estimating changes in the skill price of AAFQT, while Deming (2017)’s

primary interest is in changes in the price of measures of social skills, he also estimates changes

in the skill price of AAFQT. Both papers estimate conventional linear hedonic wage functions

where skill prices are constant across the skill distribution. Despite differences in specific choices

of sample construction and model specifications, they both find that the wage returns to AAFQT

have declined across cohorts.7

We first re-examine the findings of Castex et al. (2014) and Deming (2017). To this end, we

estimate log-linear wage equations of the form:

lnW c
i = αc + βcAAFQT c

i + ǫci , (1)

where W c
i denotes the (log) average hourly wage of individual i from cohort c (NLSY–79 or

NLSY–97) observed between the ages of 25 and 39, and ǫci is the associated error term.8

Figure 1 plots the relationship between (average) log wages and AAFQT scores. It also

displays the OLS results of estimating equation (1). Panel A shows the results for white men.

The estimated (log) wage return to an additional AAFQT point falls from 0.677 for the NLSY–

79 cohort to 0.464 for the NLSY–97 cohort, a large and statistically significant drop of 0.212 log

points. For white women, as shown in Panel B, the estimated return to an additional AAFQT

point falls from 0.830 for the NLSY–79 cohort to 0.789 for the NLSY–97 cohort. The drop is

not significant, and its magnitude is much smaller than men’s. Table 1 indicates that results,

7. Ashworth et al. (2021) estimates a dynamic structural model using data from the two NLSY cohorts. Con-
sistent with the previous findings, they conclude that returns to unobserved cognitive ability (measured in a factor
model) have declined across cohorts. Weinberger (2014) compares two samples of 12th-graders from 1972 and
1992 seven years after graduation and concludes that the returns to math score increased across those cohorts.
The samples’ characteristics and the test scores’ different natures might explain this distinctive difference.

8. We estimate and report results from weighted least squares regressions using the BLS custom sample weights.
With some abuse of terminology, we refer to these regressions throughout the paper as “OLS” so as not to confuse
sample weights with Yitzhaki weights discussed below, which are our key set of weights. We multiply lnW c

i by 100
in our Figures and Appendices for ease of display. In addition, we consider univariate regressions. This facilitates
the exposition of our Yitzhaki decomposition exercises, frees us from complicated issues related to concording
other covariates (e.g., social skills) across NLSY cohorts, and does not impose functional form assumptions on
the relationship between the covariates, AAFQT, and log wages. Conceptually, to add covariates linearly, one
can first residualize both lnW and AAFQT with covariates and then apply the Yitzhaki decomposition to the

residualized l̃nW and ˜AAFQT .
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including covariates, tell largely the same story as the univariate regressions.

In the next section, we present evidence of how the measured distribution of cognitive skills

(AAFQT) has changed across cohorts. As discussed in Section 5, this is critical for understanding

the evolution of the OLS estimates displayed in Figure 1.

3 Distributional Changes in Cognitive Skills

It is well known that the wage structure widened in the U.S. labor market over the decades

encompassing the early adulthood of the NLSY cohorts (e.g. Katz et al. 1999; Card et al. 2002;

Autor et al. 2008). Employment grew rapidly not only at the highest-skill jobs but also at the

lowest-skill jobs (Autor et al. 2006; Autor et al. 2013). Much less discussed, at least in the

context of labor market outcomes, is how the underlying skill distribution–using detailed skill

measures other than education–changed over time.

Altonji et al. (2012) is an important exception. Though their focus is a composite skill

index rather than a specific skill measure, the authors note the changing distribution of AAFQT

scores and document a widening distribution of their composite skill index across the two NLSY

cohorts. Figure 2 replicates their AAFQT result for white men and women. We also report

corresponding distributional statistics. As noted by Altonji et al., the first finding is that both

the mean and median of AAFQT scores are slightly higher in the younger (NLSY–97) cohort

for both groups.

Perhaps more strikingly, the skewness of the AAFQT distribution is much more pronounced

for the younger cohort (-0.81 for white men, -0.79 for white women) than for the older cohort (-

0.63 for white men, -0.56 for white women). Consistent with this, the kurtosis of the distributions

also increased across cohorts for white men and women. Statistical tests comparing skewness,

kurtosis, and the overall distributions of AAFQT scores all reject nulls of no differences across

cohorts. See Tables 2 and 3.

For white men, the increasing mass of people with very low scores and the overall increase

(though not large in magnitude) in the mean and median across the cohorts together create

“hollowing out” in the low-to-median range of the AAFQT distribution. There is also a hollowing

out for white women, but it is driven more by gains in AAFQT scores for individuals in the

10th to 50th percentile. To our knowledge, these distributional changes in cognitive skills have

received very little attention. Moreover, they are not caused by changing correlation with the
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covariates, such as measures of socio-emotional and social skills (Deming 2017) and education.9

Of course, any conclusions about changing cognitive skills or changing returns to cognitive

skills that rely on the changing distribution of AAFQT scores across cohorts necessarily assume

that the changes are real and not driven by measurement error.10 Given the complexity with

which AAFQT scores have been constructed, this is a serious concern, especially because, as

shown in Section 6.1 below, the changing AAFQT distribution across cohorts plays an enormous

role in the estimates of changing wage returns.

In principle, one can correct for measurement error in estimates of the returns to cognitive

skill. Indeed, motivated by measurement error concerns, Castex et al. (2014) estimate two-staged

least squares regressions in some of their analyses, using SAT scores as an instrument for AAFQT

scores. However, AAFQT scores in the NLSY–97 are derived from “Item Response Theory”

(IRT) models, and, as pointed out in Schofield (2014) and Jacob et al. (2016), measurement

error is non-classical for IRT-based test scores.11 Thus, conventional instrumental variables

methods are not valid. One alternative approach is the “mixed effects structural equations”

method in Junker et al. (2012). However, implementing this requires data on the responses of

individual test-takers to each question in the ASVAB, and these are unavailable for the NLSY–

97. As a result, available methods for measurement error correction prove inadequate in this

context. That said, four pieces of available evidence suggest that measurement error arising from

the changing distributions of AAFQT scores is not driving the estimates of changing returns to

cognitive skill.

First, the divergence and increased (left) skewness of AAFQT distribution in the NLSY–97

relative to that of the older cohort is not being driven by one specific section of the ASVAB that

Altonji et al. (2012) used to create AAFQT. Instead, as we show in Appendix A Figure A.3, it

appears to some degree in all four parts of the AAFQT.

Second, the change does not seem to be a direct artifact of the concordance of the different

test formats across the two ASVAB administrations. Segall (1997) documents the concordance

process. While there are some anomalous aspects to the scores in the NLSY–97 cohort, Appendix

B explains that they existed in the scores before any concordance was performed.

9. See Appendix A Figure A.2 for the distribution of AAFQT scores residualized by covariates.
10. There has long been concern about measurement error in test scores. See Griliches et al. (1972) for an early

treatment.
11. In Appendix B Figure B.2, we plot the standard errors of the estimated IRT scores. The errors seem oddly

large for low scores in the NLSY–97, suggesting some underlying issues with the IRT model used for the NLSY–97.
We thank Dan Black for pointing this out.
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Third, to the extent that AAFQT scores are mismeasured, this measurement error should

affect both white men and women in the NLSY samples. Indeed, that could explain the consistent

shifts in the AAFQT distributions across cohorts for both men and women. But if measurement

error is present in the same form for men and women, there is no clear reason that it should

differentially affect the changes in estimated returns to cognitive skill across men and women

that we observe.

Fourth, if measurement error in the construction of the AAFQT is driving the changing

distributions across cohorts, it should be unique to AAFQT tests. But this is not the case.

In the next sub-section, we present additional evidence from two widely-used longitudinal data

sets of the National Center for Education Statistics (NCES) that also exhibit increasing means,

left-skewness, and kurtosis for white men and white women across cohorts.

3.1 Additional Evidence on Changing Cognitive Skills from NELS and ELS

The National Education Longitudinal Study of 1988 (NELS:88) and the Educational Longitu-

dinal Study of 2002 (ELS:02) are nationally representative longitudinal NCES data sets. The

NELS:88 cohort was first surveyed in 1988 as 8th graders, and the ELS:02 cohort was first sur-

veyed in 2002 as 10th graders. As a benchmark, note that the NELS:88 cohort is 7–11 years

older than the NLSY–97, and the ELS:02 cohort is 1–5 years younger than the NLSY–97.

The NCES datasets do not contain AAFQT scores, so we use respondents’ math test scores

from the senior year of high school as a measure of cognitive skills, following Weinberger (2014).12

The ELS:02 tests are adapted from NELS:88, and they share many test items by design. Based

on these shared test items and using IRT, ELS:02 contains an NELS:88-equated math score.13

Table 4 compares the 12th-grade math score distributions between the two NCES cohorts,

separately for white men and white women.14 From the NELS:88 to ELS:02 cohorts, the average

math score rose while the distribution became more left-skewed. As can be more clearly seen in

12. We find similar distributional changes in arithmetic reasoning scores, the subsection of ASVAB that directly
measures mathematical skills and is one of the four components of AAFQT, across the two NLSY cohorts. We
also find similar distributional changes in 10th-grade math scores between NELS and ELS. See Appendix A Tables
A.1 and A.2.
13. The IRT-based math scores in NCES data can be subject to measurement error too. But there is nothing

to suggest that measurement issues in NCES data would lead to the same measurement error pattern as AAFQT
scores in the NLSY.
14. The other potential source of nationally representative information on changing test scores in the U.S.

comes from NCES’s National Assessment of Educational Progress (NAEP). We review available information
about the changing distribution of NAEP math scores in Appendix D, but NCES does not publicly disclose the
full distribution of scores.
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Figure 3, there is also a hollowing out in the low-to-middle part of the math score distribution,

for both white men and white women. All of these patterns are also present in the evolution

of the AAFQT score distributions across the two NLSY cohorts, even though the NLSY and

NELS/ELS cohorts do not perfectly overlap.15 These important similarities across the datasets

increase our confidence that conclusions about the importance of changing returns to cognitive

skill that are based on the NLSY and AAFQT are real and reflect a general trend. In the next

section, we develop an illustrative model to explain an underlying economic mechanism that can

drive the distributional changes in measured cognitive skills.

4 A Model of Endogenous Skills with Fixed Investment Costs

A simple model of endogenous skill formation can illustrate the economic mechanisms leading to

a change in the distribution of skills arising from a change in the wage returns to the same skills.

Expanding on the literature showing that skill investment responds endogenously to technology

(Heckman et al. 1998), we delve into the pivotal role that investment costs play in shaping the

trajectory of skill development, especially when it contains a fixed component.

To illustrate the economic forces driving the relationship of interest, we consider a simple

adaptation of the “q” theory of investment (Tobin et al. 1976) to our setting. Our goal is not to

fully fit the model to the data, but rather to point out in a simple framework that a simultaneous

change in the marginal productivity of human capital and in the evolution of investment costs

will affect the population distribution of cognitive ability.16

Let Ht denote the level of human capital at time t, where H0 represents the initial human

capital endowment. Let It be human capital investments (It = (dHt/dt)/Ht), q(I) the cost of

adding human capital, r the marginal productivity of human capital (in units of output), and ρ

the discount rate. The agent maximizes the present value of future net flows of output:

Max It

∫

∞

0
(r − q(It))Hte

−ρtdt

subject to a cost function q(I).

15. While there are important similarities across the two sources of test scores, there are also differences. In
particular, we do not find an increasing mass of very low math scorers across the NELS/ELS cohorts, in contrast
to the NLSY.
16. Because our empirical application focuses on a unidimensional meaure of skill–cognitive skill–we use the

terms “cognitive skill”, “skill”, and “human capital” interchangeably.
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Uzawa (1969) shows that when the cost function is convex (q′(I) > 0, q′′(I) > 0, q(0) =

0, q′(0) = 1), the optimal I∗ is uniquely determined. Consider the modified case where the cost

function q(I) has an initial fixed cost and then is convex. Figure 4 provides an illustration. In

this case, there are two possible optimal investment levels I∗: a high investment level determined

by r−q(I∗)
ρ−I∗ = q′(I∗), and a low investment level (at a corner solution). We adopt this cost function

(with fixed cost) which allows for heterogeneous optimal investment decisions.

Who ends up with the low-level optimal investment? If some individuals (or their families)

are credit constrained or if the fixed cost of investment is very high, paying for the fixed cost can

be too expensive for some individuals (or their families), leading them to the corner solution. On

the other hand, given the discount rate, the high-level optimal investment would increase when

the marginal productivity of human capital goes up, for example, as the result of technological

change as in Acemoglu (2002).

4.1 Simulation exercise

We now simulate how the optimal investment I∗ changes with r. To this end, we consider two

different regimes. Both assume that the initial human capital distribution, H0, follows a (left-

skewed) beta distribution B(5, 1.5) and that ρ = 0.1. In Regime 1, r = 0.2 and I∗H is 7.5%. In

Regime 2, r = 0.21 and the high optimum I∗H is 7.85%.

Two factors motivate our interest in r, the marginal product of human capital. First, al-

though, as noted above, previous studies have argued that returns to cognitive skills declined

for children of the NLSY–97 cohort relative to children of the NLSY–79 (e.g. Castex et al. 2014;

Deming 2017), early school investments made by NLSY–97 parents were made in the 80s and

early 90s. This was when real wages for those at the bottom of the wage distribution and the less

educated were falling and when the returns to education were increasing (e.g. Juhn et al. 1993;

Autor et al. 2008). So parents raising children in the 80s and early 90s, including parents of the

NLSY–97, might reasonably have expected that the r for their children upon adulthood would

have been higher than for those of the NLSY–79. In that sense, r in our model is the expected

return. Second, as shown below, an increase in r helps to generate the divergence in the skill

distribution that fits the pattern in the NLSY data.

To examine how changing r affects investment decisions, we consider how investments are

changed by an increasing share of the population unable to overcome the fixed cost of investment.
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Two observations about the periods characterizing the childhoods of the two NLSY cohorts

motivate this exercise. First, because of the rising dispersion in real wages in the 80s and

early 90s, children in the NLSY–97 cohort whose parents earned at the bottom of the wage

distribution earned lower real wages during this period than similarly situated parents of the

NLSY–79 cohort. Second, during this period, there is no evidence (of which we are aware) that

the cost of raising a child decreased in real terms.17 These two observations suggest that the

real cost of raising a child increased between the two NLSY cohorts for families at the bottom

of the income distribution.18

To operationalize in our model the implications of an increasing population share constrained

by the fixed cost happening simultaneously to an increase in r, we assume that in Regime

1 described above, the constraint is not binding so that everyone reaches the high optimum

I∗H = 7.5%. But under Regime 2, we assume that the constraint is binding for 5% of the

population. This group ends up with the low optimum I∗L = 0, while the rest of the population

reaches the high optimum I∗H = 7.85%.19

To further assess the implications of fixed costs, we consider two subcases of Regime 2. In

Regime 2(a), we let the simulation be agnostic so that the fixed cost affects a random 5% of

the population. This case mimics the situation where children across the baseline cognitive skill

spectrum could all face barriers to skill investment. In the case of Regime 2(b), we assume that

the fixed cost constrains people in the bottom 5% of the initial human capital (H0) distribution.

Regime 2(b) mimics the situation where children from disadvantaged backgrounds (who may

have lower baseline cognitive skill accumulation) are more likely to face constraints in making

skill investments.

Figure 5 depicts the resulting distribution of stock human capital, H1 under the different

17. The evidence does vary in terms of how much the cost of raising a child did increase, and data availability
is an issue. One example is Laughlin (2013), for information starting in 1985.
18. In addition, there was a sharp decrease in the fraction of two-parent families during this period. For single-

parent families, the cost of investment in children relative to total family income is mechanically higher than in
two-earner families. In the NLSY data we use, the share of white non-Hispanic men that live in a two-parent family
at about age 14 decreases from 85% in the older cohort (NLSY–79) to 62% in the younger cohort (NLSY–97).
We note, though, that our empirical results are robust to conditioning on family structure.
19. We use Appendix Figure A.1 to illustrate how different optimums are reached. Uzawa (1969) shows that the

present value of future net output flows v =
∫

∞

0
(r − q(It))Hte

−ρtdt can be reduced to v = r−q(I)
ρ−I

. On Appendix
Figure A.1, v is presented by the slope of the line connecting point (ρ, r) and point (I, q(I)), the latter of which is
on the cost curve. Graphically, v reaches a maximum when the line is tangent to the cost curve. As illustrated in
Figure A.1, the high optimum also increases as the marginal productivity increases from r1 to r2 (while ρ holds
constant). In either regime, the low optimum is zero, where the marginal cost of human capital investment is
infinity.
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regimes.20 The distribution of human capital in both Regimes 2(a) and 2(b) is more divergent

and left-skewed compared to Regime 1. This divergence is propelled in both cases by the 5%

of the population making low human capital investments due to the fixed cost, coupled with

the higher return to human capital that causes unconstrained individuals in both versions of

Regime 2 to invest at a higher level than under Regime 1. The contrast between regimes is

more pronounced for Regime 2(b) when the simulation assumes that the bottom 5% of the H0

distribution is the population’s share constrained to the low investment optimum.

This pattern of divergent human capital between regimes is similar to what we observe across

NLSY cohorts. Again, we emphasize that the point of the simulation is to demonstrate that a

simple illustrative model shows how the distribution of human capital can endogenously evolve

in response to changing (expected) returns to human capital coupled with fixed investment

costs. We now turn to understanding the relationship between changing distributions of skill

and changing estimated contemporaneous returns to human capital.

5 The Yitzhaki Decomposition

To describe how changing measured distributions of human capital is related to changing esti-

mated linear returns to human capital, we implement a Yitzhaki decomposition (Yitzhaki 1996).

Consider a generalization of the (log) linear wage equation (1):

Y = E[Y |H,C] + ǫ = α(C) + β(C)H + ǫ,

where C denotes a given cohort (that has, e.g., cohort-specific skill-neutral technology) and H

is human capital.

Let BC(h) = E(Y |C,H = h) be the regression curve and bC(h) be its slope, i.e. the unit

treatment effect evaluated at h for a given C. The Ordinary Least Squares (OLS) estimate of

the linear relationship between Y and H can be expressed as:

βOLS
C =

∫

h
wC(h) bC(h) dh. (2)

Therefore, βOLS
C can be decomposed into unit treatment effects bC(h) and how they are weighted

20. We draw 10,000 observations of initial human capital H0 from the B(5, 1.5) distribution and calculate H1

(human capital after ten investment periods) for each observation under each of the investment regimes.
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by wC(h).

In order to highlight the specific role of skewness in the weights, we rearrange Yitzhaki’s

original formulation and write the weights as:

wC(h) =





FC,H(h)
(

1− FC,H(h)
)

σ2
C,H



×
(

EC(H|H > h)− EC(H|H ≤ h)
)

, (3)

where FC,H(h) is the cumulative density function of H evaluated at h, σ2
C,H is the associated

variance, and EC(·) denotes the expectation. The weights, wC(h), are non-negative and solely

depend on the distribution of H given C, not on the distribution of Y . As a result, the role of Y

in the construction of the OLS estimates comes only through the unit treatment effects bC(h).

The first term in brackets in expression (3) reaches its peak when FC,H(h) = 0.5, i.e., at the

center of the distribution of H. Its contribution to the weights is fairly intuitive. But under-

standing the second expression in (3) is equally important. In particular, larger differences in the

conditional expectations on either side of a given h contribute more to the OLS weights. So this

dispersion is essential for driving OLS estimates. In particular, left(right)-skewed distributions

tend to put higher (lower) weight on h’s toward the bottom of the distribution. Thus, when unit

treatment effects bC(h) differ across the distribution of H, the weighting scheme of the Yitzhaki

decomposition plays a key role in the OLS estimate βOLS
C . Of course, when the unit treatment

effects are constant, the weights do not matter in practice.

In both the empirical analyses and in the empirical simulation we conduct below, realizations

of H are discrete. Therefore, we use the discrete version of expression (2) to implement the

decomposition. Specifically, and dropping C from the notation for parsimony, we first rank

observations in increasing order of H, so h1 < h2 < · · · < hn, where n denotes the number of

distinctive realizations of H. Let Ni be the number of duplicate observations for hi and let N be

the sum of all observations: N = N1+ · · ·+Nn.
21 Then, let ∆hi = hi+1−hi and bi = ∆ȳi/∆hi.

Thus, we can think of bi as the pairwise slope or estimated unit treatment effect and the OLS

estimator can be expressed as:

βOLS =
n−1
∑

i=1

wibi, with
n−1
∑

i=1

wi = 1 and wi ≥ 0 ∀i,

21. When weighted least squares (WLS) is utilized instead of OLS, it is straightforward to extend the Yitzhaki
decomposition. See Appendix E for details.
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where the discrete weights wi can be written analogously to the continuous weights wh:

wi =
1

σ2
h

(

∑i
j=1Nj

N

) (

∑n
j=i+1Nj

N

) (

∑n
j=i+1Njhj
∑n

j=i+1Nj
−

∑i
j=1Njhj
∑i

j=1Nj

)

∆hi. (4)

Finally, consider two cohorts C1 and C2, each investing in human capital under potentially

different returns to human capital (due to, say, different technology) and potentially different

fixed investment costs. We decompose the OLS estimate obtained from equation (1) for each

cohort as:

βC1
OLS =

n−1
∑

i=1

wC1
i bC1

i and βC2
OLS =

n−1
∑

i=1

wC2
i bC2

i (5)

These expressions indicate that one can examine the changing OLS returns to AAFQT scores

across cohorts by examining whether the change is mechanically driven by changing weights,

changing pairwise slopes, or both. Moreover, because the Yitzhaki weights are only a function

of measured human capital, we can specifically examine how much the changing distribution of

human capital between the two cohorts affects the construction of the OLS estimates.

5.1 Implementing The Yitzhaki Decomposition on Simulated Data

To demonstrate how the Yitzhaki decomposition works in practice, we return to the simulation

in Section 4, where regimes can alternatively be thought of as cohorts (if the regimes occur at

different times). We project the stock of human capital H1 in each of the simulations’ regimes

onto wages by assuming that wages for each individual i are Wi = α × er×H1i × ǫi, where ǫi

is assumed to be distributed according to a standardized normal distribution (N(0, 1)), and

we generate the resulting empirical distribution of log wages for the simulated data. We then

replicate the analysis under each regime and conduct the Yitzhaki decompositions previously

described.

The difference across the regimes in the human capital investment environments simultane-

ously impacts both the Yitzhaki weights (Figure 6) and slopes (Figure 7). As the distribution

of H1 differs across regimes because of the increase in r coupled with the addition of the fixed

investment cost, Figure 6 clearly shows that more weight is allocated to the lower part of the

H1 distribution in Regimes 2(a) and 2(b) compared to Regime 1.22 Figure 7 demonstrates that

22. The difference across regimes in H1 is even more pronounced for Regime 2(b), as there is missing mass in
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the slopes are constant at 0.2 across the H1 distribution in Regime 1 but rise to 0.21 in Regimes

2(a) and 2(b). This replicates the simulation parameters in each regime for r, the returns to

investment specified in Section 4.

The slopes and weights across regimes then can be combined via the Yitzhaki decomposition

to produce the different OLS estimates, as in Equation (5). The resulting OLS estimate of β

is 0.2 in Regime 1 and 0.21 in Regimes 2(a) and 2(b), as per the simulation’s specifications.

Note that because r, the return to H1, is the same for all individuals in each regime, generating

constant slopes, the weighting structure in this simple example has no bearing on the OLS

estimate. In the real world, however, the estimated slopes are seldom identical across the skill

distribution in observational data; in fact, this will almost certainly happen with modest-sized

samples for which there are a modest number of observations at each skill level.

6 The evolution of Wage Returns to Cognitive Skills

We now turn to the more important exercise of implementing the Yitzhaki decomposition on

the actual data for the two NLSY cohorts. Figure 8 plots the Yitzhaki weights by gender for

each cohort.23 Given the similarities in the AAFQT distributions for white men and women as

seen in Figure 2, the weights – and in particular, the weight changes across cohorts – are also

alike between these groups.

Low AAFQT scores receive more weight for the NLSY–97 than for the NLSY–79. Looking

back at Figure 2 and noting equation (3), it is the increasing left-skewness of the AAFQT

distribution in the NLSY–97 that yields larger weights on low AAFQT scores for the NLSY–97

than for the NLSY–79. This is true for AAFQT scores up to around 140, about the 15th–20th

percentile. Beyond this region, for AAFQT scores up to about the 75th percentiles, weights are

higher for the NLSY–79. The weights are similar across the cohorts for the top quartile or so of

AAFQT scores.

Examining how the Yitzhaki weights differ across cohorts does not alone explain why, me-

chanically, the estimated OLS returns to AAFQT are lower in the NLSY–97 relative to the

Regime 2(b) because the lowest 5% of H0 who are constrained by the fixed cost to make no further human capital
investments fall behind the rest of the human capital distribution.
23. To make the graphs more readable, we collapse AAFQT scores into bins containing three consecutive AAFQT

points. We also overlay the binned weights with local linear regression curves estimated using Locally Weighted
Scatterplot Smoothing (LOWESS) with a tricube weighting function and a bandwidth of 0.1 unless otherwise
noted.
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NLSY–79. As is apparent from equation (5), studying how the Yitzhaki weights work together

with the pairwise slopes is critical for understanding this result. Figure 9 again depicts the

(smoothed) Yitzhaki weights in each cohort, this time overlayed with smoothed pairwise slopes

(the bi’s).
24 While the weights look similar between white men and women, the slopes reveal

distinctive patterns.

For the sample of white men (top panel of Figure 9), the gradient of the relationship between

AAFQT and log wages remains upward-sloping and relatively constant through much of the

AAFQT distribution for the NLSY–79 cohort (except perhaps at the very top and very bottom–

places where local linear regression performs less well). This leads to what appears to be a

positive and essentially linear relationship between AAFQT and log wages for white men in the

NLSY–79.

The gradient for white men in the NLSY–97 cohort is less stable; particularly, it has flat

spots at various points in the distribution, especially for AAFQT scores in the 110 to 140 range

(approximately the 5th–20th percentile) and the 170-180 range (around the median) . This

region of AAFQT scores also displays large weights in the NLSY–97, implying that here the

lower OLS estimate of the wage return to AAFQT is driven primarily by these flat spots in the

local linear regression.

By contrast, the slopes for white women displayed in the bottom panel of Figure 9 are

characterized by a constant gradient across much of the AAFQT distribution for both cohorts.

Moreover, for much of the AAFQT distribution, the gradients between the two cohorts look

quite similar. One exception emerges for AAFQT scores between 140 to 160 points, where the

gradient is flat or slightly negative for the NLSY–97. Another exception is at the top of the

AAFQT distribution (above the 75th percentile): the gradient for the NLSY–97 flattens out

while the gradient for the NLSY–79 increases. This nonlinear pattern differs from that of white

men in the NLSY–97 cohort. As discussed in the following subsection, this result is crucial in

explaining the distinction between white women and men in the counterfactual OLS estimates.

To better understand how the different parts of the AAFQT distribution contribute to the

OLS estimates of the wage returns to AAFQT, the left panels of Figure 10 displays the pro-

gressive sum of the Yitzhaki decomposition from equation (5), starting with the lowest AAFQT

score until the entire sum is calculated (producing the OLS estimate).25

24. A bandwidth of 0.3 is used for smoothing the pairwise slopes.
25. For each AAFQT score hk from h1 to hn−1, we calculate and graph for each cohort c the cumulative sum of
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The top left panel presents the results for white men. The contributions of the lowest AAFQT

scores to the OLS estimates are not markedly different across cohorts. However, the progressive

sums from the Yitzhaki decomposition begin to permanently diverge at an AAFQT score of

around 110 (5th percentile), at which point the Yitzhaki sum for the NLSY–79 cohort rises

quickly and continuously until it reaches its final level of 0.68. In contrast, the Yitzhaki sum

for the NLSY–97 stays low until around an AAFQT score of 150 (25th percentile). It then rises

quickly, only to fall again in the 160 to 180 points range before recovering and reaching its final

level of 0.46. This is (not surprisingly) consistent with Figure 9, where the flat slopes for the

NLSY–97 play a large role in depressing the NLSY–97 OLS estimate relative to the NLSY–79

estimate.

The bottom left panel of Figure 10 reports the results for white women. The Yitzhaki sums

of the two cohorts move almost in tandem and remain close to each other for much of the

AAFQT distribution, with two noticeable exceptions. First, the Yitzhaki sum for the NLSY–97

cohort stops rising when reaching around 150 points but then quickly catches up. Second, at

an AAFQT score of around 195 points (75th percentile), the Yitzhaki sums of the two cohorts

are still very close; then they diverge again. The sum for the NLSY–79 cohort continues to

rise, eventually reaching its OLS estimate level of 0.83. In contrast, for the NLSY–97 cohort, it

stays largely constant after the 195 points before reaching its final level of 0.79. This, again, is

consistent with Figure 9, where the gradients of the local linear regression diverge between the

two cohorts at the top of the AAFQT distribution.26

6.1 Counterfactual OLS Estimates

Given the different OLS wage returns to AAFQT and the changing AAFQT distributions be-

tween the NLSY–79 and NLSY–97 cohorts, we ask the following counterfactual question: Would

the OLS returns to AAFQT have changed between the two cohorts if the distribution of AAFQT

had not changed (holding wages at their observed values)? Or, equivalently: Would the OLS

the Yitzhaki decomposition:

k
∑

i=1

w
c
i b

c
i , k = 1, . . . , n− 1

We graph the progressive sum by three-point bins and use a bandwidth of 0.3 for smoothing.
26. Appendix C contains results and discussion for the Yitzhaki decomposition applied to the NELS/ELS data

described in Section 3.1.
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returns to AAFQT have changed if the Yitzhaki weights had been held fixed across the cohorts

but the observed pairwise slopes had still been realized? To the best of our knowledge, this is

the first time the Yitzhaki decomposition has been used to consider this kind of counterfactual

comparison.

We answer this question by decomposing the observed difference between β79
OLS and β97

OLS

as:

β79
OLS − β97

OLS =
(

β79
OLS − β97

OLS |w
79
)

+
(

β97
OLS |w

79 − β97
OLS

)

,

=
n−1
∑

i=1

w79
i (b79i − b97i ) +

n−1
∑

i=1

(w79
i − w97

i )b97i . (6)

The first term in equation (6) is the counterfactual difference in the OLS estimates, holding

fixed the AAFQT distribution (and the corresponding Yitzhaki weights) at the NLSY–79 level.27

We first present the counterfactual estimates for white men. Using expression (6), the OLS

decline of 0.21 points for white men (as reported in Figure 1) can be decomposed as:

β79
OLS − β97

OLS =
(

0.677− 0.689
)

+
(

0.689− 0.464
)

(7)

= −0.012 + 0.225

The first term is the counterfactual change in returns holding the Yitzhaki weights at NLSY–

79 levels, a counterfactual that finds for white men that the returns to AAFQT scores stayed

basically unchanged across the cohorts (an increase of 0.012 points). This finding highlights

the critical role of the changing composition of AAFQT scores in the narrative that there has

been a decline in the return to cognitive skills. When we use the weighting structure generated

by the AAFQT distribution in the older cohort (NLSY–79) to calculate the (linear) returns to

cognitive skills, we find no evidence that the returns have declined for white men.

We gain further insight into the mechanics behind this by again graphing cumulative contri-

27. An alternative decomposition is:

β
79
OLS − β

97
OLS =

(

β
79
OLS − β

79
OLS |w

97
)

+
(

β
79
OLS |w

97 − β
97
OLS

)

=
∑

i

(w79
i − w

97
i )b79i +

∑

i

w
97
i (b79i − b

97
i ),

The second term is the counterfactual difference in the OLS estimates, holding fixed the AAFQT distribution at
the NLSY–97 level.
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butions, this time comparing the counterfactual cumulative contributions for NLSY–97 (0.689)

to the NLSY–79 OLS estimate (0.677). This is graphed in the top right panel of Figure 10. In

contrast to the top left panel of OLS results, here, the counterfactual NLSY–97 sum exceeds

the actual NLSY–79 OLS sum for a good portion of AAFQT scores below the median, as the

larger NLSY–79 weights pull up the cumulative sum enough (relative to the NLSY–97 weights)

to overtake the overall NLSY–79 sum. The two sums in the top right panel end up converging

again above around the median AAFQT score, and increase in tandem thereafter.

The counterfactual estimates for white women are in stark contrast to those of white men.

For this groups, we decompose the OLS decline (of 0.04 points), again holding the Yitzhaki

weights at NLSY–79 levels:

β79
OLS − β97

OLS =
(

0.830− 0.702
)

+
(

0.702− 0.789
)

(8)

= 0.128− 0.087

The counterfactual estimate, the first term, indicates that the wage return to AAFQT scores

went down for white women by 0.128 points. This counterfactual estimate for white women,

like that for men, deviates from the actual OLS result. Still, unlike for men, both the OLS and

counterfactual estimates show declines across the cohorts. The bottom right panel of Figure 10

shows that the cumulative sum for the counterfactual NLSY–97 estimate only falls below the

NLSY–79 OLS cumulative sum in the top quarter or so of the AAFQT distribution; otherwise,

the two curves are very similar. More generally, the absolute magnitude of the overall difference

between the actual NLSY–97 OLS estimate and the counterfactual estimate is much smaller for

women than for men. This is consistent with the results in Figure 9 and the left panels of Figure

10, where the observed differences for women across the cohorts are much less stark than for

men.

7 Conclusion

Understanding the labor market returns to education and skills has been critically important in

empirical labor economics (Becker 1964). This process is facilitated by a growing availability of

datasets, such as the NLSY, that contain measures of both labor market outcomes and different

dimensions of skills.
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Using the (in our view, under-appreciated) Yitzhaki decomposition in various ways, we

demonstrate how one can understand the mechanics behind changing estimated returns to

AAFQT scores across two NLSY cohorts of white men and women. Of particular substan-

tive empirical importance, we show that for white men in the NLSY, the estimated decline in

the return to AAFQT scores critically depends on changes in the distribution of AAFQT scores

between the two cohorts and in particular on the widening (and increased left-skewness) of the

AAFQT distribution in the NLSY–97.

To the extent that returns to cognitive skills did decline for the white men in our sample, the

Yitzhaki weights and the accompanying unit slopes show that they did so only at the lower part

of the AAFQT distribution. In contrast, the returns to AAFQT for white women are relatively

constant across the cohorts, so changes in the AAFQT distribution for these women did not

affect the estimated returns much.

It is natural to contemplate the underlying economic reasons behind concurrent changes in

the distribution of cognitive skill and their wage returns across cohorts. From a theoretical

perspective, any economic model that seeks to rationalize the results for changing wage returns

should not focus solely on the determinants of the returns (such as changing technology on the

demand side or changing labor market experience on the supply side) but also should address

how and why the distributions of cognitive skill are affected by underlying economic drivers of

skill investment. We illustrate this point by introducing a model of endogenous skill investment.

Within its framework, we show that the cognitive skill distribution (as observed in NLSY) can be

the result of changing wage returns–arising from an external factor like changing technology–and

the structure of investment costs.28

The intrinsic link between changing estimated wage returns to cognitive skill and the chang-

ing distribution of those skills across NLSY cohorts strongly suggests that close attention be

paid to the dramatically changing skill distribution of recent cohorts of American youth, and, in

a few years, to understanding the link between these recent changes and subsequent adult labor

market returns.

28. Practically, the NLSY samples are small–there are between 1400 and 2200 people in each of the four subgroups
in our analysis. This severely limits possibilities for using the NLSY to test theories that endogenize both
heterogeneous skill investment and labor market returns. Administrative data matching students’ standardized
test scores to later-life labor market outcomes is a more promising data source for future research.
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Heckman, James, Jora Stixrud, and Sergio Urzúa. 2006. “The Effects of Cognitive and Noncog-

nitive Abilities on Labor Market Outcomes and Social Behavior.” Journal of Labor Eco-

nomics.

Ing, Pamela, Carole Lunney, and Randall Olsen. 2012. “Reanalysis of the 1980 AFQT Data

from the NLSY79.” Center for Human Resource Research Working Paper.

Jacob, Brian, and Jesse Rothstein. 2016. “The Measurement of Student Ability in Modern

Assessment Systems.” Journal of Economic Perspectives.

Juhn, Chinhui, Kevin Murphy, and Brooks Pierce. 1993. “Wage Inequality and the Rise in

Returns to Skill.” Journal of Political Economy.

Junker, Brian, Lynne Schofield, and Lowell Taylor. 2012. “The use of cognitive ability measures

as explanatory variables in regression analysis.” IZA Journal of Labor Economics.

Katz, Lawrence, and David Autor. 1999. “Changes in the wage structure and earnings inequal-

ity.” In Handbook of Labor Economics, vol. 3. Elsevier.

Laughlin, Lynda L. 2013. Who’s Minding the Kids? Child Care Arrangements. Technical report.

23



NAEP. 2005. NAEP 2004 Trends in Academic Progress: Three Decades of Student Performance

in Reading and Mathematics. Technical report.

. 2023. U.S. Department of Education, Institute of Education Sciences, National Center

for Education Statistics, National Assessment of Educational Progress (NAEP), various

years, 1971–2023 Long-Term Trend (LTT) Reading and Mathematics Assessments. Tech-

nical report.

Neal, Derek, and William Johnson. 1996. “The role of premarket factors in black-white wage

differences.” Journal of Political Economy.
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Table 1: OLS estimates for White Men and Women

White Men White Women

NLSY–79 NLSY–97 NLSY–79 NLSY–97

Panel A: Univariate Regression

AAFQT 0.677*** 0.463*** 0.830*** 0.789***
[0.035] [0.043] [0.036] [0.048]

Change from NLSY–79 –0.212*** –0.041
[0.055] [0.060]

Obs 2099 1584 2191 1488

Panel B: Control for Non-cognitive & Social Skills

AAFQT 0.605*** 0.452*** 0.761*** 0.768***
[0.036] [0.043] [0.038] [0.047]

Change from NLSY–79 –0.153*** 0.007
[0.056] [0.061]

Obs 2099 1584 2191 1488

Panel C: Control for Education

AAFQT 0.404*** 0.161*** 0.437*** 0.315***
[0.042] [0.051] [0.044] [0.054]

Change from NLSY–79 –0.243*** –0.122*
[0.067] [0.069]

Obs 2099 1584 2191 1488

Panel D: Control for Non-cognitive & Social Skills & Education

AAFQT 0.363*** 0.174*** 0.406*** 0.321***
[0.043] [0.050] [0.044] [0.053]

Change from NLSY–79 –0.188*** –0.085
[0.066] [0.069]

Obs 2099 1584 2191 1488

Note: We present OLS estimates of the wage returns to AAFQT scores (con-
corded by Altonji et al. (2012)). Panel A presents results for the univariate
regression in equation (1). Panel B controls for measures of non-cognitive skills
and social skills (created by Deming (2017)). Panel C controls for the high-
est grade completed. Panel D controls for both measures of non-cognitive and
social skills, and the highest grade completed. We present results separately
for NLSY–79 and NLSY–97, and for white non-Hispanic men and white non-
Hispanic women. We also present the estimated change in the OLS estimates
across cohorts. BLS custom sample weights are used. * p < 0.10, ** p < 0.05,
*** p < 0.01.
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Table 2: Distribution Statistics of AAFQT score

White Men White Women

NLSY–79 NLSY–97 NLSY–79 NLSY–97

Mean 172.7 173.4 173.3 175.4
S.D. 29.0 29.8 26.0 26.2
Skewness -0.62 -0.81 -0.55 -0.77
Kurtosis 2.57 3.12 2.79 3.39

p1 104 94 106 103
p5 118 113 124 122
p10 130 129 137 140
p25 154 155 156 161
p50 178 179 176 179
p75 197 196 194 194
p90 207 208 205 206
p95 210 213 210 212
p99 217 217 217 217

Test of Equal Distribution p < 0.01 p < 0.01

Note: Distribution statistics of AAFQT scores (concorded by Altonji et al. (2012))
are presented for the two NLSY cohorts, and for white non-Hispanic men and
white non-Hispanic women. BLS custom sample weights are used. For the test
of equal distributions between NLSY–79 and NLSY–97, we report p-values of the
chi-squared test.
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Table 3: Bootstrap Results, White Non-Hispanic Men and Women

Observed difference Bootstrap Normal based
NLSY97 – NLSY79 std. err. z p-value [95% conf. interval]

White Non-Hispanic Men

Mean 0.77 0.85 0.91 0.36 -0.89 2.44
S.D. 0.82 0.57 1.44 0.15 -0.30 1.94
Skewness -0.19 0.05 -3.82 0.00 -0.09 -0.29
Kurtosis 0.55 0.13 4.25 0.00 0.30 0.80
p1 -10 3.30 -3.03 0.00 -16.46 -3.54
p5 -5 2.34 -2.14 0.03 -9.58 -0.42
p10 -1 1.91 -0.52 0.60 -4.74 2.74
p25 1 1.86 0.54 0.59 -2.66 4.66
p50 1 1.19 0.84 0.40 -1.33 3.33
p75 -1 0.98 -1.02 0.31 -2.92 0.92
p90 1 1.06 0.94 0.35 -1.08 3.08
p95 3 0.56 5.32 0.00 1.89 4.11
p99 0 0.48 0.00 1.00 -0.95 0.95

White Non-Hispanic Women

Mean 2.09 0.75 2.79 0.01 0.62 3.56
S.D. 0.16 0.57 0.28 0.78 -0.95 1.27
Skewness -0.22 0.06 -3.78 0.00 -0.11 -0.34
Kurtosis 0.59 0.16 3.73 0.00 0.28 0.90
p1 -3 3.40 -0.88 0.78 -0.95 1.27
p5 -2 2.59 -0.77 0.44 -9.67 3.67
p10 3 2.54 1.18 0.24 -1.97 7.97
p25 5 1.26 3.98 0.00 2.54 7.46
p50 3 1.04 2.88 0.00 0.96 5.04
p75 0 1.06 0.00 1.00 -2.08 2.08
p90 1 1.17 0.85 0.39 -1.29 3.29
p95 2 0.82 2.43 0.02 0.38 3.62
p99 0 0.97 0.00 1.00 -1.90 1.90

Note: We bootstrap 2,000 times to construct standard errors, p-values, and confidence
intervals for the cross-cohort difference in distribution statistics of AAFQT scores (concorded
by Altonji et al. (2012)). We present the results separately for white non-Hispanic men and
white non-Hispanic women. BLS custom sample weights are used.
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Table 4: Distribution Statistics of 12th-grade
Math Score in NELS:88 and ELS:02

White Men White Women

NELS ELS NELS ELS

Mean 51.6 55.4 50.1 53.1
S.D. 14.1 13.6 13.6 12.6
Skewness -0.25 -0.59 -0.24 -0.46
Kurtosis 2.07 2.60 2.19 2.49

p1 22.1 22 21.5 23.2
p5 27.5 28.7 26 29.3
p10 31.4 34.7 30.2 34.1
p25 40.9 46.9 40.3 45
p50 53.2 57.6 51 54.7
p75 63.7 65.9 61.3 62.9
p90 69.5 71.7 67.5 68.5
p95 72.2 73.8 70.3 71
p99 76 77 74.4 75.1

Note: We present the distribution statis-
tics for 12th-grade math scores separately
for NELS:88 and ELS:02, and for white
non-Hispanic men and white non-Hispanic
women. Sample weights are used.
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Figure 1: OLS Estimates of the Wage Returns to AAFQT

(a) White Non-Hispanic Men

OLS estimate NLSY-79:        0.677 (S.E.=0.035)
OLS estimate NLSY-97:        0.464 (S.E.=0.043)
Change in OLS estimates:   -0.212 (S.E.=0.055)
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(b) White Non-Hispanic Women

OLS estimate NLSY-79:        0.830 (S.E.=0.036)
OLS estimate NLSY-97:        0.789 (S.E.=0.048)
Change in OLS estimates:   -0.041 (S.E.=0.060)
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Note: In each figure, we plot the average log wages against each value of AAFQT
scores separately for the two cohorts. The wage observations are from ages 25–39.
AAFQT scores are concorded by Altonji et al. (2012). The OLS estimates and the
fitted lines are based on the univariate regression in equation (1). See A Table 1 for
the full regression results without and with covariates. We multiply log wages by 100
for ease of display. BLS custom sample weights are used.
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Figure 2: Adjusted AFQT Distribution for White Non-Hispanic Men and Women

(a) White Non-Hispanic Men
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  NLSY-79:   Mean = 172.7, SD = 29.0, Skewness = -0.62, p1 = 104, p5 = 118, p10 = 130, p50 = 178
  NLSY-97:   Mean = 173.4, SD = 29.8, Skewness = -0.81, p1 = 94,   p5 = 113, p10 = 129, p50 = 179

(b) White Non-Hispanic Women
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  NLSY-79:   Mean = 173.3, SD = 26.0, Skewness = -0.55, p1 = 106, p5 = 124, p10 = 137, p50 = 176
  NLSY-97:   Mean = 175.4, SD = 26.2, Skewness = -0.77, p1 = 103, p5 = 122, p10 = 140, p50 = 179

Note: In each figure, we plot the density of AAFQT scores separately for the two
cohorts. AAFQT scores are concorded by Altonji et al. (2012). At the bottom of
each figure, we present distribution statistics for each cohort. See Tables 2 and 3 for
a full list of distribution statistics and tests for cross-cohort changes. BLS custom
sample weights are used.
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Figure 3: Distribution of 12th-grade Math Score, NELS and ELS

(a) White Non-Hispanic Men
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  NELS-88:   Mean = 51.6, SD = 14.1, Skewness = -.25, p1 = 22, p5 = 27, p50 = 53
  ELS-02:     Mean = 55.3, SD = 13.6, Skewness = -.58, p1 = 22, p5 = 28, p50 = 57

(b) White Non-Hispanic Women
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  NELS-88:   Mean = 50,   SD = 13.5, Skewness = -.24, p1 = 21, p5 = 26, p50 = 51
  ELS-02:     Mean = 53.1, SD = 12.6, Skewness = -.45, p1 = 23, p5 = 29, p50 = 54

Note: In each figure, we plot the density of 12th-grade math scores separately for the
two cohorts. NELS-equated math scores are used. At the bottom of each figure, we
present distribution statistics for each cohort. See Tables 4 for a full list of distribution
statistics. Sample weights are used.
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Figure 4: Cost function q(I)
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Figure 5: Simulated distribution of H1 before (regime 1) and after (regime 2) change in produc-
tivity
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Figure 6: Simulated Yitzhaki weights w(H1) before (regime 1) and after (regime 2) change in
productivity
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Figure 7: Simulated Yitzhaki slopes b(H1) before (regime 1) and after (regime 2) change in
productivity
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Figure 8: Yitzhaki Weights

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we plot the Yitzhaki weights using the formula in equation
(4), separately for the two NLSY cohorts. The binned scatterplots are created by
summing up Yitzhaki weights in each bin, which contains three consecutive AAFQT
points. The smoothed curve is created using Locally Weighted Scatterplot Smoothing
(LOWESS) with a tricube weighting function and a bandwidth of 0.1. See Appendix E
for how BLS custom sample weights are incorporated in the Yitzhaki decomposition.
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Figure 9: Smoothed Yitzhaki Weights and Local Linear Regression

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we overlay the smoothed Yitzhaki weights (right axis)
with smoothed pairwise slopes (left axis), separately for the two NLSY cohorts.
The smoothed curves are created using Locally Weighted Scatterplot Smoothing
(LOWESS) with a tricube weighting function. To make the graphs more readable,
a bandwidth of 0.1 and 0.3 is used for smoothing the weights and the slopes respec-
tively. See Appendix E for how BLS custom sample weights are incorporated in the
Yitzhaki decomposition. 35



Figure 10: Cumulative Contributions to Actual & Counterfactual OLS Estimates

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women

-.
2

0
.2

.4
.6

.8

C
u

m
u

la
ti
v
e

 C
o

n
tr

ib
u

ti
o

n
s

75 100 125 150 175 200 225

AAFQT bin

NLSY-79: binned NLSY-97: binned

NLSY-79: smoothed NLSY-97: smoothed

OLS 79 and OLS 97

-.
2

0
.2

.4
.6

.8
C

u
m

u
la

ti
v
e

 c
o

n
tr

ib
u

ti
o

n
 t

o
 O

L
S

75 100 125 150 175 200 225
AAFQT bin

NLSY-79: binned NLSY-97 w/ Weight79: binned

NLSY-79: smoothed NLSY-97 w/ Weight79: smoothed

OLS 79 and Counterfactual 97

Note: In each figure, we graph the progressive sum of the Yitzhaki decomposition from equation (5), starting with
the lowest AAFQT score until the entire sum is calculated (producing the OLS estimate). The top left and bottom
left panels plot the progressive sum for the actual OLS estimates of the two cohorts. The top right and bottom
right panels plot the counterfactual estimate for NLSY–97 (using NLSY–97 weights) with the actual NLSY–79
OLS estimate. We graph the progressive sum by three-point bins and use a bandwidth of 0.3 for smoothing. See
Appendix E for how BLS custom sample weights are incorporated in the Yitzhaki decomposition.
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Appendices

A Optimal Investment and Supplemental Score Distributions

Figure A.1: The Optimization Problem and Optimal Investment I∗
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Figure A.2: Residualized AAFQT Distribution for White Non-Hispanic Men and Women

(a) White Non-Hispanic Men
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  NLSY-79:   Mean = 172.6, SD = 22.2, Skewness = -0.37, Kurtosis: 2.90, p1 = 116, p5 = 133, p50 = 175
  NLSY-97:   Mean = 173.4, SD = 25.4, Skewness = -0.75, Kurtosis: 3.47, p1 = 104, p5 = 122, p50 = 178

(b) White Non-Hispanic Women
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  NLSY-79:   Mean = 173.3, SD = 20.6, Skewness = -0.32, Kurtosis: 3.01, p1 = 124, p5 = 138, p50 = 175
  NLSY-97:   Mean = 175.4, SD = 22.6, Skewness = -0.66, Kurtosis: 3.49, p1 = 110, p5 = 132, p50 = 178

Note: In each figure, we plot the density of residualized AAFQT scores separately
for the two NLSY cohorts. AAFQT scores (Altonji et al. 2012) are residualized by
measures of non-cognitive and social skills (Deming 2017), and the highest grade
completed. At the bottom of each figure, we present distribution statistics for each
cohort. BLS custom sample weights are used.
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Figure A.3: Adjusted ASVAB subsection scores for White Non-Hispanic Men and Women

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we plot the density of four ASVAB subsection scores, separately for
the two NLSY cohorts. The four subsections (Arithmetic Reasoning, Word Knowledge,
Paragraph Comprehension, and Numerical Operation) are used to create the AFQT score.
We adjust each subsection score following Altonji et al. (2012). See Appendix B for a
discussion of other versions of the AFQT score. BLS custom sample weights are used.

39



Table A.1: Distribution Statistics of Arithmetic Reasoning score

White Men White Women

NLSY–79 NLSY–97 NLSY–79 NLSY–97

Mean 51.2 50.5 48.5 49.4
S.D. 9.5 10.0 9.0 9.2
Skewness -0.15 -0.26 0.21 -0.03
Kurtosis 1.91 2.21 2.09 2.20

p1 32 28 32 30
p5 35 33 35 35
p10 38 36 36 38
p25 43 43 42 43
p50 51 51 47 50
p75 59 59 55 57
p90 64 64 62 62
p95 65 65 64 64
p99 66 66 66 66

Test of Equal Distribution p < 0.01 p < 0.01

Note: Distribution statistics of ASVAB’s subsection Arithmetic Reasoning scores
(concorded by the authors following Altonji et al. (2012)) are presented for the two
NLSY cohorts, and for white non-Hispanic men and white non-Hispanic women.
BLS custom sample weights are used. For the test of equal distributions between
NLSY–79 and NLSY–97, we report p-values of the chi-squared test.
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Table A.2: Distribution Statistics of 12th- and 10th-grade Math Score in NELS
and ELS, Non-Hispanic Whites

12th Grade 10th Grade

White Men White Women White Men White Women

NELS ELS NELS ELS NELS ELS NELS ELS

Mean 51.63 55.37 50.08 53.11 46.52 49.95 45.54 48.20
S.D. 14.12 13.60 13.57 12.62 13.75 12.96 13.24 12.03
Skewness -0.25 -0.59 -0.24 -0.46 -0.16 -0.40 -0.16 -0.31
Kurtosis 2.07 2.60 2.19 2.49 1.96 2.49 2.09 2.40

p1 22.1 22 21.5 23.2 19.8 19.4 19.1 20.6
p5 27.5 28.7 26 29.3 23.7 26.1 23.3 26.7
p10 31.4 34.7 30.2 34.1 27 31.3 26.5 31.1
p25 40.9 46.9 40.3 45 34.9 41.2 35.3 39.5
p50 53.2 57.6 51 54.7 47.8 51.7 46.4 49.4
p75 63.7 65.9 61.3 62.9 57.7 59.8 56.3 57.5
p90 69.5 71.7 67.5 68.5 64.4 65.4 62.8 63.1
p95 72.2 73.8 70.3 71 67.3 68.8 65.8 65.8
p99 76 77 74.4 75.1 70.4 74 70 70.9

Note: We present the distribution statistics of 12th-grade and 10th-grade math
scores separately for NELS:88 and ELS:02, and for white non-Hispanic men and
white non-Hispanic women. We use the NELS-equated math scores created by
NCES. Sample weights are used.
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B Notes on the Armed Forces Qualification Test (AFQT)

The Armed Forces Qualification Test (AFQT) score is constructed based on multiple sections

of the Armed Services Vocational Aptitude Battery (ASVAB), a set of tests developed by the

Department of Defense (DOD) for screening military enlistees and assigning them to military

occupations. Economists have long been using the AFQT score as well as other parts of the

ASVAB to measure skills and abilities (Neal and Johnson, 1996; Heckman et al. 2006; Altonji

et al., 2012; Prada et al. 2017). This is facilitated by the NLSY–79 and the NLSY–97, as survey

respondents took the ASVAB. There are two existing versions of the AFQT: AFQT–80 and

AFQT–89. The former, AFQT–80 scores, form the basis of the AAFQT scores we use for our

analysis, as in Altonji et al. (2012), Castex et al. (2014), and Deming (2017). AFQT–80 is

the summation of scores on four sections of the ASVAB: arithmetic reasoning (AR), numerical

operations (NO), paragraph comprehension (PC), and word knowledge (WK). The formula is

AFQT–80 = AR + 0.5*NO + PC + WK.

Additional background information on the Armed Forces Qualification Test (AFQT) can be

found in: the manuscript by Altonji et al. (2009), a technical bulletin by Defense Manpower

Data Center (2006) which includes several chapters from Sands et al. (1997), annual reports on

population representation in the military services (e.g. Quester et al. 2017), and the introduction

on the NLSY website (Bureau of Labor Statistics; Bureau of Labor Statistics). We draw from

these sources in some of the discussions below.

The ASVAB shifted from a paper-based to a computer-based test starting at a large scale

in 1996–1997, after about two decades of research and evaluation. The NLSY–97 respondents

took the computer-based test, while the NLSY–79 respondents took the paper-based test. In

the paper-based test, all respondents received the same set of questions. The computer-based

test is adaptive, so that a correct answer a respondent gives to one question leads to a more

difficult subsequent question, whereas the opposite is true for a wrong answer. This adaptive

feature means that different test-takers can receive different sets of questions and with different

orderings. The raw count of correct answers is therefore no longer directly comparable across

test-takers. Instead, item response theory (IRT) models are used to construct estimates of ability

and skill (also called “thetas”) for each test-taker of the computer-based ASVAB. These IRT

estimates are supposed to be comparable across test-takers.29

29. Two sections, numerical operations and coding speed, in the computer-based ASVAB are administered in a
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Due to the test format change, the military needed a new benchmark for the computer-based

ASVAB. As the NLSY–97 respondents were 12-17 when first interviewed in 1997, and some were

deemed too young for the purpose of benchmarking military enlistees, two other nationally repre-

sentative samples were identified to complete the computer-based ASVAB during the NLSY–97

screening process. The first sample, the Student Testing Program (STP), consisted of students

who expected to be in grades 10–12 in the fall of 1997. Included were many respondents who

also participated in the NLSY–97, as well as youth who refused to participate in or were not

eligible for the NLSY–97. The second sample, the Enlistment Testing Program (ETP), was

a nationally representative sample of youth aged 18–23 as of June 1997. The ASVAB perfor-

mance of respondents in these two samples (again, which includes some NLSY–97 respondents)

was then used to benchmark the computer-based ASVAB for the military.

Concordance of different formats of ASVAB

A practical issue coming from ASVAB’s format change is how to concord the paper-based and

computer-based test scores. This is of significant importance for the military because, ideally,

the selection criteria into the Armed Forces should be held broadly consistent before and after

the test format change. This is also extremely important for researchers because otherwise

the AFQT score and the ASVAB subsection scores, as measures of skills and abilities, are not

comparable between the NLSY–79 and the NLSY–97 cohorts (Altonji et al. 2012).

Daniel Segall, a researcher at the DOD specializing in psychometrics, developed a mapping

between the paper-based and computer-based ASVAB scores (Segall 1997). He drew a sample

of military applicants in two rounds, in 1988 (N=8,040) and from 1990 to 1992 (N=10,379).

In each round, one-third of the participants were randomly assigned to take the paper-based

ASVAB, and the other two-thirds took the computer-based ASVAB. Using the test performance

of these military applicants, Segall created a mapping to link each computer-based ASVAB

component score to a paper-based ASVAB component score. Since the computer-based ASVAB

scores (”thetas” estimated from IRT models) are continuous and the paper-based ASVAB scores

(counts of correct answers) are discrete by construction, Segall applied certain smoothing and

grouping to the score distributions in the mapping procedure. For further technical details, see

non-adaptive format (that is, everyone answers the same questions in the same order). The scores of these two
sections are therefore not “thetas” estimated from IRT. However, the two sections are still done on computers, so
the scores are not directly comparable to the scores of the paper version of the same sections.
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Segall (1997).

In their efforts to concord the AFQT score between the NLSY–79 and the NLSY–97, Altonji

et al. (2012) relied heavily on Segall’s mapping. Since the mapping is not publicly available, the

authors sent the computer-based ASVAB subsection IRT scores in the NLSY–97 to Segall, who

mapped the scores into paper-based scores so that they could directly be compared to the scores

of the NLSY–79 respondents. With the scores from Segall in hand, the authors adjusted for

one more important difference between the two NLSY cohorts: test-taking ages. The NLSY–79

respondents were around ages 15–23 and the NLSY–97 respondents were around ages 12–18

when they took the ASVAB. On average, ASVAB performance improves as people age, so it is

critical to address the differential test-taking ages both within and across cohorts.

To construct the mapping across ages, the authors exploited the fact that both cohorts have

a nontrivial share of respondents taking the ASVAB at age 16. Under the (somewhat strong)

assumption that a person’s ranking in the AFQT score distribution does not vary with age, the

authors mapped a person at age X (which is not 16) to the score distribution of age 16 by their

ranking in the score distribution of age X. For example, if a youth in the NLSY–79 took the test

at age 20 and ranked the 25th percentile within the AFQT score distribution of age 20, the youth

will be mapped to have the 25th percentile score of the age-16 distribution in the NLSY–79.

This relies on the assumption that whoever is at the 25th percentile in the score distribution

at age 16 will remain at the 25th percentile at age 20. Whether this rank-invariant assumption

holds remains to be analyzed and tested. More details can be found in Altonji et al. (2009).30

In Figures B.1, we graph the distribution of the original IRT-based scores (called “thetas”) for

three of the four different ASVAB sections for the NLSY–97 cohort. As a reminder, these scores

are original to the NLSY–97 data and were not further processed to concord to the 1979 cohort.

We also graph the IRT-based scores for the NLSY–79 cohort that were constructed after-the-fact

from the original paper-based tests by researchers from the Ohio State University.31

The divergence and increased skewness of scores in the NLSY–97 IRT-based scores relative

to NLSY–79 scores are visible in different sections (especially Word Knowledge and Paragraph

Comprehension) of Figures B.1, suggesting that changes in the AAFQT scores across the cohorts

do not seem to be a function of the concordance that was done to create AAFQT-equivalent

30. The adjusted AFQT score created by Altonji et al. is what we referred to as the AAFQT score in the main
text.
31. See Ing et al. (2012) for details. IRT-based scores are not available for the numerical operations section of

ASVAB in the NLSY–79.
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scores for the 1997 cohort. That said, it is not obvious whether the “thetas” are directly

comparable between the NLSY–79 and the NLSY–97, for at least three reasons. First, we do

not know if the IRT models and estimation methods used for the two cohorts are the same.

Second, even if the models and methods are the same, the raw data imported to the models

may still not be comparable due to the different test formats used. Third, there is a strong hint

that something is amiss in the IRT scores for the NLSY–97.

Figure B.2 plots the standard errors of the estimated IRT scores (“thetas”) for different

ASVAB sections. As pointed out in past studies (Schofield 2014; Jacob et al. 2016), “thetas” in

IRT models are more precisely estimated for the middle of the distribution, leading to a non-

classical measurement error structure with larger errors at the tails. This particular measurement

error issue is a feature of the IRT, generally, and not just for NLSY datasets (Jacob et al. 2016).

The error structure of the thetas in the NLSY–79 is generally symmetric, and the standard errors

are minimized toward the middle of the distribution, exactly as expected from the IRT model.

What is odd is that in the NLSY–97, the distribution of the standard errors is not symmetric

nor minimized around the middle of the theta distribution.32

32. We thank Dan Black for pointing this out to us.
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Figure B.1: IRT-based ASVAB subsection scores for White Non-Hispanic Men and Women
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(b) White Non-Hispanic Women
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Note: In each figure, we plot the density of IRT-based ASVAB subsection scores
(“thetas”), separately for the two cohorts. The NLSY–97 scores are original to the
NLSY–97 data and not further processed to concord to the 1979 cohort. The NLSY–
79 scores are constructed after-the-fact from the original paper-based tests by re-
searchers from the Ohio State University (Ing et al. 2012). The IRT-based score for
the Numerical Operation subsection is not available for the NLSY–79. BLS custom
sample weights are used.
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Figure B.2: Standard Errors of IRT-based ASVAB subsection scores for White Non-Hispanic
Men and Women

(a) White Non-Hispanic Men
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(b) White Non-Hispanic Women
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Note: In each figure, we plot the standard errors of the estimated IRT scores
(“thetas”) for different ASVAB sections, separately for the two cohorts. The NLSY–
97 scores are original to the NLSY–97 data and not further processed to concord to
the 1979 cohort. The NLSY–79 scores are constructed after-the-fact from the origi-
nal paper-based tests by researchers from the Ohio State University (Ing et al. 2012).
The IRT-based score for the Numerical Operation subsection is not available for the
NLSY–79. BLS custom sample weights are used.
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C Results from the Yitzhaki Decomposition Using NELS/ELS

Data

In this section we provide evidence on the returns to cognitive skills using the NELS/ELS NCES

data (described in Section 3.1). Specifically, we examine how changes in the distribution of 12th-

grade math scores across the NELS/ELS cohorts contribute to changing OLS estimates of wage

returns to math scores.

In Table C.1, we present the OLS estimates of univariate regressions of log hourly earnings

on math scores, separately for white men and white women. The wage returns to math scores

are positive and significant for both cohorts and for both men and women. Notably, the change

in the OLS estimate across the two NCES cohorts is statistically insignificant. If anything,

there is an increase in the OLS estimate, consistent with what Weinberger (2014) documented

in comparing NELS:88 with an older cohort.

We then perform the Yithaki decomposition on the baseline OLS estimates. Figure C.1 plots

the Yithaki weights together with the smoothed local linear regressions and Figure C.2 plots

the cumulative contributions to OLS estimates, separately for the two NCES cohorts and for

white men and white women. First, the weights shift to the right across cohorts, but the shift

mainly happens for high math scorers (especially for white men). As we discussed in deriving the

Yitzhaki decomposition, this is solely a mechanical result of changes in the math distributions.

Second, the pairwise slopes show more nonlinearities for the sample of white men than

women, with flat regions in the mid-low range of the math score distribution. This is true for

both NCES cohorts, and is similar to what we found for AAFQT scores in the NLSY–97 (but

not in the NLSY-79). In contrast, the slopes seem broadly positive and linear for the sample of

white women in both NELS:88 and ELS:02, as with both cohorts of NLSY–97 data. Given that

the birth years of the two NCES cohorts span those of the NLSY–97, it is perhaps not surprising

that the wage returns to measured cognitive ability more closely match those in the NLSY–97

than those in the older NLSY cohort.

Regardless of the differences between the NLSY and the NELS/ELS in the samples and in

the measures of cognitive abilities used, we find broad similarities in the evolution of cognitive

test scores across cohorts. We also find wage returns to measured cognitive ability in the NELS

that are consistent with the younger (and more similarly aged) NLSY–97. These results provide
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additional evidence that the changes in the distribution of AAFQT scores reflect real changes

in cognitive skills, and that changes in the estimated returns to AAFQT are real and nuanced

across the skill distribution.
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Table C.1: Returns to 12th-grade Math Score, NELS:88 and ELS:02

White Men White Women

NELS ELS NELS ELS

Math 0.445*** 0.538*** 0.946*** 1.146***
[0.107] [0.132] [0.106] [0.134]

Change from NELS 0.092 0.200
[0.170] [0.171]

Obs 2474 2558 2461 2824

Note: We present OLS estimates of the wage returns to 12th-grade
math scores in a univariate regression. We present results separately
for NELS:88 and ELS:02, and for white non-Hispanic men and white
non-Hispanic women. We also present the estimated change in the
OLS estimates across cohorts. Sample weights are used. * p < 0.10,
** p < 0.05, *** p < 0.01.
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Figure C.1: Smoothed Yitzhaki Weights and Slopes, NELS and ELS
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Note: In each figure, we overlay the smoothed Yitzhaki weights (right axis) with the
smoothed pairwise slopes (left axis), separately for the two cohorts. The smoothed curves
are estimated using Locally Weighted Scatterplot Smoothing (LOWESS) with a tricube
weighting function. Sample weights are used.

Figure C.2: Cumulative Contribution to OLS, NELS and ELS
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Note: In each figure, we graph the progressive sum of the Yitzhaki decomposition, starting
with the lowest math score until the entire sum is calculated (producing the OLS estimate).
We use a bandwidth of 0.3 for smoothing. Sample weights are incorporated in the Yitzhaki
decomposition.
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D Changing Test Scores from the National Assessment of Edu-

cation Progress

The long-term trend (LTT) assessments from the National Assessment of Education Progress

(NAEP) are designed and administrated by NCES to measure the educational progress of suc-

cessive cohorts of American students over a long time period. Here, we focus on the math scores

of 13-year-olds, the age in LTT NAEP that is close to that of AFQT takers in the NLSY and

that also is available for more recent years.33 We present published distributional statistics from

1978-2023 for the full sample of non-Hispanic whites in Table C.1; detailed public statistics are

unavailable separately for white men and women.34 The first notable trend is a steady improve-

ment of math performance both in the mean and across the distribution, up until year 2012. In

addition, the standard deviation of math scores stayed relatively stable at around 30, consistent

with the information on scores at various percentiles as in Table C.1. However, because NCES

does not publish the full distribution of scores, one cannot know with certainty whether there

was divergence in scores at the tails, something that may be especailly imporatant for scores

below the 10th percentile.

From 2012 to 2020, trends in LTT NAEP math scores reversed. The mean math score of

13-year-olds declined from 293 to 291. Perhaps more strikingly, the change extended beyond

the mean and fell differentially for students at different parts of the distribution. In particular,

the math score declined by 7 points (from 253 to 246) for students at the 10th percentile, while

increasing by 2 points for students at the 75th percentile and increasing by 3 points for students

at the 90th percentile. The standard deviation increased substantially from 31 to 36.35 Post

the onset of the Covid-19 pandemic, the distributional changes in math scores have somewhat

accelerated from 2020 to 2023, as the mean score continued to decline and the decline was greater

for the bottom of the score distribution. Specifically, as shown in Table C.1, the 10th percentile

score declined by 10 points (from 246 to 236), while the 75th percentile declined by 5 points and

the 90th percentile score declined by 6 points.36

33. NAEP’s LTT math scores are also available in some years for 9-year-olds and 17-year-olds. Data on LTT
NAEP scores of 17-year-olds are unavailable after 2012.
34. The LTT assessments were updated in 2004. Both the original and revised assessment formats were admin-

istered in 2004. See NAEP (2005) for a full discussion of the 2004 assessment design change.
35. The 2020 LTT NAEP for 13-year-olds was conducted between October and December of 2019. The distri-

butional changes in math scores from 2012 to 2020 are therefore free of the influence of Covid-19 disruptions.
36. The other NAEP test is the main NAEP, commonly known as “The Nation’s Report Card.” See

https://nces.ed.gov/nationsreportcard/assessments/ accessed Feb 28, 2024. We do not report main NAEP results
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The published distributional change of LTT NAEP math scores since 2012 resembles in many

ways the divergence of AAFQT scores between NLSY–79 and NLSY–97. Although NAEP’s

data does not allow us to look at statistics such as skewness and kurtosis, the increasing mass of

students at the lower end of the math score distribution and the increasing standard deviation

both suggest that there has been a divergence of math scores since 2012 among 13-year-olds.

That said, the timing of this divergence occurs later than what we document for the NLSY and

NELS/ELS data.

as they have only been collected since 1990, but as with LTT NAEP scores, the standard deviation of main NAEP
math scores has increased over the last decade or so, and there is evidence in the published data consistent with
a decline in scores in the lower half of the distribution over the last decade but a rise in scores at the 75th and
90th percentiles.
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Table C.1: Distribution Statistics of 13-year-old Math
Score in NAEP Long-term Trend Assessment, Non-
Hispanic Whites

Year Mean p10 p25 p50 p75 p90 S.D.

1978∗ 272 226 248 272 296 317 36
1982∗ 274 234 254 275 296 314 31
1986∗ 274 236 254 273 293 312 29
1990∗ 276 239 257 277 296 313 29
1992∗ 279 242 260 279 298 315 28
1994∗ 281 243 262 282 300 318 30
1996∗ 281 245 262 281 300 318 29
1999∗ 283 245 263 283 303 322 30
2004∗ 288 251 270 290 309 326 31
2004 287 249 269 289 308 326 31
2008 290 251 272 292 311 328 32
2012 293 253 273 294 313 331 31
2020 291 246 270 293 315 334 36
2023 285 236 262 287 310 328 37

Note: The math scores are from NAEP long-term trend
assessments. In 2004, changes were made to the assess-
ment design. ∗ represents the old assessment format.
Source: https://nces.ed.gov/nationsreportcard/ltt/ ac-
cessed February 28, 2024.
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E Yitzhaki Decomposition with Weights

For simplicity, Yitzhaki’s decomposition formula (Proposition 1 in Yitzhaki 1996) assumes that

each value of X has only one observation. In practice, each value of X can be linked to multiple

observations in the data. As suggested by Yitzhaki (1996), all observations with the same

X should be aggregated, leading to a grouped dataset in which the outcome Y is averaged

within each value of X. In a univariate model, we can recover the original OLS estimate by

using the grouped data and weighting the grouped regression by group size. In addition, each

observation in the data can represent multiple observations in the population. It is sometimes

more appropriate to use Weighted Least Squares (WLS) with sample weights rather than OLS

(Solon, Haider, and Wooldridge 2015). In this appendix, we extend Yitzhaki’s formula to allow

for these two types of weights.

Following Yitzhaki’s notation, let yi and xi (i = 1, . . . , n) be observations and ranked in the

increasing order of X. An important simplification that Yitzhaki makes is that ∆xi = xi+1−xi >

0, i.e., each value of X has only one observation. Here we extend Yitzhaki’s set-up and allow

there to be duplicate observations. Let there be Ni duplicate observations for (xi, yi). Let

bi = ∆yi/∆xi be the slope of two adjacent values of X.

Like Yitzhaki (1996), we are interested in decomposing the point estimate. Given this, the

two types of weights mentioned above are both equivalent to adding duplicate observations. The

distinction between the two cases is the construction of yi. In the first case (without sample

weights), yi is the average of all Y linked to xi. In the second case (with sample weights, i.e.

WLS), yi is the weighted average of all Y linked to xi.

With duplicate observations, the sample covariance of Y and X can be expressed as:

cov(y, x) = 1
2n(n−1)

∑n
i=1

∑n
j=1NiNj (xi − xj) (yi − yj)

= 1
n(n−1)

∑n
i=2

∑i−1
j=1NiNj (xi − xj) (yi − yj)

Note that when there are no duplicate observations (Ni = 1, for all i), the expression becomes

cov(y, x) = 1
n(n−1)

∑n
i=2

∑i−1
j=1 (xi − xj) (yi − yj), which is what Yitzhaki presents in Proposition

1 (Yitzhaki 1996).

Like Yitzhaki, we substitute (xi − xj) = ∆xi +∆xi+1 + · · ·+∆xj−1 and (yi − yj) = bi∆xi+
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bi+1∆xi+1 + · · ·+ bj−1∆xj−1. After collecting like terms, we get:

cov(y, x) =
1

n(n− 1)

n−1
∑

i=1







n−1
∑

j=i

(N1 + · · ·Ni) (Nj+1 + · · ·+Nn)∆xj

+
i−1
∑

j=1

(Ni+1 + · · ·+Nn) (N1 + · · ·Nj)∆xj







∆xibi.

Again, when there are no duplicate observations, the expression simplifies to cov(y, x) =

1
n(n−1)

∑n−1
i=1

{

∑n−1
j=i i(n− j)∆xj +

∑i−1
j=1 j(n− i)∆xj

}

∆xibi, as in Yitzhaki (1996).

Similarly, we can get the expression for var(x):

var(x) =
1

n(n− 1)

n−1
∑

i=1







n−1
∑

j=i

(N1 + · · ·Ni) (Nj+1 + · · ·+Nn)∆xj

+
i−1
∑

j=1

(Ni+1 + · · ·+Nn) (N1 + · · ·Nj)∆xj







∆xi.

We can then write down the OLS/WLS estimator as a weighted average of bi:

˜bOLS/WLS =
cov(y, x)

var(x)
= wibi, where

n−1
∑

i=1

wi = 1

and

wi =

{

∑n−1
j=i (N1 + · · ·Ni) (Nj+1 + · · ·+Nn)∆xj +

∑i−1
j=1 (Ni+1 + · · ·+Nn) (N1 + · · ·Nj)∆xj

}

∆xi
∑n−1

k=1

{

∑n−1
j=i (N1 + · · ·Nk) (Nj+1 + · · ·+Nn)∆xj +

∑k−1
j=1 (Nk+1 + · · ·+Nn) (N1 + · · ·Nj)∆xj

}

∆xk

The numerator of wi can be written equivalently in a more intuitive expression:





i
∑

j=1

Nj









n
∑

j=i+1

Nj



 ·

(

∑n
j=i+1Njxj
∑n

j=i+1Nj
−

∑i
j=1Njxj
∑i

j=1Nj

)

·∆xi

As a comparison, the continuous version of the weighting function w(x) is:

w(x) =
FX(x) · (1− FX(x))

σ2
X

{E(X | X > x)− E(X | X ≤ x)}
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The first term in the discrete weighting function
(

∑i
j=1Nj

)(

∑n
j=i+1Nj

)

matches with

FX(x) · (1− FX(x)) in the continuous weighting function. The second term in the discrete

weighting function
Σn

j=i+1Njxj∑n
j=i+1 Nj

−
Σl

j=1Njxj
∑i

j=1 Nj
matches with E(X | X > x) − E(X | X ≤ x) in the

continuous weighting function. Compared to the case with no duplicate observations, here both

the cumulative density and the conditional expected value are expressed in a weighted form.
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F Tables and Figures for the Black and Hispanic Samples

Table E.1: OLS Estimates: By Gender and By Race and Ethnicity

White Black Hispanic

Men Women Men Women Men Women

Panel A: Univariate Regression

AAFQT 0.677*** 0.830*** 0.672*** 0.962*** 0.576*** 0.823***
[0.035] [0.036] [0.051] [0.044] [0.060] [0.054]

AAFQT * NLSY–97 -0.212*** -0.0407 -0.141 -0.176** -0.228** -0.257***
[0.055] [0.060] [0.086] [0.072] [0.094] [0.097]

Obs 3683 3679 1978 2156 1338 1373

Panel B: Control for Social and Non-cognitive Skills

AAFQT 0.605*** 0.761*** 0.592*** 0.911*** 0.460*** 0.676***
[0.036] [0.038] [0.054] [0.046] [0.062] [0.057]

AAFQT * NLSY–97 -0.153*** 0.00687 -0.0812 -0.134* -0.117 -0.104
[0.056] [0.061] [0.089] [0.077] [0.094] [0.098]

Obs 3683 3679 1978 2156 1338 1373

Note: We present OLS estimates of the wage returns to AAFQT scores, by gender and by race
and ethnicity. Panel A presents results for the regression of log wages on the AAFQT score, a
dummy variable for the NLSY–97 cohort, and their interaction term. Panel B further controls for
measures of non-cognitive skills and social skills (created by Deming (2017)) and their interactions
with the NLSY–97 dummy. Sample weights are used. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure E.1: Adjusted AFQT Distribution By Gender and By Race and Ethnicity
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Note: We plot the density of AAFQT scores by gender and by race and ethnicity. AAFQT scores are concorded
by Altonji et al. (2012). BLS custom sample weights are used.
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Figure E.2: Smoothed Yitzhaki Weights By Gender and By Race and Ethnicity
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Note: We plot the Yitzhaki weights by gender and by race and ethnicity. The binned scatterplots are created
by summing up Yitzhaki weights in each bin, which contains three consecutive AAFQT points. The smoothed
curve is created using Locally Weighted Scatterplot Smoothing (LOWESS) with a tricube weighting function and
a bandwidth of 0.1. BLS custom sample weights are incorporated in the Yitzhaki decomposition.
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Figure E.3: Smoothed Yitzhaki Weights and Local Linear Regression By Gender and By Race
and Ethnicity
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Note: We overlay the smoothed Yitzhaki weights (right axis) with smoothed pairwise slopes (left axis), by gender
and by race and ethnicity. The smoothed curves are created using Locally Weighted Scatterplot Smoothing
(LOWESS) with a tricube weighting function. BLS custom sample weights are incorporated in the Yitzhaki
decomposition.
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Figure E.4: Cumulative Contributions to OLS Estimates By Gender and By Race and Ethnicity
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Note: We graph the progressive sum of the Yitzhaki decomposition, by gender and by race and ethnicity. We use
a bandwidth of 0.3 for smoothing. BLS custom sample weights are incorporated in the Yitzhaki decomposition.
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