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1 Introduction

Since the 1950s, urban transportation in the U.S. has been characterized by the

overwhelming use of cars. Meanwhile, despite generous subsidies, public transit

accounts for only 3.4% of the 850 million daily urban trips in the country. This

heavy reliance on cars poses significant challenges for cities: the costs of road con-

gestion in the U.S. are estimated at $87 billion per year, and car usage causes major

environmental impacts through emissions of carbon and other pollutants.1

Cities’ efforts to reduce congestion, environmental impact, and inequality have

renewed discussion about the right mix of urban transportation policies.2 Some

argue that public transit should be cheaper, and, indeed, several municipalities

have recently introduced free public transit;3 others suggest that cities should in-

stead provide more frequent, higher-quality public transit.4 Despite the poten-

tial benefits of these two proposals, it may not be feasible to pursue both because

of stressed municipal budgets. In contrast, some cities have recently introduced

charges on private road use. For example, London enacted a £15 cordon tax dur-

ing the daytime and New York recently approved a cordon tax in Manhattan be-

low 60th Street.5 A major argument used in favor of these taxes is the possibility

of using the resulting revenue to subsidize public transit.6

Given that we observe such varied approaches, what is the right combination

of urban transportation policies? Should cities aim to increase the use of public

transit, discourage the private use of roads, or some combination of the two?

In this paper, we characterize the optimal mix of urban transportation policies

and measure their welfare and distributional effects. We argue that determining

this optimal mix requires understanding how transportation modes interact with

each other. In addition to mode substitution on the demand side and technolog-

ical interactions through road congestion, we highlight a third channel: budget
1 See World Economic Forum—US Traffic Congestion Cost in 2018.
2 See Brookings—U.S. Transportation policy and HKS—Free Public Transit.
3 See NYT—“Should Public Transit Be Free? More Cities Say, Why Not?”
4 See The Conversation—Low-cost, high-quality public transportation.
5 For a comprehensive list of congestion pricing policies see DOT-Congestion Pricing.
6 See Congestion Pricing’s Billions to Pay for Nuts and Bolts of Subway System.
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constraints introduce important fiscal interactions across modes. Because building

new transit infrastructure in the US is notoriously difficult, (Brooks and Liscow,

2023), we focus on some key alternative interventions: road pricing and changing

the fares and service frequency of public transit.

We formulate a framework in which a municipal government maximizes wel-

fare, accounting for the cost of congestion and environmental externalities. On

the demand side, travelers choose between modes of transportation based on their

prices and travel times. On the supply side, we model a transportation technology

that determines travel times, taking into account congestion and the frequency

of public transit. The government, which can be thought of as a multi-product

seller, chooses the prices and qualities (in terms of frequencies) of modes, subject

to a budget constraint that accounts for operational costs and revenues from fares

and road pricing. Given these government choices, travelers in the market adjust

and reach an equilibrium. Our analysis holds residents’ and firms’ locations fixed.

Thus, our findings do not reflect additional welfare effects from relocation, which

previous research suggests may be moderate.7

We find that an unconstrained social planner would set price minus marginal

cost equal to the marginal externality (as in Pigou, 1932) plus a diversion term that

accounts for mispricing of modes not under the planner’s control. This is a second-

best solution that arises in the multi-product context when the planner has fewer

instruments than there are products. However, a budget-constrained planner must

raise revenue, which introduces two monopoly-like distortions (Ramsey, 1927).

First, the planner charges markups that downwards-distort quantities. Second,

quality (public transit frequency) is distorted towards the marginal consumer, as

in Spence (1975). Cross-subsidization can completely eliminate these distortions.

These results emphasize the importance of coordinated policies across modes and

provide an efficiency rationale for the London and New York plans to use road

pricing to cross-subsidize public transit.

7 For road pricing, Herzog (2024) finds that endogenizing sorting and traffic congestion attenu-
ates welfare effects by around 20%, whereas Barwick et al. (2024) and Hierons (2024) find that it
increases them by 18% and 10%, respectively.
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Next, we apply this framework to Chicago, an ideal setting for our purposes.

Both public and private transportation play an important role in this city. It has

large economic disparities, so measuring the effects of transportation policies across

different income levels is important. Furthermore, Chicago offers unusually rich

data. We combine several data sources to construct a high-resolution dataset of

travel flows, travel times, and prices for all relevant modes. We observe nearly all

public transit trips through records from the Chicago Transit Authority (CTA) and

the universe of ride-hailing and taxi trips, which are made public by the City of

Chicago. One challenge is that there are no official car trip records. To overcome

this problem, we estimate total trips from cellphone-location data, and then infer

car trips as the residual after subtracting public-transit, ride-hailing, and taxi trips.

We then turn to estimating our demand model, which allows for heterogeneous

substitution patterns across locations, income, and car ownership. The richness

of our data allow us to define granular transportation markets—people traveling

from one community area (CA) to another during a particular hour of the week—

and still conduct our analysis with aggregate market shares (Berry et al., 1995).

This approach has the advantage that we can use standard inversion techniques

to address endogeneity concerns. Car operating costs and public transit prices are

invariant to demand shocks (and we therefore directly use them as included instru-

ments), but road travel times and ride-hailing prices are potentially endogeneous.

To instrument travel times, we use the straight-line distance between the ori-

gin and destination divided by mode-specific citywide average free-flow speeds.

The resulting variation is due to the interaction between geography and mode

technology, but independent of demand shocks and infrastructure. To address the

endogeneity of ride-hailing prices, we exploit price variation from a surcharge on

downtown ride-hailing trips during peak hours.8 Our estimates reveal substantial

heterogeneity in the value of time across travelers, ranging from $8 to $57 per hour

for travelers in the bottom and the top income quintile, respectively.9

8 Leccese (2022) studies the pass-through of this policy.
9 For comparison, the average hourly wage in Chicago’s metropolitan area in 2020 is $29.01. See

Wage statistics from Bureau of Labor Statistics for the Chicago region.
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We then estimate the road traffic congestion technology at a high resolution.

We exploit hour-of-the-day variation in travel speeds and in the number of vehi-

cles traveling between adjacent CAs, following Akbar and Duranton (2017) and

Kreindler (2024). We find congestion elasticities between 0.09 and 0.17 compara-

ble to existing estimates in the literature (Akbar and Duranton, 2017; Couture et al.,

2018). We model wait times for public transit as a function of scheduled frequency

and the reliability of those schedules.

We simulate three main counterfactuals. First, we separately explore scenarios

in which the planner only adjusts public transit prices and frequencies or only

implements road pricing. To explore the interactions between these policies, we

then compute a counterfactual where the planner controls both.

When considering public transit policies alone, welfare gains strongly depend

on whether the planner faces a budget constraint. Without the constraint, the plan-

ner would reduce fares and increase service frequencies, generating consumer sur-

plus gains of $26.87 million per week and, after accounting for the fiscal burden,

a net welfare gain of $5.2 million per week. However, once budget constraints are

imposed, optimal frequencies increase more modestly while fares must rise to ad-

dress the budget shortfall. Welfare rises by only $0.62 million per week, driven

by consumer surplus gains of $0.95 million and partially offset by a $0.24 million

increase in environmental externalities.

Road pricing, when used in isolation, allows for much larger welfare gains, but

at the expense of travelers. The optimal road tax is 36 cents per kilometer. This

leads to overall welfare gains of $3.80 million per week. The majority of these

gains come from reducing the externalities generated by private cars, which ac-

count for 69.9% of trips. Without rebates, consumer surplus would decrease by

$32.32 million per week, with middle-income consumers experiencing the great-

est losses due to their reliance on cars. Even if the planner were to fully rebate

resulting revenues, consumer surplus would fall by $0.39 million per week.

Combining road pricing and public transit policies unlocks even larger welfare

gains. The planner collects substantial revenue from road pricing, which allows it
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to set transit policies optimally without budget considerations while still directly

targeting the externalities from private cars. Public transit becomes virtually free,

and bus and train frequencies increase by more than a third relative to the sta-

tus quo. This combined approach increases overall welfare by $6.97 million per

week—nearly twice the sum of welfare gains from implementing transit policies

and road pricing independently. Unlike under road pricing alone, consumer wel-

fare rises if the planner rebates its surplus, benefiting both high- and low-income

residents while leaving middle-income residents worse off.

These findings underscore the importance of coordinating transit policy with

road pricing, as these policies are complementary. Road pricing can achieve sub-

stantial reductions in externalities, but travelers benefit only when toll revenues

are used first to subsidize transit, with any remaining funds rebated to consumers.

We also investigate policies in which price and frequency vary by location and

time. We find little extra gain from more granular pricing. However, we find large

gains from granular route frequency adjustments that redirect available capacity

to busy areas and times, implying misallocation in the status quo.

Related Literature Our work relates to several strands in the literature on trans-

portation economics and industrial organization.

A growing literature analyzes transportation markets based on spatial equilib-

rium models. These studies are closely linked to theoretical work by Arnott (1996),

which shows that taxis should be subsidized because of increasing returns to scale,

and Lagos (2003), who formulates a spatial matching model of the New York taxi

market. Building on these foundations, recent empirical work has studied the New

York taxi market (Frechette et al., 2019; Buchholz, 2021), the dry bulk shipping in-

dustry (Brancaccio et al., 2020), and ride-hailing platforms (Castillo, 2025; Rosaia,

2025; Gaineddenova, 2022; Buchholz et al., 2025). Kreindler (2024) studies the wel-

fare effects of congestion taxes. Like Brancaccio et al. (2023), who derive optimal

policies for transportation markets with matching frictions, we derive them for

urban transportation markets with a budget-constrained social planner.
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Within this strand of literature, Durrmeyer and Martı́nez (2023), Kreindler et al.

(2023), and Barwick et al. (2024) are most closely related to our work. Durrmeyer

and Martı́nez analyze an equilibrium model of mode substitution and assess the

welfare impacts of private car restrictions and road pricing. Our study differs in

two main ways. First, our research question focuses on the interaction between

road pricing and public transit via mode substitution, congestion, and the plan-

ner’s budget constraint. Second, by formulating the government’s problem as that

of a “monopoly seller,” we are able to focus on the importance of distortions that

are created by budget considerations and the resulting welfare gains created by

cross-subsidization. Kreindler et al. (2023) study optimal transit policies but fo-

cus on the optimal bus route network. While our policy simulations keep routes

fixed and only varies their frequencies, we incorporate the trade-off that the so-

cial planner faces when setting policies for both public transit and private modes

of transportation. Barwick et al. (2024) jointly analyze transportation mode and

residential location choices, and they also explore combinations of different trans-

portation policies. They find that the combination of congestion pricing and sub-

way expansion delivers the greatest congestion relief. We depart from this paper

in two main ways. We characterize and decompose the optimal policy, and we

highlight the interactions created by budget considerations.10

We also build on a classic theoretical literature in transportation economics.

Early papers have focused on the interaction of schedule constraints and conges-

tion (Small, 1982; Arnott et al., 1990, 1993; Small et al., 2005). We enrich these

models by combining a congestion model with the demand approach used in in-

dustrial organization (Berry, 1994; Berry et al., 1995), which allows us to model

rider heterogeneity and account for the endogeneity of travel times and prices. As

in Mohring (1972), increasing utilization leads to lower per-passenger average cost

of public transit provision.

10 Several papers investigate alternative margins of adjustment in response to transportation policy
(Tsivanidis, 2023; Fajgelbaum and Schaal, 2020; Severen, 2023; Herzog, 2024; Brinkman and Lin,
2022; Allen and Arkolakis, 2022; Bordeu, 2023). We depart from their work by allowing for rich
demand substitution patterns across modes and heterogeneity, which is crucial for understanding
the distributional effects of transit policies.
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Finally, our work relates to the broader literature in transportation economics.

Some works look at traffic congestion (Akbar and Duranton, 2017; Akbar et al.,

2023; Couture et al., 2018; Kreindler, 2024) and different forms of road pricing

(Hall, 2018; Cook and Li, 2025; Yang et al., 2020). These papers abstract away from

mode substitution and the interaction between public and private transportation.

Parry and Small (2009) is closely related to our work in that it also derives theoret-

ical expressions for the optimal prices of public transit, which they then calibrate

to aggregate data from three cities. We extend their results to account for the joint

effect of prices and quality improvements and for the distortions introduced by

budget considerations. Furthermore, we model the resulting equilibrium adjust-

ments by taking into account the linkages across many markets.

2 Background and Data

2.1 Background

Chicago is the third largest city in the U.S. and its public transit system, which is

operated by the Chicago Transit Authority (CTA), is one of the largest in the na-

tion. It includes a bus network of 127 routes, and a train rapid transit system—the

“Chicago L”—that has eight routes and 145 stations. Full fares for buses and trains

are $2.25 and $2.50, respectively.11 The CTA has a history of budget shortfalls,

making it important to account for budget considerations.12 Passengers can also

travel by private for-hire-vehicles in the form of taxis and ride-hailing. Taxis have

a regulated fare of $2.25 per mile or $0.2 per 36 seconds, plus a $3.25 base fare.13

Ride-hailing companies adjust prices dynamically according to market conditions.

11 Reduced fares exist for students and seniors. There are also daily, 3-day, weekly, and monthly
passes. See CTA Fares for additional details. The public transit prices that we use in the demand
model are the average paid fare, which accounts for discounts.

12 See, for instance, CTA avoids service cuts, fare hikes under proposed $1.8 billion budget.
13 See Chicago Taxi Fare Regulation.
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2.2 Data description

We define each origin-destination-hour combination as a market. We use Chicago’s

Community Areas (CAs) as our spatial units. There are 77 CAs in Chicago, with an

average size of three square miles and an average population of 36,000 people. We

define a unit of time h as an hour of the day, distinguishing between weekdays and

weekends, resulting in 48 time periods. Our main dataset consists of travel flows,

prices, and travel times for every mode in every market during January 2020.14

To construct this dataset, we rely on a variety of raw data sources. First, we use

public transit microdata from the CTA. For both buses and trains (i.e., the Chicago

L), we observe records of individual trips paid by fare card.15 We observe the

train station or bus stop of origin, the time when the passenger tapped in, and an

inferred drop-off station or stop (Zhao et al., 2007).16

The second data source, published by the City of Chicago, contains the universe

of de-identified taxi and ride-hailing trips.17 It includes prices, pickup and dropoff

locations as well as trip length and duration.

Third, we use Veraset mobile-phone location data, which records a device ID

and a sequence of GPS coordinates and timestamps for approximately 40% of ac-

tive cellphone devices in the US.18 We infer all motorized trips from the sequence

of GPS coordinates for each individual device (details in Appendix B). The fre-

quency with which records are generated depends on the applications installed

by the user, so we restrict our analysis to devices with frequent location informa-

tion. This restriction results in a sample of trips and travelers that is representative

14 Our sample is drawn from Chicago’s winter months. Although winter conditions persist for
much of the year, travel behavior could shift in warmer weather. In section F.1 we conduct exten-
sive robustness checks of the counterfactual results to changing parameter estimates, including
the sensitivity to waiting and walking which is likely higher in the winter.

15 We do not observe the 12% of trips paid by cash, so we scale up trip counts to align with aggregate
daily ridership (see Appendix S1). Additionally, Metra (commuter rail) trips—which account for
less than 1% of trips (see My Daily Travel)—are not included in our data because Metra is not
managed by the CTA.

16 We observe transit card identifiers, which allows us to identify chained trips. For such trips, our
model accounts for the sum of walking and waiting from all segments. We code chained trips
with train and bus segments as train trips.

17 Source: Chicago Data Portal, Transportation Network Providers - Trips
18 Source: Veraset: Location Data Provider
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across many dimensions, as we show at the end of this section. We thus multiply

the number of cellphone trips by a common inflation factor to arrive at the total

number of trips implied by the 2019 Household Travel Survey from the Chicago

Metropolitan Agency for Planning (CMAP).

We combine these data sources to construct the total number of trips across

all modes: private car, taxi, ride-hailing, bus, and train. While we observe the

number of trips for buses, trains, taxis, and ride-hailing in the CTA data, we do not

have official records of car trips. We recover them by subtracting public transit,

taxi, and ride-hailing trips from the cellphone trips, which covers all motorized

trips. Since we only see motorized trips in our data, we treat walking, biking,

and not traveling as the outside option. We compute the potential market size

by comparing the number of morning commuters to the number of residents (see

Appendix B), which results in a number of potential commuters that is twice the

number of trips we observe. Finally, we query Google Maps data to obtain travel

times and routes by market for all modes, including those not chosen by travelers.

Our dataset has two advantages over survey data. First, survey data lack rep-

resentativeness and their coverage diminishes at high spatial and temporal reso-

lutions, leading to sparse data.19 Our granular data allow us to estimate the rela-

tionship between vehicle flow and traffic speed throughout the city. Second, our

data allow us to invert market shares (Berry, 1994; Berry et al., 1995) at a granular

level and, thus, construct instrumental variable moment conditions that address

the endogeneity of prices and travel times.

We add demographic information using the 2016-2020 American Community

Survey (ACS). We match devices to census tracts by inferring a device user’s home

tract based on the modal GPS tract during night-time hours, and we then assign

to each device the median income of that tract.20 In our estimation, we divide
19 In the CMAP 2019 Household Travel Survey, over 60% of origin-destination CA pairs have zero

trips, and more than that when the data are broken down by time period.
20 We identify residents as those devices that spend at least three nights in their modal night location

in a month, which we call residents, and denote the rest as visitors. Residents account for 93.3% of
all cellphone trips. For residents, we impute their income and car ownership probability as the
median income and car ownership rates of their home census tract. We are thus able to construct
the distribution of travelers’ income and car ownership for every market.
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the population into income quintiles, whose income levels are the median income

within that quintile. To compute the income distribution in each market, we count

the frequency of every quintile and the corresponding assigned income.

We validate our data in two ways. First, we compare the distribution of travel

times and distances to those from the CMAP survey and see a large overlap be-

tween those distributions. Second, we show that the resulting data is representa-

tive across the distribution of inferred incomes. See Appendix B for more details.

2.3 Descriptive results

We present descriptive evidence in four parts. First, we explore the characteristics

and usage of different modes. Next, we analyze how riders’ income correlates with

mode choices. We then document evidence of the low utilization of buses. Finally,

we present empirical patterns of traffic congestion in the raw data.

Although Chicago has one of the most extensive public transit systems in the

US, about 69.9% of trips are taken by car. Public transit accounts for 22.9% of trips,

with buses taking slightly more than half of this share. Ride-hailing accounts for

6.3% of trips. Taxis represent just 0.9% of trips, so we omit them from the analy-

sis. The top panel of Figure 1 shows how trips of different modes are distributed

across space. Bus and car trips are spread throughout the city. Ride-hailing mostly

accounts for short trips downtown or north of downtown and along the coast of

Lake Michigan, as well as for trips to and from the two major airports in Chicago:

O’Hare to the northwest and Midway to the southwest.

Chicago’s stark income differences are reflected in distinct travel patterns. The

bottom panel of Figure 1 shows that low income travelers mostly stay in the south

and the west parts of the city. The highest income travelers mostly stay downtown

and to the north, along the coast of Lake Michigan. Trips of intermediate income

travelers are more evenly spread throughout the city.

Figure 2 shows differences in speed, travel time, and prices across modes. The

left panel shows the distribution of the speed of each mode relative to the speed of

buses. Trains, on average, are 10% faster than buses, and cars and ride-hailing, on

10



Bus Train Car Ride hailing

Income
quintile 1

Income
quintile 2

Income
quintile 3

Income
quintile 4

Income
quintile 5

Figure 1: Trips by mode and by income

Notes: These figures show a random sample of 10,000 trips. A line connects the origin and
destination of every trip. The panels at the top split trips by mode. The panels at the bottom split
them by the income quintile of the traveler.

average, are almost twice as fast as buses. The right panel shows that choosing a

mode typically involves a tradeoff between prices and speed: faster modes tend to

be more expensive, with the exception of cars.

Figure 3 shows car ownership across income levels. Ownership first increases

with income but then flattens at the top of the income distribution. We account for

car ownership in our demand estimation to avoid conflating references for non-car

modes with travelers’ ability to travel by car.

Figure 4 shows how mode choices vary by origin CA income. Lower income

travelers are slightly more likely to use buses, while higher income people favor
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Figure 2: Speed and price differences across modes of transportation

Notes: The left panel shows the distribution of speed by mode of transportation. The right panel
presents scatterplots of prices and speed by mode. The prices of public transit and ride-hail are the
trip fares. Large dots indicate averages by mode. Observations are at the market level, weighted
by the total number of trips in the market.
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Figure 3: Car ownership by travelers’ income

Notes: This figure plots a scatterplot and binscatter of car ownership against the average income of
the origin CA.

trains, which are concentrated in affluent neighborhoods (see Figure 1). Car usage

follows a subtle inverted-U shape: middle income people are most likely to use

cars—and, thus, they are likely to be affected the most by road pricing. Finally,

ride-hailing is mainly used by the highest income people.

We now show that, although buses are the cheapest mode, they generally travel
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Figure 4: Mode market shares by travelers’ income

Notes: Each one of these panels presents a scatterplot and a binscatter of market shares against
average income for each mode. Each observation represents trips going from an origin CA to a
destination CA. Note that the vertical scale varies by mode.

almost empty. Figure 5 reveals that, even during the morning and afternoon rush

hours, median utilization rates stay below 20%, and less than 10% of buses are at

a utilization above 75%. Moreover, buses reach full capacity very rarely; less than

5% of buses are full during the busiest times. The low utilization of buses results

in large average costs per passenger and a zero marginal cost of an additional

passenger, an important observation to understand our counterfactual results.

Lastly, we present raw data patterns that show how traffic congestion impacts

travel times. The left panel of Figure 6 plots travel times against vehicle flows

between adjacent CAs, after residualizing on CA-pair fixed effects. The data ex-

hibit a “hockey-stick” pattern: travel times are flat at lower vehicle flows but rise

almost log-linearly beyond a certain point, suggesting that additional vehicles re-

duce travel speeds with an approximately constant elasticity. This motivates the

empirical model of our congestion technology. The right panel shows that this

pattern holds when we zoom into specific markets.

3 Model

Our model consists of three parts. First, travelers, who have fixed origins and

destinations, choose either one of the available modes or not to travel at all. Sec-

ond, the transportation technology captures the relationship between the number
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5 am, which we use to define free-flow travel times. The right panel shows that the same pattern
holds for two arbitrary markets with different levels of infrastructure, as well as for buses. Edge is
an origin-destination community area pair.

of people who use each mode and travel times. Third, a social planner maximizes
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welfare, subject to a budget constraint.

Section 3.1 presents a simple version of our model that focuses on only one

market. In Section 3.2, this simplified model is used to derive theoretical results

about the main forces in the social planner’s problem. Section 3.3 presents the

empirical version of our model, which accounts for temporal and spatial variation

as well as for the spatial linkages across markets.

3.1 Setup and Equilibrium Definition

There is a mass of travelers with density f(·) who differ in their preferences for

modes and whether they own a car, captured by type θ ∈ Rn.

A traveler decides which transportation mode j to take to her destination. She

can choose among the set J (θ), which varies depending on whether public transit

is easily accessible and whether she owns a car. She can also choose the outside

option (walking, biking, or not taking a trip), which we denote by j = 0. The

traveler gets utility uj(tj, θ) − pj if she takes transportation mode j, where pj is

the price and tj is the travel time. This travel time includes the in-vehicle time, the

waiting time before the trip starts, and—for public transit—the walking time to the

station or stop. We normalize the utility of the outside option to zero. The traveler

chooses the mode in her choice set that maximizes utility:

j∗(θ) = argmax
j∈J (θ)∪{0}

uj(tj, θ)− pj. (1)

Given vectors of prices p and total trip times t for all modes, demand for mode

j is given by

qj = qj(p, t) =

∫
Θj(p,t)

f(θ) dθ, (2)

where Θj(p, t) is the set of traveler types who choose mode j at (p, t). We refer to

the vector q as trips. We assume that demand is invertible in p, a property that is

satisfied by standard discrete choice models, and we denote its inverse by p(q, t).

Gross consumer utility and consumer surplus are given by
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U(p, t) =
∑
j

∫
Θj(p,t)

uj(tj, θ)f(θ) dθ and CS(p, t) =
∑
j

∫
Θj(p,t)

(uj(tj, θ)−pj)f(θ) dθ.

Travel times are determined by a transportation technology that depends on

the number of travelers choosing each mode as well as on the overall capacity

of the fleet for each mode. The fleet size for public transit is a policy choice and

determines the frequency at which buses and trains run. For ride-hailing, the fleet

size is determined by the number of drivers. The transportation technology also

captures the fact that the in-vehicle time for road-based modes of transportation

depends on the degree of road congestion. Accounting for all these considerations,

we can write the vector t of travel times for all modes as

t = T (q,k), (3)

where k is the vector of fleet sizes for all modes.

For each mode j there is a costCj(qj, kj) to supply qj rides with fleet size kj . This

cost function includes both labor costs and physical costs, such as fuel and vehicle

depreciation. Additionally, society bears an environmental externality Ej(qj, kj).

We also define total costs and externalities C(q,k) =
∑

j Cj(qj, kj) and E(q,k) =∑
j Ej(qj, kj). With this notation we can now define an equilibrium.

Definition 1 (Transportation equilibrium). Given prices p and fleet sizes k, an equilib-

rium is a vector of trips q∗ and travel times t∗ such that (2) and (3) hold.

In this model, for any given fleet size and prices, travel times adjust to clear

the market. In Appendix E.5, we show the existence of an equilibrium using

Brouwer’s fixed point theorem. We also show that the equilibrium is unique. This

follows from the presence of congestion forces—stabilizing forces that spread out

agents across space and travel modes—and the absence of agglomeration effects,

which could generate coordination games with multiple equilibria.
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3.2 The Social Planner’s Problem

The city government’s goal is to maximize welfare subject to a budget constraint.

Its choice variables are the prices and fleet sizes of buses and trains as well as the

road tax. Let JG denote the set of modes the government controls—which varies

across counterfactuals—with prices pG and fleet sizes kG.

We now define welfare and the government’s budget as functions of the allo-

cation (q,k), exploiting the inverse demand function p(q, t). The government’s

revenue is equal to the payments it obtains from travelers minus its costs:

Π(q,k) =
∑
j∈JG

[pj(q, T (q,k))qj − Cj(qj, kj)] .

This revenue cannot fall below −B, where B is the transportation budget.

Welfare is equal to the sum of consumer surplus, the government’s revenue,

and the profit of private mode operators minus externalities. After canceling out

transfers, welfare can be expressed more succinctly as gross consumer utility mi-

nus the cost of transportation provision and externalities:21

W (q,k) = U(p(q,k), T (q,k))− C(q,k)− E(q,k).

The government’s optimization problem is thus:

max
pG,kG

U(q∗, T (q∗,k))− C(q∗,k)− E(q∗,k) s.t. Π(q∗,k) ≥ −B. (4)

Note that q∗ is an equilibrium quantity, which changes with (p,k). We omit its ar-

guments for simplicity. The government maximizes welfare, subject to its budget

constraint, by selecting the prices and fleet sizes of the modes it controls. However,

it does not control all modes: it cannot set the price of ride-hailing and, in scenarios

without road pricing, it cannot set the price of driving. As a result, the government

is not able to implement all possible allocations (q,k). Because the budget enters

21 This is the case because W = CS+Π+
∑

j /∈JG
(pjqj−Cj)−E = (U−

∑
j pjqj)+

∑
j(pjqj−Cj)−E.
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(4) as an inequality constraint, the planner is not forced to spend money ineffi-

ciently, which means that each dollar spent on public transit will generate at least

one dollar of welfare.

To derive optimality conditions, we introduce superscript notation for deriva-

tives of costs, externalities, travel times, and utilities with respect to some quantity

x. For example, Cq
j denotes the derivative of the cost with respect to the number of

rides q of mode j and T q
kj denotes the change in travel time of mode k with respect

to additional trip of mode j. Also, let Ωlj represent elements of the inverse Jacobian

of q(p, t) with respect to p. Finally, define Dlj =
∂q∗l
∂pj
/
∂q∗j
∂pj

as the diversion ratio from

j to l of a price increase for mode j in equilibrium—that is, holding all fleet sizes

constant but allowing travel times to adjust. We can now obtain an expression for

optimal prices:

Proposition 1. Prices under the solution of the social planner’s problem (4) are given by:

pj =

Mg. cost and
env. externality︷ ︸︸ ︷
Cq

j + Eq
j −

Congestion︷ ︸︸ ︷∑
l

uTl · T q
lj +

Diversion︷︸︸︷
M q

j +

λ

1 + λ
·
( ∑

k∈JG

qk · Ωkj︸ ︷︷ ︸
Market power

markup

−Eq
j −

∑
l

(ũTl − uTl ) · T
q
lj︸ ︷︷ ︸

Spence
distortion

+ M̃ q
j −M q

j︸ ︷︷ ︸
Diversion
distortion

)
(5)

where λ is the Lagrange multiplier for the budget constraint, ũTj is a weighted sum of the

derivative of gross utility among marginal travelers with respect to mode-j travel time,

and M q
j and M̃ q

j are defined as:

M q
j ≡

∑
k ̸=j

Dkj

(
Cq

k + Eq
k −

∑
l

uTl · T q
lk − pk

)
(6)

M̃ q
j ≡

∑
k ̸=j

Dkj

(
1k∈JG

· (Cq
k − pk)−

∑
l

ũTl · T q
lk +

∑
l∈JG

ql · Ωlk

)
. (7)

Proof. See Appendix D.2.
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This proposition characterizes optimal prices implicitly, as the solution to a system

of |JG| equations. In Appendix D.1, we derive a similar expression that decom-

poses optimal travel times into analogous terms.

We now explain Equation 5 in detail.22 Imagine first an unconstrained social

planner with λ = 0. Optimal prices take a Pigouvian form: they are equal to

marginal costs plus corrections for marginal externalities, congestion effects, and

an additional term that we call diversion, which we explain below. Importantly,

the relevant marginal costs and externalities are those of an additional trip and not

of an additional vehicle. For public transit, for instance, most of the costs (labor,

vehicle depreciation, fuel, and energy) are related to the number of vehicles, and

the marginal cost of a passenger is negligible holding the number of vehicles fixed.

Congestion effects are equal to the sum over modes of the product of uTk , the

derivative of gross utility with respect to mode k travel time, and T q
kj , the change in

that time given an additional trip using mode j. If j and k are road-based modes,

T q
kj is positive due to traffic congestion, and so these terms lead to a Pigouvian tax.

The diversion term M q
j (equation 6) captures the extent to which change in the

price of j induces substitution towards mispriced modes not under the planner’s

control. For instance, without road taxes, traveling by car may be underpriced. As

a second best, the government would want to lower the price of public transit to in-

duce substitution away from cars. M q
j is a weighted sum over modes of deviations

of prices from a standard Pigouvian solution,
(
Cq

k + Eq
k −

∑
l u

T
l · T q

lk − pk
)

where

weights are diversion ratios, Dkj . This term is zero whenever all other modes are

already priced at the Pigouvian solution.

The last term arises due to budget constraints. The need to raise revenue to

meet the budget makes the planner behave like a monopolist and introduces a

market power markup in Equation 5. The social planner now also under-weights

environmental externalities and there is a Spence distortion: while the government

internalizes effects on other travelers’ utility, it does so imperfectly by accounting

for changes in the utility of marginal travelers rather than that of all travelers. Fi-
22 For readers seeking straightforward intuition, Appendix A derives similar results based on a

simple illustrative model.
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nally, the planner is now concerned with the revenue implications of diverting

travelers to other modes. As a result, the diversion term is distorted towards its

revenue-motivated equivalent M̃ q
j , which captures whether price changes induce

substitution towards modes that are chosen by too few travelers to maximize rev-

enue, rather than social welfare. As λ → ∞, the social planner becomes purely

revenue maximizing: terms related to environmental externalities cancel out, there

is a full markup and a full Spence distortion, and the planner only cares about the

revenue-motivated diversion term.

In our counterfactual analysis of Section 5, we come back to these results, em-

pirically decomposing how different sources of externalities contribute to optimal

policy. We use a version of this decomposition that applies to a multiple-markets

setting, which we derive in Appendix D.3.

3.3 Empirical Model

We now move to the empirical version of our demand model and of the trans-

portation technology. We divide the city into CAs a and time into hours h.

3.3.1 Demand

First, we define a market m = (a, a′, h) as a trip from CA a to CA a′ at hour h.23 In

each market, there is an exogenous number of potential travelers Nm. They decide

which mode j ∈ J i
m ∪ {0} to use, where the outside option j = 0 corresponds to

walking, biking, or staying put:

max
j∈J i

m∪{0}
uimj = δimj + ϵimj = ξmj + αT · Tmj + αi

p · pmj + ϵimj (8)

Tmj denotes the travel time for mode j (including walk and wait times), pmj is the

price for mode j, αT is the preference parameter over travel times, αi
p is the person

i-specific price coefficient, ξmj are other unobservable components of demand, and

23 We aggregate across days, so traveling decisions should be thought as the choice for an average
hour h rather than choices stemming from short-run shocks, such as special occasions.
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ϵimj is an idiosyncratic taste shock. The value of time (VOT) is αT/α
i
p. A higher

value of time means that passengers assign greater disutility to time spent trav-

eling, which affects the optimal policy. This leads the planner to provide more

frequent public transit service and increase road taxes to reduce travel times.

Motivated by disparities in mode choice across the income distribution (Section

2.3), we allow αi
p to vary across income levels.24 This leads to heterogeneity in the

time-money tradeoff, which is important to quantify distributional effects.

Given that some modes might be unavailable to some individuals, we allow the

choice set to vary across markets and consumers. For instance, some CAs cannot

be reached by train and some consumers do not own a car. Cars are in the choice

set J i
m with a probability equal to the empirical fraction of car owners among con-

sumers of type i in market m.

The taste shock ϵimj is specific to mode j. The joint distribution of the shocks for

all modes follows the standard form for a nested logit model with two nests, one

consisting solely of the outside option and one consisting of all inside goods J i
m.

This allows for stronger substitution among inside goods, which is mediated by

a parameter ρ ∈ [0, 1]. A higher value of ρ indicates stronger substitution among

inside goods rather than to the outside option, implying that diversion terms play

a larger role in the optimal prices from Proposition 1. Concretely, the taste shock

takes the form ϵimj = ς img(j)+(1−ρ)ηimj , where g(j) is the nest good j belongs to and

ηimj is specific to mode j and is distributed Type 1 Extreme Value. The term ς img(j) is

common to all goods in group g(j) and follows the unique distribution such that

ς img(j) + (1− ρ)ηimj is also distributed Type 1 Extreme Value.

Under our distributional assumptions, the probability that person i chooses

mode j ̸= 0 in market m is therefore given by:

Pi
mj =

exp
(

δimj

1−ρ

)
[∑

j′∈J i
m
exp

(
δi
mj′

1−ρ

)]ρ
·

[
1 +

(∑
j′∈J i

m
exp

(
δi
mj′

1−ρ

))(1−ρ)
] . (9)

24 Appendix S1.1 details how we assign individual cellphones to income groups.
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Integrating over i—accounting for the distribution of price coefficients αi
p and

the choice sets J i
m—mode shares and trips for mode j in market m are:

Pmj =

∫
Pi
mj di and qmj = Nm · Pmj. (10)

Consumer surplus, in dollars, is given by:

∑
m

∫
1

αi
p

E

[
max
j∈J i

m

{
uimj

}]
di, (11)

where the expectation integrates over the distribution of errors ϵimj .

3.3.2 Transportation Technology

Our transportation technology determines travel times as a function of trips and

fleet sizes (i.e., frequencies). We model the total travel time as the sum of three

components that vary by mode—walk time, wait time, and in-vehicle time:

Tmj = γ ·
(
Twalk
mj + Twait

mj

)
+ T vehicle

mj ,

where γ is the relative distaste for time spent walking or waiting relative to in-

vehicle time.25

We model in-vehicle times T vehicle
mj as a function of road traffic. To do this, we

represent the city by a directed graph, where each node represents a CA and edges

connect neighboring CAs. Edge e = (a, a′), for instance, connects CAs a and a′.26 If

a traveler uses mode j in market m = (a, a′, h), she follows a directed path Pmj =

((a, a1), (a1, a2), . . . , (an, a
′)) over edges that connects a with a′. We fix paths to

those suggested by Google Maps.27

25 We set γ = 2 following Small (2012). For ride-hailing and cars, walk times are zero; for cars, wait
times are zero. We take walk times from Google Maps and we assume they are exogenous.

26 Because the city is a directed graph, the edge e = (a, a′) is different from edge e′ = (a′, a).
27 Although travelers could reoptimize paths in counterfactuals, a robustness exercise shows that

this changes average travel times in our main counterfactuals by less than 0.1%.

22



Total vehicle flow during hour h on edge e is defined as:

Feh =
∑
j

wj · fehj, (12)

where fehj is the total number of vehicles of mode j going through e. Weights wj

capture the fact that cars and buses have different effects on congestion. For cars,

the number of vehicles is a function of trips fehj ≡
∑

m∈Me
hj
qmj , where Me

hj is the

set of all markets in which travelers take a route that goes through edge e.28 For

buses, the number of vehicles is a function of frequencies fehj ≡
∑

r∈Re
j
krj , where

Re
hj is the set of bus routes that go through e.

For road-based modes, travel time over edge e at time h for mode j is:29

T vehicle
ehj = max{T 0

ej, Aehj · F
βj

eh }. (13)

This functional form is directly motivated by the empirical patterns in Figure 6.

For every pair of neighboring CAs, there is a range with low vehicle flows for

which the travel time is independent of vehicle flows. Travel time is then equal to

an edge-mode specific free-flow time T 0
ej that captures road infrastructure and geog-

raphy (including distance). The second term inside the maximum represents the

range in which travel times increase with vehicle flows. Over that range, we as-

sume a constant elasticity βj of travel times to vehicle flows. The coefficient Aehj is

a scale factor that captures spatial patterns like geography and road infrastructure,

as well as time-varying shifters like weather patterns.

We define the in-vehicle time for mode j in market m as

T vehicle
mj = ψmj

∑
e∈Pmj

T vehicle
ehj . (14)

The sum simply adds the travel times over all edges in the path Pmj . We correct

28 To account for the fact that there are often multiple travelers in the same car, we scale down the
number of trips by the average occupancy by mode to obtain flows. See Appendix E.4.

29 For trains, we assume in-vehicle times are constant. We take Google Maps expected times.
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it by a mode-specific distance-based factor ψmj that accounts for higher speeds on

long trips due to highway usage. See Appendix E.3 for details.

Next, we explain how public transit wait times are determined. While we as-

sume that passengers do not plan their arrival at the public transit stop, we do ac-

count for the uncertainty due to schedule violations. Travelers that choose public

transit mode j in market m take an exogenous bus or train route rm—the one sug-

gested by Google Maps.30 Route frequency is determined by its fleet size krmj , with

a mean time between vehicles of 1/krmj . From a traveler’s perspective, however,

the expected wait time also depends on reliability: irregular service with schedule

violations lengthens mean wait times. With perfectly regular service, passengers

arrive on average halfway between vehicles, so expected wait time is 1/(2krmj).

Under random (Poisson) arrivals, it is 1/krmj .

We estimate a model that nests both extremes (for details see Appendix E.1).

The expected wait time for passengers is given by

Twait
mj =

1 + ω2

2krmj

,

where ω is the coefficient of variation of the time between vehicles.31 We estimate ω

using schedule deviations: trains have ω = 0, while for buses ω̂2 = 0.194, implying

substantially more variability than for trains.32

For ride-hailing, wait time Twait
mj depends on three main factors: (1) they are

lower in periods during which many drivers are working, since there are more

idle drivers; (2) they are higher when demand for ride-hailing trips is high, de-

pleting idle drivers; and (3) they are lower in areas with more idle drivers. We set

up a model of driver movements that accounts for the higher concentration of idle

drivers in neighborhoods with net trip inflows as well drivers’ tendency to relo-

cate towards areas with higher earnings opportunities. Appendix E.2 presents the

details of this driver movement model.
30 We assume that the set of routes is fixed and equal to the routes running in Chicago in our data.
31 If Google Maps suggests a route with transfers, the wait time is the sum of individual wait times.
32 To estimate this number, we compute realized times between buses and divide them by their

average at the hour by route level. The variance of this ratio is our estimate ω̂2 = 0.194.

24



3.4 Costs and environmental externalities

We assume costs and environmental externalities are proportional to vehicle-miles

driven. For cars and ride-hailing, the number of miles depends on how many

passengers choose these modes. For buses and trains, the number of miles driven

depends on their frequency; hence, the marginal cost of an additional passenger is

effectively zero. This is a good approximation as long as vehicles are not operating

at capacity. Figure 5 shows that this is the case for buses.

For all modes, the cost per mile accounts for fuel or energy, vehicle deprecia-

tion, and maintenance. For buses, trains, and ride-hailing, it also includes labor

costs. Environmental externalities account for the social cost of carbon, for which

we use the 2022 EPA proposal of $190 per tonne as the baseline number, as well as

for the social cost of local pollutants, which we obtain from Holland et al. (2016).33

Appendix E.4 describes in detail the numbers that we use for all costs and exter-

nalities. When we present our counterfactual results, we also conduct sensitivity

analyses across a range of alternative values for each of these inputs.

4 Estimation and Computation

4.1 Demand model

In this section, we explain how we estimate price and time coefficients αT and αi
p

as well as the nesting parameter ρ. Recall that the utility of traveler i for taking

mode j in market m is given by:

U i
mj = ξmj + αT · Tmj + αi

p · pmj + ϵimj. (15)

We assume that the price coefficient takes the form αi
p = αp/y

1−αpy

i (as in Miravete

et al., 2023), so that αpy captures how the price coefficient varies with income yi.

We assume that the unobserved shock takes the form ξmj = λod(m)+λt(m)+λj +

33 See EPA Issues Supplemental Proposal to Reduce Methane and Other Harmful Pollution from
Oil and Natural Gas Operations.
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ξ̃mj : it is the sum of fixed effects for origin-destination, hour, and transportation

mode as well as a remaining term. The fixed effects thus capture common shocks

along each dimension, such as origin-specific demand, time-specific shocks, or av-

erage mode quality.

To estimate our demand parameters, we follow the nested fixed-point algo-

rithm outlined in Berry et al. (1995) to minimize the GMM objective function

J(θ) = ĝ(θ)′ ·W · ĝ(θ),

where ĝ(θ) is a vector of moment conditions that we detail below.

Our estimation needs to address two endogeneity concerns. The first relates to

the estimation of αi
p: prices could be correlated with unobserved demand shocks

ξ̃mj . We first exploit the fact that the prices of cars and public transit are fixed and

therefore not affected by time-varying demand shocks. In this respect, our strategy

mirrors the use of coarse retail prices, which are not affected by local demand

variation (DellaVigna and Gentzkow, 2019). Imposing this orthogonality between

prices and demand shocks allows us to construct the following moment condition:

E[pmj · ξ̃mj · 1{j ̸= ride-hailing}] = 0.

Since our model includes origin-destination, hour, and mode fixed effects, this mo-

ment exploits how prices vary differentially across markets for different modes.

For instance, car prices increase with distance, whereas public transit prices do

not. We also include moments in which we interact prices with income quintiles

πy
m to identify heterogeneity in the sensitivity to prices.

While this variation is sufficient to identify the price coefficient, it does not

exploit variation in ride-hailing prices. We incorporate such variation using an

alternative strategy that addresses the fact that ride-hailing prices may respond

to unobserved demand shocks (e.g., via surge pricing). Based on a city surcharge

on ride-hailing trips beginning or ending downtown between 6 a.m. and 10 p.m.,

we run a differences-in-differences specification to estimate an own-price elasticity
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of η̂ = −1.42 (see Appendix C). We then add to our GMM estimator an indirect

inference moment that matches the model-predicted elasticity to this estimated

elasticity:

E[(η̃mj − η̂)1{j = ride-hail,m ∈ Msurcharge}] = 0,

where η̃mj is the model-implied own-price elasticity and Msurcharge denotes the set

of markets affected by the surcharge. The term η̂ is a local elasticity for travelers

who use ride-hailing in certain markets. We thus match it to the elasticity pre-

dicted by our model for that selected group, rather than matching it to the average

elasticity across all travelers.

The second endogeneity issue concerns travel times, as these are an equilibrium

object: positive demand shocks ξ̃jm for road-based modes lead to more travel, in-

ducing congestion and longer travel times. This endogeneity biases the travel time

coefficient upward, just as demand shocks bias the price coefficient in standard

demand-supply models. To address this concern, we exploit the fact that travel

times vary with distance in a mode-specific way, reflecting differences in their

speeds. For example, buses take longer than private cars to cover the same dis-

tance because they make frequent stops and are harder to maneuver.

Following this idea, we construct an instrument by dividing the straight-line

distance by the average mode-specific speed:

Z1
mj =

Dm

1
M

·
∑

m S
0
mj

,

where Dm is the straight-line distance between the origin and destination of mar-

ket m and 1
M

·
∑

m S
0
mj is the city-wide free-flow speed for mode j. This instrument

satisfies the exclusion restriction because it is independent of unobserved demand

shocks influencing travel mode choices: the straight-line distance is purely geo-

graphic and therefore unaffected by infrastructure or any other local unobserved

factors, and the city-wide free-flow speed by construction does not vary with any

local factors. Our demand model includes origin-destination fixed effects, which

control for distance and mitigate concerns that the remaining demand errors may
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reflect commuter sorting based on commuting preferences (e.g., higher-VOT work-

ers living closer to work).

In addition to the main coefficients, we also need to identify the nest parameter

ρ, which governs the strength of the correlation of shocks among modes within

the nest. Berry (1994) notes that estimating ρ requires instruments that shift the

probability of choosing mode j conditional on selecting one of the goods inside

the nest (i.e., one of the inside options). We use three such instruments Z2
mj , Z3

mj ,

and Z4
mj that are common in the literature: (i) the number of modes in the nest;

(ii) the difference between product characteristics—free-flow travel times, in this

case—of mode j and the average of the other modes in the nest; and (iii) the square

of this difference, to increase power (Gandhi and Houde, 2019). The latter two use

free-flow travel times, which are exogenous and not an equilibrium object, unlike

observed travel times.

We collect all the instruments in vector Zmj = (Z1
mj, Z

2
mj, Z

3
mj, Z

4
mj) and con-

struct the following additional moment:

E[Zmj ξ̃mj] = 0.

Table 1 shows estimates for several specifications of our model, gradually

building up to the main specification that we outline above. The first column

presents OLS estimates of a logit model without a nested error structure or hetero-

geneity across consumers. Specification (2) shifts to a GMM estimator, including

all our moments and allowing for heterogeneity in price sensitivity, but does not

account yet for car ownership or for the nested structure of taste shocks. Com-

pared to specification (1), accounting for endogeneity increases the sensitivity to

travel times and prices as well as the value of time, as expected. Specification (3)

adds car ownership by allowing for random choice set variation across travelers

based on car ownership by home census tract. Specification (4) also introduces

the nested structure of taste shocks. We find an average city-wide VOT of $20.70,

that ranges from $8.22 for the bottom income quintile to $36.80 for the top income

quintile. Model (5) is our main specification. It is the same model as specification
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Table 1: Demand estimation results

Pooled Peak/Off-Peak

(1) (2) (3) (4) (5)

Peak Off-Peak

Time (αT ) -0.913 -2.460 -2.542 -1.888 -1.674 -2.581
(0.012) (0.030) (0.031) (0.024) (0.031) (0.042)

Price (αp) -0.056 -1.234 -0.877 -0.622 -0.775 -0.934
(0.001) (0.054) (0.055) (0.045) (0.141) (0.106)

Income (αpy) -0.242 -0.050 -0.037 -0.362 0.005
(0.026) (0.034) (0.038) (0.094) (0.053)

Nest (ρ) 0.442 0.514 0.381
(0.001) (0.012) (0.019)

Estimator OLS GMM GMM GMM GMM
Policy Moment ✓ ✓ ✓ ✓
Car Ownership ✓ ✓ ✓
Nest ✓ ✓
Avg. VOT ($/h) 16.20 20.42 20.29 20.70 27.83 17.58
VOT (Bot. Quintile) 16.20 6.58 7.95 8.22 8.00 7.19
VOT (Top Quintile) 16.20 39.63 36.29 36.80 57.36 30.30
Avg. Price Elast. -0.19 -0.46 -0.46 -0.53 -0.45 -0.70
Avg. Time Elast. -0.50 -1.34 -1.37 -1.59 -1.63 -1.89
M 92,326 91,941 91,595 91,595 42,995 48,600
N 285,331 284,562 283,704 283,704 138,066 145,638

Notes: This table presents demand estimation results from the specifications outlined in section
4.1. All specifications include origin-by-destination, hour, mode fixed effects, and they include
control for dummies for multi-modal trips as well as transfers. We obtain the average VOT by first
computing the within market average VOT as the weighted average of αT /α

i
p and then averaging

across markets, with weights given by market size. Average elasticities are computed as the
weighted average of own-price and own-time elasticities across all mode-market observations,
with weights given by market size. We drop markets without income information in specifications
with income heterogeneity. Standard errors are computed using a sandwich formula.

(4), but we allow for different parameters during peak hours—those times when

the ride-hailing surcharge is active—and off-peak hours. We find substantial vari-

ation in the VOT: it ranges from $8.00 to $57.36 per hour during peak hours (for

the lowest and highest income quintiles, respectively), and from $7.19 to $30.30

per hour during off-peak hours. The city-wide average VOT is $23.30—around

80% of the mean hourly wage in Chicago, within the range of estimated values

in the literature between 50% and 100% (Small, 2012).34 After including income

34 The ratio of VOT to hourly wages increases from 0.585 in the bottom to 0.807 in the top income
quintile. Our annual income levels are [$26,154, $41,076, $53,750, $70,154.5, $111,024.5]. We as-
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Figure 7: Value of time across space and diversion ratios

Avg. VOT
($/hour)

[11,13)
[13,14)
[14,15)
[15,16)
[16,18)
[18,19)
[19,22)
[22,24)
[24,26)
[26,32]

(a) Overall diversion ratios

From \ To Bus Car RideH Train Outside

Bus · 0.28 0.11 0.14 0.47
Car 0.12 · 0.06 0.09 0.73

RideH 0.22 0.26 · 0.13 0.40
Train 0.22 0.24 0.12 · 0.42

(b) Div. ratios for top income quintile

From \ To Bus Car RideH Train Outside

Bus · 0.45 0.14 0.09 0.32
Car 0.11 · 0.12 0.08 0.69

RideH 0.14 0.44 · 0.10 0.33
Train 0.13 0.39 0.16 · 0.31

(c) Div. ratios for bottom income quintile

From \ To Bus Car RideH Train Outside

Bus · 0.32 0.05 0.14 0.49
Car 0.12 · 0.02 0.10 0.77

RideH 0.23 0.28 · 0.12 0.37
Train 0.24 0.29 0.04 · 0.43

Notes: The map on the left shows the average VOT implied by our main demand specification (col-
umn (6) of Table 1) for trips originating in each CA. Income heterogeneity is driven by differences
in the price coefficient. The tables on the right present the average diversion ratios implied by our
main demand specification for all consumers as well as for the highest- and lowest-income con-
sumers. Individual diversion ratios are averaged across markets, weighted by market size.

heterogeneity in column (3), the average VOT is quite stable across different spec-

ifications, and robustness checks show similar values between $19.39 and $25.90

per hour (Appendix F.1).

We now present the main spatial patterns implied by our estimates. The left

panel of Figure 7 shows the VOT by origin CA. It tends to be higher in the North

Side, which is characterized by higher incomes. Most South Side CAs display

low VOTs. Exceptions include Midway Airport and the neighborhoods of Beverly,

Mount Greenwood, and Morgan Park—white-flight destinations in the 1950s–60s.

These estimates correlate closely with the patterns in the bottom panel of Figure 1.

The right panel of Figure 7 presents substitution patterns in the form of diver-

sion ratios, both for the whole population and separately for the top and bottom

sume 2000 worked hours during a year.
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income quintiles. High-income travelers substitute more often to cars and ride-

hailing than low-income travelers. By contrast, low income travelers are more

likely to substitute towards buses or the outside option.

4.2 Traffic congestion

In this section, we estimate the traffic congestion model from Section 3.3.2, which

models the in-vehicle time for edge e during hour h for mode j as:

T vehicle
ehj = max{T 0

ej, Aehj · F
βj

eh },

where Feh =
∑

j wjfehj . We set wcar = wride−hail = 1 and wbus = 2, implying that

buses congest twice as much as cars.35

As we can see in Figure 6, observations between 12 am and 5 am overwhelm-

ingly lie in the region where travel times do not depend on traffic. For that reason,

we define the free-flow time T 0
ej for cars to be the average travel time during these

early morning hours. For buses, we take the average between 10pm and 12am,

which avoids issues that arise because of unusual early-morning schedules.

When T vehicle
ehj ≥ T 0

ej , our model becomes T vehicle
ehj = Aehj · F

βj

eh . To estimate Aehj

and βj , we focus on observations in which the time T vehicle
ehj is above 110% of the free-

flow time, which account for 70% of our sample. Assuming that aehj = logAehj =

aej + εehj , our estimation equation becomes:

log T vehicle
ehj = aej + βj logFeh + εehj. (16)

The coefficient βj is the congestion elasticity outside of free-flow times and mea-

sures how responsive vehicle flows are to reductions in traffic. A higher value for

βj will lead to lower optimal road congestion charges, as has been foreshadowed

by Equation 5. The edge-mode fixed effect aej captures any edge-specific differ-

ences in geography or infrastructure that determine travel times. The remaining

35 These values follow London’s Traffic Modeling Guidelines.
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error εehj captures unobservable shocks that vary across hours of the week hwithin

edge e.

Table 2: Traffic congestion estimation results

Dependent Variable: Log travel time in traffic

Bus Car

(1) (2) (3) (4) (5) (6)

Log Flow 0.083∗∗∗ 0.053∗∗∗ 0.089∗∗∗ 0.129∗∗∗ 0.109∗∗∗ 0.174∗∗∗

(0.006) (0.006) (0.009) (0.004) (0.004) (0.004)

Edge FE ✓ ✓ ✓ ✓ ✓ ✓
Weather controls ✓ ✓ ✓ ✓
IV ✓ ✓
within R2 0.074 0.117 0.107 0.399 0.522 0.440
First-stage F 2795.094 4200.774
Observations 8367 8367 8367 11724 11724 11724

Notes: This table shows the regression estimates for the elastic portion of the congestion function for
buses, columns (1)-(3), and cars, columns (4)-(6). The unit of observation is an edge. The dependent
variable is the log of travel times for the corresponding mode, while the independent variable is
the log vehicle flows. Specifications (1) and (4) control for edge fixed effects, specifications (2) and
(5) add weather controls (temperature, visibility, and precipitation), and specifications (3) and (6)
use the potential market size as an instrument for vehicle flows. Robust standard errors are in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 2 presents the estimates of Equation 16 for buses and cars. All speci-

fications include edge fixed effects, so we only use within-edge variation across

hours. Columns (1) and (4) present estimates without any additional controls. The

identification assumption is that, within an edge, shocks to the traffic congestion

technology are uncorrelated with the number of vehicles. Since we aggregate data

at the hour of the week level, the only threat to identification are shocks that re-

peat themselves every week, such as weather patterns or changes in visibility due

to sunlight (as discussed by Akbar and Duranton, 2017). We control for such vari-

ables in columns (2) and (5).36

A remaining concern is that travelers may re-optimize their choices in response

to expected but unobservable local traffic shocks, such as planned construction

during certain hours of the day. To address those concerns, specifications (3) and
36 Adding controls Xehj amounts to adjusting the model so that logAehj = aej + γXehj + εehj .
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(6) instrument traffic flows with the city-wide number of travelers by hour, fol-

lowing Kreindler (2024). This strategy is valid as long as the city-wide demand

for travel is driven by daily patterns—commuting to work in the morning, leisure

activities in the evening, etc.—and not local shocks.

We estimate congestion elasticities of 0.08-0.09 for buses and 0.13-0.17 for cars,

matching previous studies (Akbar and Duranton, 2017; Couture et al., 2018). The

main elasticities that we use for our model are those in columns (3) and (6).

4.3 Solving for Equilibrium and the Planner’s Problem

Before we move on to describe our counterfactuals, we restate our equilibrium

Definition 1 and social welfare function in the context of our empirical model. Then

we explain how we compute equilibria and how we solve the planner’s problem.

Definition 2. A transportation equilibrium is a vector of trips {qmj}mj and a vector of

travel times {Tmj}mj such that:

1. Trips are determined from the demand model: qmj = Nm · Pmj(Tmj) given by equa-

tion 10, ∀j ∈ J , m ∈ M.

2. Total travel times ∀j ∈ J ,m ∈ M are the sum of three components Tmj = γ(Twalk
mj +

Twait
mj ) + T vehicle

mj , where:

(a) Time in vehicle for road-based modes result from the congestion model:

T vehicle
mj = ψm

∑
e∈rmj

max{T 0
ej, Aehj ·F

βj

eh }. Trips and fleet sizes are aggregated

to obtain vehicle flows F βj

eh as described in Section 3.3.2.

(b) Wait times for buses and trains are given by Twait
mj = 1+ω2

2·kmj
, where kmj is the

frequency of buses and trains. Wait times for cars are zero.

(c) Walk times are fixed for all modes.

To find an equilibrium, we write the equilibrium conditions as a fixed point.

Let fp,k(q) ≡ q(p, T (q,k)). If travelers believe that that the number of trips will be

q—and, hence, they believe that travel times will be T (q,k)—this function gives
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the number of trips that will actually occur. An equilibrium is a fixed point of fp,k:

travelers’ beliefs must be consistent with the realized number of trips.37

Appendix E.5 describes the algorithm we use to find an equilibrium (a limited-

memory version of Broyden’s method). Once we find an equilibrium, we can com-

pute all quantities that go into the city government’s objective function. To reduce

the computational burden, we only simulate the market during six representative

hours of the week, which we aggregate as a weighted sum to obtain outcomes for

one whole week.38 Appendix E.6 shows that our model fits the data well.

Our empirical social welfare function is based on the estimated parameters and

model structure detailed in Section 4. It includes several components. The first

component is consumer surplus, following equation (11).39 The second component

are the costs of operating the transportation system and environmental externali-

ties, using the values specified in Appendix E.4. The third component is the gov-

ernment’s revenue, accounting for public transit prices as well as road taxes. The

last component is the profit of private transportation providers (i.e., ride-hailing

companies). To solve the social planner’s problem, we follow the augmented

Lagrangian method (Nocedal and Wright, 2006), where we iteratively maximize

problems that approximate the Lagrangian of the main problem until convergence.

Every evaluation of the Lagrangian requires solving for the transportation equilib-

rium. Further details are provided in Appendix E.7.

5 Optimal Policy Design

In what follows, we explore counterfactual policy designs based on the optimality

conditions we derive in Proposition 1. We start by analyzing coarse policies that

37 To see why this is consistent with Definition 1, plug in t = T (q,k) into q = q(p, t) to obtain
q = q(p, T (q,k)) = fp,k(q).

38 Those representative hours are weekdays at 3 am, 8 am, 12 pm, and 5 pm as well as weekends at
3 pm and 10 pm. We give them weights 50, 20, 25, 25, 16, and 32, respectively.

39 The heterogeneity of our empirical model arises from price coefficients αi
p, car ownership status,

and idiosyncratic shocks ϵi = (ϵij)j . To compute consumer welfare, we integrate over those
dimensions.
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change overall prices and frequencies for all markets. Section 5.3 analyzes more

granular policies.

We first analyze the case of an unconstrained planner who only sets public

transit prices and frequencies, which we call Transit. To quantify the additional

distortions that are caused by budget considerations, we also consider a budget

constrained planner that cannot exceed the current public transit deficit of Chicago

(Transit, Budget). We then separately analyze the effect of Road Pricing. To explore

the interactions of these policies, we then analyze the case where the planner can

use them simultaneously Transit + Road Pricing.

We now discuss each of these counterfactuals in detail. Throughout this dis-

cussion, we refer to Table 3. Each column represents one counterfactual policy,

reporting results relative to the Status Quo (column 1). We also refer to Figures 8

and 9, which decompose the forces that give rise to the optimal policies for buses

and cars, as in our theoretical results from Section 3.2.40 In these graphs, red bars

represent effects that the planner should correct through higher prices and times;

yellow bars represent effects that should be corrected with lower prices and times.

We start with Transit, where the planner would want to set somewhat negative

prices for buses and trains. Because the social cost of an additional passenger—the

sum of marginal costs, environmental externalities, and congestion—is zero, the

only non-zero component of this optimal price is the diversion term, which is neg-

ative because the planner wants to divert travelers away from socially underpriced

cars (see Figure 8). The optimal wait times are 5.34 minutes for buses and 3.14

minutes for trains. Marginal costs, environmental externalities, and congestion all

work in favor of fewer buses and thus longer waits. The only countervailing force

is diversion—encouraging people to shift away from private cars. Accounting for

all these forces, the optimal wait times are lower than those in the status quo.

These price and wait time changes in the Transit scenario increase welfare by

$3.89 million per week relative to the status quo. Consumer surplus increases by

40 The expressions that we use for this higher-dimensional problem, which include spillovers across
markets, are derived in Appendix D.3. Appendix F.2 presents figures for trains, which are almost
identical to those for buses.
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Table 3: Counterfactual results

Status Quo Transit Transit,
Budget

Road
Pricing

Transit + Road
Pricing

(1) (2) (3) (4) (5)

Panel A: Prices

Avg. Price ($) Bus 1.09
[1.09, 1.09]

-0.61
[-0.89, -0.46]

1.46
[0.60, 2.84]

1.09
[1.09, 1.09]

-0.01
[-0.12, 0.11]

Train 1.33
[1.33, 1.33]

-0.81
[-1.20, -0.60]

1.90
[0.73, 3.88]

1.33
[1.33, 1.33]

-0.05
[-0.22, 0.10]

Road Tax ($/km) 0 0 0 0.36
[0.30, 0.46]

0.34
[0.26, 0.45]

Panel B: Wait Times and Frequencies

Avg. Wait (min) Bus 7.07
[7.06, 7.09]

5.34
[3.68, 7.43]

6.45
[4.42, 8.97]

7.07
[7.07, 7.08]

5.28
[3.67, 7.25]

Train 4.44
[4.44, 4.45]

3.14
[2.22, 4.08]

3.67
[2.64, 4.65]

4.44
[4.44, 4.45]

3.13
[2.22, 4.05]

∆ Frequency Bus 0% 32.5%
[-4.8%, 92.2%]

9.6%
[-21.2%, 60.1%] 0% 33.9%

[-2.5%, 92.9%]

Train 0% 42.8%
[10.6%, 101.5%]

22.4%
[-2.1%, 69.0%] 0% 43.1%

[11.4%, 101.5%]

Panel C: Trips

Number
of Trips
(M/week)

Bus 3.63
[3.62, 3.66]

5.41
[4.97, 6.05]

3.63
[3.42, 3.94]

4.04
[3.94, 4.17]

5.51
[5.15, 6.14]

Train 2.76
[2.73, 2.78]

3.76
[3.72, 3.93]

2.75
[2.61, 3.04]

3.01
[2.97, 3.06]

3.76
[3.73, 3.96]

Ride-hailing 2.94
[2.77, 3.21]

2.74
[2.56, 2.96]

2.93
[2.79, 3.10]

3.08
[2.95, 3.24]

2.91
[2.73, 3.12]

Car 21.33
[21.11, 21.47]

20.12
[19.87, 20.22]

21.33
[21.17, 21.36]

18.62
[17.94, 19.15]

17.88
[17.41, 18.15]

Total 30.66
[30.64, 30.69]

32.03
[31.90, 32.35]

30.65
[30.62, 30.75]

28.74
[28.39, 29.02]

30.06
[29.70, 30.52]

Panel D: Welfare

∆ Welfare ($M/week) 0 3.89
[2.15, 17.94]

0.62
[0.10, 11.22]

3.80
[3.49, 4.28]

6.97
[5.03, 21.34]

∆ CS ($M/week) 0 26.87
[14.81, 58.37]

0.95
[-0.07, 12.89]

-32.32
[-41.56, -26.20]

-7.84
[-12.30, 12.18]

∆ City Surplus ($M/week) 0 -21.67
[-37.84, -12.42] 0 31.93

[25.32, 41.81]
12.18

[8.26, 13.61]

∆ Transit Surplus ($M/week) 0 -21.67
[-37.84, -12.42] 0 0.77

[0.61, 1.01]
-15.82

[-29.39, -8.81]

Road Taxes ($M/week) 0 0 0 31.15
[24.37, 41.20]

28.00
[20.98, 37.73]

∆ Externalities ($M/week) 0 -0.17
[-0.90, 1.04]

0.24
[-0.50, 1.37]

-2.72
[-3.26, -2.29]

-2.44
[-3.53, -0.96]

Notes: This table compares prices, frequencies, trips, and welfare relative to the Status Quo (column
1) across counterfactual scenarios. Column 2, Transit, changes public transit prices and frequen-
cies without budget considerations. Column 3 (Transit, Budget) repeats the same exercise subject
to a budget constraint. Column 4 uses Road Pricing. Column 5 combines both, Transit + Road Pric-
ing. The main values represent counterfactuals based on point estimates of the model parameters.
Square brackets below each value represent bootstrap-based 95% confidence intervals.
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$26.87 million per week, or $9.95 per resident, due to reductions in both prices and

wait times. This represents a substantial gain; for comparison, the city-wide cost of

transportation is $29 per passenger per week. However, the planner’s deficit also

grows by $21.67 million per week. Environmental externalities fall slightly by $0.17

million per week: while lower prices shift travelers away from environmentally

costly cars, the effect is almost entirely offset by more buses and trains running.
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Figure 8: Optimal bus price and wait time decomposition for Transit, Budget

Notes: This graph shows a decomposition of the optimal prices and travel times for buses
corresponding to our theoretical decomposition in Section 3.2. Red bars indicate terms that lead
prices and travel times to be higher and yellow bars indicate terms that lead them to be lower.

We next introduce budget considerations (Transit, Budget), which lead to very

different results relative to the above unconstrained policy. Welfare increases only

by $0.62 million per week relative to the status quo. The main difference is that

traveler surplus increases much less, since a binding budget constraint leads the

government to make two adjustments that hurt travelers: rising fares and reducing

the frequency of buses and trains by around 20%, as can be seen by the budget

terms in Figure 8.41 These effects can be further decomposed into the markup

41 At the optimal constrained policy, the marginal value of public funds (Hendren and Sprung-
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term and the Spence distortion. For prices, we find that the markup term is the

most important source of the distortion. In addition, due to large differences in the

value of time across travelers, the Spence distortion also contributes to higher wait

times for public transit. Despite the reduction in frequencies, the number of public

transit trips remains almost unchanged due to the reduced prices.

A comparison between the Status Quo and the optimal transit policies in Tran-

sit, Budget reveals the extent to which the current prices and frequencies in Chicago

deviate from the optimum. In Transit, Budget, both bus and train frequencies are

higher, and their prices must be increased to balance the budget. One possible

reason the CTA deviates from this optimum is that it faces pressure to keep fares

affordable to low income travelers: as we show in Section 5.2, the price and fre-

quency adjustments in Transit, Budget are regressive.

We now turn to Road Pricing.42 When it is the only lever available to the gov-

ernment, the optimal per-km tax is 36 cents, or $15.2 per day for the average car

commuter.43 Figure 9 shows that this almost doubles the status quo price of driv-

ing a car (the marginal cost). About one third of the tax is due to environmental

externalities and the remaining two thirds are due to congestion externalities. The

diversion term is nearly zero, since two opposing forces cancel out: it is optimal

to divert passengers towards public transit but away from ride-hailing. The bud-

get term is zero because road tax revenue generates a fiscal surplus, so the budget

constraint becomes nonbinding.

The overall welfare gains from Road Pricing, $3.80 million per week, are much

larger than what budget-constrained transit policies alone can achieve. However,

these gains predominantly result from a reduction in environmental externalities,

while travelers are worse off. In the absence of rebates (the numbers shown in

Table 3), consumer surplus decreases by $32.32 million per week, or $12 per resi-

Keyser, 2020), which we derive from the Lagrange multiplier of the budget constraint, is 1.37:
every dollar that the government spends translates into a $1.37 increase in welfare.

42 In our Road Pricing counterfactuals, ride-hailing trips do not pay road taxes. In a different coun-
terfactual, we find that the status quo price of ride-hailing is 1% lower than the optimal price: the
markup charged by ride-hailing companies is almost identical to the optimal Pigouvian tax.

43 If, instead of a per-km tax, the government sets a cordon price for cars entering downtown
Chicago, the optimal level is $8.75, resulting in welfare gains of $1.24 million per week.
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Figure 9: Optimal car price decomposition in the Road Pricing scenario

Notes: This figure shows the price decomposition for cars, following our theoretical derivations in
Section 3.2. Red bars indicate terms that lead optimal car prices to be higher.

dent per week. Even if the government fully rebated the revenue it collected from

road taxes, consumers would lose $0.39 million in weekly surplus.44 The number

of public transit trips increases by 0.66 million per week, while car trips go down

by 3.45 million per week.

Finally, when transit polices are combined with road pricing (Transit + Road

Pricing) the planner can achieve welfare gains of $6.97 million per week—almost

twice the sum of its parts, columns (3) and (4). Transit policies and road pricing

are complementary due to cross-subsidization. Setting road taxes at $0.34 per km

generates a government surplus, so the budget constraint no longer binds and

resulting budget distortions are no longer present. The government is then able

to spend part of the extra revenue to set public transit prices and frequencies that

closely resemble those under Transit, in which the government faces no budget

constraint. Specifically, the government offers virtually free public transit and it

increases the frequencies of both buses and trains.

After optimally setting public transit frequencies and prices, some tax surplus

remains, which the government can either keep or rebate back to consumers. As

with Road Pricing, consumer surplus decreases without rebates—by $7.84 million

44 Road Pricing also impacts commuters who enter and exit the City of Chicago. Assuming these
travelers are perfectly inelastic, $27.45 million in tax revenue would be collected from them.
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per week. On the other hand, if the government rebates its surplus, consumer

surplus can increase by as much as $4.34 million per week. Combining efficient

road pricing and cross-subsidizing public transit thus ends up benefiting travelers.

5.1 Sensitivity Analysis

In Figure 10 we explore the extent to which the optimal policies from Table 3 are

sensitive to changes in key model parameters. We find that the optimal prices are

very robust: 10% changes in parameter values change public transit prices by less

than three cents and road taxes by less than two cents per km. By contrast, optimal

wait times are more sensitive: for five of six parameters (public transit costs, price

and time sensitivity, walking and waiting disutility, and bus variability), a 10%

change shifts bus wait times by about 0.6 minutes and train wait times by about

0.2 minutes, corresponding to frequency changes of roughly 5%.

5.2 Distributional Effects

Figure 11 shows the effects of our counterfactuals on consumers across income

quintiles. The left panel measures changes in consumer surplus per trip. Without

rebates, most policies are regressive because higher public transit frequencies and

lower congestion disproportionately benefit higher-income travelers, given their

higher value of time. Under policies that involve road pricing, almost all income

groups are worse off without rebates (the sole exception are the highest income

travelers, who are roughly indifferent in Transit + Road Pricing). Losses are some-

what U-shaped because middle income consumers are the most reliant on cars, as

shown in Figure 4.

When we measure those losses as a percentage of consumer surplus, on the

other hand, we find that road pricing is highly regressive. Thus, policies that de-

liver the largest efficiency gains are also the ones that hurt low-income consumers

the most relative to their income. However, the government can undo this regres-

sivity by rebating revenue to residents as a flat refund (dashed lines), which leads
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Figure 10: Robustness of counterfactual results

Notes: This figure presents how the choice variables of the social planner change in response to
changes in some of the model parameters. We focus on the Transit + Road Pricing counterfactual. In
each panel, we show how a 10% increase in the model parameter specified in the x-axis affects the
choice variable in the x-axis.

the lowest income consumers to be better off.

5.3 More Granular Policies

We explore the additional gains that can be achieved by setting different prices and

frequencies across different times of day, location, and baseline utilization rates of

bus routes. Table 4 presents results from several granular policies that we consider.

Setting different road taxes for the city center (CBD), across different times of

the day, or both, increases the welfare gains from road pricing by at most 1.3%.

The additional gains are small because the optimal road taxes are relatively homo-

geneous, in part because environmental externalities are invariant to space or time
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Figure 11: Change in consumer surplus across income quintiles

Notes: This figure presents changes in consumer surplus by income quintile relative to the Status
Quo under optimal policies across different counterfactual scenarios. Panel (a) displays net changes
in dollars per trip. Panel (b) displays percent changes in consumer surplus. Solid lines represent
our main counterfactuals in Table 3. Dashed lines represent scenarios in which road pricing revenue
is rebated back to residents as a flat refund.

of day. Furthermore, differences in the remaining two components of the optimal

tax—congestion effects and the diversion term—tend to offset each other.

More granular frequency adjustments, on the other hand, result in large welfare

gains. The government would increase frequencies during rush hour and decrease

them at other times. It would also almost double the frequency of high utilization

routes while decreasing the frequency of low utilization routes by around 20%.45

These adjustments result in welfare gains that are over five times larger than those

from uniform frequency adjustments. However, these improvements only achieve

around half of the welfare gains from combined road pricing and transit policies.

45 There could be extra costs from having to re-allocate public transit capacity across hours or lo-
cations. While the CTA already adjusts frequency up and down to accommodate fluctuations in
demand across times and locations, our results ignore any extra re-allocation costs beyond those
incurred in the status quo.
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Table 4: Granular counterfactual results

Panel A: Road Pricing Uniform Time Heterogeneity Spatial
Heterogeneity

Time + Spatial
Heterogeneity

(1) (2) (3) (4)

Base ($/km) 0.36 0.34 0.34 0.32
Rush Hour ($/km) · 0.39 · 0.35
CBD ($/km) · · 0.56 0.50
Rush Hour × CBD ($/km) · · · 0.63

∆ Welfare ($M/week) 3.80 3.82 3.83 3.85

Panel B: Transit, Budget Uniform Time Heterogeneity Utilization
Heterogeneity

(1) (2) (3)

∆ Bus Frequency (%)
Base 9.61 -5.90 -21.70
Rush Hour · 24.20 ·
High Utilization · · 96.73

∆ Train Frequency (%) Base 22.37 -5.92 22.90
Rush Hour · 56.27 ·

Bus Price ($) 1.46 1.39 1.33
Train Price ($) 1.90 1.81 1.72

∆ Welfare ($M/week) 0.62 1.50 3.39

Notes: This table presents levels and changes in prices, changes in frequencies, and changes in wel-
fare relative to the status quo across different counterfactual scenarios. Panel A considers different
road pricing scenarios: a uniform price (column 1), a time differentiated price (column 2), a spa-
tially differentiated price (column 3), and a time and spatially differentiated price (column 4). Panel
B considers different scenarios for adjusting transit prices and frequencies: a uniform adjustment
(column 1), a time differentiated adjustment (column 2), and a utilization differentiated adjustment
(column 3).

6 Discussion

We now discuss some of the simplifying assumptions that keep our model

tractable. First, our model does not account for intertemporal substitution directly.

Instead, it captures it indirectly as substitution towards the outside option. This

approach allows us to model elasticities to own prices and own travel times cor-

rectly; however, the downside is that we are not able to capture spillover effects of

policies across different hours of the week. Kreindler (2024) finds that intertempo-

ral choices are rather inelastic and peak-spreading policies have a limited impact,

suggesting that allowing for inter-temporal substitution would not have a large

effect on our findings.

Second, although travelers often decide the mode of transportation for out-
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bound and return trips jointly, we only model individual trips. This choice arises

from a data limitation: we are only able to link a small fraction of consecutive trips

made by the same rider. Once again, the main challenge this brings to our model

is that we cannot capture spillover effects between different hours of the week.

As noted in the introduction, our model does not capture how residents and

firms relocate in response to transportation policies. However, prior research finds

that long-run adjustments to transportation policy are limited. Herzog (2024) finds

that sorting attenuates the welfare effects of time savings due to road pricing by

around 20%. Barwick et al. (2024) show that residential sorting increases the over-

all welfare effects of road pricing by 18%, and Hierons (2024) finds that sorting

only accounts for 10% of total welfare gains of cordon pricing in New York City.

7 Conclusion

In this paper, we measure the welfare effects of urban transportation policies and

explore how a budget-constrained planner should choose among a portfolio of

policies. Based on a theoretical framework, we derive expressions for optimal

policies that show that budget considerations introduce inefficiencies. We then

quantify empirically the welfare effects of such policies in Chicago by construct-

ing a dataset that captures granular mode choices across the city. Our results

show that the government can undo the “monopoly” distortions that arise due

to budget considerations by using road pricing revenues to cross-subsidize public

transit. Indeed, recent transit policies in London and New York explicitly desig-

nate the revenues from road pricing to fund public transit. Our results highlight

that such a combined policy approach generates complementarities through cross-

subsidization, yielding welfare gains larger than the sum of its parts.
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Online Appendix

A Stylized Model

This section presents the simplest possible model that we believe can illustrate our

main theoretical findings from Section 3.2. For simplicity, we assume that travel

times are fixed and, thus, omit the dependence on travel times throughout.

Consider a market in which travelers choose between traveling by car, by bus,

and an outside option (such as walking or biking). The price for a bus trip is the

fare pb, and the price for a car trip pc equals the cost of driving plus, possibly, a

road tax. Demand for bus and car trips is given by qb(pb, pc) and qc(pb, pc). Demand

for each mode is decreasing in its own price and increasing in the other price.

The cost of a bus trip, which is borne by the local government, is cb. The cost

of a car trip, which is borne by the traveler, is cc. Additionally, each trip causes

environmental externalities given by eb and ec.

The city government wants to maximize welfare. In the first best scenario, the

government is able to set bus fares and road taxes, and does not face a budget

constraint. In that case, the government’s problem is

max
(pb,pc)

CS(pb, pc) + (pb − cb)qb + (pc − cc)qc − ebqb − ecqc.

The optimal prices are given by:

pb = cb + eb and pc = cc + ec. (17)

This is the standard result in optimal taxation: the optimal price is equal to the

marginal cost plus the marginal environmental externality.46

46 To derive equation 17, it’s easier to write the problem in terms of the quantities qb and qc, noting
that consumer surplus can be written as U(qb, qc)−pcqc−pbqb, where U represents gross surplus:

max
(qb,qc)

U(qb, qc)− (cb + eb) · qb − (cc + ec) · qc.
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Now suppose that the government faces a budget constraint B, and that it can-

not set a road tax (so that pc = cc).The government’s problem is then

max
pb

U(qb(pb), qc(pb))− (cb+ eb) · qb(pb)− (cc+ ec) · qc(pb) s.t. (cb− pb)qb(pb) ≤ B.

The first order condition is

∂qb
∂pb

(
∂U

∂qb
− (cb + eb) + λ

(
pb + qb

∂pb
∂qb

− cb

))
+
∂qc
∂pb

(
∂U

∂qc
− (cc + ec)

)
= 0,

where λ is the Lagrange multiplier for the budget constraint. Substituting in ∂U
∂qb

=

pb and ∂U
∂qc

= pc, noting that pc = cc, and rearranging gives the following expression

for the optimal bus price:

pb = cb + eb −
1

1 + λ
Dbc · ec︸ ︷︷ ︸
Diversion

+
λ

1 + λ
(µb − eb)︸ ︷︷ ︸

Budget

, (18)

where Dbc = − ∂qc
∂pb
/ ∂qb
∂pb

is the diversion ratio from buses to cars, and µb = −qb ∂pb∂qb
is

the standard monopolist markup.

Equation 18 showcases the two new forces in Proposition 1 beyond Pigouvian

taxes. First, there is a diversion term. The price of buses should thus be lower to

the extent that (i) cars are under-priced since drivers do not pay for their environ-

mental externality, and (ii) lowering the price of buses diverts travelers away from

cars. This term is more complicated in Proposition 1 because, in our full model,

the extent to which buses are underpriced also depends on traffic congestion ex-

ternalities. The second force is that, to stay on budget, the government behaves

somewhat like a monopolist—in this case, it does not give full weight to externali-

ties, and it sets a market power markup.

The first order conditions are ∂U/∂qb − cb − eb = 0 and ∂U/∂qc − cc − ec = 0.

To derive the final expression, note that ∂U/∂qb = pb and ∂U/∂qc = pc. The usual definition of
gross utility for demand of one good is U(q) =

∫ q

0
p(x)dx, where p(x) is inverse demand. It is thus

clear that ∂U/∂q = p. In the two-good case, gross utility U(q) =
∫ q

0
p(r) · dr is only well-defined

when the demand function is integrable, in which case the gradient theorem gives ∂U/∂qj = pj .
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B Data Construction and Validation

This section provides an overview of how we construct our sample of trips based

on the raw cellphone data. Supplementary Appendix S1 provides a detailed de-

scription. The raw data are composed of pings with timestamps, latitudes, longi-

tudes, and device identifiers. We subset these data to a rectangle corresponding

to the Chicago Metropolitan Agency for Planning (CMAP) region and to January

2020.47 We drop noisy pings and identify movement using distance, time, and

speed. Stays are defined as ping sequences without movement. Trips are defined

as movement streams that start and end with a stay, with a minimum total distance

of 0.4km (0.25 miles).

We determine device home locations by assigning pings to census blocks. Pings

during night hours are scored based on the likelihood of being at home. We label

the highest-scoring census block for each device as the home location if it appears

on at least 3 nights during the month of our data. Devices without an assigned

home location are considered visitors. For devices with a home location, we im-

pute the census tract median household income and the probability of owning a

car equal to tract’s car ownership rates.

We validate our data in two ways. First, Figure A1 shows that survey and cell-

phone data travel time and travel distance distributions are very similar, show-

ing that our cellphone data accurately represents travel patterns. Second, Figure

A2 shows that the share of the tract population covered by the cellphone data is

fairly constant and around 5% for all percentiles of the income distribution. This

suggests that our cellphone location records cover a representative sample of the

population in terms of income.

47 Specifically, our subsample of pings is restricted to those with latitudes between 41.11512 and
42.494693, and longitudes between -88.706994 and -87.527174. This includes the seven counties
(Cook, DuPage, Kane, Kendall, Lake, McHenry and Will) of the Chicago Metropolitan Agency
for Planning (CMAP) region.
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(a) Travel distance (b) Travel time

Figure A1: Representativeness of travel patterns

Notes: This figure plots kernel densities of the distribution of travel distances (Panel a) and travel
times (Panel b) using trips in the survey data as well as in the cellphone data. Our level of obser-
vation is a trip. Trips in the cellphone data are constructed following the steps in Appendix S1.1.
Trips in the survey data do not include walking, biking or multi-modal trips.

C Downtown Surcharge

On January 6, 2020, Chicago introduced a surcharge on ride-hailing trips starting

or ending in a Downtown Zone (Figure A3) during peak hours (weekdays, 6 am–10

pm).48 Single rides are taxed at $1.25 outside the zone and $3.00 inside it. Before

the implementation of this surcharge, all trips faced a uniform surcharge of $0.72,

regardless of location or time.49

We use the policy to identify the average price elasticity of travelers by com-

paring trips that originate or end in the zone to those that originate from or end in

adjacent, non-treated areas around 10PM, when the surcharge is no longer active.

Concretely, our specification is

yodt = µod + αt + βt · treatod + ϵodt,

where yodt is either log price or log trips, od refers to origin/destination CA. Time t

is measured in 15-min intervals. treatod refers to all trips between areas subject to

48 See City of Chicago website.
49 See ABC7 Chicago.
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Figure A2: Representativeness across income groups

Notes: This figure plots a binscatter of the fraction of the population in each income percentile
covered by the mobile phone data. We define the census-tract specific population coverage as the
ratio between (i) the number of cellphones whose home location is assigned to that specific census
tract, and (ii) the he number of inhabitants of the census tract according to the 2010 Census data.
Income percentiles are defined by the census tract median household income.

the surcharge. We plot the coefficients of these treatment effects in Figure A4 and

Figure A5. Taking both estimates, we recover an implied price elasticity of −1.42.

D Proofs and Additional Theoretical Results

D.1 Optimality condition for fleet size

We first introduce some notation. We decompose derivatives of travel times with

respect to fleet sizes as T k
jk = Ť k

jk + T̃ k
jk, where Ť k

jk accounts for effects on waiting

times (it is zero when k ̸= j), and T̃ k
jk accounts for effects due to travel times.

Proposition 2. The first order conditions for the social planner’s problem (4) with respect

5



Figure A3: Downtown TNC surcharge area

Notes: This figure shows the downtown surcharge zone. The surcharge of $3 applies to any trip
that starts or ends within this zone on weekdays between 6 am and 10 pm.

Figure A4: Evening price response, 2020 (left) and 2019 (right)
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Notes: The left panel shows ride-hailing prices of areas affected by the surcharge of $3 relative to
unaffected adjacent areas around 10 pm, after which the surcharge no longer applies. The right
panel shows the same Figure in 2019, when the surcharge policy was not in place yet.

to fleet sizes can be written as

Direct benefit
of fleet size︷ ︸︸ ︷
uTj Ť

k
jj =

Mg. cost
of fleet size︷︸︸︷
Ck

j +

Mg. env. externality
of fleet size︷︸︸︷
Ek

j −

Congestion
effects︷ ︸︸ ︷∑

l

uTl · T̃ k
lj +

Diversion︷︸︸︷
Mk

j +

λ

1 + λ

(
Ek

j +
∑
k

(ũTk − uTk ) · T k
lj︸ ︷︷ ︸

Spence
distortion

+ M̃k
j −Mk

j︸ ︷︷ ︸
Diversion
distortion

)
, (19)

6



Figure A5: Evening quantity response, 2020 (left) and 2019 (right)
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Notes: The left panel shows how ride-hail trips of areas affected by the ride-hail surcharge of $3
relative to unaffected adjacent areas around 10 pm, after which the surcharge no longer applies.
One can see an increase relative to a downwards trend. The right panel shows the same Figure
in 2019, when the surcharge policy was not in place yet and we see that the downwards trend
continues.

where Mk
j and M̃k

j are defined as:

Mk
j =

∑
l

∂ql
∂kj

(
Cq

l + Eq
l −

∑
m

uTm · T q
ml − pl

)

M̃k
j =

∑
l∈JG

∂ql
∂kj

(
Cq

l +
∑
k∈JG

qk · Ωkj −
∑
m

ũTm · T q
ml − pl

)
.

Proof. See Appendix D.2

This result takes a very similar form to equation (5). Instead of the price, the left

hand side is the direct benefit of an increase in the fleet size—on those riders taking

that mode—which can be thought of as the direct benefit of an additional trip.

The marginal cost, marginal externality, and congestion effects terms are almost

identical, except that they are derivatives with respect to fleet sizes.

The diversion term follow a similar intuition to those for equation (5): they are

weighted sums of deviations from Pigouvian prices, but the weights are now given

by the increase in mode-l trips caused by a change in kj . This can be thought of as

the mode substitution caused by an increase in mode-j capacity.

Finally, the budget causes two monopoly-like distortions: underweighting the

7



environmental externality and a Spence distortion.

D.2 Proof of Propositions 1 and 2

We start by proving two lemmas in which we obtain expressions that are used in

the main proof. We first define U(q, t) = U(p(q, t), t), gross utility as a function

of trips and travel times. The first lemma characterizes its derivatives with respect

to trips. As is standard when choices originate from utility maximization, these

derivatives are equal to prices.

Lemma 1. The marginal gross utility of an additional mode-j trip is given by the price of

mode j:
∂U

∂qj
= pj.

Proof. Taking the derivative of gross utility with respect to qj (using the Leib-

niz integral rule), we get that ∂
∂qj
U(q, t) =

∑
k

∫
∂Θk(q,t)

uk(tk, θ)e
j
k(θ)f(θ) dθ +∑

k,l ̸=k

∫
∂Θkl(q,t)

uk(tk, θ)e
j
k(θ)f(θ) dθ, where ∂Θj(p, t) is the boundary between

Θj(p, t) and Θ0(p, t), ∂Θjk(p, t) is the boundary between Θj(p, t) and Θk(p, t), and

ejk(θ) denotes by how much Θk(q, t) expands at θ as qj increases. There is no term

corresponding to the interior because t is fixed (and so is uk(tk, θ)).

The second sum involves two terms for every pair. We can collect them

together by noting that ejk(θ) = −ejl (θ) at the boundary between Θk(q, t)

and Θl(q, t). The above expression is thus
∑

k

∫
∂Θk(q,t)

uk(tk, θ)e
j
k(θ)f(θ) dθ +∑

k,l>k

∫
∂Θkl(q,t)

(uk(tk, θ) − ul(tl, θ))e
j
l (θ)f(θ) dθ. To avoid counting every border

twice, this expression only consider pairs (k, l) such that k > l based on any ar-

bitrary ordering of modes.

Agents at the boundaries are indifferent, so uk(tk, θ) = pk for the first sum

and uk(tk, θ) − ul(tl, θ) = pk − pl for the second sum. Substituting and rear-

ranging terms, we get
∑

k

∫
∂Θk(q,t)

pke
j
k(θ)f(θ) dθ +

∑
k,l ̸=k

∫
∂Θkl(q,t)

pke
j
k(θ)f(θ) dθ =∑

k pk

(∫
∂Θk(q,t)

ejk(θ)f(θ) dθ +
∑

l ̸=k

∫
∂Θkl(q,t)

ejk(θ)f(θ) dθ
)

. The term in parentheses

is how much Θk(p, t) expands in total into all other regions, so it is equal to ∂qk/∂qj ,

which is thus equal to 1 for k = j and 0 for k ̸= j. Hence, ∂U(q, t)/∂qj = pj .
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Our second lemma concerns partial derivatives ∂pj/∂tk of the inverse demand

function p(q, t). Our analysis follows Weyl and White (2010).

We first define some notation. Let Ej[u
t
j] represent the mean of |∂uj(t, θ)/∂t|—

the marginal disutility of travel time—among agents that are indifferent between

mode j and the outside option. Also let Ekj[u
t
j] represent the mean of |∂uj(t, θ)/∂t|

among agents that are marginal between modes j and k. In other words, these

two quantities represent the mean disutility of time for the set of agents that are

marginal between two options.

The next lemma shows that diagonal terms ∂pj/∂tj take the form of a weighted

mean of terms Ej[u
t
j] and Ejk[u

t
j], while off-diagonal terms ∂pj/∂tk for j ̸= k take

the form of differences between terms Ej[u
t
j] and Ejk[u

t
j]. This means that

∑
l∈JG

ql ·
∂pl/∂tj—how much more revenue the government can extract after a change in tj ,

holding trips fixed—is equal to a weighted sum of marginal disutilities of travel

time (Ej[u
t
j] and Ekj[u

t
j]) with sum of weights equal to the number of travelers using

government-controlled modes.

Lemma 2. ∂pl/∂tj is equal to a weighted sum wlj
j Ej[u

t
j] +

∑
k ̸=j w

lj
kjEkj[u

t
j], where the

sum of weights wlj
j +

∑
k ̸=j w

lj
kj is equal to one for l = j and equal to zero for l ̸= j.

ũTj ≡
∑

l∈JG
ql ·∂pl/∂tj takes the form of a weighted sum w̃j

jEj[u
t
j]+

∑
k ̸=j w̃

j
kjEkj[u

t
j],

where the sum of weights w̃j
j +

∑
k ̸=j w̃

j
kj is equal to

∑
l∈JG

ql.

Proof. The function p(q, t) is defined implicitly by q = q(p, t). By the implicit func-

tion theorem, the matrix of its partial derivatives ∂pj/∂tk is Jp
t = −

[
Jq
p

]−1
Jq
t , where

Jq
p and Jq

t represent the Jacobians of q(p, t) with respect to p and t, respectively.

We now obtain expressions for those Jacobians. Consider first an increase

in pj . This induces Nj customers to switch from mode j to the outside option,

and it induces Nkj customers to switch from mode j to mode k. Thus, ∂qj
∂pj

=

−Nj −
∑

k ̸=j Nkj and ∂qk
∂pj

= Nkj for k ̸= j, where Nj and Njk are given

by integrals over the boundaries ∂Θj(p, t) and ∂Θjk(p, t), Nj =
∫
∂Θj(p,t)

nj(θ)f(θ) dθ

and Nkj =
∫
∂Θkj(p,t)

nkj(θ)f(θ) dθ. The integrands represent the number of travelers

at θ that are willing to switch modes in response to a unit increase in utility (i.e.,

a decrease in price). They are equal to the product of f(θ), the density of agents,
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times the volume (in θ space) of types that are willing to switch modes, which is

given by nj(θ) or njk(θ). That volume is given by the directional derivative of the

inverse of ∂uj/∂θ or ∂(uk − uj)/∂θ in the direction that is normal to the boundary.

Now consider an increase in tj . This induces Mj customers to switch from

mode j to the outside option, and it induces Mkj customers to switch from

mode j to mode k, where Mj =
∫
∂Θj(p,t)

∂uj

∂tj
nj(θ)f(θ) dθ and Mkj =∫

∂Θkj(p,t)

∂uj

∂tj
nkj(θ)f(θ) dθ. These are similar integrals as before, but the integrand

now accounts for the fact that an increase in times no longer induces a unit de-

crease in utility, but an increase of ∂uj(θ, tj)/∂tj . They are thus weighted sums of
∂uj

∂tj
, which can also be written as Mj = Ej[u

t
j]NJ and Mkj = Ekj[u

t
j]Nkj . We can thus

write ∂qj
∂tj

= −Ej[u
t
j]Nj −

∑
k ̸=j Ekj[u

t
j]Nkj and ∂qk

∂tj
= Ekj[u

t
k]Nkj for k ̸= j.

We now use Cramer’s rule to compute the elements of Jp
t . Element (l, j) is

−det(J̃lj)/det(J
q
p ), where J̃lj is the matrix Jq

p with the l-th column replaced by the

j-th column of Jq
t . By using the Laplace expansion for determinants, (Jp

t )lj =

−
∑

k(J
q
t )kj(−1)k+ldet(J̌q

p (k,l))

det(Jq
p )

= wlj
j Ej[u

t
j] +

∑
k ̸=j w

lj
kjEkj[u

t
j], where J̌q

p (k, j) is the subma-

trix of Jq
p without row k and column j. This is a weighted sum of terms Ej[u

t
j] and

Ekj[u
t
j], where the weights take the form wlj

j = Nj(−1)j+ldet(J̌q
p (j, l))/det(J

q
p ) and

wlj
kj = −Nkj[(−1)j+ldet(J̌q

p (j, l))− (−1)k+jdet(J̌q
p (k, l))]/det(J

q
p ). Hence, the weights

are simply functions of Nj and Njk.

If the marginal value of all marginal agents is equal to the same value ū, then

Jq
t = −ūJq

p , which means that Jp
t = −(Jq

p )
−1Jq

t is equal to ū times the identity

matrix. Thus, we can conclude that the sum of the weights corresponding to term

(Jp
t )lj is equal to minus one for diagonal elements (l = j) and is zero otherwise.

We then have that
∑

l∈JG
ql

∂pl
∂tj

=
∑

l∈JG
ql
(
wlj

j Ej[u
t
j] +

∑
k ̸=j w

lj
kjEkj[u

t
j]
)

=(∑
l∈JG

qlw
lj
j

)
Ej[u

t
j] +

∑
k ̸=j

(∑
l∈JG

qlw
lj
kj

)
Ekj[u

t
j] = w̃j

jEj[u
t
j] +

∑
k ̸=j w̃

j
kjEkj[u

t
j],

where w̃j
j +

∑
k ̸=j w̃

j
kj =

∑
l∈JG

ql.

We now present the main proof of Propositions 1 and 2.
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Proof. The Lagrangian for the social planner’s problem is

U(q∗, T (q∗,k))−C(q∗,k)−E(q∗,k)−λ

(∑
j∈JG

[
Cj(q

∗
j , kj)− pj(q

∗, T (q∗,k))q∗j
]
−B

)
.

The first order condition for pj is

∑
l

∂q∗l
∂pj

[
∂U

∂ql
+
∑
m

uTmT
q
ml − Cq

l − Eq
l + λ

(
1l∈JG

· (pl − Cq
l ) +

∑
m∈JG

qm
dpm
dql

)]
= 0.

The first order condition for kj is:

∑
m

uTmT
k
ml − Ck

l − Ek
l + λ

(∑
m∈JG

qm
dpm
dkj

− 1l∈JG
· Ck

l

)
+

∑
l

∂q∗l
∂kj

[
∂U

∂ql
+
∑
m

uTmT
q
lk − Cq

l − Eq
l + λ

(
1l∈JG

· (pl − Cq
l ) +

∑
m∈JG

qm
dpm
dql

)]
= 0.

By taking its total derivative, the term
∑

m∈JG
qmdpm/dql can be written as∑

m∈JG
(qm∂pm/∂ql +

∑
n qm · ∂pm/∂tn · ∂Tn/∂ql) =

∑
m∈JG

(qmΩml +
∑

n qm ·
∂pm/∂tn ·∂Tn/∂ql). Similarly,

∑
m∈JG

qmdpm/dkl =
∑

m∈JG

∑
n qm ·∂pm/∂tn ·∂Tn/∂kl.

Substituting Lemma 2 into these two expressions, we obtain
∑

m∈JG
qm

dpm
dql

=∑
m∈JG

qmΩml +
∑

m ũ
T
mT

q
ml and

∑
m∈JG

qm
dpm
dkl

=
∑

m ũ
T
mT

k
ml.

Substituting these two expressions as well as Lemma 1 into the first order con-

ditions and rearranging terms yields the following two expressions:

∑
l

∂ql
∂pj

[
(1+λ)

(
pl − Cq

l +
∑
m

uTmT
q
ml − Eq

l

)

+ λ

(
Eq

l − 1l /∈JG
· (pl − Cq

l ) +
∑
m∈JG

qmΩml +
∑
m

(ũTm − uTm)T
q
ml

)]
= 0
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∑
m

(1 + λ)
(
uTmT

k
ml − Ck

l − Ek
l

)
+ λ

(
Ek

l +
∑
m

(ũTm − uTm)T
k
mj

)

+
∑
l

∂ql
∂kj

[
(1 + λ)

(
pl − Cq

l +
∑
m

uTmT
q
ml − Eq

l

)

+λ

(
Eq

l − 1l /∈JG
· (pl − Cq

l ) +
∑
m∈JG

qmΩml +
∑
m

(ũTm − uTm)T
q
ml

)]
= 0.

Isolating pj and uTj Ť
k
jj and rearranging yields expressions (5) and (19).

D.3 Generalizing Propositions 1 and 2 to multiple markets

Consider a city government that faces many marketsm. The transportation system

can still be described as in Section 3.2, where the vectors q, p, and t represent

quantities, prices, and times for all modes j and marketsm. The vector of capacities

k can represent the capacities of different bus or train routes at different times. We

index it by r.

In this setting, it is not realistic to think of a government that sets a separate

price and frequency for every mode in every market. We therefore consider coarser

policy levers, such as the price of buses for the whole city, the price of trains during

rush hour, a per km carbon tax for the whole city, the frequency of one bus route,

or an overall factor for the frequency with which all trains run.

Consider one such policy lever, which we represent by some parameter σ. The

government chooses the level that maximizes its objective function subject to the

budget constraint, whose Lagrangian is

max
σ

U(q(σ), T (q(σ),k(σ)))−C(q(σ),k(σ))− E(q(σ),k(σ))+

λ

[ ∑
m,j∈JG

pmj(σ)qmj(σ)− C(q(σ),k(σ))

]
, (20)

where q(σ) is taken to be the equilibrium vector of trips.
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The first-order condition for this Lagrangian is

0 =
∑
mj

pmj
dqmj

dσ
+
∑
nkmj

∂U

∂tnk

∂tnk
∂qmj

dqmj

dσ
+
∑
nkr

∂U

∂tnk

∂tnk
∂kr

dkr
dσ

−
∑
mj

∂C

∂qmj

dqmj

dσ
−

∑
mj

∂E

∂qmj

dqmj

dσ
−
∑
r

∂C

∂kr

dkr
dσ

−
∑
r

∂E

∂kr

dkr
dσ

+λ

{ ∑
mjk,n∈JG

qnk
∂pnk
∂qmj

dqmj

dσ
+

∑
mjkol,n∈JG

qnk
∂pnk
∂tol

∂tol
∂qmj

dqmj

dσ
+

∑
j,m∈JG

pmj
dqmj

dσ
−
∑
mj

∂C

∂qmj

dqmj

dσ
−
∑
r

∂C

∂kr

dkr
dσ

}
. (21)

Suppose that σ is a price instrument, in which case dkr
dσ

is equal to zero for all

r. Then, following the ideas from Proposition 1 and after some algebra, this first

order condition can be written as

pσj = Cσ
j + Eσ

j − UA,σ
j +Mσ

j +
λ

1 + λ

{
µσ
j − Eσ

j −∆Uσ
j +∆Mσ

j

}
, (22)

where wσ
mj =

dqmj
dσ∑

n

dqnj
dσ

, Dσ
kj =

∑
m

dqmk
dσ∑

m

dqmj
dσ

, pσj =
∑

m pmjw
σ
mj Cσ

j =
∑

m
∂C
∂qmj

wσ
mj ,

Eσ
j =

∑
m

∂E
∂qmj

wσ
mj , Uσ

j =
∑

nkm
∂U
∂tnk

∂Tnk

∂qmj
wσ

mj , Ũσ
j =

∑
mnkol,k∈JG

qnk
∂pnk

∂tol

∂Tol

∂qmj
wσ

mj ,

µσ
j =

∑
mn,k∈JG

qnkΩ
σ
nkmjw

σ
mj , Mσ

j =
∑

k ̸=j D
σ
kj(C

σ
k + Eσ

k − Uσ
k − pσk), M̃

σ
j =∑

k/∈j D
σ
kj(1k∈JG

(Cσ
k − pσk) + µσ

k − Ũσ
k ), ∆U

σ
j = Ũσ

j − Uσ
j , and ∆Mσ

j = M̃σ
j −Mσ

j .

This equation resembles very closely equation (5). To make this generalization,

the key insight is that the relevant price, marginal cost, marginal externality, con-

gestion effects, and diversion ratios are weighted averages of individual-market

quantities across markets. The weight given to market m is wσ
mj =

dqmj
dσ∑

n

dqnj
dσ

: the

extent to which a change in σ affects the number of trips in that market. Thus, the

planner should put more weight on markets that are more affected by the policy

instrument σ.

Based on this expression, one can find an explicit expression for a per-km road

tax. The price faced by travelers taking the taxed mode is given by pmj = ∂C
∂qmj

+

rmjτ , where rmj is the trip distance and τ is the per km tax. One can substitute this
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expression on the above FOC, isolate τ , and do some algebra to write it as:

τ =
1

rσj

(
Eσ

j − UA,σ
j +MW,σ

j

)
, (23)

where rσj =
∑

m rmjw
σ
mj is the average distance per trip. This is a standard Pigou-

vian expression: the optimal price is equal to the average per-km externality plus

the average per-km congestion effects and a diversion term. There is no budget

constraint because it is unlikely to be binding after charging a road tax.

If we now consider a policy lever that does affect k, we can rewrite the first-

order condition as

−Ǔk,σ = Ck,σ + Ek,σ − Ûk,σ +Mk,σ +
λ

1 + λ

{
−Ek,σ −∆Uk,σ +∆Mk,σ

}
, (24)

where Ck,σ =
∑

r
∂C
∂kr

dkr
dσ

, Ek,σ =
∑

r
∂E
∂kr

dkr
dσ

, Uk,σ =
∑

nkr
∂U
∂tnk

∂tnk

∂kr
dkr
dσ

, ∆qσk =∑
m

dqmk

dσ
, Ũk,J,σ =

∑
nolr,k∈JG

qnk
∂pnk

∂tol

∂Tol

∂kr
dkr
dσ

, Mσ =
∑

k,m∆qσk (C
σ
k + Eσ

k − Uσ
k − pσk),

M̃σ =
∑

km∆qσk (1k∈JG
(Cσ

k − pσk) + µσ
k − Ũσ

k ), ∆U
k,σ = Ũk,σ

t − Uk,σ
j , ∆Mk,σ = M̃k,σ

j −
Mk,σ

j , and all other terms are defined as before. We decompose Uk,σ = Ǔk,J,σ + Ûk,σ

into the direct effect on travelers taking routes affected by σ due to waiting Ǔk,J,σ

as well as remaining effects Ûk,σ.

Once again, this equation resembles equation (19) very closely. Quantities are

also aggregated across markets through a weighted average in which the weight

given to market m is wσ
mj =

dqmj
dσ∑

n

dqnj
dσ

.

E Model Details

E.1 Model of Waiting Times for Public Transit

We assume that the time between vehicles follows some distribution with density

ϕ(·) that has mean 1/kmj and variance ω2/k2mj . We also assume that travelers arrive

to the stop or station at times that are uniformly distributed.

The density of travelers arriving between two subsequent vehicles with a time
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difference of t is t · kmj · ϕ(t): the density ϕ(t) is multiplied by t because the longer

the gap between vehicles, the more riders arrive between them (kmj is simply a

normalization factor so the density integrates to one) . If the time difference is t,

a rider arriving between two vehicles needs to wait t/2 in expectation. Therefore,

the expected waiting time is given by Twait
mj =

∫
1
2
t · (t · kmj · ϕ(t)) dt = 1+ω2

2kmj
.

E.2 Model of Waiting Times for Ride-Hailing and Taxis

Consider mode j (taxi or ride-hailing). Let qahj denote the number of trips origi-

nating in a during hour h, and Iahj the number of idle drivers there. We assume a

matching technology where the expected rider wait time is TW
ahj = AW

aj I
−ϕj

ahj , where

AW
aj captures matching inefficiency in location a and ϕj is an elasticity governing

how waiting times fall as idle drivers increase.50

Driver availability follows a parsimonious spatial model. Let Lhj be the to-

tal number of drivers in hour h, with busy drivers Bhj =
∑

od T
vehicle
odh qodhj , where

T vehicle
odh are the travel times from the traffic congestion model, and qodhj is the num-

ber of people taking mode j from o to d. The total number of idle drivers is

Ihj = Lhj − Bhj . The probability that an idle driver is in location a during hour

h is given by
exp(µa +

∑
bBabFhb)∑

a′ exp(µa′ +
∑

bBa′bFhb)
,

where Fha =
∑

b(qbahj − qabhj) is the net inflow of mode-j trips into a, Bab = λr−ρ
ab is

a factor for each pair of locations a and b that decays with the distance rab between

them. This probability depends on two terms. First, µa, which are fixed effects

that capture driver’s preferred areas. Second,
∑

bBabFb, which models the extent

to which idle drivers are more likely to be located near areas where net inflows

are high. The latter term is driven by two opposing forces: a high net inflow of

trips induces a high net inflow of drivers, so those areas tend to have many idle

drivers; however, these areas have an oversupply of drivers so earnings go down,

50 This flexible formulation nests simple taxi and ride-hailing models. E.g., ϕj = 1 in the taxi model
of Lagos (2003); ϕj = 1/n in the n-dimensional ride-hailing model of Castillo et al. (2024).
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and drivers will try to move away from them.

Putting all these pieces together, the number of idle drivers in every location is

given by

Iahj = (Lhj −Bhj)
exp(µa +

∑
bBabFhb)∑

a′ exp(µa′ +
∑

bBa′bFhb)
. (25)

This expression and the equation governing TW
ahj determine waiting times.

Estimation We first estimate the parameters AW
aj and ϕj that map idle drivers

into waiting times. For CA a, assume idle drivers Iahj are uniformly distributed

and pickup time conditional on distance is t(x) = Majx
cj . The implied expected

pickup time is51

TW
ahj =MajΓ

(
1 +

cj
2

)( 1

πIahj

) cj
2

. (26)

This takes the desired form AW
aj I

−ϕj

ahj , where AW
aj =MajΓ

(
1 +

cj
2

) (
1
π

) cj
2 and ϕj =

cj
2

.

We estimate Maj and cj by regressing log travel time on log travel distance for

all Google Maps car trips within the same CA, including CA fixed effects. We

obtain cj = 0.614 (s.e. = 0.0025), which implies ϕj = cj/2 = 0.307. AW
ahj follows

from equation (26) and from the fixed effects estimates.

We next estimate the driver location parameters (µa, λ, ρ). Since drivers are

unobserved, we use Uber data on average waiting times TW
ahj at the CA–hour level.

Inverting equation (26) gives Iahj , which we use to estimate (µa, λ, ρ) by maximum

likelihood from equation (E.2). Because µa has 77 elements, we solve the problem

with an inner loop that computes the optimal µa given λ and ρ using a contraction

mapping (Berry et al., 1995), and an outer loop that maximizes over λ and ρ. We

obtain estimates λ̂ = 0.048 (s.e. = 0.0003) and ρ̂ = 0.799 (s.e. = 0.028).
51 With driver density Iahj , the nearest-driver distance follows a Weibull distribution with pdf
2πxIahje

−πIahjx
2

. Integrating t(x) over this density yields equation (26).
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E.3 In-vehicle time adjustment

Our congestion model predicts in-vehicle times very well for short trips but

slightly overestimates long ones, likely because they tend to use more highways.

To correct this, we regress the log ratio of Google Maps times T vehicle
mj to the sum of

travel times over edges,
∑

e∈Pmj
T vehicle
ehj , on straight-line distance dm:

log

(
T vehicle
mj∑

e∈Pmj
T vehicle
ehj

)
= αj + βjdm + ϵmj

We then scale the sum of travel times by ψmj = exp(α̂j + β̂jdm) in simulations.

E.4 Additional Parameters and Assumptions

Marginal costs. For car-based modes (taxis, ride-hailing, private cars), we use

$0.396 per km from the AAA cost of driving, plus labor costs of $10 per hour for

taxis and ride-hailing.

For buses, we combine four components. Capital costs are $900,000 per bus

lasting 250,000 miles, based on diesel and electric bus purchases by the Chicago

Transit Board. Second, fuel costs are $3.26 per gallon with a fuel efficiency of 3.38

mpg, which we take from National Transit Database (NTD) data for the CTA in

2020. Third, labor costs are $33 per hour (NTD), assuming 20 km/h average speed

and doubling to account for benefits and support staff. Finally, we use mainte-

nance costs of $2.76 per km (NTD). These numbers add up to $7.528 per km.52

For trains, capital costs are $11M per train lasting 2 million miles, based on

CTA train purchases and assuming 10 cars per train. The CTA states that trains last

approximately 43 years, make around 15 trips a day, and each trip is approximately

12.1 miles on average, which provides us with our estimate of lifetime mileage.

Energy costs are $0.07 per kWh (from a CTA report) with consumption of 5.88 kWh

per mile (NTD). Labor costs are $9.06 per km (operator CTA’s expenses divided by

52 We exclude road wear-and-tear externalities, which are negligible at $0.0006–$0.001 per km
(Forkenbrock, 1999; OECD and ECMT, 2003; Small and Verhoef, 2007).
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mileage), and maintenance is $5.00 per km from the CTA’s 2020 budget. Total costs

equal $17.73 per km.

As a sanity check, we compare our estimates with the CTA’s 2019 financial

statements. While these report all operating expenses rather than marginal costs

and exclude capital, they provide bounds: $5.17–$12.51 per km for buses and

$9.07–$40.38 per km for trains. Both ranges encompass our values.

Environmental externalities. For the social cost of carbon, we use $190 per

tonne.53 For local pollutants, we follow Holland et al. (2016), using their Cook

County estimates: 44.93¢ per gallon of gasoline (non-truck vehicles) and 41.32¢

per gallon of diesel (diesel trucks), aggregated by vehicle miles traveled. They

report damages by vehicle type, which we aggregate for Cook County weighting

by vehicle miles traveled. For gasoline-related damages, we restrict the sample to

non-truck vehicles, and for diesel-related damages, we use the sample of diesel-

only trucks. For trains, we use an electricity consumption of $5.88 kWh per mile

(NTD) and Holland et al. (2016)’s environmental cost of $0.111 per kWh for the

Chicago electricity grid.

Vehicle occupancy. We assume average occupancies of 1.5 for private cars

(Krile et al., 2019) and 1.3 for ride-hailing and taxis (Hou et al., 2020).

E.5 Equilibrium

Let fp,k(q) ≡ q(p, T (q,k)) be a function that maps the feasible set of trip vectors Q
into itself. An equilibrium, for (p,k), is a fixed point q∗ ∈ Q of this map:

q∗ = fp,k(q∗).

After obtaining q∗, equilibrium travel times can be computed as t∗ = T (q∗,k).

Proposition 3 (Existence). A fixed point q∗ ∈ Q of fp,k(·) exists.

Proof. fp,k(·) is continuous because it is a composition of continuous functions. Q
53 See EPA Supplemental Proposal.
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is a simplex, so it is a convex, compact set. Hence, fp,k(·) has a fixed point by

Brouwer’s fixed point theorem.

To prove that there is a unique equilibrium, we follow Castillo (2025). We rely

on the following assumption:

Assumption 1. (fp,k(q)− fp,k(q′)) · (q− q′) < 0 for every q,q′ ∈ Q.

Assumption 1 captures congestion forces (traffic congestion and ride-hailing

externalities). When trip volumes rise in a mode–market (∆q = q− q′ > 0), travel

times increase (fp,k(q)− fp,k(q′) < 0), discouraging further demand. Thus, higher

flows raise costs, generating the negative correlation that Assumption 1 formalizes.

Although we cannot prove this assumption—some forms of congestion violate

it—we show that, in our empirical model, thousands of random pairs q,q′ ∈ Q
always satisfied (fp,k(q)− fp,k(q′)) · (q− q′) < 0.54

Proposition 4 (Uniqueness). Under Assumption 1, fp,k(·) has a unique fixed point.

Proof. Let gγ : Q → Q be defined by gγ(q) = (1− γ)q + γfp,k(q), where γ ∈ (0, 1).

The set of fixed points of fp,k and gγ is the same. We now show that there exists

some γ such that gγ is a contraction mapping. This implies, by the contraction

mapping theorem, that gγ has a unique fixed point—and, hence, so does fp,k.

fp,k is a continuous function with compact domain Q (a simplex), so it is uni-

formly continuous by the Heine-Cantor theorem. Thus, there exists β < ∞ such

that ||fp,k(q)−fp,k(q′)||
||q−q′|| < β for all q,q′ ∈ Q. This, in turn, means that, for all q,q′ ∈ Q,

||gγ(q) − gγ(q
′)||2 = (1 − γ)2||q − q′||2 + 2γ(1 − γ)(fp,k(q) − fp,k(q′)) · (q − q′) +

γ2||fp,k(q)−fp,k(q′)||2 < [(1− γ)2 + γ2β2] ||q−q′||2, where the inequality holds be-

cause of Assumption 1. Since β is bounded, the term in brackets is 1− 2γ +O(γ2),

which is less than one for small-enough γ > 0. Thus, there exists some γ > 0 and

some δ ∈ (0, 1) such that ||gγ(q)− gγ(q
′)|| ≤ δ||q− q′|| for all q,q′ ∈ Q.

54 The assumption is violated when two modes impose larger cross-externalities on each other than
on themselves, which is unlikely in practice.
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E.5.1 Equilibrium computation

A naive approach is fixed-point iteration, but it typically diverges. Dampened

fixed point iteration is guaranteed to converge—it is the same as applying fixed

point iteration on gγ , a contraction with the same fixed points as fp,k—but requires

small γ and thus many iterations. Instead, we solve fp,k(q)−q = 0 using a limited-

memory Broyden’s method. The full algorithm is:

Set initial value of trips q.
Compute initial times t = T (q,k).
Compute deviation d = q(p, t)− q.
Set new vector of trips q′ = q+ γd for a small step size γ > 0.
Compute new vector of times t′ = T (q′,k).
Compute deviation d′ = q(p, t′)− q′.
Set initial approximation to inverse Jacobian A = 1.
while ||d′|| > tolerance do

Define differences ∆q = q′ − q and ∆d = d′ − d.
Update vectors of trips q = q′ and deviation d = d′.
Compute new approximation to inverse Jacobian A = A+ ∆q−A∆d

∆qTA∆d
∆qTA.

Compute new vector of trips q′ = q−Ad.
Compute new vector of times t′ = T (q′,k).
Compute new deviation d′ = q(p, t′)− q′.

end

We make two adjustments to the previous algorithm. First, we approximate the

inverse Jacobian A using the limited-memory method of Byrd et al. (1994). Second,

if the updated vector q′ is infeasible (due to insufficient ride-hailing or taxi drivers),

we iteratively replace q′ with q+ 1
2
(q′ − q) until feasibility is restored.

E.6 Model Fit

Figure A6 shows that the trip times and market shares from our model fit the data

well. The differences arise from our model of traffic congestion (Section 4.2), which

predicts edge-level times perfectly but produces small discrepancies when times

are aggregated to the path between origin and destination. The factor explained in

Section E.3 corrects overall mismatches, but market-specific gaps persist.
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(a) Trip Times

(b) Market Shares

Figure A6: Model fit of trip times and market shares by mode

Notes: This figure compares observed trips times and market shares to model trip times and market
shares separately for each mode. Each panel displays both a binscatter and a scatterplot for a sam-
ple of 25,000 markets, where markets are drawn randomly with replacement and sample weights
are given by trip counts. The dashed line shows the 45 degree line.

E.7 Optimization

Having computed an equilibrium (Appendix E.5), we evaluate welfare W (p,k) =

W (q∗(p,k),k) and city revenue Π(p,k) = Π(q∗(p,k),k). The unconstrained wel-

fare maximization problem is

max
p,k

W (p,k). (27)

We solve it in two steps: (i) approximate the solution with Nelder–Mead (100 iter-

ations, starting from observed prices and capacities), and (ii) refine with a quasi-

Newton method. To reduce the computational burden, we deviate from Newton’s

method in two ways. First, we use the BFGS approximation (Nocedal and Wright,

2006) to the inverse Hessian. Second, we approximate gradients with central dif-

ferences, taking only a few Broyden steps (typically three) at each evaluation.
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With a budget constraint, the welfare maximization problem is

max
p,k

W (p,k) s.t. Π(p,k) = −B, (28)

where B is the city’s transport budget. We use an augmented iterative Lagrangian

approach:

max
p,k

W (p,k)− λn (Π(p,k) +B) + µn (Π(p,k) +B)2 . (29)

We initialize µ0 = 10−6 and λ0 = 0. At each step n, we maximize the objective with

the method described above, update µn+1 = 2µn, and set λn+1 = λn + µn(Π
n + B),

where Πn is revenue at the step-n optimum. In this algorithm, λn converges to

the value such that the budget constraint is satisfied with equality (Nocedal and

Wright, 2006). This means that (29) converges to the true Lagrangian with a penalty

term for deviations from the constraint, and the solutions converge to (28). To

verify global optimality, we ran the optimization from hundreds of random initial

points; in every case, the algorithm converged to the same solution.

Externality due to crowding As an additional check, we run counterfactuals in-

corporating bus and train crowding externalities. Following Hörcher et al. (2017),

we scale in-vehicle time by 1+0.265s+0.119d, where s is the share of standing pas-

sengers and d their density per square meter. Table A1 reproduces Table 3 with this

adjustment. Results remain qualitatively unchanged, though the planner chooses

somewhat higher frequencies and slightly higher prices.

F Additional Results

F.1 Demand Robustness

To assess robustness, we estimate several alternatives (Table A2), always including

dummies for multimodal trips and transfers. Column (1) adds market fixed effects:

average VOT rises and the low–high income gap widens. Because of higher VOTs,
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Table A1: Counterfactual results accounting for crowding externality

Status Quo Transit Transit, Budget Road Pricing Transit + Road
Pricing

(1) (2) (3) (4) (5)

Panel A: Prices

Avg. Price ($) Bus 1.09 -0.21 1.77 1.09 0.41
Train 1.33 -0.54 2.21 1.33 0.21

Road Tax ($/km) 0 0 0 0.33 0.33

Panel B: Wait Time and Frequencies

Avg. Wait (min) Bus 7.33 5.32 6.44 7.40 5.27
Train 4.95 2.80 3.33 5.02 2.79

∆ Frequency Bus 0% 37.96% 12.76% 0% 39.79%
Train 0% 70.27% 43.25% 0% 70.87%

Panel C: Welfare

∆ Welfare ($M/week) 0 5.28 2.15 3.20 8.24
∆ CS ($M/week) 0 27.74 2.62 -30.02 -6.44
∆ City Surplus ($M/week) 0 -20.93 0 29.41 12.38

∆ Transit Surplus ($M/week) 0 -20.93 0 0.66 -15.22
Road Taxes ($M/week) 0 0 0 28.75 27.60

∆ Externalities ($M/week) 0 0.02 0.34 -2.47 -2.20

Notes: This table presents a version of Table 3 where public transit passengers cause
an externality due to vehicles getting crowded.

our optimal policy counterfactuals would also predict higher frequencies. Col-

umn (2) adds mode–destination fixed effects to net out factors such as destination-

specific parking or access costs; the average VOT rises only slightly, at most, mod-

est effects on optimal frequencies. Column (3) introduces an inner nest for public

transit, which shows stronger substitution within transit relative to private modes;

average VOT and the own-price/time elasticities remain essentially unchanged.

Importantly, stronger bus–rail substitution implies that changing only bus prices

or frequencies would mostly reallocate riders to rail (and vice versa). Because our

counterfactuals move both bus and rail in parallel (or neither), these offsets would

largely cancel, so optimal policies would not suffer large differences. Column (4)

incorporates reliability by including the standard deviation of travel time for bus
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Table A2: Demand Estimation Robustness

(1) (2) (3) (4) (5)

Time (αT ) -3.079 -2.774 -1.658 -1.954 -1.649
(0.032) (0.031) (0.023) (0.031) (0.078)

Price (αp) -2.777 -1.488 -0.636 -1.030 -0.630
(0.184) (0.098) (0.112) (0.074) (0.078)

Income (αpy) -0.646 -0.330 -0.108 -0.235 -0.086
(0.032) (0.033) (0.089) (0.037) (0.063)

Nest (ρ) 0.359 0.196 0.231 0.463 0.399
(0.015) (0.013) (0.014) (0.011) (0.011)

Time Std. Dev. (αstd(T )) 0.488
(0.049)

Time Het. (αTy) -0.132
(0.103)

Time Income (λT ) 0.065
(1.719)

Inner Nest (ρinner) 0.516
(0.016)

Estimator GMM GMM GMM GMM GMM
Market FE ✓ ✓
Mode-Dest. FE ✓
Avg. VOT ($/h) 25.90 22.79 20.44 19.39 19.94
VOT (Bot. Quintile) 5.40 6.70 7.56 6.22 7.68
VOT (Top Quintile) 58.31 45.78 37.49 37.11 36.04
Avg. Price Elast. -0.63 -0.54 -0.43 -0.59 -0.47
Avg. Time Elast. -2.31 -1.77 -1.36 -1.61 -1.34
M 91,595 91,595 91,595 73,828 91,595
N 283,704 283,704 283,704 223,048 283,704

Notes: This table presents robustness checks for our main specification in section 4.1.
The average VOT is computed by first computing the within market average VOT
as the weighted average of αT /αi

p and then averaging across markets, with weights
given by market size. Similarly, the average elasticities are computed as the weighted
average of own-price and own-time elasticities across all mode-market observations,
with weights given by market size. In specification (2), markets for which we cannot
compute the standard deviation of time are dropped.

and rail. The estimated sensitivity to this variability is limited relative to sensitiv-

ity to mean travel time; implied average VOT and elasticities are close to baseline,

yielding similar counterfactual prescriptions. Column (5) incorporates income-

heterogeneous time preferences via a Box–Cox form: αi
T = αT +

αTy

y
1−λT
i

, producing a

slightly lower average VOT and a comparable inter-quintile range; price and time

elasticities remain similar, suggesting that this additional heterogeneity does not

generate substantively different substitution patterns.55

Taken together, average VOT remains stable across specifications—ranging

from $19.39 to $25.90—and price/time elasticities are also similar. Given the small

55 We also instrument travel times interacted with income-quintile indicators.
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differences, we expect counterfactual results to be similar. Thus, we retain our

baseline specification for parsimony and transparent identification, while noting

that these other specifications deliver qualitatively equivalent conclusions.

F.2 Decomposition of train prices and waiting times

Figure A7 is as Figure 8 but for trains.

Figure A7: Decomposition of optimal price and waiting times for trains
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Notes: This graph shows the a decomposition of the optimal prices and travel times for buses
corresponding to our theoretical decomposition in Section 4. Red bars indicate terms that lead
prices and travel times to be higher and yellow bars indicate terms that lead prices to be lower.
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Supplementary Appendix

S1 Data Construction

S1.1 Cellphone location records

This subsection details how we construct our sample of trips based on the raw

cellphone data. The raw data is composed of a sequence of pings. Each ping

contains a timestamp, latitude, longitude, and a device identifier. The final output

from this process is a dataset with a fraction of the universe of trips that took place

in Chicago. A sequence of filtering steps leaves us with 5% of devices. We verify

that the owners of these devices are representative and then scale up the number

of trips by a factor such that the aggregate number of car trips is consistent with

what is reported by the Chicago Metropolitan Agency for Planning (CMAP) 2019

Household Travel Survey.1

Data filtering We start by subsetting cellphone pings to a rectangle around the

city of Chicago (i.e., latitude between 41.11512 and 42.494693, longitude between

-88.706994 and -87.527174) for the month of January 2020.

Next, using the cellphone device identifier, the timestamp and geolocation of

each ping, we calculate the time between two consecutive pings as well as the

geodesic distance. These distances allow us to obtain the speed between consec-

utive pings. We then filter out “noisy” pings by using distance, time, and speed

variables. In particular, we remove pings that are moving at an excessive speed

since these pings are likely to be GPS “jumps” resulting from noise in the measure-

ment of the GPS coordinates of the device.2 We also drop “isolated” pings since

they are not helpful for identifying whether people are moving. Additionally, we

only keep pings belonging to a “stream” of pings.3 We define a stream of pings as a

1 Source: My Daily Travel survey (website)
2 40 meters per second, i.e. about 145 kilometers per hour
3 In particular, we only keep pings that satisfy the following two conditions: (i) no more than ten

1

https://www.cmap.illinois.gov/data/transportation/travel-survey


sequence of pings for the same cellphone identifier such that a ping always has an-

other ping within the next 15 minutes and within 1,000 meters. We drop streams

with less than 3 pings. Finally, we aggregate pings to the minute of the day by

taking the average location and timestamp across pings within each minute for

a given cellphone identifier. In what follows, we focus on the remaining filtered

pings aggregated at the minute level.

Defining movements, stays, and trips We identify two consecutive (aggregated)

pings as a “movement” for a given cellphone identifier if their distance is at least

50 meters or if their implied speed is at least 3 meters per second (6.7 miles per

hour or 10.8 kilometers per hour). We then define a “stay” as a sequence of two or

more successive pings with no movement.

Finally, we take all streams of pings and define trips as being a stream (i) with

movement, (ii) that starts with a stay, and (iii) that ends with a stay. We remove

all trips with a total geodesic trip distance between the starting and ending point

below 0.25 miles (about 400 meters).

Estimation of home locations and traveler’s income This subsection details how

we assign a home location and an income level to each individual cellphone iden-

tifier.

We start by assigning all cellphone pings to census blocks for the subset of pings

within Chicago during our sample period. Next, we focus on pings during night

hours, defined as between 10pm and 8am, when individuals are more likely to be

at home.

Using this subset of pings, we attribute a score system for each hour between

10pm and 8am. Specifically, regardless of the number of pings, scores are assigned

as follows:

• A value of 10 to all census blocks that were pinged between 1 am and 5 am.

minutes to either the next or the previous ping, (ii) no more than 5,000 meters to either the next
or the previous ping.

2



• A value of 5 to all census blocks that were pinged between 11 pm and 1am

or between 5 am and 7 am.

• A value of 2 to all census blocks that were pinged between 10pm and 11pm,

or between 7am and 8am.

The basic idea is to assign a higher score to blocks where the cellphone owner

is more likely to be at home. Finally, we sum the scores across all census blocks for

each cellphone ID - month combination and keep the census block with highest

score. If this highest-score census block appears on at least 3 or more separate

nights during the month, we assign it as the cellphone’s home census block for

that month. Otherwise, we consider the cellphone as having an unknown home

location, which we believe captures occasional Chicago visitors such as tourists.

Throughout the text, we refer to these devices as visitors. Figure S8 plots the share

of visitors by origin locations. We see that, for trips done by visitors, the most

common origin locations are the city center (center right), both airports (top left

and center left), as well as Hyde Park the neighborhood home to the University of

Chicago (right, south of the center).

For all cellphones with an assigned home location, we impute their income by

using the census tract median household income.4 Cellphones without an assigned

home location (visitors) are not assigned an income at this stage.

Next, for each market, we estimate travelers’ income distribution.5 First, we

take median income by tracts and divide tracts according to Chicago-level income

quintiles.6 Next, we assign an income quintile to each device according to their

home location. Since we can follow how devices travel across space and over time,

for each market, we can measure the quintile from each traveler departing from its

destination. We end up, for each market, with the share of travelers in each of the

five income quintiles, plus a share of visitors. For each market, we then reassign

visitors proportionally across the five income quintiles so that their shares sum to
4 We compute the census-tract median income percentile using the 2010 Census data.
5 Recall, a market is defined as an (origin CA, destination CA, hour of the week)-tuple.
6 For 2010, income quintiles are defined using the following cut-offs: $34,875, $46,261, $60,590 and

$85,762.
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Figure S8: Share of visitors by origin location

Notes: This figure shows the share of trips at the origin CA level made by visitors. In our cellphone
trips data, each market (origin-destination-hour triple) has a share of trips made by visitors. To
construct the shares displayed in the figure, we take the weighted average of the share of trips
made by visitors across destinations and hours of the week, for each origin CA, using inside market
size (number of cellphone trips per market) as weight.
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one. As a result, in the estimation, we work with five traveler types, corresponding

to five income quintiles. For markets with less than 5 trips, we impute market-

level income shares using the underlying distribution of census tract-level income

for the origin CA of that market.

S1.1.1 Survey Data Sparsity

Survey data Combined data

# Trips 0 10 100 1,000 10,000 100,000 1,000,000

Figure S9: Combined vs. Survey Data: Flows Across Community Areas

Notes: These figures show the number of trips from every origin CA to every destination CA in our
combined data (right panel) and in the survey data (left panel). Each row represents an origin CA
and each column represents a destination CA. Grey points represent empty cells.

S1.2 Travel times, routes, and schedules

Travel times and routes Similar to Akbar et al. (2023), we query and geocode

trips using Google Maps. For each mode of transportation, we query 30,796,848

counterfactual trips and obtain their distance, duration, and route.7 Importantly,
7 One trip for each (origin census tract, destination census tract, hour of day, weekend dummy)

combination. We use all the 801 Chicago census tracts boundaries for the year 2010 from the
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we can measure trip duration for the same origin-destination tuple over the time of

the weekday (or weekend) and how this varies with traffic conditions. Moreover,

using the detailed “steps” of the public transit Google Maps queries, we obtain

walk times from the origin latitude/longitude to the “best” train or bus station.8

We also obtain Google Maps data on train trip times by querying Google Maps

three times for each pair of train stations in Chicago. These times represented

three broad time categories: weekday peak, weekday non-peak, and weekend. In

particular, the first query requested a trip time of 8am on Wednesday July 6th,

2022, the second query requested a trip time of 11am on Wednesday July 6th, 2022,

and the third query requested a trip time of 11am on Saturday July 9th 2022.

Public transit schedules We obtain historical GTFS data from Open Mobility

Data. These data contain bus and train schedules for September 2019 through

February 2020.

S1.3 Constructing Mode-Specific Trips

Mode-specific trips are constructed using five main sources: (1) Taxi and TNP trips

data from the City of Chicago, (2) Google Maps data, (3) cellphone trips data, (4)

historical GTFS data containing public transit route schedules, and (5) Chicago

public transit data from the MIT Transit Lab and the CTA.

Taxi and Transportation Network Provider (TNP) data We obtain trip times, dis-

tances, and origin-destination census tracts for both Taxi and Transportation Net-

work Provider (TNP) trips from the City of Chicago’s Data Portal.9

Chicago Data City portal website.
8 The “best” bus or train station is not necessarily the closest one, depending on the destination

and/or the time of the day.
9 For privacy reasons, during periods of the day and for locations with very few trips, only the

origin and/or destination CA of a trip is reported. See this page for a discussion of the approach
to privacy in this data set.
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Cellphone trips data We construct cellphone trips from cellphone pings using

the procedure detailed in Appendix S1.1. This procedure results in a trip-level

dataset. Since our cellphone data only captures a portion of the total trips, we ad-

just for this by assigning an inflation factor to each trip. To account for varying

rates of unobserved trips across different city areas, we allow inflation factors to

vary by the neighborhood of the trip’s origin.10 Specifically, we calibrate these fac-

tors to ensure that the number of car trips beginning in each neighborhood in our

dataset matches the corresponding number in the Chicago Metropolitan Agency

for Planning (CMAP) Household Travel Survey.11

Public transit data We obtain individual public transit trips for the city of

Chicago via a partnership between the MIT Transit Lab and the CTA. Each ob-

servation corresponds to a passenger swiping in to access the bus or the train sta-

tion. For buses, we observe the specific bus stop, bus line, and boarding time. For

trains, we observe the station and swiping time. Drop-off locations were imputed

by Zhao et al. (2007).12

These data notably exclude trips taken via the Metra, which is a suburban rail

system operating in and around Chicago. Metra is managed by a different agency,

the Regional Transportation Authority. An additional limitation is that we do not

observe trips paid for via cash or trips whose destination could not be imputed. To

account for these sources of missing trips, we assign each observed trip an inflation

factor. This inflation factor is computed at the day-mode level such that

infldmTdm = Rdm,

where dm indexes the day-mode, T is the total number of observed trips, and R is

10 Each neighborhood is a group of about 8-9 CAs. The exact make-up of neighborhoods can be
found on Wikipedia.

11 Source: My Daily Travel survey (website)
12 The inference relies on two observed patterns: a high percentage of riders begin their next trip

at the destination of their previous trip, and many complete their final trip of the day at the
same station where they began their first. These patterns were validated using travel diary data
collected by the New York Metropolitan Transportation Council (Barry et al., 2002).
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the observed aggregate daily ridership for the CTA, which we obtain from the City

of Chicago’s Data Portal. The average such inflation factor is 2.0.

We also do not observe travel times for train trips, and so we are forced to

impute these travel times. To do so, we first match each train trip to the historical

GTFS schedule data. To compute the match for a given train trip, we first find all

scheduled trips between the origin and destination stops of that trip. We then take

the match to be the scheduled trip whose boarding time is closest to the observed

boarding time. We then take the scheduled travel time as the travel time. This

matching process enables us to compute travel times for close to 90% of train trips.

For trips that have no matches in the schedule data, we impute travel times

using Google Maps data.13 In particular, we first assign each trip one of three time

categorizations: weekend (if Saturday or Sunday), peak weekday (if between 5-

9:59am or 2-6:59pm on a weekday), or non-peak weekday (otherwise). We then

take the time to be the travel time of the matching train trip from the Google Maps

data.

We also compute travel distances for each trip. We use the Haversine formula

to compute distances, with radius equal to 6371.0088, which is the mean radius

of Earth in km. For bus trips, we compute the travel distances as the Manhattan

distance between the boarding and alighting coordinates, while for train trips we

compute the travel distances as the Euclidean distance between the boarding and

alighting coordinates.

S1.4 Market Share Calculations

We first append together the transit, TNP, taxi, and cellphone trips data. We incor-

porate walk times to bus/train stations from the Google Maps data. We drop any

trips that have a negative trip time, trip time exceeding 6 hours, negative prices, or

missing values for origin, destination, distance, duration, mode, trip time, or price.

Since our trip data is at the vehicle level, we account for unobserved vehicle occu-

13 Manual inspection suggests these trips typically involve an unobserved transfer between two
lines.
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pancy by scaling trip numbers and prices using the average vehicle occupancy for

that mode, which we report in Appendix E.4.

We calculate market shares at the (origin CA, destination CA, hour-of-the-

week) level using a two-step process. First, we aggregate trips at the (origin CA,

destination CA, hour-of-the-week, date) level. We then let the number of car trips

be the residual after subtracting public transit, taxi, TNP, and shared trips from

the cellphone trips.14 Car prices are computed as 0.6374 U.S. Dollars per trip mile,

which is AAA’s estimate of per mile driving costs for an average 2020 model.15

Finally, we obtain trip counts at the (origin CA, destination CA, hour-of-the-week,

date) level by averaging across dates.

S1.5 Market Size

To compute market shares, we need to take a stance on the size of the market,

which captures how many people could be traveling at a given moment in time.

For simplicity, we assume that market sizes are proportional to the total number

of observed trips. To determine the factor of proportionality, we compare the pop-

ulation of each CA to the total number of trips originating from that CA in the

morning hours (5-9:59am) on weekdays. The median ratio across CAs is 2.61. Im-

plicitly, this factor assumes that the number of potential travelers in each CA in

these morning hours is given by the total population, which is likely an upper

bound. We also compute a more conservative factor by assuming the set of po-

tential travelers is made up of commuters and school-age children, which gives a

median factor of 1.48. Corresponding to roughly the midpoint of these two factors,

we set our proportionality factor to 2.

We restrict ourselves to markets where we observe car trips so that cars are

always an available mode. These markets capture 96% of observed trips.

14 If the residual is negative we assume that there are no car trips.
15 Source: AAA brochure “Your driving costs”.
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S2 Additional Results

S2.1 Bus Utilization

While our model does not consider capacity constraints for buses when solving for

the optimal policy, we can consider ex-post the extent to which this constraint might

bind. Our results imply frequency reductions for buses that are typically less than

30%. We consider whether these frequency reductions would result in binding

capacity constraints, holding ridership levels fixed, by computing the fraction of

buses that exceed 70% and 80% utilization across hours of the day. Figure S10

shows that this constraint is unlikely to make a first-order impact on our results as

only 10% of buses reach even 70% utilization, and only during the morning and

afternoon rush hours.
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Figure S10: Bus Capacity

Notes: This figure shows the fraction of buses that exceed 80% (solid) and 70% (dashed) utilization
over the course of the day.
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S2.2 Decomposition of welfare effects

Table S3 decompose changes in consumer surplus into effects from prices and

changes in environmental externalities into effects from frequencies and from trav-

elers’ substitution. Figure S11 shows how the decomposition of consumer surplus

looks for different levels of income.
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Table S3: Decomposition of Consumer Surplus and Environmental Externalities

Status quo Transit Transit,
budget

Road pricing Transit + Road
pricing

Social
planner

∆ CS ($M/week) Total 0 26.869 0.945 -32.320 -7.837 -8.021

∆ CS ($M/week) Price 0 14.475 -2.923 -34.746 -22.547 -22.776
∆ CS ($M/week) Time 0 12.394 3.869 2.426 14.710 14.755

∆ CS ($M/week) Capacity 0 9.756 3.764 0 10.069 10.056
∆ CS ($M/week) Substitution 0 2.637 0.105 2.426 4.641 4.699

∆ Externality Total 0 -0.167 0.238 -2.717 -2.444 -2.455

($M/week) Capacity 0 0.398 0.122 0 0.452 0.450
∆ Externality Substitution 0 -0.565 0.116 -2.717 -2.896 -2.905

∆ Avg. Speed (km/h) 0.00% 0.79% -0.04% 1.98% 2.49% 2.50%

Notes: This table represents the change in consumer surplus and environmental externalities attributed to different channels. Changes in
consumer surplus (first row) are divided into changes in prices (second row) and times (third row). Changes in times are a product in
changes in fleet size (fourth row) and substitution of consumers across modes (fifth row). Total changes in externalities (sixth row) are
decomposed into changes in fleet size (seventh row) and substitution across consumer (eighth row).
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Figure S11: Decomposition of consumer surplus through different channels

Transit + congestion Social planner
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Notes: These graphs presents changes in consumer surplus across income quintiles for four different
counterfactual scenarios scenarios. Each of the lines represent the change in consumer surplus from
each of the channels that affect traveler’s utility.
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